WorldWideScience

Sample records for camarotella torrendiella comb

  1. A simplified DNA extraction method for PCR analysis of Camarotella spp.

    Directory of Open Access Journals (Sweden)

    Nadja Santos Vitória

    2010-04-01

    Full Text Available This work aimed to optimize an efficient and simple protocol for DNA extraction of Camarotella species, an obligate plant pathogen that cause verrucosis or "lixa" on coconut tree and other palms, facilitating the molecular studies of these biotrophic microorganisms. The method proposed enabled a fast, reproducible and reliable DNA extraction from Camarotella species.A extração e amplificação de DNA são etapas fundamentais para a aplicação de métodos moleculares e para tal, a origem do material é relevante. As espécies do gênero Camarotella que causam as lixas do coqueiro e outras palmeiras são biotróficas e o crescimento em meio artificial é controverso, embora Oliveira et. al, (2004 tenham registrado seu cultivo in vitro, utilizando meio líquido completo. No entanto, não ficou provado que o micélio formado correspondia ao micélio de Camarotella. Em conseqüência das dificuldades com o cultivo dos agentes etiológicos das lixas, foi otimizado um protocolo para extração de DNA genômico a partir do himênio ascógeno in natura e um protocolo de PCR para sua amplificação. Nossos resultados são importantes para o estudo da família Phyllachoraceae, pois possibilitará a análise molecular que, nessa família, é limitada pela dificuldade de obtenção de DNA.

  2. Modeling Frequency Comb Sources

    Directory of Open Access Journals (Sweden)

    Li Feng

    2016-06-01

    Full Text Available Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.

  3. Hyperfine phononic frequency comb

    CERN Document Server

    Ganesan, Adarsh; Seshia, Ashwin A

    2016-01-01

    Optical frequency combs [1-8] have resulted in significant advances in optical frequency metrology and found wide application to precise physical measurements [1-4, 9] and molecular fingerprinting [8]. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this letter, we report the first clear experimental evidence for a phononic frequency comb. In contrast to the Kerr nonlinearity [10] in optical frequency comb formation, the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an auto-parametrically excited sub-harmonic mode [16]. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define attributes to control the features [17-18] associated with comb formation in such a system. Further, the interplay between these nonlinear resonances and the well-known Duffing phenomenon [12-14] is also observed. The present...

  4. Universal Optical Frequency Comb

    CERN Document Server

    Savchenkov, A A; Liang, W; Ilchenko, V S; Seidel, D; Maleki, L

    2010-01-01

    We demonstrate that whispering gallery mode resonators can be utilized to generate optical frequency combs based on four wave mixing process at virtually any frequency that lies in the transparency window of the resonator host material. We show theoretically how the morphology of the resonator can be engineered to produce a family of spectrally equidistant modes with anomalous group velocity dispersion appropriate for the comb generation. We present experimental results for a frequency comb centered at 794 nm to support our theoretical findings.

  5. Combing the Globe

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China’s top comb maker aims to sell its high-end hand-crafted products to overseas customers while improving its brand image For some, woodcarving and small carpentry work are hobbies. But for Tan Chuanhua and his Carpenter Tan comb brand, the woodworking craft has become a deep-rooted moneymaker. The Chongqing-based handcraft wood comb maker raised HK$140 million ($18 mil-

  6. Dynamics of comb-of-comb networks

    Science.gov (United States)

    Liu, Hongxiao; Lin, Yuan; Dolgushev, Maxim; Zhang, Zhongzhi

    2016-03-01

    The dynamics of complex networks, a current hot topic in many scientific fields, is often coded through the corresponding Laplacian matrix. The spectrum of this matrix carries the main features of the networks' dynamics. Here we consider the deterministic networks which can be viewed as "comb-of-comb" iterative structures. For their Laplacian spectra we find analytical equations involving Chebyshev polynomials whose properties allow one to analyze the spectra in deep. Here, in particular, we find that in the infinite size limit the corresponding spectral dimension goes as ds→2 . The ds leaves its fingerprint on many dynamical processes, as we exemplarily show by considering the dynamical properties of polymer networks, including single monomer displacement under a constant force, mechanical relaxation, and fluorescence depolarization.

  7. Frequency comb swept lasers.

    Science.gov (United States)

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G

    2009-11-09

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  8. Dissipative soliton comb

    CERN Document Server

    Podivilov, Evgeniy V; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Babin, Sergey A

    2016-01-01

    Dissipative solitons are stable localized coherent structures with linear frequency chirp generated in normal-dispersion mode-locked lasers. The soliton energy in fiber lasers is limited by the Raman effect, but implementation of intracavity feedback for the Stokes wave enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming a "dissipative soliton comb" in the frequency domain. We observed up to eight equidistant components in a 400-nm interval demonstrating compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications.

  9. Dual-comb MIXSEL

    Science.gov (United States)

    Link, S. M.; Zaugg, C. A.; Klenner, A.; Mangold, M.; Golling, M.; Tilma, B. W.; Keller, U.

    2015-03-01

    We present a single semiconductor disk laser simultaneously emitting two different gigahertz modelocked pulse trains. A birefringent crystal inside a modelocked integrated external-cavity surface-emitting laser (MIXSEL) separates the cavity beam into two spatially separated beams with perpendicular polarizations on the MIXSEL chip. This MIXSEL then generates two orthogonally polarized collinear modelocked pulse trains from one simple straight cavity. Superimposing the beams on a photo detector creates a microwave beat signal, representing a strikingly simple setup to down-convert the terahertz optical frequencies into the electronically accessible microwave regime. This makes the dual-comb MIXSEL scheme an ultra-compact and cost-efficient candidate for dual-comb spectroscopy applications.

  10. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  11. Optical frequency combs generated mechanically

    CERN Document Server

    Sumetsky, M

    2016-01-01

    It is shown that a highly equidistant optical frequency comb can be generated by the parametric excitation of an optical bottle microresonator with nanoscale effective radius variation by its natural mechanical vibrations.

  12. Surface Acoustic Wave Frequency Comb

    CERN Document Server

    Savchenkov, A A; Ilchenko, V S; Seidel, D; Maleki, L

    2011-01-01

    We report on realization of an efficient triply-resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyper-parametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb observing the modulation of the modulated light escaping the resonator.

  13. Monolithically integrated absolute frequency comb laser system

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  14. On Frequency Combs in Monolithic Resonators

    Science.gov (United States)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  15. On Frequency Combs in Monolithic Resonators

    Directory of Open Access Journals (Sweden)

    Savchenkov A. A.

    2016-06-01

    Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  16. Ultrafast electrooptic dual-comb interferometry

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2015-01-01

    The femtosecond laser frequency comb has enabled the 21st century revolution in optical synthesis and metrology. A particularly compelling technique that relies on the broadband coherence of two laser frequency combs is dual-comb interferometry. This method is rapidly advancing the field of optical spectroscopy and empowering new applications, from nonlinear microscopy to laser ranging. Up to now, most dual-comb interferometers were based on modelocked lasers, whose repetition rates have restricted the measurement speed to ~ kHz. Here we demonstrate a novel dual-comb interferometer that is based on electrooptic frequency comb technology and measures consecutive complex spectra at a record-high refresh rate of 25 MHz. These results pave the way for novel scientific and metrology applications of frequency comb generators beyond the realm of molecular spectroscopy, where the measurement of ultrabroadband waveforms is of paramount relevance.

  17. Broadband midinfrared frequency comb with tooth scanning

    Science.gov (United States)

    Lee, Kevin F.; Masłowski, P.; Mills, A.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Fermann, M. E.

    2015-03-01

    Frequency combs are a massively parallel source of extremely accurate optical frequencies. Frequency combs generally operate at the visible or near-infrared wavelengths, but fundamental molecular vibrations occur at midinfrared wavelengths. We demonstrate an optically-referenced, broadband midinfrared frequency comb based on a doublyresonant optical parametric oscillator (OPO). By tuning the wavelength of the reference laser, the comb line frequencies are tuned as well. By scanning the reference wavelength, any frequency can be accessed, not just the frequencies of the base comb. Combined with our comb-resolving Fourier transform spectrometer, we can measure 200 wavenumber wide broadband absorption spectra with 200 kHz linewidth comb teeth. Our OPO is pumped by an amplified Tm fiber frequency comb, with phase-locked carrier envelope offset frequency, and repetition rate fixed by phase-locking a frequency comb line to a narrow linewidth diode laser at a telecom channel. The frequency comb is referenced to GPS by long-term stabilization of the repetition rate to a selected value using the temperature of the reference laser as the control. The resulting pump comb is about 3W of 100 fs pulses at 418 MHz repetition rate at 1950 nm. Part of the comb is used for supercontinuum generation for frequency stabilization, and the rest pumps an orientation-patterned gallium arsenide (OP-GaAs) crystal in a doubly-resonant optical parametric oscillator cavity, yielding collinear signal and idler beams from about 3 to 5.5 μm. We verify comb scanning by resolving the 200 MHz wide absorption lines of the entire fundamental CO vibrational manifold at 11 Torr pressure.

  18. Quantum Cascade Laser Frequency Combs

    CERN Document Server

    Faist, Jérôme; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2015-01-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100 mW and frequency coverage of 100 cm$^{-1}$ in the mid-infrared. In the THz range, 10 mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the fir...

  19. On-chip dual-comb based on quantum cascade laser frequency combs

    Energy Technology Data Exchange (ETDEWEB)

    Villares, G., E-mail: gustavo.villares@phys.ethz.ch; Wolf, J.; Kazakov, D.; Süess, M. J.; Beck, M.; Faist, J., E-mail: jfaist@phys.ethz.ch [Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich (Switzerland); Hugi, A. [IRsweep GmbH, CH-8093 Zürich (Switzerland)

    2015-12-21

    Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-comb systems.

  20. Transient Regime of Kerr Frequency Comb Formation

    CERN Document Server

    Savchenkov, Anatoliy A; Liang, Wei; Ilchenko, Vladimir S; Seidel, David; Maleki, Lute

    2011-01-01

    Temporal growth of an optical Kerr frequency comb generated in a microresonator is studied both experimentally and numerically. We find that the comb emerges from vacuum fluctuations of the electromagnetic field on timescales significantly exceeding the ringdown time of the resonator modes. The frequency harmonics of the comb spread starting from the optically pumped mode if the microresonator is characterized with anomalous group velocity dispersion. The harmonics have different growth rates resulting from sequential four-wave mixing process that explains intrinsic modelocking of the comb.

  1. Coherence properties of Kerr frequency combs

    CERN Document Server

    Erkintalo, Miro

    2014-01-01

    We use numerical simulations based on an extended Lugiato-Lefever equation (LLE) to investigate the stability properties of Kerr frequency combs generated in microresonators. In particular, we show that an ensemble average calculated over sequences of output fields separated by a fixed number of resonator roundtrips allows the coherence of Kerr combs to be quantified in terms of the complex-degree of first-order coherence. We identify different regimes of comb coherence, linked to the solutions of the LLE. Our approach provides a practical and unambiguous way of assessing the stability of Kerr combs that is directly connected to an accessible experimental quantity.

  2. Coherence properties of Kerr frequency combs.

    Science.gov (United States)

    Erkintalo, Miro; Coen, Stéphane

    2014-01-15

    We use numerical simulations based on an extended Lugiato-Lefever equation (LLE) to investigate the stability properties of Kerr frequency combs generated in microresonators. In particular, we show that an ensemble average calculated over sequences of output fields separated by a fixed number of resonator roundtrips allows the coherence of Kerr combs to be quantified in terms of the complex degree of first-order coherence. We identify different regimes of comb coherence, linked to the solutions of the LLE. Our approach provides a practical and unambiguous way of assessing the stability of Kerr combs that is directly connected to an accessible experimental quantity.

  3. Microresonator Soliton Dual-Comb Spectroscopy

    CERN Document Server

    Suh, Myoung-Gyun; Yang, Ki Youl; Yi, Xu; Vahala, Kerry

    2016-01-01

    Rapid characterization of optical and vibrational spectra with high resolution can identify species in cluttered environments and is important for assays and early alerts. In this regard, dual-comb spectroscopy has emerged as a powerful approach to acquire nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain and avoid bulky mechanical spectrometers. Recently, a miniature soliton-based comb has emerged that can potentially transfer the dual-comb method to a chip platform. Unlike earlier microcombs, these new devices achieve high-coherence, pulsed mode locking. They generate broad, reproducible spectral envelopes, which is essential for dual-comb spectroscopy. Here, dual-comb spectroscopy is demonstrated using these devices. This work shows the potential for integrated, high signal-to-noise spectroscopy with fast acquisition rates.

  4. Laser frequency combs for precision astronomical spectroscopy

    Science.gov (United States)

    Ycas, Gabriel George

    Laser frequency comb sources promise to enable precision astronomical spectroscopy at the 10-11 level, enabling observations aimed at locating potentially habitable planets. Frequency combs allow for the simultaneous generation of thousands of individual laser lines, each with optical frequency referenced to the SI second, and are capable of providing a bright, simple, and stable spectrum ideal for the calibration of grating-based astronomical spectrographs. In order for frequency combs and spectrographs to be used in tandem, key technical challenges must be addressed. Most critically, it is necessary to increase the mode-spacing of the frequency comb to more than 20 GHz while simultaneously retaining the stability and broad optical bandwidth of the comb. This thesis also offers an overview of modern astronomical spectroscopy, along with a thorough discussion of the technical details of mode-locked lasers and frequency comb design. This thesis begins by presenting a frequency comb system with mode-spacing of 25 GHz suitable for the near-infrared between 1500 and 1700 nm. Examples are shown from the successful calibration of the Penn State University Pathfinder astronomical spectrograph located at the Hobby-Eberly telescope using the frequency comb system. In the second half of the thesis, the erbium-fiber frequency comb is shown to generate highly coherent, ultrafast, and bright pulses at 1050 nm. The short duration and high peak power of these pulses enable coherent and continuous extension of the comb to visible wavelengths. Next, an accurate model of a nonlinear fiber optic amplifiers is developed and tested, then applied to optimize the selection of fiber lengths in the design of ultrafast nonlinear fiber-optic systems. Finally, a broad-bandwidth optical filter cavity for the generation of a 980--1110 nm suitable for calibration of next-generation spectrographs was designed and tested.

  5. A bidirectional dual-comb ring laser for simple and robust dual-comb spectroscopy

    CERN Document Server

    Ideguchi, Takuro; Kobayashi, Yohei; Goda, Keisuke

    2015-01-01

    Fourier-transform spectroscopy is an indispensable tool for analyzing chemical samples in scientific research as well as chemical and pharmaceutical industries. Recently, its measurement speed, sensitivity, and precision have been shown to be significantly enhanced by using dual frequency combs. However, wide acceptance of this technique is hindered by its requirement for two frequency combs and active stabilization of the combs. Here we overcome this predicament with a Kerr-lens mode-locked bidirectional ring laser that generates two frequency combs with slightly different pulse repetition rates and a tunable yet highly stable rate difference. This peculiar lasing principle builds on a slight difference in optical cavity length between two counter-propagating lasing modes due to Kerr lensing. Since these combs are produced by the one and same laser cavity, their relative coherence stays passively stable without the need for active stabilization. To show its utility, we demonstrate broadband dual-comb spectro...

  6. Efficient Two-Comb Fourier Spectroscopy

    CERN Document Server

    Mandon, Julien; Picqué, Nathalie

    2008-01-01

    Molecular fingerprinting through absorption spectroscopy is a powerful analytical method. Wide spectral ranges are explored with Doppler-limited resolution. Fast data acquisition, accurate measurements of frequency, intensity, and line shape; time-resolved, selective spectra are achieved with excellent sensitivities. However, presently spectrometers are unable to provide all these features at once. Here we show that, based on frequency comb lasers, a spectrometer may overcome this difficulty. We have recorded two series of spectra with a 1.5 $\\mu$m Cr:YAG frequency comb. In the first series, we propose to use the comb structure to considerably improve the recording time and signal to noise ratio of Doppler-resolved spectra, (Fourier Transform (FT) of the beating signatures of two combs issued from the same initial laser). The second series demonstrates that under very simple experimental conditions, FT spectroscopists may record much more sensitive spectra than with the usual incoherent white light source. We...

  7. Silicon-Chip-Based Optical Frequency Combs

    Science.gov (United States)

    2015-10-26

    frequencies . This phenomenon appears in many systems spanning biology, chemistry, neuroscience, and physics [29,30]. Examples include power grid networks... Frequency Combs," Phys. Rev. Lett. 100, 013902 (2008). [91] F. Leo, et al., “Dispersive wave emission and supercontinuum generation in a silicon wire...AFRL-AFOSR-VA-TR-2015-0365 Silicon-Chip-Based Optical Frequency Combs Alexander Gaeta CORNELL UNIVERSITY Final Report 10/26/2015 DISTRIBUTION A

  8. George Combe and common sense.

    Science.gov (United States)

    Dyde, Sean

    2015-06-01

    This article examines the history of two fields of enquiry in late eighteenth- and early nineteenth-century Scotland: the rise and fall of the common sense school of philosophy and phrenology as presented in the works of George Combe. Although many previous historians have construed these histories as separate, indeed sometimes incommensurate, I propose that their paths were intertwined to a greater extent than has previously been given credit. The philosophy of common sense was a response to problems raised by Enlightenment thinkers, particularly David Hume, and spurred a theory of the mind and its mode of study. In order to succeed, or even to be considered a rival of these established understandings, phrenologists adapted their arguments for the sake of engaging in philosophical dispute. I argue that this debate contributed to the relative success of these groups: phrenology as a well-known historical subject, common sense now largely forgotten. Moreover, this history seeks to question the place of phrenology within the sciences of mind in nineteenth-century Britain.

  9. Phononic Frequency Comb via Intrinsic Three-Wave Mixing

    Science.gov (United States)

    Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin

    2017-01-01

    Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.

  10. Frequency combs for cavity cascades: OPO combs and graphene-coupled cavities

    Science.gov (United States)

    Lee, Kevin F.; Kowzan, Grzegorz; Lee, C.-C.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Schibli, T. R.; Maslowski, Piotr; Fermann, M. E.

    2017-01-01

    Frequency combs can be used directly, for example as a highly precise spectroscopic light source. They can also be used indirectly, as a bridge between devices whose high precision requirements would normally make them incompatible. Here, we demonstrate two ways that a frequency comb enables new technologies by matching optical cavities. One cavity is the laser oscillator. A second cavity is a low-threshold doubly-resonant optical parametric oscillator (OPO). Extending optical referencing to the doubly-resonant OPO turns the otherwise unstable device into an extremely precise midinfrared frequency comb. Another cavity is an optical enhancement cavity for amplifying spectral absorption in a gas. With the high speed of a graphene-modulated frequency comb, we can couple a frequency comb directly into a high-finesse cavity for trace gas detection.

  11. Laboratory duplication of comb layering in the Rhum pluton. [igneous rocks with comb layered texture

    Science.gov (United States)

    Donaldson, C. H.

    1977-01-01

    A description is provided of the texture of harrisite comb layers, taking into account the results of crystallization experiments at controlled cooling rates, which have reproduced the textural change from 'cumulate' to comb-layered harrisite. Melted samples of harrisite were used in the dynamic crystallization experiments considered. The differentiation of a cooling rate run with respect to olivine grain size and shape is shown and three possible origins of hopper olivine in differentiated crystallization runs are considered. It is found that olivine nucleation occurred throughout cooling, except for the incubation period during early cooling. The elongate combed olivines in harrisite apparently grew as the magma locally supercooled to at least 30 C. It is suggested that the branching crystals in most comb layers, including comb-layered harrisite, probably grew along thermal gradients.

  12. Sonic Hedgehog-signalling patterns the developing chicken comb as revealed by exploration of the pea-comb mutation.

    Directory of Open Access Journals (Sweden)

    Henrik Boije

    Full Text Available The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb, is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.

  13. Electrostatic comb drive for vertical actuation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1997-07-10

    The electrostatic comb finger drive has become an integral design for microsensor and microactuator applications. This paper reports on utilizing the levitation effect of comb fingers to design vertical-to-the-substrate actuation for interferometric applications. For typical polysilicon comb drives with 2 {micro}m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 {micro}m above the stationary comb fingers. This distance is ideal for many phase shifting interferometric applications. Theoretical calculations of the vertical actuation characteristics are compared with the experimental results, and a general design guideline is derived from these results. The suspension flexure stiffnesses, gravity forces, squeeze film damping, and comb finger thicknesses are parameters investigated which affect the displacement curve of the vertical microactuator. By designing a parallel plate capacitor between the suspended mass and the substrate, in situ position sensing can be used to control the vertical movement, providing a total feedback-controlled system. Fundamentals of various capacitive position sensing techniques are discussed. Experimental verification is carried out by a Zygo distance measurement interferometer.

  14. Microresonator-based optical frequency combs.

    Science.gov (United States)

    Kippenberg, T J; Holzwarth, R; Diddams, S A

    2011-04-29

    The series of precisely spaced, sharp spectral lines that form an optical frequency comb is enabling unprecedented measurement capabilities and new applications in a wide range of topics that include precision spectroscopy, atomic clocks, ultracold gases, and molecular fingerprinting. A new optical frequency comb generation principle has emerged that uses parametric frequency conversion in high resonance quality factor (Q) microresonators. This approach provides access to high repetition rates in the range of 10 to 1000 gigahertz through compact, chip-scale integration, permitting an increased number of comb applications, such as in astronomy, microwave photonics, or telecommunications. We review this emerging area and discuss opportunities that it presents for novel technologies as well as for fundamental science.

  15. Direct frequency comb laser cooling and trapping

    CERN Document Server

    Jayich, A M; Campbell, W C

    2016-01-01

    Continuous wave (CW) lasers are the enabling technology for producing ultracold atoms and molecules through laser cooling and trapping. The resulting pristine samples of slow moving particles are the de facto starting point for both fundamental and applied science when a highly-controlled quantum system is required. Laser cooled atoms have recently led to major advances in quantum information, the search to understand dark energy, quantum chemistry, and quantum sensors. However, CW laser technology currently limits laser cooling and trapping to special types of elements that do not include highly abundant and chemically relevant atoms such as hydrogen, carbon, oxygen, and nitrogen. Here, we demonstrate that Doppler cooling and trapping by optical frequency combs may provide a route to trapped, ultracold atoms whose spectra are not amenable to CW lasers. We laser cool a gas of atoms by driving a two-photon transition with an optical frequency comb, an efficient process to which every comb tooth coherently cont...

  16. Frequency-agile dual-comb spectroscopy

    CERN Document Server

    Millot, Guy; Yan, Ming; Hovannysyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W; Picqué, Nathalie

    2015-01-01

    We propose a new approach to near-infrared molecular spectroscopy, harnessing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fiber of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 microseconds and 80-kHz refresh rate, at a tuning speed of 10 nm.s^(-1). The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fiber.

  17. Frequency comb generation in quadratic nonlinear media

    CERN Document Server

    Ricciardi, Iolanda; Parisi, Maria; Maddaloni, Pasquale; Santamaria, Luigi; De Natale, Paolo; De Rosa, Maurizio

    2014-01-01

    Optical frequency combs are nowadays routinely used tools in a wide range of scientific and technological applications. Different techniques have been developed for generating optical frequency combs, like mode-locking in lasers and third-order interactions in microresonators, or to extend their spectral capabilities, using frequency conversion processes in nonlinear materials. Here, we experimentally demonstrate and theoretically explain the onset of optical frequency combs in a simple cavity-enhanced second-harmonic-generation system, exploiting second-order nonlinear interactions. We develop an elemental model which provides a deep physical insight into the observed dynamics. Moreover, despite the different underlying physical mechanism, the proposed model is remarkably similar to the description of third-order effects in microresonators, revealing a potential variety of new effects to be explored. Finally, exploiting a nonlinearity intrinsically stronger than the third-order one, our work lays the groundw...

  18. Full stabilization of a microresonator-based optical frequency comb.

    Science.gov (United States)

    Del'Haye, P; Arcizet, O; Schliesser, A; Holzwarth, R; Kippenberg, T J

    2008-08-01

    We demonstrate control and stabilization of an optical frequency comb generated by four-wave mixing in a monolithic microresonator with a mode spacing in the microwave regime (86 GHz). The comb parameters (mode spacing and offset frequency) are controlled via the power and the frequency of the pump laser, which constitutes one of the comb modes. Furthermore, generation of a microwave beat note at the comb's mode spacing frequency is demonstrated, enabling direct stabilization to a microwave frequency standard.

  19. Frequency comb velocity-modulation spectroscopy.

    Science.gov (United States)

    Sinclair, Laura C; Cossel, Kevin C; Coffey, Tyler; Ye, Jun; Cornell, Eric A

    2011-08-26

    We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity-modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF⁺ and achieved a fractional absorption sensitivity of 3×10⁻⁷ recorded over 1500 simultaneous channels spanning 150  cm⁻¹ around 800 nm with an absolute frequency accuracy of 30 MHz (0.001  cm⁻¹). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 min.

  20. Frequency Comb Velocity-Modulation Spectroscopy

    CERN Document Server

    Sinclair, Laura C; Coffey, Tyler; Ye, Jun; Cornell, Eric A

    2011-01-01

    We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF+ and achieved a fractional absorption sensitivity of 3 x 10-7 recorded over 1500 simultaneous channels spanning 150 cm-1 around 800 nm with an absolute frequency accuracy of 30 MHz (0.001 cm-1). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 minutes.

  1. Microresonator-Based Optical Frequency Combs: A Time Domain Perspective

    Science.gov (United States)

    2016-04-19

    operation deep into the visible spectrum (where normal dispersion dominates), may be compatible with thinner, lower loss films, and may provide...Electrical and Computer Engineering, Purdue University phone: 765-494-5574 email: amw@purdue.edu web : https://engineering.purdue.edu/~amw...mode interactions for more dependable comb initiation. Comb generation from normal dispersion micoresonators offers potential for comb operation deep

  2. High efficiency quantum cascade laser frequency comb

    Science.gov (United States)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  3. Time sequence photography of Roosters Comb

    Science.gov (United States)

    The importance of understanding natural landscape changes is key in properly determining rangeland ecology. Time sequence photography allows a landscape snapshot to be documented and enables the ability to compare natural changes overtime. Photographs of Roosters Comb were taken from the same vantag...

  4. Comb to Pipeline: Fast Software Encryption Revisited

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Lauridsen, Martin Mehl; Tischhauser, Elmar Wolfgang

    2015-01-01

    (vs. 1.63 cpb and 1.51 cpb, resp.), despite Haswell’s heavily improved binary field multiplication. This suggests CCM as an AE mode of choice as it is NIST-recommended, does not have any weak-key issues like GCM, and is royalty-free as opposed to OCB3. Among the CAESAR contestants, the comb scheduler...

  5. Comb-drive actuators for large displacements

    NARCIS (Netherlands)

    Legtenberg, Rob; Groeneveld, A.W.; Elwenspoek, M.

    1996-01-01

    The design, fabrication and experimental results of lateral-comb-drive actuators for large displacements at low driving voltages is presented. A comparison of several suspension designs is given, and the lateral large deflection behaviour of clamped - clamped beams and a folded flexure design is mod

  6. High efficiency quantum cascade laser frequency comb

    Science.gov (United States)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm‑1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  7. Universal scaling laws of Kerr frequency combs.

    Science.gov (United States)

    Coen, Stéphane; Erkintalo, Miro

    2013-06-01

    Using the known solutions of the Lugiato-Lefever equation, we derive universal trends of Kerr frequency combs. In particular, normalized properties of temporal cavity soliton solutions lead us to a simple analytic estimate of the maximum attainable bandwidth for given pump resonator parameters. The result is validated via comparison with past experiments encompassing a diverse range of resonator configurations and parameters.

  8. Universal scaling laws of Kerr frequency combs

    CERN Document Server

    Coen, Stephane

    2013-01-01

    Using the known solutions of the Lugiato-Lefever equation, we derive universal trends of Kerr frequency combs. In particular, normalized properties of temporal cavity soliton solutions lead us to a simple analytic estimate of the maximum attainable bandwidth for given pump-resonator parameters. The result is validated via comparison with past experiments encompassing a diverse range of resonator configurations and parameters.

  9. Quantum cascade laser Kerr frequency comb

    CERN Document Server

    Lecaplain, Caroline; Lucas, Erwan; Jost, John D; Kippenberg, Tobias J

    2015-01-01

    The mid-infrared (mid-IR) regime (typically the wavelength regime of $\\lambda \\sim 2.5-20 \\ \\mathrm{\\mu m}$) is an important spectral range for spectroscopy as many molecules have their fundamental rotational-vibrational absorption in this band. Recently optical frequency combs based on optical microresonators ("Kerr" combs) at the onset of the mid-IR region have been generated using crystalline resonators and integrated planar silicon micro-resonators. Here we extend for the first time Kerr combs deep into the mid-IR i.e. the 'molecular fingerprint' region. This is achieved by combining an ultra high quality (Q) factor mid-IR microresonator based on crystalline $\\mathrm{MgF_{2}}$ with the quantum cascade laser (QCL) technology. Using a tapered chalgogenide (ChG) fiber and a QCL continuous wave pump laser, frequency combs at $\\lambda\\sim 4.4\\ \\mathrm{\\mu m}$ (i.e. 2270cm$^{-1}$) are generated, that span over 600nm (i.e. 300cm$^{-1}$) in bandwidth, with a mode spacing of 14.3GHz (0.5cm$^{-1}$), corresponding t...

  10. Dynamics of comb-of-comb-network polymers in random layered flows

    Science.gov (United States)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.

  11. Maximum likelihood molecular clock comb: analytic solutions.

    Science.gov (United States)

    Chor, Benny; Khetan, Amit; Snir, Sagi

    2006-04-01

    Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).

  12. Modelocked mid-infrared frequency combs in a silicon microresonator

    CERN Document Server

    Yu, Mengjie; Griffith, Austin G; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    Mid-infrared (mid-IR) frequency combs have broad applications in molecular spectroscopy and chemical/biological sensing. Recently developed microresonator-based combs in this wavelength regime could enable portable and robust devices using a single-frequency pump field. Here, we report the first demonstration of a modelocked microresonator-based frequency comb in the mid-IR spanning 2.4 {\\mu}m to 4.3 {\\mu}m. We observe high pump-to-comb conversion efficiency, in which 40% of the pump power is converted to the output comb power. Utilizing an integrated PIN structure allows for tuning the silicon microresonator and controling modelocking and cavity soliton formation, simplifying the generation, monitoring and stabilization of mid-IR frequency combs via free-carrier detection and control. Our results significantly advance microresonator-based comb technology towards a portable and robust mid-IR spectroscopic device that operates at low pump powers.

  13. Laser frequency combs for astronomical observations.

    Science.gov (United States)

    Steinmetz, Tilo; Wilken, Tobias; Araujo-Hauck, Constanza; Holzwarth, Ronald; Hänsch, Theodor W; Pasquini, Luca; Manescau, Antonio; D'Odorico, Sandro; Murphy, Michael T; Kentischer, Thomas; Schmidt, Wolfgang; Udem, Thomas

    2008-09-05

    A direct measurement of the universe's expansion history could be made by observing in real time the evolution of the cosmological redshift of distant objects. However, this would require measurements of Doppler velocity drifts of approximately 1 centimeter per second per year, and astronomical spectrographs have not yet been calibrated to this tolerance. We demonstrated the first use of a laser frequency comb for wavelength calibration of an astronomical telescope. Even with a simple analysis, absolute calibration is achieved with an equivalent Doppler precision of approximately 9 meters per second at approximately 1.5 micrometers-beyond state-of-the-art accuracy. We show that tracking complex, time-varying systematic effects in the spectrograph and detector system is a particular advantage of laser frequency comb calibration. This technique promises an effective means for modeling and removal of such systematic effects to the accuracy required by future experiments to see direct evidence of the universe's putative acceleration.

  14. Scientific Opinion on Rooster Combs Extract

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2013-06-01

    Full Text Available Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to carry out the additional assessment for ‘Rooster Combs Extract’ (RCE as a food ingredient in the context of Regulation (EC No 258/97, taking into account the comments and objections of a scientific nature raised by Member States. Rooster combs extract results from a production process involving enzymatic hydrolysis of rooster combs and subsequent filtration, concentration and precipitation steps. The principle constituents of RCE are the glycosaminoglycans hyaluronic acid, chondroitin sulphate A and dermatan sulphate. The applicant intends to add RCE to a number of dairy products with a recommended maximum intake of 80 mg RCE per portion and per day. The target population is the general population, with the exception of pregnant women, children and people with adverse reactions to sodium hyaluronate and/or avian protein. In the high intake scenario for “consumers only”, the highest daily intake would occur in adults in Belgium (0.788 g. The highest intake scenario for “all subjects” was estimated for adolescents in Denmark (0.427 g/day. The Panel notes that no adverse effects were observed at the highest tested dose of 600 mg/kg bw per day in a 90-day oral toxicity study in rats. Considering the nature, the natural occurrence and previous consumption of RCE constituents, the Panel is of the opinion that the margin between the intended as well as the estimated maximum possible intake of RCE in relation to the highest dose administered to rats without adverse effects in a subchronic oral toxicity study is sufficient. The Panel concludes that the novel food ingredient, Rooster Comb Extract, is safe under the proposed uses and use levels.

  15. Interference comb-spectroscopy with increasing sensitivity

    Science.gov (United States)

    Pulkin, Sergey; Borisov, Evgenii; Balabas, Michail; Uvarova, Svetlana; Shevtzov, Vladimir; Kalinichev, Alexei; Shoev, Vladislav; Venediktov, Dmitrii; Venediktov, Vladimir

    2016-10-01

    The paper considers the use of holographic interferometer for hologram recording of the wide spectrum from the comb - generator of the femtosecond laser was applied for illuminating of Michelson interferometer with atomic vapor. The behavior of spectral interference fringes on the exit slit of spectrograph reflects the behavior of nonlinear refractive index. The method of holographic interferometry with increasing sensitivity using phase modulator was applied for digital hologram processing.

  16. A microresonator frequency comb optical clock

    CERN Document Server

    Papp, Scott B; DelHaye, Pascal; Quinlan, Franklyn; Lee, Hansuek; Vahala, Kerry J; Diddams, Scott A

    2013-01-01

    Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric optics in microresonators. We refer to these as microcombs, and here we report a silicon-chip-based microcomb optical clock that phase-coherently converts an optical-frequency reference to a microwave signal. A low-noise comb spectrum with 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clocks output is the electronically countable 33 GHz microcomb line spacing, which features an absolute stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks.

  17. Coherent data transmission with microresonator Kerr frequency combs

    CERN Document Server

    Pfeifle, Joerg; Wegner, Daniel; Brasch, Victor; Herr, Tobias; Hartinger, Klaus; Li, Jingshi; Hillerkuss, David; Schmogrow, Rene; Holzwarth, Ronald; Freude, Wolfgang; Leuthold, Juerg; Kippenberg, Tobias J; Koos, Christian

    2013-01-01

    Optical frequency combs enable coherent data transmission on hundreds of wavelength channels and have the potential to revolutionize terabit communications. Generation of Kerr combs in nonlinear integrated microcavities represents a particularly promising option enabling line spacings of tens of GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr combs may exhibit strong phase noise and multiplet spectral lines, and this has made high-speed data transmission impossible up to now. Recent work has shown that systematic adjustment of pump conditions allows generating low phase-noise Kerr combs with singlet spectral lines. Here, by employing an integrated Si3N4 microresonator, we demonstrate that Kerr combs are suited for coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the optical source. In our experiment, we encode a data stream of 392 Gbit/s on subsequent lines of a Kerr comb using quadrature phase shift keying (...

  18. Thermally Controlled Comb Generation and Soliton Modelocking in Microresonators

    CERN Document Server

    Joshi, Chaitanya; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton modelocked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of modelocked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.

  19. Single-molecule studies of DNA by molecular combing

    Institute of Scientific and Technical Information of China (English)

    Liu Yuying; Wang Pengye; Dou Shuoxing

    2007-01-01

    Molecular combing is a powerful method for aligning a large array of DNA molecules onto a surface. It is a process whereby DNA molecules are stretched and aligned on a glass surface by the force via fluid flow. The ability to comb up to several hundred DNAs on a single cover slip allows for a statistically significant number of measurements to be made. These features make molecular combing an attractive tool for genomic studies, such as DNA replication, DNA transcription, DNA-protein interaction and so on. In this review article, we discuss the molecular combing principle, method and its applications.

  20. Intrinsic linewidth of quantum cascade laser frequency combs

    CERN Document Server

    Cappelli, Francesco; Riedi, Sabine; Faist, Jerome

    2015-01-01

    The frequency noise power spectral density of a free-running quantum cascade laser frequency comb is investigated. A plateau is observed at high frequencies, attributed to the quantum noise limit set by the Schawlow-Townes formula for the total laser power on all comb lines. In our experiment, a linewidth of 292 Hz is measured for a total power of 25 mW. This result proves that the four-wave mixing process, responsible for the comb operation, effectively correlates the quantum noise of the individual comb lines.

  1. Optical combs with a crystalline whispering gallery mode resonator

    CERN Document Server

    Savchenkov, Anatoliy A; Ilchenko, Vladimir S; Solomatine, Iouri; Seidel, David; Maleki, Lute

    2008-01-01

    We report on the experimental demonstration of a tunable monolithic optical frequency comb generator. The device is based on the four-wave mixing in a crystalline calcium fluoride whispering gallery mode resonator. The frequency spacing of the comb is given by an integer number of the free spectral range of the resonator. We select the desired number by tuning the pumping laser frequency with respect to the corresponding resonator mode. We also observe interacting optical combs and high-frequency hyperparametric oscillation, depending on the experimental conditions. A potential application of the comb for generating narrowband frequency microwave signals is demonstrated.

  2. Combing genomic DNA for structural and functional studies.

    Science.gov (United States)

    Schurra, Catherine; Bensimon, Aaron

    2009-01-01

    Molecular combing is a process whereby single DNA molecules bind by their extremities to a silanised surface and are then uniformly stretched and aligned by a receding air/water interface (1). This method, with a high resolution ranging from a few kilobases to megabases, has many applications in the field of molecular cytogenetics, allowing structural and functional analysis at the genome level. Here we describe protocols for preparing DNA for combing and for the use of fluorescent hybridisation (FH) applied to combed DNA to conduct physical mapping or genomic structural analysis. We also present the methodology for visualising and studying DNA replication using combed DNA.

  3. On-chip dual comb source for spectroscopy

    CERN Document Server

    Dutt, Avik; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2016-01-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator combs on the same chip from a single laser. The combs span a broad bandwidth of 51 THz around a wavelength of 1.56 $\\mu$m. We demonstrate low-noise operation of both frequency combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow ($<$ 10 kHz) microwave beatnotes. We further use one mode-locked comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave os...

  4. Multispectral Kerr frequency comb initiated by Faraday ripples

    CERN Document Server

    Huang, Shu-Wei

    2016-01-01

    In a uniform microresonator, the generation of a broadband Kerr frequency comb is triggered by Turing patterns. Here, we study a distinctly different route to initiate the Kerr frequency comb by Faraday ripples. Momentum conservation is ensured by azimuthal modulation of the cavity dispersion. With a good agreement with the theoretical analysis, we demonstrate a multispectral Kerr frequency comb covering telecommunication O, C, L, and 2 {\\mu}m bands. Comb coherence and absence of a subcomb offset are confirmed by cw heterodyne beat note and amplitude noise spectra measurements. The device can be used for achieving broadband optical frequency synthesizer and high-capacity coherent telecommunication.

  5. Tunable Frequency Comb Generation from a Microring with a Thermal Heater

    CERN Document Server

    Xue, Xiaoxiao; Wang, Pei-Hsun; Wang, Jian; Leaird, Dan E; Qi, Minghao; Weiner, Andrew M

    2014-01-01

    We demonstrate a novel comb tuning method for microresonator-based Kerr comb generators. Continuously tunable, low-noise, and coherent comb generation is achieved in a CMOS-compatible silicon nitride microring resonator.

  6. Photonic generation of linearly chirped millimeter wave based on comb-spacing tunable optical frequency comb

    Science.gov (United States)

    Xia, Zongyang; Xie, Weilin; Sun, Dongning; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2013-12-01

    We demonstrated a photonic approach to generate a phase-continuous frequency-linear-chirped millimeter-wave (mm-wave) signal with high linearity based on continuous-wave phase modulated optical frequency comb and cascaded interleavers. Through linearly sweeping the frequency of the radio frequency (RF) driving signal, high-order frequency-linear-chirped optical comb lines are generated and then extracted by the cascaded interleavers. By beating the filtered high-order comb lines, center frequency and chirp range multiplied linear-chirp microwave signals are generated. Frequency doubled and quadrupled linear-chirp mm-wave signals of range 48.6 to 52.6 GHz and 97.2 to 105.2 GHz at chirp rates of 133.33 and 266.67 GHz/s are demonstrated with the ±1st and ±2nd optical comb lines, respectively, while the RF driving signal is of chirp range 24.3 to 26.3 GHz and chirp time 30 ms.

  7. Feshbach Resonances in Kerr Frequency Combs

    CERN Document Server

    Matsko, Andrey B

    2014-01-01

    We show that both the power and repetition rate of a frequency comb generated in a nonlinear ring resonator, pumped with continuous wave (cw) coherent light, are modulated. The modulation is brought about by the interaction of the cw background with optical pulses excited in the resonator, and occurs in resonators with nonzero high-order chromatic dispersion and wavelength-dependent quality factor. The modulation frequency corresponds to the detuning of the pump frequency from the eigenfrequency of the pumped mode in the resonator.

  8. Wax combs mediate nestmate recognition by guard honeybees

    DEFF Research Database (Denmark)

    D'Ettorre, Patrizia; Wenseleers, Tom; Dawson, Jenny

    2006-01-01

    Research has shown that the wax combs are important in the acquisition of colony odour in the honeybee, Apis mellifera. However, many of these studies were conducted in the laboratory or under artificial conditions. We investigated the role of the wax combs in nestmate recognition in the natural...

  9. Comb Capacitor Structures for On-Chip Physical Uncloneable Function

    NARCIS (Netherlands)

    Roy, D.; Klootwijk, J.H.; Verhaegh, N.A.M.; Roosen, H.H.A.J.; Wolters, R.A.M.

    2009-01-01

    Planar inter-digitated comb capacitor structures are an excellent tool for on-chip capacitance measurement and evaluation of properties of coating layers with varying composition. These comb structures are easily fabricated in a single step in the last metallization layer of a standard IC process. C

  10. Generation of Kerr Frequency Combs in Resonators with Normal GVD

    CERN Document Server

    Matsko, Andrey B; Maleki, Lute

    2011-01-01

    We show via numerical simulation that Kerr frequency combs can be generated in a nonlinear resonator characterized with normal group velocity dispersion (GVD). We find the spectral shape of the comb and temporal envelope of the corresponding optical pulses formed in the resonator.

  11. Dynamics of microresonator frequency comb generation: models and stability

    Science.gov (United States)

    Hansson, Tobias; Wabnitz, Stefan

    2016-06-01

    Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  12. Dynamics of microresonator frequency comb generation: models and stability

    Directory of Open Access Journals (Sweden)

    Hansson Tobias

    2016-06-01

    Full Text Available Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  13. Gas Damping Coefficient Research for MEMS Comb Linear Vibration Gyroscope

    CERN Document Server

    Qiufen, G; Feng, S; Fuqiang, L

    2008-01-01

    Silicon-MEMS gyroscope is an important part of MEMS (Micro Electrical Mechanical System). There are some disturb ignored in traditional gyroscope that must be evaluated newly because of its smaller size (reach the level of micron). In these disturb, the air pressure largely influences the performance of MEMS gyroscope. Different air pressure causes different gas damping coefficient for the MEMS comb linear vibration gyroscope and different gas damping coefficient influences the quality factor of the gyroscope directive. The quality factor influences the dynamic working bandwidth of the MEMS comb linear vibration gyroscope, so it is influences the output characteristic of the MEMS comb linear vibration gyroscope. The paper shows the relationship between the air pressure and the output amplified and phase of the detecting axis through analyzing the air pressure influence on the MEMS comb linear vibration gyroscope. It discusses the influence on the frequency distribute and quality factor of the MEMS comb linear...

  14. Miniature Optical Atomic Clock: Stabilization of a Kerr Comb Oscillator

    CERN Document Server

    Savchenkov, A A; Liang, W; Ilchenko, V S; Byrd, J; Matsko, A B; Seidel, D; Maleki, L

    2013-01-01

    Mechanical clocks consist of a pendulum and a clockwork that translates the pendulum period to displayed time. The most advanced clocks utilize optical transitions in atoms in place of the pendulum and an optical frequency comb generated by a femtosecond laser as the clockwork. The comb must be stabilized at two points along its frequency spectrum: one with a laser to lock a comb line to a transition in the atom, and another through self referencing to stabilize the frequency interval between the comb lines. This approach requires advanced techniques, so optical atomic clocks are currently laboratory devices in specialized labs. In this paper we leverage unique properties of Kerr comb oscillators for realization of optical atomic clocks in miniature form factors. In particular, we describe a clock based on D1 transition of 87Rb that fits in the palm of the hand, and can be further miniaturized to chip scale.

  15. Adaptive real-time dual-comb spectroscopy

    CERN Document Server

    Ideguchi, Takuro; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2012-01-01

    With the advent of laser frequency combs, coherent light sources that offer equally-spaced sharp lines over a broad spectral bandwidth have become available. One decade after revolutionizing optical frequency metrology, frequency combs hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite its intriguing potential for the measurement of molecular spectra spanning tens of nanometers within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the extremely demanding high-bandwidth servo-control conditions of the laser combs. Here we overcome this difficulty. We experimentally demonstrate a straightforward concept of real-time dual-comb spectroscopy, which only uses free-running mode-locked lasers without any phase-lock electronics, a posteriori data-processing, or the need for expertise in frequency metrology. The resulting simplicity and versatility of our new technique of adaptive dual-com...

  16. Difference-frequency combs in cold atom physics

    CERN Document Server

    Kliese, Russell; Puppe, Thomas; Rohde, Felix; Sell, Alexander; Zach, Armin; Leisching, Patrick; Kaenders, Wilhelm; Keegan, Niamh C; Bounds, Alistair D; Bridge, Elizabeth M; Leonard, Jack; Adams, Charles S; Cornish, Simon L; Jones, Matthew P A

    2016-01-01

    Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency $f_{\\rm ceo}$ and the pulse repetition-rate $f_{\\rm rep}$. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates $f_{\\rm ceo}$ by design - specifically tailored for applications in cold atom physics. An $f_{\\rm ceo}$-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fiber technology allow generation of multiple wavelength outputs. In this paper we discuss the frequency comb design, characterization, and optical...

  17. Microresonator Kerr frequency combs with high conversion efficiency

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve ~30% conversion efficiency (~200 mW on-chip comb power excluding the pump) in the fiber telecommunication band with broadband mode-locked dark-pulse combs. We present a general analysis on the efficiency which is applicable to any phase-locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time-domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  18. Comb-locked Lamb-dip spectrometer

    Science.gov (United States)

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-06-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10-11 cm-1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10-23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

  19. Cavity-enhanced dual-comb spectroscopy

    CERN Document Server

    Bernhardt, Birgitta; Jacquet, Patrick; Jacquey, Marion; Kobayashi, Yohei; Udem, Thomas; Holzwarth, Ronald; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2009-01-01

    The sensitivity of molecular fingerprinting is dramatically improved when placing the absorbing sample in a high-finesse optical cavity, thanks to the large increase of the effective path-length. As demonstrated recently, when the equidistant lines from a laser frequency comb are simultaneously injected into the cavity over a large spectral range, multiple trace-gases may be identified within a few milliseconds. Analyzing efficiently the light transmitted through the cavity however still remains challenging. Here, a novel approach, cavity-enhanced frequency comb Fourier transform spectroscopy, fully overcomes this difficulty and measures ultrasensitive, broad-bandwidth, high-resolution spectra within a few tens of $\\mu$s. It could be implemented from the Terahertz to the ultraviolet regions without any need for detector arrays. We recorded, within 18 $\\mu$s, spectra of the 1.0 $\\mu$m overtone bands of ammonia spanning 20 nm with 4.5 GHz resolution and a noise-equivalent-absorption at one-second-averaging per ...

  20. From "Dirac combs" to Fourier-positivity

    CERN Document Server

    Giraud, Bertrand G

    2015-01-01

    Motivated by various problems in physics and applied mathematics, we look for constraints and properties of real Fourier-positive functions, i.e. with positive Fourier transforms. Properties of the "Dirac comb" distribution and of its tensor products in higher dimensions lead to Poisson resummation, allowing for a useful approximation formula of a Fourier transform in terms of a limited number of terms. A connection with the Bochner theorem on positive definiteness of Fourier-positive functions is discussed. As a practical application, we find simple and rapid analytic algorithms for checking Fourier-positivity in 1- and (radial) 2-dimensions among a large variety of real positive functions. This may provide a step towards a classification of positive positive-definite functions.

  1. Frequency comb metrology with an optical parametric oscillator.

    Science.gov (United States)

    Balskus, K; Schilt, S; Wittwer, V J; Brochard, P; Ploetzing, T; Jornod, N; McCracken, R A; Zhang, Z; Bartels, A; Reid, D T; Südmeyer, T

    2016-04-18

    We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-µm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-µm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser.

  2. Third-order chromatic dispersion stabilizes Kerr frequency combs

    CERN Document Server

    Parra-Rivas, Pedro; Leo, Francois; Coen, Stephane; Gelens, Lendert

    2014-01-01

    Using numerical simulations of an extended Lugiato-Lefever equation, we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators taking into account third-order dispersion effects. We show that cavity solitons underlying Kerr frequency combs, normally sensitive to oscillatory and chaotic instabilities, are stabilized in a wide range of parameter space by third-order dispersion. Moreover, we demonstrate how the snaking structure organizing compound states of multiple cavity solitons is qualitatively changed by third-order dispersion, promoting an increased stability of Kerr combs underlined by a single cavity soliton.

