WorldWideScience

Sample records for camac system

  1. TFTR CAMAC instrumentation system

    International Nuclear Information System (INIS)

    Del Gatto, H.J.; Bradish, C.J.

    1983-01-01

    The TFTR Central Instrumentation Control and Data Acquisition (CICADA) system makes extensive use of CAMAC equipment. The system consists of eight CAMAC highways operating from eight Gould 75/32 computers. Links up to 3.5 miles in length with more than fifty CAMAC crates have been implemented and are currently in use. Data transfer along the highway is implemented in bit serial format. The link speed is run at 5MHz. The length and complexity of the link requires the reformatting of the NRZ input/output format of the L-2 crate controller. U-Port adapter modules are used to interface the modified serial highway to the L-2 controllers. The modified serial highway uses a transmission technique that requires the distribution of both Bi-Phase encoded data and a 5MHz clock. The Serial Driver interfaces to the GOULD computer through use of a High Speed Data (HSD) interface board which attaches to the computers internal bus. All transfers to and from the computer are accomplished by direct memory access (DMA). In addition to the standard CAMAC link the system also includes a Block Transfer (BT) system. This system provides an alternate path for transferring data between the computers and the CAMAC modules. The BT system is interfaced to the host computers through HSD boards and to the CAMAC crates through use of an auxiliary crate controllers

  2. The CAMAC system

    International Nuclear Information System (INIS)

    Wahl, R.

    1976-01-01

    Different directions have been proposed in data processing in nuclear medicine in France; the situation is quite confuse and not very satisfactory. The CAMAC system is there to solve the problem. The word CAMAC does not mean anything in itself. It has been only choosen for its symmetry. It can be read from right to left or from left to right, symbolizing the interface between experiments and computers. Input and output problems of all computers are similar; anyway, each system is connected to each computer, through a special interface. This is the origin of the idea for complex nuclear electronic systems, to normalize a family of modular elements, speaking a unique input-output language; this is the CAMAC system. It is necessary to have an interface between one given computer and the CAMAC system; but, then, the problem is over: the same teletype CAMAC interface allows the connection of one teletype to any type of computer. It is also true for a display, including a colour display controlled by computer [fr

  3. CAMAC system test module

    International Nuclear Information System (INIS)

    Dawson, W.K.; Gjovig, A.; Naivar, F.; Potter, J.; Smith, W.

    1981-01-01

    Since the CAMAC Branch Highway is used to both send information to and receive information from a CAMAC crate, faults in this highway can be difficult to recognize and diagnose. Similarly faults caused by a Crate Controller corrupting either instructions or data are difficult to distinguish from faults caused by the modules themselves. The CLIVIT (CAMAC Logic Integrity Via Interactive Testing) module is designed to largely eliminate such difficulties and ambiguities by allowing the verification of Branch Highway and Dataway transactions via an independent data communication path. The principle of operation of the CLIVIT is explained. Described are the prototype construction, testing and use

  4. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  5. A CAMAC system for nuclear spectroscopy

    International Nuclear Information System (INIS)

    EL Araby, S.M.S.

    1983-01-01

    The thesis describes a computer based multichannel pulse height analyzer for acquiring, processing and displaying random signals coming from a nuclear detector for on - line γ- ray spectroscopy. The system is built around a Pdp - 11/ 04 Computer. Interfacing to the computer is carried out by CAMAC modules. The necessary hard- were required to interface the nuclear detector system to the computer- CAMAC system is developed together with the associated circuits needed to measure the dead time of the whole system. The software has been written Macro,FORTRAN and CATY languages. emphasis was placed on execution speed and it was found that accumulating a large number of data for later processing could improve the execution speed considerably thereby minimizing dead time fast FORTRAN - CAMAC callable subroutine have been developed and used in the software

  6. Optically coupled CAMAC analog input output system

    International Nuclear Information System (INIS)

    Horie, Katsuzo; Kanazawa, Shuhei; Minehara, Eisuke; Hanashima, Susumu

    1985-08-01

    In an accelerator system, especially in ion sources, signals are exchanged between devices at different potentials. We have four ion sources in the negative ion injector for the JAERI tandem accelerator. Voltage to frequency conversion technic and optical fiber were used in the previous system. When we intended to extend the injector, we decided to revise the system to improve accuracy and reliability. For the purpose, we developed a new CAMAC module. It is an interface device between CAMAC dataway and optical fiber. The module has frequency synthesizers, frequency counters, optical transmitters and optical receivers in it. Accuracy, reliability and maintenability of the system were greatly improved by the module. (author)

  7. CAMAC: a standardized modular instrumentation system

    International Nuclear Information System (INIS)

    Michot, Felicia

    1978-01-01

    In view of its modular aspect and its standardization at the international level, the CAMAC system appears as a very interesting system every time that there is a need for fastly constructing an experiment or a mounting in the laboratory or industry. As it can be connected to a computer interface CAMAC may be used for data acquisition, with machine-tools or for industrial process control. The operation mode of said system is discussed in the paper, together with its constituting elements and performance [fr

  8. CAMAC data acquisition system for the pelletron

    International Nuclear Information System (INIS)

    Chatterjee, A.; Ghodgaonkar, M.D.; Khare, A.N.

    1993-01-01

    We have developed a CAMAC data acquisition system to meet the needs of a broad range of experiments at the pelletron. The system makes use of the DMA CAMAC crate controller CC3. The system is designed around two configurations. In the first, the crate controller is interfaced to an IBM PC/AT. The data are acquired on the PC Winchester disk. In the second configuration, the IBM PC is further linked to a HORIZON III mini-computer via ethernet. In this case list mode data can be taken directly on 1/2-inch reel tapes or 60MB cartridges. (author). 3 refs., 2 figs

  9. Microprocessor controlled dual parameter ADC system with a CAMAC interface

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D G; Nickell, Jr, J D [Los Alamos Scientific Lab., NM (USA)

    1978-09-01

    Presented here is the design of a dual parameter ADC system which is controlled by a microprocessor and also interfaced to CAMAC. The system was designed to be mobile in that it may work wherever there is a CAMAC crate. In such cases where the CAMAC system is inoperative, the system may operate in a stand-alone mode.

  10. CAMAC instrumentation system: introduction and general description

    International Nuclear Information System (INIS)

    Costrell, L.

    1976-01-01

    The CAMAC instrumentation system is described in a general way in this introductory paper which is followed by papers that discuss the system in greater detail. This paper is an updated version of the introductory paper that appeared in the April 1973 IEEE Transactions on Nuclear Science

  11. CAMAC based inter-compter communications system

    International Nuclear Information System (INIS)

    Greenwood, D.E.; Burris, R.D.; Young, K.G.

    1981-10-01

    We have used CAMAC hardware to provide communications between dissimilar computers for the ELMO Bumpy Torus (EBT) experiment. The software supports file and individual message transfers. The system has proven to be both reliable and fast, with transmission rates of about 36,000 baud

  12. CAMAC interface module for PACE ADC system

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, C G; Mischke, R E [Los Alamos Scientific Lab., N.Mex. (USA); Scott, D T

    1977-03-15

    This report describes a CAMAC module designed to buffer and transfer data from the Tennelec multiplexed ADC system called PACE to a computer. It can be operated in either of two modes: as an eight-deep, first-in-first-out (FIFO) circular buffer, or in channel mode with a single buffer reserved for each PACE channel.

  13. A camac data acquisition system based on PC-Linux

    International Nuclear Information System (INIS)

    Ribas, R.V.

    2002-01-01

    A multi-parametric data acquisition system for Nuclear Physics experiments using camac instrumentation on a personal computer with the Linux operating system in described. The system is very reliable, inexpensive and is capable of handling event rates up to 4-6 k events/s. In the present version, the maximum number of parameters to be acquired is limited only by the number of camac modules that can be fitted in one camac crate

  14. System program for MICRO-CAMAC terminal system

    International Nuclear Information System (INIS)

    Sasajima, Yoji; Yamada, Takayuki; Yagi, Hideyuki; Ishiguro, Misako

    1979-08-01

    A JAERI on-line network system was developed and exists for on-line data processing of nuclear instrumentation. As terminal systems for the network system, the one with a Micro -8 micro-computer is used. By modifying the control program for Micro-8 terminal system, a system program has been developed for a MICRO-CAMAC terminal system, which is controlled by a micro-computer framed within the CAMAC Crate Controller. In this report are described software specifications of the MICRO -CAMAC terminal system and its operation method. (author)

  15. A CAMAC-based laboratory computer system

    International Nuclear Information System (INIS)

    Westphal, G.P.

    1975-01-01

    A CAMAC-based laboratory computer network is described by sharing a common mass memory this offers distinct advantages over slow and core-consuming single-processor installations. A fast compiler-BASIC, with extensions for CAMAC and real-time, provides a convenient means for interactive experiment control

  16. A CAMAC system for cardiologic monitoring

    International Nuclear Information System (INIS)

    Ouali, Abderrazak

    1977-01-01

    Standard CAMAC rules and features are summarized and a configuration is described for E.C.G. monitoring in intensive care units. This configuration contains intelligent modules (including microprocessors) for the biomedical signals pre-processing and for the CAMAC control. One of these modules analyses in real time the arrythmias from two different E.C.G. channels. With micro-programmed algorithms each arrhythmia is counted and stored in numerical files which are transmitted via the CAMAC data-way to an autonomous crate controller JCAM-10 linked to an interactive graphic and alphanumeric display unit. (author) [fr

  17. System Interconnect Bus (SIB) compatible multi crate CAMAC Controller (CC)

    International Nuclear Information System (INIS)

    Jha, K.; Borkar, S.P.; Ghodgaonkar, M.D.; D'Costa, C.

    2001-01-01

    This paper describes design of SIB compatible crate controller with PC interface. SIB is a general-purpose parallel 1/O interface bus used for connecting multi crate system with single PC-interface. The crate controller comprises of a dedicated PC-AT add-on SIB interface card and two width CAMAC module designed to work at station 24 and station 25 of CAMAC crate. PC Interface card (SIBINT) is used for communication between PC/AT host computer and CAMAC Crates. The controller module incorporates a set of registers, logic to generate CAMAC data way timing. Transmission protocol used is RS485 standard. This controller is used for multiple CAMAC crates system, interfaced to PC, using a 60 core twisted pair flat ribbon cable. The crate controller is developed for use in process control, general-purpose data acquisition and control system and laboratory automation. Sustained data transfer rate achieved by controller is 115 Kword/sec each word being 32 bits in length. (author)

  18. The simulation of CAMAC system based on Windows API

    International Nuclear Information System (INIS)

    Li Lei; Song Yushou; Xi Yinyin; Yan Qiang; Liu Huilan; Li Taosheng

    2012-01-01

    Based on Windows API, a kind of design method to simulate the CAMAC System, which is commonly used in nuclear physics experiments, is developed. Using C++ object-oriented programming, the simulation is carried out in the environment of Visual Studio 2010 and the interfaces, the data-way, the control commands and the modules are simulated with the functions either user-defined or from Windows API. Applying this method, the amplifier plug AMP575A produced by ORTEC is simulated and performance experiments are studied for this simulation module. The results indicate that the simulation module can fulfill the function of pole-zero adjustment, which means this method is competent for the simulation of CAMAC System. Compared with the simulation based on LabVIEW, this way is more flexible and closer to the bottom of the system. All the works above have found a path to making the virtual instrument platform based on CAMAC system. (authors)

  19. LSI/CAMAC system for heavy elements research

    International Nuclear Information System (INIS)

    Watkins, E.D.; Dougan, R.J.; McQuaid, J.H.

    1985-01-01

    We have developed a LSI-11/23 computer-driven CAMAC data acquisition system. The 64 silicon-detector system is being used to investigate the alpha and spontaneous fission activities of short-lived transfermium isotopes by the real-time monitoring of the mother-daughter alpha decay sequence. A unique modular pulse processing electronics system was designed to simplify set up and calibration. The computer adjusts the gain of the CAMAC shaping amplifiers enabling the calibration and alignment of all 64 of the 1 k alpha spectra to within 0.5 channel in less than 10 minutes

  20. A data acquisition system based on PC-CAMAC BUS

    International Nuclear Information System (INIS)

    Xie Xiangyang; Jiang Haiyan; Luo Jiarong; Ji Zhenshan

    2000-08-01

    The author introduces a Data Acquisition System applied to HT-7 (a superconduction Tokamak device). The system is based on the CAMAC standard and the personal computer. The software has been written in C language. The system performs the following tasks: setup parameters of modules, data acquisition, disk data storage and their display

  1. New control system: solutions for CAMAC and VME integration

    International Nuclear Information System (INIS)

    David, L.; Lecorche, E.

    1991-01-01

    Three solutions for a new control system are presented. This system must integrate the whole existing CAMAC park with its LTR software, the VME modules for new interfaces and new processes, user interfaces integrating workstations for best graphic visualizations of setting tasks, the use of ETHERNET net and of the programming language ADA. (A.B.). 3 figs

  2. CAMAC data acquisition system based on micro VAXII

    International Nuclear Information System (INIS)

    Yin Xijin; Shen Cuihua; Bai Xiaowei; Li Weisheng

    1993-01-01

    The CAMAC data acquisition system based on Micro VAXII Computer provides high-speed, Zero-suppressed, and 256-parameter CAMAC acquisition. It consists of three parts: control logic unit, CAMAC readout system and host computer system. When the control logical unit is triggered by external electronic selection signal, it produces a pilot signal to keep all of the parameters of a particular event together. Event-model data have been collected by using a CAMAC Fast Crate controller. The host computer system, in hard environment, is equipped with certain peripheral device. It includes the following: 1. at least two M990 GCR, 6250B/inch, magnetic tape driver operating at 75 inches per second or faster; 2. a Tektronix 4014 storage scope; 3. a laser printer, LND3-AE or copier which is capable of making hard-copies of Tektronix 4014 screen; 4. a control console device and a line printer; 5. x-press color graphics terminal; 6. DEC network. When the system is in real-time acquisition, it is able, on-line, to handle and analyse data stream, to monitor and control experiment and to display dynamically spectra on the Tektronix 4014

  3. Development of a VME and CAMAC based data acquisition and transfer system for JT-60 control

    International Nuclear Information System (INIS)

    Totsuka, Toshiyuki

    1993-08-01

    Development of a VME and CAMAC based data acquisition and transfer system for JT-60 Control is reported. The present data acquisition and transfer system in JT-60 control is basically composed of CAMAC devices. Since the system equipped with 16-bit microcomputers was manufactured more than ten years ago, the performance and program development environment of the system are apparently worse than those of modern 32-bit microcomputers. To improve these disadvantages, a new data acquisition and transfer system using VME-based 32-bit microcomputers and CAMAC drivers is under design. Corresponding to this design, a CAMAC handler, which runs on the microcomputer, for the VME based CAMAC driver was newly developed. Moreover, the functions of the driver and data transfer performance of the VME and CAMAC complex system were tested. The test results shown that the VME based microcomputer and CAMAC serial driver can be applied for the fast and reliable acquisition and transfer system for JT-60 control. (author)

  4. Direct numerical control of machine tools in a nuclear research center by the CAMAC system

    International Nuclear Information System (INIS)

    Zwoll, K.; Mueller, K.D.; Becks, B.; Erven, W.; Sauer, M.

    1977-01-01

    The production of mechanical parts in research centers can be improved by connecting several numerically controlled machine tools to a central process computer via a data link. The CAMAC Serial Highway with its expandable structure yields an economic and flexible system for this purpose. The CAMAC System also facilitates the development of modular components controlling the machine tools itself. A CAMAC installation controlling three different machine tools connected to a central computer (PDP11) via the CAMAC Serial Highway is described. Besides this application, part of the CAMAC hardware and software can also be used for a great variety of scientific experiments

  5. The use of CAMAC with small computers in the TRIUMF control system

    International Nuclear Information System (INIS)

    Gurd, D.P.; Heywood, D.R.; Johnson, R.R.

    1975-08-01

    The TRIUMF control system uses several small computers. This allows tasks to be partitioned in hardware rather than by a complex operating system. This flexibility was especially convenient during the developmental stages of TRIUMF. The multi-mini approach also improves mean time to repair. All control system computers are to be interfaced simultaneously to a single CAMAC system of 35 crates on seven branches. Other computers, belonging to separate systems, communicate with the control system via parallel CAMAC-to-CAMAC links. Modularity at both the computer and controller levels, combined with CAMAC multisourcing, has allowed the introduction of considerable redundancy, thereby increasing overall system reliability. (author)

  6. CAMAC - A modular instrumentation system for data handling. Revised description and specification

    International Nuclear Information System (INIS)

    1977-03-01

    CAMAC is a modern data handling system in widespread use with on-line digital computers. It is based on a digital highway for data and control. The CAMAC specifications ensures compatibility between equipment from different sources. The revised specification introduces several new features, but is consistent with the previous version (EUR 4100e, 1969). The CAMAC system was specified by European laboratories, through the Esone Committee, and has been endorsed by the USAEC NIM Committee, who have an identical specification (TID-25875)

  7. A CAMAC based knob controller for the LAMPF control system

    International Nuclear Information System (INIS)

    Smith, W.; Bjorklund, E.

    1987-01-01

    The control computer for the Los Alamos Meson Physics Facility (LAMPF) has been recently upgraded from an SEL-840 to a VAX 11/780 running the VMS operating system. As part of this upgrade, a CAMAC-based knob controller was developed for the new control system. The knobs allow the facility operators to have slew control over software selectable accelerator devices. An alphanumeric display associated with each knob monitors the progress of the selected device. This paper describes the system requirements for the new LAMPF knob controller, and the resulting hardware and software design

  8. CAMAC-controlled calibration system for nuclear reactor instruments

    International Nuclear Information System (INIS)

    McDowell, W.P.; Cornella, R.J.

    1977-01-01

    The hardware and the software which have been developed to implement a nuclear instrument calibration system for the Argonne National Laboratory ZPR-VI and ZPR-IX reactor complex are described. The system is implemented using an SEL-840 computer with its associated CAMAC crates and a hardware interface to generate input parameters and measure the required outputs on the instrument under test. Both linear and logarithmic instruments can be calibrated by the system and output parameters can be measured at various automatically selected values of ac line voltage. A complete report on each instrument is printed as a result of the calibration and out-of-tolerance readings are flagged. Operator interface is provided by a CAMAC-controlled Hazeltine terminal. The terminal display leads the operator through the complete calibration procedure. This computer-controlled system is a significant improvement over previously used methods of calibrating nuclear instruments since it reduces reactor downtime and allows rapid detection of long-term changes in instrument calibration

  9. Introducing CAMAC

    International Nuclear Information System (INIS)

    Klessmann, H.

    1977-06-01

    The CAMAC instrumentation standard is a precise set of rules for the design and interfacing of modular, compatible equipment used in on-line data acquisition and process control. The specifications of the system define the mechanical, electrical and functional characteristics of the system components, and the protocols for data transfer via defined data highway to and from computers. The paper describes the basic CAMAC system configurations using the Dataway in the crate, the parallel Branch Highway for high data rates at short distance and the Serial Highway for moderate data rates in widely distributed systems. (orig.) [de

  10. CAMAC system for computer control of microwave spectrometers

    International Nuclear Information System (INIS)

    Zizka, G.; Turko, B.; Kolbe, B.

    1979-01-01

    An interface between a microwave spectrometer and a computer is described. It consists of three CAMAC modules and uses a standard CAMAC crate and controller. The hardware, in conjunction with appropriate software routines was designed to synchronize measurements, to collect data, and to control the microwave frequency and other experimental parameters

  11. CAMAC acquisition system for industrial X-ray tomograph

    International Nuclear Information System (INIS)

    Guerin, J.P.; Huet, Jacques; Pauton, Michel.

    1982-11-01

    A 400 kV X-ray industrial scanner has been developed. The present paper describes the CAMAC acquisition system. This unit with its 3 microprocessors, 2 mass memories and TV graphic display is very flexible; it will be used to optimise measurement parameters along with pieces to be checked and to establish application limits of this non destructive inspection method. This system allows internal inspection of objects as big as 400 mm in diameter with an elementary volume of 1 x 1 x 5 mm 3 and specific weight in the range of 0.7 to 10 g/cm 3 . Relative precision of 10 - 3 in density for moulded objects is expected. The first results obtained are shown [fr

  12. Industrial defectoscope based on multiwire proportional chamber in CAMAC system

    International Nuclear Information System (INIS)

    Brzeski, P.; Kazubek, M.; Mirkowski, J.; Szabatin, R.

    1976-01-01

    The defectoscope for non-destructive testing has been built at the Institute of Radioelectronics in collaboration with the Electrotechnical Institute, Non-destructive Division. The defectoscope consists of the following parts: gamma radiation detector, multiwire proportional chamber with γ-e converter, preamplifier system attached directly to the chamber wires, logic module of CAMAC philoscopy, and MERA 300 minicomputer. The defectoscope is used to detect material flaws in tested objects, irradiated from an internal radiation source. Minicomputer used enables data processing. The data collected in mincomputer memory are the radiological image of a tested object. It is possible to display the collected image on a television monitor, to display any profile of the image on an oscilloscope, to print the map of the image on a mosaic printer. (author)

  13. Present state of production of CAMAC system apparatus in Poland

    International Nuclear Information System (INIS)

    Dec, A.

    1978-01-01

    The production of CAMAC apparatus such as power supplies, digital and analog blocks, Moessbauer and neutron spectrometers are described. The didactic laboratory for polytechnics and universities is presented too. (A.S.)

  14. A CAMAC and FASTBUS engineering test environment supported by a MicroVAX/MicroVMS system

    International Nuclear Information System (INIS)

    Logg, C.A.

    1987-10-01

    A flexible, multiuser engineering test environment has been established for the engineers in SLAC's Electronic Instrumentation Engineering group. The system hardware includes a standard MicroVAX II and MicroVAX I with multiple CAMAC, FASTBUS, and GPIB instrumentation buses. The system software components include MicroVMS licenses with DECNET/SLACNET, FORTRAN, PASCAL, FORTH, and a versatile graphical display package. In addition, there are several software utilities available to facilitate FASTBUS and CAMAC prototype hardware debugging. 16 refs., 7 figs

  15. Microprocessor- and LSI-based CAMAC RAM controllers in a modular multiparameter instrumentation system

    International Nuclear Information System (INIS)

    Skarda, V.

    1982-01-01

    This contribution deals with the main features and with the hardware modifications of RAM controllers in the dual-port accessed CAMAC memory modules that have been applied in a modular multichannel analyzer instrumentation system. The modules described in this paper are fully compatible with the CAMAC standard EUR 4100 and with the COMPEX draft proposal of the ESONE Study Group, as well. Special attention is paid to the possible application of modern LSI bipolar circuits. (orig.)

  16. A fast data acquisition path based on a CAMAC memory system

    International Nuclear Information System (INIS)

    Klesse, R.; Kostorz, G.

    1975-01-01

    High data rates (up to 500KHz) and the necessity on On-Line data reduction lead us to develop a CAMAC based memory system. New MOS-technology (1 chip=4096 bit) enabled us to make it reasonable in size (4K words of 16 bit in 1/25 CAMAC-Module) and in price. On-Line data reduction makes it possible to have On-Line data acquisition (incrementation) with the minimum theory size

  17. Realization of the computation process in the M-6000 computer for physical process automatization systems basing on CAMAC system

    International Nuclear Information System (INIS)

    Antonichev, G.M.; Vesenev, V.A.; Volkov, A.S.; Maslov, V.V.; Shilkin, I.P.; Bespalova, T.V.; Golutvin, I.A.; Nevskaya, N.A.

    1977-01-01

    Software for physical experiments using the CAMAC devices and the M-6000 computer are further developed. The construction principles and operation of the data acquisition system and the system generator are described. Using the generator for the data acquisition system the experimenter realizes the logic for data exchange between the CAMAC devices and the computer

  18. CAMAC - an introduction into a system of standardized highways between computers and their peripherals

    International Nuclear Information System (INIS)

    Stuckenberg, H.J.

    1975-10-01

    CAMAC, which is a synonym for 'Computer Automated Measurement and Control', is a set of rules widely used in many countries for connecting processors and computers to the on-line peripherals. There are rules for an interface transferring the information via a common highway as well as for modular mechanical units in which the peripheral devices are housed together with the multipole connectors combining the computer with the controlled process. All peripherals in a system are sending the data and control information to the computer through parallel or serial highways which are defined also by the CAMAC rules. The use of CAMAC assures the possibility to combine compatible hardware of various suppliers in any system without mechanical or electrical difficulties making the hardware and software implementation much more easier. Also the reconfiguration of a system needed for new and other activities is done relatively fast and simple. Compatible devices are offered by about 60 suppliers in all five continents. (orig.) [de

  19. A CAMAC-system crate interface based on EUR 6100 standards

    International Nuclear Information System (INIS)

    Wolstenholme, P.; Verelst, H.; Parker, C.R.C.B.

    1980-01-01

    The particle beams in the Intersecting Storage Rings of the CERN accelerator are controlled by means of a CAMAC Branch Highway and three CAMAC Serial Highway Systems. The highway controllers, housed in system crates, are driven by crate controllers interfaced to the control computers. The crate controllers are implemented as auxiliary controllers and are PROM based to allow N, A and F to be generated from a small zone of computer addresses and are largely transparent to the host computer. The concept has enabled standard modules and techniques taken from the Serial Highway to be adopted for use in system crates. (Auth.)

  20. Programs for data accumulation and storage from the multicrate CAMAC systems basing on the M-6000 computer

    International Nuclear Information System (INIS)

    Antonichev, G.M.; Shilkin, I.P.; Bespalova, T.V.; Golutvin, I.A.; Maslov, V.V.; Nevskaya, N.A.

    1978-01-01

    Programs for data accumulation and storage from multicrate CAMAC systems organized in parallel into a branch and connected with the M-6000 computer via the branch interface are described. Program operation in different modes of CAMAC apparatus is described. All the programs operate within the real time disk operation system

  1. Distributed intelligence in CAMAC

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1977-01-01

    The CAMAC digital interface standard has served us well since 1969. During this time there have been enormous advances in digital electronics. In particular, low cost microprocessors now make it feasible to consider use of distributed intelligence even in simple data acquisition systems. This paper describes a simple extension of the CAMAC standard which allows distributed intelligence at the crate level

  2. Alternate mode for data acquisition and real-time monitoring system based on CAMAC system

    International Nuclear Information System (INIS)

    Luo, J.R.; Wei, P.J.; Li, G.M.; Wang, H.

    2006-01-01

    Long discharges (about 250 s) have been achieved on HT-7 tokamak experiments in the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). And in the next generation tokamaks like ITER , KSTAR and EAST , the pulses will be about 1000 s. In such steady-state operation, we have to upgrade the CAMAC-based data acquisition system, with higher sampling rates and longer acquisition times. It is necessary to monitor the plasma parameters in real-time so that the operators can change the operational conditions during the discharge to maintain the plasma. A design of the system named alternant data acquisition and real-time monitoring system for steady-state tokamak operation based on CAMAC system has been setup in ASIPP. The application of this system has been demonstrated in the HT-7 and TRIAM-1M tokamaks during their 2004 experiment campaigns

  3. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  4. Control programs of multichannel pulse height analyzer with CAMAC system using FACOM U-200 mini-computer

    International Nuclear Information System (INIS)

    Yamagishi, Kojiro

    1978-02-01

    The 4096 channel Pulse Height Analyzer (PHA) assembled with CAMAC plug-in units has been developed in JAERI. The PHA consists of ADC unit, CRT-display unit, and CAMAC plug-in units, which are memory-controller, MCA-timer, 4K words RAM memory and CRT-driver. The system is on-line connected to FACOM U-200 Mini-Computer through CAMAC interface unit Crate-controller. The softwares for on-line data acquisition of the system have been developed. These are four utility programs written in FORTRAN and two program packages written in assembler language FASP which are CAMAC Program Package and Basic Input/Output Program Package. CAMAC Program Package has 18 subroutine programs for control of CAMAC plug-in units from FACOM U-200 Mini-Computer; and Basic Input/Output Program Package has 26 subroutine programs to input/output data to/from a typewriter, keyboard, cassette magnetic tape and open reel magnetic tape. These subroutine programs are all FORTRAN callable. The PHA with CAMAC system is first outlined, and then usage is described in detail of four utility programs, CAMAC Program Package and Basic Input/Output Program Package. (auth.)

  5. Configurable data and CAMAC hardware representations for implementation of the SPHERE DAQ and offline systems

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2001-01-01

    An implementation of the experimental data configurable representation for using in the DAQ and offline systems of the SPHERE setup at the LHE, JINR is described. A software scheme of the SPHERE CAMAC hardware's configurable description, intended to online data acquisition (DAQ) implementation based on the qdpb system, is issued

  6. A CAMAC based real-time noise analysis system for nuclear reactors

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1987-01-01

    A CAMAC based real-time noise analysis system was designed for the TRIGA MARK II nuclear reactor at the Institute for Nuclear Energy, Istanbul. The input analog signals obtained from the radiation detectors are introduced to the system through CAMAC interface. The signals coverted into digital form are processed by a PDP-11 computer. The fast data processing based on auto/cross power spectral density computations is carried out by means of assembly written FFT algorithms in real-time and the spectra obtained are displayed on a CAMAC driven display system as an additional monitoring device. The system has the advantage of being software programmable and controlled by a CAMAC system so that it is operated under porgram control for reactor surveillance, anomaly detection and diagnosis. The system can also be used for the identification of nonstationary operational characteristics of the reactor in long term by comparing the noise power spectra with the corresponding reference noise patterns prepared in advance. (orig.)

  7. A CAMAC seven-crate system on-line with an HP2116B computer

    International Nuclear Information System (INIS)

    Chernenko, S.P.; Chernykh, E.V.; Filatova, N.A.; Ivanov, A.B.; Kolpakov, I.F.; Nikityuk, N.N.; Smirnov, V.A.; Zanevsky, Yu.V.

    1975-01-01

    A branch of seven CAMAC on-line with an HP2116B computer is described. This system is used for data acquisition from a Cherenkov 90-channel spectrometer, 32 magnetostrictive chambers, 20 registers of the proportional chambers, scalers, and hodoscope registers

  8. CAMAC to GPIB interface

    International Nuclear Information System (INIS)

    Naivar, F.J.

    1978-01-01

    A CAMAC module developed at the Los Alamos Scientific Laboratory allows any device conforming to the GPIB standard to be connected to a CAMAC system. This module incorporates a microprocessor to control up to 14 GPIB-compatible instruments using a restricted set of CAMAC F-N-A commands. The marriage of a device-independent bus (IEEE Standard 488-1975) to a computer-independent bus (IEEE Standard 583-1975) provides a general method for interfacing a system of programmable instruments to any computer. This module is being used to interface a variety of interactive devices on a control console to a control computer

  9. A CAMAC-VME-Macintosh data acquisition system for nuclear experiments

    Science.gov (United States)

    Anzalone, A.; Giustolisi, F.

    1989-10-01

    A multiprocessor system for data acquisition and analysis in low-energy nuclear physics has been realized. The system is built around CAMAC, the VMEbus, and the Macintosh PC. Multiprocessor software has been developed, using RTF, MACsys, and CERN cross-software. The execution of several programs that run on several VME CPUs and on an external PC is coordinated by a mailbox protocol. No operating system is used on the VME CPUs. The hardware, software, and system performance are described.

  10. Using VME to leverage legacy CAMAC electronics into a high speed data acquisition system

    International Nuclear Information System (INIS)

    Anthony, P.L.

