WorldWideScience

Sample records for camarotella torrendiella comb

  1. A simplified DNA extraction method for PCR analysis of Camarotella spp.

    Directory of Open Access Journals (Sweden)

    Nadja Santos Vitória

    2010-04-01

    Full Text Available This work aimed to optimize an efficient and simple protocol for DNA extraction of Camarotella species, an obligate plant pathogen that cause verrucosis or "lixa" on coconut tree and other palms, facilitating the molecular studies of these biotrophic microorganisms. The method proposed enabled a fast, reproducible and reliable DNA extraction from Camarotella species.A extração e amplificação de DNA são etapas fundamentais para a aplicação de métodos moleculares e para tal, a origem do material é relevante. As espécies do gênero Camarotella que causam as lixas do coqueiro e outras palmeiras são biotróficas e o crescimento em meio artificial é controverso, embora Oliveira et. al, (2004 tenham registrado seu cultivo in vitro, utilizando meio líquido completo. No entanto, não ficou provado que o micélio formado correspondia ao micélio de Camarotella. Em conseqüência das dificuldades com o cultivo dos agentes etiológicos das lixas, foi otimizado um protocolo para extração de DNA genômico a partir do himênio ascógeno in natura e um protocolo de PCR para sua amplificação. Nossos resultados são importantes para o estudo da família Phyllachoraceae, pois possibilitará a análise molecular que, nessa família, é limitada pela dificuldade de obtenção de DNA.

  2. Modeling Frequency Comb Sources

    Directory of Open Access Journals (Sweden)

    Li Feng

    2016-06-01

    Full Text Available Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.

  3. Random walks on combs

    CERN Document Server

    Durhuus, B; Wheater, J; Durhuus, Bergfinnur; Jonsson, Thordur; Wheater, John

    2006-01-01

    We develop techniques to obtain rigorous bounds on the behaviour of random walks on combs. Using these bounds we calculate exactly the spectral dimension of random combs with infinite teeth at random positions or teeth with random but finite length. We also calculate exactly the spectral dimension of some fixed non-translationally invariant combs. We relate the spectral dimension to the critical exponent of the mass of the two-point function for random walks on random combs, and compute mean displacements as a function of walk duration. We prove that the mean first passage time is generally infinite for combs with anomalous spectral dimension.

  4. Hyperfine phononic frequency comb

    CERN Document Server

    Ganesan, Adarsh; Seshia, Ashwin A

    2016-01-01

    Optical frequency combs [1-8] have resulted in significant advances in optical frequency metrology and found wide application to precise physical measurements [1-4, 9] and molecular fingerprinting [8]. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this letter, we report the first clear experimental evidence for a phononic frequency comb. In contrast to the Kerr nonlinearity [10] in optical frequency comb formation, the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an auto-parametrically excited sub-harmonic mode [16]. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define attributes to control the features [17-18] associated with comb formation in such a system. Further, the interplay between these nonlinear resonances and the well-known Duffing phenomenon [12-14] is also observed. The present...

  5. Combing the Globe

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China’s top comb maker aims to sell its high-end hand-crafted products to overseas customers while improving its brand image For some, woodcarving and small carpentry work are hobbies. But for Tan Chuanhua and his Carpenter Tan comb brand, the woodworking craft has become a deep-rooted moneymaker. The Chongqing-based handcraft wood comb maker raised HK$140 million ($18 mil-

  6. Smooth Combs Inside Hedgehogs

    OpenAIRE

    Biswas, Kingshook

    2009-01-01

    We use techniques of tube-log Riemann surfaces due to R.Perez-Marco to construct a hedgehog containing smooth $C^{\\infty}$ combs. The hedgehog is a common hedgehog for a family of commuting non-linearisable holomorphic maps with a common indifferent fixed point. The comb is made up of smooth curves, and is transversally bi-H\\"older regular.

  7. Dynamics of comb-of-comb networks

    Science.gov (United States)

    Liu, Hongxiao; Lin, Yuan; Dolgushev, Maxim; Zhang, Zhongzhi

    2016-03-01

    The dynamics of complex networks, a current hot topic in many scientific fields, is often coded through the corresponding Laplacian matrix. The spectrum of this matrix carries the main features of the networks' dynamics. Here we consider the deterministic networks which can be viewed as "comb-of-comb" iterative structures. For their Laplacian spectra we find analytical equations involving Chebyshev polynomials whose properties allow one to analyze the spectra in deep. Here, in particular, we find that in the infinite size limit the corresponding spectral dimension goes as ds→2 . The ds leaves its fingerprint on many dynamical processes, as we exemplarily show by considering the dynamical properties of polymer networks, including single monomer displacement under a constant force, mechanical relaxation, and fluorescence depolarization.

  8. Dissipative soliton comb

    CERN Document Server

    Podivilov, Evgeniy V; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Babin, Sergey A

    2016-01-01

    Dissipative solitons are stable localized coherent structures with linear frequency chirp generated in normal-dispersion mode-locked lasers. The soliton energy in fiber lasers is limited by the Raman effect, but implementation of intracavity feedback for the Stokes wave enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming a "dissipative soliton comb" in the frequency domain. We observed up to eight equidistant components in a 400-nm interval demonstrating compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications.

  9. Dual-comb MIXSEL

    Science.gov (United States)

    Link, S. M.; Zaugg, C. A.; Klenner, A.; Mangold, M.; Golling, M.; Tilma, B. W.; Keller, U.

    2015-03-01

    We present a single semiconductor disk laser simultaneously emitting two different gigahertz modelocked pulse trains. A birefringent crystal inside a modelocked integrated external-cavity surface-emitting laser (MIXSEL) separates the cavity beam into two spatially separated beams with perpendicular polarizations on the MIXSEL chip. This MIXSEL then generates two orthogonally polarized collinear modelocked pulse trains from one simple straight cavity. Superimposing the beams on a photo detector creates a microwave beat signal, representing a strikingly simple setup to down-convert the terahertz optical frequencies into the electronically accessible microwave regime. This makes the dual-comb MIXSEL scheme an ultra-compact and cost-efficient candidate for dual-comb spectroscopy applications.

  10. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  11. Optical frequency combs generated mechanically

    CERN Document Server

    Sumetsky, M

    2016-01-01

    It is shown that a highly equidistant optical frequency comb can be generated by the parametric excitation of an optical bottle microresonator with nanoscale effective radius variation by its natural mechanical vibrations.

  12. Quantum Cascade Laser Frequency Combs

    Science.gov (United States)

    Faist, Jérôme; Villares, Gustavo; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2016-06-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100mW and frequency coverage of 100 cm-1 in the mid-infrared region. In the THz range, 10mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four-wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the first dual-comb spectroscopy measurements. The capability of the structure to integrate monothically nonlinear optical elements as well as to operate as a detector shows great promise for future chip integration of dual-comb systems.

  13. [The skull of Combe Capelle].

    Science.gov (United States)

    Hoffmann, Almut; Wegner, Dietrich

    2002-12-01

    Since the end of World War II two of the most important anthropological artefacts of the Museum für Vor- und Frühgeschichte in Berlin, the skulls and skeletons of Le Moustier and Combe Capelle, were believed to be missing or destroyed, respectively. The postcrania were severely damaged during a fire after the museum was bombed in February 1945, while the skulls were brought to the Soviet Union in 1945. In 1965, the skull of the Neanderthal man from Le Moustier and the chain of the grave of Combe Capelle were found amongst the art objects returned by the Soviet Union into the German Democratic Republic in 1958. However, the Combe Capelle skull was still missing. In the end of 2001 this skull could be found and identified in a store-house of the museum. Now, one the oldest known representatives of Homo sapiens sapiens is again available for scientific research and public exhibitions. PMID:12529957

  14. Monolithically integrated absolute frequency comb laser system

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  15. On Frequency Combs in Monolithic Resonators

    Directory of Open Access Journals (Sweden)

    Savchenkov A. A.

    2016-06-01

    Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  16. Ultrafast electrooptic dual-comb interferometry

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2015-01-01

    The femtosecond laser frequency comb has enabled the 21st century revolution in optical synthesis and metrology. A particularly compelling technique that relies on the broadband coherence of two laser frequency combs is dual-comb interferometry. This method is rapidly advancing the field of optical spectroscopy and empowering new applications, from nonlinear microscopy to laser ranging. Up to now, most dual-comb interferometers were based on modelocked lasers, whose repetition rates have restricted the measurement speed to ~ kHz. Here we demonstrate a novel dual-comb interferometer that is based on electrooptic frequency comb technology and measures consecutive complex spectra at a record-high refresh rate of 25 MHz. These results pave the way for novel scientific and metrology applications of frequency comb generators beyond the realm of molecular spectroscopy, where the measurement of ultrabroadband waveforms is of paramount relevance.

  17. Quantum Cascade Laser Frequency Combs

    CERN Document Server

    Faist, Jérôme; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2015-01-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100 mW and frequency coverage of 100 cm$^{-1}$ in the mid-infrared. In the THz range, 10 mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the fir...

  18. Octave Spanning Frequency Comb on a Chip

    CERN Document Server

    Del'Haye, P; Gavartin, E; Holzwarth, R; Kippenberg, T J

    2009-01-01

    Optical frequency combs have revolutionized the field of frequency metrology within the last decade and have become enabling tools for atomic clocks, gas sensing and astrophysical spectrometer calibration. The rapidly increasing number of applications has heightened interest in more compact comb generators. Optical microresonator based comb generators bear promise in this regard. Critical to their future use as 'frequency markers', is however the absolute frequency stabilization of the optical comb spectrum. A powerful technique for this stabilization is self-referencing, which requires a spectrum that spans a full octave, i.e. a factor of two in frequency. In the case of mode locked lasers, overcoming the limited bandwidth has become possible only with the advent of photonic crystal fibres for supercontinuum generation. Here, we report for the first time the generation of an octave-spanning frequency comb directly from a toroidal microresonator on a silicon chip. The comb spectrum covers the wavelength range...

  19. On-chip dual-comb based on quantum cascade laser frequency combs

    Energy Technology Data Exchange (ETDEWEB)

    Villares, G., E-mail: gustavo.villares@phys.ethz.ch; Wolf, J.; Kazakov, D.; Süess, M. J.; Beck, M.; Faist, J., E-mail: jfaist@phys.ethz.ch [Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich (Switzerland); Hugi, A. [IRsweep GmbH, CH-8093 Zürich (Switzerland)

    2015-12-21

    Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-comb systems.

  20. Transient Regime of Kerr Frequency Comb Formation

    CERN Document Server

    Savchenkov, Anatoliy A; Liang, Wei; Ilchenko, Vladimir S; Seidel, David; Maleki, Lute

    2011-01-01

    Temporal growth of an optical Kerr frequency comb generated in a microresonator is studied both experimentally and numerically. We find that the comb emerges from vacuum fluctuations of the electromagnetic field on timescales significantly exceeding the ringdown time of the resonator modes. The frequency harmonics of the comb spread starting from the optically pumped mode if the microresonator is characterized with anomalous group velocity dispersion. The harmonics have different growth rates resulting from sequential four-wave mixing process that explains intrinsic modelocking of the comb.

  1. Microresonator Soliton Dual-Comb Spectroscopy

    CERN Document Server

    Suh, Myoung-Gyun; Yang, Ki Youl; Yi, Xu; Vahala, Kerry

    2016-01-01

    Rapid characterization of optical and vibrational spectra with high resolution can identify species in cluttered environments and is important for assays and early alerts. In this regard, dual-comb spectroscopy has emerged as a powerful approach to acquire nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain and avoid bulky mechanical spectrometers. Recently, a miniature soliton-based comb has emerged that can potentially transfer the dual-comb method to a chip platform. Unlike earlier microcombs, these new devices achieve high-coherence, pulsed mode locking. They generate broad, reproducible spectral envelopes, which is essential for dual-comb spectroscopy. Here, dual-comb spectroscopy is demonstrated using these devices. This work shows the potential for integrated, high signal-to-noise spectroscopy with fast acquisition rates.

  2. Ultrabroadband coherent supercontinuum frequency comb

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, Axel; McKay, Hugh; Thomas, Brian; Dong, Liang; Fermann, Martin E.; Hartl, Ingmar [IMRA America Inc., 1044 Woodridge Avenue, Ann Arbor, Michigan 48105 (United States); Martin, Michael J.; Cossel, Kevin C.; Chen Lisheng; Benko, Craig; Ye Jun [JILA, National Institute of Standards and Technology and University of Colorado, Department of Physics, 440 UCB, Boulder, Colorado 80309 (United States); Dudley, John M. [Institute FEMTO-ST, CNRS-University of Franche-Comte UMR 6174, Besancon (France)

    2011-07-15

    We present detailed studies of the coherence properties of an ultrabroadband supercontinuum, enabled by a comprehensive approach involving continuous-wave laser sources to independently probe both the amplitude and phase noise quadratures across the entire spectrum. The continuum coherently spans more than 1.5 octaves, supporting Hz-level comparison of ultrastable lasers at 698 nm and 1.54 {mu}m. We present a complete numerical simulation of the accumulated comb coherence in the limit of many pulses, in contrast to the single-pulse level, with systematic experimental verification. The experiment and numerical simulations reveal the presence of quantum-seeded broadband amplitude noise without phase coherence degradation, including the discovery of a dependence of the supercontinuum coherence on the fiber fractional Raman gain.

  3. Fluctuations for internal DLA on the Comb

    OpenAIRE

    Asselah, Amine; Rahmani, Houda

    2013-01-01

    We study internal diffusion limited aggregation (DLA) on the two dimensional comb lattice. The comb lattice is a spanning tree of the euclidean lattice, and internal DLA is a random growth model, where simple random walks, starting one at a time at the origin of the comb, stop when reaching the first unoccupied site. An asymptotic shape is suggested by a lower bound of Huss and Sava. We show that fluctuations with respect to this shape are gaussian as in the one-dimensional lattice.

  4. A bidirectional dual-comb ring laser for simple and robust dual-comb spectroscopy

    CERN Document Server

    Ideguchi, Takuro; Kobayashi, Yohei; Goda, Keisuke

    2015-01-01

    Fourier-transform spectroscopy is an indispensable tool for analyzing chemical samples in scientific research as well as chemical and pharmaceutical industries. Recently, its measurement speed, sensitivity, and precision have been shown to be significantly enhanced by using dual frequency combs. However, wide acceptance of this technique is hindered by its requirement for two frequency combs and active stabilization of the combs. Here we overcome this predicament with a Kerr-lens mode-locked bidirectional ring laser that generates two frequency combs with slightly different pulse repetition rates and a tunable yet highly stable rate difference. This peculiar lasing principle builds on a slight difference in optical cavity length between two counter-propagating lasing modes due to Kerr lensing. Since these combs are produced by the one and same laser cavity, their relative coherence stays passively stable without the need for active stabilization. To show its utility, we demonstrate broadband dual-comb spectro...

  5. Efficient Two-Comb Fourier Spectroscopy

    CERN Document Server

    Mandon, Julien; Picqué, Nathalie

    2008-01-01

    Molecular fingerprinting through absorption spectroscopy is a powerful analytical method. Wide spectral ranges are explored with Doppler-limited resolution. Fast data acquisition, accurate measurements of frequency, intensity, and line shape; time-resolved, selective spectra are achieved with excellent sensitivities. However, presently spectrometers are unable to provide all these features at once. Here we show that, based on frequency comb lasers, a spectrometer may overcome this difficulty. We have recorded two series of spectra with a 1.5 $\\mu$m Cr:YAG frequency comb. In the first series, we propose to use the comb structure to considerably improve the recording time and signal to noise ratio of Doppler-resolved spectra, (Fourier Transform (FT) of the beating signatures of two combs issued from the same initial laser). The second series demonstrates that under very simple experimental conditions, FT spectroscopists may record much more sensitive spectra than with the usual incoherent white light source. We...

  6. George Combe and common sense.

    Science.gov (United States)

    Dyde, Sean

    2015-06-01

    This article examines the history of two fields of enquiry in late eighteenth- and early nineteenth-century Scotland: the rise and fall of the common sense school of philosophy and phrenology as presented in the works of George Combe. Although many previous historians have construed these histories as separate, indeed sometimes incommensurate, I propose that their paths were intertwined to a greater extent than has previously been given credit. The philosophy of common sense was a response to problems raised by Enlightenment thinkers, particularly David Hume, and spurred a theory of the mind and its mode of study. In order to succeed, or even to be considered a rival of these established understandings, phrenologists adapted their arguments for the sake of engaging in philosophical dispute. I argue that this debate contributed to the relative success of these groups: phrenology as a well-known historical subject, common sense now largely forgotten. Moreover, this history seeks to question the place of phrenology within the sciences of mind in nineteenth-century Britain.

  7. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Droste Stefan

    2016-06-01

    Full Text Available Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  8. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    Science.gov (United States)

    Droste, Stefan; Ycas, Gabriel; Washburn, Brian R.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  9. Sonic Hedgehog-signalling patterns the developing chicken comb as revealed by exploration of the pea-comb mutation.

    Directory of Open Access Journals (Sweden)

    Henrik Boije

    Full Text Available The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb, is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.

  10. Electrostatic comb drive for vertical actuation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1997-07-10

    The electrostatic comb finger drive has become an integral design for microsensor and microactuator applications. This paper reports on utilizing the levitation effect of comb fingers to design vertical-to-the-substrate actuation for interferometric applications. For typical polysilicon comb drives with 2 {micro}m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 {micro}m above the stationary comb fingers. This distance is ideal for many phase shifting interferometric applications. Theoretical calculations of the vertical actuation characteristics are compared with the experimental results, and a general design guideline is derived from these results. The suspension flexure stiffnesses, gravity forces, squeeze film damping, and comb finger thicknesses are parameters investigated which affect the displacement curve of the vertical microactuator. By designing a parallel plate capacitor between the suspended mass and the substrate, in situ position sensing can be used to control the vertical movement, providing a total feedback-controlled system. Fundamentals of various capacitive position sensing techniques are discussed. Experimental verification is carried out by a Zygo distance measurement interferometer.

  11. Ultrasonic comb transducer for smart materials

    Science.gov (United States)

    Rose, J. L.

    1998-04-01

    Installation of a small multi-element comb type ultrasonic transducer is proposed as a component of a smart structure. It can be used in either an active or passive mode in carrying out ultrasonic bulk or guided wave nondestructive evaluation. Theoretical methods are developed and experimental results are presented for guided wave generation and mode control with this very efficient and versatile novel comb type ultrasonic transducer. Excitation and probe design is crucial in mode selection. The comb transducer generates waves that are influenced by such parameters as number of elements, spacing between elements, dimension, pulsing sequence, and pressure distribution. The excited elastic field depends on the excitation frequency, plate thickness, and elastic properties. Techniques are studied to optimize the applied loading and the comb transducer design parameters so that only modes that are most sensitive to particular material characteristics can be generated. Complete understanding of the comb transducer parameters and their impact on the elastic field allows us to efficiently generate higher order modes as well as low phase velocity modes which are valuable in composite material characterization. Sample experiments are presented for various plate and tube like structures.

  12. Low noise electro-optic comb generation by fully stabilizing to a mode-locked fiber comb.

    Science.gov (United States)

    Kuse, Naoya; Schibli, Thomas R; Fermann, Martin E

    2016-07-25

    A fully stabilized EO comb is demonstrated by phase locking the two degrees of freedom of an EO comb to a low noise mode-locked fiber comb. Division/magnification of residual phase noise of locked beats is observed by measuring an out-of-loop beat. By phase locking the 200 th harmonics of the EO comb and a driving cw frequency to a fiber comb, a record low phase noise EO comb across +/- 200 harmonics (from 1544.8 nm to 1577.3 nm) is demonstrated. PMID:27464140

  13. Frequency-agile dual-comb spectroscopy

    CERN Document Server

    Millot, Guy; Yan, Ming; Hovannysyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W; Picqué, Nathalie

    2015-01-01

    We propose a new approach to near-infrared molecular spectroscopy, harnessing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fiber of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 microseconds and 80-kHz refresh rate, at a tuning speed of 10 nm.s^(-1). The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fiber.

  14. Direct frequency comb laser cooling and trapping

    CERN Document Server

    Jayich, A M; Campbell, W C

    2016-01-01

    Continuous wave (CW) lasers are the enabling technology for producing ultracold atoms and molecules through laser cooling and trapping. The resulting pristine samples of slow moving particles are the de facto starting point for both fundamental and applied science when a highly-controlled quantum system is required. Laser cooled atoms have recently led to major advances in quantum information, the search to understand dark energy, quantum chemistry, and quantum sensors. However, CW laser technology currently limits laser cooling and trapping to special types of elements that do not include highly abundant and chemically relevant atoms such as hydrogen, carbon, oxygen, and nitrogen. Here, we demonstrate that Doppler cooling and trapping by optical frequency combs may provide a route to trapped, ultracold atoms whose spectra are not amenable to CW lasers. We laser cool a gas of atoms by driving a two-photon transition with an optical frequency comb, an efficient process to which every comb tooth coherently cont...

  15. Gapless dual-comb spectroscopy in terahertz region

    CERN Document Server

    Yasui, Takeshi; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu

    2014-01-01

    We demonstrated combination of gapless terahertz (THz) comb with dual-comb spectroscopy, namely gapless dual-THz-comb spectroscopy, to achieve the spectral resolution equal to width of the THz comb tooth. The gapless THz comb was realized by interpolating frequency gaps between the comb teeth with sweeping of a laser mode-locked frequency. The demonstration of low-pressure gas spectroscopy with gapless dual-THz-comb spectroscopy clearly indicated that the spectral resolution was decreased down to 2.5-MHz width of the comb tooth and the spectral accuracy was enhanced to 10-6 within the spectral range of 1THz. The proposed method will be a powerful tool to simultaneously achieve high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  16. Frequency comb velocity-modulation spectroscopy.

    Science.gov (United States)

    Sinclair, Laura C; Cossel, Kevin C; Coffey, Tyler; Ye, Jun; Cornell, Eric A

    2011-08-26

    We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity-modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF⁺ and achieved a fractional absorption sensitivity of 3×10⁻⁷ recorded over 1500 simultaneous channels spanning 150  cm⁻¹ around 800 nm with an absolute frequency accuracy of 30 MHz (0.001  cm⁻¹). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 min.

  17. Frequency Comb Velocity-Modulation Spectroscopy

    CERN Document Server

    Sinclair, Laura C; Coffey, Tyler; Ye, Jun; Cornell, Eric A

    2011-01-01

    We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF+ and achieved a fractional absorption sensitivity of 3 x 10-7 recorded over 1500 simultaneous channels spanning 150 cm-1 around 800 nm with an absolute frequency accuracy of 30 MHz (0.001 cm-1). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 minutes.

  18. Full stabilization of a microresonator-based optical frequency comb.

    Science.gov (United States)

    Del'Haye, P; Arcizet, O; Schliesser, A; Holzwarth, R; Kippenberg, T J

    2008-08-01

    We demonstrate control and stabilization of an optical frequency comb generated by four-wave mixing in a monolithic microresonator with a mode spacing in the microwave regime (86 GHz). The comb parameters (mode spacing and offset frequency) are controlled via the power and the frequency of the pump laser, which constitutes one of the comb modes. Furthermore, generation of a microwave beat note at the comb's mode spacing frequency is demonstrated, enabling direct stabilization to a microwave frequency standard.

  19. Time sequence photography of Roosters Comb

    Science.gov (United States)

    The importance of understanding natural landscape changes is key in properly determining rangeland ecology. Time sequence photography allows a landscape snapshot to be documented and enables the ability to compare natural changes overtime. Photographs of Roosters Comb were taken from the same vantag...

  20. Comb-drive actuators for large displacements

    NARCIS (Netherlands)

    Legtenberg, Rob; Groeneveld, A.W.; Elwenspoek, M.

    1996-01-01

    The design, fabrication and experimental results of lateral-comb-drive actuators for large displacements at low driving voltages is presented. A comparison of several suspension designs is given, and the lateral large deflection behaviour of clamped - clamped beams and a folded flexure design is mod

  1. Comb to Pipeline: Fast Software Encryption Revisited

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Lauridsen, Martin Mehl; Tischhauser, Elmar Wolfgang

    2015-01-01

    (vs. 1.63 cpb and 1.51 cpb, resp.), despite Haswell’s heavily improved binary field multiplication. This suggests CCM as an AE mode of choice as it is NIST-recommended, does not have any weak-key issues like GCM, and is royalty-free as opposed to OCB3. Among the CAESAR contestants, the comb scheduler...

  2. Quantum cascade laser Kerr frequency comb

    CERN Document Server

    Lecaplain, Caroline; Lucas, Erwan; Jost, John D; Kippenberg, Tobias J

    2015-01-01

    The mid-infrared (mid-IR) regime (typically the wavelength regime of $\\lambda \\sim 2.5-20 \\ \\mathrm{\\mu m}$) is an important spectral range for spectroscopy as many molecules have their fundamental rotational-vibrational absorption in this band. Recently optical frequency combs based on optical microresonators ("Kerr" combs) at the onset of the mid-IR region have been generated using crystalline resonators and integrated planar silicon micro-resonators. Here we extend for the first time Kerr combs deep into the mid-IR i.e. the 'molecular fingerprint' region. This is achieved by combining an ultra high quality (Q) factor mid-IR microresonator based on crystalline $\\mathrm{MgF_{2}}$ with the quantum cascade laser (QCL) technology. Using a tapered chalgogenide (ChG) fiber and a QCL continuous wave pump laser, frequency combs at $\\lambda\\sim 4.4\\ \\mathrm{\\mu m}$ (i.e. 2270cm$^{-1}$) are generated, that span over 600nm (i.e. 300cm$^{-1}$) in bandwidth, with a mode spacing of 14.3GHz (0.5cm$^{-1}$), corresponding t...

  3. Phase separation of comb polymer nanocomposite melts.

    Science.gov (United States)

    Xu, Qinzhi; Feng, Yancong; Chen, Lan

    2016-02-01

    In this work, the spinodal phase demixing of branched comb polymer nanocomposite (PNC) melts is systematically investigated using the polymer reference interaction site model (PRISM) theory. To verify the reliability of the present method in characterizing the phase behavior of comb PNCs, the intermolecular correlation functions of the system for nonzero particle volume fractions are compared with our molecular dynamics simulation data. After verifying the model and discussing the structure of the comb PNCs in the dilute nanoparticle limit, the interference among the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions between the comb polymer and nanoparticles in spinodal demixing curves is analyzed and discussed in detail. The results predict two kinds of distinct phase separation behaviors. One is called classic fluid phase boundary, which is mediated by the entropic depletion attraction and contact aggregation of nanoparticles at relatively low nanoparticle-monomer attraction strength. The second demixing transition occurs at relatively high attraction strength and involves the formation of an equilibrium physical network phase with local bridging of nanoparticles. The phase boundaries are found to be sensitive to the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions. As the side chain length is fixed, the side chain number has a large effect on the phase behavior of comb PNCs; with increasing side chain number, the miscibility window first widens and then shrinks. When the side chain number is lower than a threshold value, the phase boundaries undergo a process from enlarging the miscibility window to narrowing as side chain length increases. Once the side chain number overtakes this threshold value, the phase boundary shifts towards less miscibility. With increasing nanoparticle-monomer size ratio, a crossover of particle size occurs, above which the phase separation

  4. Inter-comb synchronization by mode-to-mode locking

    Science.gov (United States)

    Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52  ×  10‑16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.

  5. Maximum likelihood molecular clock comb: analytic solutions.

    Science.gov (United States)

    Chor, Benny; Khetan, Amit; Snir, Sagi

    2006-04-01

    Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).

  6. Dispersion engineering of Quantum Cascade Lasers frequency combs

    CERN Document Server

    Villares, Gustavo; Wolf, Johanna; Kazakov, Dmitry; Süess, Martin J; Beck, Mattias; Faist, Jérôme

    2015-01-01

    Quantum cascade lasers are compact sources capable of generating frequency combs. Yet key characteristics - such as optical bandwidth and power-per-mode distribution - have to be improved for better addressing spectroscopy applications. Group delay dispersion plays an important role in the comb formation. In this work, we demonstrate that a dispersion compensation scheme based on a Gires-Tournois Interferometer integrated into the QCL-comb dramatically improves the comb operation regime, preventing the formation of high-phase noise regimes previously observed. The continuous-wave output power of these combs is typically $>$ 100 mW with optical spectra centered at 1330 cm$^{-1}$ (7.52 $\\mu$m) with $\\sim$ 70 cm$^{-1}$ of optical bandwidth. Our findings demonstrate that QCL-combs are ideal sources for chip-based frequency comb spectroscopy systems.

  7. Modelocked mid-infrared frequency combs in a silicon microresonator

    CERN Document Server

    Yu, Mengjie; Griffith, Austin G; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    Mid-infrared (mid-IR) frequency combs have broad applications in molecular spectroscopy and chemical/biological sensing. Recently developed microresonator-based combs in this wavelength regime could enable portable and robust devices using a single-frequency pump field. Here, we report the first demonstration of a modelocked microresonator-based frequency comb in the mid-IR spanning 2.4 {\\mu}m to 4.3 {\\mu}m. We observe high pump-to-comb conversion efficiency, in which 40% of the pump power is converted to the output comb power. Utilizing an integrated PIN structure allows for tuning the silicon microresonator and controling modelocking and cavity soliton formation, simplifying the generation, monitoring and stabilization of mid-IR frequency combs via free-carrier detection and control. Our results significantly advance microresonator-based comb technology towards a portable and robust mid-IR spectroscopic device that operates at low pump powers.

  8. Broadband high-resolution x-ray frequency combs

    CERN Document Server

    Cavaletto, Stefano M; Ott, Christian; Buth, Christian; Pfeifer, Thomas; Keitel, Christoph H

    2014-01-01

    Optical frequency combs have had a remarkable impact on precision spectroscopy. Enabling this technology in the x-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics, a more sensitive search for the variability of fundamental constants, and precision studies of nuclear structure. Ultraprecise x-ray atomic clocks may also be envisaged. In this work, an x-ray pulse-shaping method is put forward to generate a comb in the absorption spectrum of an ultrashort high-frequency pulse. The method employs an optical-frequency-comb laser, manipulating the system's dipole response to imprint a comb on an excited transition with a high photon energy. The described scheme provides higher comb frequencies and requires lower optical-comb peak intensities than currently explored methods, preserves the overall width of the optical comb, and may be implemented by presently available x-ray technology.

  9. Broadband high-resolution X-ray frequency combs

    Science.gov (United States)

    Cavaletto, Stefano M.; Harman, Zoltán; Ott, Christian; Buth, Christian; Pfeifer, Thomas; Keitel, Christoph H.

    2014-07-01

    Optical frequency combs have had a remarkable impact on precision spectroscopy. Enabling this technology in the X-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics, a more sensitive search for the variability of fundamental constants, and precision studies of nuclear structure. Ultraprecise X-ray atomic clocks may also be envisaged. In this work, an X-ray pulse-shaping method is proposed to generate a comb in the absorption spectrum of an ultrashort high-frequency pulse. The method employs an optical-frequency-comb laser, manipulating the system's dipole response to imprint a comb on an excited transition with a high photon energy. The described scheme provides higher comb frequencies and requires lower optical-comb peak intensities than currently explored methods, preserves the overall width of the optical comb, and may be implemented using currently available X-ray technology.

  10. Air Damping Analysis in Comb Microaccelerometer

    OpenAIRE

    Wu Zhou; Yu Chen; Bei Peng; Hui Yang; Huijun Yu; Heng Liu; Xiaoping He

    2014-01-01

    Air damping significantly influences the dynamical characteristics of MEMS accelerometers. Its effects at micro-scale level sharply depend on the structure layouts and size of MEMS devices. The damping phenomenon of comb microaccelerometers is investigated. The air between fixed plate electrodes and movable plate electrodes cannot flow freely and is compressed. The air damping, therefore, exhibits both viscous effects and stiffness effects. The former generates a drag force like that in macro...

  11. Scientific Opinion on Rooster Combs Extract

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2013-06-01

    Full Text Available Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to carry out the additional assessment for ‘Rooster Combs Extract’ (RCE as a food ingredient in the context of Regulation (EC No 258/97, taking into account the comments and objections of a scientific nature raised by Member States. Rooster combs extract results from a production process involving enzymatic hydrolysis of rooster combs and subsequent filtration, concentration and precipitation steps. The principle constituents of RCE are the glycosaminoglycans hyaluronic acid, chondroitin sulphate A and dermatan sulphate. The applicant intends to add RCE to a number of dairy products with a recommended maximum intake of 80 mg RCE per portion and per day. The target population is the general population, with the exception of pregnant women, children and people with adverse reactions to sodium hyaluronate and/or avian protein. In the high intake scenario for “consumers only”, the highest daily intake would occur in adults in Belgium (0.788 g. The highest intake scenario for “all subjects” was estimated for adolescents in Denmark (0.427 g/day. The Panel notes that no adverse effects were observed at the highest tested dose of 600 mg/kg bw per day in a 90-day oral toxicity study in rats. Considering the nature, the natural occurrence and previous consumption of RCE constituents, the Panel is of the opinion that the margin between the intended as well as the estimated maximum possible intake of RCE in relation to the highest dose administered to rats without adverse effects in a subchronic oral toxicity study is sufficient. The Panel concludes that the novel food ingredient, Rooster Comb Extract, is safe under the proposed uses and use levels.

  12. A microresonator frequency comb optical clock

    CERN Document Server

    Papp, Scott B; DelHaye, Pascal; Quinlan, Franklyn; Lee, Hansuek; Vahala, Kerry J; Diddams, Scott A

    2013-01-01

    Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric optics in microresonators. We refer to these as microcombs, and here we report a silicon-chip-based microcomb optical clock that phase-coherently converts an optical-frequency reference to a microwave signal. A low-noise comb spectrum with 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clocks output is the electronically countable 33 GHz microcomb line spacing, which features an absolute stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks.

  13. Radiation comb generation with extended Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Solinas, P., E-mail: paolo.solinas@spin.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy); Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy); NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy)

    2015-09-21

    We propose the implementation of a Josephson radiation comb generator based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π-jump to minimize the Josephson energy. Correspondingly, a voltage pulse is generated at the extremes of the junction. Under periodic driving, this allows us to produce a comb-like voltage pulses sequence. In the frequency domain, it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical, and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 10 pW at 50 GHz for a driving frequency of 100 MHz.

  14. Silicon-Chip Mid-Infrared Frequency Comb Generation

    CERN Document Server

    Griffith, Austin G; Cardenas, Jaime; Okawachi, Yoshitomo; Mohanty, Aseema; Fain, Romy; Lee, Yoon Ho Daniel; Yu, Mengjie; Phare, Christopher T; Poitras, Carl B; Gaeta, Alexander L; Lipson, Michal

    2014-01-01

    Optical frequency combs represent a revolutionary technology for high precision spectroscopy due to their narrow linewidths and precise frequency spacing. Generation of such combs in the mid-infrared (IR) spectral region (2-20 um) is of great interest due to the presence of a large number of gas absorption lines in this wavelength regime. Recently, frequency combs have been demonstrated in the MIR in several platforms, including fiber combs, mode-locked lasers, optical parametric oscillators, and quantum cascade lasers. However, these platforms are either relatively bulky or challenging to integrate on-chip. An alternative approach using parametric mixing in microresonators is highly promising since the platform is extremely compact and can operate with relatively low powers. However, material and dispersion engineering limitations have prevented the realization of a microresonator comb source past 2.55 um. Although silicon could in principle provide a CMOS compatible platform for on-chip comb generation deep...

  15. Coherent data transmission with microresonator Kerr frequency combs

    CERN Document Server

    Pfeifle, Joerg; Wegner, Daniel; Brasch, Victor; Herr, Tobias; Hartinger, Klaus; Li, Jingshi; Hillerkuss, David; Schmogrow, Rene; Holzwarth, Ronald; Freude, Wolfgang; Leuthold, Juerg; Kippenberg, Tobias J; Koos, Christian

    2013-01-01

    Optical frequency combs enable coherent data transmission on hundreds of wavelength channels and have the potential to revolutionize terabit communications. Generation of Kerr combs in nonlinear integrated microcavities represents a particularly promising option enabling line spacings of tens of GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr combs may exhibit strong phase noise and multiplet spectral lines, and this has made high-speed data transmission impossible up to now. Recent work has shown that systematic adjustment of pump conditions allows generating low phase-noise Kerr combs with singlet spectral lines. Here, by employing an integrated Si3N4 microresonator, we demonstrate that Kerr combs are suited for coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the optical source. In our experiment, we encode a data stream of 392 Gbit/s on subsequent lines of a Kerr comb using quadrature phase shift keying (...

  16. Thermally Controlled Comb Generation and Soliton Modelocking in Microresonators

    CERN Document Server

    Joshi, Chaitanya; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton modelocked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of modelocked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.

  17. Optical combs with a crystalline whispering gallery mode resonator

    CERN Document Server

    Savchenkov, Anatoliy A; Ilchenko, Vladimir S; Solomatine, Iouri; Seidel, David; Maleki, Lute

    2008-01-01

    We report on the experimental demonstration of a tunable monolithic optical frequency comb generator. The device is based on the four-wave mixing in a crystalline calcium fluoride whispering gallery mode resonator. The frequency spacing of the comb is given by an integer number of the free spectral range of the resonator. We select the desired number by tuning the pumping laser frequency with respect to the corresponding resonator mode. We also observe interacting optical combs and high-frequency hyperparametric oscillation, depending on the experimental conditions. A potential application of the comb for generating narrowband frequency microwave signals is demonstrated.

  18. Multispectral Kerr frequency comb initiated by Faraday ripples

    CERN Document Server

    Huang, Shu-Wei

    2016-01-01

    In a uniform microresonator, the generation of a broadband Kerr frequency comb is triggered by Turing patterns. Here, we study a distinctly different route to initiate the Kerr frequency comb by Faraday ripples. Momentum conservation is ensured by azimuthal modulation of the cavity dispersion. With a good agreement with the theoretical analysis, we demonstrate a multispectral Kerr frequency comb covering telecommunication O, C, L, and 2 {\\mu}m bands. Comb coherence and absence of a subcomb offset are confirmed by cw heterodyne beat note and amplitude noise spectra measurements. The device can be used for achieving broadband optical frequency synthesizer and high-capacity coherent telecommunication.

  19. Intrinsic linewidth of quantum cascade laser frequency combs

    CERN Document Server

    Cappelli, Francesco; Riedi, Sabine; Faist, Jerome

    2015-01-01

    The frequency noise power spectral density of a free-running quantum cascade laser frequency comb is investigated. A plateau is observed at high frequencies, attributed to the quantum noise limit set by the Schawlow-Townes formula for the total laser power on all comb lines. In our experiment, a linewidth of 292 Hz is measured for a total power of 25 mW. This result proves that the four-wave mixing process, responsible for the comb operation, effectively correlates the quantum noise of the individual comb lines.

  20. Single-molecule studies of DNA by molecular combing

    Institute of Scientific and Technical Information of China (English)

    Liu Yuying; Wang Pengye; Dou Shuoxing

    2007-01-01

    Molecular combing is a powerful method for aligning a large array of DNA molecules onto a surface. It is a process whereby DNA molecules are stretched and aligned on a glass surface by the force via fluid flow. The ability to comb up to several hundred DNAs on a single cover slip allows for a statistically significant number of measurements to be made. These features make molecular combing an attractive tool for genomic studies, such as DNA replication, DNA transcription, DNA-protein interaction and so on. In this review article, we discuss the molecular combing principle, method and its applications.

  1. Photonic generation of linearly chirped millimeter wave based on comb-spacing tunable optical frequency comb

    Science.gov (United States)

    Xia, Zongyang; Xie, Weilin; Sun, Dongning; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2013-12-01

    We demonstrated a photonic approach to generate a phase-continuous frequency-linear-chirped millimeter-wave (mm-wave) signal with high linearity based on continuous-wave phase modulated optical frequency comb and cascaded interleavers. Through linearly sweeping the frequency of the radio frequency (RF) driving signal, high-order frequency-linear-chirped optical comb lines are generated and then extracted by the cascaded interleavers. By beating the filtered high-order comb lines, center frequency and chirp range multiplied linear-chirp microwave signals are generated. Frequency doubled and quadrupled linear-chirp mm-wave signals of range 48.6 to 52.6 GHz and 97.2 to 105.2 GHz at chirp rates of 133.33 and 266.67 GHz/s are demonstrated with the ±1st and ±2nd optical comb lines, respectively, while the RF driving signal is of chirp range 24.3 to 26.3 GHz and chirp time 30 ms.

  2. Feshbach Resonances in Kerr Frequency Combs

    CERN Document Server

    Matsko, Andrey B

    2014-01-01

    We show that both the power and repetition rate of a frequency comb generated in a nonlinear ring resonator, pumped with continuous wave (cw) coherent light, are modulated. The modulation is brought about by the interaction of the cw background with optical pulses excited in the resonator, and occurs in resonators with nonzero high-order chromatic dispersion and wavelength-dependent quality factor. The modulation frequency corresponds to the detuning of the pump frequency from the eigenfrequency of the pumped mode in the resonator.

  3. Sharpening of the multistage modified comb filters

    Directory of Open Access Journals (Sweden)

    Nikolić Marko

    2011-01-01

    Full Text Available This paper describes the application of filter sharpening method to the modified comb filter (MCF in the case of decimation factor, which is product of two or more positive integers. It is shown that in the case of multistage decimation with MCF, filters in each stage are also MCF. Applying the sharpening to the decimation filter in the last stage provides very good results, with savings in the number of operations comparing to the case of sharpening of the complete filter. Direct-form FIR polyphase filter structure is proposed for the filters in each stage.

  4. Generation of Kerr Frequency Combs in Resonators with Normal GVD

    CERN Document Server

    Matsko, Andrey B; Maleki, Lute

    2011-01-01

    We show via numerical simulation that Kerr frequency combs can be generated in a nonlinear resonator characterized with normal group velocity dispersion (GVD). We find the spectral shape of the comb and temporal envelope of the corresponding optical pulses formed in the resonator.

  5. Dynamics of microresonator frequency comb generation: models and stability

    Directory of Open Access Journals (Sweden)

    Hansson Tobias

    2016-06-01

    Full Text Available Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  6. Dynamics of microresonator frequency comb generation: models and stability

    Science.gov (United States)

    Hansson, Tobias; Wabnitz, Stefan

    2016-06-01

    Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  7. Comb-locked Lamb-dip spectrometer

    Science.gov (United States)

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-06-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10‑11 cm‑1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10‑23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

  8. Cavity-enhanced dual-comb spectroscopy

    CERN Document Server

    Bernhardt, Birgitta; Jacquet, Patrick; Jacquey, Marion; Kobayashi, Yohei; Udem, Thomas; Holzwarth, Ronald; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2009-01-01

    The sensitivity of molecular fingerprinting is dramatically improved when placing the absorbing sample in a high-finesse optical cavity, thanks to the large increase of the effective path-length. As demonstrated recently, when the equidistant lines from a laser frequency comb are simultaneously injected into the cavity over a large spectral range, multiple trace-gases may be identified within a few milliseconds. Analyzing efficiently the light transmitted through the cavity however still remains challenging. Here, a novel approach, cavity-enhanced frequency comb Fourier transform spectroscopy, fully overcomes this difficulty and measures ultrasensitive, broad-bandwidth, high-resolution spectra within a few tens of $\\mu$s. It could be implemented from the Terahertz to the ultraviolet regions without any need for detector arrays. We recorded, within 18 $\\mu$s, spectra of the 1.0 $\\mu$m overtone bands of ammonia spanning 20 nm with 4.5 GHz resolution and a noise-equivalent-absorption at one-second-averaging per ...

  9. Microresonator Kerr frequency combs with high conversion efficiency

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve ~30% conversion efficiency (~200 mW on-chip comb power excluding the pump) in the fiber telecommunication band with broadband mode-locked dark-pulse combs. We present a general analysis on the efficiency which is applicable to any phase-locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time-domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  10. Difference-frequency combs in cold atom physics

    CERN Document Server

    Kliese, Russell; Puppe, Thomas; Rohde, Felix; Sell, Alexander; Zach, Armin; Leisching, Patrick; Kaenders, Wilhelm; Keegan, Niamh C; Bounds, Alistair D; Bridge, Elizabeth M; Leonard, Jack; Adams, Charles S; Cornish, Simon L; Jones, Matthew P A

    2016-01-01

    Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency $f_{\\rm ceo}$ and the pulse repetition-rate $f_{\\rm rep}$. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates $f_{\\rm ceo}$ by design - specifically tailored for applications in cold atom physics. An $f_{\\rm ceo}$-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fiber technology allow generation of multiple wavelength outputs. In this paper we discuss the frequency comb design, characterization, and optical...

  11. Microresonator-Based Comb Generation without an External Laser Source

    CERN Document Server

    Johnson, Adrea R; Lamont, Michael R E; Levy, Jacob S; Lipson, Michal; Gaeta, Alexander L

    2013-01-01

    Recent developments demonstrate that parametric four-wave mixing (FWM) in high-Q microresonators is a highly promising and effective approach for optical frequency comb generation, with applications including spectroscopy, optical clocks, arbitrary waveform generation, frequency metrology, and astronomical spectrograph calibration. Each of these microresonator platforms utilizes a scheme in which the system is pumped by a single-frequency laser at a cavity resonance. This scheme requires tuning of the pump wavelength into resonance and the generated comb is susceptible to fluctuations in pump power or frequency which can disrupt the soft thermal lock and comb generation. We demonstrate a novel fiber-microresonator dual-cavity architecture that preferentially oscillates at modes of the microresonator due to its high density of states and generates robust and broadband combs (> 900 nm) without an external pump laser. Such a scheme could greatly simplify the comb generation process and allow for a fully-integrat...

  12. Gas Damping Coefficient Research for MEMS Comb Linear Vibration Gyroscope

    CERN Document Server

    Qiufen, G; Feng, S; Fuqiang, L

    2008-01-01

    Silicon-MEMS gyroscope is an important part of MEMS (Micro Electrical Mechanical System). There are some disturb ignored in traditional gyroscope that must be evaluated newly because of its smaller size (reach the level of micron). In these disturb, the air pressure largely influences the performance of MEMS gyroscope. Different air pressure causes different gas damping coefficient for the MEMS comb linear vibration gyroscope and different gas damping coefficient influences the quality factor of the gyroscope directive. The quality factor influences the dynamic working bandwidth of the MEMS comb linear vibration gyroscope, so it is influences the output characteristic of the MEMS comb linear vibration gyroscope. The paper shows the relationship between the air pressure and the output amplified and phase of the detecting axis through analyzing the air pressure influence on the MEMS comb linear vibration gyroscope. It discusses the influence on the frequency distribute and quality factor of the MEMS comb linear...

  13. Coherent terabit communications with microresonator Kerr frequency combs.

    Science.gov (United States)

    Pfeifle, Joerg; Brasch, Victor; Lauermann, Matthias; Yu, Yimin; Wegner, Daniel; Herr, Tobias; Hartinger, Klaus; Schindler, Philipp; Li, Jingshi; Hillerkuss, David; Schmogrow, Rene; Weimann, Claudius; Holzwarth, Ronald; Freude, Wolfgang; Leuthold, Juerg; Kippenberg, Tobias J; Koos, Christian

    2014-05-01

    Optical frequency combs have the potential to revolutionize terabit communications(1). Generation of Kerr combs in nonlinear microresonators(2) represents a particularly promising option(3) enabling line spacings of tens of GHz. However, such combs may exhibit strong phase noise(4-6), which has made high-speed data transmission impossible up to now. Here we demonstrate that systematic adjustment of pump conditions for low phase noise(4,7-9) enables coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the comb. In a first experiment, we encode a data stream of 392 Gbit/s on a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment demonstrates feedback-stabilization of the comb and transmission of a 1.44 Tbit/s data stream over up to 300 km. The results show that Kerr combs meet the highly demanding requirements of coherent communications and thus offer an attractive solution towards chip-scale terabit/s transceivers. PMID:24860615

  14. Ultra-Broadband Coherent Supercontinuum Frequency Comb

    CERN Document Server

    Ruehl, Axel; Cossel, Kevin C; Chen, Lisheng; McKay, Hugh; Thomas, Brian; Benko, Craig; Dong, Liang; Dudley, John M; Fermann, Martin E; Hartl, Ingmar; Ye, Jun

    2011-01-01

    We present detailed studies of the coherence properties of an ultra-broadband super-continuum, enabled by a new approach involving continuous wave laser sources to independently probe both the amplitude and phase noise quadratures across the entire spectrum. The continuum coherently spans more than 1.5 octaves, supporting Hz-level comparison of ultrastable lasers at 698 nm and 1.54 {\\mu}m. We present the first numerical simulation of the accumulated comb coherence in the limit of many pulses, in contrast to the single-pulse level, with systematic experimental verification. The experiment and numerical simulations reveal the presence of quantum-seeded broadband amplitude noise without phase coherence degradation, including the discovery of a dependence of the super-continuum coherence on the fiber fractional Raman gain.