  3. Third-order chromatic dispersion stabilizes Kerr frequency combs.

    Science.gov (United States)

    Parra-Rivas, Pedro; Gomila, Damià; Leo, François; Coen, Stéphane; Gelens, Lendert

    2014-05-15

    Using numerical simulations of an extended Lugiato-Lefever equation we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators, taking into account third-order dispersion effects. We show that cavity solitons underlying Kerr frequency combs, normally sensitive to oscillatory and chaotic instabilities, are stabilized in a wide range of parameter space by third-order dispersion. Moreover, we demonstrate how the snaking structure organizing compound states of multiple cavity solitons is qualitatively changed by third-order dispersion, promoting an increased stability of Kerr combs underlined by a single cavity soliton.

  4. A Compact, Waveguide Based Programmable Optical Comb Generator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I STTR effort will establish the feasibility of developing a compact broadband near to mid-IR programmable optical comb for use in laser based remote...

  5. Multiplexed sub-Doppler spectroscopy with an optical frequency comb

    CERN Document Server

    Long, David A; Plusquellic, David F; Hodges, Joseph T

    2016-01-01

    An optical frequency comb generated with an electro-optic phase modulator and a chirped radiofrequency waveform is used to perform saturation and pump-probe spectroscopy on the $D_1$ and $D_2$ transitions of atomic potassium. With a comb tooth spacing of 200 kHz and an optical bandwidth of 2 GHz the hyperfine transitions can be simultaneously observed. Interferograms are recorded in as little as 5 $\\mu$s (a timescale corresponding to the inverse of the comb tooth spacing). Importantly, the sub-Doppler features can be measured as long as the laser carrier frequency lies within the Doppler profile, thus removing the need for slow scanning or a priori knowledge of the frequencies of the sub-Doppler features. Sub-Doppler optical frequency comb spectroscopy has the potential to dramatically reduce acquisition times and allow for rapid and accurate assignment of complex molecular and atomic spectra which are presently intractable.

  6. Optimal Sharpening of Compensated Comb Decimation Filters: Analysis and Design

    Directory of Open Access Journals (Sweden)

    David Ernesto Troncoso Romero

    2014-01-01

    Full Text Available Comb filters are a class of low-complexity filters especially useful for multistage decimation processes. However, the magnitude response of comb filters presents a droop in the passband region and low stopband attenuation, which is undesirable in many applications. In this work, it is shown that, for stringent magnitude specifications, sharpening compensated comb filters requires a lower-degree sharpening polynomial compared to sharpening comb filters without compensation, resulting in a solution with lower computational complexity. Using a simple three-addition compensator and an optimization-based derivation of sharpening polynomials, we introduce an effective low-complexity filtering scheme. Design examples are presented in order to show the performance improvement in terms of passband distortion and selectivity compared to other methods based on the traditional Kaiser-Hamming sharpening and the Chebyshev sharpening techniques recently introduced in the literature.

  7. Spectro-temporal dynamics of Kerr combs with parametric seeding.

    Science.gov (United States)

    Lin, Guoping; Martinenghi, Romain; Diallo, Souleymane; Saleh, Khaldoun; Coillet, Aurélien; Chembo, Yanne K

    2015-03-20

    We report a joint theoretical and experimental investigation of the parametric seeding of a primary Kerr optical frequency comb. Electro-optic modulation sidebands matching multiple free-spectral ranges of an ultrahigh-Q millimeter-size magnesium fluoride disk resonator are used as seed signals. These seed signals interact through four-wave mixing with the spectral components of a stable primary comb and give rise to complex spectro-temporal patterns. We show that the new frequency combs feature multiscale frequency spacing, with major frequency gaps in the order of a few hundred gigahertz, and minor frequency spacing in the order of a few tens of gigahertz. The experimental results are in agreement with numerical simulations using the Lugiato-Lefever equation. We expect such versatile and coherent optical frequency combs to have potential applications in optical communications systems where frequency management assigns predefined spectral windows at the emitter stage.

  8. Performance analysis and experimental study on Flat Optical Comb Generation

    Directory of Open Access Journals (Sweden)

    Haining Li

    2013-01-01

    Full Text Available The performance of the optical frequency comb generation based on the re-circulating frequency shifter has been analyzed and demonstrated in this paper. We have theoretically analyzed the condition for flatness of the optical frequency comb and the relative intensity noise influence. We find out the influence to the flatness of optical comb owing to amplifier relative intensity noise and modulator relative factors imperfect, such as input RF signals amplitude and phase deviation and modulator defect owing to manufacture for the first time. Moreover, to verify the theoretical analysis, a 16 comb lines and spacing 12.5 GHz RFS generation system have also been carried out, and the results are in good agreement with the theoretical analysis results.

  9. Ramsey-comb spectroscopy with intense ultrashort laser pulses

    CERN Document Server

    Morgenweg, Jonas; Eikema, Kjeld S E

    2014-01-01

    Optical frequency combs based on mode-locked lasers have revolutionised the field of metrology and precision spectroscopy by providing precisely calibrated optical frequencies and coherent pulse trains. Amplification of the pulsed output from these lasers is very desirable, as nonlinear processes can then be employed to cover a much wider range of transitions and wavelengths for ultra-high precision, direct frequency comb spectroscopy. Therefore full repetition rate laser amplifiers and enhancement resonators have been employed to produce up to microjoule-level pulse energies. Here we show that the full frequency comb accuracy and resolution can be obtained by using only two frequency comb pulses amplified to the millijoule pulse energy level, orders of magnitude more energetic than what has previously been possible. The novel properties of this approach, such as cancellation of optical light-shift effects, is demonstrated on weak two-photon transitions in atomic rubidium and caesium, thereby improving the fr...

  10. Micro--structured crystalline resonators for optical frequency comb generation

    CERN Document Server

    Grudinin, Ivan S

    2014-01-01

    Optical frequency combs have recently been demonstrated in micro--resonators through nonlinear Kerr processes. Investigations in the past few years provided better understanding of micro--combs and showed that spectral span and mode locking are governed by cavity spectrum and dispersion. While various cavities provide unique advantages, dispersion engineering has been reported only for planar waveguides. In this Letter, we report a resonator design that combines dispersion control, mode crossing free spectrum, and ultra--high quality factor. We experimentally show that as the dispersion of a MgF2 resonator is flattened, the comb span increases reaching 700 nm with as low as 60 mW pump power at 1560 nm wavelength, corresponding to nearly 2000 lines separated by 46 GHz. The new resonator design may enable efficient low repetition rate coherent octave spanning frequency combs without the need for external broadening, ideal for applications in optical frequency synthesis, metrology, spectroscopy, and communicatio...

  11. Mid-IR Microresonator-Based Optical Frequency Combs

    Science.gov (United States)

    2015-09-01

    publication of 14 refereed papers in Nature Communications, Optica, Optics Letters , etc. One more paper is currently under consideration in Laser...A. Matsko et al. Optics Letters 38, 525 (2013). Chaotic combs Numerical solutions of Eq. (2) showed that a chaotic comb generation regime...34 Optics Letters 39 (10), 2920-2923 (2014). http://dx.doi.org/10.1364/OL.39.002920 10. Andrey B. Matsko and L. Maleki, “On timing jitter of mode

  12. Kerr optical frequency combs: theory, applications and perspectives

    Science.gov (United States)

    Chembo, Yanne K.

    2016-06-01

    The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

  13. Interaction Between Waves and A Comb-Type Breakwater

    Institute of Scientific and Technical Information of China (English)

    董国海; 李玉成; 孙昭晨; 孙洋; 牛恩宗; 毛铠

    2003-01-01

    The characteristics of wave transmission, reflection and energy dissipation of comb-type caisson breakwaters are studied through laboratory physical model tests. Regular and irregular waves, with a wide range of wave heights and periods and a constant water depth, are considered. Different dimensions of each portion of the comb-type caisson breakwater are tested. Empirical formulae for calculating the reduction coefficient k, which is the ratio of horizontal wave force on unit length of the comb-type breakwater to that on unit length of the vertical wall breakwater, and for calculating the reflection coefficient of waves kr are obtained from the measurements. The comb-type caisson breakwater has been found to be very efficient in dissipating incident wave energy and in reducing wave reflection, and has already been used for the construction of an island breakwater in the Dayao Bay of Dalian Port, Liaoning Province, China. Compared with the cost of a common caisson breakwater, about 24.5% of the investment has been saved owing to the use of this comb-type breakwater.

  14. Solution and Melt Rheology of Polypropylene Comb and Star Polymers

    Science.gov (United States)

    Ghosh, Arnav; Colby, Ralph H.; Rose, Jeffrey M.; Cherian, Anna E.; Coates, Geoffrey W.

    2006-03-01

    Syndiotactic polypropylene macromonomer arms have been prepared by coordination-insertion polymerization. These arms have been made into polypropylene star polymers by the homopolymerization of the syndiotactic arms with a living alkene polymerization catalyst. The macromonomer arms have also been randomly copolymerized with propylene using rac-dimethylsilyl(2-methyl-4-phenylindenyl) zirconium dichloride catalysts to make polypropylene combs. Consequently we have star polymers and a series of comb polymers with different backbone lengths that are all made from the same macromonomer arms. We compare linear viscoelastic data on star and comb polypropylene melts and solutions in squalane to predictions of the tube dilation model and the tube model without tube dilation. The ratio of comb terminal relaxation time to star terminal relaxation time eliminates the friction coefficient and allows determination of the extent of tube dilation the backbone experiences when it relaxes. The concentration dependence of the comb/star terminal relaxation time ratio can be described by either model, owing to adjustable parameters that are not known apriori, so independent means to evaluate those parameters will be discussed.

  15. Adsorption of comb copolymers on weakly attractive solid surfaces

    Science.gov (United States)

    Striolo, A.; Jayaraman, A.; Genzer, J.; Hall, C. K.

    2005-08-01

    In this work continuum and lattice Monte Carlo simulation methods are used to study the adsorption of linear and comb polymers on flat surfaces. Selected polymer segments, located at the tips of the side chains in comb polymers or equally spaced along the linear polymers, are attracted to each other and to the surface via square-well potentials. The rest of the polymer segments are modeled as tangent hard spheres in the continuum model and as self-avoiding random walks in the lattice model. Results are presented in terms of segment-density profiles, distribution functions, and radii of gyration of the adsorbed polymers. At infinite dilution the presence of short side chains promotes the adsorption of polymers favoring both a decrease in the depletion-layer thickness and a spreading of the polymer molecule on the surface. The presence of long side chains favors the adsorption of polymers on the surface, but does not permit the spreading of the polymers. At finite concentration linear polymers and comb polymers with long side chains readily adsorb on the solid surface, while comb polymers with short side chains are unlikely to adsorb. The simple models of comb copolymers with short side chains used here show properties similar to those of associating polymers and of globular proteins in aqueous solutions, and can be used as a first approximation to investigate the mechanism of adsorption of proteins onto hydrophobic surfaces.

  16. A quadratic-shaped-finger comb parametric resonator

    Science.gov (United States)

    Guo, Congzhong; Fedder, Gary K.

    2013-09-01

    A large-stroke (8 µm) parametric resonator excited by an in-plane ‘shaped-finger’ electrostatic comb drive is fabricated using a 15 µm thick silicon-on-insulator microelectromechanical systems (SOI-MEMS) process. A quadratic capacitance-engagement response is synthesized by engineering a custom-shaped comb finger profile. A folded-flexure suspension allows lateral motion while constraining rotational modes. The excitation of the nonlinear parametric resonance is realized by selecting an appropriate combination of the linear and cubic electrostatic stiffness coefficients through a specific varying-gap comb-finger design. The large-amplitude parametric resonance promotes high signal-to-noise ratio for potential use in sensitive chemical gravimetric sensors, strain gauges, and mode-matched gyroscope applications.

  17. Enabling Arbitrary Wavelength Optical Frequency Combs on Chip

    CERN Document Server

    Soltani, Mohammad; Maleki, Lute

    2015-01-01

    A necessary condition for generation of bright soliton Kerr frequency combs in microresonators is to achieve anomalous group velocity dispersion (GVD) for the resonator modes. This condition is hard to implement in visible as well as ultraviolet since the majority of optical materials are characterized with large normal GVD in these wavelength regions. We overcome this challenge by borrowing ideas from strongly dispersive coupled systems in solid state physics and optics. We show that photonic compound ring resonators can possess large anomalous GVD at any desirable wavelength, even if each individual resonator is characterized with normal GVD. Based on this concept we design a mode locked frequency comb with thin-film silicon nitride compound ring resonators in the vicinity of Rubidium D1 line (794.6nm) and propose to use this optical comb as a flywheel for chip-scale optical clocks.

  18. Continuum Random Combs and Scale Dependent Spectral Dimension

    CERN Document Server

    Atkin, Max R; Wheater, John F

    2011-01-01

    Numerical computations have suggested that in causal dynamical triangulation models of quantum gravity the effective dimension of spacetime in the UV is lower than in the IR. In this paper we develop a simple model based on previous work on random combs, which share some of the properties of CDT, in which this effect can be shown to occur analytically. We construct a definition for short and long distance spectral dimensions and show that the random comb models exhibit scale dependent spectral dimension defined in this way. We also observe that a hierarchy of apparent spectral dimensions may be obtained in the cross-over region between UV and IR regimes for suitable choices of the continuum variables. Our main result is valid for a wide class of tooth length distributions thereby extending previous work on random combs by Durhuus et al.

  19. Femtosecond Optical Frequency Comb Technology Principle, Operation and Application

    CERN Document Server

    Ye, Jun

    2005-01-01

    Over the last few years, there has been a remarkable convergence among the fields of ultrafast optics, optical frequency metrology, and precision laser spectroscopy. This convergence has enabled unprecedented advances in control of the electric field of the pulses produced by femtosecond mode-locked lasers. The resulting spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as "femtosecond comb technology." They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. This book provides an introductory description of mode-locked lasers, the connection between time and frequency descriptions of their output and the physical origins of the electric field dynamics, together with an overview of applications of femtosecond comb technology. Individual chapters go into more detail on mode-locked laser development, spectral broadening in microstructure fiber, optical parametric ...

  20. A deep-UV optical frequency comb at 205 nm.

    Science.gov (United States)

    Peters, E; Diddams, S A; Fendel, P; Reinhardt, S; Hänsch, T W; Udem, Th

    2009-05-25

    By frequency quadrupling a picosecond pulse train from a Ti:sapphire laser at 820 nm we generate a frequency comb at 205 nm with nearly bandwidth-limited pulses. The nonlinear frequency conversion is accomplished by two successive frequency doubling stages that take place in resonant cavities that are matched to the pulse repetition rate of 82 MHz. This allows for an overall efficiency of 4.5 % and produces an output power of up to 70 mW for a few minutes and 25 mW with continuous operation for hours. Such a deep UV frequency comb may be employed for direct frequency comb spectroscopy in cases where it is less efficient to convert to these short wavelengths with continuous wave lasers.

  1. Mid-Infrared Frequency Comb Fourier Transform Spectrometer

    CERN Document Server

    Adler, Florian; Foltynowicz, Aleksandra; Cossel, Kevin C; Briles, Travis C; Hartl, Ingmar; Ye, Jun

    2010-01-01

    Optical frequency-comb-based-high-resolution spectrometers offer enormous potential for spectroscopic applications. Although various implementations have been demonstrated, the lack of suitable mid-infrared comb sources has impeded explorations of molecular fingerprinting. Here we present for the first time a frequency-comb Fourier transform spectrometer operating in the 2100-to-3700-cm-1 spectral region that allows fast and simultaneous acquisitions of broadband absorption spectra with up to 0.0056 cm-1 resolution. We demonstrate part-per-billion detection limits in 30 seconds of integration time for various important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features. This system represents a near real-time, high-resolution, high-bandwidth mid-infrared sp...

  2. Mid-Infrared Optical Frequency Combs based on Crystalline Microresonators

    CERN Document Server

    Wang, C Y; Del'Haye, P; Schliesser, A; Hofer, J; Holzwarth, R; Hänsch, T W; Picqué, N; Kippenberg, T J

    2011-01-01

    The mid-infrared spectral range (\\lambda ~ 2 \\mu m to 20 \\mu m) is known as the "molecular fingerprint" region as many molecules have their highly characteristic, fundamental ro-vibrational bands in this part of the electromagnetic spectrum. Broadband mid-infrared spectroscopy therefore constitutes a powerful and ubiquitous tool for optical analysis of chemical components that is used in biochemistry, astronomy, pharmaceutical monitoring and material science. Optical frequency combs, i.e. broad spectral bandwidth coherent light sources consisting of equally spaced sharp lines, have revolutionized optical frequency metrology one decade ago. They now demonstrate dramatically improved acquisition rates, resolution and sensitivity for molecular spectroscopy mostly in the visible and near-infrared ranges. Mid-infrared frequency combs have therefore become highly desirable and recent progress in generating such combs by nonlinear frequency conversion has opened access to this spectral region. Here we report on a pr...

  3. Self-referencing of an on-chip soliton Kerr frequency comb without external broadening

    CERN Document Server

    Brasch, Victor; Jost, John D; Geiselmann, Michael; Kippenberg, Tobias J

    2016-01-01

    Self-referencing turns pulsed laser systems into self-referenced frequency combs. Such frequency combs allow counting of optical frequencies and have a wide range of applications. The required optical bandwidth to implement self-referencing is typically obtained via nonlinear broadening in optical fibers. Recent advances in the field of Kerr frequency combs have provided a path towards the development of compact frequency comb sources that provide broadband frequency combs, exhibit microwave repetition rates and that are compatible with on-chip photonic integration. These devices have the potential to significantly expand the use of frequency combs. Yet to date self-referencing of such Kerr frequency combs has only been attained by applying conventional, fiber based broadening techniques. Here we demonstrate external broadening-free self-referencing of a Kerr frequency comb. An optical spectrum that spans two-thirds of an octave is directly synthesized from a continuous wave laser-driven silicon nitride micro...

  4. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  5. Optical Kerr Frequency Comb Generation in Overmoded Resonators

    CERN Document Server

    Matsko, A B; Liang, W; Ilchenko, V S; Seidel, D; Maleki, L

    2012-01-01

    We show that scattering-based interaction among nearly degenerate optical modes is the key factor in low threshold generation of Kerr frequency combs in nonlinear optical resonators possessing small group velocity dispersion (GVD). The mode interaction is capable of producing drastic change in the local GVD, resulting in either a significant reduction or increase of the oscillation threshold. It is also responsible for the majority of observed combs in resonators characterized with large normal GVD. We present results of our numerical simulations as well as supporting experimental data.

  6. Optical frequency comb interference profilometry using compressive sensing.

    Science.gov (United States)

    Pham, Quang Duc; Hayasaki, Yoshio

    2013-08-12

    We describe a new optical system using an ultra-stable mode-locked frequency comb femtosecond laser and compressive sensing to measure an object's surface profile. The ultra-stable frequency comb laser was used to precisely measure an object with a large depth, over a wide dynamic range. The compressive sensing technique was able to obtain the spatial information of the object with two single-pixel fast photo-receivers, with no mechanical scanning and fewer measurements than the number of sampling points. An optical experiment was performed to verify the advantages of the proposed method.

  7. Noise conversion in Kerr comb RF photonic oscillators

    CERN Document Server

    Matsko, Andrey B

    2014-01-01

    Transfer of amplitude and phase noise from a continuous wave optical pump to the repetition rate of a Kerr frequency comb is studied theoretically, with focus on generation of spectrally pure radio frequency (RF) signals via demodulation of the frequency comb on a fast photodiode. It is shown that both the high order chromatic dispersion of the resonator spectrum and frequency-dependent quality factor of the resonator modes facilitate the optical-to-RF noise conversion that limits spectral purity of the RF signal.

  8. Coherent, multi-heterodyne spectroscopy using stabilized optical frequency combs

    CERN Document Server

    Coddington, Ian; Newbury, Nathan R

    2007-01-01

    The broadband, coherent nature of narrow-linewidth fiber frequency combs is exploited to measure the full complex spectrum of a molecular gas through multi-heterodyne spectroscopy. We measure the absorption and phase shift experienced by each of 155,000 individual frequency comb lines, spaced by 100 MHz and spanning from 1495 nm to 1620 nm, after passing through a hydrogen cyanide gas. The measured phase spectrum agrees with Kramers-Kronig transformation of the absorption spectrum. This technique can provide a full complex spectrum rapidly, over wide bandwidths, and with hertz-level accuracy.

  9. Frequency Comb Assisted Broadband Precision Spectroscopy with Cascaded Diode Lasers

    CERN Document Server

    Liu, Junqiu; Pfeiffer, Martin H P; Kordts, Arne; Kamel, Ayman N; Guo, Hairun; Geiselmann, Michael; Kippenberg, Tobias J

    2016-01-01

    Frequency comb assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this letter we present a novel method using cascaded frequency agile diode lasers, which allows extending the measurement bandwidth to 37.4 THz (1355 to 1630 nm) at MHz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy and in particular it enables to characterize the dispersion of integrated microresonators up to the fourth order.

  10. Chileotrecha romero (Kraus, 1966) comb. nov. and Pseudocleobis patagonicus (Roewer, 1934) comb. nov. transferral from Mummuciidae to Ammotrechidae (Arachnida, Solifugae).

    Science.gov (United States)

    Botero-Trujillo, Ricardo; Iuri, Hernán A

    2015-07-27

    The solifuge species Mummucina romero Kraus, 1966, from Chile, and Mummucia patagonica Roewer, 1934, from Argentina, are here transferred from Mummuciidae Roewer, 1934 to Ammotrechidae Roewer, 1934. Chileotrecha romero (Kraus, 1966) comb. nov. and Pseudocleobis patagonicus (Roewer, 1934) comb. nov. are proposed. Comments on their morphology are made and previous distributional records are discussed. Pseudocleobis patagonicus is proposed as a nomen dubium. In addition, we confirm that female and immature specimens of the family Mummuciidae, just like males, can be reliably recognized based on features that had been suggested by Maury (1984).

  11. Coherent cavity-enhanced dual-comb spectroscopy

    CERN Document Server

    Fleisher, Adam J; Reed, Zachary D; Hodges, Joseph T; Plusquellic, David F

    2016-01-01

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers, or via sophisticated signal processing algorithms, and therefore long integration times are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The combs of > 250 teeth and 203 MHz spacing were generated by driving the phase modulators with step-recovery diodes, passive devices that provided low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO$_2$, CO, HDO, and H$_2$O at a maximum acquisition rate of 150 kHz. Robus...

  12. An Atlas of Medieval Combs from Northern Europe

    Directory of Open Access Journals (Sweden)

    Steven P. Ashby

    2011-07-01

    Full Text Available As an aid to understanding chronology, economics, identity and culture contact, the early medieval bone/antler hair-comb is an under-exploited resource, despite the existence of an extensive literature borne out of a long-standing tradition of empirical research. Such research has been undertaken according to diverse traditions, is scattered amongst site reports and grey literature, regional, national, and international journals, and is published in a number of different languages. The present article provides a general synthesis of this data, together with the author's personal research, situated within a broad view of chronology and geography. It presents the author's classification of early medieval composite combs, and applies this in a review of comb typology in space and time. It makes use of recently excavated material from little-known and unpublished sites, as well as the classic studies of familiar towns and 'emporia'. The atlas is intended for use as a reference piece that may be accessed according to need, and read in a non-linear fashion. Thus, it may act as a first port-of-call for scholars researching the material culture of a particular spatio-temporal context, while simultaneously facilitating rapid characterisation of freshly excavated finds material. It should provide a useful complement to recent and ongoing question-oriented research on combs.

  13. Accurate frequency referencing for fieldable dual-comb spectroscopy

    CERN Document Server

    Truong, Gar-Wing; Cossel, Kevin C; Baumann, Esther; Klose, Andrew; Giorgetta, Fabrizio R; Swann, William C; Newbury, Nathan R; Coddington, Ian

    2016-01-01

    A fieldable dual-comb spectrometer is described based on a "bootstrapped" frequency referencing scheme in which short-term optical phase coherence between combs is attained by referencing each to a free-running diode laser, whilst high frequency resolution and long-term accuracy is derived from a stable quartz oscillator. This fieldable dual-comb spectrometer was used to measure spectra with full comb-tooth resolution spanning from 140 THz (2.14 um, 4670 cm^-1) to 184 THz (1.63 um, 6140 cm^-1) in the near infrared with a frequency sampling of 200 MHz (0.0067 cm^-1), ~ 120 kHz frequency resolution, and ~ 1 MHz frequency accuracy. High resolution spectra of water and carbon dioxide transitions at 1.77 um, 1.96 um and 2.06 um show that the molecular transmission acquired with this fieldable system did not deviate from those measured with a laboratory-based system (referenced to a maser and cavity-stabilized laser) to within 5.6x10^-4. Additionally, the fieldable system optimized for carbon dioxide quantification...

  14. Hard and Soft Excitation Regimes of Kerr Frequency Combs

    CERN Document Server

    Matsko, Andrey B; Ilchenko, Vladimir S; Seidel, David; Maleki, Lute

    2011-01-01

    We theoretically study the stability conditions and excitation regimes of hyper-parametric oscillation and Kerr frequency comb generation in continuously pumped nonlinear optical resonators possessing anomalous group velocity dispersion. We show that both hard and soft excitation regimes are possible in the resonators. Selection between the regimes is achieved via change in the parameters of the pumping light.

  15. Invited Article: A compact optically coherent fiber frequency comb.

    Science.gov (United States)

    Sinclair, L C; Deschênes, J-D; Sonderhouse, L; Swann, W C; Khader, I H; Baumann, E; Newbury, N R; Coddington, I

    2015-08-01

    We describe the design, fabrication, and performance of a self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an optics package based on polarization-maintaining fiber, saturable absorbers for mode-locking, high signal-to-noise ratio (SNR) detection of the control signals, and digital feedback control for frequency stabilization. The output is phase-coherent over a 1-2 μm octave-spanning spectrum with a pulse repetition rate of ∼200 MHz and a residual pulse-to-pulse timing jitter <3 fs well within the requirements of most frequency-comb applications. Digital control enables phase coherent operation for over 90 h, critical for phase-sensitive applications such as timekeeping. We show that this phase-slip free operation follows the fundamental limit set by the SNR of the control signals. Performance metrics from three nearly identical combs are presented. This laptop-sized comb should enable a wide-range of applications beyond the laboratory.

  16. Frequency combs and precision spectroscopy in the extreme ultraviolet

    Science.gov (United States)

    Cingöz, Arman

    2012-06-01

    Development of the optical frequency comb has revolutionized optical metrology and precision spectroscopy due to its ability to provide a precise link between microwave and optical frequencies. A novel application that aims to extend the precision and accuracy obtained to the extreme ultraviolet (XUV) is the generation of XUV frequency combs via intracavity high harmonic generation (HHG). Recently, we have been able to generate > 200 μW average power per harmonic and demonstrate the comb structure of the high harmonics by resolving atomic argon and neon lines at 82 and 63 nm, respectively [1]. The argon transition linewidth of 10 MHz, limited by residual Doppler broadening, is unprecedented in this spectral region and places a stringent upper limit on the linewidth of individual comb teeth. To overcome this limitation, we have constructed two independent intracavity HHG sources to study the phase coherence directly via the heterodyne beats between them. With these developments, ultrahigh precision spectroscopy in the XUV is within grasp and has a wide range of applications that include tests of bound state quantum electrodynamics, development of nuclear clocks, and searches for variation of fundamental constants using the enhanced sensitivity of highly charged ions.[4pt] [1] Arman Cing"oz et al., Nature 482, 68 (2012).

  17. Optimized comb drive finger shape for shock-resistant actuation

    NARCIS (Netherlands)

    Engelen, Johan B.C.; Abelmann, Leon; Elwenspoek, Miko C.

    2010-01-01

    This work presents the analytical solution, realization and measurement of a comb drive with finger shapes optimized for shock-resistant actuation. The available force for actuating an external load determines how large shock forces can be compensated for. An analytical expression is presented for t

  18. The effect of drone comb on a honey bee colony's production of honey

    OpenAIRE

    Seeley, Thomas

    2002-01-01

    International audience; This study examined the impact on a colony's honey production of providing it with a natural amount (20%) of drone comb. Over 3 summers, for the period mid May to late August, I measured the weight gains of 10 colonies, 5 with drone comb and 5 without it. Colonies with drone comb gained only 25.2 $\\pm$ 16.0 kg whereas those without drone comb gained 48.8 $\\pm$ 14.8 kg. Colonies with drone comb also had a higher mean rate of drone flights and a lower incidence of drone ...

  19. Spectral characterization of a frequency comb based on cascaded quadratic nonlinearities inside an optical parametric oscillator

    CERN Document Server

    Ulvila, Ville; Halonen, Lauri; Vainio, Markku

    2015-01-01

    We present an experimental study of optical frequency comb generation based on cascaded quadratic nonlinearities inside a continuous-wave-pumped optical parametric oscillator. We demonstrate comb states which produce narrow-linewidth intermode beat note signals, and we verify the mode spacing uniformity of the comb at the Hz level. We also show that spectral quality of the comb can be improved by modulating the parametric gain at a frequency that corresponds to the comb mode spacing. We have reached a high average output power of over 4 W in the near-infrared region, at ~2 {\\mu}m.

  20. On-chip, self-detected THz dual-comb spectrometer

    CERN Document Server

    Rösch, Markus; Villares, Gustavo; Bosco, Lorenzo; Beck, Mattias; Faist, Jérôme

    2016-01-01

    We present a directly generated on-chip dual-comb source at THz frequencies. The multi-heterodyne beating signal of two free-running THz quantum cascade laser frequency combs is measured electrically using one of the combs as a detector, fully exploiting the unique characteristics of quantum cascade active regions. Up to 30 modes can be detected corresponding to a spectral bandwidth of 630 GHz, being the available bandwidth of the dual comb configuration. The multi-heterodyne signal is used to investigate the equidistance of the comb modes showing an accuracy of $10^{-12}$ at the carrier frequency of 2.5 THz.

  1. Electro-optic dual-comb interferometry over 40-nm bandwidth

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2016-01-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  2. Dynamics of dual-polarization VCSEL-based optical frequency combs under optical injection locking.

    Science.gov (United States)

    Prior, E; de Dios, C; Criado, R; Ortsiefer, M; Meissner, P; Acedo, P

    2016-09-01

    The present experimental work studies the dynamics of dual-polarization optical frequency combs (OFCs) based on gain switching (GS) vertical-cavity surface-emitting laser (VCSEL) diodes under optical injection locking (OIL). This study presents two main results. First, we have obtained an overall comb formed by two orthogonally polarized sub-combs with comparable span and power. The overall comb shows enhanced optical span and flatness and high coherence between its modes. The second result is that we have been able to control the polarization state of the overall comb by tuning the polarization state of the injected light by locking the same single teeth of the comb. This produces an overall comb with single polarization that is parallel or orthogonal. These are novel findings that provide for the development of efficient and compact OFCs based on GS VCSEL sources with versatile polarization dynamics.

  3. A stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator

    CERN Document Server

    Lim, Jinkang; Vinod, Abhinav K; Mortazavian, Parastou; Yu, Mingbin; Kwong, Dim-Lee; Savchenkov, Anatoliy A; Matsko, Andrey B; Maleki, Lute; Wong, Chee Wei

    2016-01-01

    We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step towards miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.

  4. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    Science.gov (United States)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  5. High-Q Bandpass Comb Filter for Mains Interference Extraction

    Directory of Open Access Journals (Sweden)

    Neycheva T.

    2009-12-01

    Full Text Available This paper presents a simple digital high-Q bandpass comb filter for power-line (PL or other periodical interference extraction. The filter concept relies on a correlated signal average resulting in alternating constructive and destructive spectrum interference i.e. the so-called comb frequency response. The presented filter is evaluated by Matlab simulations with real ECG signal contaminated with low amplitude PL interference. The made simulations show that this filter accurately extract the PL interference. It has high-Q notches only at PL odd harmonics and is appropriate for extraction of any kind of odd harmonic interference including rectangular shape. The filter is suitable for real-time operation with popular low-cost microcontrollers.

  6. Comb-referenced laser distance interferometer for industrial nanotechnology

    Science.gov (United States)

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10-10. The uncertainty is estimated to be in a 10-8 level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10-10 level in vacuum.

  7. Frequency comb vernier spectroscopy in the near infrared

    CERN Document Server

    Zhu, F; Bicer, A; Strohaber, J; Kolomenskii, A A; Gohle, C; Amani, M; Schuessler, H A

    2014-01-01

    We perform femtosecond frequency comb vernier spectroscopy in the near infrared with a femtosecond Er doped fiber laser, a scanning high-finesse cavity and an InGaAs camera. By utilizing the properties of a frequency comb and a scanning high-finesse cavity such spectroscopy provides broad spectral bandwidth, high spectral resolution, and high detection sensitivity on a short time scale. We achieved an absorption sensitivity of ~8E-8 cm-1Hz-1/2 corresponding to a detection limit of ~70 ppbv for acetylene, with a resolution of ~1.1 GHz in single images taken in 0.5 seconds and covering a frequency range of ~5 THz. These measurements have broad applications for sensing other greenhouse gases in this fingerprint near IR region with a simple apparatus.

  8. Comb-assisted coherence transfer between laser fields

    CERN Document Server

    Sala, Tommaso; Burkart, Johannes; Marangoni, Marco; Romanini, Daniele

    2014-01-01

    Single mode laser fields oscillate at frequencies well outside the realm of electronics, but their phase/frequency fluctuations fall into the radio frequency domain, where direct manipulation is possible. Electro-optic devices have sufficient bandwidth for controlling and tailoring the dynamics of a laser field down to sub-nanosecond time scales. Thus, a laser field can be arbitrarily reshaped and in particular its phase/frequency fluctuations can be in principle removed. In practice, the time evolution of a reference laser field can be cloned to replace the fluctuations of another laser field, at a close-by frequency. In fact, it is possible to exploit a partially stabilized optical comb to perform the cloning across a large frequency gap. We realize this long-haul phase transfer by using a fibered Mach-Zehnder single-sideband modulator driven by an appropriate mix of the beat notes of the master and the slave laser with the comb.

  9. Cantharellus gallaecicus (Blanco-Dios Olariaga, comb. & stat. nov (Cantharellaceae

    Directory of Open Access Journals (Sweden)

    Olariaga, Ibai

    2007-12-01

    Full Text Available Cantharellus gallaecicus comb. & stat. nov. is proposed, after the examination of its holotype and additional material. Based on the characters observed in all the studied material (i.e., thinwalled hyphae of the pileipelis, minute basidiomata with white to grey pileus, and surface that turns yellow when bruised it is considered that C. gallaecicus is more closely related to C. romagnesianus than to C. cibarius.Se propone Cantharellus gallaecicus comb. & stat. nov. tras revisar su holótipo y material adicional disponible. Dado que todo el material examinado posee hifas del pileipelis de pared delgada, basidiomas pequeños con píleo de blanco a gris, y superficie que vira a amarillo al roce, se considera que C. gallaecicus es una especie más estrechamente relacionada con C. romagnesianus que con C. cibarius.

  10. High density THz frequency comb produced by coherent synchrotron radiation

    CERN Document Server

    Tammaro, S; Roy, P; Lampin, J -F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2014-01-01

    Frequency combs (FC) have radically changed the landscape of frequency metrology and high-resolution spectroscopy investigations extending tremendously the achievable resolution while increasing signal to noise ratio. Initially developed in the visible and near-IR spectral regions, the use of FC has been expanded to mid-IR, extreme ultra-violet and X-ray. Significant effort is presently dedicated to the generation of FC at THz frequencies. One solution based on converting a stabilized optical frequency comb using a photoconductive terahertz emitter, remains hampered by the low available THz power. Another approach is based on active mode locked THz quantum-cascade-lasers providing intense FC over a relatively limited spectral extension. Alternatively, here we show that dense powerful THz FC is generated over one decade of frequency by coherent synchrotron radiation (CSR). In this mode, the entire ring behaves in a similar fashion to a THz resonator wherein electron bunches emit powerful THz pulses quasi-synch...

  11. Micro-Doppler Frequency Comb Generation by Axially Rotating Scatterers

    CERN Document Server

    Kozlov, Vitali; Yankelevich, Yefim; Ginzburg, Pavel

    2016-01-01

    Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the quasi-stationary field analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wire and split ring resonator (SRR), is analyzed theoretically and observed experimentally by illuminating the system with a 2GHz carrier wave. Highly accurate lock in detection scheme enables factorization of the carrier and observation of more than ten peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer at rest and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to predict the spectral positions and a...

  12. One-way quantum computing in the optical frequency comb.

    Science.gov (United States)

    Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier

    2008-09-26

    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.

  13. Computation of Capacitance for MEMS Comb-Drive Structures

    Institute of Scientific and Technical Information of China (English)

    LI Ming-hui; GAO Shi-qiao; LIU Hai-peng; LIANG Xin-jian

    2009-01-01

    According to the characteristics of comb-drive structures,the electrical potential field is analyzed;the model based on corner capacitor is presented and solved with the capacitance characteristic formula of nonlinear capacitor.Compared with the results of finite element method simulation,the model based on corner capacitor is more accurate than the models based on infinite parallel plate capacitor and parallel plate capacitor with edge effects,

  14. A Novel Nit Comb Concept Using Ultrasound Actuation: Preclinical Evaluation.

    Science.gov (United States)

    Burgess, Mark N; Brunton, Elizabeth R; Burgess, Ian F

    2016-01-01

    Nit combing and removal of head louse, Pediculus humanus capitis De Geer (Anoplura: Pediculidae), eggs is a task made more difficult because "nit combs" vary in efficiency. There is currently no evidence that the binding of the eggshell to the hair can be loosened chemically and few hair treatments improve the slip of the louse eggs along the hair. Ultrasound, applied through the teeth of a nit comb, may facilitate the flow of fluids into the gap between the hair shaft and the tube of fixative holding louse eggs in place to improve lubrication. Ultrasound alone had little effect to initiate sliding, requiring a force of 121.5 ± 23.8 millinewtons (mN) compared with 125.8 ± 18.0 mN without ultrasound, but once the egg started to move it made the process easier. In the presence of a conditioner-like creamy lotion, ultrasound reduced the Peak force required to start movement to 24.3 ± 8.8 mN from 50.4 ± 13.0 mN without ultrasound. In contrast, some head louse treatments made removal of eggs more difficult, requiring approximately twice the Peak force to initiate movement compared with dry hair in the absence of ultrasound. However, following application of ultrasound, the forces required to initiate movement increased for an essential oil product, remained the same for isopropyl myristate and cyclomethicone, and halved for 4% dimeticone lotion. Fixing the nit comb at an estimated angle of 16.5° to the direction of pull gave an optimum effect to improve the removal process when a suitable lubricant was used.

  15. Single DNA Condensation Induced by Hexammine Cobalt with Molecular Combing

    Institute of Scientific and Technical Information of China (English)

    Gao-ming Hu; Yu Lin; Shi-yong Ran; Yan-wei Wang; Guang-can Yang

    2012-01-01

    We investigated the interaction between DNA and hexammine cobalt Ⅲ [Co(NH3)6]3+ by a simple molecular combing method and dynamic light scattering.The average extension of λ-DNA-YOYO-1 complex is found to be 20.9 μm,about 30% longer than the contour length of the DNA in TE buffer (10 mmol/L Tris,1 mmol/L EDTA,pH=8.0),due to bis-intercalation of YOYO-1.A multivalent cation,hexammine cobalt,is used for DNA condensation.We find that the length of DNA-[Co(NH3)6]3+ complexes decrease from 20.9 μm to 5.9 μm as the concentration of the [Co(NH3)6]3+ vary from 0 to 3 μmol/L.This observation provides a direct visualization of single DNA condensation induced by hexammine cobalt.The results from the molecular combing studies are supported by dynamic light scattering investigation,where the average hydrodynamic radius of the DNA complex decreases from 203.8 nm to 39.26 nm under the same conditions.It shows that the molecular combing method is feasible for quantitative conformation characterization of single bio-macromolecules.

  16. Bottle microresonator broadband and low repetition rate frequency comb generator

    CERN Document Server

    Dvoyrin, V

    2016-01-01

    We propose a new type of broadband and low repetition rate frequency comb generator which has the shape of an elongated and nanoscale-shallow optical bottle microresonator created at the surface of an optical fiber. The free spectral range (FSR) of the broadband azimuthal eigenfrequency series of this resonator is the exact multiple of the FSR of the dense and narrowband axial series. The effective radius variation of the microresonator is close to a parabola with a nanoscale height which is greater or equal to lambda/2pi*n0 (here lambda is the characteristic radiation wavelength and n0 is the refractive index of the microresonator material). Overall, the microresonator possesses a broadband, small FSR, and accurately equidistant spectrum convenient for the generation of a broadband and low repetition rate optical frequency comb. It is shown that this comb can be generated by pumping with a cw laser, which radiation frequency matches a single axial eigenfrequency of the microresonator, or, alternatively, by p...

  17. Combing gravitational hair in 2+1 dimensions

    CERN Document Server

    Donnelly, William; Mintun, Eric

    2015-01-01

    The gravitational Gauss law requires any addition of energy to be accompanied by the addition of gravitational flux. The possible configurations of this flux for a given source may be called gravitational hair, and several recent works discuss gravitational observables (`gravitational Wilson lines') which create this hair in highly-collimated `combed' configurations. We construct and analyze time-symmetric classical solutions of 2+1 Einstein-Hilbert gravity such as might be created by smeared versions of such operators. We focus on the AdS$_3$ case, where this hair is characterized by the profile of the boundary stress tensor; the desired solutions are those where the boundary stress tensor at initial time $t=0$ agrees precisely with its vacuum value outside an angular interval $[-\\alpha,\\alpha]$. At linear order in source strength the energy is independent of the combing parameter $\\alpha$, but non-linearities cause the full energy to diverge as $\\alpha \\to 0$. In general, solutions with combed gravitational...

  18. Frequency-Comb Spectrum of Periodic-Patterned Signals

    Science.gov (United States)

    Steinmann, Johannes L.; Blomley, Edmund; Brosi, Miriam; Bründermann, Erik; Caselle, Michele; Hesler, Jeffrey L.; Hiller, Nicole; Kehrer, Benjamin; Mathis, Yves-Laurent; Nasse, Michael J.; Raasch, Juliane; Schedler, Manuel; Schönfeldt, Patrik; Schuh, Marcel; Schwarz, Markus; Siegel, Michael; Smale, Nigel; Weber, Marc; Müller, Anke-Susanne

    2016-10-01

    Using arbitrary periodic pulse patterns we show the enhancement of specific frequencies in a frequency comb. The envelope of a regular frequency comb originates from equally spaced, identical pulses and mimics the single pulse spectrum. We investigated spectra originating from the periodic emission of pulse trains with gaps and individual pulse heights, which are commonly observed, for example, at high-repetition-rate free electron lasers, high power lasers, and synchrotrons. The ANKA synchrotron light source was filled with defined patterns of short electron bunches generating coherent synchrotron radiation in the terahertz range. We resolved the intensities of the frequency comb around 0.258 THz using the heterodyne mixing spectroscopy with a resolution of down to 1 Hz and provide a comprehensive theoretical description. Adjusting the electron's revolution frequency, a gapless spectrum can be recorded, improving the resolution by up to 7 and 5 orders of magnitude compared to FTIR and recent heterodyne measurements, respectively. The results imply avenues to optimize and increase the signal-to-noise ratio of specific frequencies in the emitted synchrotron radiation spectrum to enable novel ultrahigh resolution spectroscopy and metrology applications from the terahertz to the x-ray region.

  19. Dual-Colored DNA Comb Polymers for Single Molecule Rheology

    Science.gov (United States)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles

    2014-03-01

    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  20. Coherent combs in ionization by intense and short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, K., E-mail: Katarzyna.Krajewska@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland); Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299 (United States); Kamiński, J.Z., E-mail: Jerzy.Kaminski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2016-03-22

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented. - Highlights: • We develop relativistic Strong-Field Approximation for ionization by intense and short laser pulses of arbitrary spectral compositions. • We show that the consistent interpretation of results is provided by the Keldysh-type saddle point analysis of probability amplitudes. • We derive a general Fraunhofer-type interference/diffraction formula for finite train of pulses. • We study the coherent combs in photoelectron probability distributions.

  1. [Gender, medicine and consumer culture: the cultural history of comb in the Ming and Qing Dynasties].

    Science.gov (United States)

    Chen, Siyan

    2014-09-01

    In the Ming and Qing Dynasties, in addition to combing the hair, the comb also gradually played a role in people's daily life for disease treatment and keeping people's health. In short, during this period, the characteristic of comb reveal, as a whole, its reinforcing practicability and weakening of its ornamentality. During its application, people's behavioral activities endowed the comb with definite cultural connotation, which, thanks to the presence of gender and personality, became the symbol for expressing love between man and woman. By analogizing people's thought, since the comb could dredge something. Therefore, it can be used to cure diseases. Thus, it could be seen that, based on consumer's cultural description, the comb, tiny as it may be, did reflect the aesthetic ideas and interests and daily life-preservation habit of the literati due to the flourishing of book market in the Ming and Qing Dynasties.

  2. Second-harmonic mode coupling in microresonator-based optical frequency comb generation

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Jaramillo-Villegas, Jose A; Wang, Pei-Hsun; Leaird, Daniel E; Erkintalo, Miro; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Microresonator-based optical frequency comb (microcomb) generation can potentially achieve ultra-compact volume and low power consumption for portable applications. The comb formation is a consequence of cascaded four-wave-mixing due to the third-order Kerr nonlinearity. Mode coupling can affect the comb self-starting and mode-locking behaviors, resulting in complex dynamics that is far from well understood. Understanding the mechanism of mode coupling in comb generation proves highly important to achieve stable and robust microcomb sources. Here, we report a nonlinear mode coupling mechanism in microresonators with simultaneous second- and third-order nonlinearities. The nonlinear dynamics governed by the third-order nonlinearity is altered by second-harmonic mode coupling. As a demonstration of this effect, second-harmonic assisted coherent comb generation is achieved in the normal dispersion region, where comb creation is prohibited in the absence of mode coupling. Since second-order nonlinearity has been ...

  3. Termite-regulated fungal monoculture in fungus combs of a macrotermitine termite Odontotermes formosanus.

    Science.gov (United States)

    Shinzato, Naoya; Muramatsu, Mizuho; Watanabe, Yoshio; Matsui, Toru

    2005-08-01

    The mechanism of the exclusive growth of Termitomyces in fungus combs with fungi-growing termites, O. formosanus was examined using laboratory scale fungus combs. In the combs without the termites, vigorous growth of unidentified fungi was observed although no significant change was found in the case of the combs with termites. In addition, these results were reproducible even when incubated in a separated dish, suggesting that the physicochemical conditions were not the reason for the growth. With the molecular based analysis for the microbial communities in the combs, monoculture of the Termitomyces in the combs with termites was confirmed while the bacterial communities were independent either with or without termites. Possible mechanism of the exclusive growth of Termitomyces, such as the selective grazing of pathogenic fungi or contribution of antifungal activity giving actinomycetes were also discussed.

  4. A simple application technique of fibrin-coated collagen fleece (TachoComb) in laparoscopic surgery.

    Science.gov (United States)

    Nakajima, Kiyokazu; Yasumasa, Keigo; Endo, Shunji; Takahashi, Tsuyoshi; Kai, Yasuyuki; Nezu, Riichiro; Nishida, Toshirou

    2007-01-01

    A fibrin-coated collagen fleece (TachoComb, Nycomed, Denmark) is a powerful topical hemostatic agent, which has been aggressively used in conventional open surgery with a favorable clinical outcome. However, the use of TachoComb in laparoscopic surgery has not yet gained wide clinical acceptance, because a simple and well-functioning application system is not available. The authors have newly developed a quick, simple, and effective laparoscopic TachoComb application technique: housing a small strip of TachoComb in a rubber tube, then conveying it into the peritoneal cavity, and applying it using standard laparoscopic forceps. The repeated application of TachoComb strips is feasible and of practical value especially in laparoscopic surgery, since a small TachoComb never compromises either the application procedure or laparoscopic visualization.

  5. Direct generation of optical frequency combs in $\\chi^{(2)}$ nonlinear cavities

    CERN Document Server

    Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M

    2015-01-01

    Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously-pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on $\\chi^{(2)}$ frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although at a very early stage, our work lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  6. Symmetry Breaking of Frequency Comb in Varying Normal Dispersion Fiber Ring Cavity

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    We build on a previously reported frequency comb of mode spacing 0.136 nm in a fiber ring cavity of varying normal dispersion [1], to generate, for the first time, a frequency comb of mode spacing 0.144 nm centered at 978.544 nm to demonstrate the symmetry-breaking. By controlling the birefringence of the optical cavity through fiber stretching and polarization control, the spacing of the comb lines increases from 0.136 nm to 0.144 nm, and this small change in mode spacing generates very different spectral symmetry-breaking in the frequency comb relative to the frequency comb of mode spacing 0.136 nm. Interestingly, non-uniform depletion of primary modes is also observed. The experimental results are an important contribution in the continuing effort of understanding the dynamics of frequency combs involving large number of modes, nontrivial nonlinear waves and deterministic chaos.