    1997-06-01

    The authors report on the first full scale implementation of a VME based Data Acquisition (DAQ) system at the Stanford Linear Accelerator Center (SLAC). This system was designed for use in the End Station A (ESA) fixed target program. It was designed to handle interrupts at rates up to 120 Hz and event sizes up to 10,000 bytes per interrupt. One of the driving considerations behind the design of this system was to make use of existing CAMAC based electronics and yet deliver a high performance DAQ system. This was achieved by basing the DAQ system in a VME backplane allowing parallel control and readout of CAMAC branches and VME DAQ modules. This system was successfully used in the Spin Physics research program at SLAC (E154 and E155)

  11. Software design of an auto-testing system for CAMAC modules

    International Nuclear Information System (INIS)

    Zhang Hao; Xu Jiajun

    1999-01-01

    The author introduces one of software methods of how to get a PC graphic interface operation when a MS-DOS driver is the only possible copy for the device. Human-machine interactive graphic interface is more popular nowadays since it has rich pages and comfortable input-output operations. First step is to set a data exchange between MS-DOS and MS-Windows through a interrupt service. Second step is to program a dynamic link library which VB can invoke. VBX control is possible to extend the system functions. The testing system can test main performances automatically with CAMAC modules of IDIM, IDOM, PSC, SAM, and 3016. It seems the better way to test the linearity, AC correction and so on. The testing system proves to be usable in maintaining CAMAC modules of BEPC control system

  12. Software design of a auto-testing system for CAMAC modules

    International Nuclear Information System (INIS)

    Zhang Hao; Xu Jiajun

    1997-01-01

    The author introduces one of software methods of how to get a PC graphic interface operation when a MS-DOS driver is the only possible copy for the device. Human-machine interactive graphic interface is more popular nowadays since it has rich pages and comfortable input/output operations. First step is to set up a data exchange between MS-DOS and MS-Windows through a interrupt service. Second step is to program a dynamic link library which VB can invoke. VBX control is possible to extend the system functions. The testing system can test main performances automatically with CAMAC modules of IDIM, IDOM, PSC, SAM, and 3016. It seems the better way to test the linearity, AC correction and so on. The testing system is proved to be useable in maintaining CAMAC modules of BEPC control system

  13. A computer-controlled CAMAC system for the operation of a neutron diffractometer

    International Nuclear Information System (INIS)

    Zwoll, K.; Mueller, K.D.; Will, G.

    1976-01-01

    The paper describes a computer-controlled four-circle diffractometer for the investigation of single crystals by neutron diffraction. The hardware is based on the internationally standardised CAMAC system. This makes the system described here independent of the type of computer used and also largely independent of the mechanical equipment used. The software is written in the interpretative language FOCAL which is easy to learn and ensures high flexibility in programming and thus also in the use of the diffractometer. (orig.) [de

  14. Computer-controlled CAMAC system for the operation of a neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Zwoll, K; Mueller, K D [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Zentrallabor fuer Elektronik; Will, G [Bonn Univ. (Germany, F.R.). Mineralogisches Inst.

    1976-10-01

    The paper describes a computer-controlled four-circle diffractometer for the investigation of single crystals by neutron diffraction. The hardware is based on the internationally standardised CAMAC system. This makes the system described here independent of the type of computer used and also largely independent of the mechanical equipment used. The software is written in the interpretative language FOCAL which is easy to learn and ensures high flexibility in programming and thus also in the use of the diffractometer.

  15. TRAQ I, a CAMAC system for multichannel data acquisition, storage and processing

    International Nuclear Information System (INIS)

    Broad, A.S.; Jordan, C.L.; Kojola, P.H.; Miller, M.

    1983-01-01

    Multichannel, high speed, signal sources generate large amounts of data which cannot be handled real time on the camac dataway. TRAQ I is a modular CAMAC system designed to buffer and process data of this type. The system can acquire data from up to 256 sources (ADCs etc.) and store in local memory (4 Mbytes). Many different signal sources can be controlled, working in either a histogramming or sequential mode. The system's data transfer bus is designed to accommodate other modules which can pre- or postprocess the data. Pre-processors can either intercept the data flow to memory for data compaction or passively monitor, looking for signal excursions, etc. Post-processors access memory to process and rewrite the data or transmit to other devices

  16. Standard software for CAMAC

    International Nuclear Information System (INIS)

    Lenkszus, F.R.

    1978-01-01

    The NIM Committee (National Instrumentation Methods Committee) of the U.S. Department of Energy and the ESONE Committee of European Laboratories have jointly specified standard software for use with CAMAC. Three general approaches were followed: the definition of a language called IML for use in CAMAC systems, the definition of a standard set of subroutine calls, and real-time extensions to the BASIC language. This paper summarizes the results of these efforts. 1 table

  17. A discussion of tools and techniques for distributed processor based control systems using CAMAC

    International Nuclear Information System (INIS)

    Tippie, J.W.; Scandora, A.E.

    1985-01-01

    This paper describes and analyzes various distributed processor architectures using commercially available CAMAC components. The general orientation is toward distributed control systems using Digital Equipment Corporation LSI11 processors in a CAMAC environment. The paper describes in detail software tools available to simplify the development of applications software and to provide a high-level runtime environment both at the host and the remote processors. Discussion focuses on techniques for downloading of operating systems from a large host and applications tasks written in high-level languages. It also discusses software tools which enable tasks in the remote processors to exchange messages and data with tasks in the host in a simple and elegant way

  18. A DAQ system for CAMAC controller CC/NET using DAQ-Middleware

    International Nuclear Information System (INIS)

    Inoue, E; Yasu, Y; Nakayoshi, K; Sendai, H

    2010-01-01

    DAQ-Middleware is a framework for the DAQ system which is based on RT-Middleware (Robot Technology Middleware) and dedicated to making DAQ systems. DAQ-Middleware has come into use as a one of the DAQ system framework for the next generation Particle Physics experiment at KEK in recent years. DAQ-Middleware comprises DAQ-Components with all necessary basic functions of the DAQ and is easily extensible. So, using DAQ-Middleware, you are able to construct easily your own DAQ system by combining these components. As an example, we have developed a DAQ system for a CC/NET [1] using DAQ-Middleware by the addition of GUI part and CAMAC readout part. The CC/NET, the CAMAC controller was developed to accomplish high speed read-out of CAMAC data. The basic design concept of CC/NET is to realize data taking through networks. So, it is consistent with the DAQ-Middleware concept. We show how it is convenient to use DAQ-Middleware.

  19. CAMAC-system for calibration and control of experimental apparatus with scintillation counters

    International Nuclear Information System (INIS)

    Petrov, A.G.; Sinaev, A.N.

    1977-01-01

    The CAMAC-system is described, connected to the minicomputer PH-2116C, for calibration and control of an experiment on pion scattering on He-nuclei performed with a streamer chamber triggered by a scintillation hodoscope. The following operations are performed: -delay calibration in telescope and hodoscope tracts involving 22 scintillation counters; -control of relative efficiency of hodoscope counters and other parameters of the experiments; -control of HV supply of photomultipliers; -control of the currents of magnets and lenses of the muon track of the synchrocyclotron; -measurement of pulse-hight spectra from a Cherenkov counter to determine the beam composition. The working programs are initiated and the dialogue with the computer is carried out using an alphanumerical display connected to the PH-2116C via a CAMAC interface

  20. CAMAC in neutron physics investigations

    Energy Technology Data Exchange (ETDEWEB)

    Meiling, W; Arlt, R; Grimm, W; Hirsch, W; Krause, R; Wagner, W; Weidhase, F [Technische Univ., Dresden (German Democratic Republic). Sektion Physik

    1978-09-01

    For computer-assisted experiments on the basis of the KRS 4200 minicomputer system, a CAMAC computer connection controller AS 10 as well as some control devices and CAMAC modules have been developed. A CAMAC assembly has been used for measuring the fission cross section of /sup 235/U for 14.7 MeV neutrons finding sigma sub(n,f) = (2.073 +- 0.023) x 10/sup -24/ cm/sup 2/.

  1. A FORTRAN-compatible program package for the control of CAMAC-systems by a PDP-11 (CA11-A/DEC, Type 1533A/BORER)

    International Nuclear Information System (INIS)

    Lengauer, C.

    1975-01-01

    The described software serves for the control of CAMAC-systems by a PDP-11 Computer with one DEC CA11-A Branch-Driver, respectively up to ten BORER Type 1533A Single-Crate-Controllers under the Operating System DOS V08. The software consists of three parts: 1) a subroutine library for programming in FORTRAN, 2) a macro library for programming in Assembler (for time-critical problems), 3) a loadable CAMAC-Driver for controlling the system by input of single CAMAC-commands at the terminal. Programs which apply the first two parts can be written independently of the CAMAC-Controller used at runtime. (orig.) [de

  2. VAX CAMAC channel

    International Nuclear Information System (INIS)

    Nelson, D.J.; Breidenbach, M.; Granieri, C.D.; Grund, J.E.; Patrick, J.F.; Weaver, L.J.

    1980-10-01

    A new generation CAMAC System has been developed for the Mark II Detector at SLAC's PEP storage ring. This flexible system can efficiently transfer data between a host computer and a very large set of CAMAC data acquisition and control modules. A bipolar microprocessor operates as a Channel interface by supervising the CAMAC system and minimizing the host computer's work. This programmable channel couples the host to a set of System Crates; each System Crate houses Branch Drivers that can directly control a set of crates or communicate over differential parallel highways to Branch Receivers for control of distant crates. A coherent software package integrates the high level programs, system driver level programs, and microcode control of the system

  3. A Camac-VME-MacIntosh data acquisition system for nuclear experiments

    International Nuclear Information System (INIS)

    Anzalone, A.; Giustolisi, F.

    1989-01-01

    A multiprocessor system for data acquisition and analysis in low energy nuclear physics has been realized at the Laboratorio Nazionale del Sud. the system is built around Camac, VME-bus and MacIntosh PC. A multiprocessor software has been developed, using RTF, Macsys and Cern cross-software. The execution of several programs which run on several VME-CPU's and on an external PC, is coordinated by a mail box protocol. No operating system is used on the VME-CPU's

  4. CAMAC multipurpose microprocessor controller

    International Nuclear Information System (INIS)

    Belyakova, M.P.; Nemesh, T.; Buj Zoan Chong.

    1978-01-01

    The use of CAMAC controllers in an autonomous system of data acquisition and measurement is considered. The system consists of a control intelligence controller, memory modules, and user modules in the CAMAC standard. The controller and all the modules have an output into the highway and this permits to exchange data among them without using special external cables. To increase the servicing rate, an auxiliary controller which has direct access to memory and controls the user modules, is additionally connected to the data acquisition and measurement system. In this case, the intelligence controller is passive. The system of data acquisition can be realized in the form of a multiple system with branch usage. The controller module width is three units, and the controller incorporates the Intel-8080-type microprocessor and the following interfaces: of CAMAC highways, of interruption, of memory bootstrap, and of data sequence channel

  5. CAMAC system for data acquisition on output of digital panel meter for DC voltage measurement

    International Nuclear Information System (INIS)

    Noda, Nobuaki.

    1979-03-01

    An interface between the digital panel meter (DPM) for DC voltage measurement and the CAMAC system for T-2 experiment in JIPP (Japan Institute of Plasma Physics) was designed and produced. This panel meter is used for the purpose of monitoring the deflected electrode voltage of a 6 channel, neutral particle, energy analyzer (parallel plate electrodes, electro static type). The method of connecting the DPM to the CAMAC system is that of taking the gate pulses with the width proportional to the voltage to be measured out of the output of the DPM and counting the clock pulses. This system uses each one channel of output register, interrupting register, scaler and clock generator, and the binary digital data is obtained in the scaler, and sent to the main memory of the computer HITAC 10-2 through the CAMAC crate controller. At this time, the interface gives the output of the gate pulses with the width proportional to the DPM input voltage from the DPM BUSY output and PRINT COMMAND output, depending on the sampling pulses from the output register. The interface also gives the end pulse communicating the completion of the output of gate pulses to the interrupting register. The software is summarized in the flow chart of the program and in the program list used for the test on this data acquisition system. The features of this system are to be able to obtain the binary data directly, and to be capable of saving the number of transmission lines required for data transfer. (Wakatsuki, Y.)

  6. Set of CAMAC modules on the base of large integrated circuits for an accelerator synchronization system

    International Nuclear Information System (INIS)

    Glejbman, Eh.M.; Pilyar, N.V.

    1986-01-01

    Parameters of functional moduli in the CAMAC standard developed for accelerator synchronization system are presented. They comprise BZN-8K and BZ-8K digital delay circuits, timing circuit and pulse selection circuit. In every module 3 large integral circuits of KR 580 VI53 type programmed timer, circuits of the given system bus bar interface with bus bars of crate, circuits of data recording control, 2 peripheric storage devices, circuits of initial regime setting, input and output shapers, circuits of installation and removal of blocking in channels are used

  7. CAMAC modular instrumentation system for information processing (ESONE committee document)

    International Nuclear Information System (INIS)

    1969-03-01

    Under the auspices of the ESONE committee, European laboratories have collaborated to define the essential characteristics of a modular instrumentation system. This system will be used online with digital controllers and calculators. It comprises an interconnection system for the transfer of data and commands. The specifications given in this note refer to the standards regarding the mechanical dimensions and the characteristics of the signals necessary to ensure the compatibility between elements developed in different laboratories [fr

  8. Design and implementation of a Macintosh-CAMAC based system for neutral beam diagnostics

    International Nuclear Information System (INIS)

    Wight, J.; Hong, R.M.; Phillips, J.C.; Lee, R.L.; Colleraine, A.P.; Kim, J.

    1989-12-01

    An automated personal computer based CAMAC data acquisition system is being implemented on the DIII-D neutral beamlines for certain diagnostics. The waterflow calorimetry (WFC) diagnostic is the first system to be upgraded. It includes data acquisition by a Macintosh II computer containing a National Instruments IEEE-488 card, and running their LabView software. Macintosh to CAMAC communications are carried out through an IEEE-488 crate controller. The Doppler shift spectroscopy, residual gas analysis, and armor tile infrared image diagnostics will be modified in similar ways. To reduce the demand for Macintosh CPU time, the extensive serial high-way data activity is performed by means of a new Kinetic Systems 3982 List sequencing Crate Controller dedicated to these operations. A simple Local Area Network file server is used to store data from all diagnostics together, and in a format readable by a standard commercial database. This reduces the problem of redundant data storage and allows simpler inter-diagnostic analysis. 3 refs., 4 figs

  9. Automatic data acquisition system in CAMAC for spectrometry

    International Nuclear Information System (INIS)

    Szabo, L.; Szalay, S.; Takacz, P.; Pal, A.

    1981-01-01

    A special memory module with twofold access for spectrometric information is described. Via the direct access entry three regimes are realized: plus one, minus one and adress storage. The visual monitoring is carried out by means of an interface containing a buffer memory for the representation of 4 256-channel spectra and the text on the display. The system work is managed by a controller on the basis of a microprocessor

  10. A CAMAC-based data acquisition system with a Macintosh interface

    International Nuclear Information System (INIS)

    McKisson, J.E.; Ely, D.W.; Weisenberger, A.G.; Piercy, R.B.; Haskins, P.S.

    1990-01-01

    This paper describes a commercially available Macintosh-based data acquisition system and its application to a specific measurement. Based on Computer Aided Measurement and Control (CAMAC) and Nuclear Instrumentation Module (NIM) standard modules, the data acquisition system features a hardware and software interface to a Macintosh computer. This system has been used both for laboratory and remote site measurements, and has been found to perform well as both a highly interactive laboratory system and as a very automatable system for long term data acquisition. Ease in configuration allows for flexibility in fast response applications where a data acquisition system is needed in short time. The system software also supports much of the data analysis and presentation of results with a versatile set of histogram display and manipulation tools. In a recent application, the system controlled data acquisition for two germanium detectors used as part of the whole- spacecraft induced activation measurements of the Long Duration Exposure Facility (LDEF) satellite

  11. Some implementations of local intelligence in CAMAC

    International Nuclear Information System (INIS)

    Parker, C.R.C.B.; Wolstenholme, P.

    1980-01-01

    The incorporation of intelligence into CAMAC units has been made possible by two factors: the massive reduction in price and increase in complexity of semiconductor devices, and the extension of the CAMAC specifications to allow multiple controllers in a single CAMAC crate. The paper describes three implementations of intelligent CAMAC units. Two of these are auxilliary controllers, while the third is a pure CAMAC module. These units have been used extensively in the improvement and extension of the control system for the CERN Intersecting Storage Rings. (Auth.)

  12. Single-crate stand-alone CAMAC control system for a negative ion source test facility

    International Nuclear Information System (INIS)

    Juras, R.C.; Ziegler, N.F.

    1979-01-01

    A single-crate CAMAC system was configured to control a negative ion source development facility at ORNL and control software was written for the crate microcomputer. The software uses inputs from a touch panel and a shaft encoder to control the various operating parameters of the test facility and uses the touch panel to display the operating status. Communication to and from the equipment at ion source potential is accomplished over optical fibers from an ORNL-built CAMAC module. A receiver at ion source potential stores the transmitted data and some of these stored values are then used to control discrete parameters of the ion source (i.e., power supply on or off). Other stored values are sent to a multiplexed digital-to-analog converter to provide analog control signals. A transmitter at ion source potential transmits discrete status information and several channels of analog data from an analog-to-digital converter back to the ground-potential receiver where it is stored to be read and displayed by the software

  13. Distributed intelligence in CAMAC

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1977-01-01

    A simple extension of the CAMAC standard is described which allows distributed intelligence at the crate level. By distributed intelligence is meant that there is more than one source of control in a system. This standard is just now emerging from the NIM Dataway Working Group and its European counterpart. 1 figure

  14. A high-speed CAMAC data acquisition system for PDP-11

    International Nuclear Information System (INIS)

    Berg, D.M.; Heinicke, P.; Quigg, L.

    1985-01-01

    This paper describes a high-speed data acquisition system for a PDP-11 running under the RSX-11M operating system. It has been used by several high-energy physics experiments at Fermilab. The system consists of several coordinated tasks which acquire data through a CAMAC interface, log data to magnetic tape, supply data to independent monitoring and analysis tasks (such as RSXMULTI), and perform control functions. A data buffer extending beyond the 18-bit address space of the PDP-11 is implemented using Konelar bank-switchable memory. Supported configurations range from small systems with single data acquisition and analysis tasks on the same processor, to large multi-processor systems with data acquisition on several PDPs and analysis on separate PDPs or VAXs

  15. A new 12-bit spectroscopy analog-to-digital converter type SAA intended for CAMAC acquisition systems

    International Nuclear Information System (INIS)

    Borsuk, S.; Kulka, Z.

    1989-12-01

    A new 12-bit spectroscopy analog-to-digital converter (ADC) type SAA (Successive Approximation type with channel width Averaging) intended for CAMAC acquisition systems is decsribed. ADC type SAA initiates new series of spectroscopy ADC's based on a binary-approximation method in which differential nonlinearity is corrected by a statistical channel width averaging method. The structure and principle of operation, as well as some circuit realizations and specifications of the new converter are described. 41 refs., 5 figs. (author)

  16. System for data acquisition and processing on the base of the minicomputers and CAMAC interfaces in the experiments on the L-2 stellarator

    International Nuclear Information System (INIS)

    Blokh, M.A.; Kamolova, T.I.; Kutsenko, A.V.; Kutsenko, V.A.; Nechaev, YU.I.; Fedyanin, O.I.; Shelobkov, V.I.

    1983-01-01

    The system for data acquisition and processing intended for automation of experiments on the L-2 stellarator is described. Hardware peculiarities and sofrware flowsheet are considered. The system is realized on the base of the TRAI minicomputer and CAMAC modules. The system provides data input from diagnostic sensors into the computer memory during the stellarator operational pulse and preliminary data processing in the interval between stellarator pulses, putout of the results a display device or a printer. For programming the Focal language is chosen. CAMAC module control and organization of the whole numbers massive for experimental data storage is realized by means of new functions written in Assembler. The system successfully operates since 1976. In 1978 the system is switched on through the CAMAC interfaces to the EC computer in order to provide the long-term information storage

  17. Interfacing CAMAC instrumentation to the USB port

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, R.V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-07-01

    Full text. CAMAC instrumentation like ADCs, TDCs, scalers, etc. are still very useful in data acquisition system for low energy nuclear physics. Since the popularity of this norm decreased strongly in the last 10-15 years, most of the interfaces of the CAMAC crate controller to micro computers are no longer available in modern computers (ISA slots, GPIB boards, etc.). Also, the CAMAC crate is a quite a heavy and noisy unit, that is completely inadequate if only 2-3 CAMAC modules are used in the crate. In order to have portable and simple interface to personal computers, we are developing an interface board that can accommodate up to four CAMAC modules to the USB port. The interface includes a micro controller to handle the trigger signals, CAMAC operations, event formatting and data transfer to the computer. The first version of the interface is limited for two specific modules we have in our laboratory (an Ortec AD811 8x2048 channels ADC and a LeCroy 2228A 8x2048 channels TDC). A small power supply is included in the system, making it quite low weight and portable. Typically it is spent to process each CAMAC read operation and about half this time to dataless operations. More about the performance of this board will be presented. A new interface, capable of handling four CAMAC units is now being planned. The new project will be able to handle virtually any kind of CAMAC module. A CAMAC crate controller based in these boards will also be developed. (author)

  18. Interfacing CAMAC instrumentation to the USB port

    International Nuclear Information System (INIS)

    Ribas, R.V.

    2010-01-01

    Full text. CAMAC instrumentation like ADCs, TDCs, scalers, etc. are still very useful in data acquisition system for low energy nuclear physics. Since the popularity of this norm decreased strongly in the last 10-15 years, most of the interfaces of the CAMAC crate controller to micro computers are no longer available in modern computers (ISA slots, GPIB boards, etc.). Also, the CAMAC crate is a quite a heavy and noisy unit, that is completely inadequate if only 2-3 CAMAC modules are used in the crate. In order to have portable and simple interface to personal computers, we are developing an interface board that can accommodate up to four CAMAC modules to the USB port. The interface includes a micro controller to handle the trigger signals, CAMAC operations, event formatting and data transfer to the computer. The first version of the interface is limited for two specific modules we have in our laboratory (an Ortec AD811 8x2048 channels ADC and a LeCroy 2228A 8x2048 channels TDC). A small power supply is included in the system, making it quite low weight and portable. Typically it is spent to process each CAMAC read operation and about half this time to dataless operations. More about the performance of this board will be presented. A new interface, capable of handling four CAMAC units is now being planned. The new project will be able to handle virtually any kind of CAMAC module. A CAMAC crate controller based in these boards will also be developed. (author)

  19. System for the experimental data acquisition, processing and output on the base of the double-input CAMAC modules

    International Nuclear Information System (INIS)

    Avramenko, A.E.; Ariskin, N.I.; Samojlov, V.V.

    1983-01-01

    A system for experimental data acquisition, processing and output developed on the base of the double-input CAMAC module is described. Use of the double-input on-line memory unit at the capacity of up to 64k bite for experimental data storage and an external input controller permitted to obtain the time of the data input and output cycle in the storage equal to 1.6 μs. Rates of experimental data acquisition and output do not depend on the computer response or CAMAC cycle duration. They are determined only by the potentialities of the functional moduls. Combination of operations on data acquisi tion, processing and output is possible. Library of subroutines assuring processing in an on-line system with the SM-4, SM-3, ''Electronika-60'' computers is developed for the system. Subroutiines of this library can be fetched from the code written in the FORTRAN and MLCROASSEMBER and they assure: input/output to/from the computer buffer storage, synchronization of ipput/output operations redout from the buffer storage to the computer storage, recording data from the storage to the huffer storage

  20. CAMAC and high-level-languages

    International Nuclear Information System (INIS)

    Degenhardt, K.H.

    1976-05-01

    A proposal for easy programming of CAMAC systems with high-level-languages (FORTRAN, RTL/2, etc.) and interpreters (BASIC, MUMTI, etc.) using a few subroutines and a LAM driver is presented. The subroutines and the LAM driver are implemented for PDP11/RSX-11M and for the CAMAC controllers DEC CA11A (branch controller), BORER type 1533A (single crate controller) and DEC CA11F (single crate controller). Mixed parallel/serial CAMAC systems employing KINETIC SYSTEMS serial driver mod. 3992 and serial crate controllers mod. 3950 are implemented for all mentioned parallel controllers, too. DMA transfers from or to CAMAC modules using non-processor-request controllers (BORER type 1542, DEC CA11FN) are available. (orig.) [de

  1. CAMAC serial highway interface for the LSI-11

    International Nuclear Information System (INIS)

    Lau, N.H.

    1980-01-01

    A CAMAC Serial Highway Interface has been designed for the Local Control and Instrumentation System of the Mirror Fusion Test Facility. There are over 50 distinguishable systems in the facility, each of which consists of the LSI-11 computer, fiber optic communication links, and the CAMAC system. The LSI-11 computer includes a 32k memory, serial modem interface and the CAMAC Serial Highway Interface

  2. Low power CAMAC and NIM modular systems for spaceflight use on Shuttle and Spacelab missions

    Energy Technology Data Exchange (ETDEWEB)

    Trainor, J.H.; Kaminski, T.J.; Ehrmann, C.H.

    1977-02-01

    The advent of the Shuttle launch vehicle and Spacelab have resulted in adequate weight and volume such that experiment electronics can be implemented at relatively low cost using spaceflight versions of CAMAC and NIM modules. Studies of 10 modules by manufacturers have shown that power reduction overall by a factor of approximately 3 can be accomplished. This is adequate both from the point of view of consumption and temperature rise in vacuum. Our studies have shown that a stock of approximately 45 module types is required and a listing is given. The changes required in these modules in order to produce spaceflight versions are described. And finally, the further studies, prototyping and testing leading to eventual flight qualification are described.

  3. CAMAC-based interlock system for power-supply-hardware protection on MFTF

    International Nuclear Information System (INIS)

    Strauch, M.S.

    1981-01-01

    This interlock module accepts 16 inputs and generates, in conjunction with an internal PROM map, 8 outputs. This decision process is autonomous of the CAMAC dataway and host computer. The map is generated, burned and verified by a user interactive program written to accept input/output equations in Boolean algebra. The interlock module requires the host computer to periodically interrogate it to verify proper operation of the module, host computer and date link; otherwise, permissives are dropped. An internal mask register may be used to override interlock inputs. This mask is perishable and must be constantly refreshed. Output drivers may be operated in a latch/no latch mode. This prevents outputs, once dropped, from being reasserted even if the proper input sequence is reestablished. A first-out register may be utilized to determine which input has dropped first in the event that chain reactions are developed among the interlock inputs

  4. CAMAC-an international standard for data machine instrumentation

    CERN Document Server

    Johnsen, P J

    1973-01-01

    CAMAC is a standard for on-line computer instrumentation and control. Owing to the world-wide acceptance of CAMAC, standardized and mutually compatible equipment is now offered by a great number of manufacturers. CAMAC systems are modular, and with the range of modules commercially available, it is possible to build up flexible and complex data processing systems. Use of CAMAC requires a CAMAC- compatible entrance (interface) to the computer. Once established, users are later on completely independent of the type of computer used. General aspects, CAMAC systems for NORD-1 and NORD-10 are presented. The former is developed at Physics Institute, Oslo, and the latter is developed as a result of the CERN-contract gained by NORSK DATAELEKTRONIKK.

  5. TFTR CAMAC power supplies reliability

    International Nuclear Information System (INIS)

    Camp, R.A.; Bergin, W.

    1989-01-01

    Since the expected life of the Tokamak Fusion Test Reactor (TFTR) has been extended into the early 1990's, the issues of equipment wear-out, when to refurbish/replace, and the costs associated with these decisions, must be faced. The management of the maintenance of the TFTR Central Instrumentation, Control and Data Acquisition System (CICADA) power supplies within the CAMAC network is a case study of a set of systems to monitor repairable systems reliability, costs, and results of action. The CAMAC network is composed of approximately 500 racks, each with its own power supply. By using a simple reliability estimator on a coarse time interval, in conjunction with determining the root cause of individual failures, a cost effective repair and maintenance program has been realized. This paper describes the estimator, some of the specific causes for recurring failures and their correction, and the subsequent effects on the reliability estimator. By extension of this program the authors can assess the continued viability of CAMAC power supplies into the future, predicting wear-out and developing cost effective refurbishment/replacement policies. 4 refs., 3 figs., 1 tab

  6. KOMPEKS standard provides an extended use of the CAMAC datanay

    International Nuclear Information System (INIS)

    Basiladze, S.G.

    1983-01-01

    A new KOMPEKS standard design developed on the base of extended use of CAMAC dataway is described. The time diagram of the KOMPEKS standard cycle is given. Methods of addressing, control and status signals as well as procedure of processing inquiries for servicing are considered. The new standard is concluded to eliminating such shortcomings of the CAMAC standard as small address space, synchronism of the dataway cycle, limited number of inquiry sources. Use of this standard in automation systems for scientific research is of greatest interest because it is similar to the CAMAC standard in design, structure of dataway and permits to use the whole accumulated family of the CAMAC modules

  7. CC80-A microcomputer crate controller for CAMAC

    International Nuclear Information System (INIS)

    Walz, H.V.

    1976-11-01

    A microcomputer crate controller has been developed for use in CAMAC based instrumentation, control, and data processing systems at the Stanford Linear Accelerator Center. This unit may be used in multicrate branch highway systems to provide local processing capability within each crate, or in a single crate to form a stand-alone CAMAC system

  8. The CAMAC instrumentation for monitoring and control of the VICKSI accelerators

    International Nuclear Information System (INIS)

    Busse, W.; Kluge, H.; Bosch, A.; Herdam, G.; Klessmann, H.; Martini, M.; Wawer, W.

    1977-12-01

    After a general introduction the CAMAC system units and the CAMAC modules for interfacing pheripheral devices are described. Then the test equipment for these devices is described. Finally some special peripherals and auxiliary equipments are described. (HSI)

  9. Mini-computer in standard CAMAC

    International Nuclear Information System (INIS)

    Meyer, J.M.; Perrin, J.; Lecoq, J.; Tedjini, H.; Metzger, G.

    1975-01-01

    CAMAC is the designation of rules for the design and use of modular electronic data-handling equipment. The rules offer a standard scheme for interfacing computers to transducers and actuators in on-line systems. Where systems do not need a large memory capacity or where computing power is provided by an associated computer, a processor implemented in a CAMAC structure will be of a great interest for such a standard. In such a way built such a processor with an INTEL 8008 CPU chip with use of a CAMAC crate, a memory bus, an 1/0 bus or CAMAC horizontal Dataway and a bus connecting the CPU to the operator's panel. The interrupt system has six levels. To allow multi-programmation, the 8008's instruction set was extended with the creating of an Jump and mark instruction. A multi-task operating system was implemented allowing the execution of real time tasks, process control and program debugging. Three units have been built nowadays for: process control, education, test of CAMAC modules, image processing [fr

  10. Intelligent CAMAC crate controller incorporating a transputer

    International Nuclear Information System (INIS)

    Saeki, T.; Ueda, I.; Anraku, K.

    1995-01-01

    A CAMAC crate controller module having a built-in transputer was developed, being named the ''Intelligent CAMAC Crate Controller (ICCC)''. Due to the transputer's architecture, multiple ICCCs can be networked by simple serial link connections. The control programs are developed in Occam or C language, which support conccurrent algorithms and their implementation in transputer networks. Each ICCC controls the front-end CAMAC modules in the crate, operates in parallel, and interpretes commands from the host computer. Data read from the modules is concurrently and autonomously processed, and then transmitted to the network where it is gathered into the host computer file system. The present paper describes the ICCC's hardware and software using a simple configuration network. Our particular device application for a balloon-borne experiment is also discussed, i.e., a data acquisition system networking twenty-seven transputers. ((orig.))

  11. CAMAC - the Janus face of digital equipment

    International Nuclear Information System (INIS)

    Johansson, R.

    1977-01-01

    A problem which arises when many instruments are found in major systems is that of communication between them. The CAMAC system is constructed on the principle of the addressable bus, obtained from data-technique. The system has adopted the well-known Janus faces as a symbol to denote: 'equality towards everyone'. (A.D.N.)

  12. Microcomputer relay regulator in the CAMAC standard

    International Nuclear Information System (INIS)

    Nikolaev, V.P.