  15. Internal Aggregation Models on the Comb Lattice

    CERN Document Server

    Huss, Wilfried

    2011-01-01

    The comb C is a natural spanning tree of the Euclidean lattice Z^2. We study three related cluster growth models on C: internal diffusion limited aggregation (IDLA), in which random walkers move on the vertices of C until reaching an unoccupied site where they stop; rotor-router aggregation in which particles perform deterministic walks, and stop when reaching a site previously unoccupied; and the divisible sandpile model where at each vertex there is a pile of sand, for which, at each step, the mass exceeding 1 is distributed equally among the neighbours. We describe the shape of the divisible sandpile cluster on C, which is then used to give inner bounds for IDLA and rotor-router aggregation.

  16. From "Dirac combs" to Fourier-positivity

    CERN Document Server

    Giraud, Bertrand G

    2015-01-01

    Motivated by various problems in physics and applied mathematics, we look for constraints and properties of real Fourier-positive functions, i.e. with positive Fourier transforms. Properties of the "Dirac comb" distribution and of its tensor products in higher dimensions lead to Poisson resummation, allowing for a useful approximation formula of a Fourier transform in terms of a limited number of terms. A connection with the Bochner theorem on positive definiteness of Fourier-positive functions is discussed. As a practical application, we find simple and rapid analytic algorithms for checking Fourier-positivity in 1- and (radial) 2-dimensions among a large variety of real positive functions. This may provide a step towards a classification of positive positive-definite functions.

  17. Frequency comb metrology with an optical parametric oscillator.

    Science.gov (United States)

    Balskus, K; Schilt, S; Wittwer, V J; Brochard, P; Ploetzing, T; Jornod, N; McCracken, R A; Zhang, Z; Bartels, A; Reid, D T; Südmeyer, T

    2016-04-18

    We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-µm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-µm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser. PMID:27137274

  18. Wax combs mediate nestmate recognition by guard honeybees

    DEFF Research Database (Denmark)

    D'Ettorre, Patrizia; Wenseleers, Tom; Dawson, Jenny;

    2006-01-01

    Research has shown that the wax combs are important in the acquisition of colony odour in the honeybee, Apis mellifera. However, many of these studies were conducted in the laboratory or under artificial conditions. We investigated the role of the wax combs in nestmate recognition in the natural...... context of bees at colony entrances. Wax combs constructed by each experimental colony were swapped between hives and the acceptance of nestmate and non-nestmate forager workers was recorded before and after the swap, and in relation to a control hive not involved in the swap. We conducted the experiment...

  19. Stabilization of an optical frequency comb to an external cavity

    OpenAIRE

    Rydberg, Olof

    2014-01-01

    The subject of this master's thesis is stabilizing a frequency comb laser to an external cavity using a couple of servo controllers. The aim of the project was to build a pair of servo controllers, replacing parts of the existing commercial and proprietary solution already in use. The system under control is an optical frequency comb, which is locked to an external cavity and is used for trace gas detection and spectroscopy. The comb is a broadband light source and needs to be locked to the e...

  20. Third-order chromatic dispersion stabilizes Kerr frequency combs

    CERN Document Server

    Parra-Rivas, Pedro; Leo, Francois; Coen, Stephane; Gelens, Lendert

    2014-01-01

    Using numerical simulations of an extended Lugiato-Lefever equation, we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators taking into account third-order dispersion effects. We show that cavity solitons underlying Kerr frequency combs, normally sensitive to oscillatory and chaotic instabilities, are stabilized in a wide range of parameter space by third-order dispersion. Moreover, we demonstrate how the snaking structure organizing compound states of multiple cavity solitons is qualitatively changed by third-order dispersion, promoting an increased stability of Kerr combs underlined by a single cavity soliton.

  1. Measurement of microresonator frequency comb stability by spectral interferometry

    CERN Document Server

    Webb, Karen E; Anthony, Jessienta; Coen, Stephane; Erkintalo, Miro; Murdoch, Stuart G

    2015-01-01

    We demonstrate a new technique for the experimental measurement of the spectral coherence of microresonator optical frequency combs. Specifically, we use a spectral interference method, typically used in the context of supercontinuum generation, to explore the variation of the complex degree of first order coherence across the full comb bandwidth. We measure the coherence of two different frequency combs, and observe wholly different coherence characteristics. In particular, we find that the observed dynamical regimes are similar to the stable and unstable modulation instability regimes reported in previous theoretical studies. Results from numerical simulations are found to be in good agreement with experimental observations. In addition to demonstrating a new technique to assess comb stability, our results provide strong experimental support for previous theoretical analyses.

  2. Measurement of microresonator frequency comb coherence by spectral interferometry.

    Science.gov (United States)

    Webb, K E; Jang, J K; Anthony, J; Coen, S; Erkintalo, M; Murdoch, S G

    2016-01-15

    We experimentally investigate the spectral coherence of microresonator optical frequency combs. Specifically, we use a spectral interference method, typically used in the context of supercontinuum generation, to explore the variation of the magnitude of the complex degree of first-order coherence across the full comb bandwidth. We measure the coherence of two different frequency combs and observe wholly different coherence characteristics. In particular, we find that the observed dynamical regimes are similar to the stable and unstable modulation instability regimes reported in previous theoretical studies. Results from numerical simulations are found to be in good agreement with experimental observations. In addition to demonstrating a new technique to assess comb stability, our results provide strong experimental support for previous theoretical analyses. PMID:26766693

  3. A Compact, Waveguide Based Programmable Optical Comb Generator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I STTR effort will establish the feasibility of developing a compact broadband near to mid-IR programmable optical comb for use in laser based...

  4. Terahertz multi-heterodyne spectroscopy using laser frequency combs

    CERN Document Server

    Yang, Yang; Hayton, Darren J; Gao, Jian-Rong; Reno, John L; Hu, Qing

    2016-01-01

    Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multi-heterodyne spectroscopy using two terahertz quantum cascade laser combs. With just 100 $\\mu$s of integration time, we achieve peak signal-to-noise ratios exceeding 60 dB and a spectral coverage greater than 250 GHz centered at 2.8 THz. Even with room-temperature detectors we are able to achieve peak signal-to-noise ratios of 50 dB, and as a proof-of-principle we use these combs to measure the broadband transmission spectrum of etalon samples. Finally, we show that with proper signal processing, it is possible to extend the multi-heterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode, greatly expanding the range of quantum cascade lasers that could be suitable for these techniques.

  5. Micro--structured crystalline resonators for optical frequency comb generation

    CERN Document Server

    Grudinin, Ivan S

    2014-01-01

    Optical frequency combs have recently been demonstrated in micro--resonators through nonlinear Kerr processes. Investigations in the past few years provided better understanding of micro--combs and showed that spectral span and mode locking are governed by cavity spectrum and dispersion. While various cavities provide unique advantages, dispersion engineering has been reported only for planar waveguides. In this Letter, we report a resonator design that combines dispersion control, mode crossing free spectrum, and ultra--high quality factor. We experimentally show that as the dispersion of a MgF2 resonator is flattened, the comb span increases reaching 700 nm with as low as 60 mW pump power at 1560 nm wavelength, corresponding to nearly 2000 lines separated by 46 GHz. The new resonator design may enable efficient low repetition rate coherent octave spanning frequency combs without the need for external broadening, ideal for applications in optical frequency synthesis, metrology, spectroscopy, and communicatio...

  6. Multiplexed sub-Doppler spectroscopy with an optical frequency comb

    CERN Document Server

    Long, David A; Plusquellic, David F; Hodges, Joseph T

    2016-01-01

    An optical frequency comb generated with an electro-optic phase modulator and a chirped radiofrequency waveform is used to perform saturation and pump-probe spectroscopy on the $D_1$ and $D_2$ transitions of atomic potassium. With a comb tooth spacing of 200 kHz and an optical bandwidth of 2 GHz the hyperfine transitions can be simultaneously observed. Interferograms are recorded in as little as 5 $\\mu$s (a timescale corresponding to the inverse of the comb tooth spacing). Importantly, the sub-Doppler features can be measured as long as the laser carrier frequency lies within the Doppler profile, thus removing the need for slow scanning or a priori knowledge of the frequencies of the sub-Doppler features. Sub-Doppler optical frequency comb spectroscopy has the potential to dramatically reduce acquisition times and allow for rapid and accurate assignment of complex molecular and atomic spectra which are presently intractable.

  7. Transfer of optical frequency combs over optical fibre links

    OpenAIRE

    Marra, Giuseppe

    2013-01-01

    In just over a decade the optical frequency comb technique has completely transformed the field of frequency metrology. These devices have made the measurement of the frequency of light a much easier and affordable task when compared to with earlier techniques. With both research and technology development on these devices becoming more mature, optical frequency combs have been affecting other science areas. Applications are already found in spectroscopy, attosecond physics and astrophysics a...

  8. Kerr optical frequency combs: theory, applications and perspectives

    Science.gov (United States)

    Chembo, Yanne K.

    2016-06-01

    The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

  9. XUV frequency comb metrology on the ground state of helium

    CERN Document Server

    Kandula, Dominik Z; Pinkert, Tjeerd J; Ubachs, Wim; Eikema, Kjeld S E

    2011-01-01

    The operation of a frequency comb at extreme ultraviolet (XUV) wavelengths based on pair-wise amplification and nonlinear upconversion to the 15th harmonic of pulses from a frequency comb laser in the near-infrared range is reported. Following a first account of the experiment [Kandula et al., Phys. Rev. Lett. 105, 063001 (2010)], an extensive review is given of the demonstration that the resulting spectrum at 51 nm is fully phase coherent and can be applied to precision metrology. The pulses are used in a scheme of direct-frequency-comb excitation of helium atoms from the ground state to the 1s4p and 1s5p 1P_1 states. Laser ionization by auxiliary 1064 nm pulses is used to detect the excited state population, resulting in a cosine-like signal as a function of the repetition rate of the frequency comb with a modulation contrast of up to 55%. Analysis of the visibility of this comb structure yields an estimated timing jitter between the two upconverted comb laser pulses of 50 attoseconds, whch indicates that e...

  10. Treatment of head lice (Pediculus humanus capitis) infestation: is regular combing alone with a special detection comb effective at all levels?

    Science.gov (United States)

    Kurt, Özgür; Balcıoğlu, I Cüneyt; Limoncu, M Emin; Girginkardeşler, Nogay; Arserim, Süha K; Görgün, Serhan; Oyur, Tuba; Karakuş, Mehmet; Düzyol, Didem; Gökmen, Aysegül Aksoy; Kitapçıoğlu, Gül; Özbel, Yusuf

    2015-04-01

    Head lice infestation (HLI) caused by Pediculus humanus capitis has been a public health problem worldwide. Specially designed combs are used to identify head lice, while anti-lice products are applied on the scalp for treatment. In the present study, we aimed to test whether combing only by precision detection comb (PDC) or metal pin comb (MPC) could be effective alternatives to the use of anti-lice products in children. A total of 560 children from two rural schools in Turkey were screened. In the PDC trial, children were combed every second day for 14 days, while in the MPC trial, combing was performed once in every four days for 15 days. Children were divided into two groups (dry combing and wet combing) for both trials and results were compared. The results showed no significant differences between dry and wet combing strategies for both combs for the removal of head lice (p > 0.05). The number of adult head lice declined significantly on each subsequent combing day in both approaches, except on day 15 in the MPC trial. In the end, no louse was found in 54.1 and 48.9% of children in the PDC and MPC trials, respectively. Since family members of infested children were not available, they were not checked for HLI. Four times combing within 2 weeks with MPC combs was found effective for both treatment of low HLI and prevention of heavy HLI. In conclusion, regular combing by special combs decreases HLI level in children and is safely applicable as long-term treatment. PMID:25604670

  11. Solution and Melt Rheology of Polypropylene Comb and Star Polymers

    Science.gov (United States)

    Ghosh, Arnav; Colby, Ralph H.; Rose, Jeffrey M.; Cherian, Anna E.; Coates, Geoffrey W.

    2006-03-01

    Syndiotactic polypropylene macromonomer arms have been prepared by coordination-insertion polymerization. These arms have been made into polypropylene star polymers by the homopolymerization of the syndiotactic arms with a living alkene polymerization catalyst. The macromonomer arms have also been randomly copolymerized with propylene using rac-dimethylsilyl(2-methyl-4-phenylindenyl) zirconium dichloride catalysts to make polypropylene combs. Consequently we have star polymers and a series of comb polymers with different backbone lengths that are all made from the same macromonomer arms. We compare linear viscoelastic data on star and comb polypropylene melts and solutions in squalane to predictions of the tube dilation model and the tube model without tube dilation. The ratio of comb terminal relaxation time to star terminal relaxation time eliminates the friction coefficient and allows determination of the extent of tube dilation the backbone experiences when it relaxes. The concentration dependence of the comb/star terminal relaxation time ratio can be described by either model, owing to adjustable parameters that are not known apriori, so independent means to evaluate those parameters will be discussed.

  12. Adsorption of comb copolymers on weakly attractive solid surfaces

    Science.gov (United States)

    Striolo, A.; Jayaraman, A.; Genzer, J.; Hall, C. K.

    2005-08-01

    In this work continuum and lattice Monte Carlo simulation methods are used to study the adsorption of linear and comb polymers on flat surfaces. Selected polymer segments, located at the tips of the side chains in comb polymers or equally spaced along the linear polymers, are attracted to each other and to the surface via square-well potentials. The rest of the polymer segments are modeled as tangent hard spheres in the continuum model and as self-avoiding random walks in the lattice model. Results are presented in terms of segment-density profiles, distribution functions, and radii of gyration of the adsorbed polymers. At infinite dilution the presence of short side chains promotes the adsorption of polymers favoring both a decrease in the depletion-layer thickness and a spreading of the polymer molecule on the surface. The presence of long side chains favors the adsorption of polymers on the surface, but does not permit the spreading of the polymers. At finite concentration linear polymers and comb polymers with long side chains readily adsorb on the solid surface, while comb polymers with short side chains are unlikely to adsorb. The simple models of comb copolymers with short side chains used here show properties similar to those of associating polymers and of globular proteins in aqueous solutions, and can be used as a first approximation to investigate the mechanism of adsorption of proteins onto hydrophobic surfaces.

  13. Enabling Arbitrary Wavelength Optical Frequency Combs on Chip

    CERN Document Server

    Soltani, Mohammad; Maleki, Lute

    2015-01-01

    A necessary condition for generation of bright soliton Kerr frequency combs in microresonators is to achieve anomalous group velocity dispersion (GVD) for the resonator modes. This condition is hard to implement in visible as well as ultraviolet since the majority of optical materials are characterized with large normal GVD in these wavelength regions. We overcome this challenge by borrowing ideas from strongly dispersive coupled systems in solid state physics and optics. We show that photonic compound ring resonators can possess large anomalous GVD at any desirable wavelength, even if each individual resonator is characterized with normal GVD. Based on this concept we design a mode locked frequency comb with thin-film silicon nitride compound ring resonators in the vicinity of Rubidium D1 line (794.6nm) and propose to use this optical comb as a flywheel for chip-scale optical clocks.

  14. Laser frequency comb techniques for precise astronomical spectroscopy

    CERN Document Server

    Murphy, Michael T; Light, Philip S; Luiten, Andre N; Lawrence, Jon S

    2012-01-01

    Precise astronomical spectroscopic analyses routinely assume that individual pixels in charge-coupled devices (CCDs) have uniform sensitivity to photons. Intra-pixel sensitivity (IPS) variations may already cause small systematic errors in, for example, studies of extra-solar planets via stellar radial velocities and cosmological variability in fundamental constants via quasar spectroscopy, but future experiments requiring velocity precisions approaching ~1 cm/s will be more strongly affected. Laser frequency combs have been shown to provide highly precise wavelength calibration for astronomical spectrographs, but here we show that they can also be used to measure IPS variations in astronomical CCDs in situ. We successfully tested a laser frequency comb system on the Ultra-High Resolution Facility spectrograph at the Anglo-Australian Telescope. By modelling the 2-dimensional comb signal recorded in a single CCD exposure, we find that the average IPS deviates by <8 per cent if it is assumed to vary symmetri...

  15. Mid-Infrared Frequency Comb Fourier Transform Spectrometer

    CERN Document Server

    Adler, Florian; Foltynowicz, Aleksandra; Cossel, Kevin C; Briles, Travis C; Hartl, Ingmar; Ye, Jun

    2010-01-01

    Optical frequency-comb-based-high-resolution spectrometers offer enormous potential for spectroscopic applications. Although various implementations have been demonstrated, the lack of suitable mid-infrared comb sources has impeded explorations of molecular fingerprinting. Here we present for the first time a frequency-comb Fourier transform spectrometer operating in the 2100-to-3700-cm-1 spectral region that allows fast and simultaneous acquisitions of broadband absorption spectra with up to 0.0056 cm-1 resolution. We demonstrate part-per-billion detection limits in 30 seconds of integration time for various important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features. This system represents a near real-time, high-resolution, high-bandwidth mid-infrared sp...

  16. Continuum Random Combs and Scale Dependent Spectral Dimension

    CERN Document Server

    Atkin, Max R; Wheater, John F

    2011-01-01

    Numerical computations have suggested that in causal dynamical triangulation models of quantum gravity the effective dimension of spacetime in the UV is lower than in the IR. In this paper we develop a simple model based on previous work on random combs, which share some of the properties of CDT, in which this effect can be shown to occur analytically. We construct a definition for short and long distance spectral dimensions and show that the random comb models exhibit scale dependent spectral dimension defined in this way. We also observe that a hierarchy of apparent spectral dimensions may be obtained in the cross-over region between UV and IR regimes for suitable choices of the continuum variables. Our main result is valid for a wide class of tooth length distributions thereby extending previous work on random combs by Durhuus et al.

  17. Mid-Infrared Optical Frequency Combs based on Crystalline Microresonators

    CERN Document Server

    Wang, C Y; Del'Haye, P; Schliesser, A; Hofer, J; Holzwarth, R; Hänsch, T W; Picqué, N; Kippenberg, T J

    2011-01-01

    The mid-infrared spectral range (\\lambda ~ 2 \\mu m to 20 \\mu m) is known as the "molecular fingerprint" region as many molecules have their highly characteristic, fundamental ro-vibrational bands in this part of the electromagnetic spectrum. Broadband mid-infrared spectroscopy therefore constitutes a powerful and ubiquitous tool for optical analysis of chemical components that is used in biochemistry, astronomy, pharmaceutical monitoring and material science. Optical frequency combs, i.e. broad spectral bandwidth coherent light sources consisting of equally spaced sharp lines, have revolutionized optical frequency metrology one decade ago. They now demonstrate dramatically improved acquisition rates, resolution and sensitivity for molecular spectroscopy mostly in the visible and near-infrared ranges. Mid-infrared frequency combs have therefore become highly desirable and recent progress in generating such combs by nonlinear frequency conversion has opened access to this spectral region. Here we report on a pr...

  18. Pulse shaping of on-chip microresonator frequency combs: investigation of temporal coherence

    OpenAIRE

    Chen L; Srinivasan K; Miao H; Leaird D. E.; Ferdous F.; Aksyuk V.; Weiner A. M.

    2013-01-01

    We use pulse shaping to investigate the temporal coherence of frequency combs generated in microresonators pumped by a strong CW laser. We observe that different groups of comb lines have different mutual coherence.

  19. Self-referencing of an on-chip soliton Kerr frequency comb without external broadening

    CERN Document Server

    Brasch, Victor; Jost, John D; Geiselmann, Michael; Kippenberg, Tobias J

    2016-01-01

    Self-referencing turns pulsed laser systems into self-referenced frequency combs. Such frequency combs allow counting of optical frequencies and have a wide range of applications. The required optical bandwidth to implement self-referencing is typically obtained via nonlinear broadening in optical fibers. Recent advances in the field of Kerr frequency combs have provided a path towards the development of compact frequency comb sources that provide broadband frequency combs, exhibit microwave repetition rates and that are compatible with on-chip photonic integration. These devices have the potential to significantly expand the use of frequency combs. Yet to date self-referencing of such Kerr frequency combs has only been attained by applying conventional, fiber based broadening techniques. Here we demonstrate external broadening-free self-referencing of a Kerr frequency comb. An optical spectrum that spans two-thirds of an octave is directly synthesized from a continuous wave laser-driven silicon nitride micro...

  20. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  1. Optical frequency comb interference profilometry using compressive sensing.

    Science.gov (United States)

    Pham, Quang Duc; Hayasaki, Yoshio

    2013-08-12

    We describe a new optical system using an ultra-stable mode-locked frequency comb femtosecond laser and compressive sensing to measure an object's surface profile. The ultra-stable frequency comb laser was used to precisely measure an object with a large depth, over a wide dynamic range. The compressive sensing technique was able to obtain the spatial information of the object with two single-pixel fast photo-receivers, with no mechanical scanning and fewer measurements than the number of sampling points. An optical experiment was performed to verify the advantages of the proposed method.

  2. Noise conversion in Kerr comb RF photonic oscillators

    CERN Document Server

    Matsko, Andrey B

    2014-01-01

    Transfer of amplitude and phase noise from a continuous wave optical pump to the repetition rate of a Kerr frequency comb is studied theoretically, with focus on generation of spectrally pure radio frequency (RF) signals via demodulation of the frequency comb on a fast photodiode. It is shown that both the high order chromatic dispersion of the resonator spectrum and frequency-dependent quality factor of the resonator modes facilitate the optical-to-RF noise conversion that limits spectral purity of the RF signal.

  3. Coherent, multi-heterodyne spectroscopy using stabilized optical frequency combs

    CERN Document Server

    Coddington, Ian; Newbury, Nathan R

    2007-01-01

    The broadband, coherent nature of narrow-linewidth fiber frequency combs is exploited to measure the full complex spectrum of a molecular gas through multi-heterodyne spectroscopy. We measure the absorption and phase shift experienced by each of 155,000 individual frequency comb lines, spaced by 100 MHz and spanning from 1495 nm to 1620 nm, after passing through a hydrogen cyanide gas. The measured phase spectrum agrees with Kramers-Kronig transformation of the absorption spectrum. This technique can provide a full complex spectrum rapidly, over wide bandwidths, and with hertz-level accuracy.

  4. Frequency Comb Assisted Broadband Precision Spectroscopy with Cascaded Diode Lasers

    CERN Document Server

    Liu, Junqiu; Pfeiffer, Martin H P; Kordts, Arne; Kamel, Ayman N; Guo, Hairun; Geiselmann, Michael; Kippenberg, Tobias J

    2016-01-01

    Frequency comb assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this letter we present a novel method using cascaded frequency agile diode lasers, which allows extending the measurement bandwidth to 37.4 THz (1355 to 1630 nm) at MHz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy and in particular it enables to characterize the dispersion of integrated microresonators up to the fourth order.

  5. Direct Frequency Comb Spectroscopy in the Extreme Ultraviolet

    CERN Document Server

    Cingoz, Arman; Allison, Thomas K; Ruehl, Axel; Fermann, Martin E; Hartl, Ingmar; Ye, Jun

    2011-01-01

    Development of the optical frequency comb has revolutionised metrology and precision spectroscopy due to its ability to provide a precise and direct link between microwave and optical frequencies. A novel application of frequency comb technology that leverages both the ultrashort duration of each laser pulse and the exquisite phase coherence of a train of pulses is the generation of frequency combs in the extreme ultraviolet (XUV) via high harmonic generation (HHG) in a femtosecond enhancement cavity. Until now, this method has lacked sufficient average power for applications, which has also hampered efforts to observe phase coherence of the high-repetition rate pulse train produced in the extremely nonlinear HHG process. Hence, the existence of a frequency comb in the XUV has not been confirmed. We have overcome both challenges. Here, we present generation of >200 {\\mu}W per harmonic reaching 50 nm, and the observation of single-photon spectroscopy signals for both an argon transition at 82 nm and a neon tra...

  6. Hard and Soft Excitation Regimes of Kerr Frequency Combs

    CERN Document Server

    Matsko, Andrey B; Ilchenko, Vladimir S; Seidel, David; Maleki, Lute

    2011-01-01

    We theoretically study the stability conditions and excitation regimes of hyper-parametric oscillation and Kerr frequency comb generation in continuously pumped nonlinear optical resonators possessing anomalous group velocity dispersion. We show that both hard and soft excitation regimes are possible in the resonators. Selection between the regimes is achieved via change in the parameters of the pumping light.

  7. Invited Article: A compact optically coherent fiber frequency comb.

    Science.gov (United States)

    Sinclair, L C; Deschênes, J-D; Sonderhouse, L; Swann, W C; Khader, I H; Baumann, E; Newbury, N R; Coddington, I

    2015-08-01

    We describe the design, fabrication, and performance of a self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an optics package based on polarization-maintaining fiber, saturable absorbers for mode-locking, high signal-to-noise ratio (SNR) detection of the control signals, and digital feedback control for frequency stabilization. The output is phase-coherent over a 1-2 μm octave-spanning spectrum with a pulse repetition rate of ∼200 MHz and a residual pulse-to-pulse timing jitter <3 fs well within the requirements of most frequency-comb applications. Digital control enables phase coherent operation for over 90 h, critical for phase-sensitive applications such as timekeeping. We show that this phase-slip free operation follows the fundamental limit set by the SNR of the control signals. Performance metrics from three nearly identical combs are presented. This laptop-sized comb should enable a wide-range of applications beyond the laboratory.

  8. Uniform asymptotic estimates of transition probabilities on combs

    OpenAIRE

    Bertacchi, Daniela; Zucca, Fabio

    2000-01-01

    We investigate the asymptotical behaviour of the transition probabilities of the simple random walk on the 2-comb. In particular we obtain space-time uniform asymptotical estimates which show the lack of symmetry of this walk better than local limit estimates. Our results also point out the impossibility of getting Jones-type non-Gaussian estimates.

  9. Frequency combs and precision spectroscopy in the extreme ultraviolet

    Science.gov (United States)

    Cingöz, Arman

    2012-06-01

    Development of the optical frequency comb has revolutionized optical metrology and precision spectroscopy due to its ability to provide a precise link between microwave and optical frequencies. A novel application that aims to extend the precision and accuracy obtained to the extreme ultraviolet (XUV) is the generation of XUV frequency combs via intracavity high harmonic generation (HHG). Recently, we have been able to generate > 200 μW average power per harmonic and demonstrate the comb structure of the high harmonics by resolving atomic argon and neon lines at 82 and 63 nm, respectively [1]. The argon transition linewidth of 10 MHz, limited by residual Doppler broadening, is unprecedented in this spectral region and places a stringent upper limit on the linewidth of individual comb teeth. To overcome this limitation, we have constructed two independent intracavity HHG sources to study the phase coherence directly via the heterodyne beats between them. With these developments, ultrahigh precision spectroscopy in the XUV is within grasp and has a wide range of applications that include tests of bound state quantum electrodynamics, development of nuclear clocks, and searches for variation of fundamental constants using the enhanced sensitivity of highly charged ions.[4pt] [1] Arman Cing"oz et al., Nature 482, 68 (2012).

  10. Coherent cavity-enhanced dual-comb spectroscopy

    CERN Document Server

    Fleisher, Adam J; Reed, Zachary D; Hodges, Joseph T; Plusquellic, David F

    2016-01-01

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers, or via sophisticated signal processing algorithms, and therefore long integration times are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The combs of > 250 teeth and 203 MHz spacing were generated by driving the phase modulators with step-recovery diodes, passive devices that provided low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO$_2$, CO, HDO, and H$_2$O at a maximum acquisition rate of 150 kHz. Robus...

  11. The effect of drone comb on a honey bee colony's production of honey

    OpenAIRE

    Seeley, Thomas

    2002-01-01

    International audience This study examined the impact on a colony's honey production of providing it with a natural amount (20%) of drone comb. Over 3 summers, for the period mid May to late August, I measured the weight gains of 10 colonies, 5 with drone comb and 5 without it. Colonies with drone comb gained only 25.2 $\\pm$ 16.0 kg whereas those without drone comb gained 48.8 $\\pm$ 14.8 kg. Colonies with drone comb also had a higher mean rate of drone flights and a lower incidence of dron...

  12. On-chip, self-detected THz dual-comb spectrometer

    CERN Document Server

    Rösch, Markus; Villares, Gustavo; Bosco, Lorenzo; Beck, Mattias; Faist, Jérôme

    2016-01-01

    We present a directly generated on-chip dual-comb source at THz frequencies. The multi-heterodyne beating signal of two free-running THz quantum cascade laser frequency combs is measured electrically using one of the combs as a detector, fully exploiting the unique characteristics of quantum cascade active regions. Up to 30 modes can be detected corresponding to a spectral bandwidth of 630 GHz, being the available bandwidth of the dual comb configuration. The multi-heterodyne signal is used to investigate the equidistance of the comb modes showing an accuracy of $10^{-12}$ at the carrier frequency of 2.5 THz.

  13. Electro-optic dual-comb interferometry over 40  nm bandwidth.

    Science.gov (United States)

    Durán, Vicente; Andrekson, Peter A; Torres-Company, Víctor

    2016-09-15

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ∼40  nm, measured within 10 μs at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy. PMID:27628354

  14. Electro-optic dual-comb interferometry over 40 nm bandwidth

    Science.gov (United States)

    Durán, Vicente; Andrekson, Peter A.; Torres-Company, Víctor

    2016-09-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  15. Electro-optic dual-comb interferometry over 40-nm bandwidth

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2016-01-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  16. Stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator

    Science.gov (United States)

    Lim, Jinkang; Huang, Shu-Wei; Vinod, Abhinav K.; Mortazavian, Parastou; Yu, Mingbin; Kwong, Dim-Lee; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute; Wong, Chee Wei

    2016-08-01

    We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step towards miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.

  17. A stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator

    CERN Document Server

    Lim, Jinkang; Vinod, Abhinav K; Mortazavian, Parastou; Yu, Mingbin; Kwong, Dim-Lee; Savchenkov, Anatoliy A; Matsko, Andrey B; Maleki, Lute; Wong, Chee Wei

    2016-01-01

    We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step towards miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.

  18. High-Q Bandpass Comb Filter for Mains Interference Extraction

    Directory of Open Access Journals (Sweden)

    Neycheva T.

    2009-12-01

    Full Text Available This paper presents a simple digital high-Q bandpass comb filter for power-line (PL or other periodical interference extraction. The filter concept relies on a correlated signal average resulting in alternating constructive and destructive spectrum interference i.e. the so-called comb frequency response. The presented filter is evaluated by Matlab simulations with real ECG signal contaminated with low amplitude PL interference. The made simulations show that this filter accurately extract the PL interference. It has high-Q notches only at PL odd harmonics and is appropriate for extraction of any kind of odd harmonic interference including rectangular shape. The filter is suitable for real-time operation with popular low-cost microcontrollers.

  19. Cantharellus gallaecicus (Blanco-Dios Olariaga, comb. & stat. nov (Cantharellaceae

    Directory of Open Access Journals (Sweden)

    Olariaga, Ibai

    2007-12-01

    Full Text Available Cantharellus gallaecicus comb. & stat. nov. is proposed, after the examination of its holotype and additional material. Based on the characters observed in all the studied material (i.e., thinwalled hyphae of the pileipelis, minute basidiomata with white to grey pileus, and surface that turns yellow when bruised it is considered that C. gallaecicus is more closely related to C. romagnesianus than to C. cibarius.Se propone Cantharellus gallaecicus comb. & stat. nov. tras revisar su holótipo y material adicional disponible. Dado que todo el material examinado posee hifas del pileipelis de pared delgada, basidiomas pequeños con píleo de blanco a gris, y superficie que vira a amarillo al roce, se considera que C. gallaecicus es una especie más estrechamente relacionada con C. romagnesianus que con C. cibarius.

  20. Micro-Doppler Frequency Comb Generation by Axially Rotating Scatterers

    CERN Document Server

    Kozlov, Vitali; Yankelevich, Yefim; Ginzburg, Pavel

    2016-01-01

    Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the quasi-stationary field analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wire and split ring resonator (SRR), is analyzed theoretically and observed experimentally by illuminating the system with a 2GHz carrier wave. Highly accurate lock in detection scheme enables factorization of the carrier and observation of more than ten peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer at rest and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to predict the spectral positions and a...

  1. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    Science.gov (United States)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  2. Comb-referenced laser distance interferometer for industrial nanotechnology

    Science.gov (United States)

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10‑10. The uncertainty is estimated to be in a 10‑8 level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10‑10 level in vacuum.

  3. Frequency comb vernier spectroscopy in the near infrared

    CERN Document Server

    Zhu, F; Bicer, A; Strohaber, J; Kolomenskii, A A; Gohle, C; Amani, M; Schuessler, H A

    2014-01-01

    We perform femtosecond frequency comb vernier spectroscopy in the near infrared with a femtosecond Er doped fiber laser, a scanning high-finesse cavity and an InGaAs camera. By utilizing the properties of a frequency comb and a scanning high-finesse cavity such spectroscopy provides broad spectral bandwidth, high spectral resolution, and high detection sensitivity on a short time scale. We achieved an absorption sensitivity of ~8E-8 cm-1Hz-1/2 corresponding to a detection limit of ~70 ppbv for acetylene, with a resolution of ~1.1 GHz in single images taken in 0.5 seconds and covering a frequency range of ~5 THz. These measurements have broad applications for sensing other greenhouse gases in this fingerprint near IR region with a simple apparatus.

  4. Comb-assisted coherence transfer between laser fields

    CERN Document Server

    Sala, Tommaso; Burkart, Johannes; Marangoni, Marco; Romanini, Daniele

    2014-01-01

    Single mode laser fields oscillate at frequencies well outside the realm of electronics, but their phase/frequency fluctuations fall into the radio frequency domain, where direct manipulation is possible. Electro-optic devices have sufficient bandwidth for controlling and tailoring the dynamics of a laser field down to sub-nanosecond time scales. Thus, a laser field can be arbitrarily reshaped and in particular its phase/frequency fluctuations can be in principle removed. In practice, the time evolution of a reference laser field can be cloned to replace the fluctuations of another laser field, at a close-by frequency. In fact, it is possible to exploit a partially stabilized optical comb to perform the cloning across a large frequency gap. We realize this long-haul phase transfer by using a fibered Mach-Zehnder single-sideband modulator driven by an appropriate mix of the beat notes of the master and the slave laser with the comb.

  5. High density THz frequency comb produced by coherent synchrotron radiation

    CERN Document Server

    Tammaro, S; Roy, P; Lampin, J -F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2014-01-01

    Frequency combs (FC) have radically changed the landscape of frequency metrology and high-resolution spectroscopy investigations extending tremendously the achievable resolution while increasing signal to noise ratio. Initially developed in the visible and near-IR spectral regions, the use of FC has been expanded to mid-IR, extreme ultra-violet and X-ray. Significant effort is presently dedicated to the generation of FC at THz frequencies. One solution based on converting a stabilized optical frequency comb using a photoconductive terahertz emitter, remains hampered by the low available THz power. Another approach is based on active mode locked THz quantum-cascade-lasers providing intense FC over a relatively limited spectral extension. Alternatively, here we show that dense powerful THz FC is generated over one decade of frequency by coherent synchrotron radiation (CSR). In this mode, the entire ring behaves in a similar fashion to a THz resonator wherein electron bunches emit powerful THz pulses quasi-synch...

  6. Computation of Capacitance for MEMS Comb-Drive Structures

    Institute of Scientific and Technical Information of China (English)

    LI Ming-hui; GAO Shi-qiao; LIU Hai-peng; LIANG Xin-jian

    2009-01-01

    According to the characteristics of comb-drive structures,the electrical potential field is analyzed;the model based on corner capacitor is presented and solved with the capacitance characteristic formula of nonlinear capacitor.Compared with the results of finite element method simulation,the model based on corner capacitor is more accurate than the models based on infinite parallel plate capacitor and parallel plate capacitor with edge effects,

  7. Infrared frequency combs and supercontinua for multiplex high sensitivity spectroscopy

    CERN Document Server

    Mandon, Julien; Sorokina, Irina T; Guelachvili, Guy; Picqué, Nathalie

    2007-01-01

    An infrared high-brightness light source based on supercontinuum generation through a SF6 photonic crystal fiber seeded by a Cr^4+:YAG femtosecond oscillator is developed for high resolution multiplex spectroscopy in the 1.5 $\\mu$m region. Moreover, a multiplex high resolution approach based on a Cr^4+:YAG frequency comb enables to probe large spectral domains, with simultaneous sensitive measurement of the absorption and the dispersion associated with all individual spectral features.

  8. Application of the Molecular Combing Technique to Starch Granules

    OpenAIRE

    Zhong-Dong Liu; Liu Boxiang; Jian-Hui Chen; You-Ning Sun; Xiao-Ling Lv; Ze-Sheng Zhang; Pin Sun; Pin Zhang; Yang-Li Wang; Hua Li

    2009-01-01

    The molecular combing technique was used to dissociate the nanostructural units of starch granules from the starch fragments after a gelatinization process. With the help of atomic force microscopy (AFM), we observed that some nanostructural chains were just flowing out of the granules. It proves that there are substantive nanostructural units in the starch granules, a phenomenon not previously observed, so these nanostructural units were defined as suspected intermediates. Furthermore, we co...

  9. Generation of a frequency comb and applications thereof

    Science.gov (United States)

    Hagmann, Mark J; Yarotski, Dmitry A

    2013-12-03

    Apparatus for generating a microwave frequency comb (MFC) in the DC tunneling current of a scanning tunneling microscope (STM) by fast optical rectification, cause by nonlinearity of the DC current vs. voltage curve for the tunneling junction, of regularly-spaced, short pulses of optical radiation from a focused mode-locked, ultrafast laser, directed onto the tunneling junction, is described. Application of the MFC to high resolution dopant profiling in semiconductors is simulated. Application of the MFC to other measurements is described.

  10. Experimental and theoretical investigation of direct frequency comb spectroscopy

    OpenAIRE

    Peters, Elisabeth

    2011-01-01

    This thesis reports on theoretical and experimental examination of two-photon direct frequency comb spectroscopy (DFCS) using atomic two-level systems. This method is a very promising tool to extend optical spectroscopy into the short wavelength region where only few cw laser sources exist. The high peak intensities of pulsed lasers facilitate efficient nonlinear conversion into frequency regions which are so far unexplored, for example by high harmonic generation (HHG). DFCS is based on...

  11. Frequency comb generation for wave transmission through the nonlinear dimer

    CERN Document Server

    Pichugin, Konstantin N

    2015-01-01

    We study dynamical response of a nonlinear dimer to a symmetrically injected monochromatic wave. We find a domain in the space of frequency and amplitude of the injected wave where all stationary solutions are unstable. In this domain scattered waves carry multiple harmonics with equidistantly spaced frequencies (frequency comb effect). The instability is related to a symmetry protected bound state in the continuum whose response is singular as the amplitude of the injected wave tends to zero.

  12. Comb-e-Chem: an e-science research project

    OpenAIRE

    Frey, Jeremy G.

    2003-01-01

    The background to the Comb-e-Chem e-Science pilot project funded under the UK -Science Programme is presented and the areas being addresses within chemistry and more specifically combinatorial chemistry are disucssed. The ways in which the ideas underlying the application of computer technology can improve the production, analysis and dissemination of chemical information and knowledge in a collaborative environment are discussed.

  13. One-way quantum computing in the optical frequency comb.

    Science.gov (United States)

    Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier

    2008-09-26

    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.

  14. Single DNA Condensation Induced by Hexammine Cobalt with Molecular Combing

    Institute of Scientific and Technical Information of China (English)

    Gao-ming Hu; Yu Lin; Shi-yong Ran; Yan-wei Wang; Guang-can Yang

    2012-01-01

    We investigated the interaction between DNA and hexammine cobalt Ⅲ [Co(NH3)6]3+ by a simple molecular combing method and dynamic light scattering.The average extension of λ-DNA-YOYO-1 complex is found to be 20.9 μm,about 30% longer than the contour length of the DNA in TE buffer (10 mmol/L Tris,1 mmol/L EDTA,pH=8.0),due to bis-intercalation of YOYO-1.A multivalent cation,hexammine cobalt,is used for DNA condensation.We find that the length of DNA-[Co(NH3)6]3+ complexes decrease from 20.9 μm to 5.9 μm as the concentration of the [Co(NH3)6]3+ vary from 0 to 3 μmol/L.This observation provides a direct visualization of single DNA condensation induced by hexammine cobalt.The results from the molecular combing studies are supported by dynamic light scattering investigation,where the average hydrodynamic radius of the DNA complex decreases from 203.8 nm to 39.26 nm under the same conditions.It shows that the molecular combing method is feasible for quantitative conformation characterization of single bio-macromolecules.

  15. Coherent Raman spectro-imaging with laser frequency combs.

    Science.gov (United States)

    Ideguchi, Takuro; Holzner, Simon; Bernhardt, Birgitta; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2013-10-17

    Advances in optical spectroscopy and microscopy have had a profound impact throughout the physical, chemical and biological sciences. One example is coherent Raman spectroscopy, a versatile technique interrogating vibrational transitions in molecules. It offers high spatial resolution and three-dimensional sectioning capabilities that make it a label-free tool for the non-destructive and chemically selective probing of complex systems. Indeed, single-colour Raman bands have been imaged in biological tissue at video rates by using ultra-short-pulse lasers. However, identifying multiple, and possibly unknown, molecules requires broad spectral bandwidth and high resolution. Moderate spectral spans combined with high-speed acquisition are now within reach using multichannel detection or frequency-swept laser beams. Laser frequency combs are finding increasing use for broadband molecular linear absorption spectroscopy. Here we show, by exploring their potential for nonlinear spectroscopy, that they can be harnessed for coherent anti-Stokes Raman spectroscopy and spectro-imaging. The method uses two combs and can simultaneously measure, on the microsecond timescale, all spectral elements over a wide bandwidth and with high resolution on a single photodetector. Although the overall measurement time in our proof-of-principle experiments is limited by the waiting times between successive spectral acquisitions, this limitation can be overcome with further system development. We therefore expect that our approach of using laser frequency combs will not only enable new applications for nonlinear microscopy but also benefit other nonlinear spectroscopic techniques. PMID:24132293

  16. Combing gravitational hair in 2+1 dimensions

    CERN Document Server

    Donnelly, William; Mintun, Eric

    2015-01-01

    The gravitational Gauss law requires any addition of energy to be accompanied by the addition of gravitational flux. The possible configurations of this flux for a given source may be called gravitational hair, and several recent works discuss gravitational observables (`gravitational Wilson lines') which create this hair in highly-collimated `combed' configurations. We construct and analyze time-symmetric classical solutions of 2+1 Einstein-Hilbert gravity such as might be created by smeared versions of such operators. We focus on the AdS$_3$ case, where this hair is characterized by the profile of the boundary stress tensor; the desired solutions are those where the boundary stress tensor at initial time $t=0$ agrees precisely with its vacuum value outside an angular interval $[-\\alpha,\\alpha]$. At linear order in source strength the energy is independent of the combing parameter $\\alpha$, but non-linearities cause the full energy to diverge as $\\alpha \\to 0$. In general, solutions with combed gravitational...

  17. Bottle microresonator broadband and low repetition rate frequency comb generator

    CERN Document Server

    Dvoyrin, V

    2016-01-01

    We propose a new type of broadband and low repetition rate frequency comb generator which has the shape of an elongated and nanoscale-shallow optical bottle microresonator created at the surface of an optical fiber. The free spectral range (FSR) of the broadband azimuthal eigenfrequency series of this resonator is the exact multiple of the FSR of the dense and narrowband axial series. The effective radius variation of the microresonator is close to a parabola with a nanoscale height which is greater or equal to lambda/2pi*n0 (here lambda is the characteristic radiation wavelength and n0 is the refractive index of the microresonator material). Overall, the microresonator possesses a broadband, small FSR, and accurately equidistant spectrum convenient for the generation of a broadband and low repetition rate optical frequency comb. It is shown that this comb can be generated by pumping with a cw laser, which radiation frequency matches a single axial eigenfrequency of the microresonator, or, alternatively, by p...

  18. Symmetry Breaking of Frequency Comb in Varying Normal Dispersion Fiber Ring Cavity

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    We build on a previously reported frequency comb of mode spacing 0.136 nm in a fiber ring cavity of varying normal dispersion [1], to generate, for the first time, a frequency comb of mode spacing 0.144 nm centered at 978.544 nm to demonstrate the symmetry-breaking. By controlling the birefringence of the optical cavity through fiber stretching and polarization control, the spacing of the comb lines increases from 0.136 nm to 0.144 nm, and this small change in mode spacing generates very different spectral symmetry-breaking in the frequency comb relative to the frequency comb of mode spacing 0.136 nm. Interestingly, non-uniform depletion of primary modes is also observed. The experimental results are an important contribution in the continuing effort of understanding the dynamics of frequency combs involving large number of modes, nontrivial nonlinear waves and deterministic chaos.

  19. Second-harmonic mode coupling in microresonator-based optical frequency comb generation

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Jaramillo-Villegas, Jose A; Wang, Pei-Hsun; Leaird, Daniel E; Erkintalo, Miro; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Microresonator-based optical frequency comb (microcomb) generation can potentially achieve ultra-compact volume and low power consumption for portable applications. The comb formation is a consequence of cascaded four-wave-mixing due to the third-order Kerr nonlinearity. Mode coupling can affect the comb self-starting and mode-locking behaviors, resulting in complex dynamics that is far from well understood. Understanding the mechanism of mode coupling in comb generation proves highly important to achieve stable and robust microcomb sources. Here, we report a nonlinear mode coupling mechanism in microresonators with simultaneous second- and third-order nonlinearities. The nonlinear dynamics governed by the third-order nonlinearity is altered by second-harmonic mode coupling. As a demonstration of this effect, second-harmonic assisted coherent comb generation is achieved in the normal dispersion region, where comb creation is prohibited in the absence of mode coupling. Since second-order nonlinearity has been ...

  20. Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects.

    Science.gov (United States)

    Griffith, Austin G; Yu, Mengjie; Okawachi, Yoshitomo; Cardenas, Jaime; Mohanty, Aseema; Gaeta, Alexander L; Lipson, Michal

    2016-06-13

    We demonstrate the first low-noise mid-IR frequency comb source using a silicon microresonator. Our observation of strong Raman scattering lines in the generated comb suggests that interplay between Raman and four-wave mixing plays a role in the generated low-noise state. In addition, we characterize, the intracavity comb generation dynamics using an integrated PIN diode, which takes advantage of the inherent three-photon absorption process in silicon. PMID:27410323

  1. Raman-assisted coherent, mid-infrared frequency combs in silicon microresonators

    CERN Document Server

    Griffith, Austin G; Okawachi, Yoshitomo; Cardenas, Jaime; Mohanty, Aseema; Gaeta, Alexander L; Lipson, Michal

    2016-01-01

    We demonstrate the first low-noise mid-IR frequency comb source using a silicon microresonator. Our observation of strong Raman scattering lines in the generated comb suggests that Raman and four-wave mixing interactions play a role in assisting the transition to the low-noise state. In addition, we characterize, the intracavity comb generation dynamics using an integrated PIN diode, which takes advantage of the inherent three-photon absorption process in silicon.

  2. Application of Comb-Type RF-Shield to Bellows Chambers and Gate Valves

    CERN Document Server

    Suetsugu, Yusuke; Ohuchi, Norihito; Shibata, Kyo; Shirai, Mitsuru

    2005-01-01

    A comb-type RF-shield, which was recently proposed for high current accelerators, was experimentally applied to bellows chambers and gate valves. The comb-type RF-shield has a structure of nested comb teeth, and has higher thermal strength and lower impedance than usual finger-type RF shields. The shield is suitable for future high intensity accelerators, such as particle factories aiming a luminosity of 1·1035

  3. Wide and stable optical frequency comb in an intensity-modulated continuous wave pumped optical fiber

    International Nuclear Information System (INIS)

    This paper investigates how to obtain a wide and stable optical frequency comb in an intensity-modulated continuous-wave pumped optical fiber by straightforwardly characterizing the signal-to-noise ratio and analyzing the optimal fiber length. The stability of the obtained optical frequency comb is analyzed by a method which is similar to the eye pattern. The prospect for obtaining wider and more stable optical frequency combs is discussed. (paper)

  4. Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb

    OpenAIRE

    Fortier, T. M.; Coq, Y Le; Stalnaker, J. E.; Ortega, D.; Diddams, S. A.; Oates, C. W.; Hollberg, L.

    2006-01-01

    We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrat...

  5. Occurrence of fungi in combs of fungus-growing termites (Isoptera: Termitidae, Macrotermitinae)

    OpenAIRE

    Guedegbe, Herbert; Miambi, Edouard; Pando, Anne; Roman, Jocelyne; Houngnandan, P.; Rouland Lefèvre, Corinne

    2009-01-01

    Fungus-growing termites cultivate their mutualistic basidiomycete Termitomyces species on a substrate called a fungal comb. Here, the Suicide Polymerase Endonuclease Restriction (SuPER) method was adapted for the first time to a fungal study to determine the entire fungal community of fungal combs and to test whether fungi other than the symbiotic cultivar interact with termite hosts. Our molecular analyses show that although active combs are dominated by Termitomyces fungi isolated with dire...