  7. Direct generation of optical frequency combs in χ(2 nonlinear cavities

    Directory of Open Access Journals (Sweden)

    Mosca Simona

    2016-06-01

    Full Text Available Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on χ(2 frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although our work is a very early stage, it lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  8. Broadband Mid-Infrared Comb-Resolved Fourier Transform Spectroscopy

    Science.gov (United States)

    Lee, Kevin; Mills, Andrew; Mohr, Christian; Jiang, Jie; Fermann, Martin; Maslowski, Piotr

    2014-06-01

    We report on a comb-resolved, broadband, direct-comb spectroscopy system in the mid-IR and its application to the detection of trace gases and molecular line shape analysis. By coupling an optical parametric oscillator (OPO), a 100 m multipass cell, and a high-resolution Fourier transform spectrometer (FTS), sensitive, comb-resolved broadband spectroscopy of dilute gases is possible. The OPO has radiation output at 3.1-3.7 and 4.5-5.5 μm. The laser repetition rate is scanned to arbitrary values with 1 Hz accuracy around 417 MHz. The comb-resolved spectrum is produced with an absolute frequency axis depending only on the RF reference (in this case a GPS disciplined oscillator), stable to 1 part in 10^9. The minimum detectable absorption is 1.6x10-6 wn Hz-1/2. The operating range of the experimental setup enables access to strong fundamental transitions of numerous molecular species for applications based on trace gas detection such as environmental monitoring, industrial gas calibration or medical application of human breath analysis. In addition to these capabilities, we show the application for careful line shape analysis of argon-broadened CO band spectra around 4.7 μm. Fits of the obtained spectra clearly illustrate the discrepancy between the measured spectra and the Voigt profile (VP), indicating the need to include effects such as Dicke narrowing and the speed-dependence of the collisional width and shift in the line shape model, as was shown in previous cw-laser studies. In contrast to cw-laser based experiments, in this case the entire spectrum (˜ 250 wn) covering the whole P and R branches can be measured in 16 s with 417 MHz resolution, decreasing the acquisition time by orders of magnitude. The parallel acquisition allows collection of multiple lines simultaneously, removing the correlation of possible temperature and pressure drifts. While cw-systems are capable of measuring spectra with higher precision, this demonstration opens the door for fast

  9. Hydrocarbon Composition of Beeswax (Apis Mellifera) Collected from Light and Dark Coloured Combs

    OpenAIRE

    Waś Ewa; Szczęsna Teresa; Rybak-Chmielewska Helena

    2014-01-01

    The hydrocarbon composition of beeswax secreted by Apis mellifera was characterised. In the studies, analyses were made of virgin beeswax (obtained from light combs, socalled „wild-built combs“) that was collected at different dates, and beeswax obtained from dark combs („brood combs“). A qualitative analysis did not show any differences in the hydrocarbon composition of beeswax originating from light and dark coloured combs. The same hydrocarbons (n-alkanes, alkenes, and dienes) were identif...

  10. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.

  11. Mid-infrared dual-comb spectroscopy with electro-optic modulators

    CERN Document Server

    Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2016-01-01

    We demonstrate dual-comb spectroscopy based on difference frequency generation of frequency-agile near-infrared frequency combs, produced with the help of electro-optic modulators. The combs have a remarkably flat intensity distribution and their positions and line spacings can be selected freely by simply dialing a knob. We record, in the 3-micron region, Doppler-limited absorption spectra with resolved comb lines within milliseconds. Precise molecular line parameters are retrieved. Our technique holds promise for fast and sensitive time-resolved studies e.g. of trace gases.

  12. Two-photon frequency comb spectroscopy of the 6s-8s transition in cesium.

    Science.gov (United States)

    Fendel, P; Bergeson, S D; Udem, Th; Hänsch, T W

    2007-03-15

    We report a new absolute frequency measurement of the Cs 6s-8s two-photon transition measured using frequency comb spectroscopy. The fractional frequency uncertainty is 5x10(-11), a factor of 6 better than previous results. The comb is derived from a stabilized picosecond laser and referenced to an octave-spanning femtosecond frequency comb. The relative merits of picosecond-based frequency combs are discussed, and it is shown that the AC Stark shift of the transition is determined by the average rather than the much larger peak intensity.

  13. a Portable Dual Frequency Comb Spectrometer for Atmospheric Applications

    Science.gov (United States)

    Cossel, Kevin C.; Waxman, Eleanor; Truong, Gar-Wing; Giorgetta, Fabrizio; Swann, William C.; Coburn, Sean; Wright, Robert; Rieker, Greg B.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Dual frequency comb (DFC) spectroscopy is a new technique that combines broad spectral bandwidth, high spectral resolution, rapid data acquisition, and high sensitivity. In addition, unlike standard Fourier-transform spectroscopy, it has an almost ideal instrument lineshape function, does not require recalibration, and has no moving parts. These features make DFC spectroscopy well suited for accurate measurements of multiple species simultaneously. Because the frequency comb lasers can be well collimated, such a system can be used for long open-path measurements with path lengths ranging from hundreds of meters to several kilometers. This length scale bridges the gap between point measurements and satellite-based measurements and is ideal for providing information about local sources and quantifying emissions. Here we show a fully portable DFC spectrometer operating over a wide spectral region in the near-infrared (about 1.5-2.1 μm or 6670-4750 cm-1 sampled at 0.0067 cm-1) and across several different open-air paths up to a path length of 11.8 km. The current spectrometer fits in about a 500 L volume and has low power consumption. It provides simultaneous measurements of CO_2, CH_4, and water isotopes with a time resolution of seconds to minutes. This system has several potential applications for atmospheric measurements including continuous monitoring city-scale emissions and localizing methane leaks from oil and gas wells. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths, Optica, 1(5), 290-298 (2014).

  14. Precision spectroscopy of hydrogen and femtosecond laser frequency combs.

    Science.gov (United States)

    Hänsch, T W; Alnis, J; Fendel, P; Fischer, M; Gohle, C; Herrmann, M; Holzwarth, R; Kolachevsky, N; Udem, Th; Zimmermann, M

    2005-09-15

    Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S-2S two-photon resonance has reached an accuracy of 1.4 parts in 10(14), and considerable future improvements are envisioned. Such laboratory experiments are setting new limits for possible slow variations of the fine structure constant alpha and the magnetic moment of the caesium nucleus mu(Cs) in units of the Bohr magneton mu(B).

  15. Dual-frequency comb generation with differing GHz repetition rates by parallel Fabry-Perot cavity filtering of a single broadband frequency comb source

    Science.gov (United States)

    Mildner, Jutta; Meiners-Hagen, Karl; Pollinger, Florian

    2016-07-01

    We present a dual-comb-generator based on a coupled Fabry-Perot filtering cavity doublet and a single seed laser source. By filtering a commercial erbium-doped fiber-based optical frequency comb with CEO-stabilisation and 250 MHz repetition rate, two broadband coherent combs of different repetition rates in the GHz range are generated. The filtering doublet consists of two Fabry-Perot cavities with a tunable spacing and Pound-Drever-Hall stabilisation scheme. As a prerequisite for the development of such a filtering unit, we present a method to determine the actual free spectral range and transmission bandwidth of a Fabry-Perot cavity in situ. The transmitted beat signal of two diode lasers is measured as a function of their tunable frequency difference. Finally, the filtering performance and resulting beat signals of the heterodyned combs are discussed as well as the optimisation measures of the whole system.

  16. Male- and female-specific variants of doublesex gene products have different roles to play towards regulation of Sex combs reduced expression and sex comb morphogenesis in Drosophila

    Indian Academy of Sciences (India)

    Thangjam Ranjita Devi; B V Shyamala

    2013-09-01

    Sexually dimorphic characters have two-fold complexities in pattern formation as they have to get input fromboth somatic sex determination as well as the positional determining regulators. Sex comb development in Drosophila requires functions of the somatic sex-determining gene doublesex and the homeotic gene Sex combs reduced. Attempts have not been made to decipher the role of dsx in imparting sexually dimorphic expression of SCR and the differential function of sex-specific variants of dsx products in sex comb development. Our results in this study indicate that male-like pattern of SCR expression is independent of dsx function, and dsxF must be responsible for bringing about dimorphism in SCR expression, whereas dsxM function is required with Scr for the morphogenesis of sex comb.

  17. Fourier transform spectroscopy around 3 microns with a broad difference frequency comb

    CERN Document Server

    Meek, Samuel A; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    We characterize a new mid-infrared frequency comb generator based on difference frequency generation around 3.2 microns. High power per comb mode (>10-7 W/mode) is obtained over a broad spectral span (>700 nm). The source is used for direct absorption spectroscopy with a Michelson-based Fourier transform interferometer.

  18. Gaussian-shaped Optical Frequency Comb Generation for Microwave Photonic Filtering

    CERN Document Server

    Wu, Rui; Hamidi, Ehsan; Supradeepa, V R; Song, Min Hyup; Leaird, Daniel E; Weiner, Andrew M

    2011-01-01

    Using only electro-optic modulators, we generate a 41-line 10-GHz Gaussian-shaped optical frequency comb. We use this comb to demonstrate apodized microwave photonic filters with greater than 43-dB sidelobe suppression without the need for a pulse shaper.

  19. MICROBIOLOGICAL COMPARISON BETWEEN HONEY IN JAR AND HONEY IN COMB FOR HUMAN CONSUMPTION

    Directory of Open Access Journals (Sweden)

    G. Formato

    2013-02-01

    Full Text Available The Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, during August-July 2007 analyzed, for the microbial aspects, 37 samples of jar honey and 53 samples of honey in comb obtained from 37 farms of Latium Region. In the jar honey there weren’t values up to 1*103 colony-forming unit (CFU/g of bacteria mesophiles, while in the honey in comb it was not up to 2*103 CFU/g. Bacillus cereus was found in 22 samples (41,5% of honey in comb and in 18 samples (48,6% of jar honey; Clostridium perfringens was found in 6 (11,3% samples of honey in comb and in 6 samples (16,2% of jar honey; Clostridium baratii was found in 1 (1,9% sample of honey in comb and in 1 sample (2,7% of jar honey; coagulase-positive staphylococci were found in 4 (11,3% samples of honey in comb and in 4 samples (10,8% of jar honey; Clostridium sordelli was found in 2 samples (3,8% of honey in comb and in 1 sample (2,7% of jar honey. Only 2 samples of honey in comb and 1 sample of jar honey had yeasts up to 1000 CFU/g. Finally, 9 samples (24,3% of jar honey and 16 samples (30,2% of honey in jar were positives for moulds.

  20. Efficient frequency comb generation in AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta;

    2016-01-01

    The combination of nonlinear and integrated photonics enables Kerr frequency comb generation in stable chip-based microresonators. Such a comb system will revolutionize applications, including multi-wavelength lasers, metrology, and spectroscopy. Aluminum gallium arsenide (AlGaAs) exhibits very h...

  1. Widely-tunable mid-infrared frequency comb source based on difference frequency generation

    NARCIS (Netherlands)

    Ruehl, A.; Gambetta, A.; Hartl, I.; Fermann, M.E.; Eikema, K.S.E.; Marangoni, M.

    2012-01-01

    We report on a mid-IR frequency comb source of unprecedented tunability covering the entire 3-10 mu m molecular fingerprint region. The system is based on difference frequency generation in a GaSe crystal pumped by a 151 MHz Yb:fiber frequency comb. The process was seeded with Raman-shifted solitons

  2. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    NARCIS (Netherlands)

    Van den Berg, S.A.; Van Eldik, S.; Bhattacharya, N.

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phas

  3. Perovskites in the comb roof base of hornets : Their possible function

    NARCIS (Netherlands)

    Ishay, JS; Joseph, Z; Galushko, D; Ermakov, N; Bergman, DJ; Barkay, Z; Stokroos, [No Value; Van der Want, J

    2005-01-01

    On the ceiling of the Oriental hornet comb cell, there are mineral granules of poly-crystalline material known to belong to the group of perovskites. In a comb cell intended to house a worker hornet, the roof base usually carries one or several such perovskite granules containing titanium (Ti), wher

  4. Optimally Coherent Kerr Combs Generated with Crystalline Whispering Gallery Mode Resonators for Ultrahigh Capacity Fiber Communications

    Science.gov (United States)

    Pfeifle, Joerg; Coillet, Aurélien; Henriet, Rémi; Saleh, Khaldoun; Schindler, Philipp; Weimann, Claudius; Freude, Wolfgang; Balakireva, Irina V.; Larger, Laurent; Koos, Christian; Chembo, Yanne K.

    2015-03-01

    Optical Kerr frequency combs are known to be effective coherent multiwavelength sources for ultrahigh capacity fiber communications. These combs are the frequency-domain counterparts of a wide variety of spatiotemporal dissipative structures, such as cavity solitons, chaos, or Turing patterns (rolls). In this Letter, we demonstrate that Turing patterns, which correspond to the so-called primary combs in the spectral domain, are optimally coherent in the sense that for the same pump power they provide the most robust carriers for coherent data transmission in fiber communications using advanced modulation formats. Our model is based on a stochastic Lugiato-Lefever equation which accounts for laser pump frequency jitter and amplified spontaneous emission noise induced by the erbium-doped fiber amplifier. Using crystalline whispering-gallery-mode resonators with quality factor Q ˜109 for the comb generation, we show that when the noise is accounted for, the coherence of a primary comb is significantly higher than the coherence of their solitonic or chaotic counterparts for the same pump power. In order to confirm this theoretical finding, we perform an optical fiber transmission experiment using advanced modulation formats, and we show that the coherence of the primary comb is high enough to enable data transmission of up to 144 Gbit /s per comb line, the highest value achieved with a Kerr comb so far. This performance evidences that compact crystalline photonic systems have the potential to play a key role in a new generation of coherent fiber communication networks, alongside fully integrated systems.

  5. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy.

    Science.gov (United States)

    Vainio, Markku; Karhu, Juho

    2017-02-20

    A fully stabilized mid-infrared optical frequency comb spanning from 2.9 to 3.4 µm is described in this article. The comb is based on half-harmonic generation in a femtosecond optical parametric oscillator, which transfers the high phase coherence of a fully stabilized near-infrared Er-doped fiber laser comb to the mid-infrared region. The method is simple, as no phase-locked loops or reference lasers are needed. Precise locking of optical frequencies of the mid-infrared comb to the pump comb is experimentally verified at sub-20 mHz level, which corresponds to a fractional statistical uncertainty of 2 × 10-16 at the center frequency of the mid-infrared comb. The fully stabilized mid-infrared comb is an ideal tool for high-precision molecular spectroscopy, as well as for optical frequency metrology in the mid-infrared region, which is difficult to access with other stabilized frequency comb techniques.

  6. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.;

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers...

  7. Picometer-resolution dual-comb spectroscopy with a free-running fibre laser

    CERN Document Server

    Zhao, Xin; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-01-01

    Dual-comb spectroscopy utilizes two sets of comb lines with slightly different comb-tooth-spacings, and optical spectral information is acquired by measuring the radio-frequency beat notes between the sets of comb lines. It holds the promise as a real-time, high-resolution analytical spectroscopy tool for a range of important applications. However, the stringent requirement on the coherence between comb lines from two separate lasers and the sophisticated control system to achieve that have confined the technology to the top metrology laboratories. By replacing electronics with the law of physics in lasers, a much simpler, dual-comb spectroscopy scheme is demonstrated here using just one dual-wavelength, passively mode-locked fiber laser. Dual-comb pulses with a repetition-frequency difference determined by the intracavity dispersion are shown to be robust against common-mode cavity drifts and noises. As sufficiently low relative linewidth is maintained between two sets of comb lines, capability to resolve pi...

  8. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera development and longevity.

    Directory of Open Access Journals (Sweden)

    Judy Y Wu

    Full Text Available BACKGROUND: Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. METHODOLOGY/PRINCIPAL FINDINGS: Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment or in relatively uncontaminated brood comb (control. Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8 of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. CONCLUSIONS/SIGNIFICANCE: This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor

  9. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model

    OpenAIRE

    Coen, Stephane; Randle, Hamish G.; Sylvestre, Thibaut; Erkintalo, Miro

    2012-01-01

    A generalized Lugiato-Lefever equation is numerically solved with a Newton-Raphson method to model Kerr frequency combs. We obtain excellent agreement with past experiments, even for an octave-spanning comb. Simulations are much faster than with any other technique despite including more modes than ever before. Our study reveals that Kerr combs are associated with temporal cavity solitons and dispersive waves, and opens up new avenues for the understanding of Kerr comb formation.

  10. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model.

    Science.gov (United States)

    Coen, Stéphane; Randle, Hamish G; Sylvestre, Thibaut; Erkintalo, Miro

    2013-01-01

    A generalized Lugiato-Lefever equation is numerically solved with a Newton-Raphson method to model Kerr frequency combs. We obtain excellent agreement with past experiments, even for an octave-spanning comb. Simulations are much faster than with any other technique despite including more modes than ever before. Our study reveals that Kerr combs are associated with temporal cavity solitons and dispersive waves, and opens up new avenues for the understanding of Kerr-comb formation.

  11. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model

    CERN Document Server

    Coen, Stephane; Erkintalo, Miro

    2013-01-01

    We model Kerr frequency combs with a generalized Lugiato-Lefever equation combined with a Newton-Raphson solver. Results in excellent agreement with past experiments are obtained much faster than with any other technique, and we simulate for the first time to our knowledge an octave-spanning Kerr frequency comb. Our study reveals that Kerr combs are associated with temporal cavity solitons and dispersive waves, and opens up new avenues for the understanding of comb formation in ring resonators.

  12. Bathygrillotia n. g. (Cestoda: Trypanorhyncha), with redescriptions of B. rowei (Campbell, 1977) n. comb. and B. kovalevae (Palm, 1995) n. comb.

    Science.gov (United States)

    Beveridge, I; Campbell, R A

    2012-07-01

    Bathygrillotia n. g. (Cestoda: Trypanorhyncha) is erected for B. rowei (Campbell, 1977) n. comb. and B. kovalevae (Palm, 1995) n. comb. The new genus is based on the possession of two bothria, an atypical, heteroacanthous, heteromorphous armature with longitudinal files of hooks on the external surface of the tentacle associated with each principal row, each consisting of a large anterior hook followed by two smaller hooks. Bathygrillotia is allocated to the Lacistorhynchoidea Guiart, 1927 and its relationships with Grillotia Guiart, 1927 are discussed.

  13. Nonlinear Doppler - Free comb-spectroscopy in counter-propagating fields

    CERN Document Server

    Pulkin, S A; Arnautov, V; Uvarova, S V; Savel'eva, S

    2014-01-01

    The method of Doppler - free comb - spectroscopy for dipole transitions was proposed. The calculations for susceptibility spectrum for moving two-level atoms driving by strong counter propagating combs have been done. The used theoretical method based on the Fourier expansion of the components of density matrix on two rows on kv (v-velocity of group of atoms, k-projection of wave vector) and {\\Omega} (frequency between comb components). For testing of validity of this method the direct numerical integration was done. The narrow peaks with homogeneous width arise on the background of Doppler counter. The contrast of these peaks is large for largest amplitudes of comb-components. Power broadening is increasing with increase of field amplitudes. The spectral range of absorption spectrum is determined by the spectral range of comb generator and all homogeneous lines arise simultaneously. The spectral resolution is determined by the width of homogeneously-broadening lines. The physical nature of narrow peaks is in...

  14. Phase stabilization of Kerr frequency comb internally without nonlinear optical interferometry

    CERN Document Server

    Huang, S -W; Yang, J; Yu, M; Kwong, D -L; Wong, C W

    2016-01-01

    Optical frequency comb (OFC) technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, redefinition of time, extreme light-matter interaction, and attosecond sciences. While the current mode-locked laser-based OFC has had great success in extending the scientific frontier, its use in real-world applications beyond the laboratory setting remains an unsolved challenge. Microresonator-based OFCs, or Kerr frequency comb, have recently emerged as a candidate solution to the challenge because of their preferable size, weight, and power consumption (SWaP). On the other hand, the current phase stabilization technology requires either external optical references or power-demanding nonlinear processes, overturning the SWaP benefit of Kerr frequency combs. Introducing a new concept in phase control, here we report an internally phase stabilized Kerr frequency comb without the need of any optical references or nonlinear processes. We describe the comb generation analytically ...

  15. Operation of an optically coherent frequency comb outside the metrology lab

    CERN Document Server

    Sinclair, Laura C; Swann, William C; Rieker, Greg B; Hati, Archita; Iwakuni, Kana; Newbury, Nathan R

    2013-01-01

    We demonstrate a self-referenced fiber frequency comb that can operate outside the well-controlled optical laboratory. The frequency comb has residual optical linewidths of < 1 Hz, sub-radian residual optical phase noise, and residual pulse-to-pulse timing jitter of 2.4 - 5 fs, when locked to an optical reference. This fully phase-locked frequency comb has been successfully operated in a moving vehicle with 0.5 g peak accelerations and on a shaker table with a sustained 0.5 g rms integrated acceleration, while retaining its optical coherence and 5-fs-level timing jitter. This frequency comb should enable metrological measurements outside the laboratory with the precision and accuracy that are the hallmarks of comb-based systems. Work of the U.S. government, not subject to copyright

  16. Operation of an optically coherent frequency comb outside the metrology lab.

    Science.gov (United States)

    Sinclair, L C; Coddington, I; Swann, W C; Rieker, G B; Hati, A; Iwakuni, K; Newbury, N R

    2014-03-24

    We demonstrate a self-referenced fiber frequency comb that can operate outside the well-controlled optical laboratory. The frequency comb has residual optical linewidths of < 1 Hz, sub-radian residual optical phase noise, and residual pulse-to-pulse timing jitter of 2.4 - 5 fs, when locked to an optical reference. This fully phase-locked frequency comb has been successfully operated in a moving vehicle with 0.5 g peak accelerations and on a shaker table with a sustained 0.5 g rms integrated acceleration, while retaining its optical coherence and 5-fs-level timing jitter. This frequency comb should enable metrological measurements outside the laboratory with the precision and accuracy that are the hallmarks of comb-based systems.

  17. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    Science.gov (United States)

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking.

  18. (87)Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb.

    Science.gov (United States)

    Schratwieser, Thomas C; Balskus, Karolis; McCracken, Richard A; Farrell, Carl; Leburn, Christopher G; Zhang, Zhaowei; Lamour, Tobias P; Ferreiro, Teresa I; Marandi, Alireza; Arnold, Aidan S; Reid, Derryck T

    2014-05-01

    We report a fully stabilized 1030-nm Yb-fiber frequency comb operating at a pulse repetition frequency of 375 MHz. The comb spacing was referenced to a Rb-stabilized microwave synthesizer and the comb offset was stabilized by generating a super-continuum containing a coherent component at 780.2 nm which was heterodyned with a (87)Rb-stabilized external cavity diode laser to produce a radio-frequency beat used to actuate the carrier-envelope offset frequency of the Yb-fiber laser. The two-sample frequency deviation of the locked comb was 235 kHz for an averaging time of 50 seconds, and the comb remained locked for over 60 minutes with a root mean squared deviation of 236 kHz.

  19. A Fine-Tooth Comb to Measure the Accelerating Universe

    Science.gov (United States)

    2008-09-01

    Astronomical instruments needed to answer crucial questions, such as the search for Earth-like planets or the way the Universe expands, have come a step closer with the first demonstration at the telescope of a new calibration system for precise spectrographs. The method uses a Nobel Prize-winning technology called a 'laser frequency comb', and is published in this week's issue of Science. Uncovering the disc ESO PR Photo 26a/08 A Laser Comb for Astronomy "It looks as if we are on the way to fulfil one of astronomers' dreams," says team member Theodor Hänsch, director at the Max Planck Institute for Quantum Optics (MPQ) in Germany. Hänsch, together with John Hall, was awarded the 2005 Nobel Prize in Physics for work including the frequency comb technique. Astronomers use instruments called spectrographs to spread the light from celestial objects into its component colours, or frequencies, in the same way water droplets create a rainbow from sunlight. They can then measure the velocities of stars, galaxies and quasars, search for planets around other stars, or study the expansion of the Universe. A spectrograph must be accurately calibrated so that the frequencies of light can be correctly measured. This is similar to how we need accurate rulers to measure lengths correctly. In the present case, a laser provides a sort of ruler, for measuring colours rather than distances, with an extremely accurate and fine grid. New, extremely precise spectrographs will be needed in experiments planned for the future European Extremely Large Telescope (E-ELT), which is being designed by ESO, the European Southern Observatory. These new spectrographs will need to be calibrated with even more accurate 'rulers'. In fact, they must be accurate to about one part in 30 billions - a feat equivalent to measuring the circumference of the Earth to about a millimetre! "We'll need something beyond what current technology can offer, and that's where the laser frequency comb comes in. It is

  20. Arbitrary optical frequency synthesis traced to an optical frequency comb

    Science.gov (United States)

    Cai, Zihang; Zhang, Weipeng; Yang, Honglei; Li, Yan; Wei, Haoyun

    2016-11-01

    An arbitrary optical frequency synthesizer with a broad tuning range and high frequency accuracy is presented. The system includes an external cavity diode laser (ECDL) as the output laser, an Erbium-doped optical frequency comb being a frequency reference, and a control module. The optical frequency from the synthesizer can be continuously tuned by the large-scale trans-tooth switch and the fine intra-tooth adjustment. Robust feedback control by regulating the current and PZT voltage enables the ECDL to phase-lock to the Erbium-doped optical frequency comb, therefore to keep stable frequency output. In the meanwhile, the absolute frequency of the synthesizer is determined by the repetition rate, the offset frequency and the beat frequency. All the phase lock loops in the system are traced back to a Rubidium clock. A powerful and friendly software is developed to make the operation convenient by integrating the functions of frequency setting, tuning, tracing, locking and measuring into a LabVIEW interface. The output frequency tuning span and the uncertainty of the system are evaluated as >6 THz and <3 kHz, respectively. The arbitrary optical frequency synthesizer will be a versatile tool in diverse applications, such as synthetic wavelength based absolute distance measurement and frequency-stabilized Cavity Ring-Down Spectroscopy.

  1. Lévy processes on a generalized fractal comb

    Science.gov (United States)

    Sandev, Trifce; Iomin, Alexander; Méndez, Vicenç

    2016-09-01

    Comb geometry, constituted of a backbone and fingers, is one of the most simple paradigm of a two-dimensional structure, where anomalous diffusion can be realized in the framework of Markov processes. However, the intrinsic properties of the structure can destroy this Markovian transport. These effects can be described by the memory and spatial kernels. In particular, the fractal structure of the fingers, which is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the Lévy processes (Lévy flights) and superdiffusion. This generalization of the fractional diffusion is described by the Riesz space fractional derivative. In the framework of this generalized fractal comb model, Lévy processes are considered, and exact solutions for the probability distribution functions are obtained in terms of the Fox H-function for a variety of the memory kernels, and the rate of the superdiffusive spreading is studied by calculating the fractional moments. For a special form of the memory kernels, we also observed a competition between long rests and long jumps. Finally, we considered the fractal structure of the fingers controlled by a Weierstrass function, which leads to the power-law kernel in the Fourier space. This is a special case, when the second moment exists for superdiffusion in this competition between long rests and long jumps.

  2. Comb-referenced laser distance interferometer for industrial nanotechnology

    Science.gov (United States)

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-01-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10−10. The uncertainty is estimated to be in a 10−8 level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10−10 level in vacuum. PMID:27558016

  3. Scanning micro-resonator direct-comb absolute spectroscopy

    CERN Document Server

    Gambetta, Alessio; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical frequency Comb Spectroscopy (DCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DCS approach based on a scanning Fabry-Perot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from XUV to THz. An application to high-precision spectroscopy of acetylene at 1.54 um is presented, demonstrating frequency resolution as low as 20 MHz with a single-scan optical bandwidth up to 1 THz in 20-ms measurement time and a noise-equ...

  4. Flexible radio-frequency photonics: Optoelectronic frequency combs and integrated pulse shaping

    Science.gov (United States)

    Metcalf, Andrew J.

    Microwave photonics is a discipline which leverages optoelectronics to enhance the generation, transport, and processing of high-frequency electrical signals. At the heart of many emerging techniques is the optical frequency comb. A comb is a lightwave source whose spectrum is made up of discrete equally spaced spectral components that share a fixed phase relationship. These discrete coherent oscillators --known as comb lines-- collectively form a Fourier basis that describe a periodic optical waveform. Within the last two decades frequency-stabilized broadband combs produced from mode-locked lasers have led to revolutionary advancements in precision optical frequency synthesis and metrology. Meanwhile, Fourier-transform optical pulse shaping, which provides a means to control a comb's Fourier basis in both amplitude and phase, has emerged as an integral tool in optical communications, broadband waveform generation, and microwave photonic filtering. However, traditional comb and pulse shaping architectures are often plagued by complex and bulky setups, rendering robust and cost effective implementation outside of the laboratory a challenge. In addition, traditional comb sources based on short-pulse lasers do not possess qualities which are ideally suited for this new application regime. Motivated by the shortcomings in current architectures, and empowered by recent advancements in optoelectronic technology, this dissertation focuses on developing novel and robust schemes in optical frequency comb generation and line-by-line pulse shaping. Our results include: the invention and low-noise characterization of a broadband flat-top comb source; the realization of an optoelectronic-based time cloak; and finally, the development of an integrated pulse shaper, which we use in conjunction with our flat-top comb source to demonstrate a rapidly reconfigurable microwave photonic filter.

  5. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter.

    Science.gov (United States)

    Brady, Carrie; Cleenwerck, Ilse; Venter, Stephanus; Coutinho, Teresa; De Vos, Paul

    2013-07-01

    The taxonomy of Enterobacter has a complicated history, with several species transferred to and from this genus. Classification of strains is difficult owing to its polyphyletic nature, based on 16S rRNA gene sequences. It has been previously acknowledged that Enterobacter contains species which should be transferred to other genera. In an attempt to resolve the taxonomy of Enterobacter, MLSA based on partial sequencing of protein-encoding genes (gyrB, rpoB, infB and atpD) was performed on the type strains and reference strains of Enterobacter, Cronobacter and Serratia species, as well as members of the closely related genera Citrobacter, Klebsiella, Kluyvera, Leclercia, Mangrovibacter, Raoultella and Yokenella. Phylogenetic analyses of the concatenated nucleotide sequences revealed that Enterobacter can be divided into five strongly supported MLSA groups, suggesting that the species should be reclassified into five different genera. Further support for this was provided by a concatenated amino acid tree, phenotypic characteristics and fatty acid profiles, enabling differentiation of the MLSA groups. Three novel genera are proposed: Lelliottia gen. nov., Pluralibacter gen. nov. and Kosakonia gen. nov. and the following new combinations: Lelliottia nimipressuralis comb. nov., Lelliottia amnigena comb. nov., Pluralibacter gergoviae comb. nov., Pluralibacter pyrinus comb. nov., Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov., Kosakonia arachidis comb. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov. Additionally, the novel epithet Cronobacter zurichensis nom. nov. is proposed for the reclassification of Enterobacter turicensis into the genus Cronobacter, as Cronobacter turicensis (Iversen et al., 2008) is already in use.

  6. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  7. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    CERN Document Server

    Zhang, Bosheng; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl,, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-01-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  8. Frequency domain processing of on-chip biphoton frequency comb

    CERN Document Server

    Jaramillo-Villegas, Jose A; Odele, Ogaga D; Leaird, Daniel E; Ou, Zhe-Yu; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Quantum information processing (QIP) promises to improve the security of our communications as well as to solve some algorithms with exponential complexity in polynomial time. Biphotons have been demonstrated as one of the most promising platforms for real implementations of QIP systems. In particular, time-bin entangled photons have been used for implementations of quantum gates which require highly stable interferometers. On the other hand, frequency-bin entanglement has been proposed to avoid the use of interferometers and the complexity of their stabilization, which potentially makes the implementation of quantum gates highly scalable. Through Fourier transform pulse shaping and electro-optic modulation, there has been a wide range of experiments that show control of entangled photons in the frequency domain. In addition, biphoton frequency combs (BFC) have also been generated using bulk optics and frequency filtering of broadband continuous biphoton spectra. However, on-chip entangled photon pair generat...

  9. Direct frequency comb two-photon laser cooling and trapping

    Science.gov (United States)

    Jayich, Andrew; Long, Xueping; Campbell, Wesley C.

    2016-05-01

    Generating and manipulating high energy photons for spectroscopy on electric dipole transitions of atoms and molecules with deeply bound valence electrons is difficult. Further, laser cooling of such species is even more challenging for lack of laser power. A possible solution is to drive two-photon transitions. This may alleviate the photon energy problem and open the door to cold, trapped samples of highly desirable species with tightly bound electrons. We perform a proof of principle experiment with rubidium by driving a two-photon transition with an optical frequency comb. We perform optical cooling and extend this technique to trapping, where we are able to make a magneto-optical trap in one dimension. This work is supported by the National Science Foundation CAREER program.

  10. Steering optical comb frequency by rotating polarization state

    CERN Document Server

    Zhang, Y; Zhang, X F; Zhang, L; Han, W; Guo, W; Jiang, H; Zhang, S

    2016-01-01

    Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator techn...

  11. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    Science.gov (United States)

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  12. Coherent Raman spectro-imaging with laser frequency combs

    CERN Document Server

    Ideguchi, Takuro; Bernhardt, Birgitta; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2013-01-01

    Optical spectroscopy and imaging of microscopic samples have opened up a wide range of applications throughout the physical, chemical, and biological sciences. High chemical specificity may be achieved by directly interrogating the fundamental or low-lying vibrational energy levels of the compound molecules. Amongst the available prevailing label-free techniques, coherent Raman scattering has the distinguishing features of high spatial resolution down to 200 nm and three-dimensional sectioning. However, combining fast imaging speed and identification of multiple - and possibly unexpected- compounds remains challenging: existing high spectral resolution schemes require long measurement times to achieve broad spectral spans. Here we overcome this difficulty and introduce a novel concept of coherent anti-Stokes Raman scattering (CARS) spectro-imaging with two laser frequency combs. We illustrate the power of our technique with high resolution (4 cm-1) Raman spectra spanning more than 1200 cm-1 recorded within le...

  13. Direct frequency comb measurement of OD + CO → DOCO kinetics.

    Science.gov (United States)

    Bjork, B J; Bui, T Q; Heckl, O H; Changala, P B; Spaun, B; Heu, P; Follman, D; Deutsch, C; Cole, G D; Aspelmeyer, M; Okumura, M; Ye, J

    2016-10-28

    The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

  14. Direct Frequency Comb Measurement of OD + CO -> DOCO Kinetics

    CERN Document Server

    Bjork, Bryce J; Heckl, Oliver H; Changala, P Bryan; Spaun, Ben; Heu, Paula; Follman, David; Deutsch, Christoph; Cole, Garrett D; Aspelmeyer, Markus; Okumura, Mitchio; Ye, Jun

    2016-01-01

    The kinetics of the OH + CO reaction, fundamental to both atmospheric and combustion chemistry, are complex due to the formation of the HOCO intermediate. Despite extensive studies on this reaction, HOCO has not been observed at thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observe OD + CO reaction kinetics with the detection of stabilized trans-DOCO, the deuterated analogue of trans-HOCO, and its yield. By simultaneously measuring the time-dependent concentrations of both trans-DOCO and OD species, we observe unambiguous low-pressure termolecular dependence on the reaction rate coefficients for both N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

  15. Comb mode filtering silver mirror cavity for spectroscopic distance measurement

    Science.gov (United States)

    Šmíd, R.; Hänsel, A.; Pravdová, L.; Sobota, J.; Číp, O.; Bhattacharya, N.

    2016-09-01

    In this work we present a design of an external optical cavity based on Fabry-Perot etalons applied to a 100 MHz Er-doped fiber optical frequency comb working at 1560 nm to increase its repetition frequency. A Fabry-Perot cavity is constructed based on a transportable cage system with two silver mirrors in plano-concave geometry including the mode-matching lenses, fiber coupled collimation package and detection unit. The system enables full 3D angle mirror tilting and x-y off axis movement as well as distance between the mirrors. We demonstrate the increase of repetition frequency by direct measurement of the beat frequency and spectrally by using the virtually imaged phased array images.

  16. X-ray harmonic comb from relativistic electron spikes

    CERN Document Server

    Pirozhkov, Alexander S; Esirkepov, Timur Zh; Ragozin, Eugene N; Faenov, Anatoly Ya; Pikuz, Tatiana A; Kawachi, Tetsuya; Sagisaka, Akito; Mori, Michiaki; Kawase, Keigo; Koga, James K; Kameshima, Takashi; Fukuda, Yuji; Chen, Liming; Daito, Izuru; Ogura, Koichi; Hayashi, Yukio; Kotaki, Hideyuki; Kiriyama, Hiromitsu; Okada, Hajime; Nishimori, Nobuyuki; Kondo, Kiminori; Kimura, Toyoaki; Tajima, Toshiki; Daido, Hiroyuki; Kato, Yoshiaki; Bulanov, Sergei V

    2010-01-01

    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathem...

  17. Time-Delay Interferometry with optical frequency comb

    CERN Document Server

    Tinto, Massimo

    2015-01-01

    Heterodyne laser phase measurements in a space-based gravitational wave interferometer are degraded by the phase fluctuations of the onboard clocks, resulting in unacceptable sensitivity performance levels of the interferometric data. In order to calibrate out the clock phase noises it has been previously suggested that additional inter-spacecraft phase measurements must be performed by modulating the laser beams. This technique, however, considerably increases system complexity and probability of subsystem failure. With the advent of self-referenced optical frequency combs, it is possible to generate the heterodyne microwave signal that is coherently referenced to the onboard laser. We show in this case that the microwave noise can be cancelled directly by applying modified second-generation Time-Delay Interferometric combinations to the heterodyne phase measurements. This approach avoids use of modulated laser beams as well as the need of additional ultra-stable oscillator clocks.

  18. Modeling Kerr frequency combs using the Lugiato-Lefever equation: a characterization of the multistable landscape

    Science.gov (United States)

    Parra-Rivas, P.; Gomila, D.; Matias, M. A.; Leo, F.; Coen, S.; Gelens, L.

    2014-05-01

    Optical frequency combs can be used to measure light frequencies and time intervals more easily and precisely than ever before, opening a large avenue for applications. Traditional frequency combs are usually associated with trains of evenly spaced, very short pulses. More recently, a new generation of comb sources has been demonstrated in compact high-Q optical microresonators with a Kerr nonlinearity pumped by continuous-wave laser light. These combs are now referred to as Kerr frequency combs and have attracted a lot of interest in the last few years. Kerr frequency combs can be modeled in a way that is strongly reminiscent of temporal cavity solitons (CSs) in nonlinear cavities. Temporal CSs have been experimentally studied in fiber resonators and their description is based on a now classical equation, the Lugiato-Lefever equation, that describes pattern formation in optical systems. In this work, we first perform a theoretical study of the correspondence between the CSs and patterns with frequency combs. It is known that the CSs appear in reversible systems that present bistability between a pattern and a homogeneous steady state through what it is called a homoclinic snaking structure. In this snaking region, single and multi-peak CSs coexist with patterns and homogeneous solutions, creating a largely multistable landscape. We study the changes of the homoclinic snaking for different parameter regimes in the Lugiato-Lefever equation and determine the stability and shape of the frequency combs through comparison with the underlying CSs and patterns. Secondly, we include third order dispersion in the system and study its effect on the multistable snaking structure. For high dispersion strengths the CS structures and the corresponding Kerr frequency combs disappear.

  19. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi-Chi; Wu Ji-Zhou; Li Yu-Qing; Jin Li; Ma Jie; Wang Li-Rong; Zhao Yan-Ting; Xiao Lian-Tuan; Jia Suo-Tang

    2012-01-01

    A phase-stabilized femtosecond frequency comb is used to measure high-resolution spectra of two-photon transition 62S1/2-62P1/2,3/2-82S1/2 in a cesium vapor.The broadband laser output from a femtosecond frequency comb is split into counter-propagating parts,shaped in an original way,and focused into a room-temperature cesium vapor.We obtain high-resolution two-photon spectroscopy by scanning the repetition rate of femtosecond frequency comb,and through absolute frequency measurements.

  20. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators

    Science.gov (United States)

    Chembo, Yanne K.; Menyuk, Curtis R.

    2013-05-01

    We demonstrate that frequency (Kerr) comb generation in whispering-gallery-mode resonators can be modeled by a variant of the Lugiato-Lefever equation that includes higher-order dispersion and nonlinearity. This spatiotemporal model allows us to explore pulse formation in which a large number of modes interact cooperatively. Pulse formation is shown to play a critical role in comb generation, and we find conditions under which single pulses (dissipative solitons) and multiple pulses (rolls) form. We show that a broadband comb is the spectral signature of a dissipative soliton, and we also show that these solitons can be obtained by using a weak anomalous dispersion and subcritical pumping.

  1. Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Molecular Spectroscopy

    CERN Document Server

    Cruz, Flavio C; Johnson, Todd; Ycas, Gabriel; Klose, Andrew; Giorgetta, Fabrizio R; Coddington, Ian; Diddams, Scott A

    2015-01-01

    Mid-infrared femtosecond optical frequency combs were produced by difference frequency generation of the spectral components of a near-infrared comb in a 3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB parametric gain in the 1.5 \\mu m signal, which yields powers above 500 mW (3 \\mu W/mode) in the idler with spectra covering 2.8 \\mu m to 3.5 \\mu m. Potential for broadband, high-resolution molecular spectroscopy is demonstrated by absorption spectra and interferograms obtained by heterodyning two combs.

  2. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator.

    Science.gov (United States)

    Zhang, Zhaowei; Gardiner, Tom; Reid, Derryck T

    2013-08-15

    We present the first implementation of mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Methane absorption spectroscopy was demonstrated with a resolution of 0.2 cm(-1) (5 GHz) at an acquisition time of ~10.4 ms over a spectral coverage at 2900-3050 cm(-1). The average power from each individual mid-infrared comb line was ~1 μW, representing a power level much greater than typical difference-frequency-generation sources. Mid-infrared dual-comb spectroscopy opens up unique opportunities to perform broadband spectroscopic measurements with high resolution, high requisition rate, and high detection sensitivity.

  3. Glucose sensor based on redox-cycling between selectively modified and unmodified combs of carbon interdigitated array nanoelectrodes.

    Science.gov (United States)

    Sharma, Deepti; Lim, Yeongjin; Lee, Yunjeong; Shin, Heungjoo

    2015-08-19

    We present a novel electrochemical glucose sensor employing an interdigitated array (IDA) of 1:1 aspect ratio carbon nanoelectrodes for the electrochemical-enzymatic redox cycling of redox species (ferricyanide/ferrocyanide) between glucose oxidase (GOx) and the two comb-shaped nanoelectrodes of the IDA. The carbon nanoelectrodes were fabricated using a simple, cost-effective, reproducible microfabrication technology known as the carbon-microelectromechanical-systems (C-MEMS) process. One comb (comb 1) of the IDA was selectively modified with GOx via the electrochemical reduction of an aryl diazonium salt, while the other comb (comb 2) remained unmodified; this facilitates electrochemically more active surface of comb 2, resulting in sensitive glucose detection. Ferricyanide is reduced to ferrocyanide by the GOx in the presence of glucose, and ferrocyanide diffuses to both combs of the IDA where it is oxidized. The limited electrochemical current collection at the surface-modified comb 1 is counterbalanced by the efficient redox cycling between the enzyme sites at comb 1 and the bare carbon surface of comb 2. Reducing the electrode-to-electrode gap between the two combs (gap = 1.9 μm) increases the diffusion flux of redox species at comb 2 hence, enhanced the sensitivity and limit of detection of the glucose sensor by ∼2.3 and ∼295 times, respectively at comb 2 compared to comb 1. The developed IDA-based glucose sensor demonstrated good amperometric response to glucose, affording two linear ranges from 0.001 to 1 mM and from 1 to 10 mM, with limits of detection of 0.4 and 61 μM and sensitivities of 823.2 and 70.0 μA mM(-1) cm(-2), respectively.

  4. Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy

    Science.gov (United States)

    Siciliani de Cumis, M.; Eramo, R.; Coluccelli, N.; Cassinerio, M.; Galzerano, G.; Laporta, P.; De Natale, P.; Cancio Pastor, P.

    2015-01-01

    Accurate frequency measurements of molecular transitions around 2 μ m are performed by using a direct-frequency-comb spectroscopy approach that combines an Er+ frequency-comb oscillator at 1.5 μ m , a Tm-Ho fiber amplifier, and a Fabry-Perot-filter, high-resolution dispersive spectrometer optical multiplex-detection system. This apparatus has unique performances in terms of a wide dynamic range to integrate the intensity per comb mode, which allows one to measure molecular absorption profiles with high precision. Spectroscopic information about transition frequencies and linewidths is very accurately determined. Relative frequency uncertainties of the order of a few parts in 10-9 are achieved for rovibrational transitions of the CO2 molecule around 5100 cm-1. Moreover, tiny frequency shifts due to molecular collisions and interacting laser power using direct comb spectroscopy are investigated in a systematic way.

  5. A near infrared frequency comb for Y+J band astronomical spectroscopy

    CERN Document Server

    Osterman, Steve; Diddams, Scott A; Quinlan, Franklyn; Mahadevan, Suvrath; Ramsey, Lawrence; Bender, Chad F; Terrien, Ryan; Botzer, Brandon; Sigurddson, Steinn; Redman, Stephen L

    2012-01-01

    Radial velocity (RV) surveys supported by high precision wavelength references (notably ThAr lamps and I2 cells) have successfully identified hundreds of exoplanets; however, as the search for exoplanets moves to cooler, lower mass stars, the optimum wave band for observation for these objects moves into the near infrared (NIR) and new wavelength standards are required. To address this need we are following up our successful deployment of an H band(1.45-1.7{\\mu}m) laser frequency comb based wavelength reference with a comb working in the Y and J bands (0.98-1.3{\\mu}m). This comb will be optimized for use with a 50,000 resolution NIR spectrograph such as the Penn State Habitable Zone Planet Finder. We present design and performance details of the current Y+J band comb.

  6. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    CERN Document Server

    Brasch, Victor; Geiselmann, Michael; Lihachev, Grigoriy; Pfeiffer, Martin H P; Gorodetsky, Michael L; Kippenberg, Tobias J

    2014-01-01

    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequen...

  7. All Optical Stabilization of a Soliton Frequency Comb in a Crystalline Microresonator

    CERN Document Server

    Jost, J D; Herr, T; Lecaplain, C; Brasch, V; Pfeiffer, M H P; Kippenberg, T J

    2015-01-01

    Microresonator based optical frequency combs (MFC) have demonstrated promise in extending the capabilities of optical frequency combs. Here we demonstrate all optical stabilization of a low noise temporal soliton based MFC in a crystalline resonator via a new technique to control the repetition rate. This is accomplished by thermally heating the microresonator with an additional probe laser coupled to an auxiliary optical resonator mode. The offset frequency is controlled by stabilization of the pump laser frequency to a reference optical frequency comb. We analyze the stabilization by performing an out of loop comparison and measure the overlapping Allan deviation. This all optical stabilization technique can prove useful as a low added noise actuator for self-referenced microresonator frequency combs.

  8. Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel

    CERN Document Server

    Probst, R A; Doerr, H-P; Steinmetz, T; Kentischer, T J; Zhao, G; Hänsch, T W; Udem, Th; Holzwarth, R; Schmidt, W

    2015-01-01

    We investigate a new scheme for astronomical spectrograph calibration using the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our concept is based upon a single-mode fiber channel, that simultaneously feeds the spectrograph with comb light and sunlight. This yields nearly perfect spatial mode matching between the two sources. In combination with the absolute calibration provided by the frequency comb, this method enables extremely robust and accurate spectroscopic measurements. The performance of this scheme is compared to a sequence of alternating comb and sunlight, and to absorption lines from Earth's atmosphere. We also show how the method can be used for radial-velocity detection by measuring the well-explored 5-minute oscillations averaged over the full solar disk. Our method is currently restricted to solar spectroscopy, but with further evolving fiber-injection techniques it could become an option even for faint astronomical targets.

  9. Microwave and RF Applications for Micro-resonator based Frequency Combs

    CERN Document Server

    Nguyen, Thach G; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contr...

  10. TREATMENT OF 50 CASES OF MIGRAINE BY SCALP ACUPUNCTURE COMBINED WITH ELECTRO-COMB STIMULATION

    Institute of Scientific and Technical Information of China (English)

    CAO Renjun; SHI Qing

    2002-01-01

    @@ The authors of the present paper treated 50cases of migraine by scalp acupuncture plus electro-comb stimulation from 1995 to 1999 and achieved satisfactory therapeutic effects. It is reported as follows.

  11. Intracavity characterization of micro-comb generation in the single-soliton regime

    CERN Document Server

    Wang, Pei-Hsun; Xuan, Yi; Xue, Xiaoxiao; Bao, Chengying; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Soliton formation in on-chip micro-comb generation balances cavity dispersion and nonlinearity and allows coherent, low-noise comb operation. We study the intracavity waveform of an on-chip microcavity soliton in a silicon nitride microresonator configured with a drop port. Whereas combs measured at the through port are accompanied by a very strong pump line which accounts for >99% of the output power, our experiments reveal that inside the microcavity, most of the power is in the soliton. Time-domain measurements performed at the drop port provide information that directly reflects the intracavity field. Data confirm a train of bright, close to bandwidth-limited pulses, accompanied by a weak continuous wave (CW) background with a small phase shift relative to the comb.

  12. Spatiotemporal Model for Kerr Comb Generation in Whispering Gallery Mode Resonators

    CERN Document Server

    Chembo, Yanne K

    2012-01-01

    We establish an exact partial differential equation to model Kerr comb generation in whispering-gallery mode resonators. This equation is a variant of the Lugiato-Lefever equation that includes higher-order dispersion and nonlinearity. This spatio-temporal model, whose main variable is the total intracavity field, is significantly more suitable than the modal expansion approach for the theoretical understanding and the numerical simulation of wide-span combs. It allows us to explore pulse formation in which a large number of modes interact cooperatively. This versatile approach can be straightforwardly extended to include higher-order dispersion, as well as other phenomena like Raman, Brillouin and Rayleigh scattering. We demonstrate for the first time that when the dispersion is anomalous, Kerr comb generation can arise as the spectral signature of dissipative cavity solitons, leading to wide-span combs with low pumping.

  13. Generation of high-frequency combs locked to atomic resonances by quantum phase modulation

    CERN Document Server

    Liu, Zuoye; Cavaletto, Stefano M; Harman, Zoltán; Keitel, Christoph H; Pfeifer, Thomas

    2013-01-01

    A general mechanism for the generation of frequency combs referenced to atomic resonances is put forward. The mechanism is based on the periodic phase control of a quantum system's dipole response. We develop an analytic description of the comb spectral structure, depending on both the atomic and the phase-control properties. We further suggest an experimental implementation of our scheme: Generating a frequency comb in the soft-x-ray spectral region, which can be realized with currently available techniques and radiation sources. The universality of this mechanism allows the generalization of frequency-comb technology to arbitrary frequencies, including the hard-x-ray regime by using reference transitions in highly charged ions.