    1984-01-01

    The digital relay regulator is developed on the base of the KM001 microcomputer and KK06 controller for automatic control ob ects with transfer functions describing a broad class of systems using actuating motors (stabilitation, follow-up systems). The CAMAC relay-unit realizes the regulation law and provides the possibility to control analogous values by 8 channels

  13. Waveform Sampler CAMAC Module

    International Nuclear Information System (INIS)

    Freytag, D.R.; Haller, G.M.; Kang, H.; Wang, J.

    1985-09-01

    A Waveform Sampler Module (WSM) for the measurement of signal shapes coming from the multi-hit drift chambers of the SLAC SLC detector is described. The module uses a high speed, high resolution analog storage device (AMU) developed in collaboration between SLAC and Stanford University. The AMU devices together with high speed TTL clocking circuitry are packaged in a hybrid which is also suitable for mounting on the detector. The module is in CAMAC format and provides eight signal channels, each recording signal amplitude versus time in 512 cells at a sampling rate of up to 360 MHz. Data are digitized by a 12-bit ADC with a 1 μs conversion time and stored in an on-board memory accessible through CAMAC

  14. Small, microcomputer-based CAMAC controller

    International Nuclear Information System (INIS)

    Juras, R.C.

    1979-01-01

    The beam buncher necessary to condition the beam from the Oak Ridge National Laboratory 25 MV tandem accelerator for post-acceleration by the Oak Ridge Isochronous Cyclotron is CAMAC-based and will be controlled via one of the serial highways of the accelerator control system. However, prior to integration into the accelerator system, the buncher requires testing, including runs on the model EN tandem at Oak Ridge. In order to facilitate testing and initial operation of the buncher, a microcomputer-based controller was assembled. The controller consists of a CAMAC crate, several CAMAC modules, a touch panel display, a controller box, and software. The controller box contains one shaft encoder and two switches. One of the switches is a coarse/fine selector. The other switch is assignable via the touch panel display and is used, for example, to turn devices on and off. Operation of the controller is described. It can be quickly assembled to control any small CAMAC-based system. 2 figures

  15. BASIC overlay for CAMAC data and command handling

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, O [Istanbul Technical Univ. (Turkey). Inst. for Nuclear Energy

    1979-11-15

    A BASIC overlay has been developed for the BASIC language run in the PDP-11 series of computers. The overlay has particularly been wirtten for a dedicated Camac Crate Controller DC-011 from Ortec. By means of the overlay, any command comprising C, N, A, F information can easily be issued by the host system to communicate with the peripherals connected to the CAMAC system, through the CAMAC interface. The overlay is particularly useful for rather slow control systems and data handling between two different operating systems with incompatible formats for the data files having the CAMAC system as a mutual system component controllable by each of the operating systems individually. The overlay can easily be modified to be used for a Standard controller (type A-1) or any other type of dedicated controller.

  16. CAMAC Software for TJ-I and TJ-IU

    Energy Technology Data Exchange (ETDEWEB)

    Milligen, B Ph. van

    1993-07-01

    A user-friendly software package for control of CAMAC data acquisition modules for the TJ-I and TJ-IU experiments at the Asociacion CIEMAT para Fusion has been developed. The CAMAC control software operates in synchronisation with the pre-existing VME-based data acquisition system. The control software controls the setup of the CAMAC modules and manages the data flow from the lacking to the storage of data. Data file management is performed largely automatically. Further, user software is provided for viewing and analysing the data. (Author) 9 refs.

  17. CAMAC Software for TJ-I and TJ-IU

    International Nuclear Information System (INIS)

    Milligen, B. Ph. van

    1994-01-01

    A user-friendly software package for control of CAMAC data acquisition modules for the TJ-I and TJ-IU experiments at the Asociacion CIEMAT para Fusion has been developed. The CAMAC control software operates in synchronisation with the pre-existing VME-based data acquisition system. The control software controls the setup of the CAMAC modules and manages the data flow from the lacking to the storage of data. Data file management is performed largely automatically. Further, user software is provided for viewing and analysing the data. (Author) 9 refs

  18. Camac Software for TJ-I and TJ-IU

    International Nuclear Information System (INIS)

    Milligen, B. Ph. van.

    1994-01-01

    A user-friendly software package for control of CAMAC data acquisition modules for the TJ-I and TJ-IU experiments at the Association CIEMAT para Fusion has been developed. The CAMAC control software operates in Synchronization with the pre-existing VME-based data-acquisition system. The control software controls the setup of the CAMAC modules and manages the data flow from the taking to the storage of data. Data file management is performed largely automatically. Further, user software is provided for viewing and analysing the data

  19. Example of a distributed-intelligence data-acquisition system using the CAMAC approach

    International Nuclear Information System (INIS)

    Francis, J.E. Jr.; Stewart, C.R.; Overbey, D.R.

    1982-03-01

    The Fusion Energy Division has many diagnostics connected to the same experiment, and correlating the data acquired is very important. The system described in this paper is modular in concept, provides intelligence to the various modules, and yields high throughput by the use of parallel processing and high-speed interfaces. Two examples of how this system was implemented are given

  20. A camac based data acquisition system for flat-panel image array readout

    International Nuclear Information System (INIS)

    Morton, E.J.; Antonuk, L.E.; Berry, J.E.; Huang, W.; Mody, P.; Yorkston, J.; Longo, M.J.

    1993-01-01

    A readout system has been developed to facilitate the digitization and subsequent display of image data from two-dimensional, pixellated, flat-panel, amorphous silicon imaging arrays. These arrays have been designed specifically for medical x-ray imaging applications. The readout system is based on hardware and software developed for various experiments at CERN and Fermi National Accelerator Laboratory. Additional analog signal processing and digital control electronics were constructed specifically for this application. The authors report on the form of the resulting data acquisition system, discuss aspects of its performance, and consider the compromises which were involved in its design

  1. Microprocessor event analysis in parallel with Camac data acquisition

    International Nuclear Information System (INIS)

    Cords, D.; Eichler, R.; Riege, H.

    1981-01-01

    The Plessey MIPROC-16 microprocessor (16 bits, 250 ns execution time) has been connected to a Camac System (GEC-ELLIOTT System Crate) and shares the Camac access with a Nord-1OS computer. Interfaces have been designed and tested for execution of Camac cycles, communication with the Nord-1OS computer and DMA-transfer from Camac to the MIPROC-16 memory. The system is used in the JADE data-acquisition-system at PETRA where it receives the data from the detector in parallel with the Nord-1OS computer via DMA through the indirect-data-channel mode. The microprocessor performs an on-line analysis of events and the result of various checks is appended to the event. In case of spurious triggers or clear beam gas events, the Nord-1OS buffer will be reset and the event omitted from further processing. (orig.)

  2. Microprocessor event analysis in parallel with CAMAC data acquisition

    CERN Document Server

    Cords, D; Riege, H

    1981-01-01

    The Plessey MIPROC-16 microprocessor (16 bits, 250 ns execution time) has been connected to a CAMAC System (GEC-ELLIOTT System Crate) and shares the CAMAC access with a Nord-10S computer. Interfaces have been designed and tested for execution of CAMAC cycles, communication with the Nord-10S computer and DMA-transfer from CAMAC to the MIPROC-16 memory. The system is used in the JADE data-acquisition-system at PETRA where it receives the data from the detector in parallel with the Nord-10S computer via DMA through the indirect-data-channel mode. The microprocessor performs an on-line analysis of events and the results of various checks is appended to the event. In case of spurious triggers or clear beam gas events, the Nord-10S buffer will be reset and the event omitted from further processing. (5 refs).

  3. Applications and development of CAMAC in North America in 1975

    International Nuclear Information System (INIS)

    Mack, D.A.; Wagner, L.J.

    1975-01-01

    CAMAC is now a well established instrumentation system in North America. Research organizations outside of the National Laboratories and industrial users are finding that this modular instrumentation system for data handling is indeed a very practical and cost effective approach to Computer Aided Measurement and Control. Accordingly, this paper reviews applications of new developments in CAMAC during the past year and considers its future in view of related technological developments. (U.S.)

  4. CAMAC subsystem and user context utilities in ngdp framework

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2010-01-01

    The ngdp framework advanced topics are described. Namely, we consider work with CAMAC hardware, 'selfflow' nodes for the data acquisition systems with the As-Soon-As-Possible policy, ng m m(4) as an alternative to ng s ocket(4), the control subsystem, user context utilities, events representation for the ROOT package, test and debug nodes, possible advancements for netgraph(4), etc. It is shown that the ngdp is suitable for building lightweight DAQ systems to handle CAMAC

  5. Application of CAMAC in low-level activity measurements

    International Nuclear Information System (INIS)

    Loessner, V.

    1980-01-01

    A description is given of the measuring and data processing facilities designed for use in the bioassay laboratory which is now under construction in the SAAS. The detector units, especially alpha and quantum spectrometers, are linked to a PDP11/34 based CAMAC system enabling fully-automatic data acquisition and processing operations to be made by making use of an event-driven technique via CAMAC interrupts. (author)

  6. CAMAC Driver Support for Windows NT trademark and Lunux trademark

    International Nuclear Information System (INIS)

    Slimmer, D.A.; Streets, J.M.

    1999-01-01

    CAMAC is a Modular Instrumentation and Digital Interface System defined as a standardized instrumentation system for Computer Automated Measurement and Control. CAMAC hardware and software has been defined by the NIM Committee (National Instrumentation Methods Committee) of the US Department of Energy and the ESONE Committee (European Standards on Nuclear Electronics Committee) of European Laboratories. Fermi National Accelerator Laboratory has for many years produced software packages that follow the ANSI/IEEE standard 758-1979 for a variety of computers, CAMAC controller interfaces, and operating systems. In order to enable the re-use of existing hardware and software, Fermilab now supports standard routine libraries and drivers for Windows NT 4.0 and the Linux operating systems for the Jorway 411s SCSI Bus CAMAC Driver[l] and the Jorway73A SCSI Bus CAMAC Crate Controller. A number of test stands and small experiments both on-site and off-site are using this software for their CAMAC data acquisition needs

  7. Intelligent CAMAC crate controller with CC-A2 functionality and VICbus interface

    International Nuclear Information System (INIS)

    Erven, W.; Holzer, J.; Kopp, H.; Loevenich, H.W.; Meiling, W.; Zwoll, K.; Bovier, J.; Re, G.; Worm, F.

    1992-01-01

    This paper reports that for nuclear physics experiments at the Julich Cooler Synchrotron COSY a data acquisition system is under development. With this background, and in order to enhance existing CAMAC systems, an intelligent CAMAC crate controller with CC-A2 functionality was developed. The main enhancement is the replacement of the Branch Highway with a new standard of inter-crate connection: the VICbus. The other highlights are: optional use of a Motorola 68030 microprocessor as CAMAC list-processor and optimization of CAMAC blocktransfers, optional Ethernet or Cheapernet connection. This controller is commercially available from CES, Geneva and called VCC 2117

  8. Organization of the M-6000 computer calculating process in the CAMAC on-line measurement systems for a physical experiment

    International Nuclear Information System (INIS)

    Bespalova, T.V.; Volkov, A.S.; Golutvin, I.A.; Maslov, V.V.; Nevskaya, N.A.; Okonishnikov, A.A.; Terekhov, V.E.; Shilkin, I.P.

    1977-01-01

    Discussed are the basic results of the work on designing the software of the computer measuring complex (CMC) which uses the M-6000 computer and operates on line with an accelerator. All the CMC units comply with the CAMAC standard. The CMC incorporates a mainframe memory, twenty-four kilobytes of 16-digit words in size, and external memory on magnetic disks, 1 megabyte in size. Suggested is a modification of the technique for designing the CMC software providing for program complexes which are dynamically adjusted by an experimentalist for the given experiment for a short time. The CMC software comprises the following major portions: a software generator, data acquisition program, on-line data processing routines, off-line data processing programs and programs for data recording on magnetic tapes and disks. Testing of the designed CMC has revealed that the total data processing time equals to from 150 to 500 ms

  9. FPGA implementation of PCI to CAMAC interface for Embedded CAMAC Controller (ECC)

    International Nuclear Information System (INIS)

    Jha, K.; Behere, Anita; Ghodgaonkar, M.D.

    2005-01-01

    CAMAC controllers are used for control systems and nuclear physics experiments. Control applications need more number of physically distributed crates with regular scanning of all the parameters, the control being with a centralized computer. On the other hand, nuclear physics experiments need a high throughput with a large number of parameters in one or more crates. The nature of events is random hence buffering of data in LIST mode acquisition is needed. For a large number of parameters, this translates to high transfer rate. Hence it is essential that the CAMAC readout time is minimized and also the data transfer speed is improved to achieve maximum effective throughput. The ECC is designed to achieve these objectives using an embedded controller with PC architecture having PCI bus as interface for add on logic. The PCI Add-on to CAMAC interface protocol has been implemented in an AL TERA FPGA and all the functionality coded in VHDL. This paper discusses the design aspects of the FPGA implementation of the PCI to CAMAC interface. (author)

  10. Summary of CAMAC: status and outlook

    International Nuclear Information System (INIS)

    Wagner, L.J.

    1976-01-01

    CAMAC (Computer Automated Measurement And Control) is now a well established, mature, standard (IEEE 583) system for data bussing. Mature in the sense that, worldwide, research organizations and industrial process control users are taking advantage of this practical and cost effective, user developed, modular instrumentation system for data handling. But not staid; the CAMAC specification allows mobility with advancing technology (a tribute to the foresight of its originators). With much cooperation between parallel-functioning European and North American laboratory working groups and industrial users, advances have been made with assurance of upward compatibility; i.e., extensions and improvements to the specifications are made without preventing continued use of existing components. This paper is, accordingly, a review of the current status of CAMAC: factors having a high impact on present status and on future trends are discussed, numerous applications over recent years are described, and a projection is made of what to expect in the near future in view of related technological developments

  11. Development of CAMAC and Fastbus instrumentation

    International Nuclear Information System (INIS)

    Venkateswaran, Aruna; Behere, Anita; Ghodgaonkar, M.D.; Bairi, B.R.

    1987-01-01

    This report describes the work being done towards the development of CAMAC and Fast Bus Instrumentation under the VII Five Year Plan Project 'Modernisation of Reactor Control Instrumentation and Development of CAMAC and FAST BUS Instrumentation'. The report summarises the goals, objectives, principles and concepts of CAMAC and Fast Bus Instrumentation. While emphasizing the motivation behind the development of CAMAC and Fast Bus Instrumentation, the report brings out the current status and future plans of this development program. (author)

  12. CAMAC programming for PDP-11 computers: A modular, multiuser approach

    International Nuclear Information System (INIS)

    Vegh, J.

    1987-01-01

    A user-friendly CAMAC handling software concept for multitask environments is presented. The CAMAC modules are handled like all the other devices, with all the multiuser capabilities of the operating system. The concept is implemented under the RSX-11M operating system and results in effective and modular software. The system serves typically a few thousands of events in a second; the actual speed depends on many factors. In small and medium size systems the concept has several advantages; the test applications are supported mainly on macro (machine code) level and with some limitations on system level. (orig.)

  13. Computerized CAMAC and NIM module library

    International Nuclear Information System (INIS)

    Pope, G.F.; McDonald, R.J.

    1990-08-01

    The Lawrence Berkeley Laboratory owns a large number of CAMAC and NIM modules which can be connected together to form data acquisition systems used in experiments. Many of these modules are contained in ''pools'' for common usage. This paper describes a system of storage and inventory control that allows easy check-out and check-in of the modules utilizing networked Macintosh computers, FoxBase+/Mac software, and bar-code technology. It also provides search capability for the user and tracking capability for the pool administrator. This inventory system has applications to any pool of items that are routinely loaned. 8 figs

  14. Accelerator control using RSX-11M and CAMAC

    International Nuclear Information System (INIS)

    Kulaga, J.E.

    1978-01-01

    This paper describes a computer-control system for a superconducting linear accelerator currently under development at Argonne National Laboratory. RSX-11M V3.1 running on a PDP 11/34 is used with CAMAC hardware to fully control 22 active beam-line elements and monitor critical accelerator conditions such as temperature, vacuum, and beam characteristics. This paper contrasts the use of an RSX compatible CAMAC driver for most CAMAC I/O operations and the use of the Connect-to-Interrupt Vector directive for fast ADC operation. The usage of table-driven software to achieve hardware configuration independence is discussed, along with the design considerations of the software interface between a human operator and a computer-control system featuring multi-function computer-readable control knobs and computer-writable displays which make up the operator's control console

  15. Multichannel analyzer development in CAMAC

    International Nuclear Information System (INIS)

    Nagy, J.Z.; Zarandy, A.

    1988-01-01

    The data acquisition in TOKAMAK experiments some CAMAC modules have been developed. The modules are the following: 64 K analyzer memory, 32 K analyzer memory, 6-channel pulse peak analyzer memory which contains the 32 K analyzer memory and eight AD-converters

  16. Multi-hit time-to-amplitude CAMAC module (MTAC)

    International Nuclear Information System (INIS)

    Kang, H.

    1980-10-01

    A Multi-Hit Time-to-Amplitude Module (MTAC) for the SLAC Mark III drift chamber system has been designed to measure drift time by converting time-proportional chamber signals into analog levels, and converting the analog data by slow readout via a semi-autonomous controller in a CAMAC crate. The single width CAMAC module has 16 wire channels, each with a 4-hit capacity. An externally generated common start initiates an internal precision ramp voltage which is then sampled using a novel shift register gating scheme and CMOS sampling switches. The detailed design and performance specifications are described

  17. Computer aided operation of the Karlsruhe isochronous cyclotron using CAMAC

    International Nuclear Information System (INIS)

    Kappel, W.; Karbstein, W.; Kneis, W.; Moellenbeck, J.; Schweickert, H.; Volk, B.

    1976-01-01

    An extensive branch system is used with a NOVA 2/10 computer as an aid to the operation of the Karlsruhe Isochronous Cyclotron. The accelerator operator calls the different tasks by an interactive program system ''CICERO'' under BASIC. CAMAC operations are called by means of the ordinary BASIC Call mechanism through assembler routines

  18. BST-PINK PANTHER. An intelligent CAMAC crate controller

    International Nuclear Information System (INIS)

    Troester, D.A.

    1984-01-01

    A technical and functional description of the PINK system for intelligent, distributed data acquisition, data formatting, and data reduction is presented. The system has been developed to bypass some of the constraints of CAMAC when collecting data with the high-resolution π 0 spectrometers of the Basel-Stockholm-Thessaloniki (BST) Collaboration at CERN. (orig.)

  19. A CAMAC crate controller KK009 for the Pravetz-16 and IBM PC/XT personal computers

    International Nuclear Information System (INIS)

    Georgiev, A.; Churin, I.N.

    1988-01-01

    A CAMAC crate controller and a computer bus adapter for the Pravetz 16 and IBM PC/XT personal computers are described. The following features are included in the controller: operation under program control; access to CAMAC registers treated as memory locations corresponding to given N, A, F; hardware for fast LAM processing and execution of multi-crate commands; device up to 7 crates in one CAMAC system; built-in hardware for controller and crate dataway test

  20. CAMAC/PDP 11-45 coupler

    International Nuclear Information System (INIS)

    Pascual, Joseph; Raoul, J.-C.

    1978-04-01

    The complex experimental devices used in high energy physics require the use of minicomputers. The latter are coupled to the detectors using the CAMAC standard which has been adopted by the majority of high energy physics laboratories, much to the ease of international collaboration. The performance of industrially available interfaces having shown to be inadequate, the DPhPE has undertaken the development of a multibranche CAMAC/PDP 11-45 coupler. This system can control up to 49 crates shared out between 7 branches. It consists of a programmed channel and up to three high speed (556 Kwords/second) automatic channels. The four channels can work simultaneously through time sharing. The coupler includes a LAM handling system. The correspondent software has been developed simultaneously: the monitor is an extended version of the RT 11 system supplied by the manufacturer. This interface has been used so far in five experiments on the CERN PS and SPS. Besides this publication, intended to give a description of the coupler, a user's utilisation manuel exists in English [fr

  1. CAMAC modular programmable function generator

    Energy Technology Data Exchange (ETDEWEB)

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve.

  2. CAMAC modular programmable function generator

    International Nuclear Information System (INIS)

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve

  3. ES 1010 software for testing CAMAC modules

    International Nuclear Information System (INIS)

    Ableev, V.G.; Basiladze, S.G.; Zaporozhets, S.A.; Piskunov, N.M.; Ryabtsov, V.D.; Sitnik, I.M.; Strokovskij, E.A.; Sharov, V.I.

    1977-01-01

    Test programs for digital and analog-digital CAMAC modules applied in physical experiments are described. Algorithms were written in FORTRAN-4 language for testing, data acquisition, processing and data control. ASSEMBLER ES 1010 subroutines were used for data acquisition and CAMAC module control. This allowed one to take advantages of a high level language for data processing and display, as well as for achieving an interface with the CAMAC hardware. Software applied enables one to improve considerably adjustment of CAMAC modules and to obtain their operational characteristics

  4. Use of a microprocessor in the CAMAC standard. The dedicated microcomputer: JCAM-10

    International Nuclear Information System (INIS)

    Gallice, Pierre.

    1978-01-01

    The general purpose minicomputers and dedicated crate controllers currently used in small CAMAC systems are now being superseded by autonomous crate controllers with built-in microprocessor such as the JCAM-10, which is in fact a CAMAC dedicated microcomputer. This controller has been designed around the INTEL-8080 microprocessor and employs a semiconductor memory. The very much reduced price and smaller packaging of this module, and the relatively large potential market of CAMAC systems justify the tremendous efforts required for the study of its complete system as well in hardware than in software. After a short description of the CAMAC standard this paper will describe the principle of the microcomputer JCAM-10, and its complementary system: hardware (peripheral modules) and software (TTY command processor, Input Output, Control system, interrupt system, text editor, local macro-assembler, LP and BASICAM local compilers). As application examples, an autonomous counting system and a distributed intelligence system will be described [fr

  5. Design and development of CAMAC test module

    International Nuclear Information System (INIS)

    Kulkarni, S.G.; Gore, J. A.; Gupta, A.K.; Saxena, A.

    2015-01-01

    Various Computer automated measurement and control (CAMAC) modules are used in control and monitoring of Pelletron Accelerator. 24 channels CAMAC Input Gate is used for getting the ON/OFF status of various devices in the Pelletron Accelerator. If a channel has 24 V then the status is 'ON' and if the channel receives 0 V then the status is 'OFF'. Hence we can get the status of 24 different channels though one CAMAC Input Gate module. The status is transported to the PC via CAMAC controller. The manual testing of CAMAC Input Gate involves connection of 24 V to each channel and checking the status of each channel with Graphical user interface (GUI) software. This process of checking input gate is automated by developing a CAMAC Test module which is connected to CAMAC Input Gate with a 50 pin ribbon cable. The Test module automatically generates 24 V /0 V on each channel to be tested depending on the software GUI buttons labeled as 'ON'/'OFF' in labview. The status of CAMAC Input Gate is displayed on GUI for all 24 channels. Hence the user can check the working of each channel on GUI written in labview. This automated process of checking the CAMAC Input Gate saves time to debug problems in module and identifying the bad channel which can be subsequently repaired. The CAMAC Test module uses Spartan 2 FPGA which is connected to 24 transistors which in turn operates 24 relays. 24 V supply is connected to the relay secondary contacts which open/close as per the transistor inputs. The 24 V contacts are connected to the module output connector which should be connected to CAMAC Input Gate which is to be tested. (author)

  6. High speed CAMAC differential branch highway driver

    International Nuclear Information System (INIS)

    McMillan, D.E.; Nelson, R.O.; Poore, R.V.; Sunier, J.W.; Ross, J.J.

    1979-01-01

    A new CAMAC branch driver is described that incorporates several unusual features which combine to give reliable, high-speed performance. These include balanced line driver/receivers, stored CAMAC command lists, 8 DMA channels, pseudo LAMS, hardware priority encoding of LAMS, and hardware-implemented Q-controlled block transfers. 3 figures

  7. CAMAPPLE: CAMAC interface to the Apple computer

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Trang, Q.H.; Williams, S.H.

    1981-04-01

    The advent of the personal microcomputer provides a new tool for the debugging, calibration and monitoring of small scale physics apparatus, e.g., a single detector being developed for a larger physics apparatus. With an appropriate interface these microcomputer systems provide a low cost (1/3 the cost of a comparable minicomputer system), convenient, dedicated, portable system which can be used in a fashion similar to that of portable oscilloscopes. Here, an interface between the Apple computer and CAMAC which is now being used to study the detector for a Cerenkov ring-imaging device is described. The Apple is particularly well-suited to this application because of its ease of use, hi-resolution graphics, peripheral bus and documentation support

  8. Camapple: CAMAC interface to the Apple computer

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Trang, Q.H.; Williams, S.H.

    1981-01-01

    The advent of the 'personal' microcomputer provides a new tool for the debugging, calibration and monitoring of small scale physics apparatus, e.g., a single detector being developed for a larger physics apparatus. With an appropriate interface these microcomputer systems provide a low cost (1/3 the cost of a comparable minicomputer system), convenient, dedicated, portable system which can be used in a fashion similar to that of portable oscilliscopes. Here we describe an interface between the Apple computer and CAMAC which is now being used to study the detector for a Cerenkov ring-imaging device. The Apple is particularly well-suited to this application because of its ease of use, hi-resolution graphics, peripheral bus and documentation support. (orig.)

  9. Data acquisition system of the GDL facility

    International Nuclear Information System (INIS)

    Salikova, T.V.

    1992-01-01

    Data acquisition system (DAS) operates in the RSX-IIM environment with the CAMAC system CAMAC driven and CAMAC control processor are used for the CAMAC system operation support. The exchange rate between a problem and the CAMAC module is equal to 100 K worf/c. 14 refs

  10. A transputer based intelligent CAMAC crate controller [Paper No.: L1

    International Nuclear Information System (INIS)

    Borkar, S.P.; Arvindakshan, P.S.; Jethra, A.K.; Ghodgaonkar, M.D.

    1993-01-01

    A transputer based CAMAC controller (TCC) which can attain the true CAMAC speed for data acquisition in the list processing mode is described . The overlap of writing next NAF command word reading previous data over CAMAC cycle execution (busy time of dataway) facilitates this achievement. The TCC uses the transputer IMST222, which controls overall operation of TCC and communicates which PC/AT on its serial link at 20 MBits/sec. It incorporates hardware to support single CAMAC transfer as well as block transfers. The transputer also helps in data preprocessing. The concurrent processing of acquiring data from modules and sending it for data logging and processing increases the system speed. The TCC is developed for nuclear data acquisition system. (author). 2 refs., 6 figs

  11. Implementation of a multicrate CAMAC serial highway for data acquisition on the ARGUS laser

    International Nuclear Information System (INIS)

    Frerking, C.E.; Greenwood, J.R.

    1976-09-01

    Much of the target diagnostics data from the ARGUS laser are acquired through a CAMAC interface system, including equipment on a CAMAC serial highway. A scheme has been developed which allows a very general capability for dynamically defining the experimental configuration such that the serial highway is invisible to the controlling program. High level language software compiles the existence of each experimental entity in the system. As the position and description of each module is defined, a software structure is built, with each entry containing the information to be provided to the CAMAC handlers during operation of the equipment. Provision is made to allow tight loops at the lowest software level for critical high speed data acquisition. Currently, the serial highway is operated at a one megabit rate, allowing 24 bit CAMAC words to be transferred at a 5 KHz rate

  12. CAMAC differential pulse discriminator-counter

    International Nuclear Information System (INIS)

    Tselikov, N.V.

    1987-01-01

    Differential pulse discriminator-counter for Moessbauer spectrometer is described. Input pulse setting into the channel is performed according to the following algorithm: the pulse is transmitted to the channel depending on the fact whether the preceding pulse has got to the discrimination window or not. The circuit does not contain delay lines, taking into account the delay of a signal from the upper level discriminator in relation to the lower level discriminator signal, which is connected with input pulse rise finite time, which in turn allows one to reduce the discriminator dead time up to the operation time of threshold circuits. The pulse counting rate is 150 MHz, input signal amplitude is ±3 V, dead time is 6 ns, delay time from input to output is 14 ns. The unit is made in CAMAC system

  13. 15. International symposium on nuclear electronics and International seminar CAMAC-92

    International Nuclear Information System (INIS)

    1993-01-01

    The proceedings of the 25. International symposium on nuclear electronics and the CAMAC-92 seminar are presented. The problems on creation of new effective systems for acquisition and processing the information in the field of high energies, spectroscopy and by radiation control at reactors are considered in the reports. Equipment interfaces, analogue-numerical converters, programmed controllers, etc, accomplished relative to the CAMAC and FASTBUS standards are described

  14. Extension of PDP8 BASIC for use of CAMAC modules

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, K P

    1974-06-12

    The programing language ''BASIC'' is one of the simplest computer languages to learn. It is used in many automatic measurement systems. In the application described, this language is used to transfer data between a mini-computer and the ''CAMAC'' system. The functions which direct the data transfer (read, write, etc.) are written in assembly language. An overlay interfaces these routines to OS8 BASIC. (auth)

  15. Integrated FASTBUS, VME and CAMAC diagnostic software at Fermilab

    International Nuclear Information System (INIS)

    Anderson, J.; Forster, R.; Franzen, J.; Wilcer, N.

    1992-10-01

    A fully integrated system for the diagnosis and repair of data acquisition hardware in FASTBUS, VME and CAMAC is described. A short cost/benefit analysis of using a distributed network of personal computers for diagnosis is presented. The SPUDS (Single Platform Uniting Diagnostic Software) software package developed at Fermilab by the authors is introduced. Examples of how SPUDS is currently used in the Fermilab equipment repair facility, as an evaluation tool and for field diagnostics are given

  16. Auxiliary/Master microprocessor CAMAC Crate Controller applications

    International Nuclear Information System (INIS)

    Barsotti, E.

    1975-01-01

    The need for further sophistication of an already complex serial CAMAC control system at Fermilab led to the development of an Auxilary/Master CAMAC Crate Controller. The controller contains a Motorola 6800 microprocessor, 2K bytes of RAM, and 8K bytes of PROM memory. Bussed dataway lines are time shared with CAMAC signals to provide memory expansion and direct addressing of peripheral devices without the need of external cabling. The Auxiliary/Master Crate Controller (A/MCC) can function as either a Master, i.e., stand alone, crate controller or as an Auxiliary controller to Fermilab's Serial Crate Controller (SCC). Two modules, one single- and one double-width, make up an A/MCC. The microprocessor has one nonmaskable and one maskable vectored interrupt. Time sharing the dataway between SCC programmed and block transfer generated dataway cycles and A/MCC operations still allows a 99 percent microprocessor CPU busy time. Since the conception of the A/MCC, there has been an increasing number of control system-related projects proposed which would not have been possible or would have been very difficult to implement without such a device. The first such application now in use at Fermilab is a stand-alone control system for a mass spectrometer experiment in the Main Ring Internal Target Area. This application in addition to other proposed A/MCC applications, both stand-alone and auxiliary, is discussed

  17. CAMAC based Test Signal Generator using Re-configurable device

    International Nuclear Information System (INIS)

    Sharma, Atish; Raval, Tushar; Srivastava, Amit K; Reddy, D Chenna

    2010-01-01

    There are many different types of signal generators, with different purposes and applications (and at varying levels of expense). In general, no device is suitable for all possible applications. Hence the selection of signal generator is as per requirements. For SST-1 Data Acquisition System requirements, we have developed a CAMAC based Test Signal Generator module using Re-configurable device (CPLD). This module is based on CAMAC interface but can be used for testing both CAMAC and PXI Data Acquisition Systems in SST-1 tokamak. It can also be used for other similar applications. Unlike traditional signal generators, which are embedded hardware, it is a flexible hardware unit, programmable through Graphical User Interface (GUI) developed in LabVIEW application development tool. The main aim of this work is to develop a signal generator for testing our data acquisition interface for a large number of channels simultaneously. The module front panel has various connectors like LEMO and D type connectors for signal interface. The module can be operated either in continuous signal generation mode or in triggered mode depending upon application. This can be done either by front panel switch or through CAMAC software commands (for remote operation). Similarly module reset and trigger generation operation can be performed either through front panel push button switch or through software CAMAC commands. The module has the facility to accept external TTL level trigger and clock through LEMO connectors. The module can also generate trigger and the clock signal, which can be delivered to other devices through LEMO connectors. The module generates two types of signals: Analog and digital (TTL level). The analog output (single channel) is generated from Digital to Analog Converter through CPLD for various types of waveforms like Sine, Square, Triangular and other wave shape that can vary in amplitude as well as in frequency. The module is quite useful to test up to 32 channels

  18. CAMAC based continuous/transient digitizer for long duration ...

    Indian Academy of Sciences (India)

    CAMAC access to program various registers. • Transfers of data from ADC to various FIFO and RAM buffers. • Transfers from memory to CAMAC data way. • Clock generation. • CAMAC function decoding. • Control logic generation. 2.1 Clock generator and sampling rate selector. Crystal oscillator of 10 MHz is used for clock ...