  6. Modeling of a High Force Density Fishbone Shaped Electrostatic Comb Drive Microactuator

    OpenAIRE

    Megat Muhammad Ikhsan Megat Hasnan; Mohd Faizul Mohd Sabri; Suhana Mohd Said; Nik Nazri Nik Ghazali

    2014-01-01

    This paper presents the design and evaluation of a high force density fishbone shaped electrostatic comb drive actuator. This comb drive actuator has a branched structure similar to a fishbone, which is intended to increase the capacitance of the electrodes and hence increase the electrostatic actuation force. Two-dimensional finite element analysis was used to simulate the motion of the fishbone shaped electrostatic comb drive actuator and compared against the performance of a straight sided...

  7. Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb

    CERN Document Server

    Fortier, T M; Stalnaker, J E; Ortega, D; Diddams, S A; Oates, C W; Hollberg, L

    2006-01-01

    We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity.

  8. Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb.

    Science.gov (United States)

    Fortier, T M; Coq, Y Le; Stalnaker, J E; Ortega, D; Diddams, S A; Oates, C W; Hollberg, L

    2006-10-20

    We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity. PMID:17155398

  9. Mid-infrared dual-comb spectroscopy with electro-optic modulators

    CERN Document Server

    Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2016-01-01

    We demonstrate dual-comb spectroscopy based on difference frequency generation of frequency-agile near-infrared frequency combs, produced with the help of electro-optic modulators. The combs have a remarkably flat intensity distribution and their positions and line spacings can be selected freely by simply dialing a knob. We record, in the 3-micron region, Doppler-limited absorption spectra with resolved comb lines within milliseconds. Precise molecular line parameters are retrieved. Our technique holds promise for fast and sensitive time-resolved studies e.g. of trace gases.

  10. A preliminary investigation of the potential mechanical sensitivity of vertical comb drives

    International Nuclear Information System (INIS)

    This article describes a preliminary step taken in investigating the potential of vertical comb drives to be used as force-compensation mechanisms in interfacial force microscopes, by exploring the lower limit of the stiffness of the springs the comb drives can be fabricated with. The stiffness of their springs will affect the sensitivity of the microscope. Six vertical comb drives were fabricated for this study; the dimensions of their spring beams were chosen with the intention of giving them stiffnesses of three different orders of magnitude. During fabrication it was found that etching the tops of some of the teeth down to create the vertical offset between the combs can be done using only photoresist to mask the rest of the teeth. The stiffnesses of the fabricated springs were estimated by applying loads to them and measuring their resulting deflections. Weights were applied to the two comb drives with the stiffest springs. Voltages were also applied to them so as to determine the force-voltage relationship for their comb design. Since the other four comb drives had the same comb design, the stiffnesses of their springs could be estimated from the displacements of their movable combs when voltages were applied to them. (paper)

  11. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones. PMID:23038314

  12. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.

  13. Broadband high-resolution x-ray frequency combs

    OpenAIRE

    Cavaletto, S.; Harman, Z.; Ott, C; Buth, C.; Pfeifer, T; Keitel, C.

    2014-01-01

    Optical frequency combs have had a remarkable impact on precision spectroscopy1, 2, 3. Enabling this technology in the X-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics4, a more sensitive search for the variability of fundamental constants5, and precision studies of nuclear structure6. Ultraprecise X-ray atomic clocks may also be envisaged7. In this work, an X-ray pulse-shaping method is proposed to gen...

  14. Application of the Molecular Combing Technique to Starch Granules

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Liu

    2009-10-01

    Full Text Available The molecular combing technique was used to dissociate the nanostructural units of starch granules from the starch fragments after a gelatinization process. With the help of atomic force microscopy (AFM, we observed that some nanostructural chains were just flowing out of the granules. It proves that there are substantive nanostructural units in the starch granules, a phenomenon not previously observed, so these nanostructural units were defined as suspected intermediates. Furthermore, we conclude that blocklets of starch granules are formed through twisting or distortion of nanochains.

  15. Microwave photonic comb filter with ultra-fast tunability.

    Science.gov (United States)

    Jiang, H Y; Yan, L S; Pan, Y; Pan, W; Luo, B; Zou, X H; Eggleton, B J

    2015-11-01

    A microwave comb filter with ultra-fast tunability is proposed based on the fundamental delay-line microwave photonic filter. The central frequency of the passband or stopband in such a filter can be rapidly adjusted, along with the independent tunability of the free spectral range (FSR). Experimental results show that the central frequency of the transfer function is electronically tuned with a frequency difference of half of the FSR at a speed of cognitive radio, and next-generation radar systems. PMID:26512477

  16. Comb-Line Filter with Coupling Capacitor in Ground Plane

    Directory of Open Access Journals (Sweden)

    Toshiaki Kitamura

    2011-01-01

    Full Text Available A comb-line filter with a coupling capacitor in the ground plane is proposed. The filter consists of two quarter-wavelength microstrip resonators. A coupling capacitor is inserted into the ground plane in order to build strong coupling locally along the resonators. The filtering characteristics are investigated through numerical simulations as well as experiments. Filtering characteristics that have attenuation poles at both sides of the passband are obtained. The input susceptances of even and odd modes and coupling coefficients are discussed. The filters using stepped impedance resonators (SIRs are also discussed, and the effects of the coupling capacitor for an SIR structure are shown.

  17. Dual-frequency comb generation with differing GHz repetition rates by parallel Fabry-Perot cavity filtering of a single broadband frequency comb source

    Science.gov (United States)

    Mildner, Jutta; Meiners-Hagen, Karl; Pollinger, Florian

    2016-07-01

    We present a dual-comb-generator based on a coupled Fabry-Perot filtering cavity doublet and a single seed laser source. By filtering a commercial erbium-doped fiber-based optical frequency comb with CEO-stabilisation and 250 MHz repetition rate, two broadband coherent combs of different repetition rates in the GHz range are generated. The filtering doublet consists of two Fabry-Perot cavities with a tunable spacing and Pound-Drever-Hall stabilisation scheme. As a prerequisite for the development of such a filtering unit, we present a method to determine the actual free spectral range and transmission bandwidth of a Fabry-Perot cavity in situ. The transmitted beat signal of two diode lasers is measured as a function of their tunable frequency difference. Finally, the filtering performance and resulting beat signals of the heterodyned combs are discussed as well as the optimisation measures of the whole system.

  18. Male- and female-specific variants of doublesex gene products have different roles to play towards regulation of Sex combs reduced expression and sex comb morphogenesis in Drosophila

    Indian Academy of Sciences (India)

    Thangjam Ranjita Devi; B V Shyamala

    2013-09-01

    Sexually dimorphic characters have two-fold complexities in pattern formation as they have to get input fromboth somatic sex determination as well as the positional determining regulators. Sex comb development in Drosophila requires functions of the somatic sex-determining gene doublesex and the homeotic gene Sex combs reduced. Attempts have not been made to decipher the role of dsx in imparting sexually dimorphic expression of SCR and the differential function of sex-specific variants of dsx products in sex comb development. Our results in this study indicate that male-like pattern of SCR expression is independent of dsx function, and dsxF must be responsible for bringing about dimorphism in SCR expression, whereas dsxM function is required with Scr for the morphogenesis of sex comb.

  19. Picometer-resolution dual-comb spectroscopy with a free-running fibre laser

    CERN Document Server

    Zhao, Xin; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-01-01

    Dual-comb spectroscopy utilizes two sets of comb lines with slightly different comb-tooth-spacings, and optical spectral information is acquired by measuring the radio-frequency beat notes between the sets of comb lines. It holds the promise as a real-time, high-resolution analytical spectroscopy tool for a range of important applications. However, the stringent requirement on the coherence between comb lines from two separate lasers and the sophisticated control system to achieve that have confined the technology to the top metrology laboratories. By replacing electronics with the law of physics in lasers, a much simpler, dual-comb spectroscopy scheme is demonstrated here using just one dual-wavelength, passively mode-locked fiber laser. Dual-comb pulses with a repetition-frequency difference determined by the intracavity dispersion are shown to be robust against common-mode cavity drifts and noises. As sufficiently low relative linewidth is maintained between two sets of comb lines, capability to resolve pi...

  20. Efficient frequency comb generation in AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta;

    2016-01-01

    The combination of nonlinear and integrated photonics enables Kerr frequency comb generation in stable chip-based microresonators. Such a comb system will revolutionize applications, including multi-wavelength lasers, metrology, and spectroscopy. Aluminum gallium arsenide (AlGaAs) exhibits very h...

  1. Astronomical optical frequency comb generation and test in a fiber-fed MUSE spectrograph

    Science.gov (United States)

    Chavez Boggio, J. M.; Fremberg, T.; Moralejo, B.; Rutowska, M.; Hernandez, E.; Zajnulina, M.; Kelz, A.; Bodenmüller, D.; Sandin, C.; Wysmolek, M.; Sayinc, H.; Neumann, J.; Haynes, R.; Roth, M. M.

    2014-07-01

    We here report on recent progress on astronomical optical frequency comb generation at innoFSPEC-Potsdam and present preliminary test results using the fiber-fed Multi Unit Spectroscopic Explorer (MUSE) spectrograph. The frequency comb is generated by propagating two free-running lasers at 1554.3 and 1558.9 nm through two dispersionoptimized nonlinear fibers. The generated comb is centered at 1590 nm and comprises more than one hundred lines with an optical-signal-to-noise ratio larger than 30 dB. A nonlinear crystal is used to frequency double the whole comb spectrum, which is efficiently converted into the 800 nm spectral band. We evaluate first the wavelength stability using an optical spectrum analyzer with 0.02 nm resolution and wavelength grid of 0.01 nm. After confirming the stability within 0.01 nm, we compare the spectra of the astro-comb and the Ne and Hg calibration lamps: the astro-comb exhibits a much larger number of lines than lamp calibration sources. A series of preliminary tests using a fiber-fed MUSE spectrograph are subsequently carried out with the main goal of assessing the equidistancy of the comb lines. Using a P3d data reduction software we determine the centroid and the width of each comb line (for each of the 400 fibers feeding the spectrograph): equidistancy is confirmed with an absolute accuracy of 0.4 pm.

  2. Optimally Coherent Kerr Combs Generated with Crystalline Whispering Gallery Mode Resonators for Ultrahigh Capacity Fiber Communications

    Science.gov (United States)

    Pfeifle, Joerg; Coillet, Aurélien; Henriet, Rémi; Saleh, Khaldoun; Schindler, Philipp; Weimann, Claudius; Freude, Wolfgang; Balakireva, Irina V.; Larger, Laurent; Koos, Christian; Chembo, Yanne K.

    2015-03-01

    Optical Kerr frequency combs are known to be effective coherent multiwavelength sources for ultrahigh capacity fiber communications. These combs are the frequency-domain counterparts of a wide variety of spatiotemporal dissipative structures, such as cavity solitons, chaos, or Turing patterns (rolls). In this Letter, we demonstrate that Turing patterns, which correspond to the so-called primary combs in the spectral domain, are optimally coherent in the sense that for the same pump power they provide the most robust carriers for coherent data transmission in fiber communications using advanced modulation formats. Our model is based on a stochastic Lugiato-Lefever equation which accounts for laser pump frequency jitter and amplified spontaneous emission noise induced by the erbium-doped fiber amplifier. Using crystalline whispering-gallery-mode resonators with quality factor Q ˜109 for the comb generation, we show that when the noise is accounted for, the coherence of a primary comb is significantly higher than the coherence of their solitonic or chaotic counterparts for the same pump power. In order to confirm this theoretical finding, we perform an optical fiber transmission experiment using advanced modulation formats, and we show that the coherence of the primary comb is high enough to enable data transmission of up to 144 Gbit /s per comb line, the highest value achieved with a Kerr comb so far. This performance evidences that compact crystalline photonic systems have the potential to play a key role in a new generation of coherent fiber communication networks, alongside fully integrated systems.

  3. Gaussian-shaped Optical Frequency Comb Generation for Microwave Photonic Filtering

    CERN Document Server

    Wu, Rui; Hamidi, Ehsan; Supradeepa, V R; Song, Min Hyup; Leaird, Daniel E; Weiner, Andrew M

    2011-01-01

    Using only electro-optic modulators, we generate a 41-line 10-GHz Gaussian-shaped optical frequency comb. We use this comb to demonstrate apodized microwave photonic filters with greater than 43-dB sidelobe suppression without the need for a pulse shaper.

  4. MICROBIOLOGICAL COMPARISON BETWEEN HONEY IN JAR AND HONEY IN COMB FOR HUMAN CONSUMPTION

    Directory of Open Access Journals (Sweden)

    G. Formato

    2013-02-01

    Full Text Available The Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, during August-July 2007 analyzed, for the microbial aspects, 37 samples of jar honey and 53 samples of honey in comb obtained from 37 farms of Latium Region. In the jar honey there weren’t values up to 1*103 colony-forming unit (CFU/g of bacteria mesophiles, while in the honey in comb it was not up to 2*103 CFU/g. Bacillus cereus was found in 22 samples (41,5% of honey in comb and in 18 samples (48,6% of jar honey; Clostridium perfringens was found in 6 (11,3% samples of honey in comb and in 6 samples (16,2% of jar honey; Clostridium baratii was found in 1 (1,9% sample of honey in comb and in 1 sample (2,7% of jar honey; coagulase-positive staphylococci were found in 4 (11,3% samples of honey in comb and in 4 samples (10,8% of jar honey; Clostridium sordelli was found in 2 samples (3,8% of honey in comb and in 1 sample (2,7% of jar honey. Only 2 samples of honey in comb and 1 sample of jar honey had yeasts up to 1000 CFU/g. Finally, 9 samples (24,3% of jar honey and 16 samples (30,2% of honey in jar were positives for moulds.

  5. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.;

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers...

  6. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera development and longevity.

    Directory of Open Access Journals (Sweden)

    Judy Y Wu

    Full Text Available BACKGROUND: Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. METHODOLOGY/PRINCIPAL FINDINGS: Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment or in relatively uncontaminated brood comb (control. Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8 of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. CONCLUSIONS/SIGNIFICANCE: This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor

  7. Comb-referenced laser distance interferometer for industrial nanotechnology

    Science.gov (United States)

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-01-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10−10. The uncertainty is estimated to be in a 10−8 level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10−10 level in vacuum. PMID:27558016

  8. Lévy processes on a generalized fractal comb

    Science.gov (United States)

    Sandev, Trifce; Iomin, Alexander; Méndez, Vicenç

    2016-09-01

    Comb geometry, constituted of a backbone and fingers, is one of the most simple paradigm of a two-dimensional structure, where anomalous diffusion can be realized in the framework of Markov processes. However, the intrinsic properties of the structure can destroy this Markovian transport. These effects can be described by the memory and spatial kernels. In particular, the fractal structure of the fingers, which is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the Lévy processes (Lévy flights) and superdiffusion. This generalization of the fractional diffusion is described by the Riesz space fractional derivative. In the framework of this generalized fractal comb model, Lévy processes are considered, and exact solutions for the probability distribution functions are obtained in terms of the Fox H-function for a variety of the memory kernels, and the rate of the superdiffusive spreading is studied by calculating the fractional moments. For a special form of the memory kernels, we also observed a competition between long rests and long jumps. Finally, we considered the fractal structure of the fingers controlled by a Weierstrass function, which leads to the power-law kernel in the Fourier space. This is a special case, when the second moment exists for superdiffusion in this competition between long rests and long jumps.

  9. Scanning micro-resonator direct-comb absolute spectroscopy

    CERN Document Server

    Gambetta, Alessio; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical frequency Comb Spectroscopy (DCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DCS approach based on a scanning Fabry-Perot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from XUV to THz. An application to high-precision spectroscopy of acetylene at 1.54 um is presented, demonstrating frequency resolution as low as 20 MHz with a single-scan optical bandwidth up to 1 THz in 20-ms measurement time and a noise-equ...

  10. Development of femtosecond optical frequency comb laser tracker

    Science.gov (United States)

    Yang, Ju-qing; Zhou, Wei-hu; Dong, Deng-feng; Zhang, Zi-li; Lao, Da-bao; Ji, Rong-yi; Wang, Da-yong

    2016-01-01

    A new type femtosecond laser tracker is one high precision measurement instrument with urgent need in science research region and industrial manufacture field. This paper focuses on the operational principle and the structure development of the femtosecond laser tracer, and the method of error compensation as well. The system modules were studied and constructed. The femtosecond frequency comb module was firstly analyzed and developed. The femtosecond laser frequency comb performed perfectly high precise distance measurement for laser tracker. The experimental result showed that the stability of repetition rate reached 3.0×10-12@1s and the stability of carrier envelop offset reached 1.0×10-10@1s. The initial experiment showed that measurement error was less than 1ppm. Later the error compensation module was introduced, and the optoelectronic aiming and tracking control module was built. The actual test result showed that the stability of miss distance was better than 2.0 μm, the tracking speed could reach 2m/s.

  11. Comb-referenced laser distance interferometer for industrial nanotechnology.

    Science.gov (United States)

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-01-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10(-10). The uncertainty is estimated to be in a 10(-8) level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10(-10) level in vacuum. PMID:27558016

  12. Nonlinear Doppler - Free comb-spectroscopy in counter-propagating fields

    CERN Document Server

    Pulkin, S A; Arnautov, V; Uvarova, S V; Savel'eva, S

    2014-01-01

    The method of Doppler - free comb - spectroscopy for dipole transitions was proposed. The calculations for susceptibility spectrum for moving two-level atoms driving by strong counter propagating combs have been done. The used theoretical method based on the Fourier expansion of the components of density matrix on two rows on kv (v-velocity of group of atoms, k-projection of wave vector) and {\\Omega} (frequency between comb components). For testing of validity of this method the direct numerical integration was done. The narrow peaks with homogeneous width arise on the background of Doppler counter. The contrast of these peaks is large for largest amplitudes of comb-components. Power broadening is increasing with increase of field amplitudes. The spectral range of absorption spectrum is determined by the spectral range of comb generator and all homogeneous lines arise simultaneously. The spectral resolution is determined by the width of homogeneously-broadening lines. The physical nature of narrow peaks is in...

  13. Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency.

    Science.gov (United States)

    Puppe, Thomas; Sell, Alexander; Kliese, Russell; Hoghooghi, Nazanin; Zach, Armin; Kaenders, Wilhelm

    2016-04-15

    We characterize an Er:fiber laser frequency comb that is passively carrier envelope phase-stabilized via difference frequency generation at a wavelength of 1550 nm. A generic method to measure the comb linewidth at different wavelengths is demonstrated. By transferring the properties of a comb line to a cw external cavity diode laser, the phase noise is subsequently measured by tracking the delayed self-heterodyne beat note. This relatively simple characterization method is suitable for a broad range of optical frequencies. Here, it is used to characterize our difference frequency generation (DFG) comb over nearly an optical octave. With repetition-rate stabilization, a radiofrequency reference oscillator limited linewidth is achieved. A lock to an optical reference shows out-of-loop linewidths of the comb at the hertz level. The phase noise measurements are in excellent agreement with the elastic tape model with a fix point at zero frequency. PMID:27082368

  14. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    Science.gov (United States)

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking. PMID:27519071

  15. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    Science.gov (United States)

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking.

  16. (87)Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb.

    Science.gov (United States)

    Schratwieser, Thomas C; Balskus, Karolis; McCracken, Richard A; Farrell, Carl; Leburn, Christopher G; Zhang, Zhaowei; Lamour, Tobias P; Ferreiro, Teresa I; Marandi, Alireza; Arnold, Aidan S; Reid, Derryck T

    2014-05-01

    We report a fully stabilized 1030-nm Yb-fiber frequency comb operating at a pulse repetition frequency of 375 MHz. The comb spacing was referenced to a Rb-stabilized microwave synthesizer and the comb offset was stabilized by generating a super-continuum containing a coherent component at 780.2 nm which was heterodyned with a (87)Rb-stabilized external cavity diode laser to produce a radio-frequency beat used to actuate the carrier-envelope offset frequency of the Yb-fiber laser. The two-sample frequency deviation of the locked comb was 235 kHz for an averaging time of 50 seconds, and the comb remained locked for over 60 minutes with a root mean squared deviation of 236 kHz.

  17. Octave-wide frequency comb centered at 4 μm based on a subharmonic OPO with Hz-level relative comb linewidth

    Science.gov (United States)

    Smolski, V. O.; Xu, J.; Schunemann, P. G.; Vodopyanov, K. L.

    2016-03-01

    We study coherence properties of a more-than-octave-wide (2.6-7.5 μm) mid-IR frequency comb based on a 2-μm Tmfiber- laser-pumped degenerate (subharmonic) optical parametric oscillator (OPO) that uses orientation-patterned gallium arsenide (OP-GaAs) as gain element. By varying intracavity dispersion, we observed a 'phase' transition from a singlecomb state (at exactly OPO degeneracy) to a two-comb state (near-degenerate operation), characterized by two spectrally overlapping combs (signal and idler) with distinct carrier-envelope offset frequencies. We achieve this by generating a supercontinuum (SC) from the mode-locked Tm laser that spans most of the near-IR range, and observing RF beats between the SC and parasitic sum-frequency light (pump + OPO) that also falls into the near-IR. We found RF linewidth to be pump laser comb is preserved to a high degree in a subharmonic OPO. Transition to a two-comb state was characterized by a symmetric splitting of the RF peak. Low pump threshold (down to 7 mW), high (73 mW) average power and high (up to 90%) pump depletion make this comb source very attractive for numerous applications including trace molecular detection and chemical sensing with massively parallel spectral data acquisition.

  18. Flexible radio-frequency photonics: Optoelectronic frequency combs and integrated pulse shaping

    Science.gov (United States)

    Metcalf, Andrew J.

    Microwave photonics is a discipline which leverages optoelectronics to enhance the generation, transport, and processing of high-frequency electrical signals. At the heart of many emerging techniques is the optical frequency comb. A comb is a lightwave source whose spectrum is made up of discrete equally spaced spectral components that share a fixed phase relationship. These discrete coherent oscillators --known as comb lines-- collectively form a Fourier basis that describe a periodic optical waveform. Within the last two decades frequency-stabilized broadband combs produced from mode-locked lasers have led to revolutionary advancements in precision optical frequency synthesis and metrology. Meanwhile, Fourier-transform optical pulse shaping, which provides a means to control a comb's Fourier basis in both amplitude and phase, has emerged as an integral tool in optical communications, broadband waveform generation, and microwave photonic filtering. However, traditional comb and pulse shaping architectures are often plagued by complex and bulky setups, rendering robust and cost effective implementation outside of the laboratory a challenge. In addition, traditional comb sources based on short-pulse lasers do not possess qualities which are ideally suited for this new application regime. Motivated by the shortcomings in current architectures, and empowered by recent advancements in optoelectronic technology, this dissertation focuses on developing novel and robust schemes in optical frequency comb generation and line-by-line pulse shaping. Our results include: the invention and low-noise characterization of a broadband flat-top comb source; the realization of an optoelectronic-based time cloak; and finally, the development of an integrated pulse shaper, which we use in conjunction with our flat-top comb source to demonstrate a rapidly reconfigurable microwave photonic filter.

  19. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  20. Terabit/s communications using chip-scale frequency comb sources

    Science.gov (United States)

    Koos, Christian; Kippenberg, Tobias J.; Barry, Liam P.; Dalton, Larry; Freude, Wolfgang; Leuthold, Juerg; Pfeifle, Joerg; Weimann, Claudius; Lauermann, Matthias; Kemal, Juned N.; Palmer, Robert; Koeber, Sebastian; Schindler, Philipp C.; Herr, Tobias; Brasch, Victor; Watts, Regan T.; Elder, Delwin

    2015-03-01

    High-speed optical interconnects rely on advanced wavelength-division multiplexing (WDM) schemes. However, while photonic-electronic interfaces can be efficiently realized on silicon-on-insulator chips, dense integration of the necessary light sources still represents a major challenge. Chip-scale frequency comb sources present an attractive alternative for providing a multitude of optical carriers for WDM transmission. In this paper, we give an overview of our recent progress towards terabit communications with chip-scale frequency comb sources. In a first set of experiments, we demonstrate frequency comb generation based on silicon-organic hybrid (SOH) electro-optic modulators, enabling line rates up to 1.152 Tbit/s. In a second set of experiments, we use injection locking of a gain-switched laser diode to enerate frequency combs. This approach leads to line rates of more than 2 Tbit/s. A third set of experiments is finally dedicated to using Kerr nonlinearities in integrated nonlinear microcavities for frequency comb generation. We demonstrate coherent communication using Kerr frequency comb sources, thereby achieving line rates up to 1.44 Tbit/s. Our experiments show that frequency comb generation in chip-scale devices represents a viable approach to terabit communications.

  1. Steering optical comb frequency by rotating polarization state

    CERN Document Server

    Zhang, Y; Zhang, X F; Zhang, L; Han, W; Guo, W; Jiang, H; Zhang, S

    2016-01-01

    Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator techn...

  2. Coherent Raman spectro-imaging with laser frequency combs

    CERN Document Server

    Ideguchi, Takuro; Bernhardt, Birgitta; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2013-01-01

    Optical spectroscopy and imaging of microscopic samples have opened up a wide range of applications throughout the physical, chemical, and biological sciences. High chemical specificity may be achieved by directly interrogating the fundamental or low-lying vibrational energy levels of the compound molecules. Amongst the available prevailing label-free techniques, coherent Raman scattering has the distinguishing features of high spatial resolution down to 200 nm and three-dimensional sectioning. However, combining fast imaging speed and identification of multiple - and possibly unexpected- compounds remains challenging: existing high spectral resolution schemes require long measurement times to achieve broad spectral spans. Here we overcome this difficulty and introduce a novel concept of coherent anti-Stokes Raman scattering (CARS) spectro-imaging with two laser frequency combs. We illustrate the power of our technique with high resolution (4 cm-1) Raman spectra spanning more than 1200 cm-1 recorded within le...

  3. Acoustic frequency combs for carrier-envelope phase stabilization.

    Science.gov (United States)

    Borchers, Bastian; Lücking, Fabian; Steinmeyer, Günter

    2014-02-01

    A method for improved performance of feed-forward carrier-envelope phase stabilization in amplified laser sources is presented and experimentally demonstrated. The phase stabilization scheme is applicable for a broad range of repetition rates spanning from subhertz to 100 kHz. The method relies on driving an acousto-optic frequency shifter by few-cycle transients. The phase of these transients suitably controls the grating phase of the generated index grating inside the shifter material. This approach removes beam pointing as well as amplitude noise issues observed in continuously driven feed-forward schemes. The synthesis of these gratings can be understood as the acoustic equivalent of mode-locking or acoustic frequency combs. PMID:24487861

  4. Tunable frequency combs based on dual microring resonators

    CERN Document Server

    Miller, Steven A; Ramelow, Sven; Luke, Kevin; Dutt, Avik; Farsi, Alessandro; Gaeta, Alexander L; Lipson, Michal

    2015-01-01

    In order to achieve efficient parametric frequency comb generation in microresonators, external control of coupling between the cavity and the bus waveguide is necessary. However, for passive monolithically integrated structures, the coupling gap is fixed and cannot be externally controlled, making tuning the coupling inherently challenging. We design a dual-cavity coupled microresonator structure in which tuning one ring resonance frequency induces a change in the overall cavity coupling condition. We demonstrate wide extinction tunability with high efficiency by engineering the ring coupling conditions. Additionally, we note a distinct dispersion tunability resulting from coupling two cavities of slightly different path lengths, and present a new method of modal dispersion engineering. Our fabricated devices consist of two coupled high quality factor silicon nitride microresonators, where the extinction ratio of the resonances can be controlled using integrated microheaters. Using this extinction tunability...

  5. Time-Delay Interferometry with optical frequency comb

    CERN Document Server

    Tinto, Massimo

    2015-01-01

    Heterodyne laser phase measurements in a space-based gravitational wave interferometer are degraded by the phase fluctuations of the onboard clocks, resulting in unacceptable sensitivity performance levels of the interferometric data. In order to calibrate out the clock phase noises it has been previously suggested that additional inter-spacecraft phase measurements must be performed by modulating the laser beams. This technique, however, considerably increases system complexity and probability of subsystem failure. With the advent of self-referenced optical frequency combs, it is possible to generate the heterodyne microwave signal that is coherently referenced to the onboard laser. We show in this case that the microwave noise can be cancelled directly by applying modified second-generation Time-Delay Interferometric combinations to the heterodyne phase measurements. This approach avoids use of modulated laser beams as well as the need of additional ultra-stable oscillator clocks.

  6. Comb mode filtering silver mirror cavity for spectroscopic distance measurement

    Science.gov (United States)

    Šmíd, R.; Hänsel, A.; Pravdová, L.; Sobota, J.; Číp, O.; Bhattacharya, N.

    2016-09-01

    In this work we present a design of an external optical cavity based on Fabry-Perot etalons applied to a 100 MHz Er-doped fiber optical frequency comb working at 1560 nm to increase its repetition frequency. A Fabry-Perot cavity is constructed based on a transportable cage system with two silver mirrors in plano-concave geometry including the mode-matching lenses, fiber coupled collimation package and detection unit. The system enables full 3D angle mirror tilting and x-y off axis movement as well as distance between the mirrors. We demonstrate the increase of repetition frequency by direct measurement of the beat frequency and spectrally by using the virtually imaged phased array images.

  7. Charge-optimized many-body (COMB) potential for zirconium

    Science.gov (United States)

    Noordhoek, Mark J.; Liang, Tao; Lu, Zizhe; Shan, Tzu-Ray; Sinnott, Susan B.; Phillpot, Simon R.

    2013-10-01

    An interatomic potential for zirconium is developed within the charge-optimized many-body (COMB) formalism. The potential correctly predicts the hexagonal close-packed (HCP) structure as the ground state with cohesive energy, lattice parameters, and elastic constants matching experiment well. The most stable interstitial position is the basal octahedral followed by basal split, in agreement with recent first principles calculations. Stacking fault energies within the prism and basal planes satisfactorily match first principles calculations. A tensile test using nanocrystalline zirconium exhibits both prismatic {1 0 1bar 0} slip and pyramidal {1 1 2bar 2} slip, showing the model is capable of reproducing the mechanical deformation modes observed in experiments.

  8. A Coherent Raman Oscillator Pumped by a Frequency Comb

    CERN Document Server

    Pe'er, Avi

    2014-01-01

    Free induction decay is the coherent emission of light that follows the excitation of a medium by a short pulse. During the coherence time of the medium ($T_2$), all atoms/molecules oscillate 'in unison', forming a macroscopic dipole that emits light as a large coherent antenna, 'broadcasting' information on the quantum state of the atoms/molecules and its dynamical evolution. We present an optical oscillator, where the coherent dipole emission from a dynamical wave-packet, is amplified beyond the lasing threshold. By placing a molecular medium in an optical cavity that is synchronously pumped by a frequency comb laser, emission from the excitation of one pump pulse can return to the medium with subsequent pump pulses, allowing stimulated amplification. When threshold is crossed, a broadband coherent oscillation is achieved, bearing information on the coherent wave-packet dynamics inside the medium. We analyze theoretically this coherent Raman oscillator and simulate thoroughly it's dynamics under most realis...

  9. Direct Frequency Comb Measurement of OD + CO -> DOCO Kinetics

    CERN Document Server

    Bjork, Bryce J; Heckl, Oliver H; Changala, P Bryan; Spaun, Ben; Heu, Paula; Follman, David; Deutsch, Christoph; Cole, Garrett D; Aspelmeyer, Markus; Okumura, Mitchio; Ye, Jun

    2016-01-01

    The kinetics of the OH + CO reaction, fundamental to both atmospheric and combustion chemistry, are complex due to the formation of the HOCO intermediate. Despite extensive studies on this reaction, HOCO has not been observed at thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observe OD + CO reaction kinetics with the detection of stabilized trans-DOCO, the deuterated analogue of trans-HOCO, and its yield. By simultaneously measuring the time-dependent concentrations of both trans-DOCO and OD species, we observe unambiguous low-pressure termolecular dependence on the reaction rate coefficients for both N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

  10. Direct frequency comb two-photon laser cooling and trapping

    Science.gov (United States)

    Jayich, Andrew; Long, Xueping; Campbell, Wesley C.

    2016-05-01

    Generating and manipulating high energy photons for spectroscopy on electric dipole transitions of atoms and molecules with deeply bound valence electrons is difficult. Further, laser cooling of such species is even more challenging for lack of laser power. A possible solution is to drive two-photon transitions. This may alleviate the photon energy problem and open the door to cold, trapped samples of highly desirable species with tightly bound electrons. We perform a proof of principle experiment with rubidium by driving a two-photon transition with an optical frequency comb. We perform optical cooling and extend this technique to trapping, where we are able to make a magneto-optical trap in one dimension. This work is supported by the National Science Foundation CAREER program.

  11. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    CERN Document Server

    Zhang, Bosheng; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl,, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-01-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  12. Enhancement of two-photon transition rate by selectively removing certain frequency comb teeth

    CERN Document Server

    Zhang, Shuangyou; Zhao, Jianye

    2015-01-01

    We present experiments demonstrating an enhancement of resonant two-photon transition rate in 87Rb utilizing spectral phase manipulation of the excitation frequency comb. By selectively removing certain comb teeth, the resonant two-photon transition rate can be improved, and reach a factor of more than 1.8. The femtosecond pulse-train excitation of two-photon transition is investigated theoretically based on general multiphoton transitions and the results are compared with the experiments. The theory presented here gives a clear insight of physical mechanism of this quantum coherent control and indicates that it is simple, effective and universal for nonlinear interactions between frequency combs and matters.

  13. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi-Chi; Wu Ji-Zhou; Li Yu-Qing; Jin Li; Ma Jie; Wang Li-Rong; Zhao Yan-Ting; Xiao Lian-Tuan; Jia Suo-Tang

    2012-01-01

    A phase-stabilized femtosecond frequency comb is used to measure high-resolution spectra of two-photon transition 62S1/2-62P1/2,3/2-82S1/2 in a cesium vapor.The broadband laser output from a femtosecond frequency comb is split into counter-propagating parts,shaped in an original way,and focused into a room-temperature cesium vapor.We obtain high-resolution two-photon spectroscopy by scanning the repetition rate of femtosecond frequency comb,and through absolute frequency measurements.

  14. Dispersing multi-component and unstable powders in aqueous media using comb-type anionic polymers

    DEFF Research Database (Denmark)

    Laarz, E.; Kauppi, A.; Andersson, K.M.;

    2006-01-01

    We have investigated the effect of polymeric dispersants on the rheological properties and consolidation behavior of concentrated cemented carbide (WC-Co) and magnesia (MgO) suspensions. The relatively novel types of comb-type anionic polymers with grafted non-ionic side chains are effective...... dispersants also in multi-component powder mixtures with a complex solution and surface chemistry and result in more robust suspensions at significantly higher solids loading compared with e.g., a traditional cationic polyelectrolyte. Direct force measurements on comb-type dispersants with different lengths...... could be related to the estimated thickness of the adsorbed comb-type dispersants....

  15. Origin and stability of dark pulse Kerr combs in normal dispersion resonators.

    Science.gov (United States)

    Parra-Rivas, Pedro; Gomila, Damià; Knobloch, Edgar; Coen, Stéphane; Gelens, Lendert

    2016-06-01

    We analyze dark pulse Kerr frequency combs in optical resonators with normal group-velocity dispersion using the Lugiato-Lefever model. We show that in the time domain the combs correspond to interlocked switching waves between the upper and lower homogeneous states, and explain how this fact accounts for many of their experimentally observed properties. Modulational instability does not play any role in their existence. We provide a detailed map indicating for which parameters stable dark pulse Kerr combs can be found, and how they are destabilized for increasing values of frequency detuning. PMID:27244374

  16. Combing non-epitaxially grown nanowires for large-area electronic devices

    International Nuclear Information System (INIS)

    A facile route for aligning randomly oriented nanowires synthesized by a vapor–liquid–solid method for the fabrication of nanoelectronic devices was achieved using a polymer combing technique. By controlling the Young’s modulus of the polymer combs, van der Waals interactions and shearing forces between the combs and nanowires can be manipulated and thus the nanowire density and alignment can be controlled. Using the proposed method, field-effect transistors were directly fabricated on as-grown substrates after aligning the nanowires, thereby demonstrating the feasibility of the scheme for the production of nanoelectronic devices. (paper)

  17. Intracavity characterization of micro-comb generation in the single-soliton regime

    CERN Document Server

    Wang, Pei-Hsun; Xuan, Yi; Xue, Xiaoxiao; Bao, Chengying; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Soliton formation in on-chip micro-comb generation balances cavity dispersion and nonlinearity and allows coherent, low-noise comb operation. We study the intracavity waveform of an on-chip microcavity soliton in a silicon nitride microresonator configured with a drop port. Whereas combs measured at the through port are accompanied by a very strong pump line which accounts for >99% of the output power, our experiments reveal that inside the microcavity, most of the power is in the soliton. Time-domain measurements performed at the drop port provide information that directly reflects the intracavity field. Data confirm a train of bright, close to bandwidth-limited pulses, accompanied by a weak continuous wave (CW) background with a small phase shift relative to the comb.

  18. DWDM Fiber-Wireless Access System with Centralized Optical Frequency Comb-based RF Carrier Generation

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltrán, Marta; Sánchez, José;

    2013-01-01

    We propose and experimentally demonstrate an optical wireless DWDM system at 60 GHz with optical incoherent heterodyne up-conversion using an optical frequency comb. Multiple users with wireline and wireless services are simultaneously supported....

  19. All Optical Stabilization of a Soliton Frequency Comb in a Crystalline Microresonator

    CERN Document Server

    Jost, J D; Herr, T; Lecaplain, C; Brasch, V; Pfeiffer, M H P; Kippenberg, T J

    2015-01-01

    Microresonator based optical frequency combs (MFC) have demonstrated promise in extending the capabilities of optical frequency combs. Here we demonstrate all optical stabilization of a low noise temporal soliton based MFC in a crystalline resonator via a new technique to control the repetition rate. This is accomplished by thermally heating the microresonator with an additional probe laser coupled to an auxiliary optical resonator mode. The offset frequency is controlled by stabilization of the pump laser frequency to a reference optical frequency comb. We analyze the stabilization by performing an out of loop comparison and measure the overlapping Allan deviation. This all optical stabilization technique can prove useful as a low added noise actuator for self-referenced microresonator frequency combs.

  20. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    CERN Document Server

    Brasch, Victor; Geiselmann, Michael; Lihachev, Grigoriy; Pfeiffer, Martin H P; Gorodetsky, Michael L; Kippenberg, Tobias J

    2014-01-01

    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequen...

  1. Quantum Correlations, Entanglement, and Squeezed States of Light in Kerr Optical Frequency Combs

    CERN Document Server

    Chembo, Yanne K

    2014-01-01

    The dynamical behavior of Kerr optical frequency combs is very well understood today from the perspective of the semi-classical approximation. In this article, we provide a theoretical understanding of the phenomena of quantum correlations, multimode entanglement and squeezed states of light that can occur in these frequency combs when quantum noise is accounted for. We prove that for all stationary spatio-temporal patterns, the side-modes that are symmetrical relatively to the central (pumped) mode in the frequency domain display quantum correlations that can lead to squeezed states of light under some optimal conditions that are analytically determined. We show that these quantum correlations can persist regardless the dynamical state of the system (rolls or solitons), regardless of the spectral extension of the comb (number sidemodes), and regardless of the dispersion regime (normal or anomalous). We study with particular emphasis the two principal architectures for Kerr comb generation, namely the add-thr...

  2. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion

    CERN Document Server

    Jang, Jae K; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point. We determine the phase-matching conditions that accurately predict all the essential features of the MI and comb spectra, and extend the existing analogy between mode coupling and high-order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the possibility of broadband comb generation in the normal GVD regime.

  3. Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel

    CERN Document Server

    Probst, R A; Doerr, H-P; Steinmetz, T; Kentischer, T J; Zhao, G; Hänsch, T W; Udem, Th; Holzwarth, R; Schmidt, W

    2015-01-01

    We investigate a new scheme for astronomical spectrograph calibration using the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our concept is based upon a single-mode fiber channel, that simultaneously feeds the spectrograph with comb light and sunlight. This yields nearly perfect spatial mode matching between the two sources. In combination with the absolute calibration provided by the frequency comb, this method enables extremely robust and accurate spectroscopic measurements. The performance of this scheme is compared to a sequence of alternating comb and sunlight, and to absorption lines from Earth's atmosphere. We also show how the method can be used for radial-velocity detection by measuring the well-explored 5-minute oscillations averaged over the full solar disk. Our method is currently restricted to solar spectroscopy, but with further evolving fiber-injection techniques it could become an option even for faint astronomical targets.

  4. TREATMENT OF 50 CASES OF MIGRAINE BY SCALP ACUPUNCTURE COMBINED WITH ELECTRO-COMB STIMULATION

    Institute of Scientific and Technical Information of China (English)

    CAO Renjun; SHI Qing

    2002-01-01

    @@ The authors of the present paper treated 50cases of migraine by scalp acupuncture plus electro-comb stimulation from 1995 to 1999 and achieved satisfactory therapeutic effects. It is reported as follows.

  5. Characteristics of distributed-type inorganic electroluminescence panels with comb-shaped electrodes

    Science.gov (United States)

    Yamamoto, Shin-Ichi; Uraoka, Yukiharu; Taguchi, Nobuyoshi; Nonaka, Toshihiro

    2013-09-01

    We deposited comb electrodes with narrow gaps between the teeth on a glass substrate, thus realizing a high electric field intensity that cannot be achieved with conventional structures. Au electrodes are deposited to form a comb shape and then spin-coated with a phosphor layer obtained by mixing ZnS phosphor particles with resins in a certain ratio. An AC voltage was applied to the gaps between the teeth of the comb electrode to emit light, from which the luminance was measured for different electric field intensities. The luminance was not affected by the transmittance of the electrodes themselves when measured from the phosphor layer side. Therefore, it may be possible to produce a display that does not require transparent electrodes by using the phosphor layer side of a device with comb electrodes made of metals, such as Au, for the display.

  6. Microwave and RF Applications for Micro-resonator based Frequency Combs

    CERN Document Server

    Nguyen, Thach G; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contr...

  7. A Novel Comb Architecture for Enhancing the Sensitivity of Bulk Mode Gyroscopes

    OpenAIRE

    Mohannad Y. Elsayed; Frederic Nabki; El-Gamal, Mourad N.

    2013-01-01

    This work introduces a novel architecture for increasing the sensitivity of bulk mode gyroscopes. It is based on adding parallel plate comb drives to the points of maximum vibration amplitude, and tuning the stiffness of the combs. This increases the drive strength and results in a significant sensitivity improvement. The architecture is targeted for technologies with ∼100 nm transducer gaps in order to achieve very high performance devices. In this work, this sensitivity enhancement concept ...

  8. Optical frequency comb generation from aluminum nitride micro-ring resonator

    OpenAIRE

    Jung, Hojoong; Xiong, Chi; Fong, King Y.; Zhang, Xufeng; Hong X. Tang

    2013-01-01

    Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coe...

  9. Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators

    CERN Document Server

    Matsko, Andrey B; Savchenkov, Anatoliy A; Maleki, Lute

    2012-01-01

    We theoretically and experimentally investigate the chaotic regime of optical frequency combs generated in nonlinear ring microresonators pumped with continuous wave light. We show that the chaotic regime reveals itself, in an apparently counter-intuitive way, by a flat top symmetric envelope of the frequency spectrum, when observed by means of an optical spectrum analyzer. The comb demodulated on a fast photodiode produces a noisy radio frequency signal with an spectral width significantly exceeding the linear bandwidth of the microresonator mode.

  10. High precision absolute distance measurement with the fiber femtosecond optical frequency comb

    Science.gov (United States)

    Guo, Jiashuai; Wu, Tengfei; Liang, Zhiguo; Wang, Yu; Han, Jibo

    2016-01-01

    The absolute distance measurement was experimentally demonstrated by using the fiber femtosecond optical frequency comb in air. The technique is based on the measurement of cross correlation between reference and measurement optical pulses. This method can achieve accuracy better than the commercial laser interferometer. It is attained sub-micrometer resolution in large scale measurement by using the fiber femtosecond optical frequency comb. It will be benefit for future laser lidar and satellite formation flying mission.

  11. Flexible Optical-Comb-Based Multi-Wavelength Conversion for Optical Switching and Multicast

    OpenAIRE

    Vilar Mateo, Ruth; Ramos Pascual, Francisco; Marques, C.; Nogueira, Regina Isabel; Teixeira, A; Llorente Sáez, Roberto; RAMOS, FRAN JOSE

    2011-01-01

    Experimental results on multi-wavelength conversion based on optical comb generation for optical switching and multicast applications are presented. All the newly generated channels showed good performance with clear and open eye diagrams. FP7-ICT- 2009-4-249142 FP7-ICT-2007-1- 216863 Vilar Mateo, R.; Ramos Pascual, F.; Marques, C.; Nogueira, RI.; Teixeira, A.; Llorente Sáez, R.; Ramos, FJ. (2011). Flexible Optical-Comb-Based Multi-Wavelength Conversion for Optical Switch...

  12. On the Polyphase Decomposition for Design of Generalized Comb Decimation Filters

    OpenAIRE

    Laddomada, Massimiliano

    2007-01-01

    Generalized comb filters (GCFs) are efficient anti-aliasing decimation filters with improved selectivity and quantization noise (QN) rejection performance around the so called folding bands with respect to classical comb filters. In this paper, we address the design of GCF filters by proposing an efficient partial polyphase architecture with the aim to reduce the data rate as much as possible after the Sigma-Delta A/D conversion. We propose a mathematical framework in order to completely char...

  13. Evaluation and modelling of integral capacitors produced by interdigitated comb electrodes

    OpenAIRE

    Leandro Alfredo Ramajo; Damian Enrique Ramajo; María Marta Reboredo; Diego Hernan Santiago; Miriam Susana Castro

    2008-01-01

    Integral capacitors (IC) of one or two-layer printed wiring board (PWB) circuits were produced using comb electrodes fixtures and dielectric composites as the inter-electrode material. ICs were fabricated at laboratory scale, using copper comb electrodes and BaTiO3-epoxy composite materials deposited on a glass-Epoxy FR4 board. They were experimentally tested in order to obtain their electrical response. Furthermore, ICs behaviour was modelled through 2-dimensional models applying finite elem...

  14. Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion

    DEFF Research Database (Denmark)

    Wang, Shaofei; Guo, Hairun; Bai, Xuekun;

    2014-01-01

    , showing that temporal shifts of steady-state intracavity solitons are induced by high-odd-order dispersion rather than high-even-order dispersion. The role of HOD on comb spectral envelopes is also elucidated through analyzing the intracavity dispersive wave generations. We further demonstrate...... that the spectral envelope of a broadband optical frequency comb can be engineered by using a cavity dispersion profile with multiple zero dispersion wavelengths. © 2014 Optical Society of America....

  15. Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator.

    Science.gov (United States)

    Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca

    2015-01-01

    The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called "fringe-side locking" method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900

  16. Precision spectroscopy with a frequency-comb-calibrated solar spectrograph

    Science.gov (United States)

    Doerr, H.-P.

    2015-06-01

    The measurement of the velocity field of the plasma at the solar surface is a standard diagnostic tool in observational solar physics. Detailed information about the energy transport as well as on the stratification of temperature, pressure and magnetic fields in the solar atmosphere are encoded in Doppler shifts and in the precise shape of the spectral lines. The available instruments deliver data of excellent quality and precision. However, absolute wavelength calibration in solar spectroscopy was so far mostly limited to indirect methods and in general suffers from large systematic uncertainties of the order of 100 m/s. During the course of this thesis, a novel wavelength calibration system based on a laser frequency comb was deployed to the solar Vacuum Tower Telescope (VTT), Tenerife, with the goal of enabling highly accurate solar wavelength measurements at the level of 1 m/s on an absolute scale. The frequency comb was developed in a collaboration between the Kiepenheuer-Institute for Solar Physics, Freiburg, Germany and the Max Planck Institute for Quantum Optics, Garching, Germany. The efforts cumulated in the new prototype instrument LARS (Lars is an Absolute Reference Spectrograph) for solar precision spectroscopy which is in preliminary scientific operation since~2013. The instrument is based on the high-resolution echelle spectrograph of the VTT for which feed optics based on single-mode optical fibres were developed for this project. The setup routinely achieves an absolute calibration accuracy of 60 cm/s and a repeatability of 2.5 cm/s. An unprecedented repeatability of only 0.32 cm/s could be demonstrated with a differential calibration scheme. In combination with the high spectral resolving power of the spectrograph of 7x10^5 and virtually absent internal scattered light, LARS provides a spectral purity and fidelity that previously was the domain of Fourier-transform spectrometers only. The instrument therefore provides unique capabilities for

  17. Dual-etalon, cavity-ring-down, frequency comb spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2010-10-01

    The 'dual etalon frequency comb spectrometer' is a novel low cost spectometer with limited moving parts. A broad band light source (pulsed laser, LED, lamp ...) is split into two beam paths. One travels through an etalon and a sample gas, while the second arm is just an etalon cavity, and the two beams are recombined onto a single detector. If the free spectral ranges (FSR) of the two cavities are not identical, the intensity pattern at the detector with consist of a series of heterodyne frequencies. Each mode out of the sample arm etalon with have a unique frequency in RF (radio-frequency) range, where modern electronics can easily record the signals. By monitoring these RF beat frequencies we can then determine when an optical frequencies is absorbed. The resolution is set by the FSR of the cavity, typically 10 MHz, with a bandwidth up to 100s of cm{sup -1}. In this report, the new spectrometer is described in detail and demonstration experiments on Iodine absorption are carried out. Further we discuss powerful potential next generation steps to developing this into a point sensor for monitoring combustion by-products, environmental pollutants, and warfare agents.