  14. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion

    CERN Document Server

    Jang, Jae K; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point. We determine the phase-matching conditions that accurately predict all the essential features of the MI and comb spectra, and extend the existing analogy between mode coupling and high-order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the possibility of broadband comb generation in the normal GVD regime.

  15. Ultra-broadband dual-comb spectroscopy across 1.0-1.9 {\\mu}m

    CERN Document Server

    Okubo, Sho; Inaba, Hajime; Hosaka, Kazumoto; Onae, Atsushi; Sasada, Hiroyuki; Hong, Feng-Lei

    2015-01-01

    We have carried out dual-comb spectroscopy and observed in a simultaneous acquisition a 140-THz-wide spectrum from 1.0 to 1.9 {\\mu}m using two fiber-based frequency combs phase-locked to each other. This ultra-broad wavelength bandwidth is realized by setting the difference between the repetition rates of the two combs to 7.6 Hz using the sub-Hz-linewidth fiber combs. The recorded spectrum contains five vibration-rotation bands of C${_2}$H${_2}$, CH${_4}$, and H${_2}$O at different wavelengths across the whole spectrum. The determined transition frequencies of C${_2}$H${_2}$ agree with those from the previous sub-Doppler resolution measurement of individual lines using CW lasers within 2 MHz.

  16. DWDM Fiber-Wireless Access System with Centralized Optical Frequency Comb-based RF Carrier Generation

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltrán, Marta; Sánchez, José;

    2013-01-01

    We propose and experimentally demonstrate an optical wireless DWDM system at 60 GHz with optical incoherent heterodyne up-conversion using an optical frequency comb. Multiple users with wireline and wireless services are simultaneously supported.......We propose and experimentally demonstrate an optical wireless DWDM system at 60 GHz with optical incoherent heterodyne up-conversion using an optical frequency comb. Multiple users with wireline and wireless services are simultaneously supported....

  17. Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion

    DEFF Research Database (Denmark)

    Wang, Shaofei; Guo, Hairun; Bai, Xuekun

    2014-01-01

    , showing that temporal shifts of steady-state intracavity solitons are induced by high-odd-order dispersion rather than high-even-order dispersion. The role of HOD on comb spectral envelopes is also elucidated through analyzing the intracavity dispersive wave generations. We further demonstrate...... that the spectral envelope of a broadband optical frequency comb can be engineered by using a cavity dispersion profile with multiple zero dispersion wavelengths. © 2014 Optical Society of America....

  18. Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators

    CERN Document Server

    Matsko, Andrey B; Savchenkov, Anatoliy A; Maleki, Lute

    2012-01-01

    We theoretically and experimentally investigate the chaotic regime of optical frequency combs generated in nonlinear ring microresonators pumped with continuous wave light. We show that the chaotic regime reveals itself, in an apparently counter-intuitive way, by a flat top symmetric envelope of the frequency spectrum, when observed by means of an optical spectrum analyzer. The comb demodulated on a fast photodiode produces a noisy radio frequency signal with an spectral width significantly exceeding the linear bandwidth of the microresonator mode.

  19. Occurrence of fungi in combs of fungus-growing termites (Isoptera: Termitidae, Macrotermitinae).

    Science.gov (United States)

    Guedegbe, Herbert J; Miambi, Edouard; Pando, Anne; Roman, Jocelyne; Houngnandan, Pascal; Rouland-Lefevre, Corinne

    2009-10-01

    Fungus-growing termites cultivate their mutualistic basidiomycete Termitomyces species on a substrate called a fungal comb. Here, the Suicide Polymerase Endonuclease Restriction (SuPER) method was adapted for the first time to a fungal study to determine the entire fungal community of fungal combs and to test whether fungi other than the symbiotic cultivar interact with termite hosts. Our molecular analyses show that although active combs are dominated by Termitomyces fungi isolated with direct Polymerase Endonuclease Restriction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE), they can also harbor some filamentous fungi and yeasts only revealed by SuPER PCR-DGGE. This is the first molecular evidence of the presence of non-Termitomyces species in active combs. However, because there is no evidence for a species-specific relationship between these fungi and termites, they are mere transient guests with no specialization in the symbiosis. It is however surprising to notice that termite-associated Xylaria strains were not isolated from active combs even though they are frequently retrieved when nests are abandoned by termites. This finding highlights the implication of fungus-growing termites in the regulation of fungi occurring within the combs and also suggests that they might not have any particular evolutionary-based association with Xylaria species.

  20. Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation.

    Science.gov (United States)

    Ghobadi, Ahmadreza F; Letteri, Rachel; Parelkar, Sangram S; Zhao, Yue; Chan-Seng, Delphine; Emrick, Todd; Jayaraman, Arthi

    2016-02-08

    Polymer-based gene delivery vehicles benefit from the presence of hydrophilic groups that mitigate the inherent toxicity of polycations and that provide tunable polymer-DNA binding strength and stable complexes (polyplexes). However, hydrophilic groups screen charge, and as such can reduce cell uptake and transfection efficiency. We report the effect of embedding zwitterionic sulfobetaine (SB) groups in cationic comb polymers, using a combination of experiments and molecular simulations. Ring-opening metathesis polymerization (ROMP) produced comb polymers with tetralysine (K4) and SB pendent groups. Dynamic light scattering, zeta potential measurements, and fluorescence-based experiments, together with coarse-grained molecular dynamics simulations, described the effect of SB groups on the size, shape, surface charge, composition, and DNA binding strength of polyplexes formed using these comb polymers. Experiments and simulations showed that increasing SB composition in the comb polymers decreased polymer-DNA binding strength, while simulations indicated that the SB groups distributed throughout the polyplex. This allows polyplexes to maintain a positive surface charge and provide high levels of gene expression in live cells. Notably, comb polymers with nearly 50 mol % SB form polyplexes that exhibit positive surface charge similarly as polyplexes formed from purely cationic comb polymers, indicating the ability to introduce an appreciable amount of SB functionality without screening surface charge. This integrated simulation-experimental study demonstrates the effectiveness of incorporating zwitterions in polyplexes, while guiding the design of new and effective gene delivery vectors.

  1. Hydrocarbon Composition of Beeswax (Apis Mellifera Collected from Light and Dark Coloured Combs

    Directory of Open Access Journals (Sweden)

    Waś Ewa

    2014-12-01

    Full Text Available The hydrocarbon composition of beeswax secreted by Apis mellifera was characterised. In the studies, analyses were made of virgin beeswax (obtained from light combs, socalled „wild-built combs“ that was collected at different dates, and beeswax obtained from dark combs („brood combs“. A qualitative analysis did not show any differences in the hydrocarbon composition of beeswax originating from light and dark coloured combs. The same hydrocarbons (n-alkanes, alkenes, and dienes were identified in virgin beeswax and beeswax collected from brood combs. However, the studies showed differences in the content of n-alkanes in the beeswax obtained from light and dark coloured combs. In comparison to the virgin beeswax, the beeswax obtained from dark combs had higher content of the total n-alkanes, higher total contents of even-numbered alkanes and odd-numbered alkanes, and higher contents of certain alkanes. Furthermore, it has been found that the hydrocarbon composition of beeswax did not depend on the collection period.

  2. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    Science.gov (United States)

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352

  3. Dual-etalon, cavity-ring-down, frequency comb spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2010-10-01

    The 'dual etalon frequency comb spectrometer' is a novel low cost spectometer with limited moving parts. A broad band light source (pulsed laser, LED, lamp ...) is split into two beam paths. One travels through an etalon and a sample gas, while the second arm is just an etalon cavity, and the two beams are recombined onto a single detector. If the free spectral ranges (FSR) of the two cavities are not identical, the intensity pattern at the detector with consist of a series of heterodyne frequencies. Each mode out of the sample arm etalon with have a unique frequency in RF (radio-frequency) range, where modern electronics can easily record the signals. By monitoring these RF beat frequencies we can then determine when an optical frequencies is absorbed. The resolution is set by the FSR of the cavity, typically 10 MHz, with a bandwidth up to 100s of cm{sup -1}. In this report, the new spectrometer is described in detail and demonstration experiments on Iodine absorption are carried out. Further we discuss powerful potential next generation steps to developing this into a point sensor for monitoring combustion by-products, environmental pollutants, and warfare agents.

  4. Regulation of Raoultella terrigena comb.nov. phytase expression.

    Science.gov (United States)

    Zamudio, Marcela; González, Aracely; Bastarrachea, Fernando

    2002-01-01

    Phytases catalyze the release of phosphate from phytate (myo-inositol hexakisphosphate) to inositol polyphosphates. Raoultella terrigena comb.nov. phytase activity is known to increase markedly after cells reach the stationary phase. In this study, phytase activity measurements made on single batch cultures indicated that specific enzyme activity was subject to catabolite repression. Cyclic AMP (cAMP) showed a positive effect in expression during exponential growth and a negative effect during stationary phase. RpoS exhibited the opposite effect during both growth phases; the induction to stationary phase decreased twofold in the rpoS::Tn10 mutant, but the effect of RpoS was not clearly determined. Two phy::MudI1734 mutants, MW49 and MW52, were isolated. These formed small colonies in comparison with the MW25 parent strain when plated on Luria-Bertani (LB) or LB supplemented with glucose. They did not grow in minimal media or under anaerobiosis, but did grow aerobically on LB and LB glucose at a lower rate than did MW25. The beta-galactosidase activity level in these mutants increased three to four fold during stationary growth in LB glucose and during anaerobiosis. Addition of cAMP during the exponential growth of MW52 on LB glucose provoked a decrease in beta-galactosidase activity during the stationary phase, confirming its negative effect on phytase expression during stationary growth.

  5. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    CERN Document Server

    Xie, Zhenda; Shrestha, Sajan; Xu, XinAn; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C; Restelli, Alessandro; Shapiro, Jeffrey H; Wong, Franco N C; Wong, Chee Wei

    2015-01-01

    Quantum entanglement is a fundamental resource for secure information processing and communications, where hyperentanglement or high-dimensional entanglement has been separately proposed towards high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, which is observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to...

  6. Quantum dot mode locked lasers for coherent frequency comb generation

    Science.gov (United States)

    Martinez, A.; Calò, C.; Rosales, R.; Watts, R. T.; Merghem, K.; Accard, A.; Lelarge, F.; Barry, L. P.; Ramdane, A.

    2013-12-01

    Monolithic semiconductor passively mode locked lasers (MLL) are very attractive components for many applications including high bit rate telecommunications, microwave photonics and instrumentation. Owing to the three dimensional confinement of the charge carriers, quantum dot based mode-locked lasers have been the subject of intense investigations because of their improved performance compared to conventional material systems. Indeed, the inhomogeneous gain broadening and the ultrafast absorption recovery dynamics are an asset for short pulse generation. Moreover, the weak coupling of amplified spontaneous emission with the guided modes plus low loss waveguide leads to low timing jitter. Our work concentrates on InAs quantum dash nanostructures grown on InP substrate, intended for applications in the 1.55 μm telecom window. InAs/InP quantum dash based lasers, in particular, have demonstrated efficient mode locking in single section Fabry-Perot configurations. The flat optical spectrum of about 12 nm, combined with the narrow RF beat note linewidth of about 10 kHz make them a promising technology for optical frequency comb generation. Coherence between spectral modes was assessed by means of spectral phase measurements. The parabolic spectral phase profile indicates that short pulses can be obtained provided the intracavity dispersion can be compensated by inserting a single mode fiber.

  7. Absolute-frequency measurements with a stabilized near-infrared opticalfrequency comb from a Cr:forsterite laser

    OpenAIRE

    Corwin, Kristan L.; Thomann, Isabell; Dennis, Tasshi; Fox, Richard W.; Swann, William; Curtis, Anne; Oates, Chris W.; Wilpers, Guido; Bartels, Albrecht; Gilbert, Sarah L.; Hollberg, Leo; Newbury, Nathan R.; Diddams, Scott A.; Nicholson, Jeffrey W.; Yan, Man F.

    2004-01-01

    A frequency comb is generated with a chromium-doped forsterite femtosecond laser, spectrally broadened in a dispersion-shifted highly nonlinear fiber, and stabilized. The resultant evenly spaced comb of frequencies ranges from 1.1 to beyond 1.8,um. The frequency comb was referenced simultaneously to the National Institute of Standards and Technology's optical frequency standard based on neutral calcium and to a hydrogen maser that is calibrated by a cesium atomic fountain clock. With this com...

  8. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD

    CERN Document Server

    Liang, Wei; Ilchenko, Vladimir S; Eliyahu, Danny; Seidel, David; Matsko, Andrey B; Maleki, Lute

    2014-01-01

    We demonstrate experimentally, and explain theoretically, generation of a wide, fundamentally phase locked Kerr frequency comb in a nonlinear resonator with a normal group velocity dispersion. A magnesium fluoride whispering gallery resonator characterized with 10 GHz free spectral range and pumped either at 780 nm or 795 nm is used in the experiment. The envelope of the observed frequency comb differs significantly from the Kerr frequency comb spectra reported previously. We show via numerical simulation that, while the frequency comb does not correspond to generation of short optical pulses, the relative phases of the generated harmonics are fixed.

  9. Simulation of Electrostatic Actuation in Interdigitated Comb Drive MEMS Resonator for Energy Harvester Applications

    Science.gov (United States)

    Sathya, S.; Pavithra, M.; Muruganand, S.

    2016-09-01

    This paper presents an actuation mechanism based on the interdigitated comb drive MEMS resonator. The important role of that device is to establish MEMS resonators for the second order systems. Comb drive model is one of the basic model which uses the principle of electrostatic and force can be generated for the capacitive sensors. This work is done by overlapping movable and fixed comb fingers which produces an energy. The specific range of the polyimide material properties of young's modulus of 3.1GPa and density of 1300 Kg/m3. Results are shown in the structural domain performance of a lateral motion which corresponds to the applying voltage between the interdigitated comb fingers. It has laterally driven about 40pm with driving voltage. Also the resonance frequency 24Hz and 15Hz with high quality factors are depending on the spring length 260pm and 360pm and structure thickness of 2μm and 5 μm. Here Finite element method (FEM) is used to simulate the various physics scenario and it is designed as two dimensional structure multiphysics domain. The prototype of comb drive MEMS resonator has been suitable for energy harvesting system applications.

  10. Toward a Broadband Astro-comb: Effects of Nonlinear Spectral Broadening in Optical Fibers

    CERN Document Server

    Chang, Guoqing; Phillips, David F; Walsworth, Ronald L; Kärtner, Franz X

    2010-01-01

    We propose and analyze a new approach to generate a broadband astro-comb by spectral broadening of a narrowband astro-comb inside a highly nonlinear optical fiber. Numerical modeling shows that cascaded four-wave-mixing dramatically degrades the input comb's side-mode suppression and causes side-mode amplitude asymmetry. These two detrimental effects can systematically shift the center-of-gravity of astro-comb spectral lines as measured by an astrophysical spectrograph with resolution \\approx100,000; and thus lead to wavelength calibration inaccuracy and instability. Our simulations indicate that this performance penalty, as a result of nonlinear spectral broadening, can be compensated by using a filtering cavity configured for double-pass. As an explicit example, we present a design based on an Yb-fiber source comb (with 1 GHz repetition rate) that is filtered by double-passing through a low finesse cavity (finesse = 208), and subsequent spectrally broadened in a 2-cm, SF6-glass photonic crystal fiber. Spann...

  11. Cascaded half-harmonic generation of femtosecond frequency combs in mid-IR

    CERN Document Server

    Marandi, Alireza; Jankowski, Marc; Byer, Robert L

    2015-01-01

    For the growing demand of frequency combs in mid-infrared (mid-IR), known as the "molecular fingerprint" region of the spectrum [1], down conversion of near-IR frequency combs through half- harmonic generation offers numerous benefits including high conversion efficiency and intrinsic phase and frequency locking to the near-IR pump [2]. Hence cascaded half-harmonic generation promises a simple path towards extending the wavelength coverage of stable frequency combs. Here, we report a two-octave down-conversion of a frequency comb around 1 {\\mu}m through cascaded half-harmonic generation with ~64% efficiency in the first stage, and ~18% in the second stage. We obtain broadband intrinsically-frequency-locked frequency combs with ~50-fs pulses at ~2 {\\mu}m and ~110-fs pulses at ~4 {\\mu}m. These results indicate the effectiveness of half-harmonic generation as a universal tool for efficient phase- and frequency-locked down-conversion, which can be beneficial for numerous applications requiring long-wavelength coh...

  12. Transmission comb of a distributed Bragg reflector induced by two surface dielectric gratings

    CERN Document Server

    Zhao, Xiaobo; Zhang, Yongyou

    2015-01-01

    With transfer matrix theory, we study the transmission of a distributed Bragg reflector (DBR) with two dielectric gratings on top and on the bottom. Owing to the diffraction of the two gratings, the transmission shows a comb-like spectrum which red shifts with increasing the grating period during the forbidden band of the DBR. The number density of the comb peaks increases with increasing the number of the DBR cells, while the ratio of the average full width at half maximum (FWHM) of the transmission peaks in the transmission comb to the corresponding average free spectral range, being about 0.04 and 0.02 for the TE and TM incident waves, is almost invariant. The average FWHM of the TM waves is about half of the TE waves, and both they could be narrower than 0.1 nm. In addition, the transmission comb peaks of the TE and TM waves can be fully separated during certain waveband. We further prove that the transmission comb is robust against the randomness of the heights of the DBR layers, even when a 15\\% randomn...

  13. Non-contact precision profile measurement to rough-surface objects with optical frequency combs

    Science.gov (United States)

    Onoe, Taro; Takahashi, Satoru; Takamasu, Kiyoshi; Matsumoto, Hirokazu

    2016-12-01

    In this research, we developed a new method for the high precision and contactless profile measurement of rough-surfaced objects using optical frequency combs. The uncertainty of the frequency beats of an optical frequency comb is very small (relative uncertainty is 10-10 in our laboratory). In addition, the wavelengths corresponding to these frequency beats are long enough to measure rough-surfaced objects. We can conduct high-precision measurement because several GHz frequency beats can be used if the capability of the detector permits. Moreover, two optical frequency combs with Rb-stabilized repetition frequencies are used for the measurement instead of an RF frequency oscillator; thus, we can avoid the cyclic error caused by the RF frequency oscillator. We measured the profile of a wood cylinder with a rough surface (diameter is approximately 113.2 mm) and compared the result with that of coordinate measuring machine (CMM).

  14. Recent developments in fiber-based optical frequency comb and its applications

    Science.gov (United States)

    Xia, Wei; Chen, Xuzong

    2016-04-01

    Fiber-based optical frequency combs, characterized by compact configuration and outstanding optical properties, have been developed into state-of-the-art precision instruments which are no longer used just for optical frequency metrology, but for a number of applications, including optical clocks, attosecond science, exoplanet searches, medical diagnostics, physicochemical processes control and advanced manufacturing. This short perspective presents some of the milestones and highlights in the evolution of fiber-based optical frequency combs and the technical revolution that are brought by them for a wide range of applications. Along the way, both the challenges and opportunities in the future development of the fiber-based optical frequency comb technology have been described as well.

  15. Surpassing the Path-Limited Resolution of a Fourier Transform Spectrometer with Frequency Combs

    CERN Document Server

    Maslowski, Piotr; Johansson, Alexandra C; Khodabakhsh, Amir; Kowzan, Grzegorz; Rutkowski, Lucile; Mills, Andrew A; Mohr, Christian; Jiang, Jie; Fermann, Martin E; Foltynowicz, Aleksandra

    2015-01-01

    Fourier transform spectroscopy based on incoherent light sources is a well-established tool in research fields from molecular spectroscopy and atmospheric monitoring to material science and biophysics. It provides broadband molecular spectra and information about the molecular structure and composition of absorptive media. However, the spectral resolution is fundamentally limited by the maximum delay range ({\\Delta}$_{max}$) of the interferometer, so acquisition of high-resolution spectra implies long measurement times and large instrument size. We overcome this limit by combining the Fourier transform spectrometer with an optical frequency comb and measuring the intensities of individual comb lines by precisely matching the {\\Delta}$_{max}$ to the comb line spacing. This allows measurements of absorption lines narrower than the nominal (optical path-limited) resolution without ringing effects from the instrumental lineshape and reduces the acquisition time and interferometer length by orders of magnitude.

  16. Nearly octave-spanning frequency comb generation in AlN-on-sapphire microresonators

    CERN Document Server

    Liu, Xianwen; Xiong, Bing; Wang, Lai; Wang, Jian; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tongbo; Zhang, Yun; Wang, Junxi

    2016-01-01

    We report a nearly octave-spanning optical frequency comb generation with a coverage of $\\sim$1000 nm in continuous-wave pumped aluminum nitride (AlN)-on-sapphire microring resonators. Thanks to optimized device design and fabrication process, high-quality-factor AlN microrings with high cavity finesse and low insertion loss are demonstrated. By tailoring the cavity dimension, a broadband anomalous dispersion is secured to facilitate the frequency comb generation. Blue-shifted dispersive wave emission as well as stimulated Raman scattering is observed, which helps extend the comb spectrum coverage. Our work suggests that AlN-on-sapphire can be an appealing platform for integrated nonlinear optics.

  17. A novel frequency control scheme for comb-referenced sensitive difference-frequency-generation spectroscopy.

    Science.gov (United States)

    Iwakuni, Kana; Okubo, Sho; Sasada, Hiroyuki

    2013-06-17

    We present a novel scheme of frequency scan and wavelength modulation of a difference-frequency-generation source for comb-referenced sensitive spectroscopy. While the pump and signal frequencies are phase-locked to an optical frequency comb (OFC), the offset frequency between the signal wave and the nearest comb tooth is modulated to apply a wavelength-modulation technique, and the idler wave frequency is repeatedly swept for signal accumulation by changing the repetition frequency of the OFC. The spectrometer is applied to absolute frequency measurement of weak hyperfine-resolved rovibration transitions of the ν(1) band of CH(3)I, and the uncertainty in frequency determination is reduced by one order of magnitude in compared with that of the previous work published in Optics Express 20, 9178-9186 (2012).

  18. Mach-zehnder based optical marker/comb generator for streak camera calibration

    Science.gov (United States)

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  19. Optical under-sampling by using a broadband optical comb with a high average power.

    Science.gov (United States)

    Sherman, Alexander; Horowitz, Moshe; Zach, Shlomo

    2014-06-30

    We demonstrate a new method to improve the performance of photonic assisted analog to digital converters (ADCs) that are based on frequency down-conversion obtained by optical under-sampling. The under-sampling is performed by multiplying the radio frequency signal by ultra-low jitter broadband phase-locked optical comb. The comb wave intensity has a smooth periodic function in the time domain rather than a train of short pulses that is currently used in most photonic assisted ADCs. Hence, the signal energy at the photo-detector output can be increased and the signal to noise ratio of the system might be improved without decreasing its bandwidth. We have experimentally demonstrated a system for electro-optical under-sampling with a 6-dB bandwidth of 38.5 GHz and a spur free dynamic range of 99 dB/Hz(2/3) for a signal with a carrier frequency of 35.8 GHz, compared with 94 dB/Hz(2/3) for a signal at 6.2 GHz that was obtained in the same system when a pulsed optical source was used. The optical comb was generated by mixing signals from two dielectric resonator oscillators in a Mach-Zehnder modulator. The comb spacing is equal to 4 GHz and its bandwidth was greater than 48 GHz. The temporal jitter of the comb measured by integrating the phase noise in a frequency region of 10 kHz to 10 MHz around comb frequencies of 16 and 20 GHz was only about 15 and 11 fs, respectively.

  20. Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy

    Science.gov (United States)

    Balling, Petr; Mašika, Pavel; Křen, Petr; Doležal, Miroslav

    2012-09-01

    In this paper we describe the progress we have made in our simultaneous length measurement and the femtosecond comb interferometric spectroscopy in a conventional arrangement with a moving mirror. Scanning and detection over an interval longer than the distance between two consecutive pulses of the frequency comb allow for a spectral resolution of the individual frequency modes of the comb. Precise knowledge of comb mode frequency leads to a precise estimation of the spectral characteristics of inspected phenomena. Using the pulse train of the frequency comb allows for measurement with highly unbalanced lengths of interferometer arms, i.e. an absolute long distance measurement. Further, we present a non-contact (double sided) method of measurement of the length/thickness of plane-parallel objects (gauge blocks, glass samples) by combining the fs comb (white light) with single frequency laser interferometry. The position of a fringe packet is evaluated by estimating the stationary phase position for any wavelength in the spectral band used. The repeatability of this position estimation is a few nanometres regardless of whether dispersion of the arms is compensated (transform limited fringe packet ˜10 fringes FWHM) or highly different (fringe packet stretched to >200 fringes FWHM). The measurement of steel gauge block by this method was compared with the standard method, and deviation (+13 ± 12) nm for gauge blocks (2 to 100) mm was found. The measurement of low reflecting ceramic gauges or clear glass samples was also tested. In the case of glass, it becomes possible to measure simultaneously both the thickness and the refractive index (and dispersion) of flat samples.

  1. A stabilized 18 GHz chip-scale optical frequency comb at 2.8x10-16 relative inaccuracy

    CERN Document Server

    Huang, S -W; Yu, M; McGuyer, B H; Kwong, D -L; Zelevinsky, T; Wong, C W

    2015-01-01

    Optical frequency combs, coherent light sources that connect optical frequencies with microwave oscillations, have become the enabling tool for precision spectroscopy, optical clockwork and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but four-wave-mixing in high-Q resonators have emerged as alternative platforms. Here we report the generation and full stabilization of CMOS-compatible optical frequency combs. The spiral microcomb's two degrees-of-freedom, one of the comb line and the native 18 GHz comb spacing, are first simultaneously phase-locked to known optical and microwave references. Second, with pump power control, active comb spacing stabilization improves the long-term stability by six orders-of-magnitude, reaching an instrument-limited 3.6 mHz/sqrt(t) residual instability. Third, referencing thirty-three of the nitride frequency comb lines against a fiber comb, we demonstrate the comb tooth-to-tooth frequency relative inaccu...

  2. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment

    DEFF Research Database (Denmark)

    Otani, Saria; Hansen, Lars H.; Sørensen, Søren Johannes;

    2016-01-01

    time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from...

  3. Experimental observation of coherent cavity soliton frequency combs in silica microspheres

    CERN Document Server

    Webb, Karen E; Coen, Stéphane; Murdoch, Stuart G

    2016-01-01

    We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of higher-order spatial modes, reducing mode interactions and enabling soliton formation. Our measurements show that the temporal cavity solitons have sub-100-fs durations, exhibit considerable Raman self-frequency shift, and generally come in groups of three or four, occasionally with equidistant spacing in the time domain. RF amplitude noise measurements and spectral interferometry confirm the high coherence of the observed soliton frequency combs, and numerical simulations show good agreement with experiments.

  4. Spin-wave storage using chirped control fields in atomic frequency comb-based quantum memory

    OpenAIRE

    2010-01-01

    It has been shown that an inhomogeneously broadened optical transition shaped into an atomic frequency comb can store a large number of temporal modes of the electromagnetic field at the single photon level without the need to increase the optical depth of the storage material. The readout of light modes is made efficient thanks to the rephasing of the optical-wavelength coherence similarly to photon echo-type techniques and the re-emission time is given by the comb structure. For on-demand r...

  5. Demonstration of atomic frequency comb memory for light with spin-wave storage

    OpenAIRE

    2009-01-01

    We present a light-storage experiment in a praseodymium-doped crystal where the light is mapped onto an inhomogeneously broadened optical transition shaped into an atomic frequency comb. After absorption of the light the optical excitation is converted into a spin-wave excitation by a control pulse. A second control pulse reads the memory (on-demand) by reconverting the spin-wave excitation to an optical one, where the comb structure causes a photon-echo type rephasing of the dipole moments a...

  6. Optical Nyquist channel generation using a comb-based tunable optical tapped-delay-line.

    Science.gov (United States)

    Ziyadi, Morteza; Chitgarha, Mohammad Reza; Mohajerin-Ariaei, Amirhossein; Khaleghi, Salman; Almaiman, Ahmed; Cao, Yinwen; Willner, Moshe J; Tur, Moshe; Paraschis, Loukas; Langrock, Carsten; Fejer, Martin M; Touch, Joseph D; Willner, Alan E

    2014-12-01

    We demonstrate optical Nyquist channel generation based on a comb-based optical tapped-delay-line. The frequency lines of an optical frequency comb are used as the taps of the optical tapped-delay-line to perform a finite-impulse response (FIR) filter function. A single optical nonlinear element is utilized to multiplex the taps and form the Nyquist signal. The tunablity of the approach over the baud rate and modulation format is shown. Optical signal-to-noise ratio penalty of 2.8 dB is measured for the 11-tap Nyquist filtering of 32-Gbaud QPSK signal.

  7. Monte Carlo simulation for the micellar behavior of amphiphilic comb-like copolymers

    Institute of Scientific and Technical Information of China (English)

    冯莺; 隋家贤; 赵季若; 陈欣方

    2000-01-01

    Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion ??stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.

  8. Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John;

    2007-01-01

    crystal fiber. The waveguidance results not from a photonic band gap but from the inhibited coupling between the core and cladding modes. The spectrum consists of up to 45 high-order Stokes and anti-Stokes lines and is generated by driving the confined gas with a single, moderately powerful (10-kilowatt......Ultrabroad coherent comb-like optical spectra spanning several octaves are a chief ingredient in the emerging field of attoscience. We demonstrate generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic...

  9. Self-Frequency Shift of Cavity Soliton in Kerr Frequency Comb

    CERN Document Server

    Zhang, Lin; Kimerling, Lionel C; Michel, Jurgen

    2014-01-01

    We show that the ultrashort cavity soliton in octave-spanning Kerr frequency comb generation exhibits striking self-adaptiveness and robustness to external perturbations, resulting in a novel frequency shifting/cancellation mechanism and gigantic dispersive wave generation in response to the strong frequency dependence of Kerr nonlinearity, Raman scattering, chromatic dispersion, and cavity Q. These observations open up a great avenue towards versatile manipulation of nonlinear soliton dynamics, flexible spectrum engineering of mode-locked Kerr frequency combs, and highly efficient frequency translation of optical waves.

  10. Synthesis and characterization of star-comb polybutadiene and poly(ethylene-co-butene)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel star-comb polybutadiene(SC-PB) was synthesized with n-butyllithium(n-BuLi) as initiator,epoxidized star liquid polybutadiene(ESPB) as coupling agent,cyclohexane as solvent by living anionic polymerization and grafting-onto technology. The SC-PB was subsequently hydrogenated by homogeneous catalysis(catalytic hydrogenation using nickel naphthenate/ triisobutyl aluminum),to transform the SC-PB into the corresponding star-comb poly(ethylene-co-butene)(SC-PEB).The SC-PB was characterized by SEC-TALLS...

  11. Self-organization in Kerr-cavity-soliton formation in parametric frequency combs

    Science.gov (United States)

    Wen, Y. Henry; Lamont, Michael R. E.; Strogatz, Steven H.; Gaeta, Alexander L.

    2016-12-01

    We show that self-organization and synchronization underlie Kerr-cavity-soliton formation in parametric frequency combs. By reducing the Lugiato-Lefever equation to a set of phase equations, we find that self-organization arises from a two-stage process via pump-degenerate and pump-nondegenerate four-wave mixing. The reduced phase equations are akin to the Kuramoto model of coupled oscillators and intuitively explain the origin of the pump phase offset, predict antisymmetrization of the intracavity field before phase synchronization, and clarify the role of chaos in Kerr-cavity-soliton formation in parametric combs.

  12. Coherent combs of anti-matter from nonlinear electron-positron pair creation

    CERN Document Server

    Krajewska, K

    2014-01-01

    Electron-positron pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse. Thus, resembling the Young-double slit experiment for anti-matter (matter) waves.

  13. Green, red and IR frequency comb line generation from single IR pump in AlN microring resonator

    CERN Document Server

    Jung, Hojoong; Guo, Xiang; Fischer, Debra; Tang, Hong X

    2014-01-01

    On-chip frequency comb generations enable compact broadband sources for spectroscopic sensing and precision spectroscopy. Recent microcomb studies focus on infrared spectral regime and have difficulty in accessing visible regime. Here, we demonstrate comb-like visible frequency line generation through second, third harmonic, and sum frequency conversion of a Kerr comb within a high Q aluminum nitride microring resonator pumped by a single telecom laser. The strong power enhancement, in conjunction with the unique combination of Pockels and Kerr optical nonlinearity of aluminum nitride, leads to cascaded frequency conversions in the visible spectrum. High-resolution spectroscopic study of the visible frequency lines indicates matched free spectrum range over all the bands. This frequency doubling and tripling effect in a single microcomb structure offers great potential for comb spectroscopy and self-referencing comb.

  14. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment

    DEFF Research Database (Denmark)

    Otani, Saria; Hansen, Lars Hestbjerg; Sørensen, Søren J

    2016-01-01

    Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules...... with asexual spores, which the termites feed on. Since all comb material passes through termite guts, it is inevitable that gut bacteria are also deposited in the comb, but it has remained unknown which bacteria are deposited and whether distinct comb bacterial communities are sustained. Using high......-throughput sequencing of the 16S rRNA gene, we explored the bacterial community compositions of 33 fungus comb samples from four termite species (three genera) collected at four South African geographic locations in 2011 and 2013. We identified 33 bacterial phyla, with Firmicutes, Bacteroidetes, Proteobacteria...

  15. Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand.

    Science.gov (United States)

    Taprab, Yaovapa; Johjima, Toru; Maeda, Yoshimasa; Moriya, Shigeharu; Trakulnaleamsai, Savitr; Noparatnaraporn, Napavarn; Ohkuma, Moriya; Kudo, Toshiaki

    2005-12-01

    Fungus-growing termites efficiently decompose plant litter through their symbiotic relationship with basidiomycete fungi of the genus Termitomyces. Here, we investigated phenol-oxidizing enzymes in symbiotic fungi and fungus combs (a substrate used to cultivate symbiotic fungi) from termites belonging to the genera Macrotermes, Odontotermes, and Microtermes in Thailand, because these enzymes are potentially involved in the degradation of phenolic compounds during fungus comb aging. Laccase activity was detected in all the fungus combs examined as well as in the culture supernatants of isolated symbiotic fungi. Conversely, no peroxidase activity was detected in any of the fungus combs or the symbiotic fungal cultures. The laccase cDNA fragments were amplified directly from RNA extracted from fungus combs of five termite species and a fungal isolate using degenerate primers targeting conserved copper binding domains of basidiomycete laccases, resulting in a total of 13 putative laccase cDNA sequences being identified. The full-length sequences of the laccase cDNA and the corresponding gene, lcc1-2, were identified from the fungus comb of Macrotermes gilvus and a Termitomyces strain isolated from the same fungus comb, respectively. Partial purification of laccase from the fungus comb showed that the lcc1-2 gene product was a dominant laccase in the fungus comb. These findings indicate that the symbiotic fungus secretes laccase to the fungus comb. In addition to laccase, we report novel genes that showed a significant similarity with fungal laccases, but the gene product lacked laccase activity. Interestingly, these genes were highly expressed in symbiotic fungi of all the termite hosts examined.

  16. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment.

    Science.gov (United States)

    Otani, Saria; Hansen, Lars H; Sørensen, Søren J; Poulsen, Michael

    2016-01-01

    Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules with asexual spores, which the termites feed on. Since all comb material passes through termite guts, it is inevitable that gut bacteria are also deposited in the comb, but it has remained unknown which bacteria are deposited and whether distinct comb bacterial communities are sustained. Using high-throughput sequencing of the 16S rRNA gene, we explored the bacterial community compositions of 33 fungus comb samples from four termite species (three genera) collected at four South African geographic locations in 2011 and 2013. We identified 33 bacterial phyla, with Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from gut deposits and also that environment affects which gut bacteria dominate comb communities at a given point in time.

  17. Look closer: Time sequence photography of Roosters Comb in the Sheep Creek Range, Nevada

    Science.gov (United States)

    The importance of understanding natural landscape changes is key in properly determining rangeland ecology. Time sequence photography allows a snapshot of a landscape to be documented and enables the ability to compare natural changes overtime. Photographs of Roosters Comb were taken from the same v...

  18. Hybrid Optical Comb Filter with Multi-Port Fiber Coupler for DWDM Optical Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical comb filters based on multi-port fused fiber couplers are proposed and numerically analyzed, 3-arm MZI composed by 1×7 fiber splitter and 3×3 fiber coupler, and 2-stage cascaded FIR type MZI interleave filter.

  19. Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers

    NARCIS (Netherlands)

    Benko, C.; Ruehl, A.; Martin, M.J.; Eikema, K.S.E.; Fermann, M.E.; Hartl, I.; Ye, J.

    2012-01-01

    We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intracavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for f(rep) and f(ceo), producing a robust and low phase noise fi

  20. Controlled deposition and combing of DNA across lithographically defined patterns on silicon

    DEFF Research Database (Denmark)

    Nazari, Zeniab Esmail; Gurevich, Leonid

    2013-01-01

    We have developed a new procedure for efficient combing of DNA on a silicon substrate, which allows reproducible deposition and alignment of DNA molecules across lithographically defined patterns. The technique involves surface modification of Si/SiO2 substrates with a hydrophobic silane by using...

  1. Fibers and combs: weaving a portable frequency reference in the near-IR

    Science.gov (United States)

    Corwin, Kristan

    2009-05-01

    Ten years after the advent of femtosecond optical frequency combs, they are now used for many applications. Here, we use near infrared combs to characterize and develop portable frequency references based on gas-filled hollow optical fibers. We explore the accuracy and stability of saturated absorption features in acetylene gas confined inside both 10 micron core diameter photonic bandgap fibers and ˜60 micron core diameter kagome-structured photonic crystal fibers. A cw fiber laser referenced to these features has resulted in stabilities of ˜10-11 in 1 s, competitive with iodine-stabilized HeNe lasers. Most of these studies have been performed using a femtosecond fiber laser that relies on a carbon nanotube saturable absorber. However, we have also explored Cr:forsterite femtosecond lasers with intracavity prisms, which reveal dramatic narrowing of the carrier-envelope offset beat when a knife edge is inserted in the cavity. Such observations and subsequent noise dynamics studies will lead to a better understanding of noise in these solid state combs, making Cr:forsterite laser combs more competitive for spectroscopy and other applications.

  2. High-accuracy long-distance measurements in air with a frequency comb laser

    NARCIS (Netherlands)

    Cui, M.; Zeitouny, M.G.; Bhattacharya, N.; Van den Berg, S.A.; Urbach, H.P.; Braat, J.J.M.

    2009-01-01

    We experimentally demonstrate that a femtosecond frequency comb laser can be applied as a tool for longdistance measurement in air. Our method is based on the measurement of cross correlation between individual pulses in a Michelson interferometer. From the position of the correlation functions, dis

  3. Improvement of FISH mapping resolution on combed DNA molecules by iterative constrained deconvolution: a quantitative study.

    Science.gov (United States)

    Monier, K; Heliot, L; Rougeulle, C; Heard, E; Robert-Nicoud, M; Vourc'h, C; Bensimon, A; Usson, Y

    2001-01-01

    Image restoration approaches, such as digital deconvolution, are becoming widely used for improving the quality of microscopic images. However, no quantification of the gain in resolution of fluorescence images is available. We show that, after iterative constrained deconvolution, fluorescent cosmid signals appear to be 25% smaller, and 1.2-kb fragment signals on combed molecules faithfully display the expected length.

  4. Silicon-chip-based mid-infrared dual-comb spectroscopy

    CERN Document Server

    Yu, Mengjie; Griffith, Austin G; Picqué, Nathalie; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    On-chip spectroscopy that could realize real-time fingerprinting with label-free and high-throughput detection of trace molecules is one of the 'holy grails" of sensing. Such miniaturized spectrometers would greatly enable applications in chemistry, bio-medicine, material science or space instrumentation, such as hyperspectral microscopy of live cells or pharmaceutical quality control. Dual-comb spectroscopy (DCS), a recent technique of Fourier transform spectroscopy without moving parts, is particularly promising since it measures high-precision spectra in the gas phase using only a single detector. Here, we present a microresonator-based platform designed for mid-infrared (mid-IR) DCS. A single continuous-wave (CW) low-power pump source generates two mutually coherent mode-locked frequency combs spanning from 2.6 $\\mu$m to 4.1 $\\mu$m in two silicon micro-resonators. Thermal control and free-carrier injection control modelocking of each comb and tune the dual-comb parameters. The large line spacing of the co...

  5. ComB proteins expression levels determine Helicobacter pylori competence capacity

    Science.gov (United States)

    Corbinais, Christopher; Mathieu, Aurélie; Damke, Prashant P.; Kortulewski, Thierry; Busso, Didier; Prado-Acosta, Mariano; Radicella, J. Pablo; Marsin, Stéphanie

    2017-01-01

    Helicobacter pylori chronically colonises half of the world’s human population and is the main cause of ulcers and gastric cancers. Its prevalence and the increase in antibiotic resistance observed recently reflect the high genetic adaptability of this pathogen. Together with high mutation rates and an efficient DNA recombination system, horizontal gene transfer through natural competence makes of H. pylori one of the most genetically diverse bacteria. We show here that transformation capacity is enhanced in strains defective for recN, extending previous work with other homologous recombination genes. However, inactivation of either mutY or polA has no effect on DNA transformation, suggesting that natural competence can be boosted in H. pylori by the persistence of DNA breaks but not by enhanced mutagenesis. The transformation efficiency of the different DNA repair impaired strains correlates with the number of transforming DNA foci formed on the cell surface and with the expression of comB8 and comB10 competence genes. Overexpression of the comB6-B10 operon is sufficient to increase the transformation capacity of a wild type strain, indicating that the ComB complex, present in the bacterial wall and essential for DNA uptake, can be a limiting factor for transformation efficiency. PMID:28128333

  6. Impact of Decoherence on Internal State Cooling using Optical Frequency Combs

    CERN Document Server

    Malinovskaya, S A

    2012-01-01

    We discuss femtosecond Raman type techniques to control molecular vibrations, which can be implemented for internal state cooling from Feshbach states with the use of optical frequency combs with and without modulation. The technique makes use of multiple two-photon resonances induced by optical frequencies present in the comb. It provides us with a useful tool to study the details of molecular dynamics at ultracold temperatures. In our theoretical model we take into account decoherence in the form of spontaneous emission and collisional dephasing in order to ascertain an accurate model of the population transfer in the three-level system. We analyze the effects of odd and even chirps of the optical frequency comb in the form of sine and cosine functions on the population transfer. We compare the effects of these chirps to the results attained with the standard optical frequency comb to see if they increase the population transfer to the final deeply bound state in the presence of decoherence. We also analyze...

  7. Ultra-pure RF tone from a micro-ring resonator based optical frequency comb source

    CERN Document Server

    Pasquazi, Alessia; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2014-01-01

    We demonstrate a novel mode locked ultrafast laser, based on an integrated high-Q micr-oring resonator. Our scheme exhibits stable operation of two slightly shifted spectral optical comb replicas. It generates a highly monochromatic radiofrequency modulation of 60MHz on a 200GHz output pulse train, with a linewidth < 10kHz

  8. Description of the male of Laneella perisi (Mariluis) (Diptera: Calliphoridae) n. comb.

    Science.gov (United States)

    Wolff, M; Ramos-Pastrana, Y; Pujol-Luz, J R

    2013-02-01

    The male Laneella perisi (Mariluis) n. comb. is described based on specimens collected in the Cordillera Oriental (1,370-1,450 m asl), Florencia-Suaza, Caquetá, Colombia. A key to separate the two species of the genus Laneella and illustrations of the male genitalia and female abdomen, terminalia, and spermatheca are also presented.

  9. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy

    CERN Document Server

    Rutkowski, Lucile

    2016-01-01

    We have recently introduced the Vernier-based Direct Frequency Comb Cavity-Enhanced Spectroscopy technique and we present the corresponding formalism for quantitative broadband spectroscopy. We achieve high sensitivity and broadband performance by acquiring spectra covering more than 2000 cm$^{-1}$ around 12600 cm$^{-1}$ (800 nm), resolving the 3$\

  10. A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration.

    Science.gov (United States)

    Quinlan, F; Ycas, G; Osterman, S; Diddams, S A

    2010-06-01

    A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is approximately 350 kHz at 1550 nm. The comb frequency uncertainty is bounded by +/-30 kHz (corresponding to a radial velocity of +/-5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.

  11. Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator.

    Science.gov (United States)

    Hu, Xiaohong; Liu, Yuanshan; Xu, Xin; Feng, Ye; Zhang, Wenfu; Wang, Weiqiang; Song, Jiazheng; Wang, Yishan; Zhao, Wei

    2015-10-10

    Based on the normalized spatiotemporal Lugiato-Lefever equation, the evolutions of cosine-modulated stationary fields relating to the generation of single-free spectral range (FSR) or multi-FSR Kerr frequency combs in a microresonator with anomalous dispersion are studied numerically. The research results show that a single-FSR comb arises when a dissipative soliton pulse or multiple nonequidistant soliton pulses form in the cavity. Compared with the smooth and regular spectral structure of a single soliton pulse, the comb corresponding to the uneven distribution of multiple soliton pulses exhibits a complex and irregular profile. When the stable intracavity field consists of a "roll" Turing pattern or N(N>1) evenly distributed soliton pulses separated by 2π/N, multi-FSR combs can be generated. In the case of the "roll" Turing pattern solution, it is found that third-order dispersion could modify the comb mode spacing and decrease the intensity of high-order comb modes. For the situation of multiple soliton pulse generation, the simulation results indicate that both the number and locations of the soliton pulses can be actively controlled through the careful selection of modulation frequency. In addition, for the selected cosine-modulated initial field profile, only those modes with the mode numbers being equal to an integer multiple of N can be greatly amplified by the parametric gain during propagation in the microresonator. This process eventually leads to the formation of a N-FSR frequency comb.

  12. Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-12-01

    Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  13. Evolution of the insect body plan as revealed by the Sex combs reduced expression pattern.

    Science.gov (United States)

    Rogers, B T; Peterson, M D; Kaufman, T C

    1997-01-01

    The products of the HOM/Hox homeotic genes form a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in many metazoans. We examined the expression of the ortholog of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster in insects of three divergent orders: Hemiptera, Orthoptera and Thysanura. Our data reflect how the conservation and variation of Scr expression has affected the morphological evolution of insects. Whereas the anterior epidermal expression of Scr, in a small part of the posterior maxillary and all of the labial segment, is found to be in common among all four insect orders, the posterior (thoracic) expression domains vary. Unlike what is observed in flies, the Scr orthologs of other insects are not expressed broadly over the first thoracic segment, but are restricted to small patches. We show here that Scr is required for suppression of wings on the prothorax of Drosophila. Moreover, Scr expression at the dorsal base of the prothoracic limb in two other winged insects, crickets (Orthoptera) and milkweed bugs (Hemiptera), is consistent with Scr acting as a suppressor of prothoracic wings in these insects. Scr is also expressed in a small patch of cells near the basitarsal-tibial junction of milkweed bugs, precisely where a leg comb develops, suggesting that Scr promotes comb formation, as it does in Drosophila. Surprisingly, the dorsal prothoracic expression of Scr is also present in the primitively wingless firebrat (Thysanura) and the leg patch is seen in crickets, which have no comb. Mapping both gene expression patterns and morphological characters onto the insect phylogenetic tree demonstrates that in the cases of wing suppression and comb formation the appearance of expression of Scr in the prothorax apparently precedes these specific functions.

  14. Surficial geology of the lower Comb Wash, San Juan County, Utah

    Science.gov (United States)

    Longpré, Claire I.

    2001-01-01

    The surficial geologic map of lower Comb Wash was produced as part of a master’s thesis for Northern Arizona University Quaternary Sciences program. The map area includes the portion of the Comb Wash alluvial valley between Highway 163 and Highway 95 on the Colorado Plateau in southeastern Utah. The late Quaternary geology of this part of the Colorado Plateau had not previously been mapped in adequate detail. The geologic information in this report will be useful for biological studies, land management and range management for federal, state and private industries. Comb Wash is a south flowing ephemeral tributary of the San Juan River, flanked to the east by Comb Ridge and to the west by Cedar Mesa (Figure 1). The nearest settlement is Bluff, about 7 km to the east of the area. Elevations range from 1951 m where Highway 95 crosses Comb Wash to 1291 m at the confluence with the San Juan River. Primary vehicle access to lower Comb Wash is provided by a well-maintained dirt road that parallels the active channel of Comb Wash between Highway 163 and Highway 95. For much of the year this road can be traversed without the aid of four-wheel drive. However, during inclement weather such as rain or snow the road becomes treacherous even with four-wheel drive. The Comb Wash watershed is public land managed by the Bureau of Land management (BLM) office in Monticello, Utah. The semi-arid climate of Comb Wash and the surrounding area is typical of the Great Basin Desert. Temperature in Bluff, Utah ranges from a minimum of –8° C in January to a maximum of 35° C in July with a mean annual temperature of 9.8° C (U.S. Department of Commerce, 1999). The difference between day and nighttime temperatures is as great as 20° C. Between 1928 and 1998, annual rainfall in Bluff averaged 178 mm per year (U.S. Department of Commerce, 1999). Annual rainfall in Comb Wash averaged 240 mm per year from 1991 to 1999 while Bluff received an average of 193 mm for the same 8 year period

  15. Generation of a 650 nm - 2000 nm Laser Frequency Comb based on an Erbium-Doped Fiber Laser

    CERN Document Server

    Ycas, Gabriel; Diddams, Scott A

    2012-01-01

    We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.

  16. Generation of Kerr combs centered at 4.5{\\mu}m in crystalline microresonators pumped by quantum cascade lasers

    CERN Document Server

    Savchenkov, Anatoliy A; Di Teodoro, Fabio; Belden, Paul M; Lotshaw, William T; Matsko, Andrey B; Maleki, Lute

    2015-01-01

    We report on the generation of mid-infrared Kerr frequency combs in high-finesse CaF$_2$ and MgF$_2$ whispering-gallery mode resonators pumped with continuous wave room temperature quantum cascade lasers. The combs were centered at 4.5$\\mu$m, the longest wavelength to date. A frequency comb wider than a half of an octave was demonstrated when approximately 20mW of pump power was coupled to an MgF2 resonator characterized with quality factor exceeding 10$^8$.