  19. Intelligent input/output subsystem for CAMAC and FASTBUS. Phase 1

    International Nuclear Information System (INIS)

    Rajala, R.E.

    1986-07-01

    The authors have addressed the need for flexible and easy-to-use data-acquisition equipment for the nuclear/energy physics fields and others requiring high data rates and real-time data acquisition. Presented is the design of an intelligent, expandible I/O system using CAMAC standards and the new generation Digital Equipment Corporation VAXBI bus. The system offers a potential tenfold increase in the speed of data acquisition over current systems. A concentrated design effort is presented for the CAMAC Parallel Branch. However, the basic central processing unit, memory, and VAXBI configuration can also be used for CAMAC Serial, IEEE-488, and FASTBUS. The system uses a microprocessor-based controller, the J11, that preprocesses data prior to transmission to the VAXBI. This frees the central processor for other tasks. The design eliminates the need for special, dedicated design hardware and provides a software migration path for existing systems currently in use

  20. A camac-based intelligent subsystem for ATLAS example application: cryogenic monitoring and control

    International Nuclear Information System (INIS)

    Pardo, R.; Kawarasaki, Y.; Wasniewski, K.

    1985-01-01

    A subunit of the CAMAC accelerator control system of ATLAS for monitoring and, eventually, controlling the cryogenic refrigeration and distribution facility is under development. This development is the first application of a philosophy of distributed intelligence which will be applied throughout the ATLAS control system. The control concept is that of an intelligent subunit of the existing ATLAS CAMAC control highway. A single board computer resides in an auxiliary crate controller which allows access to all devices within the crate. The local SBC can communicate to the host over the CAMAC highway via a protocol involving the use of memory in the SBC which can be accessed from the host in a DMA mode. This provides a mechanism for global communications, such as for alarm conditions, as well as allowing the cryogenic system to respond to the demands of the accelerator system

  1. CAMAC-based intelligent subsystem for ATLAS example application: cryogenic monitoring and control

    International Nuclear Information System (INIS)

    Pardo, R.; Kawarasaki, Y.; Wasniewski, K.

    1985-01-01

    A subunit of the CAMAC accelerator control system of ATLAS for monitoring and, eventually, controlling the cryogenic refrigeration and distribution facility is under development. This development is the first application of a philosophy of distributed intelligence which will be applied throughout the ATLAS control system. The control concept is that of an intelligent subunit of the existing ATLAS CAMAC control highway. A single board computer resides in an auxiliary crate controller which allows access to all devices within the crate. The local SBC can communicate to the host over the CAMAC highway via a protocol involving the use of memory in the SBC which can be accessed from the host in a DMA mode. This provides a mechanism for global communications, such as for alarm conditions, as well as allowing the cryogenic system to respond to the demands of the accelerator system

  2. A 16 bit camac ADC with memory

    International Nuclear Information System (INIS)

    Wikne, J.C.

    1986-01-01

    A 16 bit camac-programmable analog-to-digital converter (ADC) with incorporated memory and sampling clock is described. This single-width camac module is especially suited for autonomous, multi-sample data acquisition with high precision. The ADC itself is a hybrid, the ADC76 from Burr-Brown, featuring a programmable input range and direct parallel output in two's complement form. The input programming is done by means of dual-in-line switches, giving input spans from 1.25 V to 20 V, unipolar or bipolar. The outline of the programming of the ADC input and the calibration of the unit is given

  3. Design and operation of the LAMPF Auxiliary Controller. High-speed remote processing on the CAMAC dataway

    International Nuclear Information System (INIS)

    Machen, D.R.

    1979-02-01

    A CAMAC Auxiliary Controller has been developed to further the concepts of distributed processing in both process control and experiment data-acquisition systems. The Auxiliary Controller is built around a commercially available 16-bit microcomputer and a high-speed bit-sliced microprocessor capable of instruction execution times of 140 ns. The modular nature of the controller allows the user to tailor the controller capabilities to the system problem, while maintaining the interface techniques of the CAMAC Standard

  4. A CAMAC-resident microprocessor used for field control of a dipole magnet

    International Nuclear Information System (INIS)

    Sharp, F.J.; Greiner, B.F.

    1990-01-01

    An inexpensive, self-contained microprocessor supporting an on-chip BASIC interpreter has been incorporated into a CAMAC auxiliary-crate controller, with an EEPROM and a terminal port. Used with an ASCII computer terminal, the intelligent auxiliary controller is a self-contained program-development system. One application for the intelligent auxiliary controller is closed-loop control of the analyzing dipoles at the negative-ion injector of the TASCC (tandem accelerator superconducting cyclotron) heavy-ion accelerators. A BASIC program stored in the EEPROM runs on power-up of the controller. The program reads control numbers from a CAMAC mailbox, converts the ASCII character string from a precision Hall-probe teslameter to a digital field reading, and writes a control number to the dipole controller. The program iterates until the dipole reaches the demand field, while updating another CAMAC mailbox with a field readback for the main control system. (orig.)

  5. Multi-parameter CAMAC compatible ADC scanner

    Energy Technology Data Exchange (ETDEWEB)

    Midttun, G J; Ingebretsen, F [Oslo Univ. (Norway). Fysisk Inst.; Johnsen, P J [Norsk Data A.S., Box 163, Oekern, Oslo 5, Norway

    1979-02-15

    A fast ADC scanner for multi-parameter nuclear physics experiments is described. The scanner is based on a standard CAMAC crate, and data from several different experiments can be handled simultaneously through a direct memory access (DMA) channel. The implementation on a PDP-7 computer is outlined.

  6. Hi-speed versatile serial crate controller for CAMAC

    International Nuclear Information System (INIS)

    Horelick, D.

    1984-10-01

    A serial crate controller, primarily for use in the SLC CAMAC control system, has been designed, and has been in use for about 2 years. The design supports a party line approach, with up to 16 crates on a single twisted pair for data transfers, plus another pair for prompt L response. The bit rate is 5 megabits/s, and complete transaction times of about 10 μs are achieved for 16-bit data transfers over cables up to 1000 feet long. One of the primary objects of the design was simplicity - there are approximately 60 chips in the two-board unit

  7. VHDL implementation on histogram with ADC CAMAC module

    International Nuclear Information System (INIS)

    Ruby Santhi, R.; Satyanarayana, V.V.V.; Ajith Kumar, B.P.

    2007-01-01

    Modern nuclear spectroscopy systems the data acquisition and analysis in experimental science have been undergoing major changes because of faster speed and higher resolution. The CAMAC module which is described here is FPGA based 8K x 24 bit Histogram Memory integrated with ADC on a single board has been designed and fabricated. This module accepts input from Spectroscopy Amplifier for Pulse Height Analysis and offers all features single spectra for a few selected parameters. These on line histograms are to monitor the progress of the experiments during on line experiments

  8. Realization of computer-controlled CAMAC model through the technology of virtual instrument

    International Nuclear Information System (INIS)

    Le Yi; Li Cheng; Liao Juanjuan; Zhou Xin

    1997-01-01

    The author is to introduce virtual instrument system and basic features of its typical software development platform, and show this system's superiority and fitness to physical experiments by the example of the CAMAC model ADC2249A, which is often used in nuclear physics experiments

  9. Microprocessor-controlled CAMAC data link module

    International Nuclear Information System (INIS)

    Potter, J.M.

    1978-05-01

    Communication between the central control computer and remote, satellite data-acquisition/control stations at the Clinton P. Anderson Meson Physics Facility (LAMPF) is presently accomplished through the use of CAMAC-based Data Link modules. With the advent of the microprocessor, a new philosophy for digital data communications has evolved. Data Link modules containing microprocessor controllers provide link management and communication network protocol through algorithms executed in the Data Link microprocessor. 13 figures

  10. SNOOP module CAMAC interface to the 168/E microprocessor

    International Nuclear Information System (INIS)

    Bernstein, D.; Carroll, J.T.; Mitnick, V.H.; Paffrath, L.; Parker, D.B.

    1979-10-01

    A pair of 168/E microprocessors will be used to meet the realtime computing requirements of the SLAC Hybrid Facility. A SNOOP module and 168/E Interface provide the link between the host computer and the microprocessors. By eavesdropping on normal CAMAC read operations, the SNOOP provides a direct data transfer from CAMAC to microprocessor memory. The host computer controls the processors using standard CAMAC programmed I/O to the SNOOP

  11. Event Handler II: a fast, programmable, CAMAC-coupled data acquisition interface

    International Nuclear Information System (INIS)

    Hensley, D.C.

    1979-01-01

    The architecture of the Event Handler II, a fast, programmable data acquisition interface linked to and through CAMAC is described. The special features of this interface make it a powerful tool in implementing data acquisition systems for experiments in nuclear physics. 1 figure, 1 table

  12. Module for the organization of a branch of the universal branch driver in the CAMAC standard

    International Nuclear Information System (INIS)

    Nguen Fuk; Smirnov, V.A.; Khmelevski, E.

    1976-01-01

    A module is elaborated for the organization of a branch of the universal branch driver in the CAMAC standard for the conjugation of a control crate trunk with a branch trunk. A block diagram of the module is described; its principal specifications are given. The universal branch driver system may accomodate up to 10 branch organization modules with one control source module

  13. Event Handler: a fast programmable, CAMAC-coupled data acquisition interface

    International Nuclear Information System (INIS)

    Hensley, D.C.

    1978-01-01

    The purpose of this paper is to describe the architecture and performance of the Event Handler, a fast, programmable data acquisition interface which is linked to and through CAMAC. The special features of this interface make it a powerful tool in implementing data acquisition systems for experiments in nuclear physics

  14. Extending DIII-D Neutral Beam Modulated Operations with a Camac Based Total on Time Interlock

    International Nuclear Information System (INIS)

    Baggest, D.S.; Broesch, J.D.; Phillips, J.C.

    1999-01-01

    A new total-on-time interlock has increased the operational time limits of the Neutral Beam systems at DIII-D. The interlock, called the Neutral Beam On-Time-Limiter (NBOTL), is a custom built CAMAC module utilizing a Xilinx 9572 Complex Programmable Logic Device (CPLD) as its primary circuit. The Neutral Beam Injection Systems are the primary source of auxiliary heating for DIII-D plasma discharges and contain eight sources capable of delivering 20MW of power. The delivered power is typically limited to 3.5 s per source to protect beam-line components, while a DIII-D plasma discharge usually exceeds 5 s. Implemented as a hardware interlock within the neutral beam power supplies, the NBOTL limits the beam injection time. With a continuing emphasis on modulated beam injections, the NBOTL guards against command faults and allows the beam injection to be safely spread over a longer plasma discharge time. The NBOTL design is an example of incorporating modern circuit design techniques (CPLD) within an established format (CAMAC). The CPLD is the heart of the NBOTL and contains 90% of the circuitry, including a loadable, 1 MHz, 28 bit, BCD count down timer, buffers, and CAMAC communication circuitry. This paper discusses the circuit design and implementation. Of particular interest is the melding of flexible modern programmable logic devices with the CAMAC format

  15. ORCODE.77: a computer routine to control a nuclear physics experiment by a PDP-15 + CAMAC system, written in assembler language and including many new routines of general interest

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1977-01-01

    ORCODE.77 is a versatile data-handling computer routine written in MACRO (assembler) language for a PDP-15 computer with EAE (extended arithmetic capability) connected to a CAMAC interface. The Interrupt feature of the computer is utilized. Although the code is oriented for a specific experimental problem, there are many routines of general interest, including a CAMAC Scaler handler, an executive routine to interpret and act upon three-character teletype commands, concise routines to type out double-precision integers (both octal and decimal) and floating-point numbers and to read in integers and floating-point numbers, a routine to convert to and from PDP-15 FORTRAN-IV floating-point format, a routine to handle clock interrupts, and our own DECTAPE handling routine. Routines having specific applications which are applicable to other very similar applications include a display routine using CAMAC instructions, control of external mechanical equipment using CAMAC instructions, storage of data from an Analog-to-digital Converter, analysis of stored data into time-dependent pulse-height spectra, and a routine to read the contents of a Nuclear Data 5050 Analyzer and to prepare DECTAPE output of these data for subsequent analysis by a code written in PDP-15-compiled FORTRAN-IV

  16. MUMTI a Multi-User-Multi-Task-Interpreter for process-control applications with CAMAC

    International Nuclear Information System (INIS)

    Busse, E.; Degenhardt, K.H.; Vidic, U.

    1980-10-01

    MUMTI is an interactive, interpretative programming system for industrial control and process control applications running on PDP11-RXS11M/D-systems. The number of users of the MUMTI-system is not limited as far as core memory and/or terminals are available. The implemented arithmetic facilities are similar to those of other interpreters. A detailed description of the programming of CAMAC systems is given in a second part. (WB)

  17. SAR: A fast computer for Camac data acquisition

    International Nuclear Information System (INIS)

    Bricaud, B.; Faivre, J.C.; Pain, J.

    1979-01-01

    This paper describes a special data acquisition and processing facility developed for Nuclear Physics experiments at intermediate energy installed at SATURNE (France) and at CERN (Geneva, Switzerland). Previously, we used a PDP 11/45 computer which was connected to the experiments through a Camac Branch highway. In a typical experiment (340 words per event), the computer limited the data acquisition rate at 4 μsec for each 16-bit transfer and the on-line data reduction at 20 events per second only. The initial goal of this project was to increase these two performances. Previous known acquisition processors were limited by the memory capacity these systems could support. Most of the time the data reduction was done on the host mini computer. Higher memory size can be designed with new fast RAM (Intel 2147) and the data processing can now take place on the front end processor

  18. CAMAC interface for TPC data-acquisition electronics

    International Nuclear Information System (INIS)

    Sidman, S.; Olson, S.; Jared, R.

    1983-06-01

    The Time Projection Chamber (TPC) is a detector used for high-energy physics research at the Stanford PEP Accelerator. TPC requires about 17,000 channels of data acquisition, which samples on command the input to each channel at a 10 MHz rate. This high data rate is made possible by means of Charge Coupled Devices (CCDs), intelligent digitizers, and a sophisticated trigger system. The TPC-CAMAC interface described here was developed to allow experiments of smaller scale than the complete TPC to use the standard data acquisition portion of the TPC electronics, namely the amplifier, CCD and digitizer bins. These three bins, when properly interconnected and controlled by the interface control bin, form a transient digitizer with a depth of 455 samples and a maximum width of 256 channels per bin set

  19. CC-3 CAMAC crate controller for IBM PC

    International Nuclear Information System (INIS)

    Khare, A.N.; Ghodgaonkar, M.D.; Bairi, B.R.

    1991-01-01

    The specifications and implementation details of CAMAC Crate Controller CC-3 for IBM-PC compatible as a host computer, having capability to transfer high speed data with direct memory access (DMA) scheme and logic to execute CAMAC cycles directly from the crate controller, to implement the block algorithms specified in ANSI/IEEE Std. 683-1976 (Reaff-1981) are described. The maximum data transfer rate measured with 8 bit interface of PC-AT is 240K byte per second. This work is carried out under Seventh Five Year Plan Project on Modernisation of reactor Control Instrumentation and Development of CAMAC and Fastbus Instrumentation. (author). 9 refs., 5 figs., 4 appendixes

  20. Independent programmable CAMAC crate controller based on KR580IK80A microprocessor

    International Nuclear Information System (INIS)

    Kulik, O.V.; Andronov, M.A.

    1986-01-01

    The RTKAM-2 independent programmable CAMAC crate controller is designed for use as a remote terminal in systems for automation of physics research. The built-in 12K-byte RAM is automatically changed to 24-bit organization in exchanges with the crate dataway. A nonstandard 24-level priority-interrupt system allows an LAM-request routing to be accessed in 5.5 μsec. Communication with the base computer is through a two conductor line

  1. Use of the CAMAC-MULTIBUS combined protocol for organizing multi-processor operation in a crate

    International Nuclear Information System (INIS)

    Glejbman, Eh.M.

    1985-01-01

    Problems of developing electronic units for large on-line systems for nuclear-physical experiments automation and developed on the base of principles of distributed control and data processing are discussed. Crates with simultaneous disposition and operation of CAMAC moduli (EUR-4100) and those realizing the MULTIBUS hardcopy log in dataway are described. It is attained due to sharing the CAMAC and the MULTIBUS hardcopy logs in the crate dataway. Application of job scheduler and executor moduli in the MULTIBUS interface permits to organize multiprocessor operation and to obtain separation of data stream as well as to increase total computational capacity in the crate

  2. A versatile programmable CAMAC random pulse generator

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1991-01-01

    A new technique for generating linear pulses which can be random in both amplitude and time is described. With this technique, desired values for both pulse amplitude and spacing are set for the individual pulses by the software on a pulse-by-pulse basis. The versatility offered by this software programming allows a wide range of distributions to be obtained; with the user having close control on the distribution parameters. A number of such distributions may also be combined into a single output pulse stream. An implementation in a CAMAC module is presented. Both hardware and software aspects are described and typical performance results for amplitude and time distributions of the uniform and Gaussian type are given. Implications of using the pulser in a typical data acquisition environment on both the data acquisition and the pulser performance are considered. Typical applications are discussed together with some of the limitations. (orig.)

  3. SAR: a fast computer for CAMAC data acquisition

    International Nuclear Information System (INIS)

    Bricaud, B.; Faivre, J.C.; Pain, J.

    1979-01-01

    An original 32-bit computer architecture has been designed, based on bit-slice microprocessors, around the AMD 2901. A 32 bit instruction set was defined with a 200 ns execution time per instruction. Basic memory capacity is equally divided into two 32K 32-bit zones named Program memory and Data memory. The computer has a Camac Branch interface; during a Camac transfer activation, which lasts seven cycles, five cycles are free for processing

  4. An intelligent CAMAC I/O module based on the Signetics 8X300 microcontroller

    Science.gov (United States)

    Turner, G. W.; Hendricks, R. W.

    1980-03-01

    An intelligent CAMAC I/O module based on the Signetics 8X300 microcontroller has been developed. Sixteen 8-bit I/O ports have been utilized; eight are dedicated to data transfer with external devices and/or processes and eight are dedicated to communication with the CAMAC dataway. Separate status and data registers are provided. The input status port (SIN) can receive up to seven individual signals from external devices or the host computer while the output status port (SOUT) can be used to provide up to seven internally graded LAMs and one bit can be used to generate a Q-response for termination of block transfers. Diagnostic software has been developed to operate on the host computer which fully tests all implemented instructions. In our application the device is used in a high-speed memory mapping scheme for data acquisition with a two-dimensional position-sensitive detector system.

  5. An intelligent CAMAC I/O module based on the signetics 8X300 microcontroller

    International Nuclear Information System (INIS)

    Turner, G.W.; Hendricks, R.W.; Oak Ridge National Lab., TN

    1980-01-01

    An intelligent CAMAC I/O module based on the Signetics 8X300 microcontroller has been developed. Sixteen 8-bit I/O ports have been utilized; eight are dedicated to data transfers with external devices and/or processes and eight are dedicated to communication with the CAMAC dataway. Separate status and data registers are provided. The input status port (SIN) can receive up to seven individual signals from external devices or the host computer while the output status port (SOUT) can be used to provide up to seven internally graded LAMs and one bit can be used to generate a Q-response for termination of block transfers. Diagnostic software has been developed to operate on the host computer which fully tests all implemented instructions. In our application the device is used in a high-speed memory mapping scheme for data acquisition with a two-dimensional position-sensitive detector system. (orig.)

  6. Access to CAMAC from VxWorks and UNIX in DART

    International Nuclear Information System (INIS)

    Streets, J.; Meadows, J.; Moore, C.

    1995-05-01

    As part of the DART Project the authors have developed a package of software for CAMAC access from UNIX and VxWorks platforms, with support for several hardware interfaces. They report on developments for the CES CBD8210 VME to parallel CAMAC, the Hytec VSD2992 VME to serial CAMAC and Jorway 411S SCSI to parallel and serial CAMAC branch drivers, and give a summary of the timings obtained

  7. Camac interface for digitally recording infrared camera images

    International Nuclear Information System (INIS)

    Dyer, G.R.

    1986-01-01

    An instrument has been built to store the digital signals from a modified imaging infrared scanner directly in a digital memory. This procedure avoids the signal-to-noise degradation and dynamic range limitations associated with successive analog-to-digital and digital-to-analog conversions and the analog recording method normally used to store data from the scanner. This technique also allows digital data processing methods to be applied directly to recorded data and permits processing and image reconstruction to be done using either a mainframe or a microcomputer. If a suitable computer and CAMAC-based data collection system are already available, digital storage of up to 12 scanner images can be implemented for less than $1750 in materials cost. Each image is stored as a frame of 60 x 80 eight-bit pixels, with an acquisition rate of one frame every 16.7 ms. The number of frames stored is limited only by the available memory. Initially, data processing for this equipment was done on a VAX 11-780, but images may also be displayed on the screen of a microcomputer. Software for setting the displayed gray scale, generating contour plots and false-color displays, and subtracting one image from another (e.g., background suppression) has been developed for IBM-compatible personal computers

  8. Unified microprocessor CAMAC module for preliminary data processing

    International Nuclear Information System (INIS)

    Zaushitsin, V.L.; Kulik, O.V.; Repin, V.M.

    1984-01-01

    The UP-80 unified active module is described. It is made in the CAMAC standard on the base of the K580IK80 microprocessor allowing to increase the rate of large-volume experimental spectroscopic data processing by an order. Loading of 5 different programs for data processing is possible. Data from the operative storage with 1K capacity (8 bits) are recorded and read out trhough the CAMAC line (the regime of unit exchange is possible) or through the joint of the external line

  9. RECENT DEVELOPMENTS IN ALTERNATIVES TO CAMAC FOR DATA ACQUISITION AT DIII-D

    International Nuclear Information System (INIS)

    KELLMAN, D.H.; CAMPBELL, G.L.; FERRON, J.R.; PIGLOWSKI, D.A.; AUSTIN, M.E.; MCKEE, G.R.

    2004-03-01

    OAK-B135 For over twenty years, data acquisition hardware at DIII-D has been based on the CAMAC platform. These rugged and reliable systems, however, are gradually becoming obsolete due to end-of-life issues, ever-decreasing industry support of older hardware, and the availability of modern alternative hardware with superior performance. Efforts are underway at DIII-D to adopt new data acquisition solutions which exploit modern technologies and surpass the limitations of the CAMAC standard. These efforts have involved the procurement and development of data acquisition systems based on the PCI and Compact-PCI platform standards. These systems are comprised of rack-mount computers containing data acquisition boards (digitizers), Ethernet connectivity, and the drivers and software necessary for control. Each digitizer contains analog-to-digital converters, control circuitry, firmware and memory to collect, store, and transfer waveform data acquired using internal or external triggers and clocks. Software has been developed which allows DIII-D computers to program the operational parameters of the digitizers, as well as to upload acquired data into the DIII-D acquisition database. All communication between host computers and the new acquisition systems occurs via standard Ethernet connections, a vast improvement over the slower, serial loop highways used for control and data transfer with CAMAC systems. In addition, the capabilities available in modern integrated and printed circuit manufacture result in digitizers with high channel count and memory density. Cost savings are also realized by utilizing a platform based on standards of the personal computer industry. Details of the new systems at DIII-D are presented, along with initial experience with their use, and plans for future expansion and improvement

  10. High precision 16K, 16 channel peak sensing CAMAC ADC

    International Nuclear Information System (INIS)

    Jain, Mamta; Subramaniam, E.T

    2013-01-01

    A high density, peak sensing, analog to digital converter (ADC) double width module with CAMAC back plane has been developed for nuclear physics experiments with a large number of detectors. This module has sixteen independent channels in plug-in daughter card mother board mode

  11. A CAMAC display module for fast bit-mapped graphics

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1992-01-01

    In many data acquisition and analysis facilities for nuclear physics research, utilities for the display of two-dimensional (2D) images and spectra on graphics terminals suffer from low speed, poor resolution, and limit accuracy. Developed of CAMAC bit-mapped graphics modules for this purpose has been discouraged in the past by the large device count needed and the long times required to load the image data from the host computer into the CAMAC hardware; particularly since many such facilities have been designed to support fast DMA block transfers only for data acquisition into the host. This paper describes the design and implementation of a prototype CAMAC graphics display module with a resolution of 256x256 pixels at eight colours for which all components can be easily accommodated in a single-width package. Employed is a hardware technique which reduces the number of programmed CAMAC data transfer operations needed for writing 2D images into the display memory by approximately an order of magnitude, with attendant improvements in the display speed and CPU time consumption. Hardware and software details are given together with sample results. Information on the performance of the module in a typical VAX/MBD data acquisition environment is presented, including data on the mutual effects of simultaneous data acquisition traffic. Suggestions are made for further improvements in performance. (orig.)

  12. Presettable up-down CAMAC counter for 24 bit

    International Nuclear Information System (INIS)

    Kuhn, K.; Meyer, U.; Weidhase, F.

    1976-01-01

    A module containing a presettable binary up-down CAMAC counter for 24 bit is described. The use of dataway is discussed. As an example for application in nuclear physics, control of beam position by the up-down counter is illustrated

  13. MIMOSA. A 32 channel 40 MHz Camac scaler

    International Nuclear Information System (INIS)

    Beer, A.; Bourgeois, F.; Critin, G.

    1981-01-01

    This report describes a 32 channel, 24 bit, 40 MHz single width Camac scaler based on the memory increment technique. The characteristics of the module are given and its logic is briefly described. Circuit diagrams and component lists are given. (orig.)

  14. Digital blocks in Camac standard for synchrocyclotron investigations

    International Nuclear Information System (INIS)

    Zhuravlev, N.I.; Li Zu Ehk; Nguen Man' Shat; Petrov, A.G.

    1975-01-01

    Described are brief characteristics and block diagrams of the following 12 blocks in the CAMAC standard designed for experiments on a synchrocyclotron: output register, digital printout, frame controller, logic signal commutator, controlled delay, binary counters of 4 types, exposure-set counter, decimal counter with full indication and L signal grader

  15. QMODULE: CAMAC modules recognized by the QAL compiler

    International Nuclear Information System (INIS)

    Kellogg, M.; Minor, M.M.; Shlaer, S.; Spencer, N.; Thomas, R.F. Jr.; van der Beken, H.

    1977-10-01

    The compiler for the Q Analyzer Language, QAL, recognizes a certain set of CAMAC modules as having known characteristics. The conventions and procedures used to describe these modules are discussed as well as the tools available to the user for extending this set as required

  16. CAMAC based computer--computer communications via microprocessor data links

    International Nuclear Information System (INIS)

    Potter, J.M.; Machen, D.R.; Naivar, F.J.; Elkins, E.P.; Simmonds, D.D.

    1976-01-01

    Communications between the central control computer and remote, satellite data acquisition/control stations at The Clinton P. Anderson Meson Physics Facility (LAMPF) is presently accomplished through the use of CAMAC based Data Link Modules. With the advent of the microprocessor, a new philosophy for digital data communications has evolved. Data Link modules containing microprocessor controllers provide link management and communication network protocol through algorithms executed in the Data Link microprocessor

  17. Autonomous controller (JCAM 10) for CAMAC crate with 8080 (INTEL) microprocessor

    International Nuclear Information System (INIS)

    Gallice, P.; Mathis, M.

    1975-01-01

    The CAMAC crate autonomous controller JCAM-10 is designed around an INTEL 8080 microprocessor in association with a 5K RAM and 4K REPROM memory. The concept of the module is described, in which data transfers between CAMAC modules and the memory are optimised from software point of view as well as from execution time. In fact, the JCAM-10 is a microcomputer with a set of 1000 peripheral units represented by the CAMAC modules commercially available

  18. CAMAC module control from the TPA-1001/i by means of the FOCAL programming language

    International Nuclear Information System (INIS)

    Angelov, A.Kh.; Dubovik, L.V.

    1977-01-01

    The possibility of using FOCAL programming language to control CAMAC modules by minicomputer is considered. This language allows to make effective changes in the program and reduce the time necessary for writing and running programmes. To address CAMAC modules a packet of CAMAC subroutines from the CAMAC-tr A/i software is included into FOCAL language, its operational possibilities and linguistic peculiarities being completely preserved. A big fast memory enables one to add three additional functions to the function list of FOCAL language. An example is given illustrating the use of these functions

  19. The control system of the CERN new linac

    International Nuclear Information System (INIS)

    Cheretakis, A.; Knott, J.; Mead, P.; Schueren, P. van; Tallgren, U.

    1976-01-01

    Two computers are used for the Linac control system, interfaced to the process over CAMAC, configured in such a way that each computer has direct access to the CAMAC system. The control system is designed in such a way as to minimize the knowledge of programming and computers required by the normal users of the system. The consoles use touch panels for parameter, program and option selections and are interfaced over parallel CAMAC to the computers, whereas the process itself is interfaced over bit serial CAMAC. In the case of the ion source, the CAMAC Serial Highway crosses the 750 kV with the help of optical data links

  20. Performance of CAMAC TDC and ADC in magnetic field

    International Nuclear Information System (INIS)

    Gupta, S.K.; Barbier, L.M.; Christian, E.R.; Geier, S.; Krizmanic, J.F.; Mitchell, J.W.; Streitmatter, R.E.; Wasilewski, P.J.

    1997-01-01

    The performance of a LeCroy CAMAC 2228A TDC and a 2249A ADC have been studied in presence of magnetic fields up to 5000 G. The conversion gains of the TDC and ADC increased with magnetic field in a non-linear fashion which can be adequately parameterized by a fourth-order polynomial. The behavior of both the TDC and ADC can be completely understood in terms of a change in the inductance of a ferromagnetic core inductor in the 20 MHz clock circuit of these units. (orig.)

  1. Construction of an input sensitivity variable CAMAC module for measuring DC voltage

    International Nuclear Information System (INIS)

    Noda, Nobuaki.

    1979-03-01

    In on-line experimental data processing systems, the collection of DC voltage data is frequently required. In plasma confinement experiments, for example, the range of input voltage is very wide from over 1 kV applied to photomultiplier tubes to 10 mV full scale of the controller output for ionization vacuum gauges. A DC voltmeter CAMAC module with variable input range, convenient for plasma experiments and inexpensive, has been constructed for trial. The number of input channels is 16, and the input range is changeable in six steps from +-10 mV to +-200 V; these are all set by commands from a computer. The module is actually used for the on-line data processing system for JIPP T-2 experiment. The ideas behind its development, and the functions, features and usage of the module are described in this report. (J.P.N.)

  2. Recommendations for CAMAC Serial Highway drivers and LAM Graders for the SCC-L2 Serial Crate Controller

    International Nuclear Information System (INIS)

    1978-01-01

    The functional requirements of Drivers for the CAMAC Serial Highway defined in IEEE Standard 595-1976 are described. The description is independent of the implementation, and in particular no assumption is made about the boundary between hardware and software within the Driver. Topics covered are the user interface, the supporting system services required, demand handling, and a detailed discussion of the message analysis for various levels of error recovery. An appendix describes the recommended features of LAM Graders for use with the Serial Crate Controller Type L2 of IEEE Std 595-1976

  3. Data-acquisition system of the reversed field pinch device REPUTE-1

    International Nuclear Information System (INIS)

    Tsuzuki, N.; Aoki, H.; Shinohara, H.; Toyama, H.; Morikawa, J.