  18. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    CERN Document Server

    Xie, Zhenda; Shrestha, Sajan; Xu, XinAn; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C; Restelli, Alessandro; Shapiro, Jeffrey H; Wong, Franco N C; Wong, Chee Wei

    2015-01-01

    Quantum entanglement is a fundamental resource for secure information processing and communications, where hyperentanglement or high-dimensional entanglement has been separately proposed towards high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, which is observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to...

  19. Regulation of Raoultella terrigena comb.nov. phytase expression.

    Science.gov (United States)

    Zamudio, Marcela; González, Aracely; Bastarrachea, Fernando

    2002-01-01

    Phytases catalyze the release of phosphate from phytate (myo-inositol hexakisphosphate) to inositol polyphosphates. Raoultella terrigena comb.nov. phytase activity is known to increase markedly after cells reach the stationary phase. In this study, phytase activity measurements made on single batch cultures indicated that specific enzyme activity was subject to catabolite repression. Cyclic AMP (cAMP) showed a positive effect in expression during exponential growth and a negative effect during stationary phase. RpoS exhibited the opposite effect during both growth phases; the induction to stationary phase decreased twofold in the rpoS::Tn10 mutant, but the effect of RpoS was not clearly determined. Two phy::MudI1734 mutants, MW49 and MW52, were isolated. These formed small colonies in comparison with the MW25 parent strain when plated on Luria-Bertani (LB) or LB supplemented with glucose. They did not grow in minimal media or under anaerobiosis, but did grow aerobically on LB and LB glucose at a lower rate than did MW25. The beta-galactosidase activity level in these mutants increased three to four fold during stationary growth in LB glucose and during anaerobiosis. Addition of cAMP during the exponential growth of MW52 on LB glucose provoked a decrease in beta-galactosidase activity during the stationary phase, confirming its negative effect on phytase expression during stationary growth.

  20. Long-path atmospheric measurements using dual frequency comb measurements

    Science.gov (United States)

    Waxman, Eleanor; Cossel, Kevin; Truong, Gar-Wing; Giorgetta, Fabrizio; Swann, William; Coddington, Ian; Newbury, Nathan

    2016-04-01

    The dual frequency comb spectrometer is a new tool for performing atmospheric trace gas measurements. This instrument is capable of measuring carbon dioxide, methane, and water with extremely high resolution in the region between 1.5 and 2.1 microns in the near-IR. It combines the high resolution of a laboratory-based FTIR instrument with the portability of a long-path DOAS system. We operate this instrument at path lengths of a few kilometers, thus bridging the spatial resolution of in-situ point sensors and the tens of square kilometer footprints of satellites. This spatial resolution is ideal for measuring greenhouse gas emissions from cities. Here we present initial long-path integrated column measurements of the greenhouse gases water, carbon dioxide, and methane in an urban environment. We present a time series with 5 minute time resolution over a 2 kilometer path in Boulder, Colorado at the urban-rural interface. We validate this data via a comparison with an in-situ greenhouse gas monitor co-located along the measurement path and show that we agree well on the baseline concentration but that we are significantly less sensitive to local point source emission that have high temporal variability, making this instrument ideal for measurements of average city-wide emissions. We additionally present progress towards measurements over an 11 kilometer path over downtown Boulder to measure the diurnal flux of greenhouse gases across the city.

  1. Quantum dot mode locked lasers for coherent frequency comb generation

    Science.gov (United States)

    Martinez, A.; Calò, C.; Rosales, R.; Watts, R. T.; Merghem, K.; Accard, A.; Lelarge, F.; Barry, L. P.; Ramdane, A.

    2013-12-01

    Monolithic semiconductor passively mode locked lasers (MLL) are very attractive components for many applications including high bit rate telecommunications, microwave photonics and instrumentation. Owing to the three dimensional confinement of the charge carriers, quantum dot based mode-locked lasers have been the subject of intense investigations because of their improved performance compared to conventional material systems. Indeed, the inhomogeneous gain broadening and the ultrafast absorption recovery dynamics are an asset for short pulse generation. Moreover, the weak coupling of amplified spontaneous emission with the guided modes plus low loss waveguide leads to low timing jitter. Our work concentrates on InAs quantum dash nanostructures grown on InP substrate, intended for applications in the 1.55 μm telecom window. InAs/InP quantum dash based lasers, in particular, have demonstrated efficient mode locking in single section Fabry-Perot configurations. The flat optical spectrum of about 12 nm, combined with the narrow RF beat note linewidth of about 10 kHz make them a promising technology for optical frequency comb generation. Coherence between spectral modes was assessed by means of spectral phase measurements. The parabolic spectral phase profile indicates that short pulses can be obtained provided the intracavity dispersion can be compensated by inserting a single mode fiber.

  2. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD

    CERN Document Server

    Liang, Wei; Ilchenko, Vladimir S; Eliyahu, Danny; Seidel, David; Matsko, Andrey B; Maleki, Lute

    2014-01-01

    We demonstrate experimentally, and explain theoretically, generation of a wide, fundamentally phase locked Kerr frequency comb in a nonlinear resonator with a normal group velocity dispersion. A magnesium fluoride whispering gallery resonator characterized with 10 GHz free spectral range and pumped either at 780 nm or 795 nm is used in the experiment. The envelope of the observed frequency comb differs significantly from the Kerr frequency comb spectra reported previously. We show via numerical simulation that, while the frequency comb does not correspond to generation of short optical pulses, the relative phases of the generated harmonics are fixed.

  3. Mechanisms behind the metabolic flexibility of an invasive comb jelly

    Science.gov (United States)

    Augustine, Starrlight; Jaspers, Cornelia; Kooijman, Sebastiaan A. L. M.; Carlotti, François; Poggiale, Jean-Christophe; Freitas, Vânia; van der Veer, Henk; van Walraven, Lodewijk

    2014-11-01

    Mnemiopsis leidyi is an invasive comb jelly which has successfully established itself in European seas. The species is known to produce spectacular blooms yet it is holoplanktonic and not much is known about its population dynamics in between. One way to gain insight on how M. leidyi might survive between blooms and how it can bloom so fast is to study how the metabolism of this species actually responds to environmental changes in food and temperature over its different life-stages. To this end we combined modelling and data analysis to study the energy budget of M. leidyi over its full life-cycle using Dynamic Energy Budget (DEB) theory and literature data. An analysis of data obtained at temperatures ranging from 8 to 30 °C suggests that the optimum thermal tolerance range of M. leidyi is higher than 12 °C. Furthermore M. leidyi seems to undergo a so-called metabolic acceleration after hatching. Intriguingly, the onset of the acceleration appears to be delayed and the data do not yet exist which allows determining what actually triggers it. It is hypothesised that this delay confers a lot of metabolic flexibility by controlling generation time. We compared the DEB model parameters for this species with those of another holoplanktonic gelatinous zooplankton species (Pelagia noctiluca). After accounting for differences in water content, the comparison shows just how fundamentally different the two energy allocation strategies are. P. noctiluca has an extremely high reserve capacity, low turnover times of reserve compounds and high resistance to shrinking. M. leidyi adopts the opposite strategy: it has a low reserve capacity, high turnover rates of reserve compounds and fast shrinking.

  4. Cutaneous hyalohyphomycosis due to Parengyodontium album gen. et comb. nov.

    Science.gov (United States)

    Tsang, Chi-Ching; Chan, Jasper F W; Pong, Wai-Mei; Chen, Jonathan H K; Ngan, Antonio H Y; Cheung, Mei; Lai, Christopher K C; Tsang, Dominic N C; Lau, Susanna K P; Woo, Patrick C Y

    2016-10-01

    "Engyodontium album" is an environmental saprobic mould and an emerging opportunistic pathogen able to cause both superficial and systemic infections. In this study, we isolated a mould from the skin lesion biopsy specimen of the right shin in a patient who received renal transplantation for end-stage renal failure with prednisolone, tacrolimus, and azathioprine immunosuppressant therapy. Histology of the skin biopsy showed mild squamous hyperplasia and neutrophilic infiltrate in the epidermis, active chronic inflammation in the dermis, and fat necrosis in the subcutis, with numerous fungal elements within the serum crusts. On Sabouraud glucose agar, the fungus grew as white, cobweb-like, floccose colonies. Microscopically, conidiogenous cells were arranged in whorls of one to seven at wide angles, with zigzag-shaped terminal fertile regions and smooth, hyaline, oval, apiculate conidia. DNA sequencing showed the mould isolate belonged to "E. album" but matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) failed to identify the isolate. Phylogenetic analyses based on the internal transcribed spacer region, 28S nuclear ribosomal DNA, and β-tubulin gene and MALDI-TOF MS coupled with hierarchical cluster analysis showed that "E. album" is distantly related to other Engyodontium species and should be transferred to a novel genus within the family Cordycipitaceae, for which the name Parengyodontium album gen. et comb. nov. is proposed. Three potential cryptic species within this species complex were also revealed. Antifungal susceptibility testing showed posaconazole and voriconazole had high activities against all clinical P. album isolates and may be better drug options for treating P. album infections. PMID:27161787

  5. Transmission comb of a distributed Bragg reflector induced by two surface dielectric gratings

    CERN Document Server

    Zhao, Xiaobo; Zhang, Yongyou

    2015-01-01

    With transfer matrix theory, we study the transmission of a distributed Bragg reflector (DBR) with two dielectric gratings on top and on the bottom. Owing to the diffraction of the two gratings, the transmission shows a comb-like spectrum which red shifts with increasing the grating period during the forbidden band of the DBR. The number density of the comb peaks increases with increasing the number of the DBR cells, while the ratio of the average full width at half maximum (FWHM) of the transmission peaks in the transmission comb to the corresponding average free spectral range, being about 0.04 and 0.02 for the TE and TM incident waves, is almost invariant. The average FWHM of the TM waves is about half of the TE waves, and both they could be narrower than 0.1 nm. In addition, the transmission comb peaks of the TE and TM waves can be fully separated during certain waveband. We further prove that the transmission comb is robust against the randomness of the heights of the DBR layers, even when a 15\\% randomn...

  6. Toward a Broadband Astro-comb: Effects of Nonlinear Spectral Broadening in Optical Fibers

    CERN Document Server

    Chang, Guoqing; Phillips, David F; Walsworth, Ronald L; Kärtner, Franz X

    2010-01-01

    We propose and analyze a new approach to generate a broadband astro-comb by spectral broadening of a narrowband astro-comb inside a highly nonlinear optical fiber. Numerical modeling shows that cascaded four-wave-mixing dramatically degrades the input comb's side-mode suppression and causes side-mode amplitude asymmetry. These two detrimental effects can systematically shift the center-of-gravity of astro-comb spectral lines as measured by an astrophysical spectrograph with resolution \\approx100,000; and thus lead to wavelength calibration inaccuracy and instability. Our simulations indicate that this performance penalty, as a result of nonlinear spectral broadening, can be compensated by using a filtering cavity configured for double-pass. As an explicit example, we present a design based on an Yb-fiber source comb (with 1 GHz repetition rate) that is filtered by double-passing through a low finesse cavity (finesse = 208), and subsequent spectrally broadened in a 2-cm, SF6-glass photonic crystal fiber. Spann...

  7. Cascaded half-harmonic generation of femtosecond frequency combs in mid-IR

    CERN Document Server

    Marandi, Alireza; Jankowski, Marc; Byer, Robert L

    2015-01-01

    For the growing demand of frequency combs in mid-infrared (mid-IR), known as the "molecular fingerprint" region of the spectrum [1], down conversion of near-IR frequency combs through half- harmonic generation offers numerous benefits including high conversion efficiency and intrinsic phase and frequency locking to the near-IR pump [2]. Hence cascaded half-harmonic generation promises a simple path towards extending the wavelength coverage of stable frequency combs. Here, we report a two-octave down-conversion of a frequency comb around 1 {\\mu}m through cascaded half-harmonic generation with ~64% efficiency in the first stage, and ~18% in the second stage. We obtain broadband intrinsically-frequency-locked frequency combs with ~50-fs pulses at ~2 {\\mu}m and ~110-fs pulses at ~4 {\\mu}m. These results indicate the effectiveness of half-harmonic generation as a universal tool for efficient phase- and frequency-locked down-conversion, which can be beneficial for numerous applications requiring long-wavelength coh...

  8. A novel vertical comb-drive electrostatic actuator using a one layer process

    International Nuclear Information System (INIS)

    This paper presents the design, fabrication and testing of a new residual stress gradient based vertical comb-drive actuator. Conventional vertical comb-drive actuators need two structural layers, i.e. one for the moving fingers and a second for the fixed fingers. A vertical comb-drive actuator based on a single structural layer micromachining process, using the residual stress gradient along the thickness of the nickel of the MetalMUMPs (Metal Multi-User MEMS process) fabrication process, is developed. The MetalMUMPs provides a 20 μm thick nickel film and is subject to residual stress gradients along its thickness. Two curve-up beams are devised to curve out of plane after release. The curve-up beams raise a plate with comb fingers above the substrate to form the moving fingers. The fixed comb fingers are connected to the substrate via anchors. When a voltage is applied across the moving and the fixed fingers, the moving fingers move down towards the fixed fingers. Experimental measurements on prototypes have verified the design principle. A vertical displacement of 4.81 µm at 150 V was measured. (paper)

  9. Phase Coherent Link of an Atomic Clock to a Self-Referenced Microresonator Frequency Comb

    CERN Document Server

    Del'Haye, Pascal; Fortier, Tara; Beha, Katja; Cole, Daniel C; Yang, Ki Youl; Lee, Hansuek; Vahala, Kerry J; Papp, Scott B; Diddams, Scott A

    2015-01-01

    The counting and control of optical cycles of light has become common with modelocked laser frequency combs. But even with advances in laser technology, modelocked laser combs remain bulk-component devices that are hand-assembled. In contrast, a frequency comb based on the Kerr-nonlinearity in a dielectric microresonator will enable frequency comb functionality in a micro-fabricated and chip-integrated package suitable for use in a wide-range of environments. Such an advance will significantly impact fields ranging from spectroscopy and trace gas sensing, to astronomy, communications, atomic time keeping and photonic data processing. Yet in spite of the remarkable progress shown over the past years, microresonator frequency combs ("microcombs") have still been without the key function of direct f-2f self-referencing and phase-coherent frequency control that will be critical for enabling their full potential. Here we realize these missing elements using a low-noise 16.4 GHz silicon chip microcomb that is coher...

  10. Microwave and RF applications for micro-resonator based frequency combs

    Science.gov (United States)

    Nguyen, Thach G.; Shoeiby, Mehrdad; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2016-02-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  11. Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. nov., isolated from the Southern Ocean.

    Science.gov (United States)

    Shivaji, Sisinthy; Reddy, Gundlapally Sathyanarayana

    2014-09-01

    Phylogenetic analyses of the genus Glaciecola were performed using the sequences of the 16S rRNA gene and the GyrB protein to establish its taxonomic status. The results indicated a consistent clustering of the genus Glaciecola into two clades, with significant bootstrap values, with all the phylogenetic methods employed. Clade 1 was represented by seven species, Glaciecola agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. mesophila, G. polaris and G. psychrophila, while clade 2 consisted of only three species, Glaciecola nitratireducens, G. pallidula and G. punicea. Evolutionary distances between species of clades 1 and 2, based on 16S rRNA gene and GyrB protein sequences, ranged from 93.0 to 95.0 % and 69.0 to 73.0 %, respectively. In addition, clades 1 and 2 possessed 18 unique signature nucleotides, at positions 132, 184 : 193, 185 : 192, 230, 616 : 624, 631, 632, 633, 738, 829, 1257, 1265, 1281, 1356 and 1366, in the 16S rRNA gene sequence and can be differentiated by the occurrence of a 15 nt signature motif 5'-CAAATCAGAATGTTG at positions 1354-1368 in members of clade 2. Robust clustering of the genus Glaciecola into two clades based on analysis of 16S rRNA gene and GyrB protein sequences, 16S rRNA gene sequence similarity of ≤95.0 % and the occurrence of signature nucleotides and signature motifs in the 16S rRNA gene suggested that the genus should be split into two genera. The genus Paraglaciecola gen. nov. is therefore created to accommodate the seven species of clade 1, while the name Glaciecola sensu stricto is retained to represent species of clade 2. The species of clade 1 are transferred to the genus Paraglaciecola as Paraglaciecola mesophila comb. nov. (type strain DSM 15026(T) = KMM 241(T)), P. agarilytica comb. nov. (type strain NO2(T) = KCTC 12755(T) = LMG 23762(T)), P. aquimarina comb. nov. (type strain GGW-M5(T) = KCTC 32108(T) = CCUG 62918(T)), P. arctica comb. nov. (type strain BSs20135(T

  12. Dual optical frequency comb architecture with capabilities from visible to mid-infrared.

    Science.gov (United States)

    Jerez, Borja; Martín-Mateos, Pedro; Prior, Estefanía; de Dios, Cristina; Acedo, Pablo

    2016-06-27

    In this paper, a new approach to dual comb generation based on well-known optical techniques (Gain-Switching and Optical Injection Locking) is presented. The architecture can be implemented using virtually every kind of continuous-wave semiconductor laser source (DFB, VCSEL, QCL) and without the necessity of electro-optic modulators. This way, a frequency-agile and adaptive dual-comb architecture is provided with potential implementation capabilities from mid-infrared to near ultraviolet. With a RF comb comprising around 70 teeth, the system is validated in the 1.5 μm region measuring the absorption feature of H13CN at 1538.523 nm with a minimum integration time of 10 μs. PMID:27410649

  13. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements.

    Science.gov (United States)

    Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Sinclair, Laura C; Knabe, Kevin; Swann, William C; Newbury, Nathan R

    2013-06-15

    We demonstrate a comb-calibrated frequency-modulated continuous-wave laser detection and ranging (FMCW ladar) system for absolute distance measurements. The FMCW ladar uses a compact external cavity laser that is swept quasi-sinusoidally over 1 THz at a 1 kHz rate. The system simultaneously records the heterodyne FMCW ladar signal and the instantaneous laser frequency at sweep rates up to 3400 THz/s, as measured against a free-running frequency comb (femtosecond fiber laser). Demodulation of the ladar signal against the instantaneous laser frequency yields the range to the target with 1 ms update rates, bandwidth-limited 130 μm resolution and a ~100 nm accuracy that is directly linked to the counted repetition rate of the comb. The precision is <100 nm at the 1 ms update rate and reaches ~6 nm for a 100 ms average. PMID:23938965

  14. A Novel Comb Architecture for Enhancing the Sensitivity of Bulk Mode Gyroscopes

    Directory of Open Access Journals (Sweden)

    Mohannad Y. Elsayed

    2013-12-01

    Full Text Available This work introduces a novel architecture for increasing the sensitivity of bulk mode gyroscopes. It is based on adding parallel plate comb drives to the points of maximum vibration amplitude, and tuning the stiffness of the combs. This increases the drive strength and results in a significant sensitivity improvement. The architecture is targeted for technologies with ~100 nm transducer gaps in order to achieve very high performance devices. In this work, this sensitivity enhancement concept was implemented in SOIMUMPs, a commercial relatively large gap technology. Prototypes were measured to operate at frequencies of ~1.5 MHz, with quality factors of ~33,000, at a 10 mTorr vacuum level. Measurements using discrete electronics show a rate sensitivity of 0.31 μV/°/s, corresponding to a capacitance sensitivity of 0.43 aF/°/s/electrode, two orders of magnitude higher than a similar design without combs, fabricated in the same technology.

  15. Recent developments in fiber-based optical frequency comb and its applications

    International Nuclear Information System (INIS)

    Fiber-based optical frequency combs, characterized by compact configuration and outstanding optical properties, have been developed into state-of-the-art precision instruments which are no longer used just for optical frequency metrology, but for a number of applications, including optical clocks, attosecond science, exoplanet searches, medical diagnostics, physicochemical processes control and advanced manufacturing. This short perspective presents some of the milestones and highlights in the evolution of fiber-based optical frequency combs and the technical revolution that are brought by them for a wide range of applications. Along the way, both the challenges and opportunities in the future development of the fiber-based optical frequency comb technology have been described as well. (review article)

  16. Optical frequency comb technology for ultra-broadband radio-frequency photonics

    CERN Document Server

    Torres-Company, Victor

    2014-01-01

    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.

  17. Evaluating the performance of the NPL femtosecond frequency combs: Agreement at the $10^{-21}$ level

    CERN Document Server

    Johnson, L A M; Margolis, H S

    2014-01-01

    Results are presented from a series of comparisons between two independent femtosecond frequency comb systems at NPL, which were carried out in order to assess their systematic uncertainty. Simultaneous measurements with the two systems demonstrate agreement at the level of 5 x $10^{-18}$ when measuring an optical frequency against a common microwave reference. When simultaneously measuring the ratio of two optical frequencies, agreement at the 3 x $10^{-21}$ level is observed. The results represent the highest reported level of agreement to date between Ti:sapphire and Er-doped femtosecond combs. The limitations of the combs when operating in these two different manners are discussed, including traceability to the SI second, which can be achieved with an uncertainty below 1 x $10^{-16}$. The technical details presented underpin recent absolute frequency measurements of the $^{88}$Sr$^+$ and $^{171}$Yb$^+$ optical clock transitions at NPL, as well as a frequency ratio measurement between the two optical clock...

  18. Surpassing the Path-Limited Resolution of a Fourier Transform Spectrometer with Frequency Combs

    CERN Document Server

    Maslowski, Piotr; Johansson, Alexandra C; Khodabakhsh, Amir; Kowzan, Grzegorz; Rutkowski, Lucile; Mills, Andrew A; Mohr, Christian; Jiang, Jie; Fermann, Martin E; Foltynowicz, Aleksandra

    2015-01-01

    Fourier transform spectroscopy based on incoherent light sources is a well-established tool in research fields from molecular spectroscopy and atmospheric monitoring to material science and biophysics. It provides broadband molecular spectra and information about the molecular structure and composition of absorptive media. However, the spectral resolution is fundamentally limited by the maximum delay range ({\\Delta}$_{max}$) of the interferometer, so acquisition of high-resolution spectra implies long measurement times and large instrument size. We overcome this limit by combining the Fourier transform spectrometer with an optical frequency comb and measuring the intensities of individual comb lines by precisely matching the {\\Delta}$_{max}$ to the comb line spacing. This allows measurements of absorption lines narrower than the nominal (optical path-limited) resolution without ringing effects from the instrumental lineshape and reduces the acquisition time and interferometer length by orders of magnitude.

  19. Recent developments in fiber-based optical frequency comb and its applications

    Science.gov (United States)

    Xia, Wei; Chen, Xuzong

    2016-04-01

    Fiber-based optical frequency combs, characterized by compact configuration and outstanding optical properties, have been developed into state-of-the-art precision instruments which are no longer used just for optical frequency metrology, but for a number of applications, including optical clocks, attosecond science, exoplanet searches, medical diagnostics, physicochemical processes control and advanced manufacturing. This short perspective presents some of the milestones and highlights in the evolution of fiber-based optical frequency combs and the technical revolution that are brought by them for a wide range of applications. Along the way, both the challenges and opportunities in the future development of the fiber-based optical frequency comb technology have been described as well.

  20. Mach-zehnder based optical marker/comb generator for streak camera calibration

    Science.gov (United States)

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  1. Solar radial velocity variations and the search for Venus enabled by a laser frequency comb

    Science.gov (United States)

    Phillips, David F.; Dumusque, Xavier; Li, Chih-Hao; Glenday, Alexander; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L.

    2016-05-01

    We have recently demonstrated 50 cm/s sensitivity in measuring the radial velocity (RV) between the Earth and Sun using a simple, compact solar telescope feeding the HARPS-N spectrograph at the Italian National Telescope calibrated with our green astro-comb. The green astro-comb is a laser frequency comb optimized for calibrating astrophysical spectrographs. We have been operating the solar telescope to detect the RV signal of the Sun as a star for the past year both to study RV jitter associated with stellar (solar) fluctuations and to demonstrate sensitivity of these instruments to detect terrestrial exoplanets. In this talk I will present results from calibrating the HARPS-N exoplanet searcher spectrograph, solar RV stability, and the current status of our search for the signature of Venus.

  2. Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy

    International Nuclear Information System (INIS)

    In this paper we describe the progress we have made in our simultaneous length measurement and the femtosecond comb interferometric spectroscopy in a conventional arrangement with a moving mirror. Scanning and detection over an interval longer than the distance between two consecutive pulses of the frequency comb allow for a spectral resolution of the individual frequency modes of the comb. Precise knowledge of comb mode frequency leads to a precise estimation of the spectral characteristics of inspected phenomena. Using the pulse train of the frequency comb allows for measurement with highly unbalanced lengths of interferometer arms, i.e. an absolute long distance measurement. Further, we present a non-contact (double sided) method of measurement of the length/thickness of plane-parallel objects (gauge blocks, glass samples) by combining the fs comb (white light) with single frequency laser interferometry. The position of a fringe packet is evaluated by estimating the stationary phase position for any wavelength in the spectral band used. The repeatability of this position estimation is a few nanometres regardless of whether dispersion of the arms is compensated (transform limited fringe packet ∼10 fringes FWHM) or highly different (fringe packet stretched to >200 fringes FWHM). The measurement of steel gauge block by this method was compared with the standard method, and deviation (+13 ± 12) nm for gauge blocks (2 to 100) mm was found. The measurement of low reflecting ceramic gauges or clear glass samples was also tested. In the case of glass, it becomes possible to measure simultaneously both the thickness and the refractive index (and dispersion) of flat samples. (paper)

  3. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy

    Science.gov (United States)

    Jin, Yuwei; Cristescu, Simona M.; Harren, Frans J. M.; Mandon, Julien

    2015-04-01

    We demonstrate mid-infrared dual-comb spectroscopy with an optical parametric oscillator (OPO) toward real-time field measurement. A singly resonant OPO based on a MgO-doped periodically poled lithium niobate (PPLN) crystal is demonstrated. Chirped mirrors are used to compensate the dispersion caused by the optical cavity and the crystal. A low threshold of 17 mW has been achieved. The OPO source generates a tunable idler frequency comb between 2.7 and 4.7 μm. Dual-comb spectroscopy is achieved by coupling two identical Yb-fiber mode-locked lasers to this OPO with slightly different repetition frequencies. A measured absorption spectrum of methane is presented with a spectral bandwidth of , giving an instrumental resolution of . In addition, a second OPO containing two MgO-doped PPLN crystals in a singly resonant ring cavity is demonstrated. As such, this OPO generates two idler combs (average power up to 220 mW), covering a wavelength range between 2.7 and 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyned signal between the two idler combs, broadband spectra of molecular gases can be observed over a spectral bandwidth of more than . This special cavity design allows the spectral resolution to be improved to without locking the OPO cavity, indicating that this OPO represents an ideal high-power broadband mid-infrared source for real-time gas sensing.

  4. A stabilized 18 GHz chip-scale optical frequency comb at 2.8x10-16 relative inaccuracy

    CERN Document Server

    Huang, S -W; Yu, M; McGuyer, B H; Kwong, D -L; Zelevinsky, T; Wong, C W

    2015-01-01

    Optical frequency combs, coherent light sources that connect optical frequencies with microwave oscillations, have become the enabling tool for precision spectroscopy, optical clockwork and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but four-wave-mixing in high-Q resonators have emerged as alternative platforms. Here we report the generation and full stabilization of CMOS-compatible optical frequency combs. The spiral microcomb's two degrees-of-freedom, one of the comb line and the native 18 GHz comb spacing, are first simultaneously phase-locked to known optical and microwave references. Second, with pump power control, active comb spacing stabilization improves the long-term stability by six orders-of-magnitude, reaching an instrument-limited 3.6 mHz/sqrt(t) residual instability. Third, referencing thirty-three of the nitride frequency comb lines against a fiber comb, we demonstrate the comb tooth-to-tooth frequency relative inaccu...

  5. Optical frequency comb generation from aluminum nitride micro-ring resonator

    CERN Document Server

    Jung, Hojoong; Fong, King Y; Zhang, Xufeng; Tang, Hong X

    2013-01-01

    Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coefficient (n2) of aluminum nitride is further extracted from our experimental results.

  6. Monte Carlo simulation for the micellar behavior of amphiphilic comb-like copolymers

    Institute of Scientific and Technical Information of China (English)

    冯莺; 隋家贤; 赵季若; 陈欣方

    2000-01-01

    Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion ??stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.

  7. Self-Frequency Shift of Cavity Soliton in Kerr Frequency Comb

    CERN Document Server

    Zhang, Lin; Kimerling, Lionel C; Michel, Jurgen

    2014-01-01

    We show that the ultrashort cavity soliton in octave-spanning Kerr frequency comb generation exhibits striking self-adaptiveness and robustness to external perturbations, resulting in a novel frequency shifting/cancellation mechanism and gigantic dispersive wave generation in response to the strong frequency dependence of Kerr nonlinearity, Raman scattering, chromatic dispersion, and cavity Q. These observations open up a great avenue towards versatile manipulation of nonlinear soliton dynamics, flexible spectrum engineering of mode-locked Kerr frequency combs, and highly efficient frequency translation of optical waves.

  8. Synthesis and characterization of star-comb polybutadiene and poly(ethylene-co-butene)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel star-comb polybutadiene(SC-PB) was synthesized with n-butyllithium(n-BuLi) as initiator,epoxidized star liquid polybutadiene(ESPB) as coupling agent,cyclohexane as solvent by living anionic polymerization and grafting-onto technology. The SC-PB was subsequently hydrogenated by homogeneous catalysis(catalytic hydrogenation using nickel naphthenate/ triisobutyl aluminum),to transform the SC-PB into the corresponding star-comb poly(ethylene-co-butene)(SC-PEB).The SC-PB was characterized by SEC-TALLS...

  9. Parallel fiber amplifiers with carrier–envelope drift control for coherent combination of optical frequency combs

    International Nuclear Information System (INIS)

    We demonstrated an active feed-forward method for compensating the relative phase drifts of fiber optical amplifiers. The frequency drifts of relative phase noise were well controlled in a variation range from ± 15 Hz of free-running, to approximately ± 1.5 Hz between the amplifier input and output. Coherent combination of two femtosecond fiber chirped-pulse amplifiers seeded by a Ti:S comb oscillator was achieved, which would benefit frequency comb combination to achieve high accuracy and high power. (paper)

  10. Coherent combs of anti-matter from nonlinear electron-positron pair creation

    CERN Document Server

    Krajewska, K

    2014-01-01

    Electron-positron pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse. Thus, resembling the Young-double slit experiment for anti-matter (matter) waves.

  11. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis.

    Science.gov (United States)

    Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-08-24

    We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response. PMID:26368182

  12. Comb/serpentine/cross-bridge test structure for fabrication process evaluation

    Science.gov (United States)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1988-01-01

    The comb/serpentine/cross-bridge structure was developed to monitor and evaluate same layer shorts and step coverage problems (open and high-resistance wire over steps) for integrated circuit fabrication processes. The cross-bridge provides local measurements of wire sheet resistance and wirewidth. These local parametric measurements are used in the analysis of the serpentine wire, which identifies step coverage problems. The comb/serpentine/cross-bridge structure was fabricated with 3 microns CMOS/bulk p-well process and tested using a computer-controlled parametric test system.

  13. Application of Laser Frequency Combs and Nitrogen Vacancy Diamond Magnetometers to Searches for New Physics

    Science.gov (United States)

    Phillips, D. F.; Walsworth, R. L.

    2014-01-01

    Searches for new physics often benefit from improved technologies. Here we discuss possible applications of two emerging technologies to searches for physics beyond the Standard Model. First, laser frequency combs enable broad spectral coverage and coherent conversion between optical and RF signals. We are investigating tests of the nonminimal Standard-Model Extension using frequency combs coupled to broadband optical cavities. Second, nitrogen vacancy centers in diamond enable precision nanoscale magnetometry with applications from imaging to quantum science. We are investigating their use in searches for short-range spin-spin couplings.

  14. Origin and stability of dark pulse Kerr combs in normal dispersion resonators

    CERN Document Server

    Parra-Rivas, Pedro; Knobloch, Edgar; Coen, Stéphane; Gelens, Lendert

    2016-01-01

    We analyze dark pulse Kerr frequency combs in optical resonators with normal group-velocity dispersion using the Lugiato-Lefever model. We show that in the time domain these correspond to interlocked switching waves between the upper and lower homogeneous states, and explain how this fact accounts for many of their experimentally observed properties. Modulational instability does not play any role in their existence. Furthermore, we provide a detailed map indicating where stable dark pulse Kerr combs can be found in parameter space, and how they are destabilized for increasing values of frequency detuning.

  15. Optical Nyquist channel generation using a comb-based tunable optical tapped-delay-line.

    Science.gov (United States)

    Ziyadi, Morteza; Chitgarha, Mohammad Reza; Mohajerin-Ariaei, Amirhossein; Khaleghi, Salman; Almaiman, Ahmed; Cao, Yinwen; Willner, Moshe J; Tur, Moshe; Paraschis, Loukas; Langrock, Carsten; Fejer, Martin M; Touch, Joseph D; Willner, Alan E

    2014-12-01

    We demonstrate optical Nyquist channel generation based on a comb-based optical tapped-delay-line. The frequency lines of an optical frequency comb are used as the taps of the optical tapped-delay-line to perform a finite-impulse response (FIR) filter function. A single optical nonlinear element is utilized to multiplex the taps and form the Nyquist signal. The tunablity of the approach over the baud rate and modulation format is shown. Optical signal-to-noise ratio penalty of 2.8 dB is measured for the 11-tap Nyquist filtering of 32-Gbaud QPSK signal.

  16. Experimental observation of coherent cavity soliton frequency combs in silica microspheres

    CERN Document Server

    Webb, Karen E; Coen, Stéphane; Murdoch, Stuart G

    2016-01-01

    We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of higher-order spatial modes, reducing mode interactions and enabling soliton formation. Our measurements show that the temporal cavity solitons have sub-100-fs durations, exhibit considerable Raman self-frequency shift, and generally come in groups of three or four, occasionally with equidistant spacing in the time domain. RF amplitude noise measurements and spectral interferometry confirm the high coherence of the observed soliton frequency combs, and numerical simulations show good agreement with experiments.

  17. Observation of Rb Two-Photon Absorption Directly Excited by an Erbium-Fiber-Laser-Based Optical Frequency Comb via Spectral Control

    OpenAIRE

    Wu, Jiutao; Hou, Dong; Dai, Xiaoliang; Qin, Zhengyu; Zhang, Zhigang; Zhao, Jianye

    2013-01-01

    We demonstrated the observation of Rb two-photon absorption directly excided by an optical frequency comb at fiber communication bands. A chain of comb spectral control is elaborately implemented to increase the power of the second harmonic optical frequency comb generation and the two-photon transition strength. A two-photon transition spectrum is obtained with clearly resolved transition lines. It provides a potential approach to realize the optical frequency comb or optical clock at ~1.5{\\...

  18. Green, red and IR frequency comb line generation from single IR pump in AlN microring resonator

    CERN Document Server

    Jung, Hojoong; Guo, Xiang; Fischer, Debra; Tang, Hong X

    2014-01-01

    On-chip frequency comb generations enable compact broadband sources for spectroscopic sensing and precision spectroscopy. Recent microcomb studies focus on infrared spectral regime and have difficulty in accessing visible regime. Here, we demonstrate comb-like visible frequency line generation through second, third harmonic, and sum frequency conversion of a Kerr comb within a high Q aluminum nitride microring resonator pumped by a single telecom laser. The strong power enhancement, in conjunction with the unique combination of Pockels and Kerr optical nonlinearity of aluminum nitride, leads to cascaded frequency conversions in the visible spectrum. High-resolution spectroscopic study of the visible frequency lines indicates matched free spectrum range over all the bands. This frequency doubling and tripling effect in a single microcomb structure offers great potential for comb spectroscopy and self-referencing comb.

  19. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment

    DEFF Research Database (Denmark)

    Otani, Saria; Hansen, Lars H.; Sørensen, Søren Johannes;

    2016-01-01

    Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules......, Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over...... time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from...

  20. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment.

    Science.gov (United States)

    Otani, Saria; Hansen, Lars H; Sørensen, Søren J; Poulsen, Michael

    2016-01-01

    Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules with asexual spores, which the termites feed on. Since all comb material passes through termite guts, it is inevitable that gut bacteria are also deposited in the comb, but it has remained unknown which bacteria are deposited and whether distinct comb bacterial communities are sustained. Using high-throughput sequencing of the 16S rRNA gene, we explored the bacterial community compositions of 33 fungus comb samples from four termite species (three genera) collected at four South African geographic locations in 2011 and 2013. We identified 33 bacterial phyla, with Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from gut deposits and also that environment affects which gut bacteria dominate comb communities at a given point in time. PMID:26518432

  1. Theoretical calculation of the rotational excitation probability of the lithium chloride molecule in terahertz frequency combs

    International Nuclear Information System (INIS)

    We investigated how the pulse parameters of optical frequency combs affect the rotational excitation probability of the lithium chloride (7Li37Cl) molecule. Time evolution of the rotational population distribution was calculated by the close-coupling method. It was confirmed that the rotational excitation is restricted owing to the centrifugal distortion of the rotating molecule. (author)

  2. Reclassification of Thermoanaerobium acetigenum as Caldicellulosiruptor acetigenus comb. nov and emendation of the genus description

    DEFF Research Database (Denmark)

    Onyenwoke, R.U.; Lee, Y.J.; Dabrowski, Slawomir;

    2006-01-01

    -examination of physiological properties of the type strain, X6B(T) (= DSM 7040(T) = ATCC BAA-11149(T)), we propose that Thermoanaerobium acetigenum should be reclassified as Caldicellulosiruptor acetigenus comb. nov. Strain X6B(T) contains two separate 16S rRNA genes bracketing another species in the phylogenetic 16S r......RNA gene-based tree....

  3. Look closer: Time sequence photography of Roosters Comb in the Sheep Creek Range, Nevada

    Science.gov (United States)

    The importance of understanding natural landscape changes is key in properly determining rangeland ecology. Time sequence photography allows a snapshot of a landscape to be documented and enables the ability to compare natural changes overtime. Photographs of Roosters Comb were taken from the same v...

  4. Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltran, Marta; Sanchez, Jose;

    2014-01-01

    In this paper, we report on a gigabit capacity fiber-wireless system that enables smooth integration between high-speed wireless networks and dense wavelength-division-multiplexing (DWDM) access networks. By employing a centralized optical frequency comb, both the wireline and the wireless services...

  5. Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump

    CERN Document Server

    Lobanov, Valery E; Gorodetsky, Michael L

    2015-01-01

    We demonstrate that flat-topped dissipative solitonic pulses, platicons, and corresponding frequency combs can be excited in optical microresonators with normal group velocity dispersion using either amplitude modulation of the pump or bichromatic pump. Soft excitation may occur in particular frequency range if modulation depth is large enough and modulation frequency is close to the free spectral range of the microresonator.

  6. Fibers and combs: weaving a portable frequency reference in the near-IR

    Science.gov (United States)

    Corwin, Kristan

    2009-05-01

    Ten years after the advent of femtosecond optical frequency combs, they are now used for many applications. Here, we use near infrared combs to characterize and develop portable frequency references based on gas-filled hollow optical fibers. We explore the accuracy and stability of saturated absorption features in acetylene gas confined inside both 10 micron core diameter photonic bandgap fibers and ˜60 micron core diameter kagome-structured photonic crystal fibers. A cw fiber laser referenced to these features has resulted in stabilities of ˜10-11 in 1 s, competitive with iodine-stabilized HeNe lasers. Most of these studies have been performed using a femtosecond fiber laser that relies on a carbon nanotube saturable absorber. However, we have also explored Cr:forsterite femtosecond lasers with intracavity prisms, which reveal dramatic narrowing of the carrier-envelope offset beat when a knife edge is inserted in the cavity. Such observations and subsequent noise dynamics studies will lead to a better understanding of noise in these solid state combs, making Cr:forsterite laser combs more competitive for spectroscopy and other applications.

  7. Silicon-chip-based mid-infrared dual-comb spectroscopy

    CERN Document Server

    Yu, Mengjie; Griffith, Austin G; Picqué, Nathalie; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    On-chip spectroscopy that could realize real-time fingerprinting with label-free and high-throughput detection of trace molecules is one of the 'holy grails" of sensing. Such miniaturized spectrometers would greatly enable applications in chemistry, bio-medicine, material science or space instrumentation, such as hyperspectral microscopy of live cells or pharmaceutical quality control. Dual-comb spectroscopy (DCS), a recent technique of Fourier transform spectroscopy without moving parts, is particularly promising since it measures high-precision spectra in the gas phase using only a single detector. Here, we present a microresonator-based platform designed for mid-infrared (mid-IR) DCS. A single continuous-wave (CW) low-power pump source generates two mutually coherent mode-locked frequency combs spanning from 2.6 $\\mu$m to 4.1 $\\mu$m in two silicon micro-resonators. Thermal control and free-carrier injection control modelocking of each comb and tune the dual-comb parameters. The large line spacing of the co...

  8. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy

    CERN Document Server

    Rutkowski, Lucile

    2016-01-01

    We have recently introduced the Vernier-based Direct Frequency Comb Cavity-Enhanced Spectroscopy technique and we present the corresponding formalism for quantitative broadband spectroscopy. We achieve high sensitivity and broadband performance by acquiring spectra covering more than 2000 cm$^{-1}$ around 12600 cm$^{-1}$ (800 nm), resolving the 3$\

  9. Hybrid Optical Comb Filter with Multi-Port Fiber Coupler for DWDM Optical Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical comb filters based on multi-port fused fiber couplers are proposed and numerically analyzed, 3-arm MZI composed by 1×7 fiber splitter and 3×3 fiber coupler, and 2-stage cascaded FIR type MZI interleave filter.

  10. Conformational Properties of Comb-Like Polyelectrolytes: A Coarse-Grained MD Study.

    Science.gov (United States)

    Ghelichi, Mahdi; Eikerling, Michael H

    2016-03-17

    This article presents a coarse-grained molecular dynamics study of single comb-like polyelectrolyte or ionomer chains in aqueous solution. The model polymer is comprised of a hydrophobic backbone chain with grafted side chains that terminate in anionic headgroups. The comb-polymer is modeled at a coarse-grained level with implicit treatment of the solvent. The computational study rationalizes conformational properties of the backbone chain and localization of counterions as functions of side chain length, grafting density of side chains, backbone stiffness, and counterion valence. The main interplay that determines the ionomer properties unfolds between electrostatic interactions among charged groups, hydrophobic backbone interactions, and steric effects induced by the pendant side chains. Depending on the density of branching sites, we have found two opposing effects of side chain length on the backbone gyration radius and local persistence length. Variation in comb-polyelectrolyte architecture is shown to have nontrivial effects on the localization of mobile counterions. Changes in Bjerrum length and counterion valence are also shown to alter the strength of Coulomb interactions and emphasize the role of excluded-volume effects on controlling the backbone conformational behavior. The results of simulations are in qualitative agreement with existing experimental and theoretical studies. The comprehensive conformational picture provides a framework for future studies of comb-polyelectrolyte systems. PMID:26910617

  11. Progress with a green astro-comb for exoplanet searches. Type: poster

    Science.gov (United States)

    Phillips, David F.; Li, Chih-Hao; Glenday, Alexander; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L.

    2016-05-01

    Searches for extrasolar planets using the precision stellar radial velocity (RV) measurement technique are approaching Earth-like planet sensitivity. Astro-combs, which consist of a laser frequency comb, coherent wavelength shifting mechanism (such as a doubling crystal and photonic crystal fiber), and a mode-filtering Fabry-Perot cavity (FPC), provide a promising route to increased accuracy and long-term stability on the astrophysical spectrograph calibration. We first present the design of a green astro-comb from an octave spanning Ti:Sapphire laser, spectrally broadened by custom tapered PCF to the visible band via fiber-optic Cherenkov radiation for frequency shifting, and filtered by a broadband FPC, constructed by a pair of complementary chirped mirrors. We also present results from three years of operation of the astro-comb calibrating the HARPS-N spectrograph at the Italian National Telescope on La Palma, Canary Islands, including its use in measurements of solar radial velocities as well as its use in searches for extrasolar planets.

  12. Description of the male of Laneella perisi (Mariluis) (Diptera: Calliphoridae) n. comb.

    Science.gov (United States)

    Wolff, M; Ramos-Pastrana, Y; Pujol-Luz, J R

    2013-02-01

    The male Laneella perisi (Mariluis) n. comb. is described based on specimens collected in the Cordillera Oriental (1,370-1,450 m asl), Florencia-Suaza, Caquetá, Colombia. A key to separate the two species of the genus Laneella and illustrations of the male genitalia and female abdomen, terminalia, and spermatheca are also presented.

  13. Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules

    NARCIS (Netherlands)

    Moel, Karin de; Mäki-Ontto, Riikka; Stamm, Manfred; Ikkala, Olli; Brinke, Gerrit ten; M„ki-Ontto, R.; Maki-Ontto, R

    2001-01-01

    In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The align

  14. Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-12-01

    Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  15. Threshold conditions, energy spectrum and bands generated by locally periodic Dirac comb potentials

    Science.gov (United States)

    Dharani, M.; Shastry, C. S.

    2016-01-01

    We derive expressions for polynomials governing the threshold conditions for different types of locally periodic Dirac comb potentials comprising of attractive and combination of attractive and repulsive delta potential terms confined symmetrically inside a one dimensional box of fixed length. The roots of these polynomials specify the conditions on the potential parameters in order to generate threshold energy bound states. The mathematical and numerical methods used by us were first formulated in our earlier works and it is also very briefly summarized in this paper. We report a number of mathematical results pertaining to the threshold conditions and these are useful in controlling the number of negative energy states as desired. We further demonstrate the correlation between the distribution of roots of these polynomials and negative energy eigenvalues. Using these results as basis, we investigate the energy bands in the positive energy spectrum for the above specified Dirac comb potentials and also for the corresponding repulsive case. In the case of attractive Dirac comb the base energy of the each band excluding the first band coincides with specific eigenvalue of the confining box whereas in the repulsive case it coincides with the band top. We deduce systematic correlation between band gaps, band spreads and box eigenvalues and explain the physical reason for the vanishing of band pattern at higher energies. In the case of Dirac comb comprising of orderly arranged attractive and repulsive delta potentials, specific box eigenvalues occur in the middle of each band excluding the first band. From our study we find that by controlling the number and strength parameters of delta terms in the Dirac comb and the size of confining box it is possible to generate desired types of band formations. We believe the results from our systematic analysis are useful and relevant in the study of various one dimensional systems of physical interest in areas like nanoscience.

  16. Scalable and reconfigurable generation of flat optical comb for WDM-based next-generation broadband optical access networks

    Science.gov (United States)

    Chen, Chen; Zhang, Chongfu; Zhang, Wei; Jin, Wei; Qiu, Kun

    2014-06-01

    A tunable comb generator (TCG) by cascading a single phase modulator (PM) with two identical intensity modulators (IMs) is proposed for the scalable and reconfigurable generation of flat optical comb. Detailed theoretical analysis is performed to find out the optimized condition for flat optical comb generation using the proposed TCG and the scalability of the generated optical comb is also analyzed under the optimized condition. An experiment is conducted to verify the feasibility of the TCG and the experimental results agree well with the theoretical prediction. The reconfigurability and stability of the obtained optical comb are discussed as well in the experiment. After that, the obtained optical comb is utilized as the optical source for a wavelength-division multiplexed radio-over-fiber (WDM-RoF) system and a hybrid WDM orthogonal frequency-division multiple access passive optical network (WDM-OFDMA-PON). Two corresponding experimental demonstrations are presented to verify the feasibility of employing the obtained flat optical comb as the WDM optical source, respectively. In the WDM-RoF system, 17 WDM channels each carrying 16×5 Gb/s non-return-to-zero (NRZ) data have been up-converted to 10 GHz simultaneously. In the hybrid WDM-OFDMA-PON, 17-channel OFDM-WDM double-sideband (DSB) signal achieving 10.85 Gb/s traffic per channel is successfully transmitted for both wired baseband OFDM access and wireless 10 GHz OFDM access.

  17. Generation of Kerr combs centered at 4.5{\\mu}m in crystalline microresonators pumped by quantum cascade lasers

    CERN Document Server

    Savchenkov, Anatoliy A; Di Teodoro, Fabio; Belden, Paul M; Lotshaw, William T; Matsko, Andrey B; Maleki, Lute

    2015-01-01

    We report on the generation of mid-infrared Kerr frequency combs in high-finesse CaF$_2$ and MgF$_2$ whispering-gallery mode resonators pumped with continuous wave room temperature quantum cascade lasers. The combs were centered at 4.5$\\mu$m, the longest wavelength to date. A frequency comb wider than a half of an octave was demonstrated when approximately 20mW of pump power was coupled to an MgF2 resonator characterized with quality factor exceeding 10$^8$.