  17. Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared.

    Science.gov (United States)

    Iwakuni, Kana; Okubo, Sho; Tadanaga, Osamu; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki

    2016-09-01

    We have observed an ultra-broadband frequency comb with a wavelength range of at least 0.35 to 4.4 μm in a ridge-waveguide-type periodically poled lithium niobate device. The PPLN waveguide is pumped by a 1.0-2.4 μm wide frequency comb with an average power of 120 mW generated using an erbium-based mode-locked fiber laser and a following highly nonlinear fiber. The coherence of the extended comb is confirmed in both the visible (around 633 nm) and the mid-infrared regions.

  18. Chipscale optical frequency combs: from soliton physics to coherent communication (Conference Presentation)

    Science.gov (United States)

    Brasch, Victor; Geiselmann, Michael; Herr, Tobias; Lihachev, Grigoriy; Pfeiffer, Martin H. P.; Gorodetsky, Michael L.; Kippenberg, Tobias J.

    2016-04-01

    In our experiment we use silicon nitride waveguides embedded in silicon dioxide on a silicon chip. The cross section of the waveguide is approximately 1.8µm width by 0.8µm height and the ring resonator has a radius of 120µm. This resonator is coupled to a bus waveguide that is used to couple the continuous wave pump light into the resonator and the light from the resonator out again. The pump laser is an amplified diode laser which provides around 2W of pump power in the bus waveguide on the photonic chip. If the pump light is in resonance with one of the resonances of the resonator we can generate a frequency comb from the pump light via the Kerr nonlinearity of the material. The spacing in between the lines of the frequency comb is close to the free spectral range of the resonator, which is 190 GHz for the resonator used. By tuning the pump laser through the resonance and modulating the power of the pump light we can achieve a stable state with a pulsed-shape waveform circulating inside the microresonator. These states are known as dissipative Kerr soliton states and they are solutions to the Lugiato-Lefever equation, which describes the nonlinear physics of the system. So far they had been experimentally demonstrated in fiber-ring cavities as well as crystalline microresonators. The main benefits of these states for Kerr frequency combs is that they allow for low-noise but broadband frequency combs with low modulation in the spectrum. In our case we report a 3-dB bandwidth of 10THz which is equivalent to sub-30fs pulses inside the resonator. Because of the chosen geometry of the waveguide cross section we also observe an effect which is caused by higher-order dispersion. Higher-order dispersion are terms that describe the dispersion beyond the quadratic group velocity dispersion. In order for dissipative Kerr solitons to form, anomalous group velocity dispersion is required. If higher-order terms are present as well, the soliton can still exist but additional

  19. Analysis of the Sequence and Phenotype of Drosophila Sex combs reduced Alleles Reveals Potential Functions of Conserved Protein Motifs of the Sex combs reduced Protein

    OpenAIRE

    Sivanantharajah, Lovesha; Percival-Smith, Anthony

    2009-01-01

    The Drosophila Hox gene, Sex combs reduced (Scr), is required for patterning the larval and adult, labial and prothoracic segments. Fifteen Scr alleles were sequenced and the phenotypes analyzed in detail. Six null alleles were nonsense mutations (Scr2, Scr4, Scr11, Scr13, Scr13A, and Scr16) and one was an intragenic deletion (Scr17). Five hypomorphic alleles were missense mutations (Scr1, Scr3, Scr5, Scr6, and Scr8) and one was a small protein deletion (Scr15). Protein sequence changes were ...

  20. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb.

    Science.gov (United States)

    Ycas, Gabriel G; Quinlan, Franklyn; Diddams, Scott A; Osterman, Steve; Mahadevan, Suvrath; Redman, Stephen; Terrien, Ryan; Ramsey, Lawrence; Bender, Chad F; Botzer, Brandon; Sigurdsson, Steinn

    2012-03-12

    We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a radial velocity calibration source for the fiber-fed Pathfinder near-infrared spectrograph. Stellar targets were observed in three echelle orders over four nights, and radial velocity precision of ∼10 m/s (∼6 MHz) was achieved from the comb-calibrated spectra.

  1. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan; Yang, Lan; Chormaic, Síle Nic

    2016-01-01

    Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this work, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO$_2$ laser beam technique. By decreasing the wall thickness of the MBR down to 1.4 $\\mu$m, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical \\textit{Q}-factor of the MBR modes being greater than $10^7$, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

  2. Demonstration of On-Sky Calibration of Astronomical Spectra using a 25 GHz near-IR Laser Frequency Comb

    CERN Document Server

    Ycas, Gabriel G; Diddams, Scott A; Osterman, Steve; Mahadevan, Suvrath; Redman, Stephen; Terrien, Ryan; Ramsey, Lawrence; Bender, Chad F; Botzer, Brandon; Sigurdsson, Steinn

    2012-01-01

    We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a radial velocity calibration source for the fiber-fed Pathfinder near-infrared spectrograph. Stellar targets were observed in three echelle orders over four nights, and radial velocity precision of ~10 m/s (~6 MHz) was achieved from the comb-calibrated spectra.

  3. Single envelope equation modelling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearity

    CERN Document Server

    Hansson, T; Erkintalo, M; Anthony, J; Coen, S; Ricciardi, I; De Rosa, M; Wabnitz, S

    2016-01-01

    We numerically study, by means of the single envelope equation, the generation of optical frequency combs ranging from the visible to the mid-infrared spectral regions in resonators with quadratic and cubic nonlinearities. Phase-matched quadratic wave-mixing processes among the comb lines can be activated by low-power continuous wave pumping in the near infrared of a radially poled lithium niobate whispering gallery resonator (WGR). We examine both separate and co-existing intra-cavity doubly resonant second-harmonic generation and parametric oscillation processes, and find that modulation instabilities may lead to the formation of coupled comb arrays extending over multiple octaves. In the temporal domain, the frequency combs may correspond to pulse trains, or isolated pulses.

  4. Single-branch Er:fiber frequency comb for optical synthesis at the $10^{-18}$ level

    CERN Document Server

    Leopardi, Holly; Quinlan, Franklyn; Olson, Judith; Diddams, Scott; Fortier, Tara

    2016-01-01

    Laser frequency combs based on erbium-doped fiber mode-locked lasers have shown great potential for compact, robust and efficient optical clock comparisons. However, to simultaneously compare multiple optical clock species, fiber laser frequency combs typically require multiple amplifiers and fiber optic paths that reduce the achievable frequency stability near 1 part in $10^{16}$ at 1s. In this paper we describe an erbium-fiber laser frequency comb that overcomes these conventional challenges and supports optical frequency synthesis at the millihertz level, or fractionally $3 x 10^{-18}$ $tau^{-1/2}$ by ensuring that all critical fiber paths are within the servo-controlled feedback loop. We demonstrate the application of this frequency comb as a synthesizer for optical clocks operating across a wavelength range from 650 nm to 2100 nm.

  5. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    CERN Document Server

    Liu, Ya; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-01-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses wit...

  6. Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation.

    Science.gov (United States)

    Maram, Reza; Azaña, José

    2013-11-18

    Integer and fractional spectral self-imaging effects are induced on infinite-duration periodic frequency combs (probe signal) using cross-phase modulation (XPM) with a parabolic pulse train as pump signal. Free-spectral-range tuning (fractional effects) or wavelength-shifting (integer effects) of the frequency comb can be achieved by changing the parabolic pulse peak power or/and repetition rate without affecting the spectral envelope shape and bandwidth of the original comb. For design purposes, we derive the complete family of different pump signals that allow implementing a desired spectral self-imaging process. Numerical simulation results validate our theoretical analysis. We also investigate the detrimental influence of group-delay walk-off and deviations in the nominal temporal shape or power of the pump pulses on the generated output frequency combs.

  7. Comb-shaped polyesters of aliphatic dicarboxylic acids and 2-octadecyl-1,3-propanediol: 1. Synthesis and microstructure

    DEFF Research Database (Denmark)

    Andruzzi, F.; Hvilsted, S.

    1991-01-01

    Comb-shaped polyesters are prepared by polytransesterification of 2-octadecyl-1,3-propanediol and diphenyl suberate, sebacate, dodecanedioate, tetradecanedioate and hexadecanedioate in turn. The developed melt polycondensation procedure generally results in polyesters with intrinsic viscosities i...

  8. An Analysis of Near Field and Application of a New Comb-shaped Antenna for Radio Frequency Identification

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new comb-shaped antenna for radio frequency identification is proposed. The kind of antenna can replace some antenna array. So it is very convenient for omnidirectional identification. The test result proves this antenna is viable.

  9. Novel Concept of Frequency-Combs Interferometric Spectroscopy in the Mid-IR for Significantly Enhanced Detection of Explosives

    Science.gov (United States)

    2015-12-01

    submit the attached Interim Report due December 31. 2015 for the above referenced grant titled "Novel concept of frequency- combs interferometric...ucf.edu . Sincerely, v ~~ Vicky Ortiz, M.A. Coordinator of Research Programs UCF College of Optics and Photonics, CREOL & FPCE Phone: 407-823...From - To) 02/29/2016 Interim 5/1/14-9/30/15 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Novel concept of frequency- combs interferometric

  10. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    CERN Document Server

    Doerr, H -P; Holzwarth, R; Schmidt, T Kentischer und W

    2012-01-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  11. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Science.gov (United States)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  12. Demonstration of atomic frequency comb memory for light with spin-wave storage.

    Science.gov (United States)

    Afzelius, Mikael; Usmani, Imam; Amari, Atia; Lauritzen, Björn; Walther, Andreas; Simon, Christoph; Sangouard, Nicolas; Minár, Jirí; de Riedmatten, Hugues; Gisin, Nicolas; Kröll, Stefan

    2010-01-29

    We present a light-storage experiment in a praseodymium-doped crystal where the light is mapped onto an inhomogeneously broadened optical transition shaped into an atomic frequency comb. After absorption of the light, the optical excitation is converted into a spin-wave excitation by a control pulse. A second control pulse reads the memory (on-demand) by reconverting the spin-wave excitation to an optical one, where the comb structure causes a photon-echo-type rephasing of the dipole moments and directional retrieval of the light. This combination of photon-echo and spin-wave storage allows us to store submicrosecond (450 ns) pulses for up to 20 mus. The scheme has a high potential for storing multiple temporal modes in the single-photon regime, which is an important resource for future long-distance quantum communication based on quantum repeaters.

  13. Evaluation and modelling of integral capacitors produced by interdigitated comb electrodes

    Directory of Open Access Journals (Sweden)

    Leandro Alfredo Ramajo

    2008-12-01

    Full Text Available Integral capacitors (IC of one or two-layer printed wiring board (PWB circuits were produced using comb electrodes fixtures and dielectric composites as the inter-electrode material. ICs were fabricated at laboratory scale, using copper comb electrodes and BaTiO3-epoxy composite materials deposited on a glass-Epoxy FR4 board. They were experimentally tested in order to obtain their electrical response. Furthermore, ICs behaviour was modelled through 2-dimensional models applying finite element method (FEM. Results showed that by this laboratory technique it was possible to obtained integral capacitors with low dielectric losses. Moreover, acceptable agreement was found between numerical and experimental capacitance results for all the different analysed ICs. In conclusion, 2D FEM models are a suitable tool to predict electric response of IC devices.

  14. a New Broadband Cavity Enhanced Frequency Comb Spectroscopy Technique Using GHz Vernier Filtering.

    Science.gov (United States)

    Morville, Jérôme; Rutkowski, Lucile; Dobrev, Georgi; Crozet, Patrick

    2015-06-01

    We present a new approach to Cavity Enhanced - Direct Frequency Comb Spectroscopy where the full emission bandwidth of a Titanium:Sapphire laser is exploited at GHz resolution. The technique is based on a low-resolution Vernier filtering obtained with an appreciable -actively stabilized- mismatch between the cavity Free Spectral Range and the laser repetition rate, using a diffraction grating and a split-photodiode. This particular approach provides an immunity to frequency-amplitude noise conversion, reaching an absorption baseline noise in the 10-9 cm-1 range with a cavity finesse of only 3000. Spectra covering 1800 cm-1 (˜ 55 THz) are acquired in recording times of about 1 second, providing an absorption figure of merit of a few 10-11 cm-1/√{Hz}. Initially tested with ambient air, we report progress in using the Vernier frequency comb method with a discharge source of small radicals. Rutkowski et al, Opt. Lett., 39(23)2014

  15. Transmission comb of a distributed Bragg reflector with two surface dielectric gratings

    KAUST Repository

    Zhao, Xiaobo

    2016-02-19

    The transmission behaviour of a distributed Bragg reector (DBR) with surface dielectric gratings on top and bottom is studied. The transmission shows a comb-like spectrum in the DBR band gap, which is explained in the Fano picture. The number density of the transmission peaks increases with increasing number of cells of the DBR, while the ratio of the average full width at half maximum to the corresponding average free spectral range, being only few percent for both transversal electric and magnetic waves, is almost invariant. The transmission peaks can be narrower than 0.1 nm and are fully separated from each other in certain wavebands. We further prove that the transmission combs are robust against randomness in the heights of the DBR layers. Therefore, the proposed structure is a candidate for an ultra-narrow-band multichannel filter or polarizer.

  16. [Molecular combing method in the research of DNA replication parameters in isolated organs of Drosophyla melanogaster].

    Science.gov (United States)

    Ivankin, A V; Kolesnikova, T D; Demakov, S A; Andreenkov, O V; Bil'danova, E R; Andreenkova, N G; Zhimulev, I F

    2011-01-01

    Methods of physical DNA mapping and direct visualization of replication and transcription in specific regions of genome play crucial role in the researches of structural and functional organization of eukaryotic genomes. Since DNA strands in the cells are organized into high-fold structure and present as highly compacted chromosomes, the majority of these methods have lower resolution at chromosomal level. One of the approaches to enhance the resolution and mapping accuracy is the method of molecular combing. The method is based on the process of stretching and alignment of DNA molecules that are covalently attached with one of the ends to the cover glass surface. In this article we describe the major methodological steps of molecular combing and their adaptation for researches of DNA replication parameters in polyploidy and diploid tissues of Drosophyla larvae.

  17. Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation

    Science.gov (United States)

    Dong, Mark; Winful, Herbert G.

    2016-04-01

    We present a unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation in which the multitude of interacting pump, Stokes, and anti-Stokes optical fields is described by a single forward wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential equations derived here is sufficient to describe the generation of any number of Brillouin sidebands in oscillator systems that would have required hundreds of coupled equations in the standard approach. We test this approach on some published experiments and find excellent agreement with the results.

  18. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    Science.gov (United States)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  19. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules

    Science.gov (United States)

    Changala, P. Bryan; Spaun, Ben; Patterson, David; Doyle, John M.; Ye, Jun

    2016-12-01

    We discuss the use of cavity-enhanced direct frequency comb spectroscopy in the mid-infrared region with buffer gas cooling of polyatomic molecules for high-precision rovibrational absorption spectroscopy. A frequency comb coupled to an optical enhancement cavity allows us to collect high-resolution, broad-bandwidth infrared spectra of translationally and rotationally cold (10-20 K) gas-phase molecules with high absorption sensitivity and fast acquisition times. The design and performance of the combined apparatus are discussed in detail. Recorded rovibrational spectra in the CH stretching region of several organic molecules, including vinyl bromide (CH_2CHBr), adamantane (C_{10}H_{16}), and diamantane (C_{14}H_{20}) demonstrate the resolution and sensitivity of this technique, as well as the intrinsic challenges faced in extending the frontier of high-resolution spectroscopy to large complex molecules.

  20. WDM-CAP-PON integration with VLLC system based on optical frequency comb

    Science.gov (United States)

    He, Jing; Dong, Huan; Deng, Rui; Shi, Jin; Chen, Lin

    2016-09-01

    In this paper, a wavelength division multiplexing carrier-less amplitude phase modulation passive optical network (WDM-CAP-PON) integration with visible laser light communication (VLLC) system is proposed and experimentally demonstrated. To reduce the cost of WDM system, the optical frequency comb scheme using one Mach-Zehnder modulator (MZM) is utilized and five flat optical combs can be generated. Meanwhile, a blue laser diode (LD) as a VLLC optical source can provide high data rate and long transmission distance. Utilizing overlap frequency domain equalization (OFDE) and negative chirp of MZM, the system performance in both Q-factor and receiver sensitivity can be improved. After 20 km standard single mode fiber (SSMF) and 4.5 m free space transmission, the experimental results show that 10 Gb/s CAP signal can be achieved under 7% forward error correction (FEC) limit of 3 . 8 × 10-3.

  1. Bandwidth enhancement of a multilayered polymeric comb array antenna for millimeter-wave applications

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi; Narbudowicz, Adam

    2017-01-01

    This paper introduces a new multilayered polymeric comb array antenna fabricated on a polydimethylsiloxane (PDMS) dielectric substrate. PDMS is selected due to its excellent electrical and mechanical properties such as low permittivity, water resistance and robustness. The polymeric comb array antenna consists of a zigzag array aligned at -90° with respect to the radiating patch with full ground plane. The radiating patch is embedded inside the PDMS substrate while the coaxial connector is located at the bottom of the transmission line. The proposed antenna functions from 22.649 to 27.792 GHz. Simulated and measured reflection coefficients and radiation patterns agreed well. A maximum gain of 9.856 dB is recorded at 25 GHz, indicating suitability for implementation in millimeter-wave applications.

  2. A distance meter using a terahertz intermode beat in an optical frequency comb.

    Science.gov (United States)

    Yokoyama, Shuko; Yokoyama, Toshiyuki; Hagihara, Yuki; Araki, Tsutomu; Yasui, Takeshi

    2009-09-28

    We propose a distance meter that utilizes an intermode beat of terahertz frequency in an optical frequency comb to perform high resolution and high dynamic range absolute distance measurements. The proposed system is based on a novel method, called multiheterodyne cross-correlation detection, in which intermode beat frequencies are scaled down to radio frequencies by optical mixing of two detuned optical frequency combs with a nonlinear optical crystal. Using this method, we obtained a 1.056 THz intermode beat and achieved a distance resolution of 0.820 microm from its phase measurement. Absolute distance measurement using 1.056 THz and 8.187 GHz intermode beats was also demonstrated in the range of 10 mm, resulting in a precision of 0.688 microm.

  3. ACADEMIC TRAINING: Probing nature with high precision; particle traps, laser spectroscopy and optical combs

    CERN Multimedia

    Françoise Benz

    2002-01-01

    17, 18, 19 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Probing nature with high precision; particle traps, laser spectroscopy and optical combs by G. GABRIELSE / Harvard University, USA Experiments with atomic energy scales probe nature and its symmetries with exquisite precision. Particle traps allow the manipulation of single charged particles for months at a time, allow the most accurate comparison of theory and experiment, and promise to allow better measurement of fundamental quantities like the fine structure constant. Ions and atoms can be probed with lasers that are phase locked to microwave frequency standards via optical combs, thus calibrating optical sources in terms of the official cesium second. A series of three lectures will illustrate what can be measured and discuss key techniques.  ACADEMIC TRAINING Françoise Benz Tel. 73127 francoise.benz@cern.ch

  4. Continuous probe of cold complex molecules with infrared frequency comb spectroscopy

    CERN Document Server

    Spaun, Ben; Patterson, David; Bjork, Bryce J; Heckl, Oliver H; Doyle, John M; Ye, Jun

    2016-01-01

    Cavity-enhanced frequency comb spectroscopy for molecule detection in the mid-infrared powerfully combines high resolution, high sensitivity, and broad spectral coverage. However, this technique, and essentially all spectroscopic methods, is limited in application to relatively small, simple molecules. Here we integrate comb spectroscopy with continuous, cold samples of molecules produced via buffer gas cooling, thus enabling the study of significantly more complex molecules. We report simultaneous gains in resolution, sensitivity, and bandwidth and demonstrate this combined capability with the first rotationally resolved direct absorption spectra in the CH stretch region of several complex molecules. These include nitromethane (CH$_3$NO$_2$), a model system that presents challenging questions to the understanding of large amplitude vibrational motion, as well as several large organic molecules with fundamental spectroscopic and astrochemical relevance, including naphthalene (C$_{10}$H$_8$), adamantane (C$_{1...

  5. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li;

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... be proportionally improved by increasing the length of the optical fiber ring resonator....... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...

  6. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    Science.gov (United States)

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  7. Phase-Locked Loop using a comb filter with fractional delay

    OpenAIRE

    Griñó Cubero, Robert; Mughal, Umair Najeeb

    2011-01-01

    A Phase Locked Loop is a feedback system combining a Voltage Controlled Oscillator and a Phase Comparator These are connected so that the oscillator maintains a constant phase angle relative to a reference signal. Phase locked loops can be used, for example to generate stable output frequency signals from a fixed frequency signal. A Comb Filter is a kind of Notch Filter (Non Recursive Filter) that is normally used to remove the harmonic terms from a particular signal. In this Design, a ...

  8. Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs

    Science.gov (United States)

    2015-07-09

    stabilization To fully stabilize the comb, there are three servo loops, shown in Fig. 1, that lock the carrier offset frequency f0 to an RF synthesizer ...GPS-Rb oscillator serves as the external reference for all synthesizers and frequency counters. The filtering cavity is stabilized to a particular...filled frequency reference in a 10 m length. Since optimal single-modedness is expected at longer lengths (~10-30 m), a gas such as ammonia , with weaker

  9. Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs

    CERN Document Server

    Maksymov, Ivan S

    2016-01-01

    Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.

  10. Development of Chip-Based Frequency Combs for Spectral and Timing Applications

    Science.gov (United States)

    2011-12-01

    by measuring the RF beat note. A 1-nm section of the comb spectrum is filtered at 1540 nm and amplified with an EDFA . The output is sent to a fast...amplitude Approved for public release; distribution unlimited. 13 noise from the EDFA and the laser. We estimate a frequency shift of approximately 100...oxide-semiconductor EDFA erbium-doped fiber amplifier FSR free spectral range FWM four-wave mixing IR infrared OPO optical parametric

  11. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  12. Brazilian species of Gadila (Mollusca: Scaphopoda: Gadilidae): rediscovery of Gadila elongata comb. nov. and shell morphometrics

    OpenAIRE

    Caetano,Carlos H. S.; Victor Scarabino; Ricardo S. Absalão

    2010-01-01

    Gadila elongata comb. nov. was described in 1920 from the northern Gulf of Mexico. Until recently, it was only known from the type locality. Herein we present the first record of G. elongata from Brazil (Northeast coast, Ceará state, collected at 177 m) and a morphometrics analysis of the Brazilian species of Gadila. A multivariate Discriminant Function Analysis, based on nine shell morphometric variables (length, maximum diameter, length to maximum diameter ratio, distance of point of maximu...

  13. Reclassification of Brevibacterium incertum (Breed 1953) as Desemzia incerta gen. nov., comb. nov.

    Science.gov (United States)

    Stackebrandt, E; Schumann, P; Swiderski, J; Weiss, N

    1999-01-01

    Phylogenetic analysis of 16S rDNA indicates that Brevibacterium incertum is not a member of the genus Brevibacterium but related to species of the genus Carnobacterium. Hence, Brevibacterium incertum is not a member of the class Actinobacteria but belongs to the phylogenetically defined broad Bacillus-Lactobacillus cluster. Based upon properties that taxonomically clearly distinguishes Brevibacterium incertum from species of the phylogenetic sister genus Carnobacterium, Brevibacterium incertum is reclassified as Desemzia incerta gen. nov., comb. nov.

  14. A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop

    Institute of Scientific and Technical Information of China (English)

    Ruan Juan; Zhang Wei-Gang; Zhang Hao; Geng Peng-Cheng; Bai Zhi-Yong

    2013-01-01

    A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated.The filter tunability is achieved by rotating the polarization controller.The spectral shift is dependent on rotation direction and the position of the polarization controller.In addition,the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.

  15. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons

    OpenAIRE

    Hansson, Tobias; Wabnitz, Stefan

    2015-01-01

    The generation of optical frequency combs in microresonators is considered without resorting to the mean-field approximation. New dynamical regimes are found to appear for high intracavity power that cannot be modeled using the Lugiato-Lefever equation. Using the Ikeda map we show the existence of multi-valued stationary states and analyse their stability. Period doubled patterns are considered and a novel type of super cavity soliton associated with the multi-stable states is predicted.

  16. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons

    Science.gov (United States)

    Hansson, Tobias; Wabnitz, Stefan

    2015-07-01

    The generation of optical frequency combs in microresonators is considered without resorting to the mean-field approximation. New dynamical regimes are found to appear for high intracavity power that cannot be modeled using the Lugiato-Lefever equation. Using the Ikeda map we show the existence of multi-valued stationary states and analyse their stability. Period doubled patterns are considered and a novel type of super cavity soliton associated with the multi-stable states is predicted.

  17. Asymptotic Capacity of Wireless Ad Hoc Networks with Realistic Links under a Honey Comb Topology

    CERN Document Server

    Asnani, Himanshu

    2007-01-01

    We consider the effects of Rayleigh fading and lognormal shadowing in the physical interference model for all the successful transmissions of traffic across the network. New bounds are derived for the capacity of a given random ad hoc wireless network that reflect packet drop or capture probability of the transmission links. These bounds are based on a simplified network topology termed as honey-comb topology under a given routing and scheduling scheme.

  18. Molecular phylogeny of Urosomoida agilis, and new combinations: Hemiurosomoida longa gen. nov., comb. nov., and Heterourosomoida lanceolata gen. nov., comb. nov. (Ciliophora, Hypotricha).

    Science.gov (United States)

    Singh, Jasbir; Kamra, Komal

    2015-02-01

    For years, systematics of three species, Urosomoida agilis (Engelmann, 1862) Hemberger in Foissner, 1982, Urosomoida longa (Gelei and Szabados, 1950) Foissner et al., 1991 and Oxytricha lanceolata Shibuya, 1930, has remained unresolved due to lack of adequate molecular data. Though, it is known since several years that the three species are not very closely related. In the present paper, 18S rRNA gene sequences for two key species, U. agilis and U. longa, and their morphology and morphometry have been analyzed. Molecular phylogeny inferred from maximum likelihood, neighbour joining and maximum parsimony methods has adequately removed ambiguity over their systematics. In phylogenetic trees, U. agilis clustered consistently with non-stylonychine oxytrichids. Both Urosomoida longa and Oxytricha lanceolata clustered consistently away from U. agilis and O. granulifera, the type species of the genera Urosomoida and Oxytricha, respectively. As a result of the current molecular phylogenetic investigation and based on previously inferred morphological and morphogenetic data it is proposed to remove Urosomoida longa and Oxytricha lanceolata from Urosomoida and incertae sedis in Oxytricha, respectively, and establish two new generic combinations, Hemiurosomoida longa gen. nov., comb. nov. and Heterourosomoida lanceolata gen. nov., comb. nov. for them.

  19. Proposal of Effusibacillus lacus gen. nov., sp. nov., and reclassification of Alicyclobacillus pohliae as Effusibacillus pohliae comb. nov. and Alicyclobacillus consociatus as Effusibacillus consociatus comb. nov.

    Science.gov (United States)

    Watanabe, Miho; Kojima, Hisaya; Fukui, Manabu

    2014-08-01

    A novel thermophilic, facultatively anaerobic bacterium, strain skLN1(T), was isolated from the sediment of a freshwater lake in Japan. Cells of strain skLN1(T) were rod-shaped and Gram-stain-variable. A KOH lysis test suggested that the cell wall of the isolate has a Gram-positive structure. For aerobic growth, the optimum pH was pH 7.25-7.50 and the optimum temperature was 50-52 °C. The G+C content of the genomic DNA was 50.8 mol%. Nitrate was reduced to nitrite. Alicyclic fatty acids were not detected, and branched-chain fatty acids were major components in the cellular fatty acid profile. MK-7 was the predominant respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolated strain was related most closely to Alicyclobacillus consociatus CCUG 53762(T) (95% similarity). This analysis also showed that the monophyly of the genus Alicyclobacillus had been lost. On the basis of phylogenetic and phenotypic characterization, Effusibacillus lacus gen. nov., sp. nov. is proposed. The type strain of Effusibacillus lacus is skLN1(T) ( = NBRC 109614(T) = DSM 27172(T)). It is also proposed that Alicyclobacillus pohliae and Alicyclobacillus consociatus should be reclassified to the genus Effusibacillus as Effusibacillus pohliae comb. nov. and Effusibacillus consociatus comb. nov., respectively.

  20. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    Science.gov (United States)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-09-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  1. Wintering Reserve Queens in Mini-Plus and 3-Comb Nuclei

    Directory of Open Access Journals (Sweden)

    Siuda Maciej

    2014-06-01

    Full Text Available The aim of this study was to develop an effective method of overwintering reserve honey bee queens in two-storey mini-plus mating nuclei and in 3-comb nuclei (frames 36 x 26 cm, Wielkopolski hive. The assay was performed during three wintering seasons (2005 - 2008 parallel at two centers in Poland: the Division of Apiculture at the University of Life Sciences (SGGW in Warsaw, and the Apiculture Division at the University of Warmia and Mazury (UWM in Olsztyn. The results showed that 59% of queens overwintered in mini-plus nuclei and 77% in 3-comb nuclei. Among queens in mini-plus nuclei 63% overwintered in bee yard and only 55% in cellar. Within queens in 3-comb nuclei, 62% overwintered in Olsztyn and 91% in Warsaw. The highest survival rate of 93% was observed in Warsaw during the first season. Due to low survival rate, it is not recommended to overwinter the queens in miniplus nuclei.

  2. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.

    Science.gov (United States)

    Peng, Fulai; Liu, Hongyun; Wang, Weidong

    2015-10-01

    A photoplethysmographic (PPG) signal can provide very useful information about a subject's cardiovascular status. Motion artifacts (MAs), which usually deteriorate the waveform of a PPG signal, severely obstruct its applications in the clinical diagnosis and healthcare area. To reduce the MAs from a PPG signal, in the present study we present a comb filter based signal processing method. Firstly, wavelet de-noising was implemented to preliminarily suppress a part of the MAs. Then, the PPG signal in the time domain was transformed into the frequency domain by a fast Fourier transform (FFT). Thirdly, the PPG signal period was estimated from the frequency domain by tracking the fundamental frequency peak of the PPG signal. Lastly, the MAs were removed by the comb filter which was designed based on the obtained PPG signal period. Experiments with synthetic and real-world datasets were implemented to validate the performance of the method. Results show that the proposed method can effectively restore the PPG signals from the MA corrupted signals. Also, the accuracy of blood oxygen saturation (SpO2), calculated from red and infrared PPG signals, was significantly improved after the MA reduction by the proposed method. Our study demonstrates that the comb filter can effectively reduce the MAs from a PPG signal provided that the PPG signal period is obtained.

  3. A mummified duck-billed dinosaur with a soft-tissue cock's comb.

    Science.gov (United States)

    Bell, Phil R; Fanti, Federico; Currie, Philip J; Arbour, Victoria M

    2014-01-01

    Among living vertebrates, soft tissues are responsible for labile appendages (combs, wattles, proboscides) that are critical for activities ranging from locomotion to sexual display [1]. However, soft tissues rarely fossilize, and such soft-tissue appendages are unknown for many extinct taxa, including dinosaurs. Here we report a remarkable "mummified" specimen of the hadrosaurid dinosaur Edmontosaurus regalis from the latest Cretaceous Wapiti Formation, Alberta, Canada, that preserves a three-dimensional cranial crest (or "comb") composed entirely of soft tissue. Previously, crest function has centered on the hypertrophied nasal passages of lambeosaurine hadrosaurids, which acted as resonance chambers during vocalization [2-4]. The fleshy comb in Edmontosaurus necessitates an alternative explanation most likely related to either social signaling or sexual selection [5-7]. This discovery provides the first view of bizarre, soft-tissue signaling structures in a dinosaur and provides additional evidence for social behavior. Crest evolution within Hadrosaurinae apparently culminated in the secondary loss of the bony crest at the terminal Cretaceous; however, the new specimen indicates that cranial ornamentation was in fact not lost but substituted in Edmontosaurus by a fleshy display structure. It also implies that visual display played a key role in the evolution of hadrosaurine crests and raises the possibility of similar soft-tissue structures among other dinosaurs.

  4. Massively parallel dual-comb molecular detection with subharmonic optical parametric oscillators

    CERN Document Server

    Smolski, Viktor O; Xu, Jia; Vodopyanov, Konstantin L

    2016-01-01

    Mid-infrared (mid-IR) spectroscopy offers unparalleled sensitivity for the detection of trace gases, solids and liquids, which is based on the existence of strong telltale vibrational bands in this part of the spectrum. It was shown more than a decade ago that a dual-comb Fourier spectroscopy could provide superior spectral coverage combined with high resolution and extremely fast data acquisition. Capabilities of this method were limited because of difficulty of producing twins of mutually coherent frequency combs in the mid- IR. Here we report a phase-coherent and broadband dual-comb system that is based on a pair of subharmonic (frequency-divide-by-two) optical parametric oscillators, pumped in turn by two phase-locked thulium fiber lasers at 2-micron wavelength. We demonstrate simultaneous detection of multiple molecular species in the whole band of 3.2-5.3 microns (frequency span 1200 cm^{-1}) augmented by the pump laser band of 1.85-2 microns (span 400 cm^{-1}), with spectral resolution 0.01-0.07 cm^{-1...

  5. Real-time closed-loop control for micro mirrors with quasistatic comb drives

    Science.gov (United States)

    Schroedter, Richard; Sandner, Thilo; Janschek, Klaus; Roth, Matthias; Hruschka, Clemens

    2016-03-01

    This paper presents the application of a real-time closed-loop control for the quasistatic axis of electrostatic micro scanning mirrors. In comparison to resonantly driven mirrors, the quasistatic comb drive allows arbitrary motion profiles with frequencies up to its eigenfrequency. A current mirror setup at Fraunhofer IPMS is manufactured with a staggered vertical comb (SVC) drive and equipped with an integrated piezo-resistive deflection sensor, which can potentially be used as position feedback sensor. The control design is accomplished based on a nonlinear mechatronic system model and the preliminary parameter characterization. In previous papers [1, 2] we have shown that jerk-limited trajectories, calculated offline, provide a suitable method for parametric trajectory design, taking into account physical limitations given by the electrostatic comb and thus decreasing the dynamic requirements. The open-loop control shows in general unfavorable residual eigenfrequency oscillations leading to considerable tracking errors for desired triangle trajectories [3]. With real-time closed-loop control, implemented on a dSPACE system using an optical feedback, we can significantly reduce these errors and stabilize the mirror motion against external disturbances. In this paper we compare linear and different nonlinear closed-loop control strategies as well as two observer variants for state estimation. Finally, we evaluate the simulation and experimental results in terms of steady state accuracy and the concept feasibility for a low-cost realization.

  6. Stably accessing octave-spanning microresonator frequency combs in the soliton regime

    CERN Document Server

    Li, Qing; Westly, Daron A; Drake, Tara E; Stone, Jordan R; Ilic, B Robert; Diddams, Scott A; Papp, Scott B; Srinivasan, Kartik

    2016-01-01

    Microresonator frequency combs can be an enabling technology for optical frequency synthesis and timekeeping in low size, weight, and power architectures. Such systems require comb operation in low-noise, phase-coherent states such as solitons, with broad spectral bandwidths (e.g., octave-spanning) for self-referencing to detect the carrier-envelope offset frequency. However, stably accessing such states is complicated by thermo-optic dispersion. For example, in the Si3N4 platform, precisely dispersion-engineered structures can support broadband operation, but microsecond thermal time constants have necessitated fast pump power or frequency control to stabilize the solitons. In contrast, here we consider how broadband soliton states can be accessed with simple pump laser frequency tuning, at a rate much slower than the thermal dynamics. We demonstrate octave-spanning soliton frequency combs in Si3N4 microresonators, including the generation of a multi-soliton state with a pump power near 40 mW and a single-so...

  7. Gigahertz frequency comb from a diode-pumped solid-state laser.

    Science.gov (United States)

    Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula

    2014-12-15

    We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.

  8. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  9. Coherence properties of a 2.6-7.5  μm frequency comb produced as a subharmonic of a Tm-fiber laser.

    Science.gov (United States)

    Smolski, V O; Yang, H; Gorelov, S D; Schunemann, P G; Vodopyanov, K L

    2016-04-01

    We study the temporal coherence of an ultrabroadband frequency comb produced in a degenerate GaAs optical parametric oscillator (OPO) pumped by a stabilized Tm-fiber comb, by observing multiheterodyne beats in the RF domain. We infer that in such a regime the OPO automatically produces a stable frequency comb that is phase and frequency locked to the pump. By varying intracavity dispersion, we achieve a comb spanning 2.6-7.5 μm at a -20  dB level. Low pump threshold (down to 7 mW), high average power (up to 73 mW), broad spectral coverage, flat spectrum, and high coherence make this comb a source suitable for various applications, foremost dual-comb molecular spectroscopy.

  10. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy.

    Science.gov (United States)

    Yi, X; Vahala, K; Li, J; Diddams, S; Ycas, G; Plavchan, P; Leifer, S; Sandhu, J; Vasisht, G; Chen, P; Gao, P; Gagne, J; Furlan, E; Bottom, M; Martin, E C; Fitzgerald, M P; Doppmann, G; Beichman, C

    2016-01-27

    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope.

  11. Offset-Free Gigahertz Midinfrared Frequency Comb Based on Optical Parametric Amplification in a Periodically Poled Lithium Niobate Waveguide

    Science.gov (United States)

    Mayer, A. S.; Phillips, C. R.; Langrock, C.; Klenner, A.; Johnson, A. R.; Luke, K.; Okawachi, Y.; Lipson, M.; Gaeta, A. L.; Fejer, M. M.; Keller, U.

    2016-11-01

    We report the generation of an optical-frequency comb in the midinfrared region with 1-GHz comb-line spacing and no offset with respect to absolute-zero frequency. This comb is tunable from 2.5 to 4.2 μ m and covers a critical spectral region for important environmental and industrial applications, such as molecular spectroscopy of trace gases. We obtain such a comb using a highly efficient frequency conversion of a near-infrared frequency comb. The latter is based on a compact diode-pumped semiconductor saturable absorber mirror-mode-locked ytterbium-doped calcium-aluminum gadolynate (Yb:CALGO) laser operating at 1 μ m . The frequency-conversion process is based on optical parametric amplification (OPA) in a periodically poled lithium niobate (PPLN) chip containing buried waveguides fabricated by reverse proton exchange. The laser with a repetition rate of 1 GHz is the only active element of the system. It provides the pump pulses for the OPA process as well as seed photons in the range of 1.4 - 1.8 μ m via supercontinuum generation in a silicon-nitride (Si3 N4 ) waveguide. Both the PPLN and Si3 N4 waveguides represent particularly suitable platforms for low-energy nonlinear interactions; they allow for mid-IR comb powers per comb line at the microwatt level and signal amplification levels up to 35 dB, with 2 orders of magnitude less pulse energy than reported in OPA systems using bulk devices. Based on numerical simulations, we explain how high amplification can be achieved at low energy using the interplay between mode confinement and a favorable group-velocity mismatch configuration where the mid-IR pulse moves at the same velocity as the pump.

  12. Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov.

    Science.gov (United States)

    Hu, Xiu-Fang; Li, Shi-Xiao; Wu, Jin-Guang; Wang, Jian-Feng; Fang, Qiong-Lou; Chen, Ji-Shuang

    2010-01-01

    Bacillus mucilaginosus and Bacillus edaphicus were reclassified based on their 16S rRNA and gyrB gene sequences, DNA-DNA hybridization, fatty acid methyl esters and other taxonomic characteristics. Phylogenetic analysis based on 16S rRNA and gyrB gene sequences indicated that strains of B. mucilaginosus and B. edaphicus were members of the genus Paenibacillus, with over 90.4 % and 70.3 % sequence similarity, respectively. Their DNA G+C contents were 54.5-56.8 mol%. The DNA-DNA relatedness values of B. edaphicus VKPM B-7517(T) with B. mucilaginosus KNP414 and B. mucilaginosus CGMCC 1.236 were 89.2 % and 88.7 %, respectively. The major isoprenoid quinone of B. mucilaginosus and B. edaphicus was MK-7 (94.1-95.7 %). The peptidoglycan type was A1gamma (meso-diaminopimelic acid) and the major polar lipids were phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were anteiso-C(15 : 0), C(16 : 1)omega11c and C(16 : 0). Phenotypic features and fatty acid profiles supported the similarity of B. mucilaginosus and B. edaphicus to Paenibacillus validus CCTCC 95016(T) and confirmed their relationship with members of the genus Paenibacillus. Therefore, it is proposed that Bacillus mucilaginosus and Bacillus edaphicus be transferred to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. (type strain HSCC 1605(T)=VKPM B-7519(T)=VKM B-1480D(T)=CIP 105815(T)=KCTC 3870(T)) and Paenibacillus edaphicus comb. nov. (type strain VKPM B-7517(T)=DSM 12974(T)=CIP 105814(T)), respectively.

  13. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).

    Science.gov (United States)

    Li, Chih-Hao; Benedick, Andrew J; Fendel, Peter; Glenday, Alexander G; Kärtner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2008-04-03

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements.

  14. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s$^{-1}$

    CERN Document Server

    Li, Chih-Hao; Fendel, Peter; Glenday, Alexander G; Kaertner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2008-01-01

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm/s (ref 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earthlike orbit, a precision of 5 cm/s is necessary. The combination of a laser frequency comb with a Fabry-Perot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40- GHz (1-A) line spacing, generated from a 1- GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or `astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm/s in astronomical radial ve...

  15. A quantitative performance measure for a clinical evaluation of comb structure removal algorithms in flexible endoscopy

    Science.gov (United States)

    Rupp, Stephan

    2008-03-01

    Modern techniques for technical inspection as well as medical diagnostics and therapy in keyhole-surgery scenarios make use of flexible endoscopes. Common to both application fields are very small natural or manmade entry points to the observed scene, as well as the complexity of the hollow itself. These make the use of rigid lens-based endoscopes or tip chip videoscopes impossible. Due to the fact that the fiber-optic image guide of a flexible endoscope introduces a comb structure to the acquired images, many research has been devoted to algorithms for an effective removal of such artifacts. Oftentimes, this research has been motivated by the fact, that the comb structure prevents an application of some well-established methods offered by the computer vision and image processing community. Unfortunately, the performance of the presented approaches are commonly visually evaluated or with respect to proprietary, non-standardized metrics. Thus, the performances of individual algorithms are hard to compare with each other. For this reasons, we propose a performance measure for fiber-optic imaging devices that has been motivated by the physics of optics. In this field, an optical system is frequently described by linear systems theory and the system's quality can be expressed by its transfer function. The determination of this transfer function has been standardized by the ISO for lens based imaging systems and represents a widely accepted measure for the quality of such systems. In this contribution, we present methods that account for fiber-optic imaging systems and thus enable a standardized performance evaluation. Finally, we demonstrate its use by comparing two recent state of the art comb structure removal algorithms, each of them being a representative of a spatial and a frequency domain method, respectively.

  16. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  17. Weaving quantum optical frequency combs into continuous-variable hypercubic cluster states

    Science.gov (United States)

    Wang, Pei; Chen, Moran; Menicucci, Nicolas C.; Pfister, Olivier

    2014-09-01

    Cluster states with higher-dimensional lattices that cannot be physically embedded in three-dimensional space have important theoretical interest in quantum computation and quantum simulation of topologically ordered condensed-matter systems. We present a simple, scalable, top-down method of entangling the quantum optical frequency comb into hypercubic-lattice continuous-variable cluster states of a size of about 104 quantum field modes, using existing technology. A hypercubic lattice of dimension D (linear, square, cubic, hypercubic, etc.) requires but D optical parametric oscillators with bichromatic pumps whose frequency splittings alone determine the lattice dimensionality and the number of copies of the state.

  18. SYNTHESIS AND CHARACTERIZATION OF COMB-LIKE POLYMERS BEARING HETEROCYCLIC AZO GROUP AND MESOGENIC GROUP

    Institute of Scientific and Technical Information of China (English)

    Hui-qi Zhang; Wen-qiang Huang; Chen-xi Li; Bing-lin He

    1999-01-01

    The synthesis and characterization of a series of novel comb-like polymethacrylates bearing heterocyclic azo group and mesogenic group are described. The thermal properties of the polymers such as thermal stability and phase transition behavior were investigated by thermogravimetric analysis, differential thermal analysis and polarizing optical microscopy techniques. The experimental results show that all the synthesized polymers do not exhibit liquid crystallinity except the homopolymer of the mesogenic monomer MAPB2 and the glass transition temperatures of the polymers increase with increasing content of azo moiety in polymers linearly.

  19. IONIC CONDUCTIVITY IN THE COMPLEXES OF COMB-SHAPED POLYETHER WITH LITHIUM AROMATIC SULFONATE

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shengshui; QIU Weihua; XUE Dacui; LIU Qingguo

    1993-01-01

    Complexes of comb-shaped polyether and lithium aromatic sulfonates bearing different negative charge number were prepared by in situ thermal polymerization. Their conductivity depends deeply on salt content, ambient temperature and negative charge number of the added salts. Results show that anions can be partly immobilized by increasing their negative charges at lower temperature.Against discharge time the short circuit current of the battery (Li/complex film/Lix V3O8) is stabilized by increasing the anionic charge number of the complex.

  20. Ultra-broadband Photonic Harmonic Mixer Based on Optical Comb Generation

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei;

    2012-01-01

    We propose a novel photonic harmonic mixer operating at frequencies up to the millimeter-wave (MMW) band. By combining a broadband fiber-wireless signal with highorder harmonics of a fundamental local oscillator in an optical frequency comb generator, frequency down-conversion can be implemented...... is experimentally demonstrated. Moreover, the error vector magnitude (EVM) performance of a multi-gigabit quadrature phase shift keying (QPSK) signal at 62.5, 82.5 and 102.5GHz carrier frequencies is studied to evaluate the downconversion efficiency. The proposed photonic harmonic mixer can be a candidate...

  1. Erratum to “Ultra-Broadband Photonic Harmonic Mixer Based on Optical Comb Generation”

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei;

    2012-01-01

    We propose a novel photonic harmonic mixer operating at frequencies up to the millimeter-wave (MMW) band. By combining a broadband fiber-wireless signal with highorder harmonics of a fundamental local oscillator in an optical frequency comb generator, frequency down-conversion can be implemented...... is experimentally demonstrated. Moreover, the error vector magnitude (EVM) performance of a multi-gigabit quadrature phase shift keying (QPSK) signal at 62.5, 82.5 and 102.5GHz carrier frequencies is studied to evaluate the downconversion efficiency. The proposed photonic harmonic mixer can be a candidate...

  2. Fractional high-harmonic combs by attosecond-precision split-spectrum pulse control

    Directory of Open Access Journals (Sweden)

    Laux Martin

    2013-03-01

    Full Text Available Few-cycle laser fields enable pulse-shaping control of high-order harmonic generation by time delaying variable broadband spectral sections. We report the experimental generation of fractional (noninteger high-harmonic combs by the controlled interference of two attosecond pulse trains. Additionally the energy of the high harmonics is strongly tuned with the relative time delay. We quantify the tuning to directly result from the controlled variation of the instantaneous laser frequency at the shaped driver pulse intensity maximum.

  3. Combing and self-assembly phenomena in dry films of Taxol-stabilized microtubules

    Directory of Open Access Journals (Sweden)

    Rose Franck

    2007-01-01

    Full Text Available AbstractMicrotubules are filamentous proteins that act as a substrate for the translocation of motor proteins. As such, they may be envisioned as a scaffold for the self-assembly of functional materials and devices. Physisorption, self-assembly and combing are here investigated as a potential prelude to microtubule-templated self-assembly. Dense films of self-assembled microtubules were successfully produced, as well as patterns of both dendritic and non-dendritic bundles of microtubules. They are presented in the present paper and the mechanism of their formation is discussed.

  4. A proposal for the generation of optical frequency comb in temperature insensitive microcavity

    Science.gov (United States)

    Lei, Xun; Bian, Dandan; Chen, Shaowu

    2016-11-01

    We numerically simulate the generation of an optical frequency comb (OFC) in a microring based on the traditional Si3N4 strip waveguide and a temperature compensated slot waveguide. The results show that OFCs are susceptible to temperature with strip waveguide while they can keep stable when temperature changes 10 K in either low-Q (105) or high-Q (106) microcavity with the well-designed slot waveguide, which has great superiority in practical applications where the temperature drift of the cavity due to the intense pump or surrounding change is unavoidable. Project supported by the National Natural Science Foundation of China (Grant Nos. 61435002, 61527823, and 61321063).

  5. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  6. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    OpenAIRE

    Aidan J Peterson; Mallin, Daniel R.; Francis, Nicole J.; Ketel, Carrie S.; Stamm, Joyce; Voeller, Rochus K.; Kingston, Robert E.; Jeffrey A Simon

    2004-01-01

    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH int...

  7. Dispersing multi-component and unstable powders in aqueous media using comb-type anionic polymers

    DEFF Research Database (Denmark)

    Laarz, E.; Kauppi, A.; Andersson, K.M.;

    2006-01-01

    We have investigated the effect of polymeric dispersants on the rheological properties and consolidation behavior of concentrated cemented carbide (WC-Co) and magnesia (MgO) suspensions. The relatively novel types of comb-type anionic polymers with grafted non-ionic side chains are effective...... of the grafted ethylene oxide side chains showed that the dispersants adsorb onto a MgO surface and infer a repulsion where the range scales with the length of the poly ethylene oxide side chains. The compressibility and the consolidation behavior of MgO particle networks in response to a centrifugal force field...