    1988-01-01

    The new, compact data-acquisition system of the reversed field pinch device, REPUTE-1, is reported. Its distinctive feature is high flexibility and easy handling. The interface between the computer and measurement devices is CAMAC. The computer and the CAMAC devices are connected to a CAMAC byte serial highway that transmits setup parameters and acquisition data. The computer carries out setup of CAMAC devices and data acquisition automatically by use of CAMAC parameters and the acquisition data base. The maintenance tools for the data base are also provided. The computer system, which consists of a ''TOSBAC DS-600,'' has been in operation for REPUTE-1 since 1985

  4. CAMAC-compatible differential pulse discriminator-counter

    International Nuclear Information System (INIS)

    Tselikov, I.V.

    1988-01-01

    A differential pulse discriminator-counter for a Moessbauer spectrometer is described. Input pulses are collected according to the following algorithm; a pulse is admitted into the channel depending on whether or not the preceding pulse fell into the discrimination window. The circuit does not contain delay lines to allow for the delay lines to allow for the delay of the signal from the upper-level discriminator with respect to the signal from the lower-level discriminator due to the finite rise time of the input pulses, which makes it possible to reduce the dead time of the discriminator to the actuation time of the threshold circuits. The pulse count rate is 150 MHz, the input amplitude is +/-3 V, the dead time is 6 nsec, and the delay from input to output is 14 nsec. The unit is CAMAC-compatible

  5. Design and realization of multithread CAMAC communication server software based on Winsock

    International Nuclear Information System (INIS)

    Zhang Xia

    2002-01-01

    The author describes the CAMAC communication server software which applies Winsock and multithread techniques. The design method of the whole software is given. The realization of network communication service and the synchronization problem of multithread are introduced in detail

  6. A CAMAC 32-channel pile-up detection and rejection module

    International Nuclear Information System (INIS)

    Wikne, J.C.

    1992-08-01

    A specially developed CAMAC module for detection and rejection of analog pile-up in multiparameter, nuclear spectroscopy experiments is described. The present report is a complete technical manual for the module. 23 refs., 6 figs

  7. Using a graphical programming language to write CAMAC/GPIB instrument drivers

    Science.gov (United States)

    Zambrana, Horacio; Johanson, William

    1991-01-01

    To reduce the complexities of conventional programming, graphical software was used in the development of instrumentation drivers. The graphical software provides a standard set of tools (graphical subroutines) which are sufficient to program the most sophisticated CAMAC/GPIB drivers. These tools were used and instrumentation drivers were successfully developed for operating CAMAC/GPIB hardware from two different manufacturers: LeCroy and DSP. The use of these tools is presented for programming a LeCroy A/D Waveform Analyzer.

  8. CAMAC throughput of a new RISC-based data acquisition computer at the DIII-D tokamak

    International Nuclear Information System (INIS)

    VanderLaan, J.F.; Cummings, J.W.

    1993-10-01

    The amount of experimental data acquired per plasma discharge at DIII-D has continued to grow. The largest shot size in May 1991 was 49 Mbyte; in May 1992, 66 Mbyte; and in April 1993, 80 Mbyte. The increasing load has prompted the installation of a new Motorola 88100-based MODCOMP computer to supplement the existing core of three older MODCOMP data acquisition CPUs. New Kinetic Systems CAMAC serial highway driver hardware runs on the 88100 VME bus. The new operating system is MODCOMP REAL/IX version of AT ampersand T System V UNIX with real-time extensions and networking capabilities; future plans call for installation of additional computers of this type for tokamak and neutral beam control functions. Experiences with the CAMAC hardware and software will be chronicled, including observation of data throughput. The Enhanced Serial Highway crate controller is advertised as twice as fast as the previous crate controller, and computer I/O speeds are expected to also increase data rates

  9. CAMAC throughput of a new RISC-based data acquisition computer at the DIII-D tokamak

    Science.gov (United States)

    Vanderlaan, J. F.; Cummings, J. W.

    1993-10-01

    The amount of experimental data acquired per plasma discharge at DIII-D has continued to grow. The largest shot size in May 1991 was 49 Mbyte; in May 1992, 66 Mbyte; and in April 1993, 80 Mbyte. The increasing load has prompted the installation of a new Motorola 88100-based MODCOMP computer to supplement the existing core of three older MODCOMP data acquisition CPU's. New Kinetic Systems CAMAC serial highway driver hardware runs on the 88100 VME bus. The new operating system is MODCOMP REAL/IX version of AT&T System V UNIX with real-time extensions and networking capabilities; future plans call for installation of additional computers of this type for tokamak and neutral beam control functions. Experiences with the CAMAC hardware and software will be chronicled, including observation of data throughput. The Enhanced Serial Highway crate controller is advertised as twice as fast as the previous crate controller, and computer I/O speeds are expected to also increase data rates.

  10. A CAMAC unit for charge measuring and pulse shape recording based on a fast, 8-bit parallel analog-to-digital converter

    International Nuclear Information System (INIS)

    Kulka, Z.; Kreciejewski, M.; Nadachowski, M.

    1990-08-01

    A device designed mainly for measuring systems for testing parameters of some type of detectors used in the high energy physics is described. The device is one-module CAMAC unit. It is equipped in a fast, 8-bit parallel analog-to-digital converter ''flash''type with a gated integrator at the input and a static RAM (4096 x 8 bit) at the output. The device enables measurements of the charge in pulses from detectors or registration of the shape of these pulses. The construction, operation and parameters of the circuits of the device are described and the way of programming functions using CAMAC dataway is given. 8 refs., 9 figs. (author)

  11. Increased control and data acquisition capabilities via microprocessor-based timed reading and time plot CAMAC modules

    International Nuclear Information System (INIS)

    Barsotti, E.J.; Purvis, D.M.; Loveless, R.L.; Hance, R.D.

    1977-01-01

    By implementing a microprocessor-based CAMAC module capable of being programmed to function as a time plot or a timed reading controller, the capabilities of the experimental area serial CAMAC control and data acquisition system at Fermilab have been extensively increased. These modules provide real-time data gathering and pre-processing functions synchronized to the main accelerator cycle clock while adding only a minimal amount to the host computer's CPU time and memory requirements. Critical data requiring a fast system response can be read by the host computer immediately following the request for this data. The vast majority of data, being non-critical, can be read via a block transfer during a non-busy time in the main accelerator cycle. Each of Fermilab's experimental areas, Meson, Neutrino and Proton, are controlled primarily by a Lockheed MAC-16 computer. Each of these three minicomputers is linked to a larger Digital Equipment Corporation PDP-11/50 computer. The PDP-11 computers are used primarily for data analysis and reduction. Presently two PDP-11's are linked to the three MAC-16 computers

  12. A universal electronical adaptation of automats for biochemical analysis to a central processing computer by applying CAMAC-signals

    International Nuclear Information System (INIS)

    Schaefer, R.

    1975-01-01

    A universal expansion of a CAMAC-subsystem - BORER 3000 - for adapting analysis instruments in biochemistry to a processing computer is described. The possibility of standardizing input interfaces for lab instruments with such circuits is discussed and the advantages achieved by applying the CAMAC-specifications are described

  13. Nimrod 4080 computer - Nixie data system interface

    International Nuclear Information System (INIS)

    Smith, J.V.

    1977-02-01

    The Injector Control System employs an ADC/multiplexer system to convert analogue data from the various beamline elements and supply this to the Controls CAMAC for numeric (Nixie) display. Facilities were incorporated to allow this data to be sent via a line driver to the Diagnostics CAMAC. This report describes the system developed to acquire and log the Nixie data. (author)

  14. A CAMAC-resident microprocessor for the monitoring of polarimeter spin states

    International Nuclear Information System (INIS)

    Reid, D.; DuPlantis, D.; Yoder, N.; Dale, D.

    1992-01-01

    A CAMAC module for the reporting of polarimeter spin states is being developed using a resident microcontroller. The module will allow experimenters at the Indiana University Cyclotron Facility to monitor spin states and correlate spin information with other experimental data. The use of a microprocessor allows for adaptation of the module as new requirements ensue without change to the printed circuit board layout. (author)

  15. Emulation of MS DOS Operational System on the Autonomous Crate-Controller with I8086 microprocessor

    International Nuclear Information System (INIS)

    Hons, Z.; Cizek, P.; Streit, V.

    1988-01-01

    KM-DOS operating system for CAMAC autonomous crate-controller based on Intel 8086/8087 microprocessor connected with Pravec-16 IBM PC is described. The KM-DOS system fully emulates the MS DOS environment on the CAMAC controller. Thus ASSEMBLER, FORTRAN, C and PASCAL programs compiled and linked on IBM PC and compatible can be run on the CAMAC controller and parall work of both computers is enabled

  16. Organization of a joint operation of PC and CAMAC equipment using KK106 crate controller and MULTI interface

    International Nuclear Information System (INIS)

    Vagov, V.A.; Sirotin, A.P.; Tulaev, A.B.; Tumanov, A.V.

    1989-01-01

    Hardware and software which permit to provide a joint operation of IBM PC/XT/AT (or compatibles) with CAMAC equipment are described. Wide-spread in the JINR the 106 type interface is used as CAMAC Dataway controller and MULTI interface is used as PC-Bus adapter. MULTI additional on-board module Baby-106 that emulates cut-down UNIBUS for 106 type interface is designed. The means offered allow PC and CAMAC modules to operate jointly both via the program transfer channel and DMA channel. Maximum (hardware) performance is obtained in DMA case. 5 refs.; 1 fig

  17. Master ENUM. CAMAC module for driving simultaneous data acquisitions of pulsed characteristics of an electron linac beam

    International Nuclear Information System (INIS)

    Saidi, Farid; Chambe, Jacques; Courcy, Georges.

    1977-05-01

    The data acquisitions must be done in real time. Here, they are made, by fast ADC of the electric charge contained in a sampling pulse. The CAMAC module which permits 32 acquisitions simultaneously is described [fr

  18. Design and development of CAMAC 12 bit ADC/DAC dual purpose module

    International Nuclear Information System (INIS)

    Kulkarni, S.G.; Gore, J.A.; Ramlal, V.; Matkar, U.V.; Lokare, R.N.; Yadav, M.L.; Ekambaram, M.; Gupta, A.K.; Datar, V.M.

    2013-01-01

    A dual function CAMAC module is designed for Pelletron Accelerator which can function as 12 bit 8 channels DAC or 12 bit 16 channels ADC. Spartan 2 series of FPGA is used for implementing the CAMAC interface logic as well as logic for ADC/DAC interface. The PCB has both the ADC and DAC mounted but the module can have only one function selected due to wiring constraint. Two different VHDL programs (one for the ADC and other for the DAC) reside on the EEPROM permitting selection of any one as per the functionality required. The module is working as a 12 bit DAC at BARC-TIFR Pelletron Linac Facility, successfully. (author)

  19. CAMAC-controlled 4-level discriminator with four settable threshold levels

    International Nuclear Information System (INIS)

    Ujiie, N.; Ikeda, M.

    1989-01-01

    A CAMAC-controlled discriminator containing four input channels per module has been developed to provide a fast trigger signal for the TOPAZ barrel electromagnetic calorimeter. The calorimeter consists of 4300 lead-glass counters constructed and operated at the e + e - collider at KEK. The performance of the discriminator obtained in a test and in a real setup with cosmic ray is described. (orig.)

  20. New CAMAC developments for nuclear spectroscopy in the Central Research Institute for Physics

    International Nuclear Information System (INIS)

    Nagy, J.Z.; Zarandy, A.

    1985-01-01

    Several CAMAC modules developed for tokamak instrumentation are considered. The CAM 4.04-3 8-Channel Pulse Peak Analyzer is a three unit wide CAMAC module designed for plasma diagnostics. The module contains 8 independent 256-channel fast amplitude analyzers. It has a memory of 32 K words with a word length of 16 bits. The CAM 4.33-1 Phase Meter is intended for experiments to measure the refraction index of tokamak plasma. The measurements are performed by two laser beams one of which crosses the plasma. The phase difference between the two signals obtained on photodiodes carrying indormation on the refraction index is measured by the Phase Meter under consideration. The CAM 4.31-11 8-Channel Waveform Digitizer is used to analyse relatively fast varying dc signals. It is actually an 8-channel transient recorder. The CAM 2.20-3 Analyzer Memory is a double width CAMAC module containing 16K words with a word length of 24 bits

  1. A new data acquisition system for pelletron-LINAC experiments

    International Nuclear Information System (INIS)

    Ramachandran, K.; Chatterjee, A.; Singh, Sudheer; Jha, K.; Joy, Saju; Behere, A.; Goadgoankar, M.D.

    2007-01-01

    The LINAC booster facility coupled with Pelletron accelerator at Mumbai and the plans to have large detector arrays such as Indian National Gamma Array, Charged Particle Array, Neutron Array, BaF 2 etc. pose new challenges to have a Data Acquisition system (DAQ) with a throughput an order of magnitude higher than the present CAMAC system. The major limitation of CAMAC readout is the 1μs/word readout time. A new FERA (Fast Encoding and Readout) data acquisition system developed at BARC for the augmentation of the throughput of CAMAC is a readout bus for the CAMAC ADCs. With this FERA DAQ, it is possible to readout CAMAC ADC's at 150 ns/word. This talk will present the new DAQ system used at BARC-TIFR Pelletron Accelerator facility. (author)

  2. Data processing system for neutron experiments

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, T; Yamamuro, N [Tokyo Inst. of Tech. (Japan). Research Lab. of Nuclear Reactor

    1979-03-01

    A data processing system for neutron experiments has been equipped at the Pelletron Laboratory of the Research Laboratory for Nuclear Reactors. The system comprises a Hewlett Packard 21 MX computer and a CAMAC standard. It can control two ADCs and some CAMAC modules. CAMAC control programs as well as data acquisition programs with high-level language can be readily developed. Terminals are well designed for man-machine interactions and program developments. To demonstrate the usefulness of the system, it was applied for the on-line data processing of neutron spectrum measurement.

  3. A small microprocessor based CAMAC module for testing and monitoring purposes

    CERN Document Server

    Bouquet, B; Nguyen-Ngoc, Hoan

    1981-01-01

    Summary form only given, as follows. A small microcomputer, using a Motorola 6800, has been developed. Two printed-board versions have been operating since 1979 in the NA3 experiment, and about 30 other are used for test and small experiments in various laboratories. The computer consists of a 2/25 or 3/25 CAMAC unit, which can be crate controller or branch driver. In normal use, it is connected to SA400 floppy disks and a terminal. Optionally, interfaces to a cassette unit, PROM programmer and three analog outputs can be operated on the same boards. Total memory size is 11 kbytes PROM (22 kbytes with 2716 memories) and 8 kbit RAM. Software on PROM consists of an input-output monitor, with disassembling facility, editor and local assembler, a fast and easy-to-use floppy disk monitor, and an histogram package, in 7 kbytes PROM. Some macro instructions are recognised in the assembler: message printing, CAMAC functions, initialisations and are then very easily performed. (0 refs).

  4. A CAMAC timing module for the use with high energy resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bulian, N.; Plaga, R. (Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany))

    1992-06-15

    A CAMAC module which measures event times with a resolution of 10 ns continuously over a period of 32.6 days has been built. The event times are stored in a deep buffer memory in form of 48-bit data words. The pulse amplitude of each event can be measured concurrently in a high resolution ADC and stored in another FIFO buffer memory. These amplitudes are tagged with a flag to correlate time with amplitude value unambiguously. In spite of the high operating frequency of 100 MHz necessitating the use of ECL counters, the module is compact (single-width) thanks to the use of TTL registers for the intermediate storage of the 48-bit time-word. The setup and testing of the modules with a NaI-pair spectrometer used in the GALLEX dolar neutrino experiment is described. Other possible applications of the module in the field of non-accelerator particle physics are also mentioned. (orig.).

  5. Computer aided production of manufacturing CAMAC-wired boards by the multiwire-technique

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M; Brehmer, W

    1975-10-01

    The multiwire-technique is a computer controlled wiring method for the manufacturing of circuit boards with insulated conductors. The technical data for production are dimensional drawings of the board and a list of all points which are to be connected. The listing must be in absolute co-ordinates including a list of all soldering points for component parts and a reproducible print pattern for inscription. For this wiring method a CAMAC standard board, a layout plan with alpha-numeric symbols, and a computer program which produces the essential technical data were developed. A description of the alpha-numeric symbols, the quality of the program, recognition and checking of these symbols, and the produced technical data is presented. (auth)

  6. Computer control system of TARN-2

    International Nuclear Information System (INIS)

    Watanabe, S.

    1989-01-01

    The CAMAC interface system is employed in order to regulate the power supply, beam diagnostic and so on. Five CAMAC stations are located in the TARN-2 area and are linked with a serial highway system. The CAMAC serial highway is driven by a serial highway driver, Kinetic 3992, which is housed in the CAMAC powered crate and regulated by two successive methods. One is regulated by the mini computer through the standard branch-highway crate controller, named Type-A2, and the other is regulated with the microcomputer through the auxiliary crate controller. The CAMAC serial highway comprises the two-way optical cables with a total length of 300 m. Each CAMAC station has the serial and auxiliary crate controllers so as to realize alternative control with the local computer system. Interpreter, INSBASIC, is used in the main control computer. There are many kinds of the 'device control function' of the INSBASIC. Because the 'device control function' implies physical operating procedure of such a device, only knowledge of the logical operating procedure is required. A touch panel system is employed to regulate the complicated control flow without any knowledge of the usage of the device. A rotary encoder system, which is analogous to the potentiometer operation, is also available for smooth adjustment of the setting parameter. (author)

  7. The Bochum on-line data acquisition system

    International Nuclear Information System (INIS)

    Paul, H.J.; Freiesleben, H.

    1986-01-01

    We describe an on-line data acquisition system based on a PDP 11 computer with CAMAC hardware. The software fully exploits the real-time features of the RSX-11M operating system. The basic characteristics of the program package, mainly written in FORTRAN 77, are: multitasking, shared common blocks, dynamical access to CAMAC hardware and data, and command orientated user interface. The system is particularly tailored for data acquisition in list mode of up to 64 parameters. (orig.)

  8. Data acquisition system for fusion diagnostics on the ARGUS laser

    International Nuclear Information System (INIS)

    Greenwood, J.R.; Campbell, D.E.; Frerking, C.E.

    1976-09-01

    An extensive data acquisition and analysis system has been implemented for experiments on the ARGUS laser. The system is based upon a PDP-11/40 minicomputer and CAMAC interfaces. Highspeed transient digitizers, calorimeter digitizing modules and time integrated data are interfaced through CAMAC over a fiber optic serial highway. The system allows for dynamic definition of the experimental environment by an operator, automatic data acquisition during a shot. Two interactive graphics terminals allow experimenters real-time access to target shot data

  9. Timing system for TRISTAN AR using time division multiplexed serial transmission

    International Nuclear Information System (INIS)

    Ishii, Kazuhiro; Kadokura, Eiichi.

    1984-10-01

    The global timing signals of standard clock pulse, event code and time code for TRISTAN AR are transmitted by means of a single coaxial cable. The timing system is composed of the CAMAC system with a microcomputer (LSI-11) and the control computers (Hidic 80 E's). The CAMAC modules and the softwares for the timing system have been developed, and so the flexible and extensible system has been completed. (author)

  10. Data readout system for proportional chambers; Sistema schityvaniya informatsii s proportsional`nykh kamer

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, N I; Sidorov, V T

    1996-12-31

    Paper studies data readout system designed for data output from proportional chambers with up to 1000 channel total number. Short descriptions of the above mentioned units made according to CAMAC standard and their main characteristics are presented here. 2 figs.

  11. Data readout system on the base of CAMAC time-to-digital converters with time resolution 2 ns for a drift chamber; Sistema s{sup e}ma informatsii s drejfovykh kamer na osnove vremyatsmfrovykh preobrazovatelej s 2 ns razresheniem v standarte KAMAK

    Energy Technology Data Exchange (ETDEWEB)

    Sidorkin, V V

    1996-12-31

    Data readout system for drift chambers consists of time-to-digital converter (TDS), timer-generator (TG) and sub controller. Maximal time of conversion constitutes 12.5 m ks. Block-circuits of TDC and TG are presented and their functioning under calibration and measuring is studied as well. 4 refs.

  12. A data input controller for an alphanumeric and function keyboard with ports to the CAMAC-dataway or the serial plasma display controller

    International Nuclear Information System (INIS)

    Zahn, J.; Komor, Z.; Geldmeyer, H.J.

    1976-01-01

    A data input controller has been developed to allow the data transfer from an alphanumeric and function keyboard to the CAMAC-dataway or via the plasma display controller SIG-8AS/S and a serial transmission line to the TTY-/V.24-port of a computer. (orig.) [de

  13. CODA: A scalable, distributed data acquisition system

    International Nuclear Information System (INIS)

    Watson, W.A. III; Chen, J.; Heyes, G.; Jastrzembski, E.; Quarrie, D.

    1994-01-01

    A new data acquisition system has been designed for physics experiments scheduled to run at CEBAF starting in the summer of 1994. This system runs on Unix workstations connected via ethernet, FDDI, or other network hardware to multiple intelligent front end crates -- VME, CAMAC or FASTBUS. CAMAC crates may either contain intelligent processors, or may be interfaced to VME. The system is modular and scalable, from a single front end crate and one workstation linked by ethernet, to as may as 32 clusters of front end crates ultimately connected via a high speed network to a set of analysis workstations. The system includes an extensible, device independent slow controls package with drivers for CAMAC, VME, and high voltage crates, as well as a link to CEBAF accelerator controls. All distributed processes are managed by standard remote procedure calls propagating change-of-state requests, or reading and writing program variables. Custom components may be easily integrated. The system is portable to any front end processor running the VxWorks real-time kernel, and to most workstations supplying a few standard facilities such as rsh and X-windows, and Motif and socket libraries. Sample implementations exist for 2 Unix workstation families connected via ethernet or FDDI to VME (with interfaces to FASTBUS or CAMAC), and via ethernet to FASTBUS or CAMAC

  14. CEBAF control system

    International Nuclear Information System (INIS)

    Bork, R.; Grubb, C.; Lahti, G.; Navarro, E.; Sage, J.

    1989-01-01

    A logic-based computer control system is in development at CEBAF. This Unix/C language software package, running on a distributed, hierarchical system of workstation and supervisory minicomputers, interfaces to hardware via CAMAC. Software aspects to be covered are ladder logic, interactive database generation, networking, and graphic user interfaces. 1 fig

  15. Development of a CMOS time memory cell VLSI and CAMAC module with 0.5 ns resolution

    International Nuclear Information System (INIS)

    Arai, Y.; Ikeno, M.; Matsumura, T.

    1992-01-01

    A CMOS time-to-digital converter chip, the Time Memory Cell (TMC), for high-rate wire chamber application has been developed. The chip has a timing resolution of 0.52 ns, dissipates only 7 mW/channel, and contains 4 channels in a chip. Each channel has 1024 memory locations which act as a buffer 1μs deep. The chip was fabricated in a 0.8 μm CMOS process and is 5.0 mm by 5.6 mm. Using the TMC chip, a CAMAC module with 32 input channels was developed. This module is designed to operate in both 'Common Start' and 'Common Stop' modes. The circuit of the module and test results are described in this paper

  16. Generator of pulses with the nanosecond duration and accurate amplitude using the digital control in the CAMAC standard

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Nguen Kuang Min'

    1980-01-01

    A generator of square-wave fine-amplitude nanosecond pulses is described. The generator is primarily intended for checking the performances of fast electronics analog-to-digital units with the help of a computer. In addition to digital control the pulse amplitude can be controlled manually or by the external voltage. Basic circuits of main generator assemblies: a triggering circuit, transistor key and digital-to-analog converter are given. Output pulses produced by the generator have the following parameters: the amplitude from - 0.15 to - 10 V (smooth or gradual, with a minimum step of 5 mV), the rising and decay pulse times approximately 2 ns, the maximum repetition frequency 10 kHz, the control linearity at a pulse duration of more than 50 ns 0.15%. A double-width CAMAC cell accomodates two generators

  17. Proton gyromagnetic precision measurement system

    International Nuclear Information System (INIS)

    Zhu Deming; Deming Zhu

    1991-01-01

    A computerized control and measurement system used in the proton gyromagnetic precision meausrement is descirbed. It adopts the CAMAC data acquisition equipment, using on-line control and analysis with the HP85 and PDP-11/60 computer systems. It also adopts the RSX11M computer operation system, and the control software is written in FORTRAN language

  18. Control system for BARC-TIFR Pelletron

    International Nuclear Information System (INIS)

    Singh, S.; Singh, P.; Gore, J.; Kulkarni, S.

    2012-01-01

    BARC-TIFR Pelletron is a 14 MV tandem accelerator in operation from more than 20 years. It was having a DOS based control system software which was running on a 486 PC and it was not possible to port it on new PCs. It was based on serial highway and Uport adapter based CAMAC crate controller which are now not available and all spares were used. Hence we have changed CAMAC controller with in house developed Ethernet based CAMAC controller and new software has been developed. New Control system software is based on LINUX operating system with graphical user interface developed using Trolltech's QT API, but can be easily ported on MS windows. (author)

  19. GLCTA control system

    International Nuclear Information System (INIS)

    Terunuma, N.; Hayano, H.; Higo, T.; Saeki, T.; Suehara, T.; Watanabe, K.

    2004-01-01

    Research and development for the high power X-band RF technologies have been performed on the GLC Test Accelerator, GLCTA, since fall of 2003. The control system of this facility is based on the PC-Linux servers that handle the CAMAC, VME and PLC modules. Automated RF processing and data accumulation of the RF breakdown have been performed. (author)

  20. New developments of the GANIL control system

    International Nuclear Information System (INIS)

    Lecorche, E.

    1985-10-01

    Since its first ion beam, the GANIL accelerator has been driven by a Control System built around a minicomputer MITRA 125 and a distributed intelligence consisting of programmable Controllers and INTEL 8080 equipped autonomous CAMAC Controllers. After a brief description of the GANIL Control System, this paper will lay emphasis on the major improvements undertaken along four main directions: a) Upgrading the Control Computer. b) Introducing more powerful local intelligence. A microprocessorized autonomous CAMAC Controller called ''DIVA 68C'' using the 68000 microprocessor embedded in a VME card has been developed. Also, the 68000 will be used in a general purpose CAMAC module, the first application of which is to replace the existing data link modules. (c) Making human-machine dialog smarter with use of color graphic terminals. d) Meeting the requirements of the coming second injector. In this purpose a fully equipped auxiliary console is being installed near the main console for operation by summer 1985

  1. Ion implantation data acquisition system

    International Nuclear Information System (INIS)

    Struttmann, D.A.; Anderl, R.A.

    1989-01-01

    This paper describes a data acquisition system developed for hydrogen ion-driven permeation experiments for materials relevant to fusion technology. The system consists of an IMB PC-AT, CAMAC interface to diagnostic instrumentation and custom-developed software (BASIC) to provide time-history information for signals from several instruments including three quadrupole mass spectrometers. 4 refs., 5 figs

  2. Advanced IPNE data acquisition system

    International Nuclear Information System (INIS)

    Duma, M.; Moisa, D.; Petrovici, M.; Berceanu, I.; Ivascu, M.; Pascovici, G.; Simion, V.; Osvath, E.; Bock, R.; Gobbi, A.; Hildebrand, K.D.; Lynen, U.; Mueller, W.F.J.; Beeskow, M.

    1987-05-01

    A complex and flexible data acquisition system has been developed in order to run relative complex experiments in our acceleration system - ALIGATOR. AIDA programme has been carried out on a small PDP - 11/34 computer and is based on a CAMAC hardware. The main hardware and software features are presented. (authors)

  3. Data-Acquisition Systems for Fusion Devices

    NARCIS (Netherlands)

    van Haren, P. C.; Oomens, N. A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology

  4. A prototype switched Ethernet data acquisition system

    International Nuclear Information System (INIS)

    Ye Gaoying; Deng Huichen; Chen Liaoyuan; Liu Li; Wang Xinhui

    1999-01-01

    A prototype switched Ethernet data acquisition system has been built up and successfully operated in HL-1M tokamak experiments. The system is based on a switched high bandwidth Ethernet network with which the CAMAC crates are directly interfaced. It takes the advanced features of LAN switch and Ethernet CAMAC controller (ECC 1365 MK III, HYTEC product) to avoid the rewriting of CAMAC driver for an individual computer system and to ensure high data transmission rate between CAMAC system and host computers on the network. It is a new approach to DAS system architecture and provides a solution for a well-known bottleneck problem in traditional distributed DAS system for fusion research. An average throughput of the test system reaches over 100 Mbps. The system features also an easy and low cost migration from traditional distributed DAS system. In the paper, the hardware configuration, software structure, performance of the system and the method of migrating from current DAS system are discussed in detail. (orig.)

  5. A data acquisition system based on a personal computer

    International Nuclear Information System (INIS)

    Omata, K.; Fujita, Y.; Yoshikawa, N.; Sekiguchi, M.; Shida, Y.

    1991-07-01

    A versatile and flexible data acquisition system KODAQ (Kakuken Online Data AcQuisition system) has been developed. The system runs with CAMAC and a most popular Japanese personal computer, PC9801 (NEC), similar to the IBM PC/AT. The system is designed to set up easily a data acquisition system for various kinds of nuclear-physics experiments. (author)

  6. The Nuclotron internal target control and data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Isupov, A.Yu., E-mail: isupov@moonhe.jinr.ru [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Krasnov, V.A.; Ladygin, V.P.; Piyadin, S.M.; Reznikov, S.G. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2013-01-11

    The new control system of the Nuclotron (JINR, Dubna) internal target is described in both hardware and software aspects. The CAMAC hardware is based on the use of the standard CAMAC modules developed and manufactured at JINR. The internal target control and data acquisition (IntTarg CDAQ) system software is implemented using the ngdp framework under the Unix-like operating system (OS) FreeBSD to allow easy network distribution of the online data collected from internal target and accompanying detectors, as well as the internal target remote control.

  7. MacVEE - the intimate Macintosh-VME system

    International Nuclear Information System (INIS)

    Taylor, B.G.

    1986-01-01

    The marriage of a mass-produced personal computer with the versatile VMEbus and CAMAC systems creates a cost-effective solution to many laboratory small system requirements. This paper describes MacVEE (Microcomputer Applied to the Control of VME Electronic Equipment), a novel system in which an Apple Macintosh computer is equipped with a special interface which allows it direct memory-mapped access to single or multiple VME and CAMAC crates interconnected by a ribbon cable bus. The bus is driven by an electronics plinth called MacPlinth, which attaches to the computer and becomes an integral part of it. (Auth.)

  8. Report on the SLC control system

    International Nuclear Information System (INIS)

    Phinney, N.

    1985-05-01

    The SLC control system is based on a VAX 11/780 Host computer with approximately 50 microprocessor clusters which provide distributed intelligence and control of all CAMAC interface modules. This paper will present an overview of the system including current status and a description of the software architecture and communication protocols. 8 refs

  9. Control system for JAERI Free Electron Laser

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1992-01-01

    A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)

  10. The BNL Accelerator Test Facility control system

    International Nuclear Information System (INIS)

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  11. Upgrade of a control system for the JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Kikuzawa, Nobuhiro

    2004-01-01

    The accelerator control system used for the JAERI ERL-FEL is a PC-based distributed control system that has been in operation since 1992. Since an interface bus of the PCs is obsolete, interface boards for the PCs are difficult to obtain in recent years. Thus we have been developing the CAMAC controller with μITRON operating system to replace the old PCs connected with CAMAC. We will introduce a Java and CORBA environment in the new control system. The control system upgrade, including hardware upgrading and applications rewriting, is described in this paper. (author)

  12. MUMTI a Multi-User-Multi-Task-Interpreter for process-control applications with CAMAC

    International Nuclear Information System (INIS)

    Busse, E.; Degenhardt, K.H.; Eichner, H.U.; Tschammer, V.; Vidic, U.; Woletz, W.