  18. Generation of a 650 nm - 2000 nm Laser Frequency Comb based on an Erbium-Doped Fiber Laser

    CERN Document Server

    Ycas, Gabriel; Diddams, Scott A

    2012-01-01

    We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.

  19. Chipscale optical frequency combs: from soliton physics to coherent communication (Conference Presentation)

    Science.gov (United States)

    Brasch, Victor; Geiselmann, Michael; Herr, Tobias; Lihachev, Grigoriy; Pfeiffer, Martin H. P.; Gorodetsky, Michael L.; Kippenberg, Tobias J.

    2016-04-01

    In our experiment we use silicon nitride waveguides embedded in silicon dioxide on a silicon chip. The cross section of the waveguide is approximately 1.8µm width by 0.8µm height and the ring resonator has a radius of 120µm. This resonator is coupled to a bus waveguide that is used to couple the continuous wave pump light into the resonator and the light from the resonator out again. The pump laser is an amplified diode laser which provides around 2W of pump power in the bus waveguide on the photonic chip. If the pump light is in resonance with one of the resonances of the resonator we can generate a frequency comb from the pump light via the Kerr nonlinearity of the material. The spacing in between the lines of the frequency comb is close to the free spectral range of the resonator, which is 190 GHz for the resonator used. By tuning the pump laser through the resonance and modulating the power of the pump light we can achieve a stable state with a pulsed-shape waveform circulating inside the microresonator. These states are known as dissipative Kerr soliton states and they are solutions to the Lugiato-Lefever equation, which describes the nonlinear physics of the system. So far they had been experimentally demonstrated in fiber-ring cavities as well as crystalline microresonators. The main benefits of these states for Kerr frequency combs is that they allow for low-noise but broadband frequency combs with low modulation in the spectrum. In our case we report a 3-dB bandwidth of 10THz which is equivalent to sub-30fs pulses inside the resonator. Because of the chosen geometry of the waveguide cross section we also observe an effect which is caused by higher-order dispersion. Higher-order dispersion are terms that describe the dispersion beyond the quadratic group velocity dispersion. In order for dissipative Kerr solitons to form, anomalous group velocity dispersion is required. If higher-order terms are present as well, the soliton can still exist but additional

  20. Analysis of the Sequence and Phenotype of Drosophila Sex combs reduced Alleles Reveals Potential Functions of Conserved Protein Motifs of the Sex combs reduced Protein

    OpenAIRE

    Sivanantharajah, Lovesha; Percival-Smith, Anthony

    2009-01-01

    The Drosophila Hox gene, Sex combs reduced (Scr), is required for patterning the larval and adult, labial and prothoracic segments. Fifteen Scr alleles were sequenced and the phenotypes analyzed in detail. Six null alleles were nonsense mutations (Scr2, Scr4, Scr11, Scr13, Scr13A, and Scr16) and one was an intragenic deletion (Scr17). Five hypomorphic alleles were missense mutations (Scr1, Scr3, Scr5, Scr6, and Scr8) and one was a small protein deletion (Scr15). Protein sequence changes were ...

  1. Single envelope equation modelling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearity

    CERN Document Server

    Hansson, T; Erkintalo, M; Anthony, J; Coen, S; Ricciardi, I; De Rosa, M; Wabnitz, S

    2016-01-01

    We numerically study, by means of the single envelope equation, the generation of optical frequency combs ranging from the visible to the mid-infrared spectral regions in resonators with quadratic and cubic nonlinearities. Phase-matched quadratic wave-mixing processes among the comb lines can be activated by low-power continuous wave pumping in the near infrared of a radially poled lithium niobate whispering gallery resonator (WGR). We examine both separate and co-existing intra-cavity doubly resonant second-harmonic generation and parametric oscillation processes, and find that modulation instabilities may lead to the formation of coupled comb arrays extending over multiple octaves. In the temporal domain, the frequency combs may correspond to pulse trains, or isolated pulses.

  2. Tuneable dual-comb spectrometer based on commercial femtosecond lasers and reference cell for optical frequency calibration

    Science.gov (United States)

    Portuondo-Campa, E.; Bennès, J.; Balet, L.; Kundermann, S.; Merenda, F.; Boer, G.; Lecomte, S.

    2016-07-01

    Two commercial femtosecond laser sources have been used to implement a dual-comb spectrometer tuneable across a spectral range from 1.5 to 2.2 μm. The optical linewidth of the comb modes was characterized for different time scales in order to estimate the achievable spectral resolution for an optimal acquisition time. The transmission spectra of three different gas samples were recorded, demonstrating good agreement with reference data. Frequency axis calibration was provided via the parallel monitoring of a reference sample. This technique allows an accurate calibration of the frequency axis of the spectrometer, with no need for stabilization or optical referencing of the frequency combs. Our set-up represents a good compromise for a compact and versatile dual-comb spectrometer based on commercially available parts with possible applications in trace-gas monitoring, remote sensing and spectroscopy of short-lived processes.

  3. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    CERN Document Server

    Liu, Ya; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-01-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses wit...

  4. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser.

    Science.gov (United States)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-19

    Dual-comb lasers simultaneously generating asynchronous ultrashort pulses could be an intriguing alternative to the current dual-laser comb source. When generated through a common light path, the low common-mode noises and good coherence between the pulse trains could be realized. Here we demonstrate the completely common-path, unidirectional dual-comb lasing using a carbon nanotube saturable absorber with additional pulse narrowing and broadening mechanisms. The interactions between multiple soliton formation mechanisms result in bifurcation into unusual two-pulse states with pulses of four-fold bandwidth difference and tens-of-Hz repetition rate difference. Coherence between the pulses is verified by the asynchronous cross-sampling and dual-comb spectroscopy measurements. PMID:27661880

  5. Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation.

    Science.gov (United States)

    Maram, Reza; Azaña, José

    2013-11-18

    Integer and fractional spectral self-imaging effects are induced on infinite-duration periodic frequency combs (probe signal) using cross-phase modulation (XPM) with a parabolic pulse train as pump signal. Free-spectral-range tuning (fractional effects) or wavelength-shifting (integer effects) of the frequency comb can be achieved by changing the parabolic pulse peak power or/and repetition rate without affecting the spectral envelope shape and bandwidth of the original comb. For design purposes, we derive the complete family of different pump signals that allow implementing a desired spectral self-imaging process. Numerical simulation results validate our theoretical analysis. We also investigate the detrimental influence of group-delay walk-off and deviations in the nominal temporal shape or power of the pump pulses on the generated output frequency combs.

  6. A 23.75-GHz frequency comb with two low-finesse filtering cavities in series for high resolution spectroscopy

    Institute of Scientific and Technical Information of China (English)

    侯磊; 韩海年; 王薇; 张龙; 庞利辉; 李德华; 魏志义

    2015-01-01

    A laser frequency comb with several tens GHz level is demonstrated, based on an Yb-doped femtosecond fiber laser and two low-finesse Fabry–P´erot cavities (FPCs) in series. The original 250-MHz mode-line-spacing of the source comb is filtered to 4.75 GHz and 23.75 GHz, respectively. According to the multi-beam interferences theory of FPC, the side-mode suppression rate of FPC schemes is in good agreement with our own theoretical results from 27 dB of a single FPC to 43 dB of paired FPCs. To maintain long-term stable operation and determine the absolute frequency mode number in the 23.75-GHz comb, the Pound–Drever–Hall (PDH) locking technology is utilized. Such stable tens GHz frequency combs have important applications in calibrating astronomical spectrographs with high resolution.

  7. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan; Yang, Lan; Chormaic, Síle Nic

    2016-01-01

    Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this work, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO$_2$ laser beam technique. By decreasing the wall thickness of the MBR down to 1.4 $\\mu$m, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical \\textit{Q}-factor of the MBR modes being greater than $10^7$, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

  8. High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator.

    Science.gov (United States)

    Zhu, Feng; Hundertmark, Holger; Kolomenskii, Alexandre A; Strohaber, James; Holzwarth, Ronald; Schuessler, Hans A

    2013-07-01

    We report on a high-power mid-infrared (MIR) frequency comb source based on a femtosecond (fs) Er:fiber oscillator with a stabilized repetition rate of 250 MHz. The MIR frequency comb is produced through difference frequency generation in a periodically poled MgO-doped lithium niobate crystal. The output power is about 120 mW, with a pulse duration of about 80 fs and spectrum coverage from 2.9 to 3.6 μm, and the single comb mode power is larger than 0.3 μW over the range of 700 nm. The coherence properties of the produced high-power broadband MIR frequency comb are maintained, which was verified by heterodyne measurements. As the first application, the spectrum of a ~200 ppm methane-air mixture in a short 20 cm glass cell at ambient atmospheric pressure and temperature was measured. PMID:23811928

  9. An Analysis of Near Field and Application of a New Comb-shaped Antenna for Radio Frequency Identification

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new comb-shaped antenna for radio frequency identification is proposed. The kind of antenna can replace some antenna array. So it is very convenient for omnidirectional identification. The test result proves this antenna is viable.

  10. A stabilized 18 GHz chip-scale optical frequency comb at 2.8x10-16 relative inaccuracy

    OpenAIRE

    Huang, S.-W.; Yang, J.; Yu, M.; McGuyer, B. H.; Kwong, D. -L.; Zelevinsky, T.; Wong, C. W.

    2015-01-01

    Optical frequency combs, coherent light sources that connect optical frequencies with microwave oscillations, have become the enabling tool for precision spectroscopy, optical clockwork and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but four-wave-mixing in high-Q resonators have emerged as alternative platforms. Here we report the generation and full stabilization of CMOS-compatible optical frequency combs. The spira...

  11. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    Science.gov (United States)

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  12. Transmission comb of a distributed Bragg reflector with two surface dielectric gratings

    Science.gov (United States)

    Zhao, Xiaobo; Zhang, Yongyou; Zhang, Qingyun; Zou, Bingsuo; Schwingenschlogl, Udo

    2016-02-01

    The transmission behaviour of a distributed Bragg reector (DBR) with surface dielectric gratings on top and bottom is studied. The transmission shows a comb-like spectrum in the DBR band gap, which is explained in the Fano picture. The number density of the transmission peaks increases with increasing number of cells of the DBR, while the ratio of the average full width at half maximum to the corresponding average free spectral range, being only few percent for both transversal electric and magnetic waves, is almost invariant. The transmission peaks can be narrower than 0.1 nm and are fully separated from each other in certain wavebands. We further prove that the transmission combs are robust against randomness in the heights of the DBR layers. Therefore, the proposed structure is a candidate for an ultra-narrow-band multichannel filter or polarizer.

  13. Designing maleic anhydride-{alpha}-olifin copolymeric combs as wax crystal growth nucleators

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Hemant P. [Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Kiranbala; Bharambe, D.P. [Department of Applied Chemistry, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara-390 001 (India); Agrawal, K.S. [Department of Petrochemical Technology, Polytechnic, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Nagar, A. [MH ASSET, ONGC, Mumbai (India)

    2010-09-15

    Modification of the wax crystal habit is of great practical interest during transportation and processing of crude oil at low temperature. Various pour point depressant (PPD) additives can facilitate this modification by different mechanisms. Comb shaped polymer additives are known to depress the pour point of crude oil by providing different nucleation sites for the precipitation of wax. This paper describes performance based design, synthesis, characterization and evaluation of comb shaped polymeric diesters. Copolymers of maleic anhydride with different unsaturated C{sub 22} esters were synthesized and copolymers then reacted with two unsaturated fatty alcohols. All products were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and Gel Permeation Chromatography (GPC). Rheological properties of crude (with and without additive) were studied by Advance Rheometer AR-500. In this study the additive based on oleic acid was evaluated as good PPD and rheology modifier. (author)

  14. Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber.

    Science.gov (United States)

    Pal, Parama; Knox, Wayne H; Hartl, Ingmar; Fermann, Martin E

    2007-09-17

    We demonstrate a fully stabilized frequency comb in the 1mum spectral region based on an Yb-fiber oscillator and a cladding pumped chirped pulse Yb-fiber amplifier whose output is spectrally broadened in a dispersion micromanaged holey fiber. The dispersion micromanaged fiber is used to generate efficient, low noise spectral components at 523nm which are heterodyned with the second harmonic of the amplifier output for standard f-to-2f self-referenced carrier envelope offset frequency detection. For comb stabilization we phase-lock this offset frequency and the oscillator repetition frequency simultaneously to an RF reference by feedback controlling the oscillator pump diode current and the driving voltage of an intracavity piezo-electric fiber stretcher respectively. PMID:19547582

  15. Photonic chip-based optical frequency comb using soliton Cherenkov radiation.

    Science.gov (United States)

    Brasch, V; Geiselmann, M; Herr, T; Lihachev, G; Pfeiffer, M H P; Gorodetsky, M L; Kippenberg, T J

    2016-01-22

    Optical solitons are propagating pulses of light that retain their shape because nonlinearity and dispersion balance each other. In the presence of higher-order dispersion, optical solitons can emit dispersive waves via the process of soliton Cherenkov radiation. This process underlies supercontinuum generation and is of critical importance in frequency metrology. Using a continuous wave-pumped, dispersion-engineered, integrated silicon nitride microresonator, we generated continuously circulating temporal dissipative Kerr solitons. The presence of higher-order dispersion led to the emission of red-shifted soliton Cherenkov radiation. The output corresponds to a fully coherent optical frequency comb that spans two-thirds of an octave and whose phase we were able to stabilize to the sub-Hertz level. By preserving coherence over a broad spectral bandwidth, our device offers the opportunity to develop compact on-chip frequency combs for frequency metrology or spectroscopy. PMID:26721682

  16. Study on high coupling efficiency Er-doped fiber laser for femtosecond optical frequency comb

    Science.gov (United States)

    Pang, Lihui; Liu, Wenjun; Han, Hainian; Wei, Zhiyi

    2016-09-01

    The femtosecond laser is crucial to the operation of the femtosecond optical frequency comb. In this paper, a passively mode-locked erbium-doped fiber laser is presented with 91.4 fs pulse width and 100.8 MHz repetition rate, making use of the nonlinear polarized evolution effect. Using a 976 nm pump laser diode, the average output power is 16 mW from the coupler and 27 mW from the polarization beam splitter at the pump power of 700 mW. The proposed fiber laser can offer excellent temporal purity in generated pulses with high power, and provide a robust source for fiber-based frequency combs and supercontinuum generation well suited for industrial applications.

  17. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li;

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...... be proportionally improved by increasing the length of the optical fiber ring resonator....

  18. Transmission comb of a distributed Bragg reflector with two surface dielectric gratings

    KAUST Repository

    Zhao, Xiaobo

    2016-02-19

    The transmission behaviour of a distributed Bragg reector (DBR) with surface dielectric gratings on top and bottom is studied. The transmission shows a comb-like spectrum in the DBR band gap, which is explained in the Fano picture. The number density of the transmission peaks increases with increasing number of cells of the DBR, while the ratio of the average full width at half maximum to the corresponding average free spectral range, being only few percent for both transversal electric and magnetic waves, is almost invariant. The transmission peaks can be narrower than 0.1 nm and are fully separated from each other in certain wavebands. We further prove that the transmission combs are robust against randomness in the heights of the DBR layers. Therefore, the proposed structure is a candidate for an ultra-narrow-band multichannel filter or polarizer.

  19. WDM-CAP-PON integration with VLLC system based on optical frequency comb

    Science.gov (United States)

    He, Jing; Dong, Huan; Deng, Rui; Shi, Jin; Chen, Lin

    2016-09-01

    In this paper, a wavelength division multiplexing carrier-less amplitude phase modulation passive optical network (WDM-CAP-PON) integration with visible laser light communication (VLLC) system is proposed and experimentally demonstrated. To reduce the cost of WDM system, the optical frequency comb scheme using one Mach-Zehnder modulator (MZM) is utilized and five flat optical combs can be generated. Meanwhile, a blue laser diode (LD) as a VLLC optical source can provide high data rate and long transmission distance. Utilizing overlap frequency domain equalization (OFDE) and negative chirp of MZM, the system performance in both Q-factor and receiver sensitivity can be improved. After 20 km standard single mode fiber (SSMF) and 4.5 m free space transmission, the experimental results show that 10 Gb/s CAP signal can be achieved under 7% forward error correction (FEC) limit of 3 . 8 × 10-3.

  20. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    CERN Document Server

    Doerr, H -P; Holzwarth, R; Schmidt, T Kentischer und W

    2012-01-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  1. On the Polyphase Decomposition for Design of Generalized Comb Decimation Filters

    CERN Document Server

    Laddomada, Massimiliano

    2007-01-01

    Generalized comb filters (GCFs) are efficient anti-aliasing decimation filters with improved selectivity and quantization noise (QN) rejection performance around the so called folding bands with respect to classical comb filters. In this paper, we address the design of GCF filters by proposing an efficient partial polyphase architecture with the aim to reduce the data rate as much as possible after the Sigma-Delta A/D conversion. We propose a mathematical framework in order to completely characterize the dependence of the frequency response of GCFs on the quantization of the multipliers embedded in the proposed filter architecture. This analysis paves the way to the design of multiplier-less decimation architectures. We also derive the impulse response of a sample 3rd order GCF filter used as a reference scheme throughout the paper.

  2. Fixed-Point Design of Generalized Comb Filters: A Statistical Approach

    CERN Document Server

    Laddomada, Massimiliano

    2008-01-01

    This paper is concerned with the problem of designing computationally efficient Generalized Comb Filters (GCF). Basically, GCF filters are anti-aliasing filters that guarantee superior performance in terms of selectivity and quantization noise rejection compared to classical comb filters, when used as decimation filters in multistage architectures. Upon employing a partial polyphase (PP) architecture proposed in a companion paper, we develop a sensitivity analysis in order to investigate the effects of the coefficients' quantization on the frequency response of the designed filters. We show that the sensitivity of the filter response to errors in the coefficients is dependent on the particular split of the decimation factor between the two sub-filters constituting the PP architecture. The sensitivity analysis is then used for developing a fixed-point implementation of a sample filter from the class of GCF filters, used as reference filter throughout the paper. Finally, we present computer simulations in order...

  3. Erratum to “Ultra-Broadband Photonic Harmonic Mixer Based on Optical Comb Generation”

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei;

    2012-01-01

    We propose a novel photonic harmonic mixer operating at frequencies up to the millimeter-wave (MMW) band. By combining a broadband fiber-wireless signal with highorder harmonics of a fundamental local oscillator in an optical frequency comb generator, frequency down-conversion can be implemented...... without using costly ultra-broadband photodiode. It is theoretically shown that the down-conversion efficiency and the bandwidth of the mixer is highly dependent on the optical modulation indices and the fundamental frequency of comb lines. Down-conversion of a W-band (75-110GHz) fiberwireless signal...... is experimentally demonstrated. Moreover, the error vector magnitude (EVM) performance of a multi-gigabit quadrature phase shift keying (QPSK) signal at 62.5, 82.5 and 102.5GHz carrier frequencies is studied to evaluate the downconversion efficiency. The proposed photonic harmonic mixer can be a candidate...

  4. Study on Evaluating Damage of CFRP Using the PVDF Comb Transducer

    International Nuclear Information System (INIS)

    Recently, fiber reinforced plastic (FRP) materials become to be used more in producing airplanes because of high specific strength and low weight. However, there can be delamination caused from unexpected impact during the service flight. Since strength reduce comes with these delamination defects, defects in the composite materials should be monitored for safety of the airplane. A PVDF transducer can be used for on-line health monitoring economically. In this study, comb type of PVDF transducer was fabricated for generating and receiving of the guided wave at specific wavelength and was applied to evaluate natural delamination defect with the guided wave. Natural delamination in CFRP was produced with free dropping weight on CFRP surface between the transmitter and the receiver transducers. At every impacts, guided wave was generated and received in the pitch-catch way with the PVDF(Polyvinylidene fluoride) comb transducer and variation of the guided wave signal was compared according to accumulation of impact damage.

  5. [Molecular combing method in the research of DNA replication parameters in isolated organs of Drosophyla melanogaster].

    Science.gov (United States)

    Ivankin, A V; Kolesnikova, T D; Demakov, S A; Andreenkov, O V; Bil'danova, E R; Andreenkova, N G; Zhimulev, I F

    2011-01-01

    Methods of physical DNA mapping and direct visualization of replication and transcription in specific regions of genome play crucial role in the researches of structural and functional organization of eukaryotic genomes. Since DNA strands in the cells are organized into high-fold structure and present as highly compacted chromosomes, the majority of these methods have lower resolution at chromosomal level. One of the approaches to enhance the resolution and mapping accuracy is the method of molecular combing. The method is based on the process of stretching and alignment of DNA molecules that are covalently attached with one of the ends to the cover glass surface. In this article we describe the major methodological steps of molecular combing and their adaptation for researches of DNA replication parameters in polyploidy and diploid tissues of Drosophyla larvae.

  6. Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation

    Science.gov (United States)

    Dong, Mark; Winful, Herbert G.

    2016-04-01

    We present a unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation in which the multitude of interacting pump, Stokes, and anti-Stokes optical fields is described by a single forward wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential equations derived here is sufficient to describe the generation of any number of Brillouin sidebands in oscillator systems that would have required hundreds of coupled equations in the standard approach. We test this approach on some published experiments and find excellent agreement with the results.

  7. Evaluation and modelling of integral capacitors produced by interdigitated comb electrodes

    Directory of Open Access Journals (Sweden)

    Leandro Alfredo Ramajo

    2008-12-01

    Full Text Available Integral capacitors (IC of one or two-layer printed wiring board (PWB circuits were produced using comb electrodes fixtures and dielectric composites as the inter-electrode material. ICs were fabricated at laboratory scale, using copper comb electrodes and BaTiO3-epoxy composite materials deposited on a glass-Epoxy FR4 board. They were experimentally tested in order to obtain their electrical response. Furthermore, ICs behaviour was modelled through 2-dimensional models applying finite element method (FEM. Results showed that by this laboratory technique it was possible to obtained integral capacitors with low dielectric losses. Moreover, acceptable agreement was found between numerical and experimental capacitance results for all the different analysed ICs. In conclusion, 2D FEM models are a suitable tool to predict electric response of IC devices.

  8. ACADEMIC TRAINING: Probing nature with high precision; particle traps, laser spectroscopy and optical combs

    CERN Multimedia

    Françoise Benz

    2002-01-01

    17, 18, 19 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Probing nature with high precision; particle traps, laser spectroscopy and optical combs by G. GABRIELSE / Harvard University, USA Experiments with atomic energy scales probe nature and its symmetries with exquisite precision. Particle traps allow the manipulation of single charged particles for months at a time, allow the most accurate comparison of theory and experiment, and promise to allow better measurement of fundamental quantities like the fine structure constant. Ions and atoms can be probed with lasers that are phase locked to microwave frequency standards via optical combs, thus calibrating optical sources in terms of the official cesium second. A series of three lectures will illustrate what can be measured and discuss key techniques.  ACADEMIC TRAINING Françoise Benz Tel. 73127 francoise.benz@cern.ch

  9. Continuous probe of cold complex molecules with infrared frequency comb spectroscopy

    CERN Document Server

    Spaun, Ben; Patterson, David; Bjork, Bryce J; Heckl, Oliver H; Doyle, John M; Ye, Jun

    2016-01-01

    Cavity-enhanced frequency comb spectroscopy for molecule detection in the mid-infrared powerfully combines high resolution, high sensitivity, and broad spectral coverage. However, this technique, and essentially all spectroscopic methods, is limited in application to relatively small, simple molecules. Here we integrate comb spectroscopy with continuous, cold samples of molecules produced via buffer gas cooling, thus enabling the study of significantly more complex molecules. We report simultaneous gains in resolution, sensitivity, and bandwidth and demonstrate this combined capability with the first rotationally resolved direct absorption spectra in the CH stretch region of several complex molecules. These include nitromethane (CH$_3$NO$_2$), a model system that presents challenging questions to the understanding of large amplitude vibrational motion, as well as several large organic molecules with fundamental spectroscopic and astrochemical relevance, including naphthalene (C$_{10}$H$_8$), adamantane (C$_{1...

  10. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Science.gov (United States)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  11. Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph

    Science.gov (United States)

    Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.

    2012-09-01

    Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.

  12. The Impact of Dispersion on Amplitude and Frequency Noise in a Yb-fiber Laser Comb

    CERN Document Server

    Nugent-Glandorf, Lora; Kobayashi, Yohei; Diddams, Scott A

    2011-01-01

    We describe a Yb-fiber based laser comb, with a focus on the relationship between net-cavity dispersion and the frequency noise on the comb. While tuning the net cavity dispersion from anomalous to normal, we measure the amplitude noise (RIN), offset frequency (f_CEO) linewidth, and the resulting frequency noise spectrum on f_CEO. We find that the laser operating at zero net-cavity dispersion has many advantages, including an approximately 100x reduction in free-running f_CEO linewidth and frequency noise power spectral density between laser operation at normal and zero dispersion. In this latter regime, we demonstrate a phase-locked f_CEO beat with low residual noise.

  13. Dimensional metrology using the optical comb of a mode-locked laser

    Science.gov (United States)

    Jin, Jonghan

    2016-02-01

    In the field of dimensional metrology, significant technical challenges have been encountered with regard to large-scale object assembly, satellite positioning, control of the long-distance precision stage, and inspections of large steps or deep holes on semiconductor devices and multi-layered display panels. The key elements required are high speeds, a long dynamic measurable range, and good precision of measurements, and conventional methods can scarcely meet such requirements simultaneously. Promisingly, the advent of the optical comb has opened up numerous possibilities to break through practical limits by exploiting several of its unique features. These include inter-mode interference, a wide spectral bandwidth with a long coherence length and well-defined longitudinal modes. In this review, various dimensional metrological methods using the optical comb are introduced, describing their basic principles and applications in scientific as well as industrial areas.

  14. Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber

    Science.gov (United States)

    Yang, Xie; Hai-Nian, Han; Long, Zhang; Zi-Jiao, Yu; Zheng, Zhu; Lei, Hou; Li-Hui, Pang; Zhi-Yi, Wei

    2016-04-01

    We demonstrate a stable Yb:fiber frequency comb with supercontinuum generation by using a specially designed tapered single-mode fiber, in which a spectrum spanning from 500 nm to 1500 nm is produced. The carrier-envelope offset signal of the Yb:fiber comb is measured with a signal-to-noise ratio of more than 40 dB and a linewidth narrower than 120 kHz. The repetition rate and carrier-envelope offset signals are simultaneously phase locked to a microwave reference frequency. Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant No. 61378040).

  15. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    Science.gov (United States)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  16. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    Science.gov (United States)

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  17. An octave spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide

    CERN Document Server

    Kuyken, Bart; Holzner, Simon; Yan, Ming; Haensch, Theodor W; Van Campenhout, Joris; Verheyen, Peter; Coen, Stéphane; Leo, Francois; Baets, Roel; Roelkens, Gunther; Picque, Nathalie

    2014-01-01

    We demonstrate an octave-spanning frequency comb with a spectrum covering wavelengths from 1,540 nm up to 3,200 nm. The supercontinuum is generated by pumping a 1-cm long dispersion engineered silicon wire waveguide by 70 fs pulses with an energy of merely 15 pJ. We confirm the phase coherence of the output spectrum by beating the supercontinuum with narrow bandwidth CW lasers. We show that the experimental results are in agreement with numerical simulations.

  18. CombeChem: semantic support for the chemical information life cycle

    OpenAIRE

    Frey, Jeremy G.

    2006-01-01

    CombeChem” provided experience of e-science semantic support for the chemical data lifecycle, from inception in the laboratory to dissemination of data, showing how laboratory data should be recorded, using electronic laboratory notebooks, enriched with appropriate metadata, to ensure information can be correctly understood when subsequently accessed, (“Annotation@Source”). Chemical information results from a chain of analysis & data integration. Current chemical data storage methodologies p...

  19. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    OpenAIRE

    Doerr, H. -P.; T Steinmetz; Holzwarth, R.; Schmidt, T. Kentischer und W.

    2012-01-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve ...

  20. Ka-band microwave frequency comb Doppler reflectometer system for the Large Helical Device

    International Nuclear Information System (INIS)

    A ka-band multi-channel Doppler reflectometer system was constructed for the Large Helical Device (LHD) using a comb frequency generator as a source. A filter bank system is utilized for precise quadrature phase detection, and preliminary back-scattered waves were obtained in LHD plasma experiments. In addition, a direct digital signal acquisition system was successfully demonstrated for providing a greater number of multi-channel measurements. (author)

  1. Laser frequency combs and ultracold neutrons to probe braneworlds through induced matter swapping between branes

    OpenAIRE

    Sarrazin, Michael; Petit, Fabrice

    2008-01-01

    This paper investigates a new experimental framework to test the braneworld hypothesis. Recent theoretical results have shown the possibility of matter exchange between branes under the influence of suitable magnetic vector potentials. It is shown that the required conditions might be achieved with present-day technology. The experiment uses a source of pulsed and coherent electromagnetic radiation and relies on the Hansch frequency comb technique well-known in ultrahigh-precision spectroscop...

  2. Data review leading to a conceptual model of the hydrogeology of the Combe Down area, Bath

    OpenAIRE

    Macdonald, D. M. J.; Whitehead, E J; Butcher, A.S.

    2000-01-01

    Bath and North East Somerset Council (B&NES) has obtained funds from the Department of Environment, Transport and the Regions to carry-out stabilisation of stone mines located in the Combe Down area to the south-east of the city of Bath. There are potentially significant engineering geology and hydrogeology implications associated with the project. The British Geological Survey (BGS) has been appointed by B&NES to provide independent geological advice. In this role, BGS has undert...

  3. Graphene oxide scrolls on hydrophobic substrates fabricated by molecular combing and their application in gas sensing.

    Science.gov (United States)

    Li, Hai; Wu, Jumiati; Qi, Xiaoying; He, Qiyuan; Liusman, Cipto; Lu, Gang; Zhou, Xiaozhu; Zhang, Hua

    2013-02-11

    Well-aligned graphene oxide (GO) scrolls are prepared through the controlled folding/scrolling of single-layer GO sheets using molecular combing on hydrophobic substrates, such as aged gold substrate, polydimethylsiloxane film, poly(L-lactic acid) film, and octadecyltrimethoxysilane-modified silicon dioxide. As a proof of concept, the gas sensor fabricated with a single reduced GO scroll is used to detect NO(2) gas with a concentration as low as 0.4 ppm. PMID:23065912

  4. Asymptotic Capacity of Wireless Ad Hoc Networks with Realistic Links under a Honey Comb Topology

    CERN Document Server

    Asnani, Himanshu

    2007-01-01

    We consider the effects of Rayleigh fading and lognormal shadowing in the physical interference model for all the successful transmissions of traffic across the network. New bounds are derived for the capacity of a given random ad hoc wireless network that reflect packet drop or capture probability of the transmission links. These bounds are based on a simplified network topology termed as honey-comb topology under a given routing and scheduling scheme.

  5. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  6. A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop

    Institute of Scientific and Technical Information of China (English)

    Ruan Juan; Zhang Wei-Gang; Zhang Hao; Geng Peng-Cheng; Bai Zhi-Yong

    2013-01-01

    A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated.The filter tunability is achieved by rotating the polarization controller.The spectral shift is dependent on rotation direction and the position of the polarization controller.In addition,the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.

  7. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    徐又一

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4- hydroxyphenyl) maleimide)(SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate(PEGMA) side groups was achieved by atom transfer radical polymerization(ATRP).The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).From thermogravimetric analysis (TGA),the decomposition temperature of SHMI-g-PEGMA is low...

  8. Conformation of comb liquid crystal polymers by neutron small angle scattering

    International Nuclear Information System (INIS)

    A review is made of the direct information obtained by small angle neutron scattering about the anisotropy of the components parallel and perpendicular to the orienting magnetic field of the radius of gyration of comb like liquid crystal polymers. The behaviour of the conformation versus temperature is reported for several samples. Until now all samples show an oblate conformation in the smectic phase and probably the whole range of the nematic phase. The results are compared with the available theoretical predictions

  9. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.

    Science.gov (United States)

    Peng, Fulai; Liu, Hongyun; Wang, Weidong

    2015-10-01

    A photoplethysmographic (PPG) signal can provide very useful information about a subject's cardiovascular status. Motion artifacts (MAs), which usually deteriorate the waveform of a PPG signal, severely obstruct its applications in the clinical diagnosis and healthcare area. To reduce the MAs from a PPG signal, in the present study we present a comb filter based signal processing method. Firstly, wavelet de-noising was implemented to preliminarily suppress a part of the MAs. Then, the PPG signal in the time domain was transformed into the frequency domain by a fast Fourier transform (FFT). Thirdly, the PPG signal period was estimated from the frequency domain by tracking the fundamental frequency peak of the PPG signal. Lastly, the MAs were removed by the comb filter which was designed based on the obtained PPG signal period. Experiments with synthetic and real-world datasets were implemented to validate the performance of the method. Results show that the proposed method can effectively restore the PPG signals from the MA corrupted signals. Also, the accuracy of blood oxygen saturation (SpO2), calculated from red and infrared PPG signals, was significantly improved after the MA reduction by the proposed method. Our study demonstrates that the comb filter can effectively reduce the MAs from a PPG signal provided that the PPG signal period is obtained. PMID:26334000

  10. A mummified duck-billed dinosaur with a soft-tissue cock's comb.

    Science.gov (United States)

    Bell, Phil R; Fanti, Federico; Currie, Philip J; Arbour, Victoria M

    2014-01-01

    Among living vertebrates, soft tissues are responsible for labile appendages (combs, wattles, proboscides) that are critical for activities ranging from locomotion to sexual display [1]. However, soft tissues rarely fossilize, and such soft-tissue appendages are unknown for many extinct taxa, including dinosaurs. Here we report a remarkable "mummified" specimen of the hadrosaurid dinosaur Edmontosaurus regalis from the latest Cretaceous Wapiti Formation, Alberta, Canada, that preserves a three-dimensional cranial crest (or "comb") composed entirely of soft tissue. Previously, crest function has centered on the hypertrophied nasal passages of lambeosaurine hadrosaurids, which acted as resonance chambers during vocalization [2-4]. The fleshy comb in Edmontosaurus necessitates an alternative explanation most likely related to either social signaling or sexual selection [5-7]. This discovery provides the first view of bizarre, soft-tissue signaling structures in a dinosaur and provides additional evidence for social behavior. Crest evolution within Hadrosaurinae apparently culminated in the secondary loss of the bony crest at the terminal Cretaceous; however, the new specimen indicates that cranial ornamentation was in fact not lost but substituted in Edmontosaurus by a fleshy display structure. It also implies that visual display played a key role in the evolution of hadrosaurine crests and raises the possibility of similar soft-tissue structures among other dinosaurs.

  11. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.

    Science.gov (United States)

    Peng, Fulai; Liu, Hongyun; Wang, Weidong

    2015-10-01

    A photoplethysmographic (PPG) signal can provide very useful information about a subject's cardiovascular status. Motion artifacts (MAs), which usually deteriorate the waveform of a PPG signal, severely obstruct its applications in the clinical diagnosis and healthcare area. To reduce the MAs from a PPG signal, in the present study we present a comb filter based signal processing method. Firstly, wavelet de-noising was implemented to preliminarily suppress a part of the MAs. Then, the PPG signal in the time domain was transformed into the frequency domain by a fast Fourier transform (FFT). Thirdly, the PPG signal period was estimated from the frequency domain by tracking the fundamental frequency peak of the PPG signal. Lastly, the MAs were removed by the comb filter which was designed based on the obtained PPG signal period. Experiments with synthetic and real-world datasets were implemented to validate the performance of the method. Results show that the proposed method can effectively restore the PPG signals from the MA corrupted signals. Also, the accuracy of blood oxygen saturation (SpO2), calculated from red and infrared PPG signals, was significantly improved after the MA reduction by the proposed method. Our study demonstrates that the comb filter can effectively reduce the MAs from a PPG signal provided that the PPG signal period is obtained.

  12. Real-time closed-loop control for micro mirrors with quasistatic comb drives

    Science.gov (United States)

    Schroedter, Richard; Sandner, Thilo; Janschek, Klaus; Roth, Matthias; Hruschka, Clemens

    2016-03-01

    This paper presents the application of a real-time closed-loop control for the quasistatic axis of electrostatic micro scanning mirrors. In comparison to resonantly driven mirrors, the quasistatic comb drive allows arbitrary motion profiles with frequencies up to its eigenfrequency. A current mirror setup at Fraunhofer IPMS is manufactured with a staggered vertical comb (SVC) drive and equipped with an integrated piezo-resistive deflection sensor, which can potentially be used as position feedback sensor. The control design is accomplished based on a nonlinear mechatronic system model and the preliminary parameter characterization. In previous papers [1, 2] we have shown that jerk-limited trajectories, calculated offline, provide a suitable method for parametric trajectory design, taking into account physical limitations given by the electrostatic comb and thus decreasing the dynamic requirements. The open-loop control shows in general unfavorable residual eigenfrequency oscillations leading to considerable tracking errors for desired triangle trajectories [3]. With real-time closed-loop control, implemented on a dSPACE system using an optical feedback, we can significantly reduce these errors and stabilize the mirror motion against external disturbances. In this paper we compare linear and different nonlinear closed-loop control strategies as well as two observer variants for state estimation. Finally, we evaluate the simulation and experimental results in terms of steady state accuracy and the concept feasibility for a low-cost realization.

  13. COMBS: open source python library for RVE generation - Application to microscale diffusion simulations in cementitious materials

    International Nuclear Information System (INIS)

    In the context of radioactive waste storage and disposal, the knowledge of the concrete diffusivity is primordial in the numerical simulations of the long term behavior of these materials. COMBS is an open source python library, it is used to define the shapes of the inclusions, to insert them in the box featuring the representative volume element (RVE) of the cementitious medium, and to assess their diffusive properties. The algorithms developed in COMBS target a fast placement of the inclusions and a fast generation of the RVE shape and mesh. Two application cases are considered: the unaltered material diffusivity and the degraded material diffusivity. The first case of application focuses on the description of the capillary porosity. The second application case focuses on the description of the degradation of cementitious material (mineral and porosity) and the diffusive properties associated. The reliability of the analytical effective medium approximations (MT and SC) is confirmed from 3D finite elements (FE) calculations performed on a matrix-inclusions microstructure obtained by RVE generation with Combs. The results also show the need to take into account the percolation behavior

  14. Massively parallel dual-comb molecular detection with subharmonic optical parametric oscillators

    CERN Document Server

    Smolski, Viktor O; Xu, Jia; Vodopyanov, Konstantin L

    2016-01-01

    Mid-infrared (mid-IR) spectroscopy offers unparalleled sensitivity for the detection of trace gases, solids and liquids, which is based on the existence of strong telltale vibrational bands in this part of the spectrum. It was shown more than a decade ago that a dual-comb Fourier spectroscopy could provide superior spectral coverage combined with high resolution and extremely fast data acquisition. Capabilities of this method were limited because of difficulty of producing twins of mutually coherent frequency combs in the mid- IR. Here we report a phase-coherent and broadband dual-comb system that is based on a pair of subharmonic (frequency-divide-by-two) optical parametric oscillators, pumped in turn by two phase-locked thulium fiber lasers at 2-micron wavelength. We demonstrate simultaneous detection of multiple molecular species in the whole band of 3.2-5.3 microns (frequency span 1200 cm^{-1}) augmented by the pump laser band of 1.85-2 microns (span 400 cm^{-1}), with spectral resolution 0.01-0.07 cm^{-1...

  15. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    Science.gov (United States)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-09-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  16. Gigahertz frequency comb from a diode-pumped solid-state laser.

    Science.gov (United States)

    Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula

    2014-12-15

    We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.

  17. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy.

    Science.gov (United States)

    Yi, X; Vahala, K; Li, J; Diddams, S; Ycas, G; Plavchan, P; Leifer, S; Sandhu, J; Vasisht, G; Chen, P; Gao, P; Gagne, J; Furlan, E; Bottom, M; Martin, E C; Fitzgerald, M P; Doppmann, G; Beichman, C

    2016-01-01

    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope. PMID:26813804

  18. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy.

    Science.gov (United States)

    Yi, X; Vahala, K; Li, J; Diddams, S; Ycas, G; Plavchan, P; Leifer, S; Sandhu, J; Vasisht, G; Chen, P; Gao, P; Gagne, J; Furlan, E; Bottom, M; Martin, E C; Fitzgerald, M P; Doppmann, G; Beichman, C

    2016-01-27

    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope.

  19. Observation of Rb Two-Photon Absorption Directly Excited by an Erbium-Fiber-Laser-Based Optical Frequency Comb via Spectral Control

    CERN Document Server

    Wu, Jiutao; Dai, Xiaoliang; Qin, Zhengyu; Zhang, Zhigang; Zhao, Jianye

    2013-01-01

    We demonstrated the observation of Rb two-photon absorption directly excided by an optical frequency comb at fiber communication bands. A chain of comb spectral control is elaborately implemented to increase the power of the second harmonic optical frequency comb generation and the two-photon transition strength. A two-photon transition spectrum is obtained with clearly resolved transition lines. It provides a potential approach to realize the optical frequency comb or optical clock at ~1.5{\\mu}m with high stability and accuracy.

  20. Echelle spectrograph calibration with a frequency comb based on a harmonically mode-locked fiber laser: a proposal

    International Nuclear Information System (INIS)

    Details for constructing an astronomical frequency comb suitable as a wavelength reference for echelle spectrographs associated with optical telescopes are outlined. The source laser for the frequency comb is a harmonically mode-locked fiber laser with a central wavelength of 1.56 μm. The means of producing a repetition rate greater than 7 GHz and a peak optical power of ∼8 kW are discussed. Conversion of the oscillator light into the visible can occur through a two-step process of (i) nonlinear conversion in periodically poled lithium niobate and (ii) spectral broadening in photonic crystal fiber. While not necessarily octave spanning in spectral range to permit the use of an f -to- 2f interferometer for offset frequency control, the frequency comb can be granted accuracy by linking the mode spacing and a comb tooth to separate frequency references. The design avoids the use of a Fabry-Perot cavity to increase the mode spacing of the frequency comb; however, the level of supermode suppression and sideband asymmetry in the fiber oscillator and in the subsequent frequency conversion stages are aspects that need to be experimentally tested.

  1. Characterization of Perylene in Tropical Environment: Comparison of New and Old Fungus Comb for Identifying Perylene Precursor in Macrotermes gilvus Termite Nests of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Alireza Riyahi Bakhtiari

    2010-01-01

    Full Text Available This is the first record on the distribution of perylene in new and old fungus combs of termite nest (Macrotermes gilvus in order to determine perylene source in tropical environment. Twenty four samples of new and old fungus combs, inner and outer nest walls, fresh and decomposed bark, decomposed stem, soil, and soil-wood interface were collected in order to test of two hypotheses; i Perylene is produced in the termite’s hindgut (M. gilvus and ii Perylene is present only in new fungus comb of M. gilvus termite nests. For one Station (Station A the profile of perylene concentration was the following order: fungus comb > outer nest wall ≥ Soil-Wood interface ≥ decomposed stem ≥ decomposed bark ≥ Inner nest wall > Soil. For the other Station (i.e. B the profile was new fungus comb > inner nest wall > old fungus comb ≥ outer nest wall ~ Soil. The perylene concentration was found up to 21-54 times higher in fungus comb as compare to the rest of the samples in Station A. whereas, the perylene concentration was 85-400 times higher in new fungus comb as compare to the remaining samples in Station B, this can be due to the production or accumulation of perylene in these nests. On the other hand, smaller termite nests (Stations C and E no perylene was detected, due to the fact that the new fungus comb was not found in those nests. The results confirmed the following hypotheses; perylene occurs only in new fungus comb and may be attributed to the high concentrations of aromatic rings of lignin in new fungus comb.

  2. Flexible PVDE comb transducers for excitation of axisymmetric guided waves in pipe

    International Nuclear Information System (INIS)

    Flexible PVDF pipe comb transducers are easy to install by wrapping around any size pipe. It is possible to mechanically couple these transducers to the pipe thereby eliminating the need to bond electrodes to the film and couple the transducer to the pipe. The simple fabrication process, installation, and affordability of these transducers makes them realistic candidates for condition based monitoring of some critical pipeline applications. These transducers are capable of exciting lower order axisymmetric modes with minimal radial displacement and maximum axial displacement as well as modes with both surface displacement components. This versatility is extremely important since under certain loading conditions modes with significant radial displacement are almost completely attenuated.

  3. Multiple trapping on a comb structure as a model of electron transport in disordered nanostructured semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sibatov, R. T., E-mail: ren-sib@bk.ru; Morozova, E. V., E-mail: kat-valezhanina@yandex.ru [Ulyanovsk State University (Russian Federation)

    2015-05-15

    A model of dispersive transport in disordered nanostructured semiconductors has been proposed taking into account the percolation structure of a sample and joint action of several mechanisms. Topological and energy disorders have been simultaneously taken into account within the multiple trapping model on a comb structure modeling the percolation character of trajectories. The joint action of several mechanisms has been described within random walks with a mixture of waiting time distributions. Integral transport equations with fractional derivatives have been obtained for an arbitrary density of localized states. The kinetics of the transient current has been calculated within the proposed new model in order to analyze time-of-flight experiments for nanostructured semiconductors.

  4. Novel architecture for ultra-stable micro-ring resonator based optical frequency combs

    CERN Document Server

    Pasquazi, Alessia; Peccianti, Marco; Clerici, Matteo; Ferrera, Marcello; Razzari, Luca; Duchesne, David; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2014-01-01

    We report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation with a complete absence of shutting down, or self-terminating behavior, a very common occurrence in externally pumped OPOs. Further, this scheme consistently produces very wide bandwidth (>300nm, limited by our experimental set-up) combs that oscillate at a spacing of the FSR of the micro cavity resonance.

  5. Combing and self-assembly phenomena in dry films of Taxol-stabilized microtubules

    Directory of Open Access Journals (Sweden)

    Rose Franck

    2007-01-01

    Full Text Available AbstractMicrotubules are filamentous proteins that act as a substrate for the translocation of motor proteins. As such, they may be envisioned as a scaffold for the self-assembly of functional materials and devices. Physisorption, self-assembly and combing are here investigated as a potential prelude to microtubule-templated self-assembly. Dense films of self-assembled microtubules were successfully produced, as well as patterns of both dendritic and non-dendritic bundles of microtubules. They are presented in the present paper and the mechanism of their formation is discussed.

  6. IONIC CONDUCTIVITY IN THE COMPLEXES OF COMB-SHAPED POLYETHER WITH LITHIUM AROMATIC SULFONATE

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shengshui; QIU Weihua; XUE Dacui; LIU Qingguo

    1993-01-01

    Complexes of comb-shaped polyether and lithium aromatic sulfonates bearing different negative charge number were prepared by in situ thermal polymerization. Their conductivity depends deeply on salt content, ambient temperature and negative charge number of the added salts. Results show that anions can be partly immobilized by increasing their negative charges at lower temperature.Against discharge time the short circuit current of the battery (Li/complex film/Lix V3O8) is stabilized by increasing the anionic charge number of the complex.

  7. The two dimensional shapes of simple three and four junction ideal comb polymers

    Science.gov (United States)

    de Regt, Robin; Bishop, Marvin; Barillas, Adam J.; Borgeson, Tylor; von Ferber, Christian

    2016-09-01

    We redesign and apply a scheme originally proposed by Wei (1995) [2,3] to produce numerical shape parameters with high precision for arbitrary tree-branched polymers based on their Kirchhoff matrix eigenvalue spectrum. This algorithm and a Monte Carlo growth method on square and triangular lattices are employed to investigate the shapes of ideal three and four junction two dimensional comb polymers. We find that the extrapolated values obtained by all of these methods are in excellent agreement with each other and the available theory. We confirm that polymers with a complete set of interior branches display a more circular shape.

  8. Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium

    OpenAIRE

    Yasuda, Masami; Kohno, Takuya; Inaba, Hajime; Nakajima, Yoshiaki; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei

    2010-01-01

    A frequency-stabilized light source emitting at 556 nm is realized by frequency-doubling a 1112-nm laser, which is phase-locked to a fiber-based optical frequency comb. The 1112-nm laser is either an ytterbium (Yb)-doped distributed feedback fiber laser or a master-slave laser system that uses an external cavity diode laser as a master laser. We have achieved the continuous frequency stabilization of the light source over a five-day period. With the light source, we have completed the second-...

  9. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  10. Ultra-broadband Photonic Harmonic Mixer Based on Optical Comb Generation

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei;

    2012-01-01

    We propose a novel photonic harmonic mixer operating at frequencies up to the millimeter-wave (MMW) band. By combining a broadband fiber-wireless signal with highorder harmonics of a fundamental local oscillator in an optical frequency comb generator, frequency down-conversion can be implemented...... is experimentally demonstrated. Moreover, the error vector magnitude (EVM) performance of a multi-gigabit quadrature phase shift keying (QPSK) signal at 62.5, 82.5 and 102.5GHz carrier frequencies is studied to evaluate the downconversion efficiency. The proposed photonic harmonic mixer can be a candidate...... for applications in high capacity fiber-wireless communication systems....