  8. Measurement of the Group Velocity Dispersion of air using a femtosecond comb

    Science.gov (United States)

    Al salamah, Reem

    In this thesis, the Group Velocity Dispersion (GVD) of air has been measured by using a femtosecond frequency comb at 1.5 microm. By comparing the spectra from a balanced and unbalanced Mach - Zehnder interferometer, the need for vacuum tube is eliminated. The method employs the Fast Fourier Transform of both auto- and cross correlation to find the spectral and their differences. The GVD of air is then calculated from these spectral phase differences. With twenty-five independent measurements, the GVD of air was found to be 0.0120 fs2/mm, with a standard deviation of 0.0075 fs2/mm.

  9. Transfer of Acetobacter oboediens Sokollek et al 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov.

    Science.gov (United States)

    Yamada, Y

    2000-11-01

    Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 are transferred to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. because, on the basis of their 16S rRNA gene sequences, the type strains of both species are located in the cluster of the genus Gluconacetobacter along with those of Gluconacetobacter xylinus, Gluconacetobacter europaeus, Gluconacetobacter hansenii, Gluconacetobacter liquefaciens (the type species) and Gluconacetobacter diazotrophicus. The significance of growth on mannitol agar and the presence of a ubiquinone isoprenologue composed of Q-10 is discussed for characterization of the genus Gluconacetobacter.

  10. Frequency Comb Generation in 300 nm Thick SiN Concentric-Racetrack-Resonators: Overcoming the Material Dispersion Limit

    CERN Document Server

    Kim, Sangsik; Wang, Cong; Jaramillo-Villegas, Jose A; Xue, Xiaoxiao; Bao, Chengying; Xuan, Yi; Leaird, Daniel E; Weiner, Andrew M; Qi, Minghao

    2016-01-01

    Kerr nonlinearity based frequency combs and solitons have been generated from on-chip optical microresonators with high quality factors and global or local anomalous dispersion. However, fabrication of such resonators usually requires materials and/or processes that are not standard in semiconductor manufacturing facilities. Moreover, in certain frequency regimes such as visible and ultra-violet, the large normal material dispersion makes it extremely difficult to achieve anomalous dispersion. Here we present a concentric racetrack-shaped resonator that achieves anomalous dispersion in a 300 nm thick silicon nitride film, suitable for semiconductor manufacturing but previously thought to result only in waveguides with high normal dispersion, a high intrinsic Q of 1.5 million, and a novel mode-selective coupling scheme that allows coherent combs to be generated. We also provide evidence suggestive of soliton-like pulse formation in the generated comb. Our method can achieve anomalous dispersion over moderately...

  11. Comb-based radio-frequency photonic filters: rounts to nanosecond tuning speed and extremely high stopband attenuation

    CERN Document Server

    Supradeepa, V R; Wu, Rui; Ferdous, Fahmida; Hamidi, Ehsan; Leaird, Daniel E; Weiner, Andrew M

    2011-01-01

    Photonic technologies have received considerable attention for enhancement of radio-frequency (RF) electrical systems, including high-frequency analog signal transmission, control of phased arrays, analog-to-digital conversion, and signal processing. Although the potential of radio-frequency photonics for implementation of tunable electrical filters over broad RF bandwidths has been much discussed, realization of programmable filters with highly selective filter lineshapes has faced significant challenges. In this paper we show that a new approach based on optical frequency combs enables dramatic progress. A novel comb generation scheme employing tailored electro-optic modulation and cascaded four-wave mixing results in approximately Gaussian RF filter lineshapes with extremely high (>60 dB) out-of-band suppression. A modification of our approach provides RF filter tuning through optical delay variation and decouples filter tuning and lineshape control. By exploiting a dual-comb scheme, the optical delay and ...

  12. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    Science.gov (United States)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  13. High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator

    CERN Document Server

    Zhu, Feng; Kolomenskii, Alexandre A; Strohaber, James; Holzwarth, Ronald; Schuessler, Hans A

    2013-01-01

    We report on a high-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator with a stabilized repetition rate at 250 MHz. The mid-infrared frequency comb is produced through difference frequency generation in a periodically poled MgO-doped lithium niobate crystal. The output power is about 120 mW with a pulse duration of about 80 fs, and spectrum coverage from 2.9 to 3.6 um. The coherence properties of the produced high-power broadband mid-infrared frequency comb are maintained, which was verified by heterodyne measurements. As the first application, the spectrum of a ~200 ppm methane-air mixture in a short 20 cm glass cell at ambient atmospheric pressure and temperature was measured.

  14. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.

    Science.gov (United States)

    Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Nakajima, Yoshiaki; Iwakuni, Kana; Akamatsu, Daisuke; Okubo, Sho; Kohno, Takuya; Onae, Atsushi; Hong, Feng-Lei

    2013-04-08

    We propose a novel, high-performance, and practical laser source system for optical clocks. The laser linewidth of a fiber-based frequency comb is reduced by phase locking a comb mode to an ultrastable master laser at 1064 nm with a broad servo bandwidth. A slave laser at 578 nm is successively phase locked to a comb mode at 578 nm with a broad servo bandwidth without any pre-stabilization. Laser frequency characteristics such as spectral linewidth and frequency stability are transferred to the 578-nm slave laser from the 1064-nm master laser. Using the slave laser, we have succeeded in observing the clock transition of (171)Yb atoms confined in an optical lattice with a 20-Hz spectral linewidth.

  15. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    Science.gov (United States)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  16. Frequency measurement of THz waves by electro-optic sampling using Mach-Zehnder-modulator-based flat comb generator

    Science.gov (United States)

    Morohashi, Isao; Kirigaya, Mayu; Kaneko, Yuta; Katayama, Ikufumi; Sakamoto, Takahide; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao

    2016-02-01

    In the recent progress in terahertz (THz) devices, various kinds of source devices, such as resonant tunneling diodes, quantum cascade lasers and so forth, have been developed. Frequency measurement of THz radiations, which can operate in high speed and at room-temperature, is important for development of high-performance THz source devices. Recently, frequency measurement using optical combs are demonstrated by several groups. In these techniques, modelocked lasers (MLLs) are used for optical comb source, so that phase-locking techniques are required in order to stabilize the repetition frequency of the MLLs. On the other hand, a modulator-based optical comb generator has high accuracy and stability in the comb spacing, which is comparable to that of microwave signal driving the modulator. Thus it is suitable for frequency measurement of THz waves. In this paper, we demonstrated frequency measurement of THz waves using a Mach-Zehnder-modulator-based flat comb generator (MZ-FCG). The frequency measurement was carried out by an electro-optic (EO) sampling method, where an optical two-tone signal extracted from the optical comb generated by the MZ-FCG was used for the probe light. A 100 GHz signal generated by a W-band frequency multiplier and the probe beam collinearly traveled through an EO crystal, and beat signals between them were measured by a combination of a balanced photodetector and a spectrum analyzer. As a result, frequency measurement of the 100 GHz wave was successfully demonstrated, in which the linewidth of the beat signal was less than 1 Hz.

  17. A new type of HTc superconducting film comb-shape resonator for radio frequency superconducting quantum interference devices

    Institute of Scientific and Technical Information of China (English)

    MAO Hai-yan; WANG Fu-ren; MENG Shu-chao; MAO Bo; LI Zhuang-zhi; NIE Rui-juan; LIU Xin-yuan; DAI Yuan-dong

    2006-01-01

    A new type of HTc superconducting film combshape resonator for radio frequency superconducting quantum interference devices (RF SQUID) has been designed.This new type of superconducting film comb-shape resonator is formed by a foursquare microstrip line without a flux concentrator.The range of the center frequency of this type of resonator varies from 800 MHz to 1300 MHz by changing the length of the teeth.In this paper,we report on simulating the relationship of the value of the center frequency and the length of the teeth,and testing the noise of HTc RF SQUID coupling this comb-shape resonator.

  18. A priori bounds and global bifurcation results for frequency combs modeled by the Lugiato-Lefever equation

    OpenAIRE

    Mandel, Rainer; Reichel, Wolfgang

    2016-01-01

    In nonlinear optics $2\\pi$-periodic solutions $a\\in C^2([0,2\\pi];\\mathbb{C})$ of the stationary Lugiato-Lefever equation $-d a"= ({\\rm i} -\\zeta)a +|a|^2a-{\\rm i} f$ serve as a model for frequency combs, which are optical signals consisting of a superposition of modes with equally spaced frequencies. We prove that nontrivial frequency combs can only be observed for special ranges of values of the forcing and detuning parameters $f$ and $\\zeta$, as it has been previously documented in experime...

  19. Finite Element Analysis of the Vertical Levitation Force in an Electrostatic MEMS Comb Drive Actuator

    Science.gov (United States)

    Wooldridge, J.; Blackburn, J.; Muniz-Piniella, A.; Stewart, M.; Shean, T. A. V.; Weaver, P. M.; Cain, M. G.

    2013-11-01

    A vertical levitation electrostatic comb drive actuator was manufactured for the purpose of measuring piezoelectric coefficients in small-scale materials and devices. Previous modelling work on comb drive levitation has focussed on control of the levitation in standard poly-silicon devices in order to minimize effects on lateral modes of operation required for the accelerometer and gyroscope applications. The actuator developed in this study was manufactured using a 20 μm electroplated Ni process with a 25 μm trench created beneath the released structure through chemical wet etching. A finite element analysis using ZINC was used to model electrostatic potential around a cross section of one static and one movable electrode, from which the net levitation force per unit electrode was calculated. The model was first verified using the electrode geometry from previously studied systems, and then used to study the variation of force as a function of decreasing substrate-electrode distance. With the top electrode surfaces collinear the calculated force density is 0.00651 epsilon0V2Mμm-1, equivalent to a total force for the device of 36.4 μN at an applied voltage of VM=100 V, just 16% larger than the observed value. The measured increase in force with distance was smaller than predicted with the FEA, due to the geometry of the device in which the electrodes at the anchored ends of the supporting spring structure displace by a smaller amount than those at the centre.

  20. Channel Estimation Based in Comb-Type Pilots Arrangement for OFDM System over Time Varying Channel

    Directory of Open Access Journals (Sweden)

    Hala M. Mahmoud

    2010-07-01

    Full Text Available Orthogonal Frequency Division Multiplexing (OFDM has been recently applied widely in wireless communication systems, due to its high data rate, transmission capability with high bandwidth, efficiency and its robustness to multipath delay .Channel estimation is an essential problem in OFDM system. Pilot-aided channel estimation has been used; a good choice of the pilot pattern should match the channel behavior both in time and frequency domains. We explored comb pilot arrangements. The advantage for comb type pilots arrangement in channel estimation is the ability to track the variation of the channel caused by doppler frequency, it is observed that the doppler effect can be reduced, and so this will increase the system mobility. Kalman and Least Square (LS estimators have been proposed to estimate the Channel Frequency Response (CFR at the pilots location, then CFR at data sub channels are obtained by mean of interpolation between estimates at pilot locations. Different types of interpolations have been used such as; low pass interpolation; spline cubic interpolation and linear interpolation. Kalman estimation has better performance than LS estimation. The estimators perform about the same for SNR lower than 10 dB. The performances of all schemes have been compared by finding Bit Error Rate (BER, where BPSK modulation scheme was used.

  1. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.

    Science.gov (United States)

    de Oliveira, Sabrina Alves; da Silva, Bruno Campos; Riegel-Vidotti, Izabel Cristina; Urbano, Alexandre; de Sousa Faria-Tischer, Paula Cristina; Tischer, Cesar Augusto

    2017-04-01

    The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering.

  2. Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters

    Science.gov (United States)

    Sun, Wenhui; Wang, Sunlong; Zhong, Xin; Liu, Jianguo; Wang, Wenting; Tong, Youwan; Chen, Wei; Yuan, Haiqing; Yu, Lijuan; Zhu, Ninghua

    2016-08-01

    An integrated wideband optical frequency comb (OFC) based on a semiconductor quantum dot laser is realized with high stability. The OFC module is packaged in our lab. A circuit which is designed to provide a low-ripple current and control the temperature regards as a servo system to enhance the stability of the OFC. The frequency stability of the OFC is 2.7×10-9 (Allan Variance). The free spectral range (FSR) of the OFC is 40 GHz and the number of comb lines is up to 55. The flatness of the OFC over span of 4 nm can be limited to 0.5 dB. Negative coefficients microwave photonic filters with multiple taps are generated based on the proposed OFC. For the 10 taps microwave photonic filter, the pass-band at 8.74 GHz has a 3 dB bandwidth of 630 MHz with 16.58 dB side-lobe suppression. Compared with the published microwave photonic filters, the proposed system is more stable, of more compact structures, and of less power consumption.

  3. Self-referenceable frequency comb from an ultrafast thin disk laser.

    Science.gov (United States)

    Saraceno, Clara J; Pekarek, Selina; Heckl, Oliver H; Baer, Cyrill R E; Schriber, Cinia; Golling, Matthias; Beil, Kolja; Kränkel, Christian; Huber, Günter; Keller, Ursula; Südmeyer, Thomas

    2012-04-23

    We present the first measurement of the carrier envelope offset (CEO) frequency of an ultrafast thin disk laser (TDL). The TDL used for this proof-of-principle experiment was based on the gain material Yb:Lu(2)O(3) and delivered 7 W of average power in 142-fs pulses, which is more than two times shorter than previously realized with this material. Using only 65 mW of the output of the laser, we generated a coherent octave-spanning supercontinuum (SC) in a highly nonlinear photonic crystal fiber (PCF). We detected the CEO beat signal using a standard f-to-2f interferometer, achieving a signal-to-noise ratio of >25 dB (3 kHz resolution bandwidth). The CEO frequency was tunable with the pump current with a slope of 33 kHz/mA. This result opens the door towards high-power frequency combs from unamplified oscillators. Furthermore, it confirms the suitability of these sources for future intralaser extreme nonlinear optics experiments such as high harmonic generation and VUV frequency comb generation from compact sources.

  4. Nonlinear dynamics of spring softening and hardening in folded-mems comb drive resonators

    KAUST Repository

    Elshurafa, Amro M.

    2011-08-01

    This paper studies analytically and numerically the spring softening and hardening phenomena that occur in electrostatically actuated microelectromechanical systems comb drive resonators utilizing folded suspension beams. An analytical expression for the electrostatic force generated between the combs of the rotor and the stator is derived and takes into account both the transverse and longitudinal capacitances present. After formulating the problem, the resulting stiff differential equations are solved analytically using the method of multiple scales, and a closed-form solution is obtained. Furthermore, the nonlinear boundary value problem that describes the dynamics of inextensional spring beams is solved using straightforward perturbation to obtain the linear and nonlinear spring constants of the beam. The analytical solution is verified numerically using a Matlab/Simulink environment, and the results from both analyses exhibit excellent agreement. Stability analysis based on phase plane trajectory is also presented and fully explains previously reported empirical results that lacked sufficient theoretical description. Finally, the proposed solutions are, once again, verified with previously published measurement results. The closed-form solutions provided are easy to apply and enable predicting the actual behavior of resonators and gyroscopes with similar structures. © 2011 IEEE.

  5. Nonlinear Cavity and Frequency Comb Radiations Induced by Negative Frequency Field Effects

    Science.gov (United States)

    Lourés, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio

    2015-11-01

    Optical Kerr frequency combs (KFCs) are an increasingly important optical metrology tool with applications ranging from ultraprecise spectroscopy to time keeping. KFCs may be generated in compact resonators with extremely high quality factors. Here, we show that the same features that lead to high quality frequency combs in these resonators also lead to an enhancement of nonlinear emissions that may be identified as originating from the presence of a negative frequency (NF) component in the optical spectrum. While the negative frequency component of the spectrum is naturally always present in the real-valued optical field, it is not included in the principal theoretical model used to model nonlinear cavities, i.e., the Lugiato-Lefever equation. We therefore extend these equations in order to include the contribution of NF components and show that the predicted emissions may be studied analytically, in excellent agreement with full numerical simulations. These results are of importance for a variety of fields, such as Bose-Einstein condensates, mode-locked lasers, nonlinear plasmonics, and polaritonics.

  6. Frequency Comb-Based Remote Sensing of Greenhouse Gases over Kilometer Air Paths

    CERN Document Server

    Rieker, Gregory B; Swann, William C; Kofler, Jon; Zolot, Alex M; Sinclair, Laura C; Baumann, Esther; Cromer, Christopher; Petron, Gabrielle; Sweeney, Colm; Tans, Pieter P; Coddington, Ian; Newbury, Nathan R

    2014-01-01

    We demonstrate coherent dual frequency-comb spectroscopy for detecting variations in greenhouse gases. High signal-to-noise spectra are acquired spanning 5990 to 6260 cm^-1 (1600 to 1670 nm) covering ~700 absorption features from CO2, CH4, H2O, HDO, and 13CO2, across a 2-km open-air path. The transmission of each frequency comb tooth is resolved, leading to spectra with <1 kHz frequency accuracy, no instrument lineshape, and a 0.0033-cm^-1 point spacing. The fitted path-averaged concentrations and temperature yield dry-air mole fractions. These are compared with a point sensor under well-mixed conditions to evaluate current absorption models for real atmospheres. In heterogeneous conditions, time-resolved data demonstrate tracking of strong variations in mole fractions. A precision of <1 ppm for CO2 and <3 ppb for CH4 is achieved in 5 minutes in this initial demonstration. Future portable systems could support regional emissions monitoring and validation of the spectral databases critical to global s...

  7. Methane Detection for Oil and Gas Production Sites Using Portable Dual-Comb Spectrometry

    Science.gov (United States)

    Coburn, Sean; Wright, Robert; Cossel, Kevin C.; Truong, Gar-Wing; Baumann, Esther; Coddington, Ian; Newbury, Nathan R.; Alden, Caroline; Ghosh, Subhomoy; Prasad, Kuldeep; Rieker, Greg B.

    2016-06-01

    Considerable uncertainty exists regarding the contribution of oil and gas operations to anthropogenic emissions of atmospheric methane. Additionally, new proposed EPA regulations on volatile organic compound (VOC) emissions from oil and gas production facilities have been expanded to include methane, making this a topic of growing importance to the oil and gas industry as well as regulators. In order to gain a better understanding of emissions, reliable techniques that enable long-term monitoring of entire production facilities are needed. Recent advances in the development of compact and robust fiber frequency combs are enabling the use of this powerful spectroscopic tool outside of the laboratory. Here we characterize and demonstrate a dual comb spectrometer (DCS) system with the potential to locate and size methane leaks from oil and gas production sites over extended periods of time. The DCS operates over kilometer scale open paths, and the path integrated methane measurements will ultimately be coupled with an atmospheric inversion utilizing local meteorology and a high resolution fluid dynamics simulation to determine leak location and also derive a leak rate. High instrument precision is needed in order to accurately perform the measurement inversion on the highly varying methane background, thus the DCS system has been fully optimized for the detection of atmospheric methane in the methane absorption region around 180-184 THz.

  8. Lithium battery with solid polymer electrolyte based on comb-like copolymers

    Science.gov (United States)

    Daigle, Jean-Christophe; Vijh, Ashok; Hovington, Pierre; Gagnon, Catherine; Hamel-Pâquet, Julie; Verreault, Serge; Turcotte, Nancy; Clément, Daniel; Guerfi, Abdelbast; Zaghib, Karim

    2015-04-01

    In this paper we report on the synthesis of comb-like copolymers as solid polymer electrolytes (SPE). The synthesis involved anionic polymerization of styrene (St) and 4-vinylanisole (VA) as the followed by grafting of poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) by Atom Transfer Radical Polymerization (ATRP). The comb-like copolymer's structure was analyzed by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The membranes were made by solvent casting and the morphologies were analyzed by atomic forces microscopy (AFM) and scanning electron microscopy (SEM). We observed that a nano and micro phase separation occurs which improves ionic conductivity. The ionic conductivities were determined by AC Impedance, which showed that the SPEs have good conductivities (10-5 Scm-1) at room temperature owing to the negligible values (<10 kJ mol-1) of the activation energies for conductivity. The batteries with these polymers exhibit a capacity of 146 mAh g-1 at C/24, and no evidence of degradation after intense cycling was observed. However, poor cycle life was observed at C/6 and C/3, which is a consequence of several factors. We partially explain that behavior by arguing that whereas PEO lightly "solvates" Li+ thus slowing Li-ion mobility, and PEGMA chains "solvate" Li ions too strongly, trapping and inhibiting their mobility.

  9. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression.

    Science.gov (United States)

    Huang, S-W; Liu, H; Yang, J; Yu, M; Kwong, D-L; Wong, C W

    2016-05-16

    High-Q microresonator is perceived as a promising platform for optical frequency comb generation, via dissipative soliton formation. In order to achieve a higher quality factor and obtain the necessary anomalous dispersion, multi-mode waveguides were previously implemented in Si3N4 microresonators. However, coupling between different transverse mode families in multi-mode waveguides results in periodic disruption of dispersion and quality factor, and consequently causes perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional Si3N4 microresonators. Here, we report a novel design of Si3N4 microresonator in which single-mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The novel microresonator is consisted of uniform single-mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic quality factor of the microresonator reaches 1.36 × 10(6) while the group velocity dispersion remains to be anomalous at -50 fs(2)/mm. With this novel microresonator, we demonstrate that broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band.

  10. Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing.

    Science.gov (United States)

    Teschome, Bezu; Facsko, Stefan; Gothelf, Kurt V; Keller, Adrian

    2015-11-24

    DNA origami has become an established technique for designing well-defined nanostructures with any desired shape and for the controlled arrangement of functional nanostructures with few nanometer resolution. These unique features make DNA origami nanostructures promising candidates for use as scaffolds in nanoelectronics and nanophotonics device fabrication. Consequently, a number of studies have shown the precise organization of metallic nanoparticles on various DNA origami shapes. In this work, we fabricated large arrays of aligned DNA origami decorated with a high density of gold nanoparticles (AuNPs). To this end, we first demonstrate the high-yield assembly of high-density AuNP arrangements on DNA origami adsorbed to Si surfaces with few unbound background nanoparticles by carefully controlling the concentrations of MgCl2 and AuNPs in the hybridization buffer and the hybridization time. Then, we evaluate two methods, i.e., hybridization to prealigned DNA origami and molecular combing in a receding meniscus, with respect to their potential to yield large arrays of aligned AuNP-decorated DNA origami nanotubes. Because of the comparatively low MgCl2 concentration required for the efficient immobilization of the AuNPs, the prealigned DNA origami become mobile and displaced from their original positions, thereby decreasing the alignment yield. This increased mobility, on the other hand, makes the adsorbed origami susceptible to molecular combing, and a total alignment yield of 86% is obtained in this way.

  11. Genomic data do not support comb jellies as the sister group to all other animals.

    Science.gov (United States)

    Pisani, Davide; Pett, Walker; Dohrmann, Martin; Feuda, Roberto; Rota-Stabelli, Omar; Philippe, Hervé; Lartillot, Nicolas; Wörheide, Gert

    2015-12-15

    Understanding how complex traits, such as epithelia, nervous systems, muscles, or guts, originated depends on a well-supported hypothesis about the phylogenetic relationships among major animal lineages. Traditionally, sponges (Porifera) have been interpreted as the sister group to the remaining animals, a hypothesis consistent with the conventional view that the last common animal ancestor was relatively simple and more complex body plans arose later in evolution. However, this premise has recently been challenged by analyses of the genomes of comb jellies (Ctenophora), which, instead, found ctenophores as the sister group to the remaining animals (the "Ctenophora-sister" hypothesis). Because ctenophores are morphologically complex predators with true epithelia, nervous systems, muscles, and guts, this scenario implies these traits were either present in the last common ancestor of all animals and were lost secondarily in sponges and placozoans (Trichoplax) or, alternatively, evolved convergently in comb jellies. Here, we analyze representative datasets from recent studies supporting Ctenophora-sister, including genome-scale alignments of concatenated protein sequences, as well as a genomic gene content dataset. We found no support for Ctenophora-sister and conclude it is an artifact resulting from inadequate methodology, especially the use of simplistic evolutionary models and inappropriate choice of species to root the metazoan tree. Our results reinforce a traditional scenario for the evolution of complexity in animals, and indicate that inferences about the evolution of Metazoa based on the Ctenophora-sister hypothesis are not supported by the currently available data.

  12. Optical Comb from a Whispering Gallery Mode Resonator for Spectroscopy and Astronomy Instruments Calibration

    Science.gov (United States)

    Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.

    2012-01-01

    The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.

  13. Slow light enhanced atomic frequency comb quantum memories in photonic crystal waveguides

    Science.gov (United States)

    Yuan, Chenzhi; Zhang, Wei; Huang, Yidong; Peng, Jiangde

    2016-09-01

    In this paper, we propose a slow light-enhanced quantum memory with high efficiency based on atomic frequency comb (AFC) in ion-doped photonic crystal waveguide (PCW). The performance of the quantum memory is investigated theoretically, considering the impact of the signal bandwidth. Both the forward and backward retrieval schemes are analyzed. In the forward retrieval scheme, the analysis shows that a moderate slow light effect can improve the retrieval efficiency to above 50% with very high fidelity, even when the intrinsic optical depth is very low and the signal bandwidth is comparable with the AFC bandwidth. In the backward retrieval scheme, retrieval efficiency larger than 90% can be obtained and fidelity can remain above 90% for signal with bandwidth much narrower than AFC bandwidth, when moderate slow light is introduced into waveguide with low intrinsic optical depth. Although the phase mismatching effect limits the slow light enhancement on retrieval efficiency and decreases the fidelity for signal with bandwidth approaching AFC bandwidth, we design a modified atomic frequency comb structure (MAFC) based on which a moderate slow light can make the retrieval efficiency larger than 85% and keep the fidelity above 80%. Our calculations show that the proposed scheme provides a promising way to realize high efficiency on-chip quantum memory.

  14. Broadband Continuous-Wave Multi-Harmonic Optical Comb Based on a Frequency Division-by-Three Optical Parametric Oscillator

    Directory of Open Access Journals (Sweden)

    Yen-Yin Lin

    2014-11-01

    Full Text Available We report a multi-watt broadband continuous-wave multi-harmonic optical comb based on a frequency division-by-three singly-resonant optical parametric oscillator. This cw optical comb is frequency-stabilized with the help of a beat signal derived from the signal and frequency-doubled idler waves. The measured frequency fluctuation in one standard deviation is ~437 kHz. This is comparable to the linewidth of the pump laser which is a master-oscillator seeded Yb:doped fiber amplifier at ~1064 nm. The measured powers of the fundamental wave and the harmonic waves up to the 6th harmonic wave are 1.64 W, 0.77 W, 3.9 W, 0.78 W, 0.17 W, and 0.11 W, respectively. The total spectral width covered by this multi-harmonic comb is ~470 THz. When properly phased, this multi-harmonic optical comb can be expected to produce by Fourier synthesis a light source consisting of periodic optical field waveforms that have an envelope full-width at half-maximum of 1.59 fs in each period.

  15. MATHEMATICAL MODEL OF RR-TYPE MICROMECHANICAL GYRO CAPACITIVE COMB-TYPE SENSORS WITH ACCOUNT FOR VIBRATIONS

    Directory of Open Access Journals (Sweden)

    M. I. Evstifeev

    2016-05-01

    Full Text Available Subject of Research.The reasons for subharmonic resonances in RR-type micromechanical gyro output under linear vibrations are investigated. In ideal case, this type of gyro should be insensitive to this kind of impact due to primary and secondary angular oscillations. However, experimental results reveal significant increase in output signal under external vibrations in 20 Hz - 2 kHz bandwidth, though the device natural frequencies are above 3 kHz. This effect is caused by characteristicsnonlinearity of plate-type and comb-type capacitive sensors. Method. Mathematical model of the capacitive comb-type sensors is clarified. Electromechanical interactions in the sensors under external vibrations are described. Simulink modeling of specified mathematical model is carried out. External vibration modeling is doneby “oscillating frequency” method with constant accelerationamplitude in 20 Hz - 2 kHz bandwidth. Main Results.We have received good agreement of modeling and experimental results in the form of occurrence of subharmonic resonances under linear vibrations in three orthogonal directions. Obtained effects are explained by proposed mathematical models. The main reason for subharmonic resonances in RR-type micromechanical gyro output is that combs of stator and combs of proof mass jump out of mesh. Practical Relevance. The provided investigation gives the possibility to determine algorithmic and construction compensation methods of studied interactions for enhancing vibration resistance of RR-type micromechanical gyro.

  16. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013 . Scientific Opinion on Rooster Combs Extract

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to carry out the additional assessment for „Rooster Combs Extract‟ (RCE) as a food ingredient in the context of Regulation (EC) No 258/97, taking into account the comment...

  17. Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source.

    Science.gov (United States)

    Pfeifle, Joerg; Vujicic, Vidak; Watts, Regan T; Schindler, Philipp C; Weimann, Claudius; Zhou, Rui; Freude, Wolfgang; Barry, Liam P; Koos, Christian

    2015-01-26

    Terabit/s super-channels are likely to become the standard for next-generation optical networks and optical interconnects. A particularly promising approach exploits optical frequency combs for super-channel generation. We show that injection locking of a gain-switched laser diode can be used to generate frequency combs that are particularly well suited for terabit/s super-channel transmission. This approach stands out due to its extraordinary stability and flexibility in tuning both center wavelength and line spacing. We perform a series of transmission experiments using different comb line spacings and modulation formats. Using 9 comb lines and 16QAM signaling, an aggregate line rate (net data rate) of 1.296 Tbit/s (1.109 Tbit/s) is achieved for transmission over 150 km of standard single mode fiber (SSMF) using a spectral bandwidth of 166.5 GHz, which corresponds to a (net) spectral efficiency of 7.8 bit/s/Hz (6.7 bit/s/Hz). The line rate (net data rate) can be boosted to 2.112 Tbit/s (1.867 Tbit/s) for transmission over 300 km of SSMF by using a bandwidth of 300 GHz and QPSK modulation on the weaker carriers. For the reported net data rates and spectral efficiencies, we assume a variable overhead of either 7% or 20% for forward- error correction depending on the individual sub-channel quality after fiber transmission.

  18. Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists.

    Science.gov (United States)

    Mathew, Gincy Marina; Ju, Yu-Ming; Lai, Chi-Yung; Mathew, Dony Chacko; Huang, Chieh Chen

    2012-02-01

    The microbial communities harbored in the gut and fungus comb of the fungus-growing termite Odontotermes formosanus were analyzed by both culture-dependent and culture-independent methods to better understand the community structure of their microflora. The microorganisms detected by denaturing gradient gel electrophoresis (DGGE), clonal selection, and culture-dependent methods were hypothesized to contribute to cellulose-hemicellulose hydrolysis, gut fermentation, nutrient production, the breakdown of the fungus comb and the initiation of the growth of the symbiotic fungus Termitomyces. The predominant bacterial cultivars isolated by the cultural approach belonged to the genus Bacillus (Phylum Firmicutes). Apart from their function in lignocellulosic degradation, the Bacillus isolates suppressed the growth of the microfungus Trichoderma harzianum (genus Hypocrea), which grew voraciously on the fungus comb in the absence of termites but grew in harmony with the symbiotic fungus Termitomyces. The in vitro studies suggested that the Bacillus sp. may function as mutualists in the termite-gut-fungus-comb microbial ecosystem.

  19. Polarization dependence of the direct two photon transitions of 87Rb atoms by erbium: Fiber laser frequency comb

    Science.gov (United States)

    Dai, Shaoyang; Xia, Wei; Zhang, Yin; Zhao, Jianye; Zhou, Dawei; Wang, Qing; Yu, Qi; Li, Kunqian; Qi, Xianghui; Chen, Xuzong

    2016-11-01

    The femtosecond fiber-based optical frequency combs have been proved to be powerful tools for investigating the energy levels of atoms and molecules. In this paper, an Er-doped fiber femtosecond optical frequency comb has been implemented for studying the polarization dependence of 5S-5D two-photon transitions in thermal gas of atomic rubidium 87 using an entirely symmetrical optical configuration. By changing the polarization states of the counter-propagating light beams, the polarization dependence of direct two photon transition spectrum is demonstrated, and a dramatic variation (up to 5.5 times) of the two-photon transitions strength has been observed. The theory for the polarization dependence of two photon transition based on the second-order perturbation was established, which is in good agreement with the experimental results. The measurement results indicate that the polarization state manipulation with the existing frequency comb is used for femtosecond optical frequency comb based two photon transition spectroscopic purposes, which will improve the precision measurement of the absolute transition frequency and related applications.

  20. PAA/PEO comb polymer effects on the rheological property evolution in concentrated cement suspensions

    Science.gov (United States)

    Kirby, Glen Harold

    We have studied the behavior of polyelectrolyte-based comb polymers in dilute solution and on the rheological property evolution of concentrated Portland cement suspensions. These species consisted of charge-neutral, poly(ethylene oxide) (PEO) "teeth" grafted onto a poly(acrylic acid) (PAA) "backbone" that contains one ionizable carboxylic acid group (COOH) per monomer unit. As a benchmark, our observations were compared to those obtained for pure cement pastes and systems containing pure polyelectrolyte species, i.e., sulfonated naphthalene formaldehyde (SNF) and poly(acrylic acid) (PAA). The behavior of PAA/PEO comb polymers, SNF, and PAA in dilute solution was studied as a function of pH in the absence and presence of mono-, di-, and trivalent counterions. Light scattering and turbidity measurements were carried out to assess their hydrodynamic radius and stability in aqueous solution, respectively. PAA experienced large conformational changes as a function of solution pH and ionic strength. Moreover, dilute solutions of ionized SNF and PAA species became unstable in the presence of multivalent counterions due to ion-bridging interactions. PAA/PEO solutions exhibited enhanced stability relative to pure polyelectrolytes under analogous conditions. The charge neutral PEO teeth shielded the underlying PAA backbone from ion-bridging interactions. In addition, such species hindered conformational changes in solution due to steric interactions between adjacent teeth. A new oscillatory shear technique was developed to probe the rheological property evolution of concentrated cement systems. The rheological property evolution of ordinary and white Portland cement systems were studied in the absence and presence of pure polyelectrolytes and PAA/PEO comb polymers with a wide range of PAA backbone molecular weight, PEO teeth molecular weight, and acid:imide ratio. Cement-PAA suspensions experienced rapid irreversible stiffening and set at 6 min due to ion

  1. Chromium:forsterite laser frequency comb stabilization and development of portable frequency references inside a hollow optical fiber

    Science.gov (United States)

    Thapa, Rajesh

    We have made significant accomplishments in the development of portable frequency standard inside hollow optical fibers. Such standards will improve portable optical frequency references available to the telecommunications industry. Our approach relies on the development of a stabilized Cr:forsterite laser to generate the frequency comb in the near-IR region. This laser is self referenced and locked to a CW laser which in turn is stabilized to a sub-Doppler feature of a molecular transition. The molecular transition is realized using a hollow core fiber filled with acetylene gas. We finally measured the absolute frequency of these molecular transitions to characterize the references. In this thesis, the major ideas, techniques and experimental results for the development and absolute frequency measurement of the portable frequency references are presented. A prism-based Cr:forsterite frequency comb is stabilized. We have effectively used the prism modulation along with power modulation inside the cavity in order to actively stabilize the frequency comb. We have also studied the carrier-envelope-offset frequency (f0) dynamics of the laser and its effect on laser stabilization. A reduction of f0 linewidth from ˜2 MHz to ˜20 kHz has also been observed. Both our in-loop and out-of-loop measurements of the comb stability showed that the comb is stable within a part in 1011 at 1-s gate time and is currently limited by our reference signal. In order to develop this portable frequency standard, saturated absorption spectroscopy is performed on the acetylene v1 + v3 band near 1532 nm inside different kinds of hollow optical fibers. The observed linewidths are a factor 2 narrower in the 20 mum fiber as compared to 10 mum fiber, and vary from 20-40 MHz depending on pressure and power. The 70 mum kagome fiber shows a further reduction in linewidth to less than 10 MHz. In order to seal the gas inside the hollow optical fiber, we have also developed a technique of splicing the

  2. Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltran, Marta; Sanchez, Jose;

    2014-01-01

    In this paper, we report on a gigabit capacity fiber-wireless system that enables smooth integration between high-speed wireless networks and dense wavelength-division-multiplexing (DWDM) access networks. By employing a centralized optical frequency comb, both the wireline and the wireless services....... For demonstration, we transmit a 2.5 Gbit/s signal through the proposed system and successfully achieve a bit-error-rate (BER) performance well below the 7% overhead forward error correction limit of the BER of 2 × 10¿3 for both the wireline and the wireless signals in the 60 GHz band after 25 km single-mode fiber...... for each DWDM user can be simultaneously supported. Besides, each baseband channel can be transparently upconverted tomultiple radio-frequency (RF) bands for different wireless standards, which can be flexibly filtered at the end user to select the on-demand RF band, depending on the wireless applications...

  3. Fibre optics wavemeters calibration using a self-referenced optical frequency comb

    Science.gov (United States)

    Galindo-Santos, J.; Velasco, A. V.; Corredera, P.

    2015-01-01

    Self-referenced optical frequency combs enable the measurement of optical frequencies with a very high accuracy, achieving uncertainties close to the atomic clock used as reference (CSIC and its application to the calibration of two wavemeters in the 1.5 μm optical communication window. Calibration uncertainties down to 12 MHz and 59 MHz were obtained, respectively, for each of the devices. Furthermore, the long-term behaviour of the higher resolution wavemeter was studied during a 750 h period of sustained operation, exhibiting a dispersion in the measurements of 7.72 MHz. Temperature dependence of the device was analysed, enabling to further reduce dispersion down to a 2.15 MHz range, with no significant temporal deviations.

  4. "Nail" and "comb" effects of cholesterol modified NIPAm oligomers on cancer targeting liposomes

    KAUST Repository

    Li, Wengang

    2014-01-01

    Thermosensitive liposomes are a promising approach to controlled release and reduced drug cytotoxicity. Low molecular weight N-isopropylacrylamide (NIPAm) oligomers (NOs) with different architectures (main chain NOs (MCNOs) and side chain NOs (SCNOs)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and radical polymerization and then separately used to prepare thermosensitive liposomes. A more controlled and enhanced release was observed for both NO liposomes compared to pristine ones. Two release mechanisms depending on the oligomer architecture, namely "nail" for MCNOs and "comb" for SCNOs, are proposed. In addition to thermosensitivity, the cancer targeting property of NO liposomes was achieved by further biotinylation of the delivery system. © The Royal Society of Chemistry.

  5. Signal line shapes of Fourier transform cavity-enhanced frequency modulation spectroscopy with optical frequency combs

    CERN Document Server

    Johansson, Alexandra C; Khodabakhsh, Amir; Foltynowicz, Aleksandra

    2016-01-01

    We present a thorough analysis of the signal line shapes of Fourier transform-based noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS). We discuss the signal dependence on the ratio of the modulation frequency, f${_m}$, to the molecular line width, {\\Gamma}. We compare a full model of the signals and a simplified absorption-like analytical model that has high accuracy for low f${_m}$/{\\Gamma} ratios and is much faster to compute. We verify the theory experimentally by measuring and fitting NICE-OFCS spectra of CO${_2}$ at 1575 nm using a system based on an Er:fiber femtosecond laser and a cavity with a finesse of ~11000.

  6. Noise characterization of an Optical Frequency Comb using Offline Cross-Correlation

    CERN Document Server

    Khayatzadeh, Ramin; Guyomarc'h, Didier; Ferrand, Didier; Hagel, Gaëtan; Houssin, Marie; Morizot, Olivier; Champenois, Caroline; Knoop, Martina

    2016-01-01

    Using an offline cross-correlation technique, we have analyzed the noise behavior of a new type of optical frequency comb (OFC), which is carrier envelope offset (CEO) free by configuration, due to difference frequency generation. In order to evaluate the instrument's ultimate noise floor, the phase and amplitude noise of a stabilized OFC are measured simultaneously using two analog-to-digital converters. Carrier recovery and phase detection are done by post-processing, eliminating the need for external phase-locked loops and complex calibration techniques. In order to adapt the measurement noise floor and the number of averages used in cross correlation, an adaptive frequency resolution for noise measurement is applied. Phase noise results are in excellent agreement with measurements of the fluctuations of the repetition frequency of the OFC obtained from optical signal.

  7. Brazilian species of Gadila (Mollusca: Scaphopoda: Gadilidae: rediscovery of Gadila elongata comb. nov. and shell morphometrics

    Directory of Open Access Journals (Sweden)

    Carlos H. S. Caetano

    2010-04-01

    Full Text Available Gadila elongata comb. nov. was described in 1920 from the northern Gulf of Mexico. Until recently, it was only known from the type locality. Herein we present the first record of G. elongata from Brazil (Northeast coast, Ceará state, collected at 177 m and a morphometrics analysis of the Brazilian species of Gadila. A multivariate Discriminant Function Analysis, based on nine shell morphometric variables (length, maximum diameter, length to maximum diameter ratio, distance of point of maximum diameter from anterior aperture, maximum curvature, anterior aperture height to anterior aperture width ratio, apical aperture height, apical aperture width and apical aperture height to apical aperture width ratio enabled the distinction between all species studied. Comparisons of shell morphometrics show that length and length to maximum diameter ratio are the most important variables in the differentiation of Gadila species.

  8. Pesticides for apicultural and/or agricultural application found in Belgian honey bee wax combs.

    Science.gov (United States)

    Ravoet, Jorgen; Reybroeck, Wim; de Graaf, Dirk C

    2015-05-01

    In a Belgian pilot study honey bee wax combs from ten hives were analyzed on the presence of almost 300 organochlorine and organophosphorous compounds by LC-MS/MS and GC-MS/MS. Traces of 18 pesticides were found and not a single sample was free of residues. The number of residues found per sample ranged from 3 to 13, and the pesticides found could be categorized as (1) pesticides for solely apicultural (veterinary) application, (2) pesticides for solely agricultural (crop protection) application, (3) pesticides for mixed agricultural and apicultural (veterinary) application. The frequencies and quantities of some environmental pollutants bear us high concerns. Most alarming was the detection of lindane (gamma-HCH) and dichlorodiphenyltrichloroethane (including its breakdown product dichlorodiphenyldichloroethylene), two insecticides that are banned in Europe. The present comprehensive residue analysis, however, also reveals residues of pesticides never found in beeswax before, i.e. DEET, propargite and bromophos.

  9. Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation

    Science.gov (United States)

    Rogov, Andrei S.; Narimanov, Evgenii E.

    2016-12-01

    Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.

  10. Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Galli, I.; Cappelli, F.; Bartalini, S.; Mazzotti, D.; Giusfredi, G.; Cancio, P.; De Natale, P. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Siciliani de Cumis, M. [CNR-INO-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, FI (Italy); Borri, S. [CNR-IFN-Istituto di Fotonica e Nanotecnologie, Via Amendola 173, 70126 Bari, BA (Italy); Montori, A. [LENS-European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino, FI (Italy); Akikusa, N. [Development Bureau Laser Device R and D Group, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan); Yamanishi, M. [Central Research Laboratories, Hamamatsu Photonics KK, Shizuoka 434-8601 (Japan)

    2013-03-25

    We report on the linewidth narrowing of a room-temperature mid-infrared quantum cascade laser by phase-locking to a difference-frequency-generated radiation referenced to an optical frequency comb synthesizer. A locking bandwidth of 250 kHz, with a residual rms phase-noise of 0.56 rad, has been achieved. The laser linewidth is narrowed by more than 2 orders of magnitude below 1 kHz, and its frequency is stabilized with an absolute traceability of 2 Multiplication-Sign 10{sup -12}. This source has allowed the measurement of the absolute frequency of a CO{sub 2} molecular transition with an uncertainty of about 1 kHz.

  11. Bulk-Quantity Synthesis and Conductive Properties of Comb-Like Dendritic ZnO Nanostructures

    Institute of Scientific and Technical Information of China (English)

    LIAO Zhi-Min; ZHANG Hong-Zhou; XU Jun; YU Da-Peng

    2005-01-01

    @@ Adopting a simple low-temperature (~ 500℃) vapour process, we have synthesized bulk quantity comb-like dendritic ZnO nanostructures in large area.An atomic force microscope equipped with Au-coated probes was employed to elucidate the current-voltage characteristic of the individual ZnO nanocomb.The connection electrodes were defined by depositing Pt wires using focused ion beam (FIB).A rectification effect was observed,while it was slightly suppressed compared with that of the previous reports.The good conductive properties of the sample can be attributed to the Ga+ ions implantation through the FIB process of electrode definition.We suggest that the material and the FIB method can be developed to fabricate novel nanosized devices.

  12. Comparison of different fiber amplifiers in Yb-doped fiber femtosecond optical frequency combs

    Science.gov (United States)

    Liu, H.; Cao, S.; Lin, B.; Fang, Z.

    2016-12-01

    Recently, Yb-doped fiber femtosecond optical frequency combs (Yb-FOFCs) have obtained high repetition rates and high power outputs, and the wavelengths can cover the visible region by using a photonic crystal fiber to broaden the spectrum. In this paper, f0 (carrier-envelope offset frequency) with a signal-to-noise ratio (SNR) of 40 dB is generated in an Yb-FOFC by adopting a scheme which includes the three processes of amplifying, broadening the spectrum and detecting f0, and optimizing the system parameters. The effects of two types of amplifiers which employ direct optical pulse amplification and self-similar amplification, respectively, on the output parameters of the amplifiers, minimal output power of the octave spectrum meeting f0 detection requirements, and the SNR of f0 are compared and analyzed in detail.

  13. Semi-permeable coatings fabricated from comb-polymers efficiently protect proteins in vivo

    Science.gov (United States)

    Liu, Mi; Johansen, Pål; Zabel, Franziska; Leroux, Jean-Christophe; Gauthier, Marc A.

    2014-11-01

    In comparison to neutral linear polymers, functional and architecturally complex (that is, non-linear) polymers offer distinct opportunities for enhancing the properties and performance of therapeutic proteins. However, understanding how to harness these parameters is challenging, and studies that capitalize on them in vivo are scarce. Here we present an in vivo demonstration that modification of a protein with a polymer of appropriate architecture can impart low immunogenicity, with a commensurably low loss of therapeutic activity. These combined properties are inaccessible by conventional strategies using linear polymers. For the model protein L-asparaginase, a comb-polymer bio-conjugate significantly outperformed the linear polymer control in terms of lower immune response and more sustained bioactivity. The semi-permeability characteristics of the coatings are consistent with the phase diagram of the polymer, which will facilitate the application of this strategy to other proteins and with other therapeutic models.

  14. Noncritical generation of nonclassical frequency combs via spontaneous rotational symmetry breaking

    CERN Document Server

    Navarrete-Benlloch, Carlos; de Valcárcel, Germán J

    2016-01-01

    Synchronously pumped optical parametric oscillators (SPOPOs) are optical cavities containing a nonlinear crystal capable of down-converting a frequency comb to lower frequencies. These have received a lot of attention lately, because their intrinsic multimode nature makes them compact sources of quantum correlated light with promising applications in modern quantum information technologies. In this work we show that SPOPOs are also capable of accessing the challenging but interesting regime where spontaneous symmetry breaking plays a crucial role in the quantum properties of the emitted light, difficult to access with any other nonlinear optical cavity. Apart from opening the possibility of studying experimentally this elusive regime of dissipative phase transitions, our predictions will have a practical impact, since we show that spontaneous symmetry breaking provides a specific spatiotemporal mode with perfect squeezing for any value of the system parameters, turning SPOPOs into robust sources of highly non...

  15. Characterizing the dynamics of cavity solitons and frequency combs in the Lugiato-Lefever equation

    Science.gov (United States)

    Parra-Rivas, P.; Gomila, D.; Gelens, L.

    2016-04-01

    In this work we present a detailed analysis of bifurcation structures of cavity solitons (CSs) and determine the different dynamical regimes in the Lugiato-Lefever (LL) equation in the presence of anomalous and normal chromatic dispersion regimes. Such an analysis has been shown to also increase our understanding of frequency combs (FCs). A FC consists in a set of equidistant spectral lines that can be used to measure light frequencies and time intervals more easily and precisely than ever before. Due to the duality between CSs in microcavities and FCs, we can gain information about the behavior of FCs by analyzing the dynamics of CSs. In the anomalous dispersion case bright CSs are organized in what is known as a homoclinic snaking bifurcation structure. In contrast, in the normal dispersion regime dark CSs are organized differently, in a structure known as collapsing snaking. Despite the differences in bifurcation scenarios, both types of CSs present similar temporal instabilities.

  16. Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation

    CERN Document Server

    Rogov, Andrei

    2016-01-01

    Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.

  17. Implementation of a single femtosecond optical frequency comb for molecular cooling

    CERN Document Server

    Shi, W

    2010-01-01

    We show that a single femtosecond optical frequency comb may be used to induce two-photon transitions between molecular vibrational levels to form ultracold molecules, e.g., KRb. The phase across an individual pulse in the pulse train is sinusoidally modulated with a carefully chosen amplitude and modulation frequency. Piecewise adiabatic population transfer is fulfilled to the final state by each pulse in the applied pulse train providing a controlled population accumulation in the final state. Detuning the pule train parameters to less than the frequency difference between the initial and final states changes the time scale of molecular dynamics but leads to the same complete population transfer to the cold state.

  18. A diode laser spectrometer at 634 nm and absolute frequency measurements using optical frequency comb

    Institute of Scientific and Technical Information of China (English)

    Yi Lin; Yuan Jie; Qi Xiang-Hui; Chen Wen-Lan; Zhou Da-Wei; Zhou Tong; Zhou Xiao-Ji; Chen Xu-Zong

    2009-01-01

    This paper reports that two identical external-cavity-diode-laser(ECDL)based spectrometers are constructed at 634 nm referencing on the hyperfine B-X transition a(80)8-4 of 127I2.The lasers are stabilized on the Doppler-free absorption signals using the third-harmonic detection technique.The instability of the stabilized laser is measured to be 2.8×10-12(after 1000 s)by counting the beat note between the two lasers.The absolute optical frequency of the transition is,for the first time,determined to be 472851936189.5 kHz by using an optical frequency comb referenced on the microwave caesium atomic clock.The uncertainty of the measurement is less than 4.9 kHz.

  19. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb.

    Science.gov (United States)

    Wu, Xuejian; Wei, Haoyun; Zhang, Hongyuan; Ren, Libing; Li, Yan; Zhang, Jitao

    2013-04-01

    We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

  20. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam.