    1977-02-01

    The interactive, interpretative programming-system MUMTI runs on PDP11-RSX11M/D-systems. Its main application fields are industrial and process-control applications. The MUMTI language is described in detail. (WB) [de

  13. A mobile console for local access to accelerator control systems.

    CERN Multimedia

    1981-01-01

    Microprocessors were installed as auxiliary crate controllers (ACCs) in the CAMAC interface of control systems for various accelerators. The same ACC was also at the hearth of a stand-alone system in the form of a mobile console. This was also used for local access to the control systems for tests and development work (Annual Report 1981, p. 80, Fig. 10).

  14. A data acquisition and analysis system for the RIBLL

    CERN Document Server

    Wenlong, Z; Zhong Yan, G; Guoqing, X; Jin Chuan W; Jia Xing, L; Xiang Wei, M; Shanhong, J; Lijun, Q; Quanjin, W

    2000-01-01

    The Radioactive Ion Beam Line in Lanzhou (RIBLL) is described. This system has been connected to a 100 M Ethernet and is run on the NT platform of MS windows. The system has adopted CAMAC specification and incorporates PAW and CERNLIB from CERN. It is a powerful and flexible data acquisition and analysis system with a rate of ~640 Kb /s. (4 refs).

  15. Design of a compiler working out a real time BASIC language for CAMAC monitoring

    International Nuclear Information System (INIS)

    Barlerin, Antoine.

    1978-06-01

    After exposing why a real time system is required in order to perform interactive measures and controls, the various units of this system are described and it is shown how to build them up. Through the real time monitor each process is managed and controlled. The required input-output system and the monitor are linked up. Through the control system the operator can at every moment interface with the process in progress. In accordance with the above described systems a method for language elaboration based on graph theory is outlined and applied to a short language. The last chapter describes the BASIC like language to which have been aplied the above methods and indicates the actual performance of the machine [fr

  16. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    Science.gov (United States)

    Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.

    1997-06-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.

  17. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    International Nuclear Information System (INIS)

    Lewellen, T.K.; Miyaoka, R.S.; Kaplan, M.S.

    1996-01-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz

  18. New developments of the GANIL control system

    International Nuclear Information System (INIS)

    Lecorche, E.

    1986-01-01

    Since the first ion beam, the GANIL accelerator has been driven by a Control System built around a minicomputer MITRA 125 and a distributed intelligence consisting of Programmable Controllers and INTEL 8080-equipped autonomous CAMAC Controllers. CAMAC is the digital transmission standard adopted to interface the processors to the GANIL facilities. In order to cope with the growing needs of the accelerator operation, many developments of the Control System have been carried out during the last years or are underway. After a brief description of the GANIL Control System, this paper describes the major improvements undertaken in four main directions: a) Upgrading the Control Computer. The minicomputer MITRA 125 will be replaced by a faster one equipped with much larger memories and disk capabilities. b) Introducing more powerful local intelligence. An autonomous CAMAC Controller called DIVA 68C using the 68000 microprocessor has been developed. Also, the 68000 will be used in a general purpose CAMAC module, the first application of which is to replace the existing data link modules. c) Improving the human-machine interface with the use of color graphic terminals. d) Meeting the requirements for the coming second injector. For this purpose, a fully equipped auxiliary console is being installed near the main console for operation by summer 1985. (orig.)

  19. An on-line data acquisition system based on Norsk-Data ND-560 computer

    International Nuclear Information System (INIS)

    Bandyopadhyay, A.; Roy, A.; Dey, S.K.; Bhattacharya, S.; Bhowmik, R.K.

    1987-01-01

    This paper describes a high-speed data acquisition system based on CAMAC for Norsk Data ND-560 computer operating in a multiuser environment. As opposed to the present trend, the system has been implemented with minimum hardware at CAMAC level taking advantage of the dual processors of ND-560. The package consists of several coordinated tasks running in the two CPUs which acquire data, record on tape, permit on-line analysis and display the data and perform related control operations. It has been used in several experiments at VECC and its performance in on-line experiments is reported. (orig.)

  20. A normalisation for the four - detector system for gamma - gamma angular correlation studies

    International Nuclear Information System (INIS)

    Kiang, G.C.; Chen, C.H.; Niu, W.F.

    1994-01-01

    A normalisation method for the multiple - HPGe - detector system is described. The system consists of four coaxial HPGe detectors with a CAMAC event - by - event data acquisition system, enabling to measure six gamma -gamma coincidences of angles simultaneously. An application for gamma - gamma correlation studies of Kr 82 is presented and discussed. 3 figs., 6 refs. (author)

  1. Data Acquisition System

    International Nuclear Information System (INIS)

    Cirstea, C.D.; Buda, S.I.; Constantin, F.

    2005-01-01

    This paper deals with a multi parametric acquisition system developed for a four input Analog to Digital Converter working in CAMAC Standard. The acquisition software is built in MS Visual C++ on a standard PC with a USB interface. It has a visual interface which permits Start/Stop of the acquisition, setting the type of acquisition (True/Live time), the time and various menus for primary data acquisition. The spectrum is dynamically visualized with a moving cursor indicating the content and position. The microcontroller PIC16C765 is used for data transfer from ADC to PC; The microcontroller and the software create an embedded system which emulates the CAMAC protocol programming the 4 input ADC for operating modes ('zero suppression', 'addressed' and 'sequential') and handling the data transfers from ADC to its internal memory. From its memory the data is transferred into the PC by the USB interface. The work is in progress. (authors)

  2. Data acquisition system

    International Nuclear Information System (INIS)

    Cirstea, D.C.; Buda, S.I.; Constantin, F.

    2005-01-01

    The topic of this paper deals with a multi parametric acquisition system developed around a four input Analog to Digital Converter working in CAMAC Standard. The acquisition software is built in MS Visual C++ on a standard PC with a USB interface. It has a visual interface which permits Start/Stop of the acquisition, setting the type of acquisition (True/Live time), the time and various menus for primary data acquisition. The spectrum is dynamically visualized with a moving cursor indicating the content and position. The microcontroller PIC16C765 is used for data transfer from ADC to PC; The microcontroller and the software create an embedded system which emulates the CAMAC protocol programming, the 4 input ADC for operating modes ('zero suppression', 'addressed' and 'sequential') and handling the data transfers from ADC to its internal memory. From its memory the data is transferred into the PC by the USB interface. The work is in progress. (authors)

  3. Data acquisition systems for high energy physics experiments

    International Nuclear Information System (INIS)

    Duran, I.; Olmos, P.

    1986-01-01

    The Data Acquisition Systems most frequently used in High Energy Physics experiments is described. This report begins with a brief description of the main elements of a typical signal processing chain, following with a detailed exposition of the four most popular instrumentation standards used in this kind of experiments: NIM, CAMAC, and VMI. (author). 20 figs., 9 ref

  4. A remote control system for the LELA experiment

    International Nuclear Information System (INIS)

    Castellano, M.; Cavallo, N.; Cevenini, F.; Patteri, P.

    1983-01-01

    A modular system for closed loop computer control of stepping motors has been realized and used for optical component movement of LELA experiment in radiation risk area. A CAMAC module, controlling up to 15 stepping motors, a NIM dual motor driver and a special purpose circuit for computer interfacing are described

  5. Data acquisition systems for high energy Physics experiments

    International Nuclear Information System (INIS)

    Duran, I.; Olmos, P.

    1986-01-01

    We describe here the Data Acquisition Systems most frequently used in High Energy Physics experiments. This report begins with a brief description of the main elements of a typical signal processing chain, following with a detailed exposition of the four most popular instrumentation standards used in this kind of experimental: NIM, CAMAC, FASTBUS and VME. (Author) 9 refs

  6. SYSTEM DESIGN AND PERFORMANCE FOR THE RECENT DIII-D NEUTRAL BEAM COMPUTER UPGRADE

    International Nuclear Information System (INIS)

    PHILLIPS, J.C; PENAFLOR, B.G; PHAM, N.Q; PIGLOWSKI, D.A.

    2004-03-01

    OAK-B135 This operating year marks an upgrade to the computer system charged with control and data acquisition for neutral beam injection system's heating at the DIII-D National Fusion Facility, funded by the US Department of Energy and operated by General Atomics (GA). This upgrade represents the third and latest major revision to a system which has been in service over twenty years. The first control and data acquisition computers were four 16 bit mini computers running a proprietary operating system. Each of the four controlled two ion source over dedicated CAMAC highway. In a 1995 upgrade, the system evolved to be two 32 bit Motorola mini-computers running a version of UNIX. Each computer controlled four ion sources with two CAMAC highways per CPU. This latest upgrade builds on this same logical organization, but makes significant advances in cost, maintainability, and the degree to which the system is open to future modification. The new control and data acquisition system is formed of two 2 GHz Intel Pentium 4 based PC's, running the LINUX operating system. Each PC drives two CAMAC serial highways using a combination of Kinetic Systems PCI standard CAMAC Hardware Drivers and a low-level software driver written in-house expressly for this device. This paper discusses the overall system design and implementation detail, describing actual operating experience for the initial six months of operation

  7. FASTBUS based data acquisition system for the DI-lepton spectrometer at the BEVALAC

    International Nuclear Information System (INIS)

    Matis, H.S.; Claesson, G.; Hendrie, D.

    1985-10-01

    A data acquisition system using FASTBUS has been developed. FASTBUS TDC's are used to record hits from a drift chamber, while FASTBUS ADC's digitize the pulse heights from the chambers. FASTBUS data are transferred to CAMAC and then written to a VAX 11/750 using a MBD. The performance of this system is discussed. 5 refs., 4 figs

  8. Microprocessor system for data acquisition processing and display for Auger electrons spectrometer

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Cudny, W.; Hildebrandt, S.; Marzec, J.; Walentek, J.; Zaremba, K.

    1984-01-01

    Data acquisition system for Auger electron spectrometry is developed. The system is used for chemical and structural analysis of materials and consists of a cylindrical mirror analyzer being a measuring spectrometer device, CAMAC unit and control unit. The control unit comprises a microcomputer based on INTEL 8080 microprocessor and display

  9. New Main Ring control system

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Ducar, R.; Franck, A.; Gomilar, J.; Hendricks, B.; Smedinghoff, J.

    1990-03-01

    The Fermilab Main Ring control system has been operational for over sixteen years. Aging and obsolescence of the equipment make the maintenance difficult. Since the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab accelerators except the Main Ring. Modernization of the equipment and standardization of the hardware and software have thus become inevitable. The Tevatron CAMAC serial system has been chosen as a basic foundation in order to make the Main Ring control system compatible with the rest of the accelerator complex. New hardware pieces including intelligent CAMAC modules have been designed to satisfy unique requirements. Fiber optic cable and repeaters have been installed in order to accommodate new channel requirements onto the already saturated communication medium system. 8 refs., 2 figs

  10. High speed, locally controlled data acquisition system for TFTR

    International Nuclear Information System (INIS)

    Feng, H.K.; Bradish, G.J.

    1983-01-01

    A high speed, locally controlled, data acquisition and transmission system has been developed by the CICADA (Central Instrumentation Control and Data Acquisition) Group for extracting certain timecritical data during a TFTR pulse and passing it to the control room, 1000 feet distant, to satisfy realtime requirements of frequently sampled variables. The system is designed to utilize any or all of the standard CAMAC (Computer Automated Measurement and Control) modules now employed on the CAMAC links for retrieval of the main body of data, but to operate them in a much faster manner than in a standard CAMAC system. To do this, a pre-programmable ROM sequencer is employed as a controller to transmit commands to the modules at intervals down to one microsecond, replacing the usual CAMAC dedicated computer, and increasing the command rate by an order of magnitude over what could be sent down a Branch Highway. Data coming from any number of channels originating within a single CAMAC ''crate'' is then time-multiplexed and transmitted over a single conductor pair in bi-phase at a 2.5 MHz bit rate using Manchester coding techniques. Benefits gained from this approach include: Reduction in the number of conductors required, elimination of line-to-line skew found in parallel transmission systems, and the capability of being transformer coupled or transmitted over a fiber optic cable to avoid safety hazards and ground loops. The main application for this system so far has been as the feedback path in this closed loop control of currents through the Tokamak's field coils. The paper will treat the system's various applications

  11. A microprocessor controlled read out system for drift chambers

    CERN Document Server

    Centro, Sandro; Cittolin, Sergio; Dreesen, P; Petrolo, E; Rubbia, Carlo; Schinzel, D

    1981-01-01

    Summary form only given, as follows. A General Purpose Microprocessor Controller GPMC has been developed for applications where CAMAC modules with complex control functions are needed. Each application requires an appropriate Interface Module (IM) to be connected to the GPMC. The GPMC consists of a 6800 Microprocessor, 16K EPROM, 2K RAM, CAMAC I/O ports and interface, a RS 232C serial interface, an Advanced Data Link controller and a port for controlling the IM, GPMC and IM are housed in a 2-U wide CAMAC module. A special IM has been designed, which has 1K bute of RAM with its own control and which allows autonomous setting and reading analog voltages through a DAC and ADC. The GPMC can take control of the IM memory and set new voltages. This system is used to control pedestals and gains of a driftchamber readout system, which is housed in a 5-U wide CAMAC module, holding 24 data cards corresponding to 24 sense wires. The data card receives pulses from the left and right end of a sense wire, amplifies and int...

  12. CORBA technology in reengineering the FTU data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A; Buceti, G; Centioli, C; Di Muzio, D; Iannone, F.; Panella, M; Vitale, V

    2002-06-01

    In its early stages, Frascati tokamak upgrade DAS was essentially devoted to acquiring data from experiments in CAMAC standard, using a software system (code and database) entirely written by domestic professionals. In 15 years of life DAS has been growing in size and complexity, still preserving its original structure; at the same time new standards were introduced (VME, PCI) to take into account users' ever increasing demands for amount of data and acquisition frequency with which the existing code couldn't cope. Moreover, machines were getting old and the maintenance became troublesome. Finally, the data archive porting to Unix has definitely shown that the DAS system was ageing and a thorough redesign was needed. The system we are planning to introduce is founded on a standard CORBA bus: (i) to integrate heterogeneous platforms and define a standard layer for interactions between the different acquisition units; (ii) to grant, with open source tools (MySql) and interfaces (Html and Java), unified access to hardware and software configuration data. So, a dedicated PC server, connected via a suitable PCI serial highway driver card, will perform the CAMAC access for all the clients interacting through the CORBA layer. Up to now we have successfully tested CAMAC access, and we designed an acquisition unit, which will be the building block of the new system. The next step will be migrating to Alpha/VMS the software related to CAMAC data acquisition, which has been so far the cornerstone of the whole DAS; it will be completely redesigned to fit the 'acquisition unit' paradigm we have defined. Finally we will have a fully distributed data acquisition system with VME (at present six such units have been operating since 1999) and PCI stations, an Alpha/VMS client of the CAMAC/PC server and any possible platform interacting through a CORBA bus for getting data configuration, synchronisation and data archiving.

  13. CORBA technology in reengineering the FTU data acquisition system

    International Nuclear Information System (INIS)

    Bertocchi, A.; Buceti, G.; Centioli, C.; Di Muzio, D.; Iannone, F.; Panella, M.; Vitale, V.

    2002-01-01

    In its early stages, Frascati tokamak upgrade DAS was essentially devoted to acquiring data from experiments in CAMAC standard, using a software system (code and database) entirely written by domestic professionals. In 15 years of life DAS has been growing in size and complexity, still preserving its original structure; at the same time new standards were introduced (VME, PCI) to take into account users' ever increasing demands for amount of data and acquisition frequency with which the existing code couldn't cope. Moreover, machines were getting old and the maintenance became troublesome. Finally, the data archive porting to Unix has definitely shown that the DAS system was ageing and a thorough redesign was needed. The system we are planning to introduce is founded on a standard CORBA bus: (i) to integrate heterogeneous platforms and define a standard layer for interactions between the different acquisition units; (ii) to grant, with open source tools (MySql) and interfaces (Html and Java), unified access to hardware and software configuration data. So, a dedicated PC server, connected via a suitable PCI serial highway driver card, will perform the CAMAC access for all the clients interacting through the CORBA layer. Up to now we have successfully tested CAMAC access, and we designed an acquisition unit, which will be the building block of the new system. The next step will be migrating to Alpha/VMS the software related to CAMAC data acquisition, which has been so far the cornerstone of the whole DAS; it will be completely redesigned to fit the 'acquisition unit' paradigm we have defined. Finally we will have a fully distributed data acquisition system with VME (at present six such units have been operating since 1999) and PCI stations, an Alpha/VMS client of the CAMAC/PC server and any possible platform interacting through a CORBA bus for getting data configuration, synchronisation and data archiving

  14. Construction of a FASTBUS data-acquisition system for the ELAN experiment

    International Nuclear Information System (INIS)

    Noel, A.

    1992-06-01

    To use the FASTBUS data acquisition system for the experiment ELAN at the electron stretcher accelerator ELSA a new software tool has been developed. This tool manages to readout parallel CAMAC with a VME front-end-processor and FASTBUS with the special FASTBUS processor segment AEB. Both processors are connected by a 32 bit high speed VSB data bus. (orig.) [de

  15. Automatic data acquisition system of environmental radiation monitor with a personal computer

    International Nuclear Information System (INIS)

    Ohkubo, Tohru; Nakamura, Takashi.

    1984-05-01

    The automatic data acquisition system of environmental radiation monitor was developed in a low price by using a PET personal computer. The count pulses from eight monitors settled at four site boundaries were transmitted to a radiation control room by a signal transmission device and analyzed by the computer via 12 channel scaler and PET-CAMAC Interface for graphic display and printing. (author)

  16. Data acquisition system for Experiment E866 at the Brookhaven AGS

    International Nuclear Information System (INIS)

    Ashktorab, K.; LeVine, M.J.; Scheetz, R.A.

    1993-01-01

    Experiment E866 consists of two spectrometers and related detectors for investigations of collisions of relativistic beams of Au ions with fixed targets at the Brookhaven AGS. The data acquisition system, consisting of 11 CPUs in a single VME crate, gathers data from 8 Camac crates and 6 Fastbus crates

  17. Data processing system for ETL TPE-2

    International Nuclear Information System (INIS)

    Yahagi, E.; Kiyama, M.

    1988-01-01

    The data processing system for ETL TPE-2 consists of 2 CPU systems and it is composing a duplex system. One system is used as a data acquisition system, which is abbreviated as DAS and functions controlling various data input devices, data acquisition, communication with the main controller of TPE-2 confirming safety system operation. Another one is used as data processing system, which is abbreviated as DPS and functions the processing of the data after the acquisition, the interconnections with the mainframe and the development of software. A transient memory system, which has 64 channels of 8 bits ADC with maximum sampling frequency of 20 MHz and 4 KB buffer memory in each channel, is used to record the time sequential experimental data. Two CAMAC crates are used for the acquisition of the informations of the experiment condition and Thomson scattering data. They are composing a serial high way system through fiber optics. The CAMAC crate for Thomson scattering data is controlled by a personal computer, HP-85, and is available stand-alone use, and the communication between the CAMAC system and DAS is easily performed by using a CAMAC memory module as an intermediator without complicated procedure in the connection of different type computers. Two magnetic disk pack units, which have the formatted storage capacity of 158 KB in each one and can record the data over 2,000 shots, are used in parallel with a magnetic tape handler for the data file. Thus we realized the high speed data processing over the wide range of experimental shots and confirmed the preservation of the data. (author)

  18. The TdeV timing system

    International Nuclear Information System (INIS)

    deVillers, P.; Lliev, B.; Larsen, J.M.; Strong, C.

    1992-01-01

    This paper reports on the timing system that provides the clock and trigger signals used to synchronize power supplies, waveforms, gas injection, plasma control, diagnostic equipments and data-acquisition systems on TdeV (Tokamak de Varennes). The two major components of the timing system are the MPB Encoder and Decoder CAMAC modules which are linked via ta fibre optic cable (timing highway) carrying a 1 MHz master clock and timing events. The Decoders generate the synchronization signals with a resolution of 1 μs upon recognition of timing events encoded on the timing highway by the Encoder modules. The integration of these programmable CAMAC modules, developed to meet the requirements of TdeV, allows the design of a distributed timing system with a simple but flexible architecture

  19. Data acquisition systems for fusion devices

    International Nuclear Information System (INIS)

    Van Haren, P.C.; Oomens, N.A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology driven; the emphasis has been on the development of computer hardware and system software. For future DASs, challenging problems are to be solved: The DASs have to be better optimized with respect to the needs of the users. Existing bottlenecks, such as CAMAC-computer coupling or pulse file merging, need to be eliminated. Continuous or long-pulse operation will require the introduction of event abstraction in DAS design. 59 refs., 4 figs., 1 tab

  20. An updated data acquisition and analysis system at RIBLL

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Ye, Y.L.; Zhan, W.L.; Xiao, G.Q.; Guo, Z.Y.; Xu, H.S.; Wang, J.C.; Jiang, D.X.; Wang, Q.J.; Zheng, T.; Zhang, G.L.; Wu, C.E.; Li, Z.H.; Li, X.Q.; Hu, Q.Y.; Pang, D.Y.; Wang, J.

    2005-01-01

    An updated data acquisition and analysis system for beam tuning and nuclear physics experiments at RIBLL is presented. The system hardware is based on standard CAMAC bus with SCSI KSC3929-Z1B crate controller. The system software has a user-friendly GUI which is written in C/C++ language using Microsoft Visual C++ .Net 2003 with ROOT class library and runs under PC-based Windows 2000 operating system. The performance of the DAQ system is reliable and safe

  1. Data acquisition systems for high energy Physics experiments; Sistemas de adquisicion de datos en experimentos de Fisica de Particulas

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Olmos, P

    1986-07-01

    We describe here the Data Acquisition Systems most frequently used in High Energy Physics experiments. This report begins with a brief description of the main elements of a typical signal processing chain, following with a detailed exposition of the four most popular instrumentation standards used in this kind of experimental: NIM, CAMAC, FASTBUS and VME. (Author) 9 refs.

  2. Software for nuclear data acquisition systems

    International Nuclear Information System (INIS)

    Christensen, P.

    1983-01-01

    The situation for experimenters and system designers needing software for instrumentation is described. It is stated that software for a data acquisition system can be divided into programmes described as the foundation software, the applications programme, and the analysis programme. Special attention is given to CAMAC. Two examples from Risoe describing data transportation and archiving are given. Finally the supply of software and the problems of documentation are described. (author)

  3. Radiation control system of nuclear power plants

    International Nuclear Information System (INIS)

    Kapisovsky, V.; Kosa, M.; Melichar, Z.; Moravek, J.; Jancik, O.

    1977-01-01

    The SYRAK system is being developed for in-service radiation control of the V-1 nuclear power plant. Its basic components are an EC 1010 computer, a CAMAC system and communication means. The in-service release of radionuclides is measured by fuel can failure detection, by monitoring rare gases in the coolant, by gamma spectrometric coolant monitoring and by iodine isotopes monitoring in stack disposal. (O.K.)

  4. CWRU multiwire proportional counter readout system

    International Nuclear Information System (INIS)

    Bevington, P.R.; Leskovec, R.A.

    1977-01-01

    An electronic system is described which translates pulses from individual wires of multiwire proportional counters into binary addresses indicating the location of the wires in the chambers. The system combines a fast (<100 ns) serial scan of an event buffer with parallel encoding to provide fast transfer of addresses (250 ns per hit). The buffer has provision for disabling the input less than 40 ns after detection of an event to suppress recording of multiple hits caused by individual events. The encoder can digitize the address of every hit encountered or just the first addresses of contiguous hits. The system includes a coincidence trigger for determining whether timing criteria have been satisfied between chambers and with external devices. Events which do not meet the coincidence criteria are typically reset within 400 ns. The addresses are transferred to a computer interface through CAMAC modules. Multiple buffering permits further data acquisition during CAMAC transfer cycles. (Auth.)

  5. Hardware control system using modular software under RSX-11D

    International Nuclear Information System (INIS)

    Kittell, R.S.; Helland, J.A.

    1978-01-01

    A modular software system used to control extensive hardware is described. The development, operation, and experience with this software are discussed. Included are the methods employed to implement this system while taking advantage of the Real-Time features of RSX-11D. Comparisons are made between this system and an earlier nonmodular system. The controlled hardware includes magnet power supplies, stepping motors, DVM's, and multiplexors, and is interfaced through CAMAC. 4 figures

  6. Development of data acquisition software for VME based system

    International Nuclear Information System (INIS)

    Kumar, A.; Chatterjee, A.; Mahata, K.; Ramachandran, K.

    2012-01-01

    A data acquisition system for VME has been developed for use in accelerator based experiments. The development was motivated by the growing demand for higher throughput in view of the increasing size of experiments. VME based data acquisition system provides a powerful alternative to CAMAC standards on account of higher readout speeds (100 ns/word) resulting in reduced dead time. Further, high density VME modules are capable of providing up to 640 channels in a single VME crate with 21 slots. The software system LAMPS, earlier developed for CAMAC based system and used extensively in our laboratory and elsewhere has been modified for the present VME based system. The system makes use of the VME library to implement Chain Block Transfer Readout (CBLT) and gives the option of both Polling and Interrupt mode to acquire data. Practical throughput of ∼ 250 ns/word in zero suppressed mode has been achieved. (author)

  7. Present status of the JT-60 control system

    International Nuclear Information System (INIS)

    Kimura, T.

    1992-01-01

    The present status of the control system for a large fusion device of the JT-60 upgrade tokamak is reported including its original design concept, the progress of the system in the past five-year operation and modification for the upgrade. The control system has the features of hierarchical structure, computer control, adoption of CAMAC interfaces and protective interlock by both software and hard-wired systems. Plant monitoring and control are performed by an efficient data communication via CAMAC highways. Sequential discharge control of is executed by a combination of computers and a timing system. A plasma feedback control system with fast 32-bit microprocessors and a man/machine interface with modern workstations have been newly developed for the operation of the JT-60 upgrade. (author)

  8. Philosophy of a computer-automated counting system

    International Nuclear Information System (INIS)

    Perry, D.G.; Giesler, G.C.

    1979-01-01

    The LAMPF Nuclear Chemistry computer system is designed to provide both real-time control of data acquisition and facilities for data processing for a large variety of users. It is a PDP-11/34 connected to a parallel CAMAC branch highway as well as a large variety of peripherals. The philosophy for the design of this system is discussed; such points as use of the computer for control only versus direct data acquisition by the computer, why a CAMAC system was chosen, and the advantages and disadvantages of this system are covered. Also discussed are future expansion of the system and what might be done differently if the system were redesigned. 3 figures

  9. Use of VME computers for the data acquisition system of the PHOENICS experiment

    International Nuclear Information System (INIS)

    Zucht, B.

    1989-10-01

    The data acquisition program PHON (PHOENICS ONLINE) for the PHOENICS-experiment at the stretcher ring ELSA in Bonn is described. PHON is based on a fast parallel CAMAC readout with special VME-front-end-processors (VIP) and a VAX computer, allowing comfortable control and programming. Special tools have been developed to facilitate the implementation of user programs. The PHON-compiler allows to specify the arrangement of the CAMAC-modules to be read out for each event (camaclist) using a simple language. The camaclist is translated in 68000 Assembly and runs on the front-end-processors, making high data rates possible. User programs for monitoring and control of the experiment normally require low data rates and therefore run on the VAX computer. CAMAC operations are supported by the PHON CAMAC-Library. For graphic representation of the data the CERN standard program libraries HBOOK and PAW are used. The data acquisition system is very flexible and can be easily adapted to different experiments. (orig.)

  10. SPHERE DAQ and off-line systems: implementation based on the qdpb system

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2003-01-01

    Design of the on-line data acquisition (DAQ) system for the SPHERE setup (LHE, JINR) is described. SPHERE DAQ is based on the qdpb (Data Processing with Branchpoints) system and configurable experimental data and CAMAC hardware representations. Implementation of the DAQ and off-line program code, depending on the SPHERE setup's hardware layout and experimental data contents, is explained as well as software modules specific for such implementation

  11. Construction of a FASTBUS data-acquisition system for the ELAN experiment. Aufbau eines FASTBUS-Datenerfassungssystems fuer das ELAN-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Noel, A.

    1992-06-01

    To use the FASTBUS data acquisition system for the experiment ELAN at the electron stretcher accelerator ELSA a new software tool has been developed. This tool manages to readout parallel CAMAC with a VME front-end-processor and FASTBUS with the special FASTBUS processor segment AEB. Both processors are connected by a 32 bit high speed VSB data bus. (orig.).

  12. Flexible data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Clout, P N; Ridley, P A [Science Research Council, Daresbury (UK). Daresbury Lab.

    1978-06-01

    A data acquisition system has been developed which enables several independent experiments to be controlled by a 24 K word PDP-11 computer. Significant features of the system are the use of CAMAC, a high level language (RTL/2) and a general-purpose operating system executive which assist the rapid implementation of new experiments. This system has been used successfully for EXAFS and photo-electron spectroscopy experiments. It is intended to provide powerful concurrent data analysis and feedback facilities to the experimenter by on-line connection to the central IBM 370/165 computer.

  13. Therminoic gun control system for the CEBAF injector

    International Nuclear Information System (INIS)

    Pico, R.; Diamond, B.; Fugitt, J.; Bork, R.

    1989-01-01

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  14. University of Washington Nuclear Physics Data Collection System

    International Nuclear Information System (INIS)

    Green, K.C.

    1981-01-01

    During the past several years, a new data collection system has been developed, replacing a previous system based on an SDS-930 computer. The system is constructed about a PDP 11/60 and an MBD-11 controlled CAMAC crate. The hardware configuration as well as a locally written singles data collection code will be described in some detail. Multiparameter data is taken with an enhanced version of Fermilab Multi. Current capabilities and future plans are discussed

  15. Mark-II Data Acquisition and Trigger system

    International Nuclear Information System (INIS)

    Breidenbach, M.

    1984-06-01

    The Mark-II Data Acquisition and Trigger system requirements and general solution are described. The solution takes advantage of the synchronous crossing times and low event rates of an electron positron collider to permit a very highly multiplexed analog scheme to be effective. The system depends on a two level trigger to operate with acceptable dead time. The trigger, multiplexing, data reduction, calibration, and CAMAC systems are described

  16. New control system: net communications on VAX

    International Nuclear Information System (INIS)

    David, L.; Maugeais, C.

    1992-01-01

    The control system is made of five different types of processors: a server (VAX 3800), stations (VS4000) as setting interfaces for operators, CAMAC VANTAGE controllers, VME controllers and industrial programmable automates. These automates are treated with the IMAGIN supervision software and with the OSI communication protocol. All the processors are of the VAX family and use DECNET communication protocol on ETHERNET net. (A.B.). 3 figs

  17. New development of JFT-2M Tokamak (3) data processing system

    International Nuclear Information System (INIS)

    Fukuchi, Y.; Oyabu, I.; Hirose, T.; Ichimura, H.; Inoue, K.; Komoto, Y.