  11. Synthesis and characterization of PEGylated comb-like cationic polymer by polycondensation and ATRP

    Institute of Scientific and Technical Information of China (English)

    Hong Du; Li Long Gao; Wei Pu Zhu; Zhi Quan Shen

    2012-01-01

    PEGylated poly(2-(dimethylamino)ethyl methacrylate) with comb-like architecture was synthesized by two-step polymerization.First,poly(oligo(ethylene glycol) malicate) (POEGMA) bearing pendant hydroxyl groups was prepared by direct polycon-densation of oligo(ethylene glycol) and rnalic acid in the presence of scandium triflate as chemoselective catalyst.Then the poly(2-(dimethytamino)ethyl methacrylate) side chains were grafted from the POEGMA backbone by atom transfer radical polymerization (ATRP) after the hydroxyl groups were modified into bromo-ester form,resulting in a PEGylated cationic copolymer with branched architecture.

  12. SYNTHESIS AND CHARACTERIZATION OF COMB-LIKE POLYMERS BEARING HETEROCYCLIC AZO GROUP AND MESOGENIC GROUP

    Institute of Scientific and Technical Information of China (English)

    Hui-qi Zhang; Wen-qiang Huang; Chen-xi Li; Bing-lin He

    1999-01-01

    The synthesis and characterization of a series of novel comb-like polymethacrylates bearing heterocyclic azo group and mesogenic group are described. The thermal properties of the polymers such as thermal stability and phase transition behavior were investigated by thermogravimetric analysis, differential thermal analysis and polarizing optical microscopy techniques. The experimental results show that all the synthesized polymers do not exhibit liquid crystallinity except the homopolymer of the mesogenic monomer MAPB2 and the glass transition temperatures of the polymers increase with increasing content of azo moiety in polymers linearly.

  13. Fractional high-harmonic combs by attosecond-precision split-spectrum pulse control

    Directory of Open Access Journals (Sweden)

    Laux Martin

    2013-03-01

    Full Text Available Few-cycle laser fields enable pulse-shaping control of high-order harmonic generation by time delaying variable broadband spectral sections. We report the experimental generation of fractional (noninteger high-harmonic combs by the controlled interference of two attosecond pulse trains. Additionally the energy of the high harmonics is strongly tuned with the relative time delay. We quantify the tuning to directly result from the controlled variation of the instantaneous laser frequency at the shaped driver pulse intensity maximum.

  14. Gigahertz frequency comb from a diode-pumped solid-state laser

    OpenAIRE

    Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula

    2014-01-01

    We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear...

  15. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling

    Science.gov (United States)

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C 14N - recombinant ion and the use of the 13C: 12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  16. Fast Characterization of Dispersion and Dispersion Slope of Optical Fiber Links using Spectral Interferometry with Frequency Combs

    CERN Document Server

    Supradeepa, V R; Leaird, Daniel E; Weiner, Andrew M

    2009-01-01

    We demonstrate fast characterization (~1.4 microseconds) of both the dispersion and dispersion slope of long optical fiber links (~25 km) using dual quadrature spectral interferometry with an optical frequency comb. Compared to previous spectral interferometry experiments limited to fiber lengths of meters, the long coherence length and the periodic delay properties of frequency combs, coupled with fast data acquisition, enable spectral interferometric characterization of fibers longer by several orders of magnitude. We expect that our method will be useful to recently proposed lightwave techniques like coherent WDM and to coherent modulation formats by providing a real time monitoring capability for the link dispersion. Another area of application would be in stabilization of systems which perform frequency and timing distribution over long fiber links using stabilized optical frequency combs.

  17. Optical frequency comb-based local oscillator phase noise cancellation in time-delay-interferometer for gravitational wave detection

    Science.gov (United States)

    Yu, Nan

    Time-delay-interferometer (TDI) is well established as an effective technique to mitigate laser phase noises in laser interferometer gravitational wave detection (GWD). Just as important in the TDI scheme is the ability to suppress the rf local oscillator noise (LO) in the optical heterodyne measurements. We show that LO noises can be effectively and elegantly cancelled by employing optical frequency combs in which the rf signal phases are coherent with the optical phases. In addition, the deployment of optical combs eliminates the need for separate ultra-stable oscillators. This is a simpler and more reliable approach than the modulation scheme, and it can be applied to the most generalized TDI combinations. In this proposed effort, we will investigate the application of optical combs in TDI and demonstrate in a test bed simultaneous noise cancellations in both ranging lasers and rf LOs in a generalized TDI configuration.

  18. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    Science.gov (United States)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  19. Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism

    International Nuclear Information System (INIS)

    The frequency comb from a prism-based Cr:forsterite laser has been frequency stabilized using intracavity prism insertion and pump power modulation. Absolute frequency measurements of a CW fiber laser stabilized to the P(13) transition of acetylene demonstrate a fractional instability of ∼2x10-11 at a 1 s gate time, limited by a commercial Global Positioning System (GPS)-disciplined rubidium oscillator. Additionally, absolute frequency measurements made simultaneously using a second frequency comb indicate relative instabilities of 3x10-12 for both combs for a 1 s gate time. Estimations of the carrier-envelope offset frequency linewidth based on relative intensity noise and the response dynamics of the carrier-envelope offset to pump power changes confirm the observed linewidths.

  20. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    International Nuclear Information System (INIS)

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10−7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications. (paper)

  1. Frequency Comb Generation in 300 nm Thick SiN Concentric-Racetrack-Resonators: Overcoming the Material Dispersion Limit

    CERN Document Server

    Kim, Sangsik; Wang, Cong; Jaramillo-Villegas, Jose A; Xue, Xiaoxiao; Bao, Chengying; Xuan, Yi; Leaird, Daniel E; Weiner, Andrew M; Qi, Minghao

    2016-01-01

    Kerr nonlinearity based frequency combs and solitons have been generated from on-chip optical microresonators with high quality factors and global or local anomalous dispersion. However, fabrication of such resonators usually requires materials and/or processes that are not standard in semiconductor manufacturing facilities. Moreover, in certain frequency regimes such as visible and ultra-violet, the large normal material dispersion makes it extremely difficult to achieve anomalous dispersion. Here we present a concentric racetrack-shaped resonator that achieves anomalous dispersion in a 300 nm thick silicon nitride film, suitable for semiconductor manufacturing but previously thought to result only in waveguides with high normal dispersion, a high intrinsic Q of 1.5 million, and a novel mode-selective coupling scheme that allows coherent combs to be generated. We also provide evidence suggestive of soliton-like pulse formation in the generated comb. Our method can achieve anomalous dispersion over moderately...

  2. High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator

    CERN Document Server

    Zhu, Feng; Kolomenskii, Alexandre A; Strohaber, James; Holzwarth, Ronald; Schuessler, Hans A

    2013-01-01

    We report on a high-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator with a stabilized repetition rate at 250 MHz. The mid-infrared frequency comb is produced through difference frequency generation in a periodically poled MgO-doped lithium niobate crystal. The output power is about 120 mW with a pulse duration of about 80 fs, and spectrum coverage from 2.9 to 3.6 um. The coherence properties of the produced high-power broadband mid-infrared frequency comb are maintained, which was verified by heterodyne measurements. As the first application, the spectrum of a ~200 ppm methane-air mixture in a short 20 cm glass cell at ambient atmospheric pressure and temperature was measured.

  3. Frequency measurement of THz waves by electro-optic sampling using Mach-Zehnder-modulator-based flat comb generator

    Science.gov (United States)

    Morohashi, Isao; Kirigaya, Mayu; Kaneko, Yuta; Katayama, Ikufumi; Sakamoto, Takahide; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao

    2016-02-01

    In the recent progress in terahertz (THz) devices, various kinds of source devices, such as resonant tunneling diodes, quantum cascade lasers and so forth, have been developed. Frequency measurement of THz radiations, which can operate in high speed and at room-temperature, is important for development of high-performance THz source devices. Recently, frequency measurement using optical combs are demonstrated by several groups. In these techniques, modelocked lasers (MLLs) are used for optical comb source, so that phase-locking techniques are required in order to stabilize the repetition frequency of the MLLs. On the other hand, a modulator-based optical comb generator has high accuracy and stability in the comb spacing, which is comparable to that of microwave signal driving the modulator. Thus it is suitable for frequency measurement of THz waves. In this paper, we demonstrated frequency measurement of THz waves using a Mach-Zehnder-modulator-based flat comb generator (MZ-FCG). The frequency measurement was carried out by an electro-optic (EO) sampling method, where an optical two-tone signal extracted from the optical comb generated by the MZ-FCG was used for the probe light. A 100 GHz signal generated by a W-band frequency multiplier and the probe beam collinearly traveled through an EO crystal, and beat signals between them were measured by a combination of a balanced photodetector and a spectrum analyzer. As a result, frequency measurement of the 100 GHz wave was successfully demonstrated, in which the linewidth of the beat signal was less than 1 Hz.

  4. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    Science.gov (United States)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  5. Mid-IR frequency measurement using an optical frequency comb and a long-distance remote frequency reference

    CERN Document Server

    Chanteau, Bruno; Zhang, Wei; Santarelli, Giorgio; Coq, Yann Le; Auguste, Frédéric; Darquié, Benoît; Chardonnet, Christian; Amy-Klein, Anne

    2012-01-01

    We have built a frequency chain which enables to measure the absolute frequency of a laser emitting in the 28-31 THz frequency range and stabilized onto a molecular absorption line. The set-up uses an optical frequency comb and an ultrastable 1.55 $\\mu$m frequency reference signal, transferred from LNE-SYRTE to LPL through an optical link. We are now progressing towards the stabilization of the mid-IR laser via the frequency comb and the extension of this technique to quantum cascade lasers. Such a development is very challenging for ultrahigh resolution molecular spectroscopy and fundamental tests of physics with molecules.

  6. Transferring the stability of iodine-stabilized diode laser at 634 nm to radio frequency by an optical frequency comb

    Institute of Scientific and Technical Information of China (English)

    Lin Yi; Xianghui Qi; Wenlan Chen; Dawei Zhou; Tong Zhou; Xiaoji Zhou; Xuzong Chen

    2009-01-01

    An optical frequency comb phase-locked on an iodine frequency stabilized diode laser at 634 nm is con structed to transfer the accuracy and stability from the optical domain to the radio frequency domain. An external-cavity diode laser is frequency-stabilized on the Doppler-free absorption signals of the hyperfine transition R(80)8-4 using the third-harmonic detection technique. The instability of the ultra-stable op tical oscillator is determined to be 7 x 10-12 by a cesium atomic clock via the optical frequency comb's mass frequency dividing technique.

  7. Hilbert Transform based Quadrature Hybrid RF Photonic Coupler via a Micro-Resonator Optical Frequency Comb Source

    CERN Document Server

    Nguyen, Thach G; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  8. Generation of An Efficient Digital Watermark Key Based on Honey Comb Polynomial Interpolation Approach

    Directory of Open Access Journals (Sweden)

    G.RoslineNesakumari

    2013-03-01

    Full Text Available The present paper provides a new mechanism with two stages for efficient authentication based on Honey Comb Polynomial Interpolation (HCPI and Morphological Border Sorted Pixel Value Difference (MBSPVD scheme. A simple polynomial interpolation technique on new hexagonal structure called Honey Comb structure (HCS is used for generating the key of the digital watermark. The polynomial interpolation gives a high secured key, which is difficult to break. HCS is used in the present paper to select pixel positions for generating the Digital Watermark key (DWK. The significant factor of the present method is, the digital watermark is generated by using DWK. The importance of HCS representation is that it possesses special computational features that are pertinent to the vision process. The HCS has features of higher degree of circular symmetry, uniform connectivity, greater angular resolution, and which leads to reduce storage and computation in image processing operations. The DWK is placed in the image by using MBSPVD method. Its guarantees high authentication, robustness, security and copyright protection. The Lagrange Polynomial interpolation (LPI is used for retrieving the digital watermark from the DWK. The LPI accomplish the aim of image authentication and protection without reducing the image quality. The proposed HCPI-MBSPVD is tested with various attacks and compared with various existing image authentication and copyright protection methods. The comparisons and results indicate the efficacy of the proposed method.

  9. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression.

    Science.gov (United States)

    Huang, S-W; Liu, H; Yang, J; Yu, M; Kwong, D-L; Wong, C W

    2016-05-16

    High-Q microresonator is perceived as a promising platform for optical frequency comb generation, via dissipative soliton formation. In order to achieve a higher quality factor and obtain the necessary anomalous dispersion, multi-mode waveguides were previously implemented in Si3N4 microresonators. However, coupling between different transverse mode families in multi-mode waveguides results in periodic disruption of dispersion and quality factor, and consequently causes perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional Si3N4 microresonators. Here, we report a novel design of Si3N4 microresonator in which single-mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The novel microresonator is consisted of uniform single-mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic quality factor of the microresonator reaches 1.36 × 10(6) while the group velocity dispersion remains to be anomalous at -50 fs(2)/mm. With this novel microresonator, we demonstrate that broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band.

  10. Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    CERN Document Server

    Eyler, E E; Stowe, Matthew C; Thorpe, Michael J; Schibli, T R; Ye, Jun

    2007-01-01

    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable $2 ^3S$ state atoms. We analyze schemes for measuring the two-photon $2 ^3S \\to 4 ^3S$ interval, and for resonant two-photon excitation to high Rydberg states, $2 ^3S \\to 3 ^3P \\to n^3S,D$. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the $1 ^1S$ or $2 ^1S$ state via intercombination transition. A particularly intriguing scenario is the possibility of direct singlet state sp...

  11. Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium

    CERN Document Server

    Yasuda, Masami; Inaba, Hajime; Nakajima, Yoshiaki; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei

    2010-01-01

    A frequency-stabilized light source emitting at 556 nm is realized by frequency-doubling a 1112-nm laser, which is phase-locked to a fiber-based optical frequency comb. The 1112-nm laser is either an ytterbium (Yb)-doped distributed feedback fiber laser or a master-slave laser system that uses an external cavity diode laser as a master laser. We have achieved the continuous frequency stabilization of the light source over a five-day period. With the light source, we have completed the second-stage magneto-optical trapping (MOT) of Yb atoms using the 1S0 - 3P1 intercombination transition. The temperature of the ultracold atoms in the MOT was 40 uK when measured using the time-of-flight method, and this is sufficient for loading the atoms into an optical lattice. The fiber-based frequency comb is shown to be a useful tool for controlling the laser frequency in cold-atom experiments.

  12. Nonlinear dynamics of spring softening and hardening in folded-mems comb drive resonators

    KAUST Repository

    Elshurafa, Amro

    2011-08-01

    This paper studies analytically and numerically the spring softening and hardening phenomena that occur in electrostatically actuated microelectromechanical systems comb drive resonators utilizing folded suspension beams. An analytical expression for the electrostatic force generated between the combs of the rotor and the stator is derived and takes into account both the transverse and longitudinal capacitances present. After formulating the problem, the resulting stiff differential equations are solved analytically using the method of multiple scales, and a closed-form solution is obtained. Furthermore, the nonlinear boundary value problem that describes the dynamics of inextensional spring beams is solved using straightforward perturbation to obtain the linear and nonlinear spring constants of the beam. The analytical solution is verified numerically using a Matlab/Simulink environment, and the results from both analyses exhibit excellent agreement. Stability analysis based on phase plane trajectory is also presented and fully explains previously reported empirical results that lacked sufficient theoretical description. Finally, the proposed solutions are, once again, verified with previously published measurement results. The closed-form solutions provided are easy to apply and enable predicting the actual behavior of resonators and gyroscopes with similar structures. © 2011 IEEE.

  13. Frequency Comb-Based Remote Sensing of Greenhouse Gases over Kilometer Air Paths

    CERN Document Server

    Rieker, Gregory B; Swann, William C; Kofler, Jon; Zolot, Alex M; Sinclair, Laura C; Baumann, Esther; Cromer, Christopher; Petron, Gabrielle; Sweeney, Colm; Tans, Pieter P; Coddington, Ian; Newbury, Nathan R

    2014-01-01

    We demonstrate coherent dual frequency-comb spectroscopy for detecting variations in greenhouse gases. High signal-to-noise spectra are acquired spanning 5990 to 6260 cm^-1 (1600 to 1670 nm) covering ~700 absorption features from CO2, CH4, H2O, HDO, and 13CO2, across a 2-km open-air path. The transmission of each frequency comb tooth is resolved, leading to spectra with <1 kHz frequency accuracy, no instrument lineshape, and a 0.0033-cm^-1 point spacing. The fitted path-averaged concentrations and temperature yield dry-air mole fractions. These are compared with a point sensor under well-mixed conditions to evaluate current absorption models for real atmospheres. In heterogeneous conditions, time-resolved data demonstrate tracking of strong variations in mole fractions. A precision of <1 ppm for CO2 and <3 ppb for CH4 is achieved in 5 minutes in this initial demonstration. Future portable systems could support regional emissions monitoring and validation of the spectral databases critical to global s...

  14. Nested folded-beam suspensions with low longitudinal stiffness for comb-drive actuators

    International Nuclear Information System (INIS)

    Nested folded-beam suspensions with a low longitudinal spring constant and a high lateral spring constant have been used in comb-drive actuators. In the new design, every two flexible beams and two stiff members form a parallelogram flexure, which is considered as an ‘element’ of the nested folded-beam suspension. A set of these flexures of increasing size were placed one outside another to compose a nested structure. In this way, a serial mechanical connection between adjacent parallelogram flexures was formed; thus, a longer output stroke was obtained by combining the stroke displacements of all flexures in an additive fashion. The designed suspensions were theoretically analyzed and numerically simulated. Furthermore, comb-drive actuators with conventional and new suspensions were fabricated and tested to verify the predicted function. In the testing cases, the longitudinal spring constants of suspensions with two (conventional), three and four parallelogram flexures on each side were measured as 2.77, 1.75 and 1.36 N m−1. The ratio among these three values was approximately 6:4:3, which is consistent with the theoretical predictions and simulation results. Microfabricated folded beams in series were achieved. (paper)

  15. PH- and salt-dependent molecular combing of DNA: experiments and phenomenological model

    Energy Technology Data Exchange (ETDEWEB)

    Benke, Annegret; Pompe, Wolfgang [Institut fuer Werkstoffwissenschaft and Max-Bergmann-Zentrum fuer Biomaterialien, Technische Universitaet Dresden, D-01062 Dresden (Germany); Mertig, Michael, E-mail: annegret.benke@nano.tu-dresden.de [Physikalische Chemie, Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2011-01-21

    {lambda}-DNA as well as plasmids can be successfully deposited by molecular combing on hydrophobic surfaces, for pH values ranging from 4 to 10. On polydimethylsiloxane (PDMS) substrates, the deposited DNA molecules are overstretched by about 60-100%. There is a significant influence of sodium ions (NaCl) on the surface density of the deposited DNA, with a maximum near to 100 mM NaCl for a DNA solution (28 ng {mu}l{sup -1}) at pH 8. The combing process can be described by a micromechanical model including: (i) the adsorption of free moving coiled DNA at the substrate; (ii) the stretching of the coiled DNA by the preceding meniscus; (iii) the relaxation of the deposited DNA to the final length. The sticky ends of {lambda}-DNA cause an adhesion force in the range of about 400 pN which allows a stable overstretching of the DNA by the preceding meniscus. The exposing of hidden hydrophobic bonds of the overstretched DNA leads to a stable deposition on the hydrophobic substrate. The pH-dependent density of deposited DNA as well as the observed influence of sodium ions can be explained by their screening of the negatively charged DNA backbone and sticky ends, respectively. The final DNA length can be derived from a balance of the stored elastic energy of the overstretched molecules and the energy of adhesion.

  16. Channel Estimation Based in Comb-Type Pilots Arrangement for OFDM System over Time Varying Channel

    Directory of Open Access Journals (Sweden)

    Hala M. Mahmoud

    2010-07-01

    Full Text Available Orthogonal Frequency Division Multiplexing (OFDM has been recently applied widely in wireless communication systems, due to its high data rate, transmission capability with high bandwidth, efficiency and its robustness to multipath delay .Channel estimation is an essential problem in OFDM system. Pilot-aided channel estimation has been used; a good choice of the pilot pattern should match the channel behavior both in time and frequency domains. We explored comb pilot arrangements. The advantage for comb type pilots arrangement in channel estimation is the ability to track the variation of the channel caused by doppler frequency, it is observed that the doppler effect can be reduced, and so this will increase the system mobility. Kalman and Least Square (LS estimators have been proposed to estimate the Channel Frequency Response (CFR at the pilots location, then CFR at data sub channels are obtained by mean of interpolation between estimates at pilot locations. Different types of interpolations have been used such as; low pass interpolation; spline cubic interpolation and linear interpolation. Kalman estimation has better performance than LS estimation. The estimators perform about the same for SNR lower than 10 dB. The performances of all schemes have been compared by finding Bit Error Rate (BER, where BPSK modulation scheme was used.

  17. Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters

    Science.gov (United States)

    Sun, Wenhui; Wang, Sunlong; Zhong, Xin; Liu, Jianguo; Wang, Wenting; Tong, Youwan; Chen, Wei; Yuan, Haiqing; Yu, Lijuan; Zhu, Ninghua

    2016-08-01

    An integrated wideband optical frequency comb (OFC) based on a semiconductor quantum dot laser is realized with high stability. The OFC module is packaged in our lab. A circuit which is designed to provide a low-ripple current and control the temperature regards as a servo system to enhance the stability of the OFC. The frequency stability of the OFC is 2.7×10-9 (Allan Variance). The free spectral range (FSR) of the OFC is 40 GHz and the number of comb lines is up to 55. The flatness of the OFC over span of 4 nm can be limited to 0.5 dB. Negative coefficients microwave photonic filters with multiple taps are generated based on the proposed OFC. For the 10 taps microwave photonic filter, the pass-band at 8.74 GHz has a 3 dB bandwidth of 630 MHz with 16.58 dB side-lobe suppression. Compared with the published microwave photonic filters, the proposed system is more stable, of more compact structures, and of less power consumption.

  18. Genomic data do not support comb jellies as the sister group to all other animals.

    Science.gov (United States)

    Pisani, Davide; Pett, Walker; Dohrmann, Martin; Feuda, Roberto; Rota-Stabelli, Omar; Philippe, Hervé; Lartillot, Nicolas; Wörheide, Gert

    2015-12-15

    Understanding how complex traits, such as epithelia, nervous systems, muscles, or guts, originated depends on a well-supported hypothesis about the phylogenetic relationships among major animal lineages. Traditionally, sponges (Porifera) have been interpreted as the sister group to the remaining animals, a hypothesis consistent with the conventional view that the last common animal ancestor was relatively simple and more complex body plans arose later in evolution. However, this premise has recently been challenged by analyses of the genomes of comb jellies (Ctenophora), which, instead, found ctenophores as the sister group to the remaining animals (the "Ctenophora-sister" hypothesis). Because ctenophores are morphologically complex predators with true epithelia, nervous systems, muscles, and guts, this scenario implies these traits were either present in the last common ancestor of all animals and were lost secondarily in sponges and placozoans (Trichoplax) or, alternatively, evolved convergently in comb jellies. Here, we analyze representative datasets from recent studies supporting Ctenophora-sister, including genome-scale alignments of concatenated protein sequences, as well as a genomic gene content dataset. We found no support for Ctenophora-sister and conclude it is an artifact resulting from inadequate methodology, especially the use of simplistic evolutionary models and inappropriate choice of species to root the metazoan tree. Our results reinforce a traditional scenario for the evolution of complexity in animals, and indicate that inferences about the evolution of Metazoa based on the Ctenophora-sister hypothesis are not supported by the currently available data.

  19. Genomic data do not support comb jellies as the sister group to all other animals.

    Science.gov (United States)

    Pisani, Davide; Pett, Walker; Dohrmann, Martin; Feuda, Roberto; Rota-Stabelli, Omar; Philippe, Hervé; Lartillot, Nicolas; Wörheide, Gert

    2015-12-15

    Understanding how complex traits, such as epithelia, nervous systems, muscles, or guts, originated depends on a well-supported hypothesis about the phylogenetic relationships among major animal lineages. Traditionally, sponges (Porifera) have been interpreted as the sister group to the remaining animals, a hypothesis consistent with the conventional view that the last common animal ancestor was relatively simple and more complex body plans arose later in evolution. However, this premise has recently been challenged by analyses of the genomes of comb jellies (Ctenophora), which, instead, found ctenophores as the sister group to the remaining animals (the "Ctenophora-sister" hypothesis). Because ctenophores are morphologically complex predators with true epithelia, nervous systems, muscles, and guts, this scenario implies these traits were either present in the last common ancestor of all animals and were lost secondarily in sponges and placozoans (Trichoplax) or, alternatively, evolved convergently in comb jellies. Here, we analyze representative datasets from recent studies supporting Ctenophora-sister, including genome-scale alignments of concatenated protein sequences, as well as a genomic gene content dataset. We found no support for Ctenophora-sister and conclude it is an artifact resulting from inadequate methodology, especially the use of simplistic evolutionary models and inappropriate choice of species to root the metazoan tree. Our results reinforce a traditional scenario for the evolution of complexity in animals, and indicate that inferences about the evolution of Metazoa based on the Ctenophora-sister hypothesis are not supported by the currently available data. PMID:26621703

  20. Slow light enhanced atomic frequency comb quantum memories in photonic crystal waveguides

    Science.gov (United States)

    Yuan, Chenzhi; Zhang, Wei; Huang, Yidong; Peng, Jiangde

    2016-09-01

    In this paper, we propose a slow light-enhanced quantum memory with high efficiency based on atomic frequency comb (AFC) in ion-doped photonic crystal waveguide (PCW). The performance of the quantum memory is investigated theoretically, considering the impact of the signal bandwidth. Both the forward and backward retrieval schemes are analyzed. In the forward retrieval scheme, the analysis shows that a moderate slow light effect can improve the retrieval efficiency to above 50% with very high fidelity, even when the intrinsic optical depth is very low and the signal bandwidth is comparable with the AFC bandwidth. In the backward retrieval scheme, retrieval efficiency larger than 90% can be obtained and fidelity can remain above 90% for signal with bandwidth much narrower than AFC bandwidth, when moderate slow light is introduced into waveguide with low intrinsic optical depth. Although the phase mismatching effect limits the slow light enhancement on retrieval efficiency and decreases the fidelity for signal with bandwidth approaching AFC bandwidth, we design a modified atomic frequency comb structure (MAFC) based on which a moderate slow light can make the retrieval efficiency larger than 85% and keep the fidelity above 80%. Our calculations show that the proposed scheme provides a promising way to realize high efficiency on-chip quantum memory.

  1. The CombLayer build of the MCNPX models for the design of the fast neutron ports in the European Spallation Source

    International Nuclear Information System (INIS)

    Building MCNPX models is a time consuming process. At ISIS, a modeling architecture called 'CombLayer' has been developed, which allows MCNPX models to be produced rapidly, and in a highly parametric manner. In this work, CombLayer has been used for neutronic studies for the European Spallation Source (ESS). Initially, MCNPX models of the ESS were modified to include the irradiation ports and material test volumes. The computational time required to run each of these models was prohibitive, which precludes running multiple configurations for optimizations. To help mitigate this performance problem, we built the model using the CombLayer coding model. CombLayer is a C++ tool-kit for building geometric models. These models can then be rewritten in various formats, including MCNPX. As the CombLayer program has a working model, it is able to perform simple geometric optimizations (e.g. minimizing the cell literals, removing complementary objects) and some computed variance reduction

  2. Broadband Continuous-Wave Multi-Harmonic Optical Comb Based on a Frequency Division-by-Three Optical Parametric Oscillator

    Directory of Open Access Journals (Sweden)

    Yen-Yin Lin

    2014-11-01

    Full Text Available We report a multi-watt broadband continuous-wave multi-harmonic optical comb based on a frequency division-by-three singly-resonant optical parametric oscillator. This cw optical comb is frequency-stabilized with the help of a beat signal derived from the signal and frequency-doubled idler waves. The measured frequency fluctuation in one standard deviation is ~437 kHz. This is comparable to the linewidth of the pump laser which is a master-oscillator seeded Yb:doped fiber amplifier at ~1064 nm. The measured powers of the fundamental wave and the harmonic waves up to the 6th harmonic wave are 1.64 W, 0.77 W, 3.9 W, 0.78 W, 0.17 W, and 0.11 W, respectively. The total spectral width covered by this multi-harmonic comb is ~470 THz. When properly phased, this multi-harmonic optical comb can be expected to produce by Fourier synthesis a light source consisting of periodic optical field waveforms that have an envelope full-width at half-maximum of 1.59 fs in each period.

  3. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.

    Science.gov (United States)

    Zhang, Wei; Xu, Zhenyu; Lours, Michel; Boudot, Rodolphe; Kersalé, Yann; Luiten, Andre N; Le Coq, Yann; Santarelli, Giorgio

    2011-05-01

    We report what we believe to be the lowest phase noise optical-to-microwave frequency division using fiber-based femtosecond optical frequency combs: a residual phase noise of -120 dBc/Hz at 1 Hz offset from an 11.55 GHz carrier frequency. Furthermore, we report a detailed investigation into the fundamental noise sources which affect the division process itself. Two frequency combs with quasi-identical configurations are referenced to a common ultrastable cavity laser source. To identify each of the limiting effects, we implement an ultra-low noise carrier-suppression measurement system, which avoids the detection and amplification noise of more conventional techniques. This technique suppresses these unwanted sources of noise to very low levels. In the Fourier frequency range of ∼200 Hz to 100 kHz, a feed-forward technique based on a voltage-controlled phase shifter delivers a further noise reduction of 10 dB. For lower Fourier frequencies, optical power stabilization is implemented to reduce the relative intensity noise which causes unwanted phase noise through power-to-phase conversion in the detector. We implement and compare two possible control schemes based on an acousto-optical modulator and comb pump current. We also present wideband measurements of the relative intensity noise of the fiber comb. PMID:21622045

  4. Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source.

    Science.gov (United States)

    Pfeifle, Joerg; Vujicic, Vidak; Watts, Regan T; Schindler, Philipp C; Weimann, Claudius; Zhou, Rui; Freude, Wolfgang; Barry, Liam P; Koos, Christian

    2015-01-26

    Terabit/s super-channels are likely to become the standard for next-generation optical networks and optical interconnects. A particularly promising approach exploits optical frequency combs for super-channel generation. We show that injection locking of a gain-switched laser diode can be used to generate frequency combs that are particularly well suited for terabit/s super-channel transmission. This approach stands out due to its extraordinary stability and flexibility in tuning both center wavelength and line spacing. We perform a series of transmission experiments using different comb line spacings and modulation formats. Using 9 comb lines and 16QAM signaling, an aggregate line rate (net data rate) of 1.296 Tbit/s (1.109 Tbit/s) is achieved for transmission over 150 km of standard single mode fiber (SSMF) using a spectral bandwidth of 166.5 GHz, which corresponds to a (net) spectral efficiency of 7.8 bit/s/Hz (6.7 bit/s/Hz). The line rate (net data rate) can be boosted to 2.112 Tbit/s (1.867 Tbit/s) for transmission over 300 km of SSMF by using a bandwidth of 300 GHz and QPSK modulation on the weaker carriers. For the reported net data rates and spectral efficiencies, we assume a variable overhead of either 7% or 20% for forward- error correction depending on the individual sub-channel quality after fiber transmission.

  5. Chromium:forsterite laser frequency comb stabilization and development of portable frequency references inside a hollow optical fiber

    Science.gov (United States)

    Thapa, Rajesh

    We have made significant accomplishments in the development of portable frequency standard inside hollow optical fibers. Such standards will improve portable optical frequency references available to the telecommunications industry. Our approach relies on the development of a stabilized Cr:forsterite laser to generate the frequency comb in the near-IR region. This laser is self referenced and locked to a CW laser which in turn is stabilized to a sub-Doppler feature of a molecular transition. The molecular transition is realized using a hollow core fiber filled with acetylene gas. We finally measured the absolute frequency of these molecular transitions to characterize the references. In this thesis, the major ideas, techniques and experimental results for the development and absolute frequency measurement of the portable frequency references are presented. A prism-based Cr:forsterite frequency comb is stabilized. We have effectively used the prism modulation along with power modulation inside the cavity in order to actively stabilize the frequency comb. We have also studied the carrier-envelope-offset frequency (f0) dynamics of the laser and its effect on laser stabilization. A reduction of f0 linewidth from ˜2 MHz to ˜20 kHz has also been observed. Both our in-loop and out-of-loop measurements of the comb stability showed that the comb is stable within a part in 1011 at 1-s gate time and is currently limited by our reference signal. In order to develop this portable frequency standard, saturated absorption spectroscopy is performed on the acetylene v1 + v3 band near 1532 nm inside different kinds of hollow optical fibers. The observed linewidths are a factor 2 narrower in the 20 mum fiber as compared to 10 mum fiber, and vary from 20-40 MHz depending on pressure and power. The 70 mum kagome fiber shows a further reduction in linewidth to less than 10 MHz. In order to seal the gas inside the hollow optical fiber, we have also developed a technique of splicing the

  6. Pesticides for apicultural and/or agricultural application found in Belgian honey bee wax combs.

    Science.gov (United States)

    Ravoet, Jorgen; Reybroeck, Wim; de Graaf, Dirk C

    2015-05-01

    In a Belgian pilot study honey bee wax combs from ten hives were analyzed on the presence of almost 300 organochlorine and organophosphorous compounds by LC-MS/MS and GC-MS/MS. Traces of 18 pesticides were found and not a single sample was free of residues. The number of residues found per sample ranged from 3 to 13, and the pesticides found could be categorized as (1) pesticides for solely apicultural (veterinary) application, (2) pesticides for solely agricultural (crop protection) application, (3) pesticides for mixed agricultural and apicultural (veterinary) application. The frequencies and quantities of some environmental pollutants bear us high concerns. Most alarming was the detection of lindane (gamma-HCH) and dichlorodiphenyltrichloroethane (including its breakdown product dichlorodiphenyldichloroethylene), two insecticides that are banned in Europe. The present comprehensive residue analysis, however, also reveals residues of pesticides never found in beeswax before, i.e. DEET, propargite and bromophos.

  7. Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Galli, I.; Cappelli, F.; Bartalini, S.; Mazzotti, D.; Giusfredi, G.; Cancio, P.; De Natale, P. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Siciliani de Cumis, M. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); Borri, S. [CNR-IFN-Istituto di Fotonica e Nanotecnologie, Via Amendola 173, 70126 Bari, BA (Italy); Montori, A. [LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Akikusa, N. [Development Bureau Laser Device R and D Group, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan); Yamanishi, M. [Central Research Laboratories, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan)

    2013-03-25

    We report on the linewidth narrowing of a room-temperature mid-infrared quantum cascade laser by phase-locking to a difference-frequency-generated radiation referenced to an optical frequency comb synthesizer. A locking bandwidth of 250 kHz, with a residual rms phase-noise of 0.56 rad, has been achieved. The laser linewidth is narrowed by more than 2 orders of magnitude below 1 kHz, and its frequency is stabilized with an absolute traceability of 2 Multiplication-Sign 10{sup -12}. This source has allowed the measurement of the absolute frequency of a CO{sub 2} molecular transition with an uncertainty of about 1 kHz.

  8. "Nail" and "comb" effects of cholesterol modified NIPAm oligomers on cancer targeting liposomes

    KAUST Repository

    Li, Wengang

    2014-01-01

    Thermosensitive liposomes are a promising approach to controlled release and reduced drug cytotoxicity. Low molecular weight N-isopropylacrylamide (NIPAm) oligomers (NOs) with different architectures (main chain NOs (MCNOs) and side chain NOs (SCNOs)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and radical polymerization and then separately used to prepare thermosensitive liposomes. A more controlled and enhanced release was observed for both NO liposomes compared to pristine ones. Two release mechanisms depending on the oligomer architecture, namely "nail" for MCNOs and "comb" for SCNOs, are proposed. In addition to thermosensitivity, the cancer targeting property of NO liposomes was achieved by further biotinylation of the delivery system. © The Royal Society of Chemistry.

  9. Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication

    International Nuclear Information System (INIS)

    We exploit the frequency comb of a fs laser as the frequency ruler to generate reference optical frequencies for multi-channel DWDM (dense wavelength-division-multiplexing) telecommunication. Our fiber-based scheme of single-mode extraction enables on-demand generation of optical frequencies within the telecommunication band with an absolute frequency uncertainty of 9.1×10-13. The linewidth of extracted optical modes is less than 1 Hz, and the instability is measured 2.3×10-15 at 10 s averaging. This outstanding performance of optical frequency generation would lead to a drastic improvement of the spectral efficiency for the next-generation DWDM telecommunication

  10. Smooth coherent Kerr frequency combs generation with broadly tunable pump by higher order mode suppression

    CERN Document Server

    Huang, S -W; Yang, J; Yu, M; Kwong, D -L; Wong, C W

    2016-01-01

    High-Q microresonator has been suggested a promising platform for optical frequency comb generation, via dissipative soliton formation. To achieve a higher Q and obtain the necessary anomalous dispersion, $Si_3N_4$ microresonators made of multi-mode waveguides were previously implemented. However, coupling between different transverse mode families in the multi-mode waveguides results in periodic disruption of dispersion and quality factor, introducing perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional $Si_3N_4$ microresonators. Here, we report a novel design of $Si_3N_4$ microresonator such that single mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The microresonator is consisted of uniform single mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered wavegui...

  11. Brevibacterium rufescens nov. comb. , a facultative anaerobic methylotrophic bacterium from oil-bearing strata

    Energy Technology Data Exchange (ETDEWEB)

    Nazina, T.N.

    1981-03-01

    The paper presents the results of studying the bacterial population from the microaerophilic zone of oil-bearing strata of the Apsheron Peninsula. The incidence of bacteria capable of growing at the account of organic substances present in stratal water could reach dozens of thousands of cells in 1 ml. A bacterium predominant in the bacterial cenosis of the microaerophilic zone was islated as a pure culture. A new combination, Brevibacterium rufescens nov. comb. was created on the basis of morphological, physiologo-biochemical properties and the GC content in the DNA of the organism under study. The microorganism is adapted to its habitat in a number of properties. The necessity of recreating the genus Brevibacterium is discussed.

  12. Sustained release of protein from poly(ethylene glycol) incorporated amphiphilic comb like polymers.

    Science.gov (United States)

    Srividhya, M; Preethi, S; Gnanamani, A; Reddy, B S R

    2006-12-01

    Amphiphilic comb like macromonomer containing hydrophilic poly(ethylene glycol) groups covalently linked to poly(hydromethyl siloxane) (PHMS) were prepared by hydrosilylation reaction. The epoxy reacting sites were introduced to this amphiphilic system by the reaction with allyl epoxy propyl ether (AEPE). Bovine serum albumin (BSA), a model protein drug was loaded to the PEG-PDMS system and very thin membranes were made from this macromonomer adopting solution casting technique. The in vitro protein release studies at various pH conditions showed a controlled release profile without exhibiting any initial burst. The control of the initial burst might be due to the strong linkages of the protein with the membrane and the aggregation of the protein at the surface. The morphology of the membrane before and after the protein release, and the mechanical strength were evaluated. The surface properties of the membrane were studied using the contact angle measurements. PMID:16930885

  13. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise

    Science.gov (United States)

    Koke, Sebastian; Grebing, Christian; Frei, Harald; Anderson, Alexandria; Assion, Andreas; Steinmeyer, Günter

    2010-07-01

    Carrier-envelope phase stabilization has opened an avenue towards achieving frequency metrology with unprecedented precision and optical pulse generation on the previously inaccessible attosecond timescale. Recently, sub-100-as pulse generation has been demonstrated, approaching the timescale of the fastest transients in atomic physics. However, further progress in attophysics appears to be limited by the performance of the traditional feedback approach used for carrier-envelope phase stabilization. Here, we demonstrate a conceptually different self-referenced feed-forward approach to phase stabilization. This approach requires no complicated locking electronics, does not compromise laser performance, and is demonstrated with 12-as residual timing jitter, which is below the atomic unit of time. This surpasses the precision of previous methods by more than a factor of five and has potential for resolving even the fastest transients in atomic or molecular physics. Such shot-noise-limited comb synthesis may also simplify progress in current research in frequency metrology.

  14. Bottlebrush and comb-like elastomers as ultra-soft electrical and acoustically active materials

    Science.gov (United States)

    Daniel, William; Vatankhah-Varnosfaderani, Mohammad; Pandya, Ashish; Burdynska, Joanna; Morgan, Benjamin; Everhart, Matthew; Matyjaszewski, Krzysztof; Dobrynin, Andrey; Rubinstein, Michael; Sheiko, Sergei; UNC MIRT Team

    Without swelling in a solvent, it is challenging to obtain materials with a modulus below 105 Pa, which is dictated by chain entanglements. We show that macromolecules can be disentangled by dense grafting of side chains to long polymer chains. The bottlebrush and comb-like architectures demonstrate a unique combination of flexibility and network dilution, leading to significant decrease of the entanglement modulus (Ge) and increase of extensibility. Following theoretical predictions, it has been shown that the Ge is controlled by the polymerization degrees of sidechains (nsc) and grafting spacer (ng) as Ge ~ (ng /nsc) 1 . 5 . Using the reduced entanglement density, we developed solvent-free elastomers with moduli on the order of 100 Pa and excellent extensibility. Using bottlebrush architectures we have developed PDMS dielectric actuators with high deformation at low electric field strength. Additionally strong acoustic adsorption leads to materials showing shape and volume control in light opaque environments. NSF (DMR 1409710, DMR 1122483, DMR 1407645, and DMR 1436201).

  15. Signal line shapes of Fourier transform cavity-enhanced frequency modulation spectroscopy with optical frequency combs

    CERN Document Server

    Johansson, Alexandra C; Khodabakhsh, Amir; Foltynowicz, Aleksandra

    2016-01-01

    We present a thorough analysis of the signal line shapes of Fourier transform-based noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS). We discuss the signal dependence on the ratio of the modulation frequency, f${_m}$, to the molecular line width, {\\Gamma}. We compare a full model of the signals and a simplified absorption-like analytical model that has high accuracy for low f${_m}$/{\\Gamma} ratios and is much faster to compute. We verify the theory experimentally by measuring and fitting NICE-OFCS spectra of CO${_2}$ at 1575 nm using a system based on an Er:fiber femtosecond laser and a cavity with a finesse of ~11000.

  16. Stable dark and bright soliton Kerr combs can coexist in normal dispersion resonators

    CERN Document Server

    Parra-Rivas, P; Gelens, L

    2016-01-01

    Using the Lugiato-Lefever model, we analyze the ef- fects of third order chromatic dispersion on the exis- tence and stability of dark and bright soliton Kerr fre- quency combs in the normal dispersion regime. While in the absence of third order dispersion only dark soli- tons exist over an extended parameter range, we find that third order dispersion allows for stable dark and bright solitons to coexist. Reversibility is broken and the shape of the switching waves connecting the top and bottom homogeneous solutions is modified. Bright solitons come into existence thanks to the generation of oscillations in the switching wave profiles. Finally, oscillatory instabilities of dark solitons are also sup- pressed in the presence of sufficiently strong third or- der dispersion.

  17. Fibre optics wavemeters calibration using a self-referenced optical frequency comb

    Science.gov (United States)

    Galindo-Santos, J.; Velasco, A. V.; Corredera, P.

    2015-01-01

    Self-referenced optical frequency combs enable the measurement of optical frequencies with a very high accuracy, achieving uncertainties close to the atomic clock used as reference (CSIC and its application to the calibration of two wavemeters in the 1.5 μm optical communication window. Calibration uncertainties down to 12 MHz and 59 MHz were obtained, respectively, for each of the devices. Furthermore, the long-term behaviour of the higher resolution wavemeter was studied during a 750 h period of sustained operation, exhibiting a dispersion in the measurements of 7.72 MHz. Temperature dependence of the device was analysed, enabling to further reduce dispersion down to a 2.15 MHz range, with no significant temporal deviations.

  18. Electronically reconfigurable bandpass microwave photonic filter using a windowed optical frequency comb

    Science.gov (United States)

    Deng, Hong; Fu, Songnian; Tang, Ming; Liu, Deming

    2015-03-01

    A center frequency-tunable multi-tap bandpass microwave photonic filter (MPF) is proposed and experimentally demonstrated, with reconfigurable capability by electronic control. A Mach-Zehnder modulator-based optical frequency comb (OFC) is used as an optical source, and its output is optically shaped before introducing a time delay by 70 km single-mode fiber (SMF) transmission. After an optical-to-electronic conversion, the frequency response in terms of central frequency and passband bandwidth can be electronically reconfigurable by varying either the input microwave frequency of the OFC or the waveshaper configuration without modification of the optical configuration. The experimental results show that more than a 35 dB out-of-band rejection ratio and at least a 3 GHz continuously tuning range of passband center frequency without any DC response can be successfully achieved.

  19. Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser

    Science.gov (United States)

    Zi-Jiao, Yu; Hai-Nian, Han; Yang, Xie; Hao, Teng; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-04-01

    We demonstrate a carrier-envelope phase-stabilized octave-spanning oscillator based on the monolithic scheme. A wide output spectrum extending from 480 nm to 1050 nm was generated directly from an all-chirped mirror Ti:sapphire laser. After several improvements, the carrier-envelope offset (CEO) beat frequency accessed nearly 60 dB under a resolution of 100 kHz. Using a feedback system with 50-kHz bandwidth, we compressed the residual phase noise to 55 mrad (integrated from 1 Hz to 1 MHz) for the stabilized CEO, corresponding to 23-as timing jitter at the central wavelength of 790 nm. This is, to the best of our knowledge, the smallest timing jitter achieved among the existing octave-spanning laser based frequency combs. Project supported by the National Basic Research Program of China (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant Nos. 11078022 and 61378040).

  20. Generation of optical frequency combs in a fiber-ring/microresonator laser system.

    Science.gov (United States)

    Guo, Changlei; Che, Kaijun; Xu, Huiying; Zhang, Pan; Tang, Deyu; Ren, Changyan; Luo, Zhengqian; Cai, Zhiping

    2016-06-01

    We propose and experimentally demonstrate a simple scheme for generating optical frequency combs (OFCs) in a fiber-ring/microresonator laser system. The ultrahigh Q whispering gallery mode microresonator is employed both as a mode reflection mirror to generate erbium lasing and as a Kerr-nonlinearity initiator that introduces optical parametric oscillation signals to form OFCs. By controlling the coupling position between the fiber taper and microresonator, optimizing the fiber polarization, as well as the pump power from a 974 nm laser diode (LD), versatile OFCs can be tuned out from single-wavelength states. The OFCs have single, multiple, or combined free spectral ranges. In addition, a Raman-gain-assisted OFC is also observed with a bandwidth of ∼230  nm. This LD-pumped and multifunctional laser system could find applications in precision spectroscopy, biochemical sensing, and optical fiber communication systems. PMID:27244418

  1. Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation

    CERN Document Server

    Rogov, Andrei

    2016-01-01

    Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.

  2. Multi-band local microwave signal generation based on an optical frequency comb generator

    Science.gov (United States)

    Wang, Wen Ting; Liu, Jian Guo; Sun, Wen Hui; Chen, Wei; Zhu, Ning Hua

    2015-03-01

    We propose and experimental demonstrate a new method to generate multi-band local microwave signals based on an optical frequency comb generator (OFCG) by applying an optical sideband injection locking technique and an optical heterodyning technique. The generated microwave signal can cover multi bands from S band to Ka band. A tunable multiband microwave signal spanning from 5 GHz to 40 GHz can be generated by the beating between the optical carrier and injection locked modulation sidebands in a photodetector without an optical filter. The wavelength of the slave laser can be continuously and near-linearly adjusted by proper changing its bias current. By tuning the bias current of the slave laser, the wavelength of that is matched to one of the modulation sidebands of the OFCG. The performance of the arrangement in terms of the tunability and stability of the generated microwave signal is also studied.

  3. A diode laser spectrometer at 634 nm and absolute frequency measurements using optical frequency comb

    Institute of Scientific and Technical Information of China (English)

    Yi Lin; Yuan Jie; Qi Xiang-Hui; Chen Wen-Lan; Zhou Da-Wei; Zhou Tong; Zhou Xiao-Ji; Chen Xu-Zong

    2009-01-01

    This paper reports that two identical external-cavity-diode-laser(ECDL)based spectrometers are constructed at 634 nm referencing on the hyperfine B-X transition a(80)8-4 of 127I2.The lasers are stabilized on the Doppler-free absorption signals using the third-harmonic detection technique.The instability of the stabilized laser is measured to be 2.8×10-12(after 1000 s)by counting the beat note between the two lasers.The absolute optical frequency of the transition is,for the first time,determined to be 472851936189.5 kHz by using an optical frequency comb referenced on the microwave caesium atomic clock.The uncertainty of the measurement is less than 4.9 kHz.