    Science.gov (United States)

    Santamaria, Luigi; Sarno, Valentina Di; Natale, Paolo De; Rosa, Maurizio De; Inguscio, Massimo; Mosca, Simona; Ricciardi, Iolanda; Calonico, Davide; Levi, Filippo; Maddaloni, Pasquale

    2016-06-22

    We demonstrate continuous-wave cavity ring-down spectroscopy of a partially hydrodynamic molecular beam emerging from a buffer-gas-cooling source. Specifically, the (ν1 + ν3) vibrational overtone band of acetylene (C2H2) around 1.5 μm is accessed using a narrow-linewidth diode laser stabilized against a GPS-disciplined rubidium clock via an optical frequency comb synthesizer. As an example, the absolute frequency of the R(1) component is measured with a fractional accuracy of ∼1 × 10(-9). Our approach represents the first step towards the extension of more sophisticated cavity-enhanced interrogation schemes, including saturated absorption cavity ring-down or two-photon excitation, to buffer-gas-cooled molecular beams.

  1. Smooth coherent Kerr frequency combs generation with broadly tunable pump by higher order mode suppression

    CERN Document Server

    Huang, S -W; Yang, J; Yu, M; Kwong, D -L; Wong, C W

    2016-01-01

    High-Q microresonator has been suggested a promising platform for optical frequency comb generation, via dissipative soliton formation. To achieve a higher Q and obtain the necessary anomalous dispersion, $Si_3N_4$ microresonators made of multi-mode waveguides were previously implemented. However, coupling between different transverse mode families in the multi-mode waveguides results in periodic disruption of dispersion and quality factor, introducing perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional $Si_3N_4$ microresonators. Here, we report a novel design of $Si_3N_4$ microresonator such that single mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The microresonator is consisted of uniform single mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered wavegui...

  2. Broadband phase noise suppression in a Yb-fiber frequency comb.

    Science.gov (United States)

    Cingöz, A; Yost, D C; Allison, T K; Ruehl, A; Fermann, M E; Hartl, I; Ye, J

    2011-03-01

    We report a simple technique to suppress high-frequency phase noise of a Yb-based fiber optical frequency comb using an active intensity noise servo. Out-of-loop measurements of the phase noise using an optical heterodyne beat with a cw laser show suppression of phase noise by ≥7 dB out to Fourier frequencies of 100 kHz with a unity-gain crossing of ∼700 kHz. These results are enabled by the strong correlation between the intensity and phase noise of the laser. Detailed measurements of intensity and phase noise spectra, as well as transfer functions, reveal that the dominant phase and intensity noise contribution above ∼100 kHz is due to amplified spontaneous emission or other quantum noise sources.

  3. Multi-band local microwave signal generation based on an optical frequency comb generator

    Science.gov (United States)

    Wang, Wen Ting; Liu, Jian Guo; Sun, Wen Hui; Chen, Wei; Zhu, Ning Hua

    2015-03-01

    We propose and experimental demonstrate a new method to generate multi-band local microwave signals based on an optical frequency comb generator (OFCG) by applying an optical sideband injection locking technique and an optical heterodyning technique. The generated microwave signal can cover multi bands from S band to Ka band. A tunable multiband microwave signal spanning from 5 GHz to 40 GHz can be generated by the beating between the optical carrier and injection locked modulation sidebands in a photodetector without an optical filter. The wavelength of the slave laser can be continuously and near-linearly adjusted by proper changing its bias current. By tuning the bias current of the slave laser, the wavelength of that is matched to one of the modulation sidebands of the OFCG. The performance of the arrangement in terms of the tunability and stability of the generated microwave signal is also studied.

  4. A new Generation of Spectrometer Calibration Techniques based on Optical Frequency Combs

    CERN Document Server

    Schmidt, Piet O; Kimeswenger, Stefan

    2007-01-01

    Typical astronomical spectrographs have a resolution ranging between a few hundred to 200.000. Deconvolution and correlation techniques are being employed with a significance down to 1/1000 th of a pixel. HeAr and ThAr lamps are usually used for calibration in low and high resolution spectroscopy, respectively. Unfortunately, the emitted lines typically cover only a small fraction of the spectrometer's spectral range. Furthermore, their exact position depends strongly on environmental conditions. A problem is the strong intensity variation between different (intensity ratios {>300). In addition, the brightness of the lamps is insufficient to illuminate a spectrograph via an integrating sphere, which in turn is important to calibrate a long-slit spectrograph, as this is the only way to assure a uniform illumination of the spectrograph pupil. Laboratory precision laser spectroscopy has experienced a major advance with the development of optical frequency combs generated by pulsed femto-second lasers. These lase...

  5. PK/PD modelling of comb-shaped PEGylated salmon calcitonin conjugates of differing molecular weights.

    Science.gov (United States)

    Ryan, Sinéad M; Frías, Jesús M; Wang, Xuexuan; Sayers, Claire T; Haddleton, David M; Brayden, David J

    2011-01-20

    Salmon calcitonin (sCT) was conjugated via cysteine-1 to novel comb-shaped end-functionalised (poly(PEG) methyl ether methacrylate) (sCT-P) polymers, to yield conjugates of total molecular weights (MW) inclusive of sCT: 6.5, 9.5, 23 and 40kDa. The conjugates were characterised by HPLC and their in vitro and in vivo bioactivity was measured by cAMP assay on human T47D cells and following intravenous (i.v.) injection to rats, respectively. Stability against endopeptidases, rat serum and liver homogenates was assessed. There were linear and exponential relationships between conjugate MW with potency and efficacy respectively, however the largest MW conjugate still retained 70% of E(max) and an EC(50) of 3.7nM. In vivo, while free sCT and the conjugates reduced serum [calcium] to a maximum of 15-30% over 240 min, the half-life (T(1/2)) was increased and the area under the curve (AUC) was extended in proportion to conjugate MW. Likewise, the polymer conferred protection on sCT against attack by trypsin, chymotrypsin, elastase, rat serum and liver homogenates, with the best protection afforded by sCT-P (40kDa). Mathematical modelling accurately predicted the MW relationships to in vitro efficacy, potency, in vivo PK and enzymatic stability. With a significant increase in T(1/2) for sCT, the 40kDa MW comb-shaped PEG conjugate of sCT may have potential as a long-acting injectable formulation.

  6. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.

    2016-03-31

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  7. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy

    Science.gov (United States)

    Spaun, Ben; Changala, P. Bryan; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-05-01

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C-H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.

  8. Dual Comb Raman Spectroscopy on Cesium Hyperfine Transitions-Toward a Stimulate Raman Spectrum on CF4 Molecule

    Science.gov (United States)

    Liu, Tze-Wei; Hsu, Yen-Chu; Cheng, Wang-Yau

    2015-06-01

    Raman spectroscopy is an important spectroscopic technique used in chemistry to provide a fingerprint by which molecules can be identified. It helps us to observe vibration- rotation, and other low-frequency modes in a system. Dual comb Raman spectroscopy allows measuring a wide bandwidth with high resolution in microseconds. The stimulate Raman spectroscopy had been performed in early days where the nonlinear conversion efficiency depended on laser peak power. Hence we propose an approach for rapidly resolving the Raman spectroscopy of CF4 molecule by two Ti:sapphire comb lasers. Our progress on this proposal will be presented in the conference. First, we have realized a compact dual Ti:sapphire comb laser system where the dual Ti:sapphire laser system possesses the specification of 1 GHz repetition rate. In our dual comb system, 1 GHz repetition rate, 100 kHz Δfrep and 2.4 THz optical filter are chosen according to the demands of our future works on spectroscopy. Therefore, the maximum mode number within free spectral range is 5*103, and the widest range of dual-comb based spectra in that each spectrum could be uniquely identified is 5 THz. The actual bandwidth is determined by the employed optical filter and is set to be 2.4 THz here, so that the corresponding data acquisition time is 10 μs. Secondly, since the identification of the tremendous spectral lines of CF4 molecule relies on a stable reference and a reliable data-retrieving system, we propose a first-step experiment on atomic system where the direct 6S-8S 822-nm two-photon absorption and 8S-6P3/2 (794 nm) enhanced stimulate Raman would be realized directly by using Ti:sapphire laser. We have successfully performed direct comb laser two-photon spectroscopy for both with and without middle-level enhanced. For the level enhanced two-photon spectrum, our experimental setup achieves Doppler-free spectrum and a record narrow linewidth (1 MHz). T.-W. Liu, C.-M. Wu, Y.-C. Hsu and W.-Y. Cheng, Appl. Phys. B

  9. A Broadband, Spectrally Flat, High Rep-rate Frequency Comb: Bandwidth Scaling and Flatness Enhancement of Phase Modulated CW through Cascaded Four-Wave Mixing

    CERN Document Server

    Supradeepa, V R

    2010-01-01

    We demonstrate a scheme to scale the bandwidth by several times while enhancing spectral flatness of frequency combs generated by intensity and phase modulation of CW lasers using cascaded four-wave mixing in highly nonlinear fiber.

  10. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection.

    Science.gov (United States)

    Wu, Judy Y; Smart, Matthew D; Anelli, Carol M; Sheppard, Walter S

    2012-03-01

    Nosema ceranae and pesticide exposure can contribute to honey bee health decline. Bees reared from brood comb containing high or low levels of pesticide residues were placed in two common colony environments. One colony was inoculated weekly with N. ceranae spores in sugar syrup and the other colony received sugar syrup only. Worker honey bees were sampled weekly from the treatment and control colonies and analyzed for Nosema spore levels. Regardless of the colony environment (spores+syrup added or syrup only added), a higher proportion of bees reared from the high pesticide residue brood comb became infected with N. ceranae, and at a younger age, compared to those reared in low residue brood combs. These data suggest that developmental exposure to pesticides in brood comb increases the susceptibility of bees to N. ceranae infection.

  11. Theoretical Analysis of Tunable Single-Core Comb Filter Based on MZI

    Directory of Open Access Journals (Sweden)

    J. N. Sikta

    2014-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this work, a theoretical analysis of single core tunable comb filter based on Mach-Zehnder (M-Z interferometer is proposed and demonstrated. The proposed filter consists of one QWP, one HWP, one SMF and onePMF segment consists of two PMF lengths. Depending on the dynamic settings of wavelength of the input

  12. Frequency-comb-assisted precision laser spectroscopy of CHF{sub 3} around 8.6 μm

    Energy Technology Data Exchange (ETDEWEB)

    Gambetta, Alessio; Coluccelli, Nicola; Cassinerio, Marco; Fernandez, Toney Teddy; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca, E-mail: gianluca.galzerano@polimi.it [Dipartimento di Fisica - Politecnico di Milano and Istituto di Fotonica e Nanotecnologie - CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Castrillo, Antonio; Fasci, Eugenio; Gianfrani, Livio [Dipartimento di Matematica e Fisica - Seconda Università di Napoli, Viale Lincoln 5, 81100 Caserta (Italy); Ceausu-Velcescu, Adina [Laboratoire de Mathématiques et Physique, Université de Perpignan, Via Domitia EA 4217, F-66860 Perpignan (France); Santamaria, Luigi; Di Sarno, Valentina [CNR-INO, Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); Maddaloni, Pasquale [CNR-INO, Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); INFN, Istituto Nazionale di Fisica Nucleare, Sez. Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, FI (Italy); De Natale, Paolo [INFN, Istituto Nazionale di Fisica Nucleare, Sez. Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, FI (Italy); CNR-INO, Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze (Italy)

    2015-12-21

    We report a high-precision spectroscopic study of room-temperature trifluoromethane around 8.6 μm, using a CW quantum cascade laser phase-locked to a mid-infrared optical frequency comb. This latter is generated by a nonlinear down-conversion process starting from a dual-branch Er:fiber laser and is stabilized against a GPS-disciplined rubidium clock. By tuning the comb repetition frequency, several transitions falling in the υ{sub 5} vibrational band are recorded with a frequency resolution of 20 kHz. Due to the very dense spectra, a special multiple-line fitting code, involving a Voigt profile, is developed for data analysis. The combination of the adopted experimental approach and survey procedure leads to fractional accuracy levels in the determination of line center frequencies, down to 2 × 10{sup −10}. Line intensity factors, pressure broadening, and shifting parameters are also provided.

  13. Highly fluorinated comb-shaped copolymers as proton exchange membranes (PEMs): improving PEM properties through rational design

    Energy Technology Data Exchange (ETDEWEB)

    Norsten, T.B.; Guiver, M.D.; Murphy, J.; Ding, J. [Institute for Chemical Process and Environmental Technology, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6 (Canada); Astill, T.; Holdcroft, S. [Institute for Fuel Cell Innovation, National Research Council, 3250 East Mall, Vancouver, BC V6T 1W5 (Canada); Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 (Canada); Navessin, T. [Institute for Fuel Cell Innovation, National Research Council, 3250 East Mall, Vancouver, BC V6T 1W5 (Canada); Frankamp, B.L.; Rotello, V.M. [Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (United States)

    2006-09-18

    A new class of comb-shaped polymers for use as a proton conducting membrane is presented. The polymer is designed to combine the beneficial physical, chemical, and structural attributes of fluorinated Nafion-like materials with higher-temperature, polyaromatic-based polymer backbones. The comb-shaped polymer unites a rigid, polyaromatic, hydrophobic backbone with lengthy hydrophilic polymer side chains; this combination affords direct control over the polymer nanostructure within the membrane and results in distinct microphase separation between the opposing domains. The microphase separation serves to compartmentalize water into the hydrophilic polymer side chain domains, resulting in effective membrane water management and excellent proton conductivities. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  14. Hierarchical porous nitrogen doped carbon derived from horn comb as anode for sodium-ion storage with high performance

    Science.gov (United States)

    Ou, Junke; Yang, Lin; Xi, Xianghui

    2017-01-01

    Horn comb, an abundant biomass waste, has been successfully converted into a hierarchical porous nitrogen doped carbon (HPNDC) via a simple and costeffective approach. Tested as anode for sodium ion batteries (SIBs), horn comb derived carbon shows good rate capability and cycling stability, delivering a high initial charge capacity of 400 mAh g-1 at 100 mA g-1, retaining a reversible capacity of 112 mAh g-1 at 5 A g-1, and exhibiting a capacity of 241 mAh g-1 at 100 mA g-1 after 100 cycles. These superior electrochemical performances can be ascribed to its unique hierarchical pore structure combined with appropriate nitrogen doping effects. We believe that our works will be helpful in promoting the development of high-rate and low-cost sodium ion batteries for large-scale energy storage systems. [Figure not available: see fulltext.

  15. Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity

    Science.gov (United States)

    Kato, Takumi; Chen-Jinnai, Akitoshi; Nagano, Takuma; Kobatake, Tomoya; Suzuki, Ryo; Yoshiki, Wataru; Tanabe, Takasumi

    2016-07-01

    A numerical and experimental study of Kerr frequency comb generation in a silica toroid microcavity is presented. We use a generalized mean-field Lugiato-Lefever equation and solve it with the split-step Fourier method. We observe that a stable mode-locked regime can be accessed when we reduce the input power after strong pumping due to the bistable nature of the nonlinear cavity system used. The experimental results agree well with the results of the numerical analysis, where we obtain a low-noise Kerr comb spectrum by gradually reducing the pumping input after strong pumping. This finding complements the results obtained by a previous wavelength scanning method and clarifies the procedure for achieving mode-locked states in such high-Q microcavity systems.

  16. Two-dimensional locally resonant elastic metamaterials with chiral comb-like interlayers: Bandgap and simultaneously double negative properties.

    Science.gov (United States)

    Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-06-01

    In this paper, bandgap and dynamic effective properties of two-dimensional elastic metamaterials with a chiral comb-like interlayer are studied by using the finite element method. The effects of the geometrical parameters of the chiral comb-like interlayer on the band edges are investigated and discussed. Combined with the analysis of the vibration modes at the band edges, equivalent spring-mass/pendulum models are developed to investigate the mechanisms of the bandgap generation. The analytically predicted results of the band edges, including the frequency where the double negative properties appear, and the numerical ones are generally in good agreement. The research findings in this paper have relevant engineering applications of the elastic metamaterials in the low frequency range.

  17. An astro-comb calibrated solar telescope to study solar activity and search for the radial velocity signature of Venus

    Science.gov (United States)

    Phillips, David; HARPS-N Collaboration

    2017-01-01

    We recently demonstrated sub-m/s sensitivity in measuring the radial velocity (RV) between the Earth and Sun using a simple solar telescope feeding the HARPS-N spectrograph at the Italian National Telescope, which is calibrated with a laser frequency comb calibrator optimized for calibrating high resolution spectrographs and referred to as an astro-comb. We are using the solar telescope to characterize the effects of stellar (solar) RV jitter due to activity on the solar surface over the course of many hours every clear day. With the help of solar satellites such as the Solar Dynamics Observatory (SDO), we are characterizing the correlation between observed RV and detailed imaging of the solar photosphere. We plan to use these tools to mitigate the effects of stellar jitter with the goal of the detection of Venus from its solar RV signature, thus showing the potential of the RV technique to detect true Earth-twins.

  18. Solitons and frequency combs in silica microring resonators: Interplay of the Raman and higher-order dispersion effects

    CERN Document Server

    Milián, Carles; Taki, Majid; Yulin, Alexey V; Skryabin, Dmitry V

    2015-01-01

    The influence of Raman scattering and higher order dispersions on solitons and frequency comb generation in silica microring resonators is investigated. The Raman effect introduces a threshold value in the resonator quality factor above which the frequency locked solitons can not exist and, instead, a rich dynamics characterized by generation of self-frequency shift- ing solitons and dispersive waves is observed. A mechanism of broadening of the Cherenkov radiation through Hopf instability of the frequency locked solitons is also reported.

  19. A facile metal-free "grafting-from" route from acrylamide-based substrate toward complex macromolecular combs

    KAUST Repository

    Zhao, Junpeng

    2013-01-01

    High-molecular-weight poly(N,N-dimethylacrylamide-co-acrylamide) was used as a model functional substrate to investigate phosphazene base (t-BuP 4)-promoted metal-free anionic graft polymerization utilizing primary amide moieties as initiating sites. The (co)polymerization of epoxides was proven to be effective, leading to macromolecular combs with side chains being single- or double-graft homopolymer, block copolymer and statistical copolymer. © 2013 The Royal Society of Chemistry.

  20. 汊麻棉精梳涡流纱的开发%Development of Hemp Cotton Combed Vortex Yarn

    Institute of Scientific and Technical Information of China (English)

    刘必英; 戴俊; 凡启光; 王冬成

    2011-01-01

    为开发汉麻棉精梳涡流纱,对比了汉麻与苎麻、亚麻及棉纤维的性能指标、截面结构,阐述了汉麻纤维的性能特点,运用涡流纺纱技术纺制汉麻棉混纺精梳纱.通过汉麻预处理,正确选择原料混和工艺,合理配置前纺各工序及涡流纺纱机工艺参数,成功纺制出汉麻/棉60/40 21.6 tex混纺精梳涡流纱,且成纱毛羽较环锭纱得到大幅度降低.认为汉麻棉精梳涡流纱具有较好的开发前景,应进一步改进工艺,提高成纱强力和制成率,降低生产成本,方能更好地满足产品开发的需求.%To develop hemp cotton combed vortex yarn, property index and cross section structure of hemp, flax and cotton were contrasted. Property of hemp was introduced. Vortex spinning technology was used and hemp cotton blended combed yarn was spun. Hemp was pretreated, raw material and blending processing were selected correctly, processing parameters in fore-spinning process and vortex spinning were set rationally, hemp/cotton 60/40 21.6 tex blended combed vortex yarn was spun successfully. Hairiness was reduced greatly. It is considered that the development prospects of hemp cotton blended combed yarn is better,the processing should be modified further,yarn strength and finished product rate should be increased and production cost should be reduced, demands of product development can be reached well.

  1. Detection of Aβ-interacting proteins via a novel Aβ-adsorbents that use immobilized regular comb polymer.

    Science.gov (United States)

    Xu, Li; Wang, Conggang; Chen, Linli; Ren, Jun; Xie, Jian; Jia, Lingyun

    2014-11-15

    A detailed study of individual Aβ-interacting proteins has always been a difficult task because Aβ has a wide range of molecular weights and can easily form aggregates. In this study, we established a novel method for isolating Aβ-interacting proteins by utilizing regular comb polymer immobilized on Sepharose CL-4B. To achieve site-directed ligation of Aβ, a cysteine residue was added at the N-terminus of Aβ. Asp and Asp12, which have 2 and 13 carboxyl groups, respectively, were selected as the carriers for the regular comb polymer. Firstly, the N-termini of Asp and Asp12 were immobilized on Sepharose CL-4B. Next, modified Aβ molecules were coupled to the carboxyl groups of Asp and Asp12 using bromoethylamine as a spacer. To obtain homogeneous comb polymer, the efficiency of the reaction was controlled during the synthesis process. Thioflavin T staining indicated that homogeneous Aβ was achieved. The prepared Aβ-adsorbents were used to isolate Aβ-interacting proteins from mice brain extracts. The results showed that the adsorption capacity of the Aβ-adsorbents for proteins in mice brain extracts increased with the ages of the animals. SDS-PAGE analysis of the Aβ-interacting proteins showed that many kinds of brain proteins were selectively adsorbed by the Aβ adsorbents, and the levels of some of these proteins varied with the ages of the animals. The results indicated that Aβ-interacting proteins could be successfully obtained through the use of immobilized comb polymer. Similar method could also be used to isolate other amyloid-interacting proteins.

  2. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    Science.gov (United States)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  3. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools

    CERN Document Server

    Li, X L; Corder, C; Chen, Y; Zhao, P; Allison, T K

    2016-01-01

    We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensit...

  4. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools

    Science.gov (United States)

    Li, Xinlong; Reber, Melanie A. R.; Corder, Christopher; Chen, Yuning; Zhao, Peng; Allison, Thomas K.

    2016-09-01

    We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensitive femtosecond time-resolved spectroscopy and cavity-enhanced high-order harmonic generation.

  5. In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1).

    Science.gov (United States)

    Li, Chih-Hao; Glenday, Alexander G; Benedick, Andrew J; Chang, Guoqing; Chen, Li-Jin; Cramer, Claire; Fendel, Peter; Furesz, Gabor; Kärtner, Franz X; Korzennik, Sylvain; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2010-06-07

    Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-Pérot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an in-situ technique to determine the systematic shifts of astro-comb lines due to finite Fabry-Pérot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy better than 10 cm/s.

  6. \\emph{In-situ} determination of astro-comb calibrator lines to better than 10 cm s$^{-1}$

    CERN Document Server

    Li, C -H; Benedick, A J; Chang, G; Chen, L -J; Cramer, C; Fendel, P; Furesz, G; Kärtner, F; Korzennik, S; Phillips, D; Sasselov, D; Szentgyorgyi, A; Walsworth, R

    2010-01-01

    Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-P\\'erot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an \\emph{in-situ} technique to determine the systematic shifts of astro-comb lines due to finite Fabry-P\\'erot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy...

  7. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Jian-hua Li; You-yi Xu; Jian-hua Wang; Chun-hui Du

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4-hydroxyphenyl) maleimide) (SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate (PEGMA) side groups was achieved by atom transfer radical polymerization (ATRP). The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC). From thermogravimetric analysis (TGA), the decomposition temperature of SHMI-g-PEGMA is lower than that of SHMI, and the graft ratio of PEGMA in the SHMI is 18.6%. The experimental results of solubilities showed that SHMI, SHMI-Br and SHMI-g-PEGMA had excellent solubility in polar solvents, such as DMF, DMSO and NMP. SHMI-g-PEGMA had higher solubilities in H_2O and methanol, while lower solubility in CHCl_3 than SHMI and SHMI-Br. PVDF blend membranes were prepared via the standard immersion precipitation phase inversion process, using amphiphilic SHMI-g-PEGMA copolymer as additives. The morphology and hydrophilicity of the blend membrane surfaces were characterized by SEM and water contact angle. It is demonstrated that the blend membranes display enhanced hydrophilicity compared to unmodified PVDF membranes. Finally, the permeation and anti-fouling properties were investigated. The result shows that amphiphilic SHMI-g-PEGMA copolymer increases the permeatability and anti-fouling property of PVDF membranes greatly.

  8. Vitalius nondescriptus comb. nov. (Araneae: Theraphosidae: Theraphosinae: an example of theraphosid taxonomic chaos

    Directory of Open Access Journals (Sweden)

    Rogério Bertani

    2012-10-01

    Full Text Available The male holotype of Hapalopus nondescriptus Mello-Leitão, 1926 is redescribed, illustrated and compared with freshly collected specimens from the type locality. The only difference noted among the holotype and the new material concerns the development of the subapical keel. Its taxonomic position is reinterpreted and discussed, resulting in its transfer to the genus Vitalius Lucas, Silva Junior & Bertani, 1993, and thus making the new combination Vitalius nondescriptus (Mello-Leitão, 1926 comb. nov. The female is described for the first time and the morphological variations in two males, born from the female used in the description, is presented and illustrated. The male differs from those of other Vitalius species by the palpal bulb with short apical keel and bifid tibial spur with narrow prolateral branch and almost straight retrolateral branch. The female differs from those of other Vitalius species by urticating hair of 'type I' having the region 'a' shorter than region 'b'. Hapalopus nondescriptus has a confusing taxonomic history, since the holotype specimen was also used to describe another theraphosid species (Cyclosternum melloleitaoi Bücherl, Thimoteo & Lucas, 1971 which was, consequently, considered its objective synonym. Thus, we consider it a clear example of theraphosid taxonomical chaos.

  9. Non-planar femtosecond enhancement cavity for VUV frequency comb applications

    CERN Document Server

    Winkler, Georg; Seres, Jozsef; Seres, Enikoe; Schumm, Thorsten

    2016-01-01

    External passive femtosecond enhancement cavities (fsECs) are widely used to increase the efficiency of non-linear conversion processes like high harmonic generation (HHG) at high repetition rates. Their performance is often limited by beam ellipticity, caused by oblique incidence on spherical focusing mirrors. We introduce a novel three-dimensionally folded variant of the typical planar bow-tie resonator geometry that guarantees circular beam profiles, maintains linear polarization, and allows for a significantly tighter focus as well as a larger beam cross-section on the cavity mirrors. The scheme is applied to improve focusing in a Ti:Sapphire based VUV frequency comb system, targeting the 5th harmonic around 160 nm (7.8 eV) towards high-precision spectroscopy of the low-energy isomer state of Thorium-229. It will also be beneficial in fsEC-applications with even higher seeding and intracavity power where the damage threshold of the mirrors becomes a major concern.

  10. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.

    Science.gov (United States)

    Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng

    2014-01-13

    Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.

  11. Reclassification of Arthrobacter sanguinis (Mages et al. 2009) as Haematomicrobium sanguinis gen. nov., comb. nov.

    Science.gov (United States)

    Schumann, Peter; Busse, Hans-Jürgen

    2016-12-29

    Due to its separate position within the genus Arthrobacter in many published phylogenetic trees and its incomplete chemotaxonomic characterization the type strain of Arthrobacter sanguinis was subjected to analysis of its chemotaxonomic traits including quinone system, polar lipid profile, peptidoglycan structure and fatty acid profile. The fatty acid profile consisted of the major compounds (>10 %) iso-C15:0, anteiso-C15:0 and anteiso-C17:0. It showed a quinone system with the predominating menaquinone MK-9(H2). Both, fatty acid profile and quinone system are in line with the description of the genus Arthrobacter. The peptidoglycan type was L-Lys - L-Ala - Gly (A11.50) which is unique within the genus Arthrobacter sensu lato and also among Arthrobacter species recently reclassified in the genera Sinomonas, Paenarthrobacter and Pseudarthrobacter. The polar lipid profile was very complex and unique among the group of taxa in containing relatively high proportions of several unidentified lipids. In conclusion from its phylogenetic position and its chemotaxonomic distinguishability from related taxa here the reclassification of A. sanguinis in a new genus and species, Haematomicrobium sanguinis gen. nov., comb. nov, is proposed. The type strain is 741T (=CCUG 46407T=DSM 21259T).

  12. Parasitic effects in superconducting quantum interference device-based radiation comb generators

    Energy Technology Data Exchange (ETDEWEB)

    Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy); NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Solinas, P., E-mail: paolo.solinas@spin.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy)

    2015-12-07

    We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.

  13. A new method to generate relativistic comb buncheswith tunable subpicosecond spacing

    Institute of Scientific and Technical Information of China (English)

    DU Ying-Chao; HUANG Wen-Hui; TANG Chuan-Xiang

    2012-01-01

    We propose and analyze a scheme to produce comb bunches,i.e.a bunch consisting of micro-bunch trains,with tunable subpicosecond spacing.In the scheme,the electron beam is first deflected by a deflecting cavity which introduces a longitudinal-dependent linear transverse kick to the particles.After passing through a drift space,the transverse beam size is linearly coupled to the longitudinal position of the particle inside the beam,and a mask is placed there to tailor the beam,then the mask distribution is imprinted on the beam's longitudinal distribution.A quadrupole magnet and another deflecting cavity are used in the beam line to compensate the transverse angle due to the first deflecting cavity.Analysis shows that the number,length,and spacing of the trains can be controlled through the parameters of the deflecting cavity and the mask.Such electron bunch trains can be applied to an infrared free electron laser,a plasma-wakefield accelerator and a supper-radiance THz source.

  14. Gigahertz Self-referenceable Frequency Comb from a Semiconductor Disk Laser

    CERN Document Server

    Zaugg, Christian A; Mangold, Mario; Mayer, Aline S; Link, Sandro M; Emaury, Florian; Golling, Matthias; Gini, Emilio; Saraceno, Clara J; Tilma, Bauke W; Keller, Ursula

    2014-01-01

    We present a 1.75-GHz self-referenceable frequency comb from a vertical external-cavity surface-emitting laser (VECSEL) passively modelocked with a semiconductor saturable absorber mirror (SESAM). The VECSEL delivers 231-fs pulses with an average power of 100 mW and is optimized for stable and reliable operation. The optical spectrum was centered around 1038 nm and nearly transform-limited with a full width half maximum (FWHM) bandwidth of 5.5 nm. The pulses were first amplified to an average power of 5.5 W using a backward-pumped Yb-doped double-clad large mode area (LMA) fiber and then compressed to 85 fs with 2.2 W of average power with a passive LMA fiber and transmission gratings. Subsequently, we launched the pulses into a highly nonlinear photonic crystal fiber (PCF) and generated a coherent octave-spanning supercontinuum (SC). We then detected the carrier-envelope offset (CEO) frequency (fCEO) beat note using a standard f-to-2f-interferometer. The fCEO exhibits a signal-to-noise ratio of 17 dB in a 10...

  15. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy

    Science.gov (United States)

    Rutkowski, Lucile; Morville, Jérôme

    2017-01-01

    We have recently introduced the Vernier-based Direct Frequency Comb Cavity-Enhanced Spectroscopy technique which allows us to record broadband spectra at high sensitivity and GHz resolution (Rutkowski and Morville, 2014) [1]. We discuss here the effect of Vernier filtering on the observed lineshapes in the 3 ν + δ band of water vapor and the entire A-band of oxygen around 800 nm in ambient air. We derive expressions for the absorption profiles resulting from the continuous Vernier filtering method, testing them on spectra covering more than 2000 cm-1 around 12,500 cm-1. With 31,300 independent spectral elements acquired at the second time scale, an absorption baseline noise of 2 ×10-8cm-1 is obtained, providing a figure of merit of 1.1×10-10 cm-1/√{ Hz } per spectral element with a cavity finesse of 3000 and a cavity round-trip length around 3.3 m.

  16. Amphiphilic comb-like polymer for harvest of conductive nano-cellulose.

    Science.gov (United States)

    Choi, Jaeyoo; Park, Subeom; Cheng, Jie; Park, Minsung; Hyun, Jinho

    2012-01-01

    In this study, electrically conductive bacterial cellulose (BC) was prepared by culturing Gluconacetobacter xylinus in a carbon nanotube (CNT)-dispersed medium. The CNTs were dispersed by adopting a non-covalent approach in the presence of non-ionic amphiphilic comb-like polymer (CLP). Specifically, the hydrophobic backbone of CLP was chemophysically attached to the surface of the CNTs and the hydrophilic side chains were released freely toward the medium in an aqueous environment. CLP-modified CNTs were stable and did not show any noticeable sediment, even after centrifugation at 15,000 rpm for 30 min. Notably, the dispersion solution of CLP-modified CNTs was stable at room temperature for several months because the long-range entropic repulsion among polymer-decorated tubes acted as a barrier to aggregation. The morphology of the BC membrane was studied by field-emission scanning electron microscopy. The presence of CLP bound to the CNT surface was characterized by Fourier transform infrared spectroscopy and the conductivity of the CNT-incorporated BC membrane was measured by four-probe measurements.

  17. Raman induced soliton self-frequency shift in microresonator Kerr frequency combs

    CERN Document Server

    Karpov, Maxim; Kordts, Arne; Brasch, Victor; Pfeiffer, Martin; Zervas, Michail; Geiselmann, Michael; Kippenberg, Tobias J

    2015-01-01

    The formation of temporal dissipative solitons in continuous wave laser driven microresonators enables the generation of coherent, broadband and spectrally smooth optical frequency combs as well as femtosecond pulses with compact form factor. Here we report for the first time on the observation of a Raman-induced soliton self-frequency shift for a microresonator soliton. The Raman effect manifests itself in amorphous SiN microresonator based single soliton states by a spectrum that is hyperbolic secant in shape, but whose center is spectrally red-shifted (i.e. offset) from the continuous wave pump laser. The Raman induced spectral red-shift is found to be tunable via the pump laser detuning and grows linearly with peak power. The shift is theoretically described by the first order shock term of the material's Raman response, and we infer a Raman shock time of 20 fs for amorphous SiN. Moreover, we observe that the Raman induced frequency shift can lead to a cancellation or overcompensation of the soliton recoi...

  18. Developments of frequency comb microwave reflectometer for the interchange mode observations in LHD plasma

    Science.gov (United States)

    Soga, R.; Tokuzawa, T.; Watanabe, K. Y.; Tanaka, K.; Yamada, I.; Inagaki, S.; Kasuya, N.

    2016-02-01

    We have upgraded the multi-channel microwave reflectometer system which uses a frequency comb as a source and measure the distribution of the density fluctuation caused by magneto-hydro dynamics instability. The previous multi-channel system was composed of the Ka-band, and the U-band system has been developed. Currently, the U-band system has eight frequency channels, which are 43.0, 45.0, 47.0, 49.0, 51.0, 53.0, 55.0, and 57.0 GHz, in U-band. Before the installation to the Large Helical Device (LHD), several tests for understanding the system characteristics, which are the phase responsibility, the linearity of output signal, and others, have been carried out. The in situ calibration in LHD has been done for the cross reference. In the neutral beam injected plasma experiments, we can observe the density fluctuation of the interchange mode and obtain the radial distribution of fluctuation amplitude.

  19. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    Science.gov (United States)

    Peterson, Aidan J; Mallin, Daniel R; Francis, Nicole J; Ketel, Carrie S; Stamm, Joyce; Voeller, Rochus K; Kingston, Robert E; Simon, Jeffrey A

    2004-07-01

    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing.

  20. Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance

    Science.gov (United States)

    Engene, Niclas; Tronholm, Ana; Salvador-Reyes, Lilibeth A.; Luesch, Hendrik; Paul, Valerie J.

    2015-01-01

    Many tropical marine cyanobacteria are prolific producers of bioactive secondary metabolites with ecological relevance and promising pharmaceutical applications. One species of chemically rich, tropical marine cyanobacteria that was previously identified as Symploca hydnoides or Symploca sp. corresponds to the traditional taxonomic definition of Phormidium penicillatum. In this study, we clarified the taxonomy of this biomedically and ecologically important cyanobacterium by comparing recently collected specimens with the original type material and the taxonomic description of P. penicillatum. Molecular phylogenetic analyses of the 16S rRNA gene and the 16S-23S ITS regions showed that P. penicillatum formed an independent clade sister to the genus Symploca, and distantly related to Phormidium and Lyngbya. We propose the new genus Caldora for this clade, with Caldora penicillata comb. nov. as the type species and designate as the epitype the recently collected strain FK13-1. Furthermore, the production of bioactive secondary metabolites among various geographically dispersed collections of C. penicillata showed that this species consistently produced the metabolite dolastatin 10 and/or the related compound symplostatin 1, which appear to be robust autapomorphic characters and chemotaxonomic markers for this taxon. PMID:26327714

  1. Electrostatic Comb-Drive Actuator with High In-Plane Translational Velocity

    Directory of Open Access Journals (Sweden)

    Yomna M. Eltagoury

    2016-10-01

    Full Text Available This work reports the design and opto-mechanical characterization of high velocity comb-drive actuators producing in-plane motion and fabricated using the technology of deep reactive ion etching (DRIE of silicon-on-insulator (SOI substrate. The actuators drive vertical mirrors acting on optical beams propagating in-plane with respect to the substrate. The actuator-mirror device is a fabrication on an SOI wafer with 80 μm etching depth, surface roughness of about 15 nm peak to valley and etching verticality that is better than 0.1 degree. The travel range of the actuators is extracted using an optical method based on optical cavity response and accounting for the diffraction effect. One design achieves a travel range of approximately 9.1 µm at a resonance frequency of approximately 26.1 kHz, while the second design achieves about 2 µm at 93.5 kHz. The two specific designs reported achieve peak velocities of about 1.48 and 1.18 m/s, respectively, which is the highest product of the travel range and frequency for an in-plane microelectromechanical system (MEMS motion under atmospheric pressure, to the best of the authors’ knowledge. The first design possesses high spring linearity over its travel range with about 350 ppm change in the resonance frequency, while the second design achieves higher resonance frequency on the expense of linearity. The theoretical predications and the experimental results show good agreement.

  2. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively.

    Science.gov (United States)

    Stephan, Roger; Grim, Christopher J; Gopinath, Gopal R; Mammel, Mark K; Sathyamoorthy, Venugopal; Trach, Larisa H; Chase, Hannah R; Fanning, Séamus; Tall, Ben D

    2014-10-01

    Recently, a taxonomical re-evaluation of the genus Enterobacter, based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species Enterobacter pulveris, Enterobacter helveticus and Enterobacter turicensis should be reclassified as novel species of the genus Cronobacter. In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA-DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus Enterobacter are not members of the genus Cronobacter, nor do they belong to the re-evaluated genus Enterobacter. Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying Enterobacter pulveris and Enterobacter helveticus in the genus Franconibacter gen. nov. as Franconibacter pulveris comb. nov. (type strain 601/05(T) = LMG 24057(T) = DSM 19144(T)) and Franconibacter helveticus comb. nov. (type strain 513/05(T) = LMG 23732(T) = DSM 18396(T)), respectively, and Enterobacter turicensis in the genus Siccibacter gen. nov. as Siccibacter turicensis comb. nov. (type strain 508/05(T) = LMG 23730(T) = DSM 18397(T)).

  3. Production Situation and Development Suggestion of Chinese Combed Yarn%我国精梳纱生产现状及开发建议

    Institute of Scientific and Technical Information of China (English)

    傅恩福

    2011-01-01

    分析我国精梳纱的生产现状并提出开发建议.通过调查不同精梳工艺产品、不同原料精梳纱、不同纺纱形式精梳纱的生产现状,分析了产品存在的问题.指出:应加大特细号、色纺、多组分混纺及特殊捻度精梳纱的开发力度,充分利用新型纺纱设备开发品质好、结构特殊的精梳纱产品.同时加大新纤维应用力度,加强纺纱工艺技术创新,充分发挥高效能精梳机的技术优势,强化精梳质量控制,促进高质量、高档次、高附加值精梳纱线的生产.%The current production situation of Chinese combed yarn was analyzed, and the development suggestion was proposed. Product existent problems were analyzed through researching combed yarn with different processing, different material and different spinning form. It is pointed out that the development of super fine yarn, colored spinning,multicomponent blending and special twist combed yarn can be increased, the new spinning equipment can be used to develop combed yarn with good quality and special form. At the same times, application of new fiber and innovation of spinning processing technology can be increased, the technical advantages of high-effect combing machine can be used,and the combed yarn quality can be controlled exactly. Then, the production of combed yarn with high quality, high level and high value-added can be ensured.

  4. Measurements of CO2, CH4, H2O, and HDO over a 2-km Outdoor Path with Dual-Comb Spectroscopy

    Science.gov (United States)

    Rieker, G. B.; Giorgetta, F. R.; Coddington, I.; Swann, W. C.; Sinclair, L. C.; Cromer, C.; Baumann, E.; Newbury, N. R.; Kofler, J.; Petron, G.; Sweeney, C.; Tans, P. P.

    2013-12-01

    We demonstrate simultaneous sensing of CO2, CH4, H2O, and HDO over a 2-km outdoor open air path using dual-frequency-comb absorption spectroscopy (DCS). Our implementation of the DCS technique simultaneously offers broad spectral coverage (>8 THz, 267 cm-1) and fine spectral point spacing (100 MHz, 0.0033 cm-1) with a coherent eye-safe beam. The spectrometer, which is adapted from [Zolot et al., 2012], consists of two mutually coherent Erbium-doped fiber frequency-comb lasers which create a broad spectrum of perfectly spaced narrow linewidth frequency elements (';comb teeth') near 1.6 μm. The comb light is transmitted by a telescope and active steering mirrors from the roof of the NIST Boulder laboratory to a 50-cm flat mirror located 1 km away. The return light is received by a second telescope and carried via multimode fiber to a detector. The greenhouse gas absorption attenuates the teeth from the two combs that are coincident with the relevant molecular resonant frequencies. We purposefully offset the frequencies between the two frequency combs in a Vernier-like fashion so that each pair of comb teeth from the two combs results in a unique rf heterodyne beat frequency on the photodiode. The spectral spacing between subsequent comb teeth pairs is 100 MHz, far lower than the ~4 GHz linewidths of small molecule absorption features in the atmosphere. Because of the narrow comb linewidth, there is an essentially negligible instrument lineshape. The measured absorption spectrum can thus resolve neighboring absorption features of different species, and can be compared directly with HITRAN and recent greenhouse gas absorption models developed for satellite- and ground-based carbon observatories to determine the path-integrated concentrations of the absorbing species. Measurements covering the complete 30013←00001 absorption band of CO2 and absorption features of CH4, H2O and HDO between 1.6-1.67 μm were performed under a variety of atmospheric conditions. During

  5. Evaluation of thermal expansion coefficient of Fabry-Perot cavity using an optical frequency comb

    Science.gov (United States)

    Oulehla, Jindřich; Šmíd, Radek; Buchta, Zdeněk; Čížek, Martin; Mikel, Břetislav; Jedlička, Petr; Lazar, Josef; Číp, Ondřej

    2011-05-01

    In construction of highly mechanically stable measuring devices like AFM microscopes or nano-comparators the use of low expansion materials is very necessary. We can find Zerodur ceramics or ULE glasses used as a frame or basement of these devices. The expansion coefficient of such low-expansion materials is lower than 0.01 x 10-6 m•K-1. For example in case of a frame or basement 20 cm long it leads to a dilatation approximately 4 nm per 1 K. For calculation of the total uncertainty of the mentioned measuring devices the knowledge of the thermal expansion coefficient of the frame or basement is necessary. In this work we present a method, where small distance changes are transformed into rf-frequency signal. The frequency of this signal is detected by a counter which measures the value of the frequency with respect to an ultra-stable time-base. This method uses a Fabry-Perot cavity as a distance measuring tool. The spacer of the optical resonator is made from the investigated low-expansion material. It is placed into a vacuum chamber where the inside temperature is controlled. A selected mode of the femtosecond frequency of the femtosecond comb which represent the distance changes of the optical resonator. The frequency is measured by the rf-counter which is synchronized by a time-base signal from an atomic clock. The first results show the resolution of the method in the 0.1 nm order. Therefore the method has a potential in characterisation of materials in the nanoworld.

  6. Modeling ovarian follicle growth in commercial and heritage Single Comb White Leghorn hens.

    Science.gov (United States)

    McLeod, E S; Jalal, M A; Zuidhof, M J

    2014-11-01

    Approximately 84% of the energy in chicken eggs resides in the yolk. A robust model of ovarian follicle development is therefore valuable for estimating energy requirements of laying hens. The current experiment was designed to model the growth of ovarian follicles in 32-wk-old modern commercial line (CL) and unselected heritage line (HL) Single Comb White Leghorn hens. The volume of yolk deposited daily during the rapid growth phase (RGP) was estimated using a double dye technique. For 21 d, 8 CL and 8 HL hens were fed capsules (no. 1) containing Sudan IV (red) and Sudan Black dyes on alternate days. An additional 8 control CL hens were fed empty capsules. Eggs were collected, and the daily volume of yolk deposited was estimated. Significant differences are reported where P hens, respectively. Duration of the RGP was shorter (7.35 d) in the CL hens compared with the HL hens (7.95 d). A nonlinear Lomolino model described follicular weight, which varied between strains over d 2 to 9 of follicle development; at each day during development, follicle weights were higher where RGP were shorter. The volume of yolk deposited for the 8 d preceding oviposition in CL was 0.17, 0.28, 0.43, 0.99, 1.84, 2.47, 2.82, 2.86, and 2.51 cm(3); and in HL was 0.17, 0.33, 0.72, 1.40, 2.15, 2.46, 2.48, 2.32, and 1.93 cm(3). The HL had a higher rate of yolk deposition 7 to 5 d before oviposition, and CL had a higher rate of yolk deposition 3 to 1 d before oviposition with no significant difference between lines on d 4 before oviposition. Although growth patterns differed, there were no differences among lines in final follicle weights (14.1 g) or retained energy (42.4 kcal).

  7. Optical Frequency Comb Fourier Transform Spectroscopy with Resolution Exceeding the Limit Set by the Optical Path Difference

    Science.gov (United States)

    Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin

    2015-06-01

    Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.

  8. Scan-less, line-field confocal microscopy by combination of wavelength/space conversion with dual optical comb

    Science.gov (United States)

    Yasui, Takeshi; Hase, Eiji; Miyamoto, Shuji; Hsieh, Yi-Da; Minamikawa, Takeo; Yamamoto, Hirotsugu

    2016-03-01

    Optical frequency comb (OFC) has attracted attentions for optical frequency metrology in visible and infrared regions because the mode-resolved OFC spectrum can be used as a precise frequency ruler due to both characteristics of broadband radiation and narrow-line CW radiation. Furthermore, the absolute accuracy of all frequency modes in OFC is secured by phase-locking a repetition frequency frep and a carrier-envelope-offset frequency fceo to a frequency standard. However, application fields of OFC other than optical frequency metrology are still undeveloped. One interesting aspect of OFC except for the frequency ruler is optical carrier having a huge number of discrete frequency channels because OFC is composed of a series of frequency spikes regularly separated by frep in the broad spectral range. If a certain quantity to be measured is encoded on each comb mode by dimensional conversion, a huge number of data for the measured quantity can be obtained from a single mode-resolved spectrum of OFC. In this paper, we encode the confocal microscopic line-image of a sample on the mode-resolved OFC spectrum by the dimensional conversion between wavelength and 1D-space. The resulting image-encoded OFC spectrum is acquired by an optical spectrum analyzer or dual comb spectrometer. Finally, the line image of the sample is decoded from the spectral amplitude of the mode-resolved OFC spectrum. The combination of OFC with the dimensional conversion enables to establish both confocal modality and line-field imaging under the scan-less condition.

  9. Damages to the Black Sea, Caspian Sea and Baltic Sea by the invader comb jelly Mnemiopsis leidyi

    Directory of Open Access Journals (Sweden)

    Elif Eker Develi

    2011-10-01

    Full Text Available In the present study changes in ecosystems of the Black Sea, Caspian Sea and Baltic Sea after the invasion of ctenophore Mnemiopsis leidyi were investigated. Excessive increase in plant plankton as a result of antrophogenic eutrophication leads to a shift in mesozooplankton com¬position, which is the main food item of these comb jellies. For instance, while some mesozoo¬plankton species disappeared from the environment or substantially decreased in number, some others increased in quantity. These changes in food chain may promote the rise of jellyfishes rather than fish in the environment. In addition, decrease in planktivorous fish abundance as a consequence of overfishing also triggers the increase of newly introduced comb jellies, which were possibly introduced via ballast waters of ships, in the ecosystem. Increase in abundance of M. leidyi, which compete with planktivorous fishes (anchovy, Engraulis encrasicolus ponticus in the Black Sea, kilka, Clupeonella spp. in the Caspian Sea for their food, causes to decrease of planktivorous fish stocks which have already been vulnerable due to overfishing. Another reason for successfully adaption of M. leidyi to its new ecosystems could be linked to global warming which provides favourable temperature ranges for reproduction and growth of this ctenophore. Although there are still many debates related to possible negative effects, one of the ways to reduce harmful impacts of invaders might be the transport of natural predators of these invaders to the new ecosystems of invaders. For example, it was reported that the abun¬dance of Mnemiopsis leidyi decreased to very low levels during 1999-2004 in the Black Sea following the introduction of another comb jelly, Beroe ovata, which feed on this ctenophore.

  10. Generation of a VUV-to-visible Raman frequency comb in hydrogen-filled kagom\\'e photonic crystal fiber

    CERN Document Server

    Mridha, M K; Bauerschmidt, S T; Abdolvand, A; Russell, P St J

    2016-01-01

    We report the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagom\\'e-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the fiber-gas system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way towards tunable fiber-based sources of deep- and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

  11. Optical antenna of comb-shaped split ring architecture for increased field localization in NIR and MIR.

    Science.gov (United States)

    Kilic, Veli Tayfun; Erturk, Vakur B; Demir, Hilmi Volkan

    2013-12-02

    We propose and demonstrate novel designs of optical antennas based on comb-shaped split ring architecture that display multi resonance field intensity enhancement spectrum. These nanoantennas achieve substantially increased field localization at longer wavelengths than that of a single or an array of dipoles with the same side length. With these optical antennas, localizing near infrared (NIR) and mid infrared (MIR) lights within a region of tens of nanometers at an intensity enhancement level of the order of thousands of magnitude can be accomplished.