    1986-01-01

    A data acquisition system for JFT-2M Tokamak is a computer complex system consisting of a CAMAC serial highway, a front-end computer, and a main computer, which are ranked in a definite hierarchical structure. This paper reports the data processing system by the main computer (using a super-mini-computer MELCOM 70/250) which is situated on the highest level in the data acquisition system and performs unified management and control over the system. The features of the data processing system by the main computer are as follows: (1) Expandability of the system based on the definite hierarchical structure; (2) Five-dimensional multi-processing (setup, acquisition, analysis, display, and storage); (3) Realization of RAS (Reliability, Availability, and Serviceability) function; and (4) Easy-to-use man-machine interface that provides: flexibility in CAMAC system configuration, open-ended interface and file history managing

  18. Upgrading the BEPC control system

    International Nuclear Information System (INIS)

    Yang Liping; Wang Lizheng; Liu Shiyao

    1992-01-01

    The BEPC control system has been put into operation and operated normally since the end of 1987. Three years's experience shows this system can satisfy basically the operation requirements, also exhibits some disadvantages araised from the original centralized system architecture based on the VAX-VCC-CAMAC, such as slow response, bottle neck of VCC, less CPU power for control etc.. This paper describes the method and procedure for upgrading the BEPC control system which will be based on DEC net and DEC-WS, and thus intend to upgrade the control system architecture from the centralized to the distributed and improve the integral system performance. (author)

  19. New control system: net communications on VAX; Nouveau systeme de controle: communications reseau sur VAX

    Energy Technology Data Exchange (ETDEWEB)

    David, L; Maugeais, C

    1993-12-31

    The control system is made of five different types of processors: a server (VAX 3800), stations (VS4000) as setting interfaces for operators, CAMAC VANTAGE controllers, VME controllers and industrial programmable automates. These automates are treated with the IMAGIN supervision software and with the OSI communication protocol. All the processors are of the VAX family and use DECNET communication protocol on ETHERNET net. (A.B.). 3 figs.

  20. Application of programmable controllers to vacuum system interlocks

    International Nuclear Information System (INIS)

    Lee, G.; Moore, D.

    1979-11-01

    This paper describes the Doublet III Vacuum Control System in which all input signals and output loads are connected to a programmable controller (PC) for logical interfacing. Input signals derived from CAMAC, control panels, limit switches, etc., are implemented as output signals to CAMAC, vacuum valves, pump motors, etc., according to a logic program stored in the PC memory. The memory can be easily programmed by anyone familar with either Boolean algebra or relay-ladder network diagrams. The program data is entered with the aid of a calculator like, keyboard instrument with LED readout displays. The PC system contains a 1024 word RAM memory with a battery backup system to provide 72 hours protection of contents in case of power failure

  1. The acquisition and supervision system of S.A.R.A.'s (Accelerator system Rhone-Alpes) parameters

    International Nuclear Information System (INIS)

    Iazzourene, F.

    1982-01-01

    The acquisition and supervision system of SARA's (Systeme Accelerateur Rhone-Alpes) parameters is built up. The basic hardware consists of: - A PDP 11/10 computer with a 64 K bytes memory capacity. The system and load device is a floppy disk of 28 megabytes capacity. - A CAMAC crate including a data logger with 224 input channels, a terminal driver (JTY21) and three modules designed for reading out a few digital data, for instance polarities of power supplies. The software provides three distinct programs: AKITS, which uses 3 commands, detects and signals functioning defects in the CAMAC modules used. AKIDO which uses 11 commands, is the acquisition and organization program of the accelerator's functioning parameters. AKISUR is the supervision program of the functioning parameter's stability, within a fixed gap, during the accelerator running [fr

  2. A PC-Linux-based data acquisition system for the STAR TOFp detector

    International Nuclear Information System (INIS)

    Liu Zhixu; Liu Feng; Zhang Bingyun

    2003-01-01

    Commodity hardware running the open source operating system Linux is playing various important roles in the field of high energy physics. This paper describes the PC-Linux-based Data Acquisition System of STAR TOFp detector. It is based on the conventional solutions with front-end electronics made of NIM and CAMAC modules controlled by a PC running Linux. The system had been commissioned into the STAR DAQ system, and worked successfully in the second year of STAR physics runs

  3. TCABR data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Fagundes, A.N. E-mail: fagundes@if.usp.br; Sa, W.P.; Coelho, P.M.S.A

    2000-08-01

    A brief description of the design of the data acquisition system for the TCABR tokamak is presented. The system comprises the VME standard instrumentation incorporating CAMAC instrumentation through the use of a GPIB interface. All the necessary data for programming different parts of the equipment, as well as the repertoire of actions for the machine control, are stored in a DBMS, with friendly interfaces. Public access software is used, where feasible, in the development of codes. The TCABR distinguished feature is the virtual lack of frontiers in upgrading, either in hardware or software.

  4. Applications of small computers for systems control on the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Bork, R.G.; Kane, R.J.; Moore, T.L.

    1983-01-01

    Desktop computers operating into a CAMAC-based interface are used to control and monitor the operation of the various subsystems on the Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL). These systems include: shot sequencer/master timing, neutral beam control (four consoles), magnet power system control, ion-cyclotron resonant heating (ICRH) control, thermocouple monitoring, getter system control, gas fueling system control, and electron-cyclotron resonant heating (ECRH) monitoring. Two additional computers are used to control the TMX-U neutral beam test stand and provide computer-aided repair/test and development of CAMAC modules. These machines are usually programmed in BASIC, but some codes have been interpreted into assembly language to increase speed. Details of the computer interfaces and system complexity are described as well as the evolution of the systems to their present states

  5. Thermionic gun control system for the CEBAF [Continuous Electron Beam Accelerator Facility] injector

    International Nuclear Information System (INIS)

    Pico, R.; Diamond, B.; Fugitt, J.; Bork, R.

    1989-01-01

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  6. Contribution to a study of real time information systems for elementary particle physics

    International Nuclear Information System (INIS)

    Meyer, J.-M.

    1977-01-01

    The structure of data acquisition systems used in elementary particle physics experiments is formulated. The experiments and the equipment used from a data processing point of view are characterized and the acquisition system is modeled to obtain an optimal architecture. Practical compromises are implemented, leading to a system with a new structure, now being used at the CERN SPS in a hyperon experiment. The realization of this system (FAS) is described using three computers: a NORD-10, a DDP and GESPRO. The latter is an original device built using INTEL-3000 integrated circuits. GESPRO can be microprogramed with instructions specialized for use with CAMAC. Finally, the software for the entire FAS system is given. This includes the assembler, test programs for CAMAC, management programs for the memory, etc [fr

  7. The symbol coding language for the BUTs processor of in-core reactor control systems

    International Nuclear Information System (INIS)

    Vorob'ev, D.M.; Golovanov, M.N.; Levin, G.L.; Parfenova, T.K.; Filatov, V.P.

    1978-01-01

    A symbolic coding language is described; it has been developed for automation of making up programs for in-core control systems. The systems use the ideology of the CAMAC-VECTOR system and include the BUTs-20 processor. The symbolic coding language has been developed as a programming language of the ASSEMBLER type. Operators of instructions and pseudo-instructions, the rules of reading in the text of the source program, and operator record formats are considered

  8. The control system for the CERN proton synchrotron continuous transfer ejection

    International Nuclear Information System (INIS)

    Bloess, D.; Boucheron, J.; Flander, D.; Grier, D.; Krusche, A.; Ollenhauer, F.; Pearce, P.; Riege, H.; Schneider, G.C.

    1978-01-01

    This report describes the hardware and the software structure of a stand-alone control system for the continuous transfer ejection from the CERN Proton Synchrotron to the Super Proton Synchrotron. The process control system is built around a PDP 11/40 mini-computer interfaced to the ejection elements via CAMAC. It features automatic failure recovery and real-time process optimization. Performance, flexibility, and reliability of the system is evaluated. (Auth.)

  9. The system of high-voltage power PMT for experiments at the JINR Nuclotron

    International Nuclear Information System (INIS)

    Piyadin, S.M.; Ladygin, V.P.; Pilyar, A.V.; Reznikov, S.G.; Janek, M.

    2015-01-01

    An 8-channel high-voltage power system based on the use of the module «Wenzel Elektronik N1130» is described. Specifications of control modules 8DAC-12 and 8ADC-14 designed for the high-voltage systems in CAMAC standard are presented. This system is designed to provide the power for the detectors used in physics experiments at the JINR Nuclotron.

  10. The data acquisition and control system for Thomson Scattering on ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Stewart, K.A.; Kindsfather, R.R.; Rasmussen, D.A.

    1989-01-01

    The 2-dimensional Thomson Scattering System measuring electron temperatures and densities in the Advanced Toroidal Facility (ATF) is interfaced to a VAX-8700 computer system running in a clustered configuration. Calibration, alignment, and operation of this diagnostic is under computer control. Extensive CAMAC instrumentation is used for timing control, data acquisition, and laser alignment. This paper will discuss the computer hardware and software, system operations, and data storage and retrieval. 3 refs

  11. The new secondary channel control system at TRIUMF

    International Nuclear Information System (INIS)

    Keitel, R.; Bishop, D.; Dale, D.; England, N.; Harrison, D.

    1990-01-01

    The control of the secondary channels at TRIUMF has been decentralized. Each channel is now controlled through a single CAMAC crate from an IBM PC in the experimental counting room. Intelligent motor controllers were developed to replace the ageing slit control system. Advanced features of the control software package TICS, such as computer optimization of channel parameters and high-voltage conditioning of the dc separators, are described. (orig.)

  12. System software of the CERN proton synchrotron control system

    International Nuclear Information System (INIS)

    Carpenter, B.E.; Cailliau, R.; Cuisinier, G.; Remmer, W.

    1984-01-01

    The PS complex consists of 10 different interconnected accelerators or storage rings, mainly controlled by the same distributed system of NORD-10 and ND-100 minicomputers. After a brief outline of the hardware, this report gives a detailed description of the system software, which is based on the SINTRAN III operating system. It describes the general layout of the software, the network, CAMAC access, programming languages, program development, and microprocessor support. It concludes with reviews of performance, documentation, organization and methods, and future prospects. (orig.)

  13. Fermilab's DART DA system

    International Nuclear Information System (INIS)

    Pordes, R.; Anderson, J.; Berg, D.; Black, D.; Forster, R.; Franzen, J.; Kent, S.; Kwarciany, R.; Meadows, J.; Moore, C.

    1994-04-01

    DART is the new data acquisition system designed and implemented for six Fermilab experiments by the Fermilab Computing Division and the experiments themselves. The complexity of the experiments varies greatly. Their data taking throughput and event filtering requirements range from a few (2-5) to tens (80) of CAMAC, FASTBUS and home built front end crates; from a few 100 KByte/sec to 160 MByte/sec front end data collection rates; and from 0-3000 Mips of level 3 processing. The authors report on the architecture and implementation of DART to this date, and the hardware and software components that are being developed and supported

  14. Communication and synchronization aspects of a mixed hardware control and data acquisition system

    International Nuclear Information System (INIS)

    Schmidt, V.; Flor, G.; Luchetta, A.; Manduchi, G.; Piacentini, I.E.; Vitturi, S.; Hemming, O.N.

    1989-01-01

    The paper deals with some specific aspects of the control and data acquisition system of the RFX nuclear fusion experiment, at present under construction in Padova, Italy. This system is built around a local area network which connects programmable controllers, minicomputers with CAMAC front-end, and personal computers as operator consoles. These three types of nodes use compatible software which contain a set of low level routines according to levels one to four of the ISO OSI recommendations. The paper describes in detail how the overall system synchronization is achieved. Another aspect described in the paper is the proposed solution for the precision timing and waveform generation (which uses commercial CAMAC hardware) and its integration with the overall system synchronization

  15. Computer control and data acquisition system for the R.F. Test Facility

    International Nuclear Information System (INIS)

    Stewart, K.A.; Burris, R.D.; Mankin, J.B.; Thompson, D.H.

    1986-01-01

    The Radio Frequency Test Facility (RFTF) at Oak Ridge National Laboratory, used to test and evaluate high-power ion cyclotron resonance heating (ICRH) systems and components, is monitored and controlled by a multicomponent computer system. This data acquisition and control system consists of three major hardware elements: (1) an Allen-Bradley PLC-3 programmable controller; (2) a VAX 11/780 computer; and (3) a CAMAC serial highway interface. Operating in LOCAL as well as REMOTE mode, the programmable logic controller (PLC) performs all the control functions of the test facility. The VAX computer acts as the operator's interface to the test facility by providing color mimic panel displays and allowing input via a trackball device. The VAX also provides archiving of trend data acquired by the PLC. Communications between the PLC and the VAX are via the CAMAC serial highway. Details of the hardware, software, and the operation of the system are presented in this paper

  16. A control and data processing system for neutron time-of-flight experiments at the Harwell linear accelerator based on a PDP-11/45 mini-computer

    International Nuclear Information System (INIS)

    Chapman, W.S.; Boyce, D.A.; Brisland, J.B.; Langman, A.E.; Morris, D.V.; Schomberg, M.G.; Webb, D.A.

    1977-05-01

    The subject is treated in sections, entitled: introduction (experimental method, need for the PDP-11/45 based system); features required in the control and data processing system; description of the selected system configuration (PDP 11/45 mini-computer and RSX-11 D operating system, the single parameter experimental stations (the CAMAC units, the time-of-flight scaler)); description of the applications software; system performance. (U.K.)

  17. Versatile data acquisition system and the ISOL facility TRISTAN

    International Nuclear Information System (INIS)

    Gill, R.L.; Stelts, M.L.; Chrien, R.E.; Manzella, V.; Liou, H.I.; Shostak, S.

    1980-01-01

    The on-line mass separator, TRISTAN, is located at Brookhaven's High Flux Beam Reactor. A Nielsen-type ion source, which can contain up to 8g. of 235 U in an external beam with a flux of approx. 2 x 10 9 n/cm 2 /sec is used to generate short-lived fission products. A Users Group has been formed to coordinate research between University groups and BNL. Developments planned for TRISTAN include FEBIAD, surface ionization and negative-surface ionization-type ion sources, and a He-jet system as well as construction of new experimental facilities. An off-line separator, ISTU, is available for the development program. A versatile, modular data acquisition system to service experiments on TRISTAN and other nuclear research facilities at the HFBR using Camac interfacing is described. Standard, commercially-available electronic instruments and computer programs, such as FORTRAN and system routines, are used throughout. Simple interfaces have been built to adapt non-Camac equipment to Camac input registers

  18. The block transfer system

    International Nuclear Information System (INIS)

    Bradish, G.J. III; Reid, A.E.

    1986-01-01

    The central instrumentation control and data acquisition (CICADA) computer system is comprised of a functionally distributed hierarchical network of thirteen (13) 32-bit mini-computers that are the heart of the control, monitoring, data collection and data analysis for the tokamak fusion test reactor (TFTR). The CICADA system was designed with the goal of providing complete control, monitoring, and data acquisition for TFTR, which includes the acquisition and storage of 20M points of data within a five-minute shot cycle. It was realized early in the system design that in order to meet this goal an ancillary system would have to be provided to supplement the subsystem CAMAC systems that, due to the relatively slow throughput of the serial highways and the overhead of relaying data to the central facilities within a star network, would not provide the necessary throughput. The authors discuss how the block transfer system provided a means of moving data directly from the CAMAC crate to the application running on the central facility computers

  19. The CEBAF control system

    International Nuclear Information System (INIS)

    Watson, W.A. III.

    1995-01-01

    CEBAF has recently upgraded its accelerator control system to use EPICS, a control system toolkit being developed by a collaboration among laboratories in the US and Europe. The migration to EPICS has taken place during a year of intense commissioning activity, with new and old control systems operating concurrently. Existing CAMAC hardware was preserved by adding a CAMAC serial highway link to VME; newer hardware developments are now primarily in VME. Software is distributed among three tiers of computers: first, workstations and X terminals for operator interfaces and high level applications; second, VME single board computers for distributed access to hardware and for local control processing; third, embedded processors where needed for faster closed loop operation. This system has demonstrated the ability to scale EPICS to controlling thousands of devices, including hundreds of embedded processors, with control distributed among dozens of VME processors executing more than 125,000 EPICS database records. To deal with the large size of the control system, CEBAF has integrated an object oriented database, providing data management capabilities for both low level I/O and high level machine modeling. A new callable interface which is control system independent permits access to live EPICS data, data in other Unix processes, and data contained in the object oriented database

  20. SHIVA - A multitask data acquisition system for the Oslo University cyclotron laboratory

    International Nuclear Information System (INIS)

    Skaali, B.; Haugen, A.; Ingebretsen, F.; Midttun, G.

    1983-01-01

    The authors describe a general nuclear data acquisition system implemented on a minicomputer using the standard facilities of a real time operating system. The CAMAC data acquisition hardware is controlled by a high speed ADC scanner module. Sorting of multiparameter data is based on a flexible Transformation Of Nuclear Event (TONE) language. The data processing rate, including tape transfer, is several thousand events/s, depending on the complexity of the sorting program

  1. A VME-based accumulation, control and supervising system for neutron texture measurements

    International Nuclear Information System (INIS)

    Kirilov, A.S.; Heinitz, J.; Korobchenko, M.L.; Rezaev, V.E.; Sirotin, A.P.

    1997-01-01

    Nowadays VME-based systems to control neutron measurement instruments are forcing out those built with PC and CAMAC. One of several alternative solutions is presented here. Its main feature is the implementation of the entire system on the VME site. Both the hardware and the software parts are considered. The instrument can be controlled locally or remotely via local network (even from PCs) with a modern-styled graphical user interface

  2. Improvement on control system of the JT-60 radio frequency heating system

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Shin-ichi; Moriyama, Shinichi; Hiranai, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan)

    2003-03-01

    On the JT-60 radio frequency (RF) heating system, the decrease in the activity ratio was a problem because of the deterioration of the control system. To improve the reliability, we replaced CAMAC system for a power injection control system, which was a main cause of the trouble, with the microprocessor system. And, a function of computer supported programming function of RF power injection form was introduced, which contributed to reduce a load of operators. Furthermore, personal computers with network communication were introduced to improve a maintenance ability of the control system. As a result, the activity ratio of the RF heating system was improved significantly. (author)

  3. Development of a data acquisition system using a RISC/UNIXTM workstation

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Tanimori, T.; Yasu, Y.

    1993-01-01

    We have developed a compact data acquisition system on RISC/UNIX workstations. A SUN TM SPARCstation TM IPC was used, in which an extension bus 'SBus TM ' was linked to a VMEbus. The transfer rate achieved was better than 7 Mbyte/s between the VMEbus and the SUN. A device driver for CAMAC was developed in order to realize an interruptive feature in UNIX. In addition, list processing has been incorporated in order to keep the high priority of the data handling process in UNIX. The successful developments of both device driver and list processing have made it possible to realize the good real-time feature on the RISC/UNIX system. Based on this architecture, a portable and versatile data taking system has been developed, which consists of a graphical user interface, I/O handler, user analysis process, process manager and a CAMAC device driver. (orig.)

  4. A versatile data acquisition system and the ISOL facility TRISTAN

    International Nuclear Information System (INIS)

    Gill, R.L.; Stelts, M.L.; Chrien, R.E.; Manzella, V.; Liou, H.; Shostak, S.

    1981-01-01

    We have constructed a versatile, modular data acquisition system to service experiments on TRISTAN and other nuclear research facilities at the HFBR using CAMAC interfacing. Standard, commercially-available electronic instruments and computer programs, such as FORTRAN and system routines, are used throughout. Simple interfaces have been built to adapt non-CAMAC equipment to CAMAC input registers. Up to eight different experiments can be multiplexed on the branch highway by a fast microprogrammed branch driver with a 4096 word memory. The branch driver delivers pre-processed data to a bus which links devices such as a central processor, 1 megaword core memory, tape drives, discs, display processor and terminal. The following features are offered: two 8192 channel pulse height analyzers, a 3-parameter coincidence unit, 4 multiscalers, a timed sequence of delayed γ-ray spectra (33 spectra of 4096 channels each), a 2-parameter (pulse height versus time-of-flight) analyzer, 16 scalers and 24 experimental interlocks. Up to 100 different spectra are available to users for display during an experiment. (orig./RW)

  5. Low noise PWC cathode readout system

    International Nuclear Information System (INIS)

    Cisneros, E.; Hutchinson, D.; McShurley, D.; Richter, R.; Shapiro, S.

    1980-10-01

    A system has been developed, primarily to detect the induced charge deposited on PWC cathodes, which is versatile, fast and has a good signal to noise ratio for signals of greater than or equal to 10 -14 Coulomb input. The amplifier system, which is completely separated from the detector by 95 Ω coaxial cables, is followed by a new charge integrating, version of the SHAM/BADC system developed at SLAC. This SHAM IV system is CAMAC based, allowing for computer calibration of the entire system from amplifier through ADC

  6. Distributed control system for the FMIT

    International Nuclear Information System (INIS)

    Johnson, J.A.; Machen, D.R.; Suyama, R.M.

    1979-01-01

    The control system for the Fusion Materials Irradiation Test (FMIT) Facility will provide the primary data acquisition, control, and interface components that integrate all of the individual FMIT systems into a functional facility. The control system consists of a distributed computer network, control consoles and instrumentation subsystems. The FMIT Facility will be started, operated and secured from a Central Control Room. All FMIT systems and experimental functions will be monitored from the Central Control Room. The data acquisition and control signals will be handled by a data communications network, which connects dual computers in the Central Control Room to the microcomputers in CAMAC crates near the various subsystems of the facility

  7. A versatile data handling system for nuclear physics experiments based on PDP 11/03 micro-computers

    International Nuclear Information System (INIS)

    Raaf, A.J. de

    1979-01-01

    A reliable and low cost data handling system for nuclear physics experiments is described. It is based on two PDP 11/03 micro-computers together with Gec-Elliott CAMAC equipment. For the acquisition of the experimental data a fast system has been designed. It consists of a controller for four ADCs together with an intelligent 38k MOS memory with a word size of 24 bits. (Auth.)

  8. Two-processor automatized system to control fast measurements of the magnetic field index of the JINR 10 GeV proton synchrotron

    International Nuclear Information System (INIS)

    Chernykh, E.V.

    1981-01-01

    A two-processor system comprizing a hard-wired module and ES-1010 computer to control measurements of the magnetic field index of the JINR 10 GeV proton synchrotron is described. The system comprises the control module, a computer interface and a parallel branch driver residing in CAMAC system crate. The control module controls analogue multiplexer and analogue-to-digital converter through their front panels and writes down the information into a buffer memory module through the CAMAC highway. The computer controls the system, reads the information into core memory, writes down it on a magnetic tape, processes it and outputs n=f(r) plots on TV monitor and printer. The system provides the measurement up to 100 points during a magnetic field rise and minimal time of measurement 50 μs [ru

  9. A data acquisition system for measuring ionization cross section in laser multi-step resonant ionization experiment

    International Nuclear Information System (INIS)

    Qian Dongbin; Guo Yuhui; Zhang Dacheng; Chinese Academy of Sciences, Beijing; Ma Xinwen; Zhao Zhizheng; Wang Yanyu; Zu Kailing

    2006-01-01

    A CAMAC data acquisition system for measuring ionization cross section in laser multi-step resonant ionization experiment is described. The number of scalers in the front-end CAMAC can be adjusted by changing the data read-out table files. Both continuous and manual acquisition models are available, and there is a wide adjustable range from 1 ms to 800 s with the acquisition time unit. The long-term stability, Δt/t, for the data acquisition system with an acquisition time unit of 100 s was measured to be better than ±0.01%, thus validating its reliability in long-term online experimental data acquisition. The time response curves for three electrothermal power-meters were also measured by this DAQ system. (authors)

  10. Results from evaluation of a long pulse pilot data acquisition system on MAST

    International Nuclear Information System (INIS)

    McArdle, G.J.; Milne, P.G.

    2006-01-01

    The limited memory and data rate of CAMAC data acquisition systems is unable to accommodate proposed increases in the MAST plasma duration of up to an order of magnitude. Therefore, some recent pilot exercises have evaluated new technology to replace CAMAC. One of the pilot systems explored the use of modern CompactPCI 'intelligent' data acquisition devices. These can operate stand-alone, using an onboard Linux operating system and Ethernet connection without the need for a host computer. The approach to data capture and management was simplified to minimise development time. A simple Linux shell script running on each device was found sufficient to automate the whole acquisition cycle, and this was successfully commissioned in one day. This approach avoided the need for compiled programs but prevented use of the in-house standard shot file archiving library. Instead, each channel's data was written to a separate file as a simple array of samples. This work around was found to offer advantages in terms of flexibility, simplicity and scalability. The experience of handling much higher volumes of acquired data than was practicable with CAMAC has also raised important issues about the scalability of existing data management and analysis systems when each data item contains many mega-samples. The experience and lessons learned will help guide the future direction of data acquisition strategy on MAST

  11. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran, E-mail: kkpatel@ipr.res.in; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-11-15

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  12. GPIB based instrumentation and control system for ADITYA Thomson Scattering Diagnostic

    International Nuclear Information System (INIS)

    Patel, Kiran; Pillai, Vishal; Singh, Neha; Chaudhary, Vishnu; Thomas, Jinto; Kumar, Ajai

    2016-01-01

    The ADITYA Thomson Scattering Diagnostic is a single point Ruby laser based system with a spectrometer for spectral dispersion and photomultiplier tubes for the detection of scattered light. The system uses CAMAC (Computer Automated Measurement And Control) based control and data acquisition system, which synchronizes the Ruby laser, detectors and the digitizer. Previously used serial based CAMAC controller is upgraded to GPIB (General Purpose Interface Bus) based CAMAC controller for configuration and data transfer. The communication protocols for different instruments are converted to a single GPIB based for better interface. The entire control and data acquisition program is developed on LabVIEW platform for versatile operation of diagnostics with improved user friendly GUI (Graphical User Interfaces) and allows user to remotely update the laser firing time with respect to the plasma shot. The software is in handshake with the Tokamak main control program through network to minimize manual interventions for the operation of the diagnostics. The upgraded system improved the performance of the diagnostics in comparison to earlier in terms of better data transmission rate, easy to maintain and program is upgradable.

  13. Measurement system for pulse radiolysis at linear electron accelerator LAE 13/9

    International Nuclear Information System (INIS)

    Mirkowski, J.; Grodkowski, J.

    1999-01-01

    A new control and measurement system for a pulse radiolysis setup based on the linear electron accelerator LAE 13/9 is described. It consists of CAMAC apparatus, two oscilloscopes: Tektronix TDS620 and Iwatsu TS8123, and PC computer as a control unit for programming and controlling of the experiments and for results processing. The program is written using DELPHI 1.0 (Borland) programming platform and it can operate in WINDOWS 3.x or WINDOWS 95 environment. (author)

  14. Data acquisition and processing system at the NOVETTE laser-fusion facility

    International Nuclear Information System (INIS)

    Auerbach, J.M.; Severyn, J.R.; Kroepfl, D.J.

    1982-01-01

    The computer hardware and software used for acquisition and processing of data from experiments at the NOVETTE laser fusion facility are described. Nearly two hundred sensors are used to measure the performance of millimeter extent targets irradiated by multi-kilojoule laser pulses. Sensor output is recorded on CAMAC based digitizers, CCD arrays, and film. CAMAC instrument outputs are acquired and collected by a network of LSI-11 microprocessors centrally controlled by a VAX 11/780. The user controls the system through menus presented on color video displays equipped with touch panels. The control VAX collects data from all microprocessors and CCD arrays and stores them in a file for transport to a second VAX 11/780 which is used for processing and final analysis. Transfer is done through a high speed fiber-optic link. Relational data bases are used extensively in the processing and archiving of data

  15. LAMPF nuclear chemistry data acquisition system

    International Nuclear Information System (INIS)

    Giesler, G.C.

    1983-01-01

    The LAMPF Nuclear Chemistry Data Acquisition System (DAS) is designed to provide both real-time control of data acquisition and facilities for data processing for a large variety of users. It consists of a PDP-11/44 connected to a parallel CAMAC branch highway as well as to a large number of peripherals. The various types of radiation counters and spectrometers and their connections to the system will be described. Also discussed will be the various methods of connection considered and their advantages and disadvantages. The operation of the system from the standpoint of both hardware and software will be described as well as plans for the future

  16. General distributed control system for fusion experiments

    International Nuclear Information System (INIS)

    Klingner, P.L.; Levings, S.J.; Wilkins, R.W.

    1986-01-01

    A general control system using distributed LSI-11 microprocessors is being developed. Common software residues in each LSI-11 and is tailored to an application by control specifications downloaded from a host computer. The microprocessors, their control interfaces, and the micro-to-host communications are CAMAC based. The host computer also supports an operator interface, coordination of multiple microprocessors, and utilities to create and maintain the control specifications. Typical applications include monitoring safety interlocks as well as controlling vacuum systems, high voltage charging systems, and diagnostics

  17. The next generation control system of GANIL

    International Nuclear Information System (INIS)

    Luong, T.T.; David, L.; Lecorche, E.; Ulrich, M.

    1992-01-01

    A short description of the new control system of GANIL is presented. It consists of a three layer distributed architecture of a VAX6000-410/VMS host computer, a real time control system made up of a dual-host VAX3800 and workstation based operator consoles, and VME and CAMAC processors at the frontend segment, running under the VAXELN operating system, and programmable logic controllers for local controls. The basic issues with regard to architecture, human interface, information management, etc. are discussed. First implementations and operation results are presented. (author) 11 figs

  18. The CEBAF control system for the CHL

    International Nuclear Information System (INIS)

    Keesee, M.S.; Bevins, B.S.

    1996-01-01

    The CEBAF Central Helium Liquefier (CHL) control system consists of independent safety controls located at each subsystem, CAMAC computer interface hardware, and a CEBAF-designed control software called Thaumaturgic Automated Control Logic (TACL). The paper describes how control software was interfaced with the subsystems of the CHL. Topics of configuration, editing, operator interface, datalogging, and internal logic functions are presented as they relate to the operational needs of the helium plant. The paper also describes the effort underway to convert from TACL to the Experimental Physics and Industrial Control System (EPICS), the new control system for the CEBAF accelerator. This software change will require customizing EPICS software to cryogenic process control

  19. Computer-controlled data acquisition system for the ISX-B neutral injection system

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Sherrill, B.; Pearce, J.W.

    1980-05-01

    A data acquisition system for the Impurity Study Experiment (ISX-B) neutral injection system at the Oak Ridge National Laboratory is presented. The system is based on CAMAC standards and is controlled by a MIK-11/2 microcomputer. The system operates at the ion source high voltage on the source table, transmitting the analyzed data to a terminal at ground potential. This reduces the complexity of the communications link and also allows much flexibility in the diagnostics and eventual control of the beam line

  20. The Starburst, a J-11 based front-end processor system

    International Nuclear Information System (INIS)

    Worm, F.H.; Klotz, D.V.

    1984-01-01

    This paper describes a coherent solution to the demand for ever-increasing performance in CAMAC-based data acquisition and pre-processing systems. It outlines the development of this modular high density system, covering the design decision and trade-offs from the hardware and software standpoints. Current applications are briefly described and the direction of future developments is indicated. The keystone of the system is a single-width module based on a DEC J-11 processor. It offers all the functions of an Auxiliary Crate Controller with programmable LAM-grader; at the same time functioning as an autonomous computer with a high-speed 64K word dual-port memory, console and Q22-bus peripheral interface. This structure supports extension on both, the CAMAC side and the Q-bus side; and the hardware design choices have been made with a view to allowing use of a large range of popular software. The principal module is supported on the CAMAC side by dedicated semi-autonomous memories, and on the computer side by portable winchester and floppy disk storage subsystems, while offering expansion capabilities through the Q22-bus port

  1. System support software for TSTA

    International Nuclear Information System (INIS)

    Claborn, G.W.; Mann, L.W.; Nielson, C.W.

    1987-01-01

    The software at the Tritium Systems Test Assembly (TSTA) is logically broken into two parts, the system support software and the subsystem software. The purpose of the system support software is to isolate the subsystem software from the physical hardware. In this sense the system support software forms the kernel of the software at TSTA. The kernel software performs several functions. It gathers data from CAMAC modules and makes that data available for subsystem processes. It services requests to send commands to CAMAC modules. It provides a system of logging functions and provides for a system-wide global program state that allows highly structured interaction between subsystem processes. The kernel's most visible function is to provide the Man-Machine Interface (MMI). The MMI allows the operators a window into the physical hardware and subsystem process state. Finally the kernel provides a data archiving and compression function that allows archival data to be accessed and plotted. Such kernel software as developed and implemented at TSTA is described

  2. Multi-faceted data gathering and analyzing system

    International Nuclear Information System (INIS)

    Gustavson, D.B.; Rich, K.