  4. Single mask, simple structure micro rotational motor driven by electrostatic comb-drive actuators

    International Nuclear Information System (INIS)

    We report a design and fabrication of a new micro rotational motor (MRM) using silicon micromachining technology with the overall diameter of 2.4 mm. This motor utilizes four silicon electrostatic comb-drive actuators to drive the outer ring (or rotor) through ratchet teeth. The novel design of the anti-reverse structure helps us to overcome the gap problem after deep reactive ion etching of silicon. The MRM was fabricated by using silicon on insulator wafer with the thickness of the device layer being 30 µm and one mask only. The motor was successfully tested for performance. It was driven by periodic voltage with different frequencies ranging from 1 to 50 Hz. The angular velocity of the outer ratchet ring was proportional to the frequency. Moreover, when the driving frequency is lower than 30 Hz, the experiment results perfectly match the theoretical calculation

  5. A new Generation of Spectrometer Calibration Techniques based on Optical Frequency Combs

    CERN Document Server

    Schmidt, Piet O; Kimeswenger, Stefan

    2007-01-01

    Typical astronomical spectrographs have a resolution ranging between a few hundred to 200.000. Deconvolution and correlation techniques are being employed with a significance down to 1/1000 th of a pixel. HeAr and ThAr lamps are usually used for calibration in low and high resolution spectroscopy, respectively. Unfortunately, the emitted lines typically cover only a small fraction of the spectrometer's spectral range. Furthermore, their exact position depends strongly on environmental conditions. A problem is the strong intensity variation between different (intensity ratios {>300). In addition, the brightness of the lamps is insufficient to illuminate a spectrograph via an integrating sphere, which in turn is important to calibrate a long-slit spectrograph, as this is the only way to assure a uniform illumination of the spectrograph pupil. Laboratory precision laser spectroscopy has experienced a major advance with the development of optical frequency combs generated by pulsed femto-second lasers. These lase...

  6. Bulk-Quantity Synthesis and Conductive Properties of Comb-Like Dendritic ZnO Nanostructures

    Institute of Scientific and Technical Information of China (English)

    LIAO Zhi-Min; ZHANG Hong-Zhou; XU Jun; YU Da-Peng

    2005-01-01

    @@ Adopting a simple low-temperature (~ 500℃) vapour process, we have synthesized bulk quantity comb-like dendritic ZnO nanostructures in large area.An atomic force microscope equipped with Au-coated probes was employed to elucidate the current-voltage characteristic of the individual ZnO nanocomb.The connection electrodes were defined by depositing Pt wires using focused ion beam (FIB).A rectification effect was observed,while it was slightly suppressed compared with that of the previous reports.The good conductive properties of the sample can be attributed to the Ga+ ions implantation through the FIB process of electrode definition.We suggest that the material and the FIB method can be developed to fabricate novel nanosized devices.

  7. Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers.

    Science.gov (United States)

    Asatekin, Ayse; Mayes, Anne M

    2009-06-15

    The oil industry produces large volumes of wastewater, including oil well produced water brought to the surface during oil drilling, and refinery wastewater. These streams are difficult to treat due to large concentrations of oil. Ultrafiltration (UF) is very promising for their treatment to remove oil, but has been limited by economic obstacles due to severe membrane fouling. In a recent study, novel UF membranes incorporating the amphiphilic comb copolymer additive polyacrylonitrile-graft-poly(ethylene oxide), PAN-g-PEO, were found to exhibit complete resistance to irreversible fouling by several classes of organic foulants (J. Membr. Sci. 2007, 298, 136-146). The current work focuses on application of these novel UF membranes to the treatment of oily wastewater feed streams, employing three industrial samples of oil well produced water and refinery wastewater. UF membranes cast with 20 wt % PAN-g-PEO in PAN achieved removals of dispersed and free oils of over 96% based on chemical oxygen demand (COD) for produced water samples, comparable to a PAN UF commercial membrane control. For refinery wastewater treatment the COD removal values were substantially lower, between 41 and 44%, due to higher contents of dissolved organics. Comb copolymer modified membranes showed significantly better fouling resistance than controls, recovering fully their initial fluxes after a simulated backwash for each of the three wastewater samples tested. The results indicate that UF membranes incorporating PAN-g-PEO can be cleaned completely by physical methods alone, which should extend membrane lifetimes substantially and improve the process economics for treatment of oil-contaminated waters. PMID:19603666

  8. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.

    2016-03-31

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  9. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy

    Science.gov (United States)

    Spaun, Ben; Changala, P. Bryan; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-05-01

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C–H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.

  10. Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, E.E.; Chieda, D.E. [Connecticut Univ., Physics Dept., Storrs, CT (United States); Stowe, M.C.; Thorpe, M.J.; Schibli, T.R.; Ye, J. [Colorado Univ., Dept. of Physics, JILA, National Institute of Standards and Technology, Boulder, CO (United States)

    2008-06-15

    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2{sup 3}S state atoms. We analyze schemes for measuring the two-photon 2{sup 3}S {yields} 4{sup 3}S interval, and for resonant two-photon excitation to high Rydberg states, 2{sup 3}S {yields} 3{sup 3}P {yields} n{sup 3}S, D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1{sup 1}S or 2{sup 1}S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 1{sup 1}S {yields} 2{sup 1}S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a 'triple magic wavelength' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1{sup 1}S, 2{sup 1}S and 2{sup 3}S states are all similar, small, and positive. (authors)

  11. Testicular growth and comb and wattles development in three Italian chicken genotypes reared under freerange conditions

    Directory of Open Access Journals (Sweden)

    Chiara Rizzi

    2015-06-01

    Full Text Available Male chickens belonging to three Italian purebreds – Ermellinata di Rovigo (ER, Robusta lionata (RL and Robusta maculata (RM – were studied. All the birds were reared under the same rearing conditions (from May until autumn. Chickens were reared under infra-red lamps from birth until 4 weeks of age with a 24L:0D photoperiod. Then they were kept outdoor: the photoperiod changed according to the season (from 16L:8D to 12L:12D. At 138 and 168 days of age 20 birds/breed were weighed and then slaughtered. Testicular samples were collected, after evisceration, processed and embedded in paraffine wax. Sections were stained for morphological observations, observed with light microscope, and then classified according to the testis maturation stage. Ermellinata di Rovigo chickens showed the lowest (P<0.01 body weight and the highest (P<0.01 testes weight; testes maturity was higher (P<0.01 in ER than in RL, whereas RM was intermediate. For each genotype testes weight and testes maturity did not significantly differ with aging. Correlations between testes weight and body, comb, and wattles weight, according to the breed, were calculated at 168 days of age. For ER no significant correlation was found, whereas RL showed a significant (P<0.01 positive relationship between testes weight and body weight, and sexual secondary characters. Robusta maculata showed a significant correlation between testes weight and comb (P<0.01 and wattles weight (P<0.10. Our results suggest that under the studied environmental conditions ER showed the highest testes development according to its more precocious achievement of adult body weight, whereas RL was the least precocious purebred.

  12. Anomalous diffusion and dynamics of fluorescence recovery after photobleaching in the random-comb model.

    Science.gov (United States)

    Yuste, S B; Abad, E; Baumgaertner, A

    2016-07-01

    We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length ℓ of each tooth is drawn from a probability distribution displaying power law behavior at large ℓ,P(ℓ)∼ℓ^{-(1+α)} (α>0). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally, we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion as a fitting procedure for recovery curves arising from particle diffusion in comblike systems. PMID:27575088

  13. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants.

    OpenAIRE

    Weinrauch, Y; Guillen, N.; Dubnau, D A

    1989-01-01

    The complete nucleotide sequences of the comA and comB loci of Bacillus subtilis were determined. The products of these genes are required for the development of competence in B. subtilis and for the expression of late-expressing competence genes. The major 5' termini of both the comA and comB transcripts were determined. The inferred promoters of both comA and comB contained sequences that were similar to those found at the -10 and -35 regions of promoters that are used by sigma A-RNA polyme...

  14. Design and fabrication of a high-aspect-ratio parylene-based comb-drive actuator for large displacements at a low driving force

    International Nuclear Information System (INIS)

    This paper presents a comb-drive actuator integrated with parylene-based flexible beams for large displacements at a low driving force. Single-crystal silicon and polysilicon are the traditional materials used for comb-drive actuators in the microeletromechanical systems industry. However, the larger Young's modulus limits the displacement at a low applied voltage. This study uses the parylene beams with the characteristic of a low modulus of the elastic comb-drive actuator as a compliant suspension to create a larger displacement (>50 µm) with smaller driving forces than that of silicon. High-aspect-ratio parylene beams can be fabricated through the deposition and removal of parylene in multiple stages on a silicon micro-trench. The proposed process uses a silicon-on-insulator wafer as the substrate to fabricate suspended silicon and parylene beams as rigid and compliant structures, respectively. The test devices of parylene- and silicon-based comb-drive actuators were fabricated with 100 pairs of comb fingers with gaps of 5 µm, and compliant beams of 15 µm in width, 2000 µm in span and 50 µm in thickness. When a driving voltage of 40 V dc was applied, the parylene-based comb-drive actuator generated a displacement of up to 55 µm, whereas the silicon-based comb-drive actuator generated a displacement of 2 µm. The parylene-based comb-drive actuator can generate about 27 times of displacement than that of silicon. This design is suitable for application in devices with large in-plane displacement and low switching speed. (paper)

  15. Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium.

    Science.gov (United States)

    Akamatsu, Daisuke; Nakajima, Yoshiaki; Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2012-07-01

    A narrow linewidth diode laser system at 689 nm is realized by phase-locking an extended cavity diode laser to one tooth of a narrow linewidth optical frequency comb. The optical frequency comb is phase-locked to a narrow linewidth laser at 1064 nm, which is frequency stabilized to a high-finesse optical cavity. We demonstrate the magneto-optical trapping of Sr using an intercombination transition with the developed laser system. PMID:22772290

  16. Frequency-comb-assisted precision laser spectroscopy of CHF{sub 3} around 8.6 μm

    Energy Technology Data Exchange (ETDEWEB)

    Gambetta, Alessio; Coluccelli, Nicola; Cassinerio, Marco; Fernandez, Toney Teddy; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca, E-mail: gianluca.galzerano@polimi.it [Dipartimento di Fisica - Politecnico di Milano and Istituto di Fotonica e Nanotecnologie - CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Castrillo, Antonio; Fasci, Eugenio; Gianfrani, Livio [Dipartimento di Matematica e Fisica - Seconda Università di Napoli, Viale Lincoln 5, 81100 Caserta (Italy); Ceausu-Velcescu, Adina [Laboratoire de Mathématiques et Physique, Université de Perpignan, Via Domitia EA 4217, F-66860 Perpignan (France); Santamaria, Luigi; Di Sarno, Valentina [CNR-INO, Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); Maddaloni, Pasquale [CNR-INO, Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); INFN, Istituto Nazionale di Fisica Nucleare, Sez. Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, FI (Italy); De Natale, Paolo [INFN, Istituto Nazionale di Fisica Nucleare, Sez. Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, FI (Italy); CNR-INO, Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze (Italy)

    2015-12-21

    We report a high-precision spectroscopic study of room-temperature trifluoromethane around 8.6 μm, using a CW quantum cascade laser phase-locked to a mid-infrared optical frequency comb. This latter is generated by a nonlinear down-conversion process starting from a dual-branch Er:fiber laser and is stabilized against a GPS-disciplined rubidium clock. By tuning the comb repetition frequency, several transitions falling in the υ{sub 5} vibrational band are recorded with a frequency resolution of 20 kHz. Due to the very dense spectra, a special multiple-line fitting code, involving a Voigt profile, is developed for data analysis. The combination of the adopted experimental approach and survey procedure leads to fractional accuracy levels in the determination of line center frequencies, down to 2 × 10{sup −10}. Line intensity factors, pressure broadening, and shifting parameters are also provided.

  17. Highly fluorinated comb-shaped copolymers as proton exchange membranes (PEMs): improving PEM properties through rational design

    Energy Technology Data Exchange (ETDEWEB)

    Norsten, T.B.; Guiver, M.D.; Murphy, J.; Ding, J. [Institute for Chemical Process and Environmental Technology, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Astill, T.; Holdcroft, S. [Institute for Fuel Cell Innovation, National Research Council, 3250 East Mall, Vancouver, BC V6T 1W5 (Canada); Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 (Canada); Navessin, T. [Institute for Fuel Cell Innovation, National Research Council, 3250 East Mall, Vancouver, BC V6T 1W5 (Canada); Frankamp, B.L.; Rotello, V.M. [Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (United States)

    2006-09-18

    A new class of comb-shaped polymers for use as a proton conducting membrane is presented. The polymer is designed to combine the beneficial physical, chemical, and structural attributes of fluorinated Nafion-like materials with higher-temperature, polyaromatic-based polymer backbones. The comb-shaped polymer unites a rigid, polyaromatic, hydrophobic backbone with lengthy hydrophilic polymer side chains; this combination affords direct control over the polymer nanostructure within the membrane and results in distinct microphase separation between the opposing domains. The microphase separation serves to compartmentalize water into the hydrophilic polymer side chain domains, resulting in effective membrane water management and excellent proton conductivities. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. Two-dimensional locally resonant elastic metamaterials with chiral comb-like interlayers: Bandgap and simultaneously double negative properties.

    Science.gov (United States)

    Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-06-01

    In this paper, bandgap and dynamic effective properties of two-dimensional elastic metamaterials with a chiral comb-like interlayer are studied by using the finite element method. The effects of the geometrical parameters of the chiral comb-like interlayer on the band edges are investigated and discussed. Combined with the analysis of the vibration modes at the band edges, equivalent spring-mass/pendulum models are developed to investigate the mechanisms of the bandgap generation. The analytically predicted results of the band edges, including the frequency where the double negative properties appear, and the numerical ones are generally in good agreement. The research findings in this paper have relevant engineering applications of the elastic metamaterials in the low frequency range.

  19. 汊麻棉精梳涡流纱的开发%Development of Hemp Cotton Combed Vortex Yarn

    Institute of Scientific and Technical Information of China (English)

    刘必英; 戴俊; 凡启光; 王冬成

    2011-01-01

    为开发汉麻棉精梳涡流纱,对比了汉麻与苎麻、亚麻及棉纤维的性能指标、截面结构,阐述了汉麻纤维的性能特点,运用涡流纺纱技术纺制汉麻棉混纺精梳纱.通过汉麻预处理,正确选择原料混和工艺,合理配置前纺各工序及涡流纺纱机工艺参数,成功纺制出汉麻/棉60/40 21.6 tex混纺精梳涡流纱,且成纱毛羽较环锭纱得到大幅度降低.认为汉麻棉精梳涡流纱具有较好的开发前景,应进一步改进工艺,提高成纱强力和制成率,降低生产成本,方能更好地满足产品开发的需求.%To develop hemp cotton combed vortex yarn, property index and cross section structure of hemp, flax and cotton were contrasted. Property of hemp was introduced. Vortex spinning technology was used and hemp cotton blended combed yarn was spun. Hemp was pretreated, raw material and blending processing were selected correctly, processing parameters in fore-spinning process and vortex spinning were set rationally, hemp/cotton 60/40 21.6 tex blended combed vortex yarn was spun successfully. Hairiness was reduced greatly. It is considered that the development prospects of hemp cotton blended combed yarn is better,the processing should be modified further,yarn strength and finished product rate should be increased and production cost should be reduced, demands of product development can be reached well.

  20. Quasiphasematched concurrent nonlinearities in periodically poled KTiOPO_4 for quantum computing over the optical frequency comb

    CERN Document Server

    Pysher, Matthew; Peng, Peng; Arie, Ady; Pfister, Olivier

    2009-01-01

    We report the successful design and experimental implementation of three coincident nonlinear interactions, namely ZZZ ("type-0''), ZYY (type-I), and YYZ/YZY (type-II) second harmonic generation of 780 nm light from a 1560 nm pump beam in a single, multigrating, periodically poled KTiOPO_4 crystal. The resulting nonlinear medium is the key component for making a scalable quantum computer over the optical frequency comb of a single optical parametric oscillator.

  1. Damages to the Black Sea, Caspian Sea and Baltic Sea by the invader comb jelly Mnemiopsis leidyi

    OpenAIRE

    Elif Eker Develi; Aydın Sellioğ; Nuray Öner

    2011-01-01

    In the present study changes in ecosystems of the Black Sea, Caspian Sea and Baltic Sea after the invasion of ctenophore Mnemiopsis leidyi were investigated. Excessive increase in plant plankton as a result of antrophogenic eutrophication leads to a shift in mesozooplankton com¬position, which is the main food item of these comb jellies. For instance, while some mesozoo¬plankton species disappeared from the environment or substantially decreased in number, some others increased in quantity. T...

  2. A facile metal-free "grafting-from" route from acrylamide-based substrate toward complex macromolecular combs

    KAUST Repository

    Zhao, Junpeng

    2013-01-01

    High-molecular-weight poly(N,N-dimethylacrylamide-co-acrylamide) was used as a model functional substrate to investigate phosphazene base (t-BuP 4)-promoted metal-free anionic graft polymerization utilizing primary amide moieties as initiating sites. The (co)polymerization of epoxides was proven to be effective, leading to macromolecular combs with side chains being single- or double-graft homopolymer, block copolymer and statistical copolymer. © 2013 The Royal Society of Chemistry.

  3. Sub-Doppler Resolution Spectroscopy of the Fundamental Vibration Band of HCl with a Comb-Referenced Spectrometer

    Science.gov (United States)

    Iwakuni, Kana; Sera, Hideyuki; Abe, Masashi; Sasada, Hiroyuki

    2015-06-01

    Sub-Doppler resolution spectroscopy of the fundamental bands of H35Cl and H37Cl has been carried out from 87 to 90 THz using a comb-referenced difference-frequency-generation (DFG) spectrometer. While the frequencies of the pump and signal waves are locked to that of the individual nearest comb mode, the repetition rate of the comb is varied for sweeping the idler frequency. Therefore, the relative uncertainty of the frequency scale is 10-11, and the spectral resolution remains about 250 kHz even when the spectrum is accumulated for a long time. The hyperfine structures caused by chlorine nucleus are resolved for the R(0) to R(4) transitions. The figure depicts wavelength-modulation spectrum of the R(0) transition of H35Cl. Three Lamb dips correspond to the F= 0, 1, and -1 components left to right, and the others with arrows are cross-over resonances which are useful for determining the weak F=-1 component frequencies for the R(1) to R(3) transitions. We have determined 49 and 44 transition frequencies of H35Cl and H37Cl with an uncertainty of 10 kHz. Six molecular constants of the vibrational excited state for each isotopomer are determined. They reproduce the determined frequencies with a standard deviation of about 10 kHz.

  4. Performance analysis on quality of optical frequency comb generated by the recirculating frequency shifter based on linear IQ modulator

    Science.gov (United States)

    Sun, Lu; Li, Jianping; Lin, Jiachuan; Xi, Lixia; Tang, Xianfeng; Zhang, Xiaoguang

    2015-11-01

    An optical frequency comb generator using a modified single-sideband recirculating frequency shifter scheme adopting a linear IQ modulator as the kernel device (SSB-RFS-LIQM) is proposed. The optical comb lines generated by the proposed scheme possess good features such as extreme flatness and high optical signal-to-noise ratio (OSNR), compared to the quality we can obtain when we use a conventional IQ modulator in the SSB-RFS structure (called SSB-RFS-CIQM scheme). The mechanism of how the SSB-RFS-LIQM works is carefully analyzed with analytical and numerical methods. With the capability of strong suppression of high-order crosstalk and less demand of the gain of erbium-doped fiber amplifiers (and hence less amplified spontaneous noise induced) in the loop, 5.5 dB OSNR improvement can be achieved when 100 extreme flat comb lines are generated using the SSB-RFS-LIQM scheme compared to using the SSB-RFS-CIQM scheme.

  5. Field emission of comb-like chromium disilicide nanowires prepared by an in situ chloride-generated route

    Science.gov (United States)

    Hu, Yemin; Hu, Zheng; Yu, Leshu; Li, Ying; Zhu, Mingyuan; Bai, Qin

    2011-04-01

    Large-area comb-like chromium disilicide (CrSi2) nanowire film has been successfully synthesized on silicon wafer through an in situ chloride-generated route. The sample possesses branch-like nanowires grown out perpendicularly and evenly from both sides of a stem-like microrod, forming 2-fold comb-like hierarchical nanoarchitectures. The formation mechanism of the sample could be understood by a secondary nucleation process occurring on the surface of the firstly formed CrSi2 microrod, followed by epitaxial growth of branch-like nanowires under conditions of proper temperature and sufficient vapor supply in the reaction system. The field-emission behavior of the sample shows a low turn-on field of 5.3-6.5 V/μm at anode-sample distances of 200-400 μm, and agrees well with the conventional Fowler-Nordheim theory. No obvious degradation was observed in a life stability experiment period for over 100 min. The relationship between the field enhancement factor and anode-sample distance follows a universal equation, developed within a two-region field-emission model. The convenient and low-cost preparation of the comb-like CrSi2 nanowires and their remarkable field-emission performance suggest that they can serve as good candidates for field-emission applications.

  6. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools

    CERN Document Server

    Li, X L; Corder, C; Chen, Y; Zhao, P; Allison, T K

    2016-01-01

    We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensit...

  7. A new method to generate relativistic comb bunches with tunable subpicosecond spacing

    International Nuclear Information System (INIS)

    We propose and analyze a scheme to produce comb bunches, i.e. a bunch consisting of micro-bunch trains, with tunable subpicosecond spacing. In the scheme, the electron beam is first deflected by a deflecting cavity which introduces a longitudinal-dependent linear transverse kick to the particles. After passing through a drift space, the transverse beam size is linearly coupled to the longitudinal position of the particle inside the beam, and a mask is placed there to tailor the beam, then the mask distribution is imprinted on the beam's longitudinal distribution. A quadrupole magnet and another deflecting cavity are used in the beam line to compensate the transverse angle due to the first deflecting cavity. Analysis shows that the number, length, and spacing of the trains can be controlled through the parameters of the deflecting cavity and the mask. Such electron bunch trains can be applied to an infrared free electron laser, a plasma-wakefield accelerator and a supper-radiance THz source. (authors)

  8. Participation of Polycomb group gene extra sex combs in hedgehog signaling pathway

    International Nuclear Information System (INIS)

    Polycomb group (PcG) genes are required for stable inheritance of epigenetic states across cell divisions, a phenomenon termed cellular memory. PcG proteins form multimeric nuclear complex which modifies the chromatin structure of target site. Drosophila PcG gene extra sex combs (esc) and its vertebrate orthologs constitute a member of ESC-E(Z) complex, which possesses histone methyltransferase activity. Here we report isolation and characterization of medaka esc homolog, termed oleed. Hypomorphic knock-down of oleed using morpholino antisense oligonucleotides resulted in the fusion of eyes, termed cyclopia. Prechordal plate formation was not substantially impaired, but expression of hedgehog target genes was dependent on oleed, suggesting some link with hedgehog signaling. In support of this implication, histone methylation, which requires the activity of esc gene product, is increased in hedgehog stimulated mouse NIH-3T3 cells. Our data argue for the novel role of esc in hedgehog signaling and provide fundamental insight into the epigenetic mechanisms in general

  9. Parasitic effects in superconducting quantum interference device-based radiation comb generators

    Energy Technology Data Exchange (ETDEWEB)

    Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy); NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Solinas, P., E-mail: paolo.solinas@spin.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy)

    2015-12-07

    We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.

  10. Controllable Heparin-Based Comb Copolymers and Their Self-assembled Nanoparticles for Gene Delivery.

    Science.gov (United States)

    Nie, Jing-Jun; Zhao, Weiyi; Hu, Hao; Yu, Bingran; Xu, Fu-Jian

    2016-04-01

    Polysaccharide-based copolymers have attracted much attention due to their effective performances. Heparin, as a kind of polysaccharide with high negative charge densities, has attracted much attention in biomedical fields. In this work, we report a flexible way to adjust the solubility of heparin from water to oil via the introduction of tetrabutylammonium groups for further functionalization. A range of heparin-based comb copolymers with poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA), poly(dimethylaminoethyl methacrylate) (PDMAEMA), or PPEGMEMA-b-PDMAEMA side chains were readily synthesized in a MeOH/dimethylsulfoxide mixture via atom-transfer radical polymerization. The heparin-based polymer nanoparticles involving cationic PDMAEMA were produced due to the electrostatic interaction between the negatively charged heparin backbone and PDMAEMA grafts. Then the pDNA condensation ability, cytotoxicity, and gene transfection efficiency of the nanoparticles were characterized in comparison with the reported gene vectors. The nanoparticles were proved to be effective gene vectors with low cytotoxicity and high transfection efficiency. This study demonstrates that by adjusting the solubility of heparin, polymer graft functionalization of heparin can be readily realized for wider applications. PMID:26947134

  11. Developments of frequency comb microwave reflectometer for the interchange mode observations in LHD plasma

    Science.gov (United States)

    Soga, R.; Tokuzawa, T.; Watanabe, K. Y.; Tanaka, K.; Yamada, I.; Inagaki, S.; Kasuya, N.

    2016-02-01

    We have upgraded the multi-channel microwave reflectometer system which uses a frequency comb as a source and measure the distribution of the density fluctuation caused by magneto-hydro dynamics instability. The previous multi-channel system was composed of the Ka-band, and the U-band system has been developed. Currently, the U-band system has eight frequency channels, which are 43.0, 45.0, 47.0, 49.0, 51.0, 53.0, 55.0, and 57.0 GHz, in U-band. Before the installation to the Large Helical Device (LHD), several tests for understanding the system characteristics, which are the phase responsibility, the linearity of output signal, and others, have been carried out. The in situ calibration in LHD has been done for the cross reference. In the neutral beam injected plasma experiments, we can observe the density fluctuation of the interchange mode and obtain the radial distribution of fluctuation amplitude.

  12. Interactions of cellulose-based comb polyelectrolyte with oppositely charged surfactant dodecyl-trimethylammonium bromide.

    Science.gov (United States)

    Pan, Hong; Chen, Pei-Yao; Liu, Hai-Xue; Chen, Yu; Wei, Yu-Ping; Zhang, Ming-Jie; Cheng, Fa

    2012-07-01

    A comb ethyl cellulose-g-sodium polyacrylate (EC-g-SPA) was synthesized by atom transfer radical polymerization. The amphiphilic properties of the EC-g-SPA were determined by surface tension measurements. The interactions between EC-g-SPA and the cationic surfactant dodecyl-trimethylammonium bromide (C12TAB) were investigated by surface tension, turbidity, dynamic light scattering and transmission electron microscopy (TEM). The results revealed that the critical aggregate concentration (CAC) of the complexes was 0.8mM. When the C12TAB concentration was lower than the CAC, the hydrodynamic diameter (Dh) of the complexes decreased as the surfactant concentration was increased. As the C12TAB concentration was increased above the CAC, the Dh initially increased slightly, followed by a sharp decrease. The changes in the sizes and shapes of the aggregates were studied by TEM. The interactions between two species and the structure of the EC-g-SPA/C12TAB complexes were also discussed. PMID:24750878

  13. Vitalius nondescriptus comb. nov. (Araneae: Theraphosidae: Theraphosinae: an example of theraphosid taxonomic chaos

    Directory of Open Access Journals (Sweden)

    Rogério Bertani

    2012-10-01

    Full Text Available The male holotype of Hapalopus nondescriptus Mello-Leitão, 1926 is redescribed, illustrated and compared with freshly collected specimens from the type locality. The only difference noted among the holotype and the new material concerns the development of the subapical keel. Its taxonomic position is reinterpreted and discussed, resulting in its transfer to the genus Vitalius Lucas, Silva Junior & Bertani, 1993, and thus making the new combination Vitalius nondescriptus (Mello-Leitão, 1926 comb. nov. The female is described for the first time and the morphological variations in two males, born from the female used in the description, is presented and illustrated. The male differs from those of other Vitalius species by the palpal bulb with short apical keel and bifid tibial spur with narrow prolateral branch and almost straight retrolateral branch. The female differs from those of other Vitalius species by urticating hair of 'type I' having the region 'a' shorter than region 'b'. Hapalopus nondescriptus has a confusing taxonomic history, since the holotype specimen was also used to describe another theraphosid species (Cyclosternum melloleitaoi Bücherl, Thimoteo & Lucas, 1971 which was, consequently, considered its objective synonym. Thus, we consider it a clear example of theraphosid taxonomical chaos.

  14. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.

    Science.gov (United States)

    Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng

    2014-01-13

    Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.

  15. Gigahertz Self-referenceable Frequency Comb from a Semiconductor Disk Laser

    CERN Document Server

    Zaugg, Christian A; Mangold, Mario; Mayer, Aline S; Link, Sandro M; Emaury, Florian; Golling, Matthias; Gini, Emilio; Saraceno, Clara J; Tilma, Bauke W; Keller, Ursula

    2014-01-01

    We present a 1.75-GHz self-referenceable frequency comb from a vertical external-cavity surface-emitting laser (VECSEL) passively modelocked with a semiconductor saturable absorber mirror (SESAM). The VECSEL delivers 231-fs pulses with an average power of 100 mW and is optimized for stable and reliable operation. The optical spectrum was centered around 1038 nm and nearly transform-limited with a full width half maximum (FWHM) bandwidth of 5.5 nm. The pulses were first amplified to an average power of 5.5 W using a backward-pumped Yb-doped double-clad large mode area (LMA) fiber and then compressed to 85 fs with 2.2 W of average power with a passive LMA fiber and transmission gratings. Subsequently, we launched the pulses into a highly nonlinear photonic crystal fiber (PCF) and generated a coherent octave-spanning supercontinuum (SC). We then detected the carrier-envelope offset (CEO) frequency (fCEO) beat note using a standard f-to-2f-interferometer. The fCEO exhibits a signal-to-noise ratio of 17 dB in a 10...

  16. Parasitic effects in superconducting quantum interference device-based radiation comb generators

    Science.gov (United States)

    Bosisio, R.; Giazotto, F.; Solinas, P.

    2015-12-01

    We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.

  17. Vertical comb drive actuator for the measurement of piezoelectric coefficients in small-scale systems

    International Nuclear Information System (INIS)

    A micro-electro-mechanical systems (MEMS) vertical levitation comb drive actuator has been created for the measurement of piezoelectric coefficients in thin/thick films or piezoelectrically active micro-scale components of other MEMS devices. The device exerts a dynamic force of 33 μN at an applied voltage of 100 V. The charge developed on the piezoelectric test device is measured using a charge sensitive pre-amplifier and lock-in technique, enabling measurements down to 1×10−5 pC. The system was tested with ten different piezoelectric samples with coefficients in the range 70–1375 pC N−1 and showed a good correlation (r = 0.9997) to measurements performed with macroscopic applied stresses, and piezoelectric impedance resonance techniques. The measurement of the direct piezoelectric effect in micro- and nano-scale piezo-materials has been made possible using MEMS processing technology. This new application of a MEMS metrology device has been developed and fully characterized in order to accurately evaluate the functional properties of piezoelectric materials at the scale required in micro- to nano-scale applications. (paper)

  18. REVIEW ARTICLE: Optical frequency comb generation in gas-filled hollow core photonic crystal fibres

    Science.gov (United States)

    Couny, F.; Benabid, F.

    2009-10-01

    The efficiency of gas-based nonlinear processes is often limited by the diffraction of the pump laser as it propagates through the nonlinear medium. As a consequence, phenomena with strong nonlinear response requirements, such as high harmonic generation or Raman sideband generation, lack the required laser-matter interaction to fulfil their potential. Indeed, the conversion efficiency of these techniques is usually low and the experimental set-up cumbersome. The advent of hollow core photonic crystal fibre technology drafts new territories for nonlinear optics, and in particular offers new alternatives for sub-femtosecond pulse generation. The air-guiding fibre combines unprecedented laser confinement over long interaction lengths and, when filled with an adequate nonlinear gas, offers improved conversion efficiency and up to a million-fold reduction of the pump power threshold. This paper presents a review of the types of hollow core PCF available for nonlinear applications and the results obtained for efficient Raman conversion in H2-filled hollow core PCF that led to the observation of a multi-octave frequency comb spanning from ~325 to ~2300 nm using a single pump laser with relatively low power. The generated ultra-broad spectrum creates a simple route towards a compact source of attosecond pulses.

  19. Background-free electric field-induced second harmonic generation with interdigitated combs of electrodes.

    Science.gov (United States)

    Jašinskas, Vidmantas; Gedvilas, Mindaugas; Račiukaitis, Gediminas; Gulbinas, Vidmantas

    2016-06-15

    The electric field-induced second harmonic (EFISH) generation is a powerful tool for the investigation of optical nonlinearities, material polarization, internal electric fields, and other properties of photonic materials and devices. A conventional generation of the second harmonics (SH) in materials with the disturbed centrosymmetry causes a field-independent background to EFISH and limits its applications. Here we suggest and analyze the application of the interdigitated combs of electrodes for EFISH generation in thin films. Interdigitated electrodes form an optical transmission amplitude diffraction grating. Phase matching of the EFISH radiation creates unusual diffraction fringes with the zero intensity along the zeroth order direction and with the diffraction angles different from diffraction angles of incident fundamental laser radiation and its second harmonics. It enables a simple geometrical separation of the EFISH signal from a conventional SH background, simplifies the sample preparation, and provides additional experimental possibilities. We demonstrate applicability of the suggested technique for characterization of submicrometer thickness organic films of transparent and resonantly interacting polymers and of their mixtures. PMID:27304282

  20. Non-planar femtosecond enhancement cavity for VUV frequency comb applications

    CERN Document Server

    Winkler, Georg; Seres, Jozsef; Seres, Enikoe; Schumm, Thorsten

    2016-01-01

    External passive femtosecond enhancement cavities (fsECs) are widely used to increase the efficiency of non-linear conversion processes like high harmonic generation (HHG) at high repetition rates. Their performance is often limited by beam ellipticity, caused by oblique incidence on spherical focusing mirrors. We introduce a novel three-dimensionally folded variant of the typical planar bow-tie resonator geometry that guarantees circular beam profiles, maintains linear polarization, and allows for a significantly tighter focus as well as a larger beam cross-section on the cavity mirrors. The scheme is applied to improve focusing in a Ti:Sapphire based VUV frequency comb system, targeting the 5th harmonic around 160 nm (7.8 eV) towards high-precision spectroscopy of the low-energy isomer state of Thorium-229. It will also be beneficial in fsEC-applications with even higher seeding and intracavity power where the damage threshold of the mirrors becomes a major concern.

  1. A new method to generate relativistic comb buncheswith tunable subpicosecond spacing

    Institute of Scientific and Technical Information of China (English)

    DU Ying-Chao; HUANG Wen-Hui; TANG Chuan-Xiang

    2012-01-01

    We propose and analyze a scheme to produce comb bunches,i.e.a bunch consisting of micro-bunch trains,with tunable subpicosecond spacing.In the scheme,the electron beam is first deflected by a deflecting cavity which introduces a longitudinal-dependent linear transverse kick to the particles.After passing through a drift space,the transverse beam size is linearly coupled to the longitudinal position of the particle inside the beam,and a mask is placed there to tailor the beam,then the mask distribution is imprinted on the beam's longitudinal distribution.A quadrupole magnet and another deflecting cavity are used in the beam line to compensate the transverse angle due to the first deflecting cavity.Analysis shows that the number,length,and spacing of the trains can be controlled through the parameters of the deflecting cavity and the mask.Such electron bunch trains can be applied to an infrared free electron laser,a plasma-wakefield accelerator and a supper-radiance THz source.

  2. Human breath analysis via cavity-enhanced optical frequency comb spectroscopy

    CERN Document Server

    Thorpe, Michael J; Kirchner, Matthew S; Ye, Jun

    2007-01-01

    To date, researchers have identified over 1000 different compounds contained in human breath. These molecules have both endogenous and exogenous origins and provide information about physiological processes occurring in the body as well as environment-related ingestion or absorption of contaminants1,2. While the presence and concentration of many of these molecules are poorly understood, many 'biomarker' molecules have been correlated to specific diseases and metabolic processes. Such correlations can result in non-invasive methods of health screening for a wide variety of medical conditions. In this article we present human breath analysis using an optical-frequency-comb-based trace detection system with excellent performance in all criteria: detection sensitivity, ability to identify and distinguish a large number of biomarkers, and measurement time. We demonstrate a minimum detectable absorption of 8 x 10-10 cm-1, a spectral resolution of 800 MHz, and 200 nm of spectral coverage from 1.5 to 1.7 micron wher...

  3. Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance

    Science.gov (United States)

    Engene, Niclas; Tronholm, Ana; Salvador-Reyes, Lilibeth A.; Luesch, Hendrik; Paul, Valerie J.

    2015-01-01

    Many tropical marine cyanobacteria are prolific producers of bioactive secondary metabolites with ecological relevance and promising pharmaceutical applications. One species of chemically rich, tropical marine cyanobacteria that was previously identified as Symploca hydnoides or Symploca sp. corresponds to the traditional taxonomic definition of Phormidium penicillatum. In this study, we clarified the taxonomy of this biomedically and ecologically important cyanobacterium by comparing recently collected specimens with the original type material and the taxonomic description of P. penicillatum. Molecular phylogenetic analyses of the 16S rRNA gene and the 16S-23S ITS regions showed that P. penicillatum formed an independent clade sister to the genus Symploca, and distantly related to Phormidium and Lyngbya. We propose the new genus Caldora for this clade, with Caldora penicillata comb. nov. as the type species and designate as the epitype the recently collected strain FK13-1. Furthermore, the production of bioactive secondary metabolites among various geographically dispersed collections of C. penicillata showed that this species consistently produced the metabolite dolastatin 10 and/or the related compound symplostatin 1, which appear to be robust autapomorphic characters and chemotaxonomic markers for this taxon. PMID:26327714

  4. Modelling transport and reproduction of the invasive comb jelly Mnemiopsis leidyi in the North Sea

    Science.gov (United States)

    van der Molen, Johan

    2014-05-01

    Mnemiopsis leidyi is an invasive comb jelly fish species that originates from the Gulf of Mexico and the US east coast. It has high bloom potential, and can survive in a wide variety of environmental conditions. It was first introduced in Europe through ballast water discharges in the Black Sea, where it was associated with the anchovis stock collapse in the 1990's. From there, it has spread through the Mediterranean Sea. Since the mid 2000's it has been observed in ports and estuaries along the English Channel, the North Sea and the Baltic Sea. In the North Sea, M. leidyi blooms occur in the Scheldt estuaries, the Wadden Sea, and in ports and canals. In winter, M. Leidyi has been observed at sea in the German Bight. A particle tracking model was modified to include a simple reproduction mechanism, using food fields from the coupled hydrodynamics-ecosystem model GETM-ERSEM. The model was used to study the potential spreading and bloom potential of M. Leidyi in the southern North Sea under present and increased temperature conditions. Under present conditions, the model suggested that M. Leidyi can survive in the North Sea, and can be transported over distances of several hundreds of km, enabling connectivity between estuarine populations. It could not, however, bloom at open sea because of temperature constraints. These constraints were lifted for increased temperature scenarios, suggesting increased bloom potential under climate change conditions.

  5. Electrostatic Comb-Drive Actuator with High In-Plane Translational Velocity

    Directory of Open Access Journals (Sweden)

    Yomna M. Eltagoury

    2016-10-01

    Full Text Available This work reports the design and opto-mechanical characterization of high velocity comb-drive actuators producing in-plane motion and fabricated using the technology of deep reactive ion etching (DRIE of silicon-on-insulator (SOI substrate. The actuators drive vertical mirrors acting on optical beams propagating in-plane with respect to the substrate. The actuator-mirror device is a fabrication on an SOI wafer with 80 μm etching depth, surface roughness of about 15 nm peak to valley and etching verticality that is better than 0.1 degree. The travel range of the actuators is extracted using an optical method based on optical cavity response and accounting for the diffraction effect. One design achieves a travel range of approximately 9.1 µm at a resonance frequency of approximately 26.1 kHz, while the second design achieves about 2 µm at 93.5 kHz. The two specific designs reported achieve peak velocities of about 1.48 and 1.18 m/s, respectively, which is the highest product of the travel range and frequency for an in-plane microelectromechanical system (MEMS motion under atmospheric pressure, to the best of the authors’ knowledge. The first design possesses high spring linearity over its travel range with about 350 ppm change in the resonance frequency, while the second design achieves higher resonance frequency on the expense of linearity. The theoretical predications and the experimental results show good agreement.

  6. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Jian-hua Li; You-yi Xu; Jian-hua Wang; Chun-hui Du

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4-hydroxyphenyl) maleimide) (SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate (PEGMA) side groups was achieved by atom transfer radical polymerization (ATRP). The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC). From thermogravimetric analysis (TGA), the decomposition temperature of SHMI-g-PEGMA is lower than that of SHMI, and the graft ratio of PEGMA in the SHMI is 18.6%. The experimental results of solubilities showed that SHMI, SHMI-Br and SHMI-g-PEGMA had excellent solubility in polar solvents, such as DMF, DMSO and NMP. SHMI-g-PEGMA had higher solubilities in H_2O and methanol, while lower solubility in CHCl_3 than SHMI and SHMI-Br. PVDF blend membranes were prepared via the standard immersion precipitation phase inversion process, using amphiphilic SHMI-g-PEGMA copolymer as additives. The morphology and hydrophilicity of the blend membrane surfaces were characterized by SEM and water contact angle. It is demonstrated that the blend membranes display enhanced hydrophilicity compared to unmodified PVDF membranes. Finally, the permeation and anti-fouling properties were investigated. The result shows that amphiphilic SHMI-g-PEGMA copolymer increases the permeatability and anti-fouling property of PVDF membranes greatly.

  7. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively.

    Science.gov (United States)

    Stephan, Roger; Grim, Christopher J; Gopinath, Gopal R; Mammel, Mark K; Sathyamoorthy, Venugopal; Trach, Larisa H; Chase, Hannah R; Fanning, Séamus; Tall, Ben D

    2014-10-01

    Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA-DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05(T) = LMG 24057(T) = DSM 19144(T)) and Franconibacter helveticus comb. nov. (type strain 513/05(T) = LMG 23732(T) = DSM 18396(T)), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05(T) = LMG 23730(T) = DSM 18397(T)).

  8. Production Situation and Development Suggestion of Chinese Combed Yarn%我国精梳纱生产现状及开发建议

    Institute of Scientific and Technical Information of China (English)

    傅恩福

    2011-01-01

    分析我国精梳纱的生产现状并提出开发建议.通过调查不同精梳工艺产品、不同原料精梳纱、不同纺纱形式精梳纱的生产现状,分析了产品存在的问题.指出:应加大特细号、色纺、多组分混纺及特殊捻度精梳纱的开发力度,充分利用新型纺纱设备开发品质好、结构特殊的精梳纱产品.同时加大新纤维应用力度,加强纺纱工艺技术创新,充分发挥高效能精梳机的技术优势,强化精梳质量控制,促进高质量、高档次、高附加值精梳纱线的生产.%The current production situation of Chinese combed yarn was analyzed, and the development suggestion was proposed. Product existent problems were analyzed through researching combed yarn with different processing, different material and different spinning form. It is pointed out that the development of super fine yarn, colored spinning,multicomponent blending and special twist combed yarn can be increased, the new spinning equipment can be used to develop combed yarn with good quality and special form. At the same times, application of new fiber and innovation of spinning processing technology can be increased, the technical advantages of high-effect combing machine can be used,and the combed yarn quality can be controlled exactly. Then, the production of combed yarn with high quality, high level and high value-added can be ensured.

  9. Phylogenetic data suggest the reclassification of Fasciola jacksoni (Digenea: Fasciolidae) as Fascioloides jacksoni comb. nov.

    Science.gov (United States)

    Heneberg, Petr

    2013-04-01

    Fasciola jacksoni (Cobbold, 1869) is a highly prevalent (18-62%) species colonizing the liver (less frequently the lungs, kidneys, pericardia, and intestines) of Elephas maximus indicus and Elephas maximus maximus in the Indomalayan region, causing cirrhosis, hemorrhages, and connective tissue proliferation. The phylogenetic relationships of Fasciola jacksoni in relation to representative species of the superfamily Echinostomatoidea was assessed using four independent DNA regions. The analysis involved conserved (28S rDNA) and highly variable (ITS1, ITS2, and ND1) loci utilizing both mitochondrial (ND1) and nuclear (28S rDNA, ITS1, and ITS2) DNA. Although the analyses confirmed the monophyletic origin of the Fasciolidae family, all four analyzed regions suggested high similarity of Fasciola jacksoni to Fascioloides magna, member of a hitherto monotypic genus, parasitizing a variety of wild and domestic ruminants through the Holarctic. Supporting evidence stems also from the morphological similarities, host spectrum overlaps, and similarities in disease onset and progression. Fasciola jacksoni was reclassified to its genus in the nineteenth century by Cobbold based on the shared possession of dendriform system of gastric canals. However, Fascioloides magna (discovered later) shares this feature as well. Conversely, Fascioloides magna and Fasciola hepatica possess long median intestinal branches, whereas relatively shorter median intestinal branches are characteristic for Fasciola hepatica and Fasciola gigantica only. Both, Fascioloides magna and Fasciola hepatica, are also similar in their possession of small, but distinctive cephalic cone, while the larger one is typical for Fasciola hepatica and Fasciola gigantica. Reflecting the combined data, reclassification of Fasciola jacksoni as Fascioloides jacksoni comb. nov. is suggested. PMID:23411741

  10. A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes

    Science.gov (United States)

    Surapaneni, R.; Guo, Q.; Xie, Y.; Young, D. J.; Mastrangelo, C. H.

    2013-07-01

    We present the design, fabrication and testing of a high-resolution 169-sensing cell capacitive flexible tactile imager (FTI) for normal and shear stress measurement as an auxiliary sensor for robotic grippers and gait analysis. The FTI consists of a flexible high-density array of normal stress and two-dimensional shear stress sensors fabricated using microelectromechanical systems (MEMS) and flexible printed circuit board (FPCB) techniques. The drive/sense lines of the FTI are realized using FPCB whereas the floating electrodes (Au) are patterned on a compressible PDMS layer spin coated on the FPCB layer. The use of unconnected floating electrodes significantly improves the reliability of traditional quad-electrode contact sensing devices by eliminating the need for patterning electrical wiring on PDMS. When placed at the heel of a boot, this FTI senses the position and motion of the line of contact with the ground. Normal stress readouts are obtained from the net capacitance of the cell and the shear-sense direction is determined by the amount of asymmetric overlap of the floating combs with respect to the bottom electrodes. The FTI is characterized using a high-speed switched-capacitor circuit with a 12-bit resolution at full frame rates of 100 Hz (˜0.8 Mb s-1) capable of resolving a displacement as low as 60 µm. The FTI and the readout circuitry contribute to a noise/interference level of 5 mV and the sensitivity of normal and shear stress for the FTI is 0.38 MPa-1 and 79.5 GPa-1 respectively.

  11. A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes

    International Nuclear Information System (INIS)

    We present the design, fabrication and testing of a high-resolution 169-sensing cell capacitive flexible tactile imager (FTI) for normal and shear stress measurement as an auxiliary sensor for robotic grippers and gait analysis. The FTI consists of a flexible high-density array of normal stress and two-dimensional shear stress sensors fabricated using microelectromechanical systems (MEMS) and flexible printed circuit board (FPCB) techniques. The drive/sense lines of the FTI are realized using FPCB whereas the floating electrodes (Au) are patterned on a compressible PDMS layer spin coated on the FPCB layer. The use of unconnected floating electrodes significantly improves the reliability of traditional quad-electrode contact sensing devices by eliminating the need for patterning electrical wiring on PDMS. When placed at the heel of a boot, this FTI senses the position and motion of the line of contact with the ground. Normal stress readouts are obtained from the net capacitance of the cell and the shear-sense direction is determined by the amount of asymmetric overlap of the floating combs with respect to the bottom electrodes. The FTI is characterized using a high-speed switched-capacitor circuit with a 12-bit resolution at full frame rates of 100 Hz (∼0.8 Mb s−1) capable of resolving a displacement as low as 60 µm. The FTI and the readout circuitry contribute to a noise/interference level of 5 mV and the sensitivity of normal and shear stress for the FTI is 0.38 MPa−1 and 79.5 GPa−1 respectively. (paper)

  12. Modeling ovarian follicle growth in commercial and heritage Single Comb White Leghorn hens.

    Science.gov (United States)

    McLeod, E S; Jalal, M A; Zuidhof, M J

    2014-11-01

    Approximately 84% of the energy in chicken eggs resides in the yolk. A robust model of ovarian follicle development is therefore valuable for estimating energy requirements of laying hens. The current experiment was designed to model the growth of ovarian follicles in 32-wk-old modern commercial line (CL) and unselected heritage line (HL) Single Comb White Leghorn hens. The volume of yolk deposited daily during the rapid growth phase (RGP) was estimated using a double dye technique. For 21 d, 8 CL and 8 HL hens were fed capsules (no. 1) containing Sudan IV (red) and Sudan Black dyes on alternate days. An additional 8 control CL hens were fed empty capsules. Eggs were collected, and the daily volume of yolk deposited was estimated. Significant differences are reported where P hens, respectively. Duration of the RGP was shorter (7.35 d) in the CL hens compared with the HL hens (7.95 d). A nonlinear Lomolino model described follicular weight, which varied between strains over d 2 to 9 of follicle development; at each day during development, follicle weights were higher where RGP were shorter. The volume of yolk deposited for the 8 d preceding oviposition in CL was 0.17, 0.28, 0.43, 0.99, 1.84, 2.47, 2.82, 2.86, and 2.51 cm(3); and in HL was 0.17, 0.33, 0.72, 1.40, 2.15, 2.46, 2.48, 2.32, and 1.93 cm(3). The HL had a higher rate of yolk deposition 7 to 5 d before oviposition, and CL had a higher rate of yolk deposition 3 to 1 d before oviposition with no significant difference between lines on d 4 before oviposition. Although growth patterns differed, there were no differences among lines in final follicle weights (14.1 g) or retained energy (42.4 kcal).