  12. Single- and Multiband OFDM Photonic Wireless Links in the 75−110 GHz Band Employing Optical Combs

    DEFF Research Database (Denmark)

    Beltrán, M.; Deng, Lei; Pang, Xiaodan

    2012-01-01

    The photonic generation of electrical orthogonal frequency-division multiplexing (OFDM) modulated wireless signals in the 75−110 GHz band is experimentally demonstrated employing in-phase/quadrature electrooptical modulation and optical heterodyn upconversion. The wireless transmission of 16......-quadrature-amplitude-modulation OFDM signals is demonstrated with a bit error rate performance within the forward error correction limits. Signals of 19.1 Gb/s in 6.3-GHz bandwidth are transmitted over up to 1.3-m wireless distance. Optical comb generation is further employed to support different channels...

  13. Over-five octaves wide Raman combs in high-power picosecond-laser pumped H(2)-filled inhibited coupling Kagome fiber.

    Science.gov (United States)

    Benoît, Aurélien; Beaudou, Benoit; Alharbi, Meshaal; Debord, Benoit; Gérôme, Frédéric; Salin, François; Benabid, Fetah

    2015-06-01

    We report on the generation of over 5 octaves wide Raman combs using inhibited coupling Kagome guiding hollow-core photonic crystal fiber filled with hydrogen and pumped with 22.7 W average power and 27 picosecond pulsed fiber laser. Combs spanning from ~321 nm in the UV to ~12.5 µm in the long-wavelength IR (i.e. from 24 THz to 933 THz) with different spectral content and with an output average power of up to ~10 W were generated. In addition to the clear potential of such a comb as a laser source emitting at spectral ranges, which existing technology poorly addresses like long-wavelength IR and UV, the combination of high Raman net gain and short pump-pulse duration makes these spectra an excellent candidate for intra-pulse waveform synthesis.

  14. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 {\\mu}m

    CERN Document Server

    Marandi, Alireza; Plotnichenko, Victor G; Dianov, Evgeny M; Vodopyanov, Konstantin L; Byer, Robert L

    2012-01-01

    We demonstrate mid-infrared (mid-IR) supercontinuum generation (SCG) with instantaneous bandwidth from 2.2 to 5 {\\mu}m at 40 dB below the peak, covering the wavelength range desirable for molecular spectroscopy and numerous other applications. The SCG occurs in a tapered As2S3 fiber prepared by in-situ tapering and is pumped by femtosecond pulses from the subharmonic of a mode-locked Er-doped fiber laser. Interference with a narrow linewidth c.w. laser verifies that the coherence properties of the near-IR frequency comb have been preserved through these cascaded nonlinear processes. With this approach stable broad mid-IR frequency combs can be derived from commercially available near-IR frequency combs without an extra stabilization mechanism.

  15. Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs

    Science.gov (United States)

    Parra-Rivas, P.; Gomila, D.; Matías, M. A.; Coen, S.; Gelens, L.

    2014-04-01

    It has been recently uncovered that coherent structures in microresonators such as cavity solitons and patterns are intimately related to Kerr frequency combs. In this work, we present a general analysis of the regions of existence and stability of cavity solitons and patterns in the Lugiato-Lefever equation, a mean-field model that finds applications in many different nonlinear optical cavities. We demonstrate that the rich dynamics and coexistence of multiple solutions in the Lugiato-Lefever equation are of key importance to understanding frequency comb generation. A detailed map of how and where to target stable Kerr frequency combs in the parameter space defined by the frequency detuning and the pump power is provided. Moreover, the work presented also includes the organization of various dynamical regimes in terms of bifurcation points of higher codimension in regions of parameter space that were previously unexplored in the Lugiato-Lefever equation. We discuss different dynamical instabilities such as oscillations and chaotic regimes.

  16. Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs

    CERN Document Server

    Parra-Rivas, P; Matias, M A; Coen, S; Gelens, L

    2014-01-01

    It has been recently uncovered that coherent structures in microresonators such as cavity solitons and patterns are intimately related to Kerr frequency combs. In this work, we present a general analysis of the regions of existence and stability of cavity solitons and patterns in the Lugiato-Lefever equation, a mean-field model that finds applications in many different nonlinear optical cavities. We demonstrate that the rich dynamics and coexistence of multiple solutions in the Lugiato-Lefever equation are of key importance to understanding frequency comb generation. A detailed map of how and where to target stable Kerr frequency combs in the parameter space defined by the frequency detuning and the pump power is provided. Moreover, the work presented also includes the organization of various dynamical regimes in terms of bifurcation points of higher co-dimension in regions of parameter space that were previously unexplored in the Lugiato-Lefever equation. We discuss different dynamical instabilities such as ...

  17. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control.

    Science.gov (United States)

    Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei

    2012-06-18

    We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.

  18. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Armelle Cabin-Flaman

    2016-06-01

    Full Text Available Dynamic secondary ion mass spectrometry (D-SIMS imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C14N- recombinant ion and the use of the 13C:12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS.

  19. Tomaculocystis corpulenta n. gen., n. sp. (Apicomplexa: Eugregarinorida) parasitizing the little yellow cockroach, Cariblatta lutea (Blattodea: Ectobiidae), in Alabama and Florida with recognition of Tomaculocystis cylindrosa n. comb. and Tomaculocystis mukundai n. comb. parasitizing ectobiid cockroaches in India.

    Science.gov (United States)

    Clopton, Richard E

    2015-02-01

    Tomaculocystis corpulenta n. gen., n. sp. (Apicomplexa: Eugregarinorida: Septatorina: Gregarinidae) is described from populations of the little yellow cockroach, Cariblatta lutea (Blattodea: Ectobiidae), established in laboratory culture from samples collected in Alabama and Florida. Tomaculocystis n. gen. are differentiated from other members of Gregarina by a markedly elliptoid gametocyst inside a persistent, lomentiform hyaline epicyst; developmental organization and growth of the spore tubes from gametocyst surface tumidi; and dehiscence by extrusion of non-chain forming oocysts through spore tubes that barely extend beyond the epicyst wall. Gregarina cylindrosa, Gregarina discocephala, and Gregarina mukundai are recognized as members of Tomaculocystis, and G. cylindrosa is recognized as the senior synonym of G. discocephala. Thus, Tomaculocystis cylindrosa n. comb. and Tomaculocystis mukundai n. comb. are formed. Species of Tomaculocystis are distinguished based on gamont deutomerite and oocyst shape and size. The oocysts of T. corpulenta are broadly dolioform, lack 4 polar knobs, and possess distinct, unique polar plates. Oocysts of all other known species in the genus are more oblong in shape, possess 4 polar knobs, and lack the distinct polar plates observed in the oocysts of T. corpulenta. Host utilization and geographic distribution among gregarine genera parasitizing the cockroach family Ectobiidae reveal a pattern of host-parasite specificity linking gregarine genera with ectobiidid subfamilies. Overall patterns suggest a hypothesis of European endemicy for Gamocystis, but hypotheses for the origin and radiation of Tomaculocystis or species of Gregarina infecting cockroaches are confounded by the cosmopolitan spread of pest cockroach species among humans.

  20. Reclassification of Lactobacillus catenaformis (Eggerth 1935) Moore and Holdeman 1970 and Lactobacillus vitulinus Sharpe et al. 1973 as Eggerthia catenaformis gen. nov., comb. nov. and Kandleria vitulina gen. nov., comb. nov., respectively.

    Science.gov (United States)

    Salvetti, Elisa; Felis, Giovanna E; Dellaglio, Franco; Castioni, Anna; Torriani, Sandra; Lawson, Paul A

    2011-10-01

    The development of molecular tools and in particular the use of 16S rRNA gene sequencing has had a profound effect on the taxonomy of many bacterial groups. Gram-positive organisms that encompass the genera Lactobacillus and Clostridium within the Firmicutes are examples of taxa that have undergone major revisions based on phylogenetic information. A consequence of these reorganizations is that a number of organisms are now recognized as being misclassified. Previous studies have demonstrated that Lactobacillus catenaformis and Lactobacillus vitulinus are phylogenetically unrelated to Lactobacillus sensu stricto, being placed within the Clostridia rRNA cluster XVII. Based on the phenotypic, chemotaxonomic and phylogenetic data presented, it is proposed that L. catenaformis and L. vitulinus be reclassified in two new genera, named respectively Eggerthia gen. nov., with the type species Eggerthia catenaformis gen. nov., comb. nov. (type strain DSM 20559(T) = ATCC 25536(T) = CCUG 48174(T) = CIP 104817(T) = JCM 1121(T)) and Kandleria gen. nov., with the type species Kandleria vitulina gen. nov., comb. nov. (type strain LMG 18931(T) = ATCC 27783(T) = CCUG 32236(T) = DSM 20405(T) = JCM 1143(T)).

  1. Lamotheoxyuris ackerti n. gen., n. comb. (Nematoda: Heteroxynematidae parasite of Neotoma spp. (Rodentia: Muridae Lamotheoxyuris ackerti n. gen., n. comb. (Nematoda: Heteroxynematidae parásito de Neotoma spp. (Rodentia: Muridae

    Directory of Open Access Journals (Sweden)

    JORGE FALCÓN-ORDAZ

    2010-06-01

    Full Text Available On the basis of the revision of the type material of Aspiculuris ackerti Kruidenier & Mehra, 1959, and new specimens collected from Neotoma nelsoni Goldman, 1905 (Rodentia: Cricetidae, in Veracruz, Mexico, we herein to which A. ackerti is transferred as Lamotheoxyuris ackerti This new genus differs from all other genera included in 1 mouth surrounded by six lips; 2 extension of lateral alae describe a new genus (Lamotheoxyuris n. gen., (Kruidener & Mehra, 1959 n. gen., n. comb. Heteroxynematinae by the following main traits: reduced; and 3 lack of caudal alae.Con base en la revisión del material tipo de Aspiculuris ackerti Kruidenier y Mehra, 1959 y de nuevos ejemplares recolectados en Neotoma nelsoni Goldman, 1905 (Rodentia: Cricetidae, en Veracruz, México, se describe un nuevo género (Lamotheoxyuris n. gen., al que A. ackerti es transferido como Lamotheoxyuris ackerti (Kruidener y Mehra, 1959 n. gen., n. comb. Este nuevo género se distingue de todos los demás géneros incluidos en Heteroxynematinae por las siguientes características: 1 presencia de seis labios rodeando la boca; 2 extensión reducida del ala lateral; y 3 carencia de ala caudal.

  2. Problems in using a comb sample as a stress-free reference for the determination of welding residual stress by diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, S.; Edwards, L. [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Fitzpatrick, M.E., E-mail: m.e.fitzpatrick@open.ac.uk [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2011-01-25

    Research highlights: {yields} Comb samples used as reference samples in diffraction stress measurements on welds can retain significant macro-residual stress. {yields} Measurements of the retained residual stress have been made in a comb sample extracted from a VPPA-welded aluminium plate. {yields} A method is presented for the correction of the reference lattice parameter in the presence of retained residual stress. - Abstract: Precise measurement of a stress-free reference lattice parameter is vital in the determination of residual stress by diffraction techniques using {theta}/2{theta}-based analyses. For the evaluation of the residual strain profile in fusion-welded material, it is particularly important to correct the measured strain point-by-point by a stress-free reference for each spatial location across the weld. This is to take into account the compositional and microstructural variation across the weld caused by the thermal cycle of welding, as local changes in solute content of the parent alloy cause changes in the stress-free lattice parameter. Although ideally such measurements should be obtained from small cubes machined from the weld, the use of a comb sample has previously been proposed as a macro-stress-free reference, with the assumption that each finger of the comb is of insufficient dimension to hold a macro-stress field. This paper presents an approach towards analysis of the stress-free reference values using a comb sample extracted from a variable polarity plasma arc (VPPA) welded plate. It is shown that there is inter-granular stress and retained macro-stress within the comb teeth, and an experimental approach to deal with the problem is proposed.

  3. Pipunculidae (Diptera da região neotropical: I. Redescrição de Chalarus chilensis Collin, comb. n. e descrição de duas espécies novas da Amazônia

    Directory of Open Access Journals (Sweden)

    J. A. Rafael

    1988-07-01

    Full Text Available Chalarus chilensis Collin, comb. n. é redescrito a partir do tipo e duas novas espécies da Bacia Amazônica, C. amazonensis e C. connexus, são descritas.Chalarus chilensis, comb. n. , is redescribed from the type and two species from the Amazon Basin, C. amazonensis and C. connexus, are described.

  4. Chelativorans intermedius sp. nov. and proposal to reclassify Thermovum composti as Chelativorans composti comb. nov.

    Science.gov (United States)

    Kämpfer, P; Arun, A B; Busse, H-J; Zhang, Zhen-Li; Young, Chiu-Chung; Glaeser, S P

    2015-05-01

    Two Gram-stain-negative, non-endospore-forming, rod-shaped bacteria, strains CC-MHSW-5(T) and A1392, were isolated from water of coastal hot springs located in Taiwan and China, respectively, and investigated for their taxonomic position. The two strains shared identical 16S rRNA gene sequences, a DNA-DNA hybridization value >80% and similar genomic DNA G+C contents (64.3 and 64.6 mol%), but showed different genomic fingerprint patterns generated by BOX-PCR and three random amplification polymorphic DNA PCRs. The strains shared highest 16S rRNA gene sequence similarities with the type strains of Chelativorans multitrophicus (96.7 and 96.1%), Thermovum composti (96.2 and 96.1%) and Chelativorans oligotrophicus (96.1 and 95.8%). Phylogenetic trees (based on 16S rRNA and recA gene sequence comparisons) showed a distinct clustering of both strains with the type strains of species of the genus Chelativorans and T. composti Nis3(T). The quinone systems of strains CC-MHSW-5(T) and Nis3(T) contained ubiquinone Q-10 as the major component. The major polyamine in both strains was sym-homospermidine. Putrescine, spermidine and, for strain CC-MHSW-5(T), spermine were found in minor concentrations. Their polar lipid profiles consisted of phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. The fatty acid profile contained major amounts of C18 : 1ω7c and C19 : 0 cyclo ω8c. On the basis of these results, the two strains are considered to represent a novel species of the genus Chelativorans , for which the name Chelativorans intermedius sp. nov. is proposed. The type strain is CC-MHSW-5(T) ( =CCM 8543(T) =LMG 28482(T) =DSM 29391(T) =CIP 110825(T)). Based on both genotypic and phenotypic characters, it is proposed that T. composti be reclassified within the genus Chelativorans as Chelativorans composti comb. nov.

  5. Coder and decoder of fractal signals of comb-type structure

    Directory of Open Access Journals (Sweden)

    Politanskyi R. L.

    2014-08-01

    Full Text Available The article presents a coder and decoder of fractal signals of comb-type structure (FSCS based on microcontrollers (MC. The coder and decoder consist of identical control modules, while their managed modules have different schematic constructions. The control module performs forming or recognition of signals, and also carries out the function of information exchange with a computer. The basic element of the control module is a PIC18F2550 microcontroller from MicroChip. The coder of the system forms fractal signals of a given order according to the information bits coming from the computer. Samples of the calculated values of the amplitudes of elementary rectangular pulses that constitute the structure of fractal pulses are stored in the memory of the microcontroller as a table. Minimum bit capacity of the DAC necessary for the generation of FSCS of fourth order is four bits. The operation algorithm, "wired" into the controller of the program, provides for encoding of the transmitted information by two-bit symbols. Recognition of the start of transmission of each byte in communication channel is performed by the transmission of the timing signal. In a decoder the microcontroller carries out reception and decoding of the received fractal signals which are then transmitted to the computer. The developed algorithm of the program for the microcontroller of the decoder is carried out by determination of order of fractal impulse after the value of sum of amplitudes of elementary impulses, constituents fractal signal. The programs for coder and decoder are written in "C". In the most critical places of the program influencing on the fast-acting of chart “assembler” insertions are done. The blocks of the coder and decoder were connected with a coaxial 10 meters long cable with an impendance of 75 Ohm. The signals generated by the developed coder of FSCS, were studied using a digital oscillograph. On the basis of the obtained spectrums, it is possible

  6. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiaoguang [Lawrence Berkeley National Laboratory, EETD, MS 62-203, One Cyclotron Road, Berkeley, CA 94720 (United States)]. E-mail: xsun@lbl.gov; Hou Jun [Lawrence Berkeley National Laboratory, EETD, MS 62-203, One Cyclotron Road, Berkeley, CA 94720 (United States); Kerr, John B. [Lawrence Berkeley National Laboratory, EETD, MS 62-203, One Cyclotron Road, Berkeley, CA 94720 (United States)]. E-mail: jbkerr@lbl.gov

    2005-01-15

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li{sup +} salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE{sub 8}-co-E{sub 3}SO{sub 3}Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE{sub 8}-g-E{sub n}SO{sub 3}Li, n = 2, 3). The highest conductivity at 25 deg. C of 2.0 x 10{sup -7} S cm{sup -1} was obtained for the PAE{sub 8}-co-E{sub 3}SO{sub 3}Li with a salt concentration of EO/Li = 40. The conductivity of PAE{sub 8}-g-E{sub 3}SO{sub 3}Li is lower than that of PAE{sub 8}-co-E{sub 3}SO{sub 3}Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li{sup +}. The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE{sub 8}-g-E{sub 2}SO{sub 3}Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 {mu}A cm{sup -2} at 85 deg. C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer.

  7. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Guang Sun; Jan Hou; Kerr, J.B. [Lawrence Berkeley National Lab., CA (United States). EETD

    2005-01-15

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li{sup +} salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE{sub 8}-co-E{sub 3}SO{sub 3}Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE{sub 8}-g-E{sub n}SO{sub 3}Li, n = 2, 3). The highest conductivity at 25 {sup o}C of 2.0 x {sup -7} S cm{sup -1} was obtained for the PAE{sub 8}-co-E{sub 3}SO{sub 3}Li with a salt concentration of EO/Li = 40. The conductivity of PAE{sub 8}-g-E{sub 3}SO{sub 3}Li is lower than that of PAE{sub 8}-co-E{sub 3}SO{sub 3}Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li{sup +}. The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE{sub 8}-g-E{sub 2}SO{sub 3}Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 {mu}A cm{sup -2} at 85 {sup o}C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer. (Author)

  8. 38.2-Gb/s Optical-Wireless Transmission in 75-110 GHz Based on Electrical OFDM with Optical Comb Expansion

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Beltrán, Marta

    2012-01-01

    We demonstrate scalable optical comb- and heterodyning-based generation, optical and 1.3-m wireless transmission, and electrical heterodyne detection of multiband OFDM up to 38.2 Gb/s occupying 14.4-GHz RF bandwidth, for high-capacity optical-wireless links in 75-110 GHz.......We demonstrate scalable optical comb- and heterodyning-based generation, optical and 1.3-m wireless transmission, and electrical heterodyne detection of multiband OFDM up to 38.2 Gb/s occupying 14.4-GHz RF bandwidth, for high-capacity optical-wireless links in 75-110 GHz....

  9. Simple and seamless broadband optical frequency comb generation using an InAs/InP quantum dot laser.

    Science.gov (United States)

    Liu, Li; Zhang, Xiupu; Xu, Tiefeng; Dai, Zhenxiang; Dai, Shixun; Liu, Taijun

    2017-03-15

    A simple and seamless broadband optical frequency comb (OFC) generator is proposed and experimentally demonstrated using a Fabry-Perot quantum dot mode-locked laser combined with a dual-driven LiNbO3 Mach-Zehnder modulator driven by a low-power radio frequency (RF) signal. It is experimentally demonstrated that the 10-dB seamless bandwidth of the OFC is 8.2 nm (1.02 THz), which has 62 and 40 comb lines for frequency intervals of 16.56 GHz and 24.84 GHz, respectively. The single-sideband phase noise is as low as -112 and -108  dBc/Hz at an offset of 10 kHz, respectively, for the photodetector-converted 16.56 and 24.84 GHz frequency carriers. Correspondingly, the RF linewidths of the 16.56 GHz and 24.84 GHz carriers are about 251 Hz-263 Hz, respectively. Using a QD laser, an ultra-low phase noise and quasi-tunable broadband OFC generator is obtained easily.

  10. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3-5.4  μm.

    Science.gov (United States)

    Khodabakhsh, Amir; Ramaiah-Badarla, Venkata; Rutkowski, Lucile; Johansson, Alexandra C; Lee, Kevin F; Jiang, Jie; Mohr, Christian; Fermann, Martin E; Foltynowicz, Aleksandra

    2016-06-01

    We present a versatile mid-infrared frequency comb spectroscopy system based on a doubly resonant optical parametric oscillator tunable in the 3-5.4 μm range and two detection methods: a Fourier transform spectrometer (FTS) and a continuous-filtering Vernier spectrometer (CF-VS). Using the FTS with a multipass cell, we measure high precision broadband absorption spectra of CH4 at 3.3 μm and NO at 5.25 μm, the latter for the first time with comb spectroscopy, and we detect atmospheric species (CH4, CO, CO2, and H2O) in air in the signal and idler ranges. Multiline fitting yields minimum detectable concentrations of 10-20  ppb Hz-1/2 for CH4, NO, and CO. For the first time in the mid-infrared, we perform CF-VS using an enhancement cavity, a grating, and a single detector, and we measure the absorption spectrum of CH4 and H2O in ambient air at ∼3.3  μm, reaching a 40 ppb concentration detection limit for CH4 in 2 ms.

  11. Investigating the interplay between mechanisms of anomalous diffusion via fractional Brownian walks on a comb-like structure

    CERN Document Server

    Ribeiro, H V; Alves, L G A; Zola, R S; Lenzi, E L

    2014-01-01

    The comb model is a simplified description for anomalous diffusion under geometric constraints. It represents particles spreading out in a two-dimensional space where the motions in the x-direction are allowed only when the y coordinate of the particle is zero. Here, we propose an extension for the comb model via Langevin-like equations driven by fractional Gaussian noises (long-range correlated). By carrying out computer simulations, we show that the correlations in the y-direction affect the diffusive behavior in the x-direction in a non-trivial fashion, resulting in a quite rich diffusive scenario characterized by usual, superdiffusive or subdiffusive scaling of second moment in the x-direction. We further show that the long-range correlations affect the probability distribution of the particle positions in the x-direction, making their tails longer when noise in the y-direction is persistent and shorter for anti-persistent noise. Our model thus combines and allows the study/analysis of the interplay betwe...

  12. Noise-immune cavity-enhanced optical frequency comb spectroscopy: A sensitive technique for high-resolution broadband molecular detection

    CERN Document Server

    Khodabakhsh, Amir; Foltynowicz, Aleksandra

    2014-01-01

    Noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS) is a recently developed technique that utilizes phase modulation to obtain immunity to frequency-to-amplitude noise conversion by the cavity modes and yields high absorption sensitivity over a broad spectral range. We describe the principles of the technique and discuss possible comb-cavity matching solutions. We present a theoretical description of NICE-OFCS signals detected with a Fourier transform spectrometer (FTS), and validate the model by comparing it to experimental CO2 spectra around 1575 nm. Our system is based on an Er:fiber femtosecond laser locked to a cavity and phase-modulated at a frequency equal to a multiple of the cavity free spectral range (FSR). The NICE-OFCS signal is detected by a fast-scanning FTS equipped with a high-bandwidth commercial detector. We demonstrate a simple method of passive locking of the modulation frequency to the cavity FSR that significantly improves the long term stability of the system, a...

  13. Controlled generation of comb-like electron beams in plasma channels for polychromatic inverse Thomson γ-ray sources

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Lehe, R.; Lifschitz, A. F.; Shadwick, B. A.

    2016-03-01

    Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth  >150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams—sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy spacing dependent on the channel radius and pulse length. These customizable electron beams enable the design of a tunable, all-optical source of pulsed, polychromatic γ-rays using the mechanism of inverse Thomson scattering, with up to  ˜10-5 conversion efficiency from the drive pulse in the electron accelerator to the γ-ray beam. Such a source may radiate  ˜107 quasi-monochromatic photons per shot into a microsteradian-scale cone. The photon energy is distributed among several distinct bands, each having sub-30% energy spread, with a highest energy of 12.5 MeV.

  14. Nano-optomechanical characterization of surface-plasmon-based tunable filter integrated with comb-drive actuator

    Science.gov (United States)

    Honma, H.; Mitsudome, M.; Ishida, M.; Sawada, K.; Takahashi, K.

    2017-03-01

    We report a tunable plasmonic color filter consisting of a metamaterial periodic grating and microelectromechanical systems (MEMS) actuator. An aluminum subwavelength grating is integrated with electrostatic comb-drive actuators to expand the metal subwavelength period, which allows continuous control of the excitation wavelength of surface plasmons (SPs). We develop a batch fabrication process by employing a liftoff technique using an electron beam resist altered by the electron dose depending on different aspect ratios (length/width) for various components such as the subwavelength grating, nanohinge flexural suspensions, and comb fingers. We successfully demonstrate a continuous shift in the excitation wavelength over the 514–635 nm range by nanopitch expansion. The design margin of the grating period for SP excitation is evaluated by comparing the experimental pitch variation and theoretically calculated values. The resonance frequency of the tunable filter is optically measured to be approximately 10 kHz. The optically and mechanically obtained values agree well with the theory of electrostatic actuation and finite-difference time-domain simulation.

  15. Genotoxicity, acute and subchronic toxicity studies in rats of a rooster comb extract rich in sodium hyaluronate.

    Science.gov (United States)

    Canut, Lourdes; Zapatero, Jorge; López, Sílvia; Torrent, Anna; Ruhí, Ramon; Vicente, Laura

    2012-04-01

    The toxicity of a rooster comb extract (IB0004) that contains mainly sodium hyaluronate was assessed in acute and subchronic studies and in a bacterial reverse mutation assay. In a single dose acute study, male and female rats were administered 2000 mg/kg body weight (bw) of the product and observed for 14 days. No mortality was recorded, thus it was considered that the minimum lethal dose for rats by oral route was greater than 2000 mg/kg bw. A 90-day subchronic study (5, 55 and 600 mg/kg bw/day, oral gavage) with 50 male and 50 female Wistar-Hannover rats produced no significant adverse effects on food consumption, body weight, mortality, clinical biochemistry, hematology, gross pathology, and histopathology. Although some differences were observed between the treated and control animals in body weight gain (%) and some hematological parameters, these changes were generally minor in nature and, are considered to be of no toxicological significance. The no-observable-adverse-effects level was established at 600 mg/kg bw/day. There was no evidence of mutagenic activity in Salmonella typhimurium TA98, TA100, TA1535 and TA1537 or in Escherichia coli WP2 uvra pkM101. In conclusion, the results from these safety studies support the safety of rooster comb extract IB0004 in food.

  16. Frequency-comb referenced collinear laser spectroscopy of Be+ for nuclear structure investigations and many-body QED tests

    Science.gov (United States)

    Krieger, A.; Nörtershäuser, W.; Geppert, Ch.; Blaum, K.; Bissell, M. L.; Frömmgen, N.; Hammen, M.; Kreim, K.; Kowalska, M.; Krämer, J.; Neugart, R.; Neyens, G.; Sánchez, R.; Tiedemann, D.; Yordanov, D. T.; Zakova, M.

    2017-01-01

    Transition frequencies of the 2s ^2{{S}}_{1/2} → 2p ^2 {{P}}_{1/2, 3/2} transitions in Be^+ were measured in stable and short-lived isotopes at ISOLDE (CERN) using collinear laser spectroscopy and frequency-comb-referenced dye lasers. Quasi-simultaneous measurements in copropagating and counterpropagating geometry were performed to become independent from acceleration voltage determinations for Doppler-shift corrections of the fast ion beam. Isotope shifts and fine-structure splittings were obtained from the transition frequencies measured with a frequency comb with accuracies better than 1 MHz and led to a precise determination of the nuclear charge radii of ^{7,10-12}Be relative to the stable isotope 9Be. Moreover, an accurate determination of the 2 p fine-structure splitting allowed a test of high-precision bound-state QED calculations in the three-electron system. Here, we describe the laser spectroscopic method in detail, including several tests that were carried out to determine or estimate systematic uncertainties. Final values from two experimental runs at ISOLDE are presented, and the results are discussed.

  17. Controlled grafting of comb copolymer brushes on poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations.

    Science.gov (United States)

    Yu, W H; Kang, E T; Neoh, K G

    2005-01-04

    Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.

  18. Comb-type prepolymers consisting of a polyacrylamide backbone and poly(L-lysine) graft chains for multivalent ligands.

    Science.gov (United States)

    Asayama, S; Maruyama, A; Akaike, T

    1999-01-01

    The comb-type copolymers consisting of a polyacrylamide (PAAm) backbone and poly(L-lysine) (PLL) graft chains have been prepared as the "prepolymer" for designing multivalent ligands. To regulate the length and density of the clusters of primary amino groups, the Nalpha-carboxyanhydride of Nepsilon-carbobenzoxy (CBZ)-L-lysine was first polymerized using p-vinylbenzylamine as an initiator. The resulting poly(CBZ-L-lysine) macromonomer was then radically copolymerized with AAm, followed by the deprotection of amino groups. For the model study, the reactive clusters of primary amino groups were completely converted into anion clusters by the reaction with succinic anhydride. The model multivalent ligands having the biotin label on the PAAm backbone were prepared by the terpolymerization of the macromonomer, AAm, and the biotin derivative having a vinyl group. The enzyme-linked immunosorbent assay showed that the biotin with no spacer on the PAAm backbone was recognized by the avidin-peroxidase conjugate specifically. Therefore, the highly sensitive detection of the interaction between cells and various model multivalent ligands was possible. The selective labeling onto the PAAm backbone revealed that the converted anion clusters of graft chains interacted exclusively with the cell and that the backbone was inert to the interaction with the cell. These results indicate that the various PAAm-graft-PLL comb-type copolymers with the defined length and density of the PLL-grafts are the potential prepolymers to investigate and to optimize the affinity of the multivalent ligands for receptors.

  19. Nuclear charge radii of light isotopes based on frequency comb measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zakova, Monika

    2010-02-11

    Optical frequency comb technology has been used in this work for the first time to investigate the nuclear structure of light radioactive isotopes. Therefore, three laser systems were stabilized with different techniques to accurately known optical frequencies and used in two specialized experiments. Absolute transition frequency measurements of lithium and beryllium isotopes were performed with accuracy on the order of 10{sup -10}. Such a high accuracy is required for the light elements since the nuclear volume effect has only a 10{sup -9} contribution to the total transition frequency. For beryllium, the isotope shift was determined with an accuracy that is sufficient to extract information about the proton distribution inside the nucleus. A Doppler-free two-photon spectroscopy on the stable lithium isotopes {sup 6,7}Li was performed in order to determine the absolute frequency of the 2S {yields} 3S transition. The achieved relative accuracy of 2 x 10{sup -10} is improved by one order of magnitude compared to previous measurements. The results provide an opportunity to determine the nuclear charge radius of the stable and short-lived isotopes in a pure optical way but this requires an improvement of the theoretical calculations by two orders of magnitude. The second experiment presented here was performed at ISOLDE/CERN, where the absolute transition frequencies of the D{sub 1} and D{sub 2} lines in beryllium ions for the isotopes {sup 7,9,10,11}Be were measured with an accuracy of about 1 MHz. Therefore, an advanced collinear laser spectroscopy technique involving two counter-propagating frequency-stabilized laser beams with a known absolute frequency was developed. The extracted isotope shifts were combined with recent accurate mass shift calculations and the root-mean square nuclear charge radii of {sup 7,10}Be and the one-neutron halo nucleus {sup 11}Be were determined. Obtained charge radii are decreasing from {sup 7}Be to {sup 10}Be and increasing again for

  20. Single-Source AlGaAs Frequency Comb Transmitter for 661 Tbit/s Data Transmission in a 30-core Fiber

    DEFF Research Database (Denmark)

    Hu, Hao; Da Ros, Francesco; Ye, Feihong;

    2016-01-01

    We demonstrate an AlGaAs-on-insulator nano-waveguide-based frequency comb with high OSNR enabling a single-source to fully load a 9.6-km heterogeneous 30-core fibre with 661 Tbit/s data achieved by 30xcores, 80xWDM, 40 Gbaud, and PDM-16QAM...

  1. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.;

    2012-01-01

    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...

  2. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively.

    Science.gov (United States)

    Xie, Cheng-Hui; Yokota, Akira

    2005-11-01

    The aim of this study was to clarify the taxonomic position of the nitrogen-fixing and hydrogen-oxidizing bacteria Alcaligenes latus strains IAM 12599T, IAM 12664 and IAM 12665 and Pseudomonas saccharophila IAM 14368T. It was found that the type strain of Alcaligenes latus, IAM 12599T, showed 99 x 9 and 96 x 1 % 16S rRNA gene sequence similarity to strains IAM 12665 and IAM 12664, respectively. A comparison using DNA-DNA hybridization suggested that strains IAM 12599T and IAM 12665 belong to a single species (89 x 7 %) and that strain IAM 12664 (35 x 1 %) forms a separate species. The phenotypic characteristics also support the conclusion that these bacteria should be identified as two species of a new genus: Azohydromonas lata gen. nov., comb. nov. (type strain IAM 12599T=DSM 1122T=LMG 3321T=ATCC 29712T; reference strain IAM 12665=DSM 1123=LMG 3325=ATCC 29714) and Azohydromonas australica sp. nov. (type strain IAM 12664T=DSM 1124T=LMG 3324T=ATCC 29713T). Pseudomonas saccharophila IAM 14368T was found to be closely related to the phototrophic bacterium Roseateles depolymerans, with 96 x 8 % 16S rRNA gene sequence similarity, but the two bacteria are quite different with respect to their metabolism and some significant phenotypic characteristics, suggesting that they cannot be included in a single genus. Further studies on their nifH gene sequences, G+C content of the DNA and cellular fatty acid composition confirm that Pseudomonas saccharophila should be reclassified: the name Pelomonas saccharophila gen. nov., comb. nov. is proposed, with the type strain IAM 14368T (=LMG 2256T=ATCC 15946T).

  3. Higher-order Peregrine combs and Peregrine walls for the variable-coefficient Lenells-Fokas equation

    Science.gov (United States)

    Wang, Zi-Qi; Wang, Xin; Wang, Lei; Sun, Wen-Rong; Qi, Feng-Hua

    2017-02-01

    In this paper, we study the variable-coefficient Lenells-Fokas (LF) model. Under large periodic modulations in the variable coefficients of the LF model, the generalized Akhmediev breathers develop into the breather multiple births (BMBs) from which we obtain the Peregrine combs (PCs). The PCs can be considered as the limiting case of the BMBs and be transformed into the Peregrine walls (PWs) with a specific amplitude of periodic modulation. We further investigate the spatiotemporal characteristics of the PCs and PWs analytically. Based on the second-order breather and rogue-wave solutions, we derive the corresponding higher-order structures (higher-order PCs and PWs) under proper periodic modulations. What is particularly noteworthy is that the second-order PC can be converted into the Peregrine pyramid which exhibits the higher amplitude and thickness. Our results could be helpful for the design of experiments in the optical fiber communications.

  4. Spectroscopy and frequency measurement of the $^{87}$Sr clock transition by laser linewidth transfer using an optical frequency comb

    CERN Document Server

    Akamatsu, Daisuke; Hosaka, Kazumoto; Yasuda, Masami; Onae, Atsushi; Suzuyama, Tomonari; Amemiya, Masaki; Hong, Feng-Lei

    2014-01-01

    We perform spectroscopic observations of the 698-nm clock transition in $^{87}$Sr confined in an optical lattice using a laser linewidth transfer technique. A narrow-linewidth laser interrogating the clock transition is prepared by transferring the linewidth of a master laser (1064 nm) to that of a slave laser (698 nm) with a high-speed controllable fiber-based frequency comb. The Fourier-limited spectrum is observed for an 80-ms interrogating pulse. We determine that the absolute frequency of the 5s$^{2}$ $^{1}$S$_{0}$ - 5s5p $^{3}$P$_{0}$ clock transition in $^{87}$Sr is 429 228 004 229 872.0 (1.6) Hz referenced to the SI second.

  5. Adaptive comb filtering for motion artifact reduction from PPG with a structure of adaptive lattice IIR notch filter.

    Science.gov (United States)

    Lee, Boreom; Kee, Youngwook; Han, Jonghee; Yi, Won Jin

    2011-01-01

    Photoplethysmographic (PPG) signal can provide important information about cardiovascular and respiratory conditions of individuals in a hospital or daily life. However, PPG can be distorted by motion artifacts significantly. Therefore, the reduction of the effects of motion artifacts is very important procedure for monitoring cardio-respiratory system by PPG. There have been many adaptive techniques to reduce motion artifacts from PPG signal including normalized least mean squares (NLMS) method, recursive least squares (RLS) filter, and Kalman filter. In the present study, we propose the adaptive comb filter (ACF) for reducing the effects of motion artifacts from PPG signal. ACF with adaptive lattice infinite impulse response (IIR) notch filter (ALNF) successfully reduced the motion artifacts from the quasi-periodic PPG signal.

  6. Fast, precise, and widely tunable frequency control of an optical parametric oscillator referenced to a frequency comb

    Science.gov (United States)

    Prehn, Alexander; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2017-03-01

    Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.

  7. Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study.

    Science.gov (United States)

    Herrera López, Sonia; Lozano, Ana; Sosa, Alexis; Hernando, M Dolores; Fernández-Alba, Amadeo R

    2016-11-01

    A developed multi-residue method using microflow-LC-ESI-QqQ-MS provided a wide-scope analysis for medium-polar and polar pesticide residues (120 compounds including breakdown products). Honeybee wax comb samples were extracted using a generic QuEChERS based procedure. Acceptable recoveries at concentration levels of 5 and 50 μg kg(-1) were within the 70-120% range with an associated precision RSD  9 μg kg(-1); fungicides at concentrations ranging from 1 to 23 μg kg(-1.) The number of positive detections due to herbicides was lower as expected and at a lower level of concentration, from 1 to 5.9 μg kg(-1).

  8. A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Xiang, Peng; Zheng, Jilin; Fang, Tao

    2017-02-01

    In this paper, a novel approach for generating flat optical frequency comb (OFC) based on externally injected gain-switched distributed feedback (DFB) semiconductor laser is proposed and experimentally demonstrated. In the proposed system, the flatness, the number of OFC spectral lines, and the spectral line to background noise ratio can be tuned to their optimized values by adjusting the current of the modulation signal, the injection ratio and the detuning frequency. Since the frequency of the modulation signal decides the frequency spacing of the output spectral lines, OFC spectral lines of different spacing can be achieved. In the experiment, 10 spectral lines with 1.5 dB power variation are demonstrated to verify the proposed approach. In addition, the expansion of the spectral line is investigated.

  9. Study the effects of metallic ions on the combination of DNA and histones with molecular combing technique

    Institute of Scientific and Technical Information of China (English)

    LIU Yuying; WANG Pengye; DOU Shuoxing; XIE Ping; WANG Weichi; YIN Huawei

    2005-01-01

    The effects of monovalent (Na+, K+) and divalent (Mg2+, Ca2+, Mn2+) ions on the interaction between DNA and histone are studied using the molecular combing technique. λ-DNA molecules and DNA-histone complexes incubated with metal cations (Na+, K+, Mg2+, Ca2+, Mn2+) are stretched on hydrophobic surfaces, and directly observed by fluorescence microscopy. The results indicate that when these cations are added into the DNA solution, the fluorescence intensities of the stained DNA are reduced differently. The monovalent cations (Na+, K+) inhibit binding of histone to DNA. The divalent cations (Mg2+, Ca2+, Mn2+) enhance significantly the binding of histone to DNA and the binding of the DNA-histone complex to the hydrophobic surface. Mn2+ also induces condensation and aggregation of the DNA- histone complex.

  10. Ultra-flat and broad optical frequency combs generation based on novel dispersion-flattened double-slot microring resonator

    Science.gov (United States)

    Wang, Yuanwu; Zhang, Minming; Lu, Luluzi; Li, Meifeng; Wang, Jinghao; Zhou, Feiya; Dai, Jing; Deng, Lei; Liu, Deming

    2016-01-01

    In this paper, a novel double-slot microring resonator is proposed to produce flat dispersion of 0-3.8 ps/(nm km) over 1150 nm wavelength range. Moreover, the dispersion tailoring with different structural parameters of the proposed microring resonator is analyzed and simulated. The simulation results show that the dispersion fluctuation can be tailored by the height of the central and bottom As2S3 layer, and the slope can be adjusted by the waveguide width and lower SiO2 slot thickness. Furthermore, by means of the Lugiato-Lefever equation, an ultra-flat and broad optical frequency comb with 7-dB bandwidth of 1155 nm (1855-3010 nm) is obtained based on such dispersion-optimized resonator. The proposed double-slot microring resonator shows potential application in both telecommunication and mid-infrared research domain.

  11. Extended temporal Lugiato-Lefever equation and the effect of conjugate fields in optical resonator frequency combs

    CERN Document Server

    Loures, Cristian Redondo; Biancalana, Fabio

    2015-01-01

    Starting from the infinite-dimensional Ikeda map, we derive an extended temporal Lugiato-Lefever equation that may account for the effects of the conjugate electromagnetic fields (also called `negative frequency fields'). In the presence of nonlinearity in a ring cavity, these fields lead to new forms of modulational instability and resonant radiations. Numerical simulations based on the new extended Lugiato-Lefever model show that the negative-frequency resonant radiations emitted by ultrashort cavity solitons can impact Kerr frequency comb formation in externally pumped temporal optical cavities of small size. Our theory is very general, is not based on the slowly-varying envelope approximation, and the predictions are relevant to all kinds of resonators, such as fiber loops, microrings and microtoroids.

  12. Polyethylenimine (PEI)-g-comb-poly(ethylene glycol)-transferrin(Ⅰ):Tumor-targeted Vector for Gene Delivery In-vitro

    Institute of Scientific and Technical Information of China (English)

    Gu Ping TANG; Zhi Yu WANG

    2006-01-01

    The work described the synthesis and evaluation of PEI-g-comb-PEG-transferrin as a potential system for gene therapy in vitro. The MW of PEG was 10KDa, and PEI was 2KDa.Its structure was identified by NMR, FT-IR and TGA spectroscopy. MTT assay found that at concentration up to 4000 n mol/L of the polymer, cell viability was over 85%. The bio-character of polymer/DNA complex was characterized by agarose gel electrophoresis, ethidium bromide exclusion and zeta-potential assay. The polymer could retardate DNA at N/P ratio 3.0-3.5 (mol/mol). The particle size of the polymer/DNA complex was less than 300 nm. Transfection efficiency of the complex was studied in COS7 and NT2 cell lines.

  13. Stretching and imaging of single DNA chains on a hydrophobic polymer surface made of amphiphilic alternating comb-copolymer.

    Science.gov (United States)

    Liu, Rongrong; Wong, Sheau Tyug; Lau, Peggy Pei Zhi; Tomczak, Nikodem

    2014-02-26

    Functionalization of amine derivatized glass slides with a poly(maleic anhydride)-based comb-copolymer to facilitate stretching, aligning, and imaging of individual dsDNA chains is presented. The polymer-coated surface is hydrophobic due to the presence of the long alkyl side chains along the polymer backbone. The surface is also characterized by low roughness and a globular morphology. Stretched and aligned bacteriophage λ-DNA chains were obtained using a robust method based on stretching by a receding water meniscus at pH 7.8 without the need for small droplet volumes or precoating the surface with additional layers of (bio)molecules. Although the dye to DNA base pairs ratio did not influence substantially the stretching length distributions, a clear peak at stretching lengths close to the contour length of the dsDNA is visible at larger staining ratios.

  14. Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae.

    Science.gov (United States)

    De Maesschalck, Celine; Van Immerseel, Filip; Eeckhaut, Venessa; De Baere, Siegrid; Cnockaert, Margo; Croubels, Siska; Haesebrouck, Freddy; Ducatelle, Richard; Vandamme, Peter

    2014-11-01

    Strains LMG 27428(T) and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428(T) and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734(T). Strain LMG 27428(T) could be distinguished from S. pleomorphus ATCC 29734(T) based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734(T). The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428(T) and LMG 27427. Strain LMG 27428(T) ( =DSM 26963(T)) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( =DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756(T) =ATCC 29734(T) =DSM 20574(T)). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983(T) (94.4% 16S rRNA gene sequence similarity to strain LMG 27428(T)) and Eubacterium biforme DSM 3989(T) (92.7% 16S rRNA gene sequence similarity to strain LMG 27428(T)). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983(T) =ATCC 27803(T) =JCM 10261(T) and that of Holdemanella biformis is DSM 3989(T

  15. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    Science.gov (United States)

    Caspani, Lucia; Reimer, Christian; Kues, Michael; Roztocki, Piotr; Clerici, Matteo; Wetzel, Benjamin; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Razzari, Luca; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2016-06-01

    Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  16. Hair breakage by combing and brushing--a comment on: T. A. Evans and K. Park, A statistical analysis of hair breakage. II. Repeated grooming experiments, J. Cosmet. Sci., 41, 439-456 (2010).

    Science.gov (United States)

    Kamath, Y K; Robbins, C

    2011-01-01

    Literature dealing with the mechanisms of hair breakage in combing and brushing published so far has been reviewed as a background for the critical evaluation of the method and data analysis of the paper "Statistical Analysis of Hair Breakage. II" by Evans and Park (1). Accumulated knowledge about hair breakage in these grooming processes indicates that hair breakage in combing and brushing results from tangling, looping, knotting, and impact loading. Fatiguing, though responsible for some weakening of the fiber in the grooming process, it is unlikely to be a significant factor in hair breakage in combing and brushing.

  17. Recaracterização do subgênero Toltecia Pilsbry com descrição da conquiliomorfologia e anatomia dos sistemas excretor e reprodutor de Punctum (Toltecia Pilsbryi (Scott, n.comb. (Gastropoda, Stylommatophora, Punctidae Recharacterization of the subgenus Toltecia Pilsbry with conchomorphology and anatomy of the excretory and reproductive systems of Punctum (Toltecia Pilsbryi (Scott, n.comb. (Gastropoda, Stylommatophora, Punctidae

    Directory of Open Access Journals (Sweden)

    Álvaro Luís Müller da Fonseca

    1995-01-01

    Full Text Available Conchomorphological and anatomic characteristics of species from Punctum (Toltecia are presented and discussed. The brief recharacterization about the conchomorphology and internal anatomy of Toltecia with related species from this subgenus is presented. The data from this species are compared with other related species from Punctidae, Helicodiscidae and Charopidae. Punctum (Toltecia pilsbryi, n.comb. is redescribed and its shells features was analyzed by SEM (Scanning Electron Microscope and commented, as well as the shells dimensions; the anatomy of the excretory and reproductive systems are described too. The anatomic characteristics, mainly from excretory system, characterize Punctum (Toltecia pilsbryi, n.comb. like Punctidae.

  18. Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas.

    Science.gov (United States)

    Sánchez-Porro, Cristina; Gallego, Virginia; Busse, Hans-Jürgen; Kämpfer, Peter; Ventosa, Antonio

    2009-05-01

    Phylogenetic analyses based on 16S rRNA gene sequences revealed that Teichococcus ludipueritiae and Muricoccus roseus are closely related to the species of the genus Roseomonas. The type strain of Teichococcus ludipueritiae, 170/96(T), exhibited 16S rRNA gene sequence similarity levels of 96.4 % to Roseomonas cervicalis ATCC 49957(T), 95.0 % to Roseomonas aquatica TR53(T), 94.5 % to Muricoccus roseus 173/96(T), 93.4 % to Roseomonas mucosa ATCC BAA-692(T) and 93.5 % to Roseomonas gilardii subsp. gilardii ATCC 49956(T), while Muricoccus roseus 173/96(T) showed 16S rRNA gene sequence similarity values of 95.7 % to R. mucosa ATCC BAA-692(T), 95.7 % to R. aquatica TR53(T) and 95.3 % to R. gilardii subsp. gilardii ATCC 49956(T) and R. gilardii subsp. rosea ATCC BAA-691(T). Different phylogenetic analysis methods (neighbour-joining, maximum-likelihood and maximum-parsimony) confirmed that both species are within the Roseomonas branch. Neither polyamine patterns (spermidine predominant) nor major characteristics in the polar lipid profiles distinguished the two species from representatives of the genus Roseomonas. The fatty acid composition of the two species exhibited alphaproteobacterial characteristics but, like Roseomonas species, they also showed considerable amounts of the rarely encountered C(18 : 1) 2-OH. On the other hand, they showed some phenotypic differences, but their features are compatible with the transfer of these two species to the genus Roseomonas. We propose the reclassification of Teichococcus ludipueritiae and Muricoccus roseus as Roseomonas ludipueritiae comb. nov. (type strain 170/96(T) =CIP 107418(T) =DSM 14915(T)) and Roseomonas rosea comb. nov. (type strain 173/96(T) =CIP 107419(T) =DSM 14916(T)), respectively. Emended descriptions of the genus Roseomonas and the species Roseomonas gilardii (and its subspecies Roseomonas gilardii subsp. gilardii and Roseomonas gilardii subsp. rosea), Roseomonas aquatica, Roseomonas cervicalis, Roseomonas mucosa

  19. High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb.

    Science.gov (United States)

    Gatti, D; Gambetta, A; Castrillo, A; Galzerano, G; Laporta, P; Gianfrani, L; Marangoni, M

    2011-08-29

    This work presents a very simple yet effective way to obtain direct referencing of a quantum-cascade-laser at 4.3 μm to a near-IR frequency-comb. Precise tuning of the comb repetition-rate allows the quantum-cascade-laser to be scanned across absorption lines of a CO2 gaseous sample and line profiles to be acquired with extreme reproducibility and accuracy. By averaging over 50 acquisitions, line-centre frequencies are retrieved with an uncertainty of 30 kHz in a linear interaction regime. The extension of this methodology to other lines and molecules, by the use of widely tunable extended-cavity quantum-cascade-lasers, paves the way to a wide availability of high-quality and traceable spectroscopic data in the most crucial region for molecular detection and interrogation.

  20. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver

    CERN Document Server

    Portuondo-Campa, Erwin; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-01-01

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the current phase-noise limitations in the system.