  13. Gene Action and Combing Ability of Some Agronomic Traits in Corn Using Diallel Analysis

    Directory of Open Access Journals (Sweden)

    Hossein Haddadi Mohammad

    2014-12-01

    Full Text Available Combining ability estimates are important genetic attributes to maize breeders in anticipating improvement via hybridization and selection. To determine the combining ability for yield and yield associated traits, 8 diverse corn inbred lines were used in a half diallel mating design. Twenty eight F1 progenies along with their parents were planted in randomized complete block design with four replications in two locations during two years. Combined analysis of variance showed significant mean squares of general combining ability (GCA and specific combing ability (SCA for Days to silking emergence (DS, plant height (PH, 1000-kernel weight (KW, number of kernels in ear row (KR, number of rows in ear( NR , ear diameter (ED, cob diameter (CD, kernel yield (KY indicating that the importance of both additive and non additive genetic effects for these traits. However, high narrow-sense heritability estimates, low degree of dominance and the ratio of estimates of GCA to SCA effects for DS , NR and CD indicated that additive genetic effect was more important for these traits. Most of the crosses with significant SCA effects for KY had at least one parent with significant GCA effects for the same traits. Significant positive correlations were detected between KY and other yield components including KW, KR, NR and ED, therefore these traits can be used as indirect selection criteria for KY improvement. The crosses MO17 × Line8, MO17 × Line 10 and MO17 × Line 12, Line 8 × Line 10 and Line 8 × Line 21 with high values of KY were considered as good cross combinations for improving the trait.

  14. Real-time absolute frequency measurement of continuous-wave terahertz wave based on dual terahertz combs of photocarriers with different frequency spacings

    CERN Document Server

    Yasui, Takeshi; Ichikawa, Ryuji; Cahyadi, Harsono; Hsieh, Yi-Da; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru

    2015-01-01

    Real-time measurement of the absolute frequency of continuous-wave terahertz (CW-THz) waves is required for characterization and frequency calibration of practical CW-THz sources. We proposed a method for real-time monitoring of the absolute frequency of CW-THz waves involving temporally parallel, i.e., simultaneous, measurement of two pairs of beat frequencies and laser repetition frequencies based on dual THz combs of photocarriers (PC-THz combs) with different frequency spacings. To demonstrate the method, THz-comb-referenced spectrum analyzers were constructed with a dual configuration based on dual femtosecond lasers. Regardless of the presence or absence of frequency control in the PC-THz combs, a frequency precision of 10-11 was achieved at a measurement rate of 100 Hz. Furthermore, large fluctuation of the CW-THz frequencies, crossing several modes of the PC-THz combs, was correctly monitored in real time. The proposed method will be a powerful tool for the research and development of practical CW-THz...

  15. Gingival blood flow under total combs by functional pressure evaluated with laser-Doppler flowmetry, a non-invasive method of blood flow measurement

    International Nuclear Information System (INIS)

    Gingival blood flow under total-combs by functional pressure evaluated with Laser-Doppler Flowmetry, a non-invasive method of blood flow measurement. Microcirculation of gum's capillary system can be measured non-invasive by Laser-Doppler-Flowmetry (LDF). Circulation, defined by the number of floating erythrocytes per unit of time, is measured by a fibro-optical Laser-Doppler-Flowmetry. The task was to examine, if there is any change of gum's circulation during strain and relief. Circulation on defined measurepoints, divided on the four quadrants, was determined among maximal strain and subsequent relief, on one probationer (complete denture bearer). Before every measure session systemic pressure was taken. LDF-value was taken on top of jaw-comb, in doing so, to get reproducible result and a satisfying fixation of the probe, there was made an artificial limb of the upper and lower comb. In the upper comb a dynamometer-box, which determined minimal and maximal comb pressure, was integrated. The received results of the LDF-measurement, expressed as perfusion units (PU) were lower under applied pressure than by pressure points more distant. Hyperemia, resulting during relief, seemed the more intense, the less perfusion was before. This new, non-invasive kind of circulation measurement seems to be quite predestined to be used for gingival diagnostic under artificial limb in the future. (author)

  16. Implementation of a data processing platform for real-time distance measurement with dual-comb lasers

    Science.gov (United States)

    Ni, Kai; Xu, Mingfei; Zhou, Qian; Dong, Hao; Li, Xinghui; Wu, Guanhao

    2015-08-01

    Absolute distance measurement with dual femtosecond comb lasers has advantages of wide-range, high-accuracy and fast speed. It combines time-of-flight and interferometric measurement. The novelty of ranging method leads to new challenges in designing the data acquisition and processing hardware system. Currently there are no available real-time data processing system for dual-comb ranging. This paper introduces our recent progress on designing and implementing such a platform. Our platform mainly contains four different function modules. First, a clock module that accept a 250MHz maximum reference clock input was introduced to generate the sample clock for A/D converter, and the module's output clock can be delayed up to 20ns with a resolution of 714ps. Second, a high-speed data acquisition module with a 14-bit resolution and a 125 MSPS maximum sample rate was designed to convert the analog laser pulse signal to digital signal. Third, we built a real-time data processing module that allows an input of 16-bit data in the FPGA to calculate the distance from the digital signal within 83us. Finally, a data transmission module based on a 128MB DDR SDRAM and USB2.0 was added so that we can easily debug the platform in the PC. The performance of our system is evaluated in real-time. The test bench consists of two femtosecond laser sources, an optical fiber interferometer and our data processing system. The repetition frequencies of the two combs are around 50MHz, with frequency difference of 2.5kHz. The center wavelength of laser pulses is 1560nm. The target distance is from 0m to 3m. The experimental results show that our system can output measurement results at the rate of 2500 pts/s, and the measurement deviation is less than 10um.

  17. Damages to the Black Sea, Caspian Sea and Baltic Sea by the invader comb jelly Mnemiopsis leidyi

    Directory of Open Access Journals (Sweden)

    Elif Eker Develi

    2011-10-01

    Full Text Available In the present study changes in ecosystems of the Black Sea, Caspian Sea and Baltic Sea after the invasion of ctenophore Mnemiopsis leidyi were investigated. Excessive increase in plant plankton as a result of antrophogenic eutrophication leads to a shift in mesozooplankton com¬position, which is the main food item of these comb jellies. For instance, while some mesozoo¬plankton species disappeared from the environment or substantially decreased in number, some others increased in quantity. These changes in food chain may promote the rise of jellyfishes rather than fish in the environment. In addition, decrease in planktivorous fish abundance as a consequence of overfishing also triggers the increase of newly introduced comb jellies, which were possibly introduced via ballast waters of ships, in the ecosystem. Increase in abundance of M. leidyi, which compete with planktivorous fishes (anchovy, Engraulis encrasicolus ponticus in the Black Sea, kilka, Clupeonella spp. in the Caspian Sea for their food, causes to decrease of planktivorous fish stocks which have already been vulnerable due to overfishing. Another reason for successfully adaption of M. leidyi to its new ecosystems could be linked to global warming which provides favourable temperature ranges for reproduction and growth of this ctenophore. Although there are still many debates related to possible negative effects, one of the ways to reduce harmful impacts of invaders might be the transport of natural predators of these invaders to the new ecosystems of invaders. For example, it was reported that the abun¬dance of Mnemiopsis leidyi decreased to very low levels during 1999-2004 in the Black Sea following the introduction of another comb jelly, Beroe ovata, which feed on this ctenophore.

  18. Scan-less, line-field confocal microscopy by combination of wavelength/space conversion with dual optical comb

    Science.gov (United States)

    Yasui, Takeshi; Hase, Eiji; Miyamoto, Shuji; Hsieh, Yi-Da; Minamikawa, Takeo; Yamamoto, Hirotsugu

    2016-03-01

    Optical frequency comb (OFC) has attracted attentions for optical frequency metrology in visible and infrared regions because the mode-resolved OFC spectrum can be used as a precise frequency ruler due to both characteristics of broadband radiation and narrow-line CW radiation. Furthermore, the absolute accuracy of all frequency modes in OFC is secured by phase-locking a repetition frequency frep and a carrier-envelope-offset frequency fceo to a frequency standard. However, application fields of OFC other than optical frequency metrology are still undeveloped. One interesting aspect of OFC except for the frequency ruler is optical carrier having a huge number of discrete frequency channels because OFC is composed of a series of frequency spikes regularly separated by frep in the broad spectral range. If a certain quantity to be measured is encoded on each comb mode by dimensional conversion, a huge number of data for the measured quantity can be obtained from a single mode-resolved spectrum of OFC. In this paper, we encode the confocal microscopic line-image of a sample on the mode-resolved OFC spectrum by the dimensional conversion between wavelength and 1D-space. The resulting image-encoded OFC spectrum is acquired by an optical spectrum analyzer or dual comb spectrometer. Finally, the line image of the sample is decoded from the spectral amplitude of the mode-resolved OFC spectrum. The combination of OFC with the dimensional conversion enables to establish both confocal modality and line-field imaging under the scan-less condition.

  19. Relating the molecular structure of comb-type superplasticizers to the compression rheology of MgO suspensions

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette; Flatt, Rober Johan; Bergström, Lennart

    2006-01-01

    We have investigated the effect of superplasticizers on the rheological properties of concentrated MgO suspensions. The comb-type anionic polymers with grafted polyethylene oxide chains adsorb onto the MgO surface and infer a steric repulsion where the range scales with the length of the PEO side...... behaviour could be related to the estimated thickness of the adsorbed superplasticizers and a scaling analysis was used to quantitatively assess the importance of the length of the grafted PEO-chains on the magnitude of the inter-particle bond strength....

  20. Analysis of the feed-forward method for the referencing of a CW laser to a frequency comb.

    Science.gov (United States)

    Gatti, D; Sala, T; Gambetta, A; Coluccelli, N; Conti, G Nunzi; Galzerano, G; Laporta, P; Marangoni, M

    2012-10-22

    We report on a comprehensive theoretical and experimental analysis of the feed-forward method for external frequency stabilization of a continuous wave laser against a frequency comb. Application of the method to a distributed feedback diode laser at 1.55 μm allows line narrowing from 800 to 10 kHz, with frequency noise reduction by more than 2 decades up to a Fourier frequency of 100 kHz and a maximum control bandwidth of 0.8 MHz. The results are consistent with a relative phase fluctuation of 1.4 rad rms, as limited by uncompensated high-frequency noise of the slave laser. PMID:23187255

  1. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013 . Scientific Opinion on Rooster Combs Extract

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to carry out the additional assessment for „Rooster Combs Extract‟ (RCE) as a food ingredient in the context of Regulation (EC) No 258/97, taking into account the comments...... to sodium hyaluronate and/or avian protein. In the high intake scenario for “consumers only”, the highest daily intake would occur in adults in Belgium (0.788 g). The highest intake scenario for “all subjects” was estimated for adolescents in Denmark (0.427 g/day). The Panel notes that no adverse effects...

  2. Memristor comprising film with comb-like structure of nanocolumns of metal oxide embedded in a metal oxide matrix

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Judith L; Lee, ShinBuhm; Jia, Quanxi

    2015-05-12

    Films having a comb-like structure of nanocolumns of Sm.sub.2O.sub.3 embedded in a SrTiO.sub.3 formed spontaneously on a substrate surface by pulsed laser deposition. In an embodiment, the nanocolumns had a width of about 20 nm with spaces between nanocolumns of about 10 nm. The films exhibited memristive behavior, and were extremely uniform and tunable. Oxygen deficiencies were located at vertical interfaces between the nanocolumns and the matrix. The substrates may be single-layered or multilayered.

  3. Observations on Dissocladella annulata (Elliott, 1993 nov. comb. (Calcareous algae, Dasycladales from the Cenomanian of west Serbia

    Directory of Open Access Journals (Sweden)

    Radoičić Rajka

    2010-01-01

    Full Text Available Based on material from the type area at Tetrebovo in the Zlatibor massif of WSerbia, the Cenomanian dasycladalean alga originally described as Harlanjohnsonella annulata by ELLIOTT (1968, typified 1993 in: GRANIER & DELOFFRE, is emended and revisited as Dissocladella annulata (ELLIOTT nov. comb. The evidence of tufts of short secondaries arising at the top of the drop-like primaries allows its transfer to the genus Dissocladella PIA, 1936. This species displays a different degree of skeleton calcification which is described in detail. The monospecific genus Harlanjohnsonella ELLIOTT becomes invalid, as being a junior synonym of Dissocladella.

  4. Comb-shaped polyesters of aliphatic dicarboxylic acids and 2-octadecyl-1,3-propanediol: 1. Synthesis and microstructure

    DEFF Research Database (Denmark)

    Andruzzi, F.; Hvilsted, S.

    1991-01-01

    Comb-shaped polyesters are prepared by polytransesterification of 2-octadecyl-1,3-propanediol and diphenyl suberate, sebacate, dodecanedioate, tetradecanedioate and hexadecanedioate in turn. The developed melt polycondensation procedure generally results in polyesters with intrinsic viscosities in...... be shown to result from total functional group conversions > 98.5%. Detailed C-13 nuclear magnetic resonance investigations of polyester solutions reveal many structural features originating from both main- and side-chain carbons and point to lack of stereoregularity. Infra-red spectra of polyesters...... reveal characteristic polyester absorption bands including bands indicative of the existence of a crystalline phase....

  5. Generation of a VUV-to-visible Raman frequency comb in hydrogen-filled kagom\\'e photonic crystal fiber

    CERN Document Server

    Mridha, M K; Bauerschmidt, S T; Abdolvand, A; Russell, P St J

    2016-01-01

    We report the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagom\\'e-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the fiber-gas system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way towards tunable fiber-based sources of deep- and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

  6. Over-five octaves wide Raman combs in high-power picosecond-laser pumped H(2)-filled inhibited coupling Kagome fiber.

    Science.gov (United States)

    Benoît, Aurélien; Beaudou, Benoit; Alharbi, Meshaal; Debord, Benoit; Gérôme, Frédéric; Salin, François; Benabid, Fetah

    2015-06-01

    We report on the generation of over 5 octaves wide Raman combs using inhibited coupling Kagome guiding hollow-core photonic crystal fiber filled with hydrogen and pumped with 22.7 W average power and 27 picosecond pulsed fiber laser. Combs spanning from ~321 nm in the UV to ~12.5 µm in the long-wavelength IR (i.e. from 24 THz to 933 THz) with different spectral content and with an output average power of up to ~10 W were generated. In addition to the clear potential of such a comb as a laser source emitting at spectral ranges, which existing technology poorly addresses like long-wavelength IR and UV, the combination of high Raman net gain and short pump-pulse duration makes these spectra an excellent candidate for intra-pulse waveform synthesis.

  7. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Armelle Cabin-Flaman

    2016-06-01

    Full Text Available Dynamic secondary ion mass spectrometry (D-SIMS imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C14N- recombinant ion and the use of the 13C:12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS.

  8. Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation

    CERN Document Server

    Leo, F; Ricciardi, I; De Rosa, M; Coen, S; Wabnitz, S; Erkintalo, M

    2016-01-01

    We derive a time-domain mean-field equation to model the full temporal and spectral dynamics of light in singly resonant cavity-enhanced second-harmonic generation systems. We show that the temporal walk-off between the fundamental and the second-harmonic fields plays a decisive role under realistic conditions, giving rise to rich, previously unidentified nonlinear behaviour. Through linear stability analysis and numerical simulations, we discover a new kind of quadratic modulation instability which leads to the formation of optical frequency combs and associated time-domain dissipative structures. Our numerical simulations show excellent agreement with recent experimental observations of frequency combs in quadratic nonlinear media [Phys. Rev. A 91, 063839 (2015)]. Thus, in addition to unveiling a new, experimentally accessible regime of nonlinear dynamics, our work enables predictive modeling of frequency comb generation in cavity-enhanced second-harmonic generation systems.

  9. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 {\\mu}m

    CERN Document Server

    Marandi, Alireza; Plotnichenko, Victor G; Dianov, Evgeny M; Vodopyanov, Konstantin L; Byer, Robert L

    2012-01-01

    We demonstrate mid-infrared (mid-IR) supercontinuum generation (SCG) with instantaneous bandwidth from 2.2 to 5 {\\mu}m at 40 dB below the peak, covering the wavelength range desirable for molecular spectroscopy and numerous other applications. The SCG occurs in a tapered As2S3 fiber prepared by in-situ tapering and is pumped by femtosecond pulses from the subharmonic of a mode-locked Er-doped fiber laser. Interference with a narrow linewidth c.w. laser verifies that the coherence properties of the near-IR frequency comb have been preserved through these cascaded nonlinear processes. With this approach stable broad mid-IR frequency combs can be derived from commercially available near-IR frequency combs without an extra stabilization mechanism.

  10. Lamotheoxyuris ackerti n. gen., n. comb. (Nematoda: Heteroxynematidae parasite of Neotoma spp. (Rodentia: Muridae Lamotheoxyuris ackerti n. gen., n. comb. (Nematoda: Heteroxynematidae parásito de Neotoma spp. (Rodentia: Muridae

    Directory of Open Access Journals (Sweden)

    JORGE FALCÓN-ORDAZ

    2010-06-01

    Full Text Available On the basis of the revision of the type material of Aspiculuris ackerti Kruidenier & Mehra, 1959, and new specimens collected from Neotoma nelsoni Goldman, 1905 (Rodentia: Cricetidae, in Veracruz, Mexico, we herein to which A. ackerti is transferred as Lamotheoxyuris ackerti This new genus differs from all other genera included in 1 mouth surrounded by six lips; 2 extension of lateral alae describe a new genus (Lamotheoxyuris n. gen., (Kruidener & Mehra, 1959 n. gen., n. comb. Heteroxynematinae by the following main traits: reduced; and 3 lack of caudal alae.Con base en la revisión del material tipo de Aspiculuris ackerti Kruidenier y Mehra, 1959 y de nuevos ejemplares recolectados en Neotoma nelsoni Goldman, 1905 (Rodentia: Cricetidae, en Veracruz, México, se describe un nuevo género (Lamotheoxyuris n. gen., al que A. ackerti es transferido como Lamotheoxyuris ackerti (Kruidener y Mehra, 1959 n. gen., n. comb. Este nuevo género se distingue de todos los demás géneros incluidos en Heteroxynematinae por las siguientes características: 1 presencia de seis labios rodeando la boca; 2 extensión reducida del ala lateral; y 3 carencia de ala caudal.

  11. Two-Stage System Based on a Software-Defined Radio for Stabilizing of Optical Frequency Combs in Long-Term Experiments

    Directory of Open Access Journals (Sweden)

    Martin Čížek

    2014-01-01

    Full Text Available A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more with the relative stability better than 1.6 × 10−11.

  12. Problems in using a comb sample as a stress-free reference for the determination of welding residual stress by diffraction

    International Nuclear Information System (INIS)

    Research highlights: → Comb samples used as reference samples in diffraction stress measurements on welds can retain significant macro-residual stress. → Measurements of the retained residual stress have been made in a comb sample extracted from a VPPA-welded aluminium plate. → A method is presented for the correction of the reference lattice parameter in the presence of retained residual stress. - Abstract: Precise measurement of a stress-free reference lattice parameter is vital in the determination of residual stress by diffraction techniques using θ/2θ-based analyses. For the evaluation of the residual strain profile in fusion-welded material, it is particularly important to correct the measured strain point-by-point by a stress-free reference for each spatial location across the weld. This is to take into account the compositional and microstructural variation across the weld caused by the thermal cycle of welding, as local changes in solute content of the parent alloy cause changes in the stress-free lattice parameter. Although ideally such measurements should be obtained from small cubes machined from the weld, the use of a comb sample has previously been proposed as a macro-stress-free reference, with the assumption that each finger of the comb is of insufficient dimension to hold a macro-stress field. This paper presents an approach towards analysis of the stress-free reference values using a comb sample extracted from a variable polarity plasma arc (VPPA) welded plate. It is shown that there is inter-granular stress and retained macro-stress within the comb teeth, and an experimental approach to deal with the problem is proposed.

  13. Studies on Suitable Number of Banana Combs Kept%香蕉适宜留果梳数试验研究

    Institute of Scientific and Technical Information of China (English)

    李国良; 姚丽贤; 杨苞梅; 何兆桓; 周昌敏; 涂仕华

    2011-01-01

    研究香蕉不同留果梳数对香蕉生长、产量、品质及效益的影响,为确定适合的香蕉果穗梳数提供依据.结果表明:不同留梳香蕉在断蕾前长势与施入养分量有关,果梳数对香蕉农艺性状有明显影响,随着留果梳数增加,可溶性糖含量增加,维生素C含量与果皮厚度则有增加趋势.综合市场对香蕉商品要求、收获日期、产量与种植效益等因素,果穗留7梳的蕉果果形好,收获期集中,产量与种植效益较好,适合广东省香蕉生产需要.%Studying the effect of combs kept on banana growth, yield, quality and benefit will provide a basis for confirming suitable number of banana combs kept.The result showed that the banana growing status with different combs kept before buds cutting off was related to the nutrients content.The banana's agronomic characteristics were affected obviously by combs kept number.With the increasing of combs kept number, the soluble sugar content increased, Vitamin C content and peel thickness also showed increasing tendency.Considering the requirements of comprehensive markets for banana commodity, its harvest time, yield and economic benefit etc., we deem that banana with 7 combs have good fruit shape, concentrated harvest time, high yield and better benefit, thus can well satisfy the need for banana consumption in Guangdong Province.

  14. Chelativorans intermedius sp. nov. and proposal to reclassify Thermovum composti as Chelativorans composti comb. nov.

    Science.gov (United States)

    Kämpfer, P; Arun, A B; Busse, H-J; Zhang, Zhen-Li; Young, Chiu-Chung; Glaeser, S P

    2015-05-01

    Two Gram-stain-negative, non-endospore-forming, rod-shaped bacteria, strains CC-MHSW-5(T) and A1392, were isolated from water of coastal hot springs located in Taiwan and China, respectively, and investigated for their taxonomic position. The two strains shared identical 16S rRNA gene sequences, a DNA-DNA hybridization value >80% and similar genomic DNA G+C contents (64.3 and 64.6 mol%), but showed different genomic fingerprint patterns generated by BOX-PCR and three random amplification polymorphic DNA PCRs. The strains shared highest 16S rRNA gene sequence similarities with the type strains of Chelativorans multitrophicus (96.7 and 96.1%), Thermovum composti (96.2 and 96.1%) and Chelativorans oligotrophicus (96.1 and 95.8%). Phylogenetic trees (based on 16S rRNA and recA gene sequence comparisons) showed a distinct clustering of both strains with the type strains of species of the genus Chelativorans and T. composti Nis3(T). The quinone systems of strains CC-MHSW-5(T) and Nis3(T) contained ubiquinone Q-10 as the major component. The major polyamine in both strains was sym-homospermidine. Putrescine, spermidine and, for strain CC-MHSW-5(T), spermine were found in minor concentrations. Their polar lipid profiles consisted of phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. The fatty acid profile contained major amounts of C18 : 1ω7c and C19 : 0 cyclo ω8c. On the basis of these results, the two strains are considered to represent a novel species of the genus Chelativorans , for which the name Chelativorans intermedius sp. nov. is proposed. The type strain is CC-MHSW-5(T) ( =CCM 8543(T) =LMG 28482(T) =DSM 29391(T) =CIP 110825(T)). Based on both genotypic and phenotypic characters, it is proposed that T. composti be reclassified within the genus Chelativorans as Chelativorans composti comb. nov.

  15. Nuclear charge radii of light isotopes based on frequency comb measurements

    International Nuclear Information System (INIS)

    Optical frequency comb technology has been used in this work for the first time to investigate the nuclear structure of light radioactive isotopes. Therefore, three laser systems were stabilized with different techniques to accurately known optical frequencies and used in two specialized experiments. Absolute transition frequency measurements of lithium and beryllium isotopes were performed with accuracy on the order of 10-10. Such a high accuracy is required for the light elements since the nuclear volume effect has only a 10-9 contribution to the total transition frequency. For beryllium, the isotope shift was determined with an accuracy that is sufficient to extract information about the proton distribution inside the nucleus. A Doppler-free two-photon spectroscopy on the stable lithium isotopes 6,7Li was performed in order to determine the absolute frequency of the 2S → 3S transition. The achieved relative accuracy of 2 x 10-10 is improved by one order of magnitude compared to previous measurements. The results provide an opportunity to determine the nuclear charge radius of the stable and short-lived isotopes in a pure optical way but this requires an improvement of the theoretical calculations by two orders of magnitude. The second experiment presented here was performed at ISOLDE/CERN, where the absolute transition frequencies of the D1 and D2 lines in beryllium ions for the isotopes 7,9,10,11Be were measured with an accuracy of about 1 MHz. Therefore, an advanced collinear laser spectroscopy technique involving two counter-propagating frequency-stabilized laser beams with a known absolute frequency was developed. The extracted isotope shifts were combined with recent accurate mass shift calculations and the root-mean square nuclear charge radii of 7,10Be and the one-neutron halo nucleus 11Be were determined. Obtained charge radii are decreasing from 7Be to 10Be and increasing again for 11Be. While the monotone decrease can be explained by a nucleon

  16. Frequency Comb-Referenced Spectroscopy in the ν1 + ν3 Region of Acetylene

    Science.gov (United States)

    Cich, Matthew J.; Forthomme, Damien; Hall, Gregory E.; Mcraven, Christopher P.; Sears, Trevor J.; Twagirayezu, Sylvestre

    2014-06-01

    class="MsoNormal">By using saturation dip absorption spectroscopy with an extended cavity diode laser locked to a frequency comb, we have measured the rest frequencies of transitions in the ν4 = 1 and ν5 = 1 hot bands in the ν1 + ν3 combination band of acetylene. The measured line frequencies are accurate to approximately 20 kHz i.e. approximately one part in 1011. Positions of the hot-band lines quoted in the HITRAN database, which are derived from the analysis of high-resolution FTIR spectra, are of the order of 10's of MHz in error. These measurements were undertaken because pressure broadened lineshape measurements of rotational lines in the combination band indicated that weak underlying hot band features were not correctly accounted for on the basis of their previously reported positions. As a result, measured line profiles in the band could not be accurately fit leading to errors of up to 1% in acetylene concentrations derived from the measurements. In addition, the pressure broadened P(11) line in the ν1 + ν3 combination band has been studied as a function of varying concentration of the absorber in nitrogen. Mixture concentrations of 1, 5 and 10% at 296 K and pressures between a few Torr and one atmosphere were made and the measurements analyzed using two different speeddependent broadening models. These experiments are designed to test the additivity of contributions to pressure broadening and shift in speed-dependent line-shape modeling, i.e. whether the lineshape parameters follow partial pressure weighting in the binary mixtures. P(11) is relatively isolated with respect to underlying hot band transitions and neighboring transitions of the same band, but it was found that the accurate positions of underlying hot-band transitions were crucial to the successful modeling of the observed line shapes, even though these lines are typically 100-1000 times weaker than P(11) itself and are many Doppler line widths removed from the line center

  17. Pipunculidae (Diptera da região neotropical: I. Redescrição de Chalarus chilensis Collin, comb. n. e descrição de duas espécies novas da Amazônia

    Directory of Open Access Journals (Sweden)

    J. A. Rafael

    1988-07-01

    Full Text Available Chalarus chilensis Collin, comb. n. é redescrito a partir do tipo e duas novas espécies da Bacia Amazônica, C. amazonensis e C. connexus, são descritas.Chalarus chilensis, comb. n. , is redescribed from the type and two species from the Amazon Basin, C. amazonensis and C. connexus, are described.

  18. Mid-infrared quantitative spectroscopy by comb-referencing of a quantum-cascade-laser: Application to the CO2 spectrum at 4.3 μm

    Science.gov (United States)

    Gambetta, A.; Gatti, D.; Castrillo, A.; Galzerano, G.; Laporta, P.; Gianfrani, L.; Marangoni, M.

    2011-12-01

    A robust phase-lock of a quantum-cascade-laser to a near-infrared frequency-comb allows absorption spectra of a CO2 gas sample to be acquired at different pressures with extreme repeatability and accuracy by tuning the repetition-rate of the comb, thus ensuring an absolute frequency scale on the acquired spectra. The method proves useful to retrieve traceable spectroscopic parameters such as line-center frequencies, line intensity factors, pressure shift, and pressure broadening coefficients, with unprecedented quality from the metrological point of view.

  19. Characterization of Perylene in Tropical Environment: Comparison of New and Old Fungus Comb for Identifying Perylene Precursor in Macrotermes gilvus Termite Nests of Peninsular Malaysia

    OpenAIRE

    Alireza Riyahi Bakhtiari

    2010-01-01

    This is the first record on the distribution of perylene in new and old fungus combs of termite nest (Macrotermes gilvus) in order to determine perylene source in tropical environment. Twenty four samples of new and old fungus combs, inner and outer nest walls, fresh and decomposed bark, decomposed stem, soil, and soil-wood interface were collected in order to test of two hypotheses; i) Perylene is produced in the termite’s hindgut (M. gilvus) and ii) Perylene is present only in new fungus co...

  20. Controlled generation of comb-like electron beams in plasma channels for polychromatic inverse Thomson γ-ray sources

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Lehe, R.; Lifschitz, A. F.; Shadwick, B. A.

    2016-03-01

    Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth  >150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams—sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy spacing dependent on the channel radius and pulse length. These customizable electron beams enable the design of a tunable, all-optical source of pulsed, polychromatic γ-rays using the mechanism of inverse Thomson scattering, with up to  ˜10-5 conversion efficiency from the drive pulse in the electron accelerator to the γ-ray beam. Such a source may radiate  ˜107 quasi-monochromatic photons per shot into a microsteradian-scale cone. The photon energy is distributed among several distinct bands, each having sub-30% energy spread, with a highest energy of 12.5 MeV.

  1. Generation of multiple optical frequencies referenced to a frequency comb for precision free-space frequency transfer

    Science.gov (United States)

    Chun, Byung Jae; Kang, Hyun Jay; Kim, Young-Jin; Kim, Seung-Woo

    2016-03-01

    Generating multiple optical frequencies referenced to the frequency standard is an important task in optical clock dissemination and optical communication. An apparatus for frequency-comb-referenced generation of multiple optical frequencies is demonstrated for high-precision free-space transfer of multiple optical frequencies. The relative linewidth and frequency instability at each channel corresponds to sub-1 Hz and 1.06×10-15 at 10 s averaging time, respectively. During the free-space transfer, the refractive index change of transmission media caused by atmospheric turbulences induces phase and frequency noise on optical frequencies. These phase and frequency noise causes induced linewidth broadening and frequency shift in optical frequencies which can disturb the accurate frequency transfer. The proposed feedback loop with acousto-optic modulator can monitor and compensate phase/frequency noise on optical frequencies. As a result, a frequency-comb-referenced single optical mode is compensated with a high signal to noise ratio (SNR) of 80 dB. By sharing the same optical paths, this feedback loop is confirmed to be successfully transferred to the neighboring wavelength channels (a 100 GHz spaced channel). This result confirms our proposed system can transfer optical frequencies to the remote site in free-space without performance degradation.

  2. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance.

    Science.gov (United States)

    Baumann, E; Giorgetta, F R; Deschênes, J-D; Swann, W C; Coddington, I; Newbury, N R

    2014-10-20

    Non-contact surface mapping at a distance is interesting in diverse applications including industrial metrology, manufacturing, forensics, and artifact documentation and preservation. Frequency modulated continuous wave (FMCW) laser detection and ranging (LADAR) is a promising approach since it offers shot-noise limited precision/accuracy, high resolution and high sensitivity. We demonstrate a scanning imaging system based on a frequency-comb calibrated FMCW LADAR and real-time digital signal processing. This system can obtain three-dimensional images of a diffusely scattering surface at stand-off distances up to 10.5 m with sub-micrometer accuracy and with a precision below 10 µm, limited by fundamental speckle noise. Because of its shot-noise limited sensitivity, this comb-calibrated FMCW LADAR has a large dynamic range, which enables precise mapping of scenes with vastly differing reflectivities such as metal, dirt or vegetation. The current system is implemented with fiber-optic components, but the basic system architecture is compatible with future optically integrated, on-chip systems. PMID:25401525

  3. Noise-immune cavity-enhanced optical frequency comb spectroscopy: A sensitive technique for high-resolution broadband molecular detection

    CERN Document Server

    Khodabakhsh, Amir; Foltynowicz, Aleksandra

    2014-01-01

    Noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS) is a recently developed technique that utilizes phase modulation to obtain immunity to frequency-to-amplitude noise conversion by the cavity modes and yields high absorption sensitivity over a broad spectral range. We describe the principles of the technique and discuss possible comb-cavity matching solutions. We present a theoretical description of NICE-OFCS signals detected with a Fourier transform spectrometer (FTS), and validate the model by comparing it to experimental CO2 spectra around 1575 nm. Our system is based on an Er:fiber femtosecond laser locked to a cavity and phase-modulated at a frequency equal to a multiple of the cavity free spectral range (FSR). The NICE-OFCS signal is detected by a fast-scanning FTS equipped with a high-bandwidth commercial detector. We demonstrate a simple method of passive locking of the modulation frequency to the cavity FSR that significantly improves the long term stability of the system, a...

  4. Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes

    International Nuclear Information System (INIS)

    This paper presents a highly sensitive resonant electric field microsensor based on silicon on insulator (SOI) technology. To improve the electric field coupling effect, the microsensor uses coplanar shutter electrodes and sense electrodes. To obtain higher conversion gain, both electrodes adopt novel comb-shaped structures. A finite element method (FEM) was used to simulate and optimize the structures of the comb-shaped electrodes. The sensitivity model of the microsensor was analyzed by the conversion gain of the vibration-amplitude-to-charge variation. The resolution of the microsensor is approximately 40 V m−1 with an uncertainty of 1% for the dc field, while the resolution is better than 10 V m−1 for the 50 Hz ac field. The microsensors were packaged and assembled to form an electric field probe to measure the atmospheric electric field. The test results showed that the probe precisely detected the occurrence of thunderstorms, and the plotted data agreed well with those of the conventional electric field mill. (paper)

  5. Investigating the interplay between mechanisms of anomalous diffusion via fractional Brownian walks on a comb-like structure

    CERN Document Server

    Ribeiro, H V; Alves, L G A; Zola, R S; Lenzi, E L

    2014-01-01

    The comb model is a simplified description for anomalous diffusion under geometric constraints. It represents particles spreading out in a two-dimensional space where the motions in the x-direction are allowed only when the y coordinate of the particle is zero. Here, we propose an extension for the comb model via Langevin-like equations driven by fractional Gaussian noises (long-range correlated). By carrying out computer simulations, we show that the correlations in the y-direction affect the diffusive behavior in the x-direction in a non-trivial fashion, resulting in a quite rich diffusive scenario characterized by usual, superdiffusive or subdiffusive scaling of second moment in the x-direction. We further show that the long-range correlations affect the probability distribution of the particle positions in the x-direction, making their tails longer when noise in the y-direction is persistent and shorter for anti-persistent noise. Our model thus combines and allows the study/analysis of the interplay betwe...

  6. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3-5.4  μm.

    Science.gov (United States)

    Khodabakhsh, Amir; Ramaiah-Badarla, Venkata; Rutkowski, Lucile; Johansson, Alexandra C; Lee, Kevin F; Jiang, Jie; Mohr, Christian; Fermann, Martin E; Foltynowicz, Aleksandra

    2016-06-01

    We present a versatile mid-infrared frequency comb spectroscopy system based on a doubly resonant optical parametric oscillator tunable in the 3-5.4 μm range and two detection methods: a Fourier transform spectrometer (FTS) and a continuous-filtering Vernier spectrometer (CF-VS). Using the FTS with a multipass cell, we measure high precision broadband absorption spectra of CH4 at 3.3 μm and NO at 5.25 μm, the latter for the first time with comb spectroscopy, and we detect atmospheric species (CH4, CO, CO2, and H2O) in air in the signal and idler ranges. Multiline fitting yields minimum detectable concentrations of 10-20  ppb Hz-1/2 for CH4, NO, and CO. For the first time in the mid-infrared, we perform CF-VS using an enhancement cavity, a grating, and a single detector, and we measure the absorption spectrum of CH4 and H2O in ambient air at ∼3.3  μm, reaching a 40 ppb concentration detection limit for CH4 in 2 ms.

  7. Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition

    Science.gov (United States)

    Wilson, K. C.; Basheer Ahamed, M.

    2016-01-01

    Even though nanostructures possess large surface to volume ratio compared to their thin film counterpart, the complicated procedure that demands for the deposition on a substrate kept them back foot in device fabrication techniques. In this work, a honey comb like cadmium sulfide (CdS) thin films nanostructure are deposited on glass substrates using simple chemical bath deposition technique at 65 °C. Energy band gaps, film thickness and shell size of the honey comb nanostructures are successfully controlled using tin (Sn) doping and number of shells per unit area is found to be maximum for 5% Sn doped (in the reaction mixture) sample. X-ray diffraction and optical absorption analysis showed that cadmium sulfide and cadmium hydroxide coexist in the samples. TEM measurements showed that CdS nanostructures are embedded in cadmium hydroxide just like "plum pudding". Persistent photoconductivity measurements of the samples are also carried out. The decay constants found to be increased with increases in Sn doping.

  8. Nuclear charge radii of light isotopes based on frequency comb measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zakova, Monika

    2010-02-11

    Optical frequency comb technology has been used in this work for the first time to investigate the nuclear structure of light radioactive isotopes. Therefore, three laser systems were stabilized with different techniques to accurately known optical frequencies and used in two specialized experiments. Absolute transition frequency measurements of lithium and beryllium isotopes were performed with accuracy on the order of 10{sup -10}. Such a high accuracy is required for the light elements since the nuclear volume effect has only a 10{sup -9} contribution to the total transition frequency. For beryllium, the isotope shift was determined with an accuracy that is sufficient to extract information about the proton distribution inside the nucleus. A Doppler-free two-photon spectroscopy on the stable lithium isotopes {sup 6,7}Li was performed in order to determine the absolute frequency of the 2S {yields} 3S transition. The achieved relative accuracy of 2 x 10{sup -10} is improved by one order of magnitude compared to previous measurements. The results provide an opportunity to determine the nuclear charge radius of the stable and short-lived isotopes in a pure optical way but this requires an improvement of the theoretical calculations by two orders of magnitude. The second experiment presented here was performed at ISOLDE/CERN, where the absolute transition frequencies of the D{sub 1} and D{sub 2} lines in beryllium ions for the isotopes {sup 7,9,10,11}Be were measured with an accuracy of about 1 MHz. Therefore, an advanced collinear laser spectroscopy technique involving two counter-propagating frequency-stabilized laser beams with a known absolute frequency was developed. The extracted isotope shifts were combined with recent accurate mass shift calculations and the root-mean square nuclear charge radii of {sup 7,10}Be and the one-neutron halo nucleus {sup 11}Be were determined. Obtained charge radii are decreasing from {sup 7}Be to {sup 10}Be and increasing again for

  9. Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization.

    Science.gov (United States)

    Lim, Jinkang; Chen, Hung-Wen; Chang, Guoqing; Kärtner, Franz X

    2013-02-25

    Laser frequency combs are normally based on mode-locked oscillators emitting ultrashort pulses of ~100-fs or shorter. In this paper, we present a self-referenced frequency comb based on a narrowband (5-nm bandwidth corresponding to 415-fs transform-limited pulses) Yb-fiber oscillator with a repetition rate of 280 MHz. We employ a nonlinear Yb-fiber amplifier to both amplify the narrowband pulses and broaden their optical spectrum. To optimize the carrier envelope offset frequency (fCEO), we optimize the nonlinear pulse amplification by pre-chirping the pulses at the amplifier input. An optimum negative pre-chirp exists, which produces a signal-to-noise ratio of 35 dB (100 kHz resolution bandwidth) for the detected fCEO. We phase stabilize the fCEO using a feed-forward method, resulting in 0.64-rad (integrated from 1 Hz to 10 MHz) phase noise for the in-loop error signal. This work demonstrates the feasibility of implementing frequency combs from a narrowband oscillator, which is of particular importance for realizing large line-spacing frequency combs based on multi-GHz oscillators usually emitting long (>200 fs) pulses. PMID:23481986

  10. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.;

    2012-01-01

    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...

  11. Single-Source AlGaAs Frequency Comb Transmitter for 661 Tbit/s Data Transmission in a 30-core Fiber

    DEFF Research Database (Denmark)

    Hu, Hao; Da Ros, Francesco; Ye, Feihong;

    2016-01-01

    We demonstrate an AlGaAs-on-insulator nano-waveguide-based frequency comb with high OSNR enabling a single-source to fully load a 9.6-km heterogeneous 30-core fibre with 661 Tbit/s data achieved by 30xcores, 80xWDM, 40 Gbaud, and PDM-16QAM...

  12. Coherent control of multiphoton dynamics and high-order-harmonic generation driven by two frequency-comb fields with a relative envelope delay

    Science.gov (United States)

    Zhao, Di; Jiang, Chen-Wei; Li, Fu-li

    2016-07-01

    We present a theoretical investigation of the coherent control of multiphoton dynamics and a high-order-harmonic generation (HHG) process driven by two frequency-comb fields, via the interference of multiphoton transition paths by tuning the relative envelope delay between fields. The many-mode Floquet theorem is employed to provide a nonperturbative and exact treatment of the interaction between a quantum system and frequency-comb laser fields. The case of two frequency-comb fields with the same repetition frequency and the carrier frequencies of fundamental and second harmonics, respectively, is considered. Due to the coupling of the second harmonic controlling the frequency-comb laser field, multiphoton transitions involving both fundamental- and second-harmonic photons occur. Different multiphoton transition paths can be superpositioned when the matching condition for carrier-envelope-phase shifts is satisfied, offering the possibility of coherent control of HHG power spectra via the interference of paths by tuning the relative envelope delay between fields. The calculated HHG power spectra present both sub-cycle oscillation and multi-cycle modulation behavior when the relative envelope delay is varied. It is also found that, under the condition of multiphoton resonance, the HHG power spectra can be further enhanced by about 10 times via the interference of multiphoton transition paths by tuning the relative envelope delay.

  13. Trichospermum lessertianum comb. nov., the correct name for the Cuban species of Trichospermum (Malvaceae: Grewioideae also found in Mexico and Central America

    Directory of Open Access Journals (Sweden)

    Laurence J. Dorr

    2011-02-01

    Full Text Available The correct name for the Cuban species of Trichospermum Bl. (Malvaceae: Grewioideae also found in Mexico and Central America is T. lessertianum (Hochr. Dorr, comb. n. The name T. mexicanum (DC. Baill., incorrectly applied to this Cuban species, should be restricted to a species endemic to western and southern Mexico.

  14. Trichospermum lessertianum comb. n., the correct name for the Cuban species of Trichospermum (Malvaceae, Grewioideae) also found in Mexico and Central America

    OpenAIRE

    Dorr, Laurence J.

    2011-01-01

    Abstract The correct name for the Cuban species of Trichospermum Bl. (Malvaceae: Grewioideae) also found in Mexico and Central America is Trichospermum lessertianum (Hochr.) Dorr, comb. n. The name Trichospermum mexicanum (DC.) Baill., incorrectly applied to this Cuban species, should be restricted to a species endemic to western and southern Mexico.

  15. Aquibacillus halophilus gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Virgibacillus koreensis as Aquibacillus koreensis comb. nov. and Virgibacillus albus as Aquibacillus albus comb. nov.

    Science.gov (United States)

    Amoozegar, Mohammad Ali; Bagheri, Maryam; Didari, Maryam; Mehrshad, Maliheh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2014-11-01

    distinguish it from species of the genus Virgibacillus or of other related genera. On the basis of the polyphasic evidence derived in this study, we propose that strain B6B(T) be placed within a new genus, as Aquibacillus halophilus gen. nov., sp. nov., with B6B(T) as the type strain ( =IBRC-M 10775(T) =KCTC 13828(T)). We also propose that V. koreensis and V. albus should be transferred to this new genus and be named Aquibacillus koreensis comb. nov. and Aquibacillus albus comb. nov., respectively. The type strain of Aquibacillus koreensis comb. nov. is BH30097(T) ( =KCTC 3823(T) =IBRC-M 10657(T) =JCM 12387(T)) and the type strain of Aquibacillus albus comb. nov. is YIM 93624(T) ( =DSM 23711(T) =IBRC-M 10798(T) =JCM 17364(T)). PMID:25062698

  16. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser.

    Science.gov (United States)

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Qu, Xinghua

    2016-05-20

    In this paper, we develop a multi-heterodyne system capable of absolute distance measurement using a frequency comb and a tunable diode laser locked to a Fabry-Perot cavity. In a series of subsequent measurements, numerous beat components can be obtained by downconverting the optical frequency into the RF region with multi-heterodyne interferometry. The distances can be measured via the mode phases with a series of synthetic wavelengths. The comparison with the reference interferometer shows an agreement within 1.5 μm for the averages of five measurements and 2.5 μm for the single measurement, which is at the 10-8 relative precision level. PMID:27411152

  17. Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study.

    Science.gov (United States)

    Herrera López, Sonia; Lozano, Ana; Sosa, Alexis; Hernando, M Dolores; Fernández-Alba, Amadeo R

    2016-11-01

    A developed multi-residue method using microflow-LC-ESI-QqQ-MS provided a wide-scope analysis for medium-polar and polar pesticide residues (120 compounds including breakdown products). Honeybee wax comb samples were extracted using a generic QuEChERS based procedure. Acceptable recoveries at concentration levels of 5 and 50 μg kg(-1) were within the 70-120% range with an associated precision RSD  9 μg kg(-1); fungicides at concentrations ranging from 1 to 23 μg kg(-1.) The number of positive detections due to herbicides was lower as expected and at a lower level of concentration, from 1 to 5.9 μg kg(-1).

  18. Large-bandwidth two-color free-electron laser driven by a comb-like electron beam

    International Nuclear Information System (INIS)

    We discuss a two-color SASE free-electron laser (FEL) amplifier where the time and energy separation of two separated radiation pulses are controlled by manipulation of the electron beam phase space. Two electron beamlets with adjustable time and energy spacing are generated in an RF photo-injector illuminating the cathode with a comb-like laser pulse followed by RF compression in the linear accelerator. We review the electron beam manipulation technique to generate bunches with time and energy properties suitable for driving two-color FEL radiation. Experimental measurements at the SPARC-LAB facility illustrate the flexibility of the scheme for the generation of two-color FEL spectra. (paper)

  19. Open-Air, Broad-Bandwidth Trace-Gas Sensing with a Mid-Infrared Optical Frequency Comb

    CERN Document Server

    Nugent-Glandorf, Lora; Diddams, Scott A

    2014-01-01

    A mid-Infrared frequency comb is produced via an optical parametric oscillator (OPO) pumped by an amplified 100 MHz Yb:fiber mode-locked laser. We use this source to make measurements of the concentration of the atmospherically-relevant species of CH4 and H2O over a bandwidth of 100 nm centered at 3.25 um. Multiple absorption lines for each species are detected with millisecond acquisition time using a virtually-imaged phased array (VIPA) spectrometer. The measured wavelength-dependent absorption profile is compared to and fitted by a model, yielding quantitative values of the atmospheric concentration of both CH4 and H2O in a controlled indoor environment, as well as over a 26 m open air outdoor path.

  20. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions

    Science.gov (United States)

    Tong, Kefeng; Song, Xingfu; Sun, Shuying; Xu, Yanxia; Yu, Jianguo

    2014-08-01

    All-atom molecular dynamics simulations were employed to provide microscopic mechanism for the salt tolerance of polyelectrolytes dispersants. The conformational variation of polyelectrolytes and interactions between COO- groups and counterions/water molecules were also studied via radius of gyration and pair correlations functions. Sodium polyacrylate (NaPA) and sodium salts of poly(acrylic acid)-poly(ethylene oxide) (NaPA-PEO) were selected as the representative linear and comb-like polyelectrolyte, respectively. The results show that Ca2+ ions interact with COO- groups much stronger than Na+ ions and can bring ion-bridging interaction between intermolecular COO- groups in the NaPA systems. While in the NaPA-PEO systems, the introduced PEO side chains can prevent backbone chains from ion-bridging interactions and weaken the conformational changes. The present results can help in selecting and designing new-type efficient polyelectrolyte dispersants with good salt tolerance.