    1977-10-01

    A low-cost general purpose data gathering and analyzing system based on a microprocessor, an interface to CAMAC, and a phone link to a time-sharing system was implemented. The parts cost for the microprocessor system was about $6000. The microprocessor buffers the data such that the variable response of the time-sharing system is acceptable for performing real-time data acquisition. The full power and flexibility of the time-sharing system excels at the task of on-line data analysis once this buffering problem is solved. 4 figures

  3. The VAXONLINE software system at Fermilab

    International Nuclear Information System (INIS)

    White, V.; Heinicke, P.; Berman, E.

    1987-06-01

    The VAXONLINE software system, started in late 1984, is now in use at 12 experiments at Fermilab, with at least one VAX or MicroVax. Data acquisition features now provide for the collection and combination of data from one or more sources, via a list-driven Event Builder program. Supported sources include CAMAC, FASTBUS, Front-end PDP-11's, Disk, Tape, DECnet, and other processors running VAXONLINE. This paper describes the functionality provided by the VAXONLINE system, gives performance figures, and discusses the ongoing program of enhancements

  4. The new control system for TARN-2

    International Nuclear Information System (INIS)

    Watanabe, S.; Yoshizawa, M.; Yoshizawa, J.; Katayama, T.; Aoki, K.; Ohnishi, K.

    1992-01-01

    The new control system for the cooler-synchrotron. TARN-2, is described. The new control system consists of OPU's (work stations) and EXU (control computer) linked with the local area network. The text message is used to transfer the control commands and their results. The control program CSA90 at EXU decodes the text message and executes it with the aid of the interface and periodic control subroutines. Both subroutines use common sharable image composed of the status, values, parameters and so on. The CAMAC, GPIB and RS232C are standard interface at EXU. (author)

  5. The SLC control system - status and development

    International Nuclear Information System (INIS)

    Phinney, N.; Shoaee, H.

    1987-03-01

    The SLC control system is installed and operational in the full SLC through the Linac, Damping Rings, Positron Source, Arcs and Final Focus. The system now includes a host VAX 11/785, a development VAX 11/780, 4 VAX workstations, a distributed network of 70 microprocessors, and about 270 Camac crates with more than 4000 modules. The micros are used for control and monitoring of the hardware, for pulse-to-pulse feedback, and for consoles (COWs). High level model-driven host software provides a variety of tools for beam setup, optimization, diagnosis, and stabilization. This paper will summarize the current status and projects under development

  6. An x-ray detection system development for Tandem Mirror Experiment Upgrade (TMX-U): Hardware and software

    International Nuclear Information System (INIS)

    Jones, R.M.; Coutts, G.W.; Failor, B.H.

    1983-01-01

    This x-ray detection system measures the electron Bremstrahlung spectrum from the Tandem Mirror Experiment-Upgrade (TMX-U). From this spectrum, we can calculate the electron temperature. The low energy portion of the spectrum (0.5-40 keV) is measured by a liquid-nitrogen-cooled, lithium-drifted silicon detector. The higher energy spectrometer uses an intrinsic germanium detector to accommodate the 100 to 200 keV spectra. The system proceeds as follows. The preamplified detector signals are digitized by a high-speed A-to-D converter located in a Computer Automated Measurement and Control (CAMAC) crate. The data is then stored in a histogramming memory via a data router. The CAMAC crate interfaces with a local desktop computer or the main data acquisition computer that stores the data. The software sets up the modules, acquires the energy spectra (with sample times as short as 2 ms) and plots it. Up to 40 time-resolved spectra are available during one plasma cycle. The actual module configuration, CAMAC interfacing and software that runs the system are the subjects of this paper

  7. Distributed control system for NSC tandem-LINAC

    International Nuclear Information System (INIS)

    Ajith Kumar, B.P.; Subrahmaniam, E.T.; Singh, Kundan

    2001-01-01

    The new control system for the tandem-LINAC accelerator system at Nuclear Science Centre (NSC), runs on a network of Pentiums under the LINUX operating system. Some of the computers are interfaced to the devices of the accelerator, using CAMAC, and run a server program. On the same network there are machines providing the operator interface, by running the client program. The client computers use the x-window graphics and shaft encoder knobs interfaced to them to provide the operator interface. The system supports the monitoring and controlling of all the accelerator parameters including the beam profile monitors, from any of the clients. (author)

  8. System control and data acquisition of the two new FWCD RF systems at DIII-D

    International Nuclear Information System (INIS)

    Harris, T.E.; Allen, J.C.; Cary, W.P. Petty, C.C.

    1995-10-01

    The Fast Wave Current Drive (FWCD) system at DIII-D has increased its available radio frequency (RF) power capabilities with the addition of two new high power transmitters along with their associated transmission line systems. A Sun Sparc-10 workstation, functioning as the FWCD operator console, is being used to control transmitter operating parameters and transmission line tuning parameters, along with acquiring data and making data available for integration into the DIII-D data acquisition system. Labview, a graphical user interface application, is used to manage and control the above processes. This paper will discuss the three primary branches of the FWCD computer control system: transmitter control, transmission line tuning control, and FWCD data acquisition. The main control program developed uses VXI, GPIB, CAMAC, Serial, and Ethernet protocols to blend the three branches together into one cohesive system. The control of the transmitters utilizes VXI technology to communicate with the transmitter's digital interface. A GPIB network allows for communication with various instruments and CAMAC crate controllers. CAMAC crates are located at each phase-shifter/stub-tuner station and are used to digitize transmission line parameters along with transmission line fault detection during RF transmission. The phase-shifter/stub-tuner stations are located through out the DIII-D facility and are controlled from the FWCD operator console via the workstation's Serial port. The Sun workstation has an Ethernet connection allowing for the utilization of the DIII-D data acquisition open-quotes Open Systemclose quotes architecture and of course providing communication with the rest of the world

  9. Computer applications: Automatic control system for high-voltage accelerator

    International Nuclear Information System (INIS)

    Bryukhanov, A.N.; Komissarov, P.Yu.; Lapin, V.V.; Latushkin, S.T.. Fomenko, D.E.; Yudin, L.I.

    1992-01-01

    An automatic control system for a high-voltage electrostatic accelerator with an accelerating potential of up to 500 kV is described. The electronic apparatus on the high-voltage platform is controlled and monitored by means of a fiber-optic data-exchange system. The system is based on CAMAC modules that are controlled by a microprocessor crate controller. Data on accelerator operation are represented and control instructions are issued by means of an alphanumeric terminal. 8 refs., 6 figs

  10. The design of the Hyperon Data Acquisition System

    International Nuclear Information System (INIS)

    Gee, C.N.P.

    1980-12-01

    A new Native-mode Data Acquisition system, running on a VAX 11/780, has been designed for the SPS Hyperon Experiments at CERN. The system incorporates a variable number of communicating processes running under VAX/VMS, including user-written monitoring processes. Event handling has been implemented into the CAMAC Driver, and facilities are provided for using a data buffer much larger than the System Maximum Working-set Size. A generalised debugging facility for non terminal-oriented processes is also supported. (author)

  11. Smart Machine Protection System

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.; Spencer, N.; Hutchinson, D.; Olsen, J.; Millsom, D.; White, G.; Gromme, T.; Allison, S.; Underwood, K.; Zelazny, M.; Kang, H.

    1991-11-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerator to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is compiled into a logical decision tree for the 68030 processor. 3 figs

  12. Smart machine protection system

    International Nuclear Information System (INIS)

    Clark, S.; Nelson, D.; Grillo, A.

    1992-01-01

    A Machine Protection System implemented on the SLC automatically controls the beam repetition rates in the accelerator so that radiation or temperature faults slow the repetition rate to bring the fault within tolerance without shutting down the machine. This process allows the accelerators to aid in the fault diagnostic process, and the protection system automatically restores the beams back to normal rates when the fault is diagnosed and corrected. The user interface includes facilities to monitor the performance of the system, and track rate limits, faults, and recoveries. There is an edit facility to define the devices to be included in the protection system, along with their set points, limits, and trip points. This set point and limit data is downloaded into the CAMAC modules, and the configuration data is complied into a logical decision tree for the 68030 processor. (author)

  13. An INTEL 8080 microprocessor development system

    International Nuclear Information System (INIS)

    Horne, P.J.

    1977-01-01

    The INTEL 8080 has become one of the two most widely used microprocessors at CERN, the other being the MOTOROLA 6800. Even thouth this is the case, there have been, to date, only rudimentary facilities available for aiding the development of application programs for this microprocessor. An ideal development system is one which has a sophisticated editing and filing system, an assembler/compiler, and access to the microprocessor application. In many instances access to a PROM programmer is also required, as the application may utilize only PROMs for program storage. With these thoughts in mind, an INTEL 8080 microprocessor development system was implemented in the Proton Synchrotron (PS) Division. This system utilizes a PDP 11/45 as the editing and file-handling machine, and an MSC 8/MOD 80 microcomputer for assembling, PROM programming and debugging user programs at run time. The two machines are linked by an existing CAMAC crate system which will also provide the means of access to microprocessor applications in CAMAC and the interface of the development system to any other application. (Auth.)

  14. Data acquisition system in TPE-1RM15

    International Nuclear Information System (INIS)

    Yagi, Yasuyuki; Yahagi, Eiichi; Hirano, Yoichi; Shimada, Toshio; Hirota, Isao; Maejima, Yoshiki

    1991-01-01

    The data acquisition system for TPE-1RM15 reversed field pinch machine had been developed and has recently been completed. Thd data to be acquired consist of many channels of time series data which come from plasma diagnostics. The newly developed data acquisition system uses CAMAC (Computer Automated Measurement And Control) system as a front end data acquisition system and micro-VAX II for control, file management and analyses. Special computer programs, DAQR/D, have been developed for data acquisition routine. Experimental setting and process controlling items are managed by a parameter database in a shared common region and every task can easily refer to it. The acquired data are stored into a mass storage system (total of 1.3GBytes plus a magnetic tape system) including an optical disk system, which can save storage space and allow quick reference. At present, the CAMAC system has 88 (1MHz sampling) and 64(5kHz sampling) channels corresponding to 1.6 MBytes per shot. The data acquisition system can finish one routine within 5 minutes with 1.6MBytes data depending on the amount of graphic outputs. Hardwares and softwares of the system are specified so that the system can be easily expanded. The computer is connected to the AIST Ethernet and the system can be remotely accessed and the acquired data can be transferred to the mainframes on the network. Details about specifications and performance of the system are given in this report. (author)

  15. JT-60 plasma control system

    International Nuclear Information System (INIS)

    Kurihara, K.

    1988-01-01

    JT-60 plasma control can be performed by the supervisory controller, the measurement system and actuators such as the poloidal field coil power supplies, gas injectors, neutral beam injection (NBI) heating system and radio frequency (RF) heating system. One of the most important characteristics of this system is a perfect digital control one composed of mini-computers, fast array processors and CAMAC modules, and it has large flexibility and few troubles to adjust the system. This system started to be operated in April 1985, after the six-year-long design, construction and testing, and have been operated and improved many times for two years. In this paper, the final system specification and its performance are presented aiming at the technological aspect of hardware and software. In addition, and experienced troubles are also presented. (author)

  16. The project of autocontrol for CAEN high voltage systems in high energy physics experiments

    International Nuclear Information System (INIS)

    Qian Sen; Wang Zhimin; Chinese Academy of Sciences, Beijing; Cai Xiao; Wang Yifang; Zhang Jiawen; Yang Changgen

    2008-01-01

    Based on TCP/IP network communication techniques, CAMAC Bus Technology, PCI Bus Technology and RS232 Serial Communication Technique, we developed and established a serial of software in Linux or Win32 system to auto control these high voltage systems made by CAEN Company, which are always used in high energy physics experiments. The operator can use this software to control and monitor the system independently, or encapsulate it into the DAQ system to control the test system and acquire data synchronously and high-efficaciously. (authors)

  17. ATROPOS: a versatile data acquisition and analysis system

    International Nuclear Information System (INIS)

    Logg, C.A.; Cottrell, R.L.A.

    1978-10-01

    Versatile, portable, rugged, and compact test and control modules for use in the development and testing of detection equipment for high-energy physics experiments are frequently needed at SLAC. The basic system developed is based on an LSI-11 microcomputer with 24K RAM, 4K ROM, 2 serial interfaces (one to the console terminal, the other to the large SLAC IBM computer complex (the TRIPLEX)), a programable clock, and a CAMAC crate controller. Data logging support is provided for magnetic tape, floppy disk, and an interactive program (ACQUIRE) which runs on the TRIPLEX under the timesharing system ORVYL. Data are read from various CAMAC modules, collected, buffered, and optionally logged. At a lower priority, the data read are sampled and analyzed in real-time on the LSI-11 to produce various histograms and tables. Concurrently, a more extensive analysis can be performed by the TRIPLEX program on the data which are logged to it. Interactive facilities provided by the microcomputer operating system enable the user to change CAMAC module addresses and the function codes used with them, specify various data cuts and transformations that are to be performed on the sample data, and specify new histogram limits and titles. Results of the real-time analysis, by both the microcomputer and the TRIPLEX program (if it is attached), may be displayed in graphical or tabular form on the console terminal. The basic system hardware cost (exclusive of the magnetic tape drive and floppy disk drive) is around $7000. The software is written in a modular fashion so that the user can supply his own data reading and analysis routines. This system has been in use for two years by various groups on several LSI-11s at SLAC. 3 figures

  18. Distributed control system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Batchelor, K.; Culwick, B.B.; Goldstick, J.; Sheehan, J.; Smith, J.

    1979-01-01

    Until recently, accelerator and similar control systems have used modular interface hardware such as CAMAC or DATACON which translated digital computer commands transmitted over some data link into hardware device status and monitoring variables. Such modules possessed little more than local buffering capability in the processing of commands and data. The advent of the micro-processor has made available low cost small computers of significant computational capability. This paper describes how micro-computers including such micro-processors and associated memory, input/output devices and interrupt facilities have been incorporated into a distributed system for the control of the NSLS

  19. Drift chamber and pulse height readout systems using analog multiplexing

    International Nuclear Information System (INIS)

    Cisneros, E.L; Kang, H.K.; Hall, J.N.; Larsen, R.S.

    1976-11-01

    Drift chamber and pulse-height readout systems are being developed for use in a new large scale detector at the SPEAR colliding beam facility. The systems are based upon 32 channels of sample-and-hold together with an analog multiplexer in a single-width CAMAC module. The modules within each crate are scanned by an autonomous controller containing a single ADC and memory plus arithmetic capability for offset, gain and linearity corrections. The drift chamber module has a facility for extracting hit wire information for use in trigger decision circuitry

  20. The NSC 16 MV tandem accelerator control system

    International Nuclear Information System (INIS)

    Ajith Kumar, B.P.; Kannaiyan, J.; Sugathan, P.; Bhowmik, R.K.

    1994-01-01

    The computerized control system for the 16 MV Pelletron accelerator at the Nuclear Science Centre runs on a PC-AT 386 computer. Devices in the accelerator are interfaced to the computer by using a CAMAC Serial Highway. The software, written in C, is Database oriented and supports many features useful for the accelerator operation. The control console consists of an EGA monitor, keyboard, assignable control knobs and meters, a diagrammatic display showing the overall status of the machine and a similar panel for showing the status of radiation safety interlocks. The system has been operational for the past three years and is discussed below. (orig.)

  1. CATY, a system for experiment control, data collection, data display and analysis

    International Nuclear Information System (INIS)

    Golding, F.R.

    1982-01-01

    The historical development and features of CATY, a BASIC-like language allowing easy access to CAMAC hardware are described. Versions of this language are available for most major types of computers and CAMAC controllers. The code is, however, computer and controller independent. Although presently limited to CAMAC, the language could be easily modified to suit any other standard interface. (orig.)

  2. CATY, a system for experiment control, data collection, data display and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Golding, F R [Golding (F.R.) Associates, Manchester (UK)

    1982-10-01

    The historical development and features of CATY, a BASIC-like language allowing easy access to CAMAC hardware are described. Versions of this language are available for most major types of computers and CAMAC controllers. The code is, however, computer and controller independent. Although presently limited to CAMAC, the language could be easily modified to suit any other standard interface.

  3. Evolution of the Argonne Tandem Linear Accelerator System (ATLAS) control system

    International Nuclear Information System (INIS)

    Power, M.; Munson, F.

    2012-01-01

    Given that the Argonne Tandem Linear Accelerator System (ATLAS) recently celebrated its 25. anniversary, this paper will explore the past, present, and future of the ATLAS Control System, and how it has evolved along with the accelerator and control system technology. ATLAS as we know it today, originated with a Tandem Van de Graff in the sixties. With the addition of the Booster section in the late seventies, came the first computerized control. ATLAS itself was placed into service on June 25, 1985, and was the world's first superconducting linear accelerator for ions. Since its dedication as a National User Facility, more than a thousand experiments by more than 2,000 users worldwide, have taken advantage of the unique capabilities it provides. Today, ATLAS continues to be a user facility for physicists who study the particles that form the heart of atoms. Its most recent addition, CARIBU (Californium Rare Isotope Breeder Upgrade), creates special beams that feed into ATLAS. ATLAS is similar to a living organism, changing and responding to new technological challenges and research needs. As it continues to evolve, so does the control system: from the original days using a DEC PDP-11/34 computer and two CAMAC crates, to a DEC Alpha computer running Vsystem software and more than twenty CAMAC crates, to distributed computers and VME systems. Future upgrades are also in the planning stages that will continue to evolve the control system. (authors)

  4. Portable database driven control system for SPEAR

    Energy Technology Data Exchange (ETDEWEB)

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-04-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system. 10 refs., 1 fig.

  5. Portable database driven control system for SPEAR

    International Nuclear Information System (INIS)

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-04-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system. 10 refs., 1 fig

  6. The timing system of the RFX Nuclear Fusion Experiment

    International Nuclear Information System (INIS)

    Schmidt, V.; Flor, G.; Manduchi, G.; Piacentini, I.

    1992-01-01

    The REX Nuclear Fusion Experiment [1] in Padova, Italy, employs a distributed system to produce precision trigger signals for the fast control of the experiment and for the experiment-wide synchronization of data acquisition channels. The hardware of the system is based on a set of CAMAC modules. The modules have been integrated into a hardware/software system which provides the following features: 1) generation of pre-programmed timing events, 2) distribution of asynchronous (not pre-programmed) timing events, 3) gating of timing event generation by Machine Protection System, 4) automatic stop of timing sequence in case of highway damage, 5) dual-speed time base for transient recorders, 6) system-wide precision of ≤ 3 μs, time resolution ≥ 10 μs. The operation of the timing system is fully integrated into the RFX data acquisition system software. The Timing System Software consists of three layers: the lowest one corresponds directly to the CAMAC modules, the intermediate one provides pseudo-devices which essentially correspond to specific features for the modules (e.g. a dual frequency clock source for transient recorders), the highest level provides system set-up support. The system is fully operational and was first used during the commissioning of the RFX Power Supplies in spring '91. (author)

  7. Programmable CCD imaging system for synchrotron radiation studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.

    1992-01-01

    A real-time imaging system for x-ray detection has been developed. The CAMAC-based system has a Charge Coupled Device (CCD) as its active detection element. The electronics consist of a CAMAC-crate-based dedicated microprocessor coupled to arbitrary waveform generators, programmable timing, and ADC modules. The hardware flexibility achievable through this system enables one to use virtually any commercially available CCD. A dedicated CAMAC-based display driver allows for real-time imaging on a high-resolution color monitor. An optional front end consisting of a fiber-optic taper and a focusing optical lens system coupled to a phosphor screen allows for large area imaging. Further, programming flexibility, in which the detector can be used in different read-out modes, enables it to be exploited for time-resolved experiments. In one mode, sections of the CCD can be read-out with millisecond time-resolution and, in another, the use of the CCD as a storage device is exploited resulting in microsecond time-resolution. Three different CCDs with radically different read-out timings and waveforms have been tested: the TI 4849, a 39Ox584 pixel array; TC 215, a 1024x1O24 pixel array; and the TH 7883, a 576x384 pixel array. The TC 215 and TI 4849 are single-phase CCDs manufactured by Texas Instruments, and the TH 7883 is a four-phase device manufactured by Thomson-CSF. The CCD characterized for uniformity, charge transfer efficiency (CTE), linearity, and sensitivity is the TC215

  8. The CEBAF accelerator control system: migrating from a TACL to an EPICS based system

    International Nuclear Information System (INIS)

    Watson, W.A. III; Barker, David; Bickley, Matthew; Gupta, Pratik; Johnson, R.P.

    1994-01-01

    CEBAF is in the process of migrating its accelerator and experimental hall control systems to one based upon EPICS, a control system toolkit developed by a collaboration among several DOE laboratories in the US. The new system design interfaces existing CAMAC hardware via a CAMAC serial highway to VME-based I/O controllers running the EPICS software; future additions and upgrades will for the most part go directly into VME. The decision to use EPICS followed difficulties in scaling the CEBAF-developed TACL system to full machine operation. TACL and EPICS share many design concepts, facilitating the conversion of software from one toolkit to the other. In particular, each supports graphical entry of algorithms built up from modular code, graphical displays with a display editor, and a client-server architecture with name-based I/O. During the migration, TACL and EPICS will interoperate through a socket-based I/O gateway. As part of a collaboration with other laboratories, CEBAF will add relational database support for system management and high level applications support. Initial experience with EPICS is presented, along with a plan for the full migration which is expected to be finished next year. ((orig.))

  9. Control units for the system of unified modules for multi-channel analysis (SUMMA)

    International Nuclear Information System (INIS)

    Bushnin, Yu.B.; Denisenko, A.A.; Dunajtsev, A.F.

    1975-01-01

    The control units of the ''SUMMA'' system unified modules for multichannel analysis are described; the system is used in the experimental physics installations of the Institute of High-Energy Physics for operation on-line with an electronic computer (e.c.). The units allow control of several crates of electronic equipment (up to seven) according to a program from the internal program units or from the e.c. to be assured. The organization of the control is similar to the organization of the CAMAC electronic system. Examples of communication between the system and an NR2100 electronic computer are presented

  10. Development and Integration of a Data Acquisition System for SST-1 Phase-1 Plasma Diagnostics

    International Nuclear Information System (INIS)

    Srivastava, Amit K; Sharma, Manika; Mansuri, Imran; Sharma, Atish; Raval, Tushar; Pradhan, Subrata

    2012-01-01

    Long pulse (of the order of 1000 s or more) SST-1 tokamak experiments demand a data acquisition system that is capable of acquiring data from various diagnostics channels without losing useful data (and hence physics information) while avoiding unnecessary generation of a large volume data. SST-1 Phase-1 tokamak operation has been envisaged with data acquisition of several essential diagnostics channels. These channels demand data acquisition at a sampling rate ranging from 1 kilo samples per second (KSPS) to 1 mega samples per second (MSPS). Considering the technical characteristics and requirements of the diagnostics, a data acquisition system based on PXI and CAMAC has been developed for SST-1 plasma diagnostics. Both these data acquisition systems are scalable. Present data acquisition needs involving slow plasma diagnostics are catered by the PXI based data acquisition system. On the other hand, CAMAC data acquisition hardware meets all requirements of the SST-1 Phase-1 fast plasma diagnostics channels. A graphical user interface for both data acquisition systems (PXI and CAMAC) has been developed using LabVIEW application development software. The collected data on the local hard disk are directly streaming to the central server through a dedicated network for post-shot data analysis. This paper describes the development and integration of the data acquisition system for SST-1 Phase-1 plasma diagnostics. The integrated testing of the developed data acquisition system has been performed using SST-1 central control and diagnostics signal conditioning units. In the absence of plasma shots, the integrated testing of the data acquisition system for the initial diagnostics of SST-1 Phase-1 operation has been performed with simulated physical signals. The primary engineering objective of this integrated testing is to validate the performance of the developed data acquisition system under simulated conditions close to that of actual tokamak operation. The data

  11. Automatic control system of the PIG ion source for the U-400 cyclotron

    International Nuclear Information System (INIS)

    Kutner, V.B.; Subbotin, V.G.; Sukhov, A.M.; Tretyakov, Y.P.; Fefilov, B.V.; Kasyanov, A.A.; Rybin, V.M.

    1990-01-01

    An automatic control system is described for the multiply charged ion source of the U-400 cyclotron based on CAMAC apparatus and microprocessor controllers. The system allows the automatic tuning of the ion source to the necessary regime, including the automatic start-up of discharge, determination of the necessary parameters of sputtering, and the automatic search for a maximum beam current for given discharge parameters. The system performs the tuning of the ion source to the quasioptimal regime in 10--15 min with up to 5% deviation from the preset parameters. It is possible to stabilize the beam current within 3% using the automatic correction of the discharge regime

  12. Automatic control system for the pig ion source for the U-400 cyclotron

    International Nuclear Information System (INIS)

    Kutner, V.B.; Subbotin, V.G.; Sukhov, A.M.; Tret'yakov, Yu.P.; Fefilov, B.V.

    1989-01-01

    An automatic control system is described for the cyclotron U-400 multiply-charged ion source based on CAMAC apparatus and microprocesor controllers. The system allows the automatic tuning of the ion source to the necessary regime including the automatic start-up of discharge, the obtaining of the necessary parameters of sputtering, the automatic search for a maximum beam current within the given discharge parameters. The system performs tuning the ion source to the quasioptimal regime for 10-15 minutes with up to 5% deviation from the preset parameters. It is possible to stabilize the beam current within 3% using the automatic correction of the discharge regime. 6 refs.; 4 figs

  13. CMB v. 1.1 Data Acquisition and Evaluation System of the Cracow Nuclear Microprobe

    International Nuclear Information System (INIS)

    Lekki, J.; Hajduk, R.; Potempa, A.; Pieprzyca, T.; Stachura, Z.; Zieblinski, M.; Styczen, J.; Lebed, S.

    2000-11-01

    An overview of the Cracow nuclear microprobe together with its data acquisition and control system is presented. Magnetic deflection was applied for beam scanning, while detector signals acquisition is performed by the NIM/CAMAC modules under supervision of a Windows operating system running on a PC equipped with the GPIB controller card. Total spectra from every detector are accessible on-line during the measurement, while full information about detected energy and beam position is stored to a disk file in the list mode to allow off-line data analysis. System hardware and software setups together with software operations and data formats used for information storing are described. (author)

  14. New KENS data acquisition system

    International Nuclear Information System (INIS)

    Arai, M.; Furusaka, M.; Satoh, S.

    1989-01-01

    In this report, the authors discuss a data acquisition system, KENSnet, which is newly introduced to the KENS facility. The criteria for the data acquisition system was about 1 MIPS for CPU speed and 150 Mbytes for storage capacity for a computer per spectrometer. VAX computers were chosen with their propreitary operating system, VMS. The Vax computers are connected by a DECnet network mediated by Ethernet. Front-end computers, Apple Macintosh Plus and Macintosh II, were chosen for their user-friendly manipulation and intelligence. New CAMAC-based data acquisition electronics were developed. The data acquisition control program (ICP) and the general data analysis program (Genie) were both developed at ISIS and have been installed. 2 refs., 3 figs., 1 tab

  15. The DEIS high energy muon spectrometer. II. The data acquisition system

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Dau, W.D.; Faehnders, E.; Jokisch, H.; Kaleschke, G.P.; Klemke, G.; Sauerland, K.; Schmidtke, G.; Uhr, R.C.; Bella, G.; Oren, Y.; Virni, U.; Seidman, A.

    1977-01-01

    The whole spectrometer is read out and controlled on-line via a CAMAC-system by a minicomputer. The magnetostrictive read out signals of 66 magnetostrictive read out wands of the wire spark chambers are digitized by 20-MHz-scalers which can store up to 8 sparks per chamber. The time-of-flight of the muon, the pulse heights of the scintillation counters, the time of event are also recorded. The on-line-computer makes reliability checks of the data and stores them together with monitor data about magnetic field, gas and high voltage system, etc. on magnetic tape for off-line analysis. (author)

  16. Data acquisition and control system for the IPNS time-of-flight neutron scattering instruments

    International Nuclear Information System (INIS)

    Daly, R.T.; Haumann, J.R.; Kraimer, M.R.; Lenkszus, F.R.; Lidinsky, W.P.; Morgan, C.B.; Rutledge, L.L.; Rynes, P.E.; Tippie, J.W.

    1979-01-01

    The Argonne Intense Pulsed Neutron System (IPNS-I) presently under construction at Argonne National Laboratory will include a number of neutron scattering instruments. This study investigates the data acquisition requirements of these instruments and proposes three alternative multiprocessor systems which will satisfy these requirements. All proposals are star configurations with a super-mini as the central node or HOST. The first proposal is based on front-ends composed of two or more 16-bit microcomputers, the second proposal is based on front ends consisting of a combination of a mini and microcomputers, and the third is based on a minicomputer with an intelligent CAMAC controller

  17. Investigation and realization of an automatic device for the control and test of a photon tagging system

    International Nuclear Information System (INIS)

    Fallou, J.L.

    1987-12-01

    An intelligent control/test equipment for a monoenergetic photon production system was developed. The device enables simulations to be done outside experimental runs. Operation can be entirely automatic, or controlled by the experimenters. The device is modular and conforms to CAMAC standards. The architecture of the system is based around a local bus which comprises a central unit and its memory; a programmable pulse generator; a switching circuit to test and control the various paths; and a unit to communicate with the acquisition system [fr

  18. A protable Database driven control system for SPEAR

    International Nuclear Information System (INIS)

    Howry, S.; Gromme, T.; King, A.; Sullenberger, M.

    1985-01-01

    The new computer control system software for SPEAR is presented as a transfer from the PEP system. Features of the target ring (SPEAR) such as symmetries, magnet groupings, etc., are all contained in a design file which is read by both people and computer. People use it as documentation; a program reads it to generate the database structure, which becomes the center of communication for all the software. Geometric information, such as element positions and lengths, and CAMAC I/O routing information is entered into the database as it is developed. Since application processes refer only to the database and since they do so only in generic terms, almost all of this software (representing more then fifteen man years) is transferred with few changes. Operator console menus (touchpanels) are also transferred with only superficial changes for the same reasons. The system is modular: the CAMAC I/O software is all in one process; the menu control software is a process; the ring optics model and the orbit model are separate processes, each of which runs concurrently with about 15 others in the multiprogramming environment of the VAX/VMS operating system

  19. The rejuvenation of TRISTAN control system

    International Nuclear Information System (INIS)

    Mimashi, T.; Urakawa, J.; Kurokawa, S.; Kawamoto, T.; Takeda, S.; Akiyama, A.; Kudoh, K.; Komada, K.; Naitoh, T.

    1992-01-01

    The current TRISTAN accelerator control system uses CAMAC as a front end electronics, and they are controlled by twenty five Hitachi minicomputer HIDIC 80's which are linked with an N-to-N token ring network. After five years from now, these computers must be replaced. This is because of the life time of control system and we have to cope with the requirements imposed by our future project such as the KEK B-Factory and the main ring photon factory projects. The rejuvenation of this control has to be done under some constraints such as the lack of manpower, limited time and financing. First we review the problems of current control system, then the philosophy of the new generation control system is presented. Finally it is discussed how to move to the new generation control system from the current TRISTAN control system. (author)

  20. Distributed computer controls for accelerator systems

    International Nuclear Information System (INIS)

    Moore, T.L.

    1988-09-01

    A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multi-user Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implementation with four months with a computer and instrumentation cost of approximately $100K. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking and operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the efficient implementation of the system. The definition, design, implementation, operation and total system performance will be discussed. 3 refs

  1. Distributed computer controls for accelerator systems

    Science.gov (United States)

    Moore, T. L.

    1989-04-01

    A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multiuser Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implantation within four months with a computer and instrumentation cost of approximately $100k. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking of operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the effective implementation of the system. The definition, design, implementation, operation and total system performance will be discussed.

  2. Distributed computer controls for accelerator systems

    International Nuclear Information System (INIS)

    Moore, T.L.

    1989-01-01

    A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multiuser Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implantation within four months with a computer and instrumentation cost of approximately $100k. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking of operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the effective implementation of the system. The definition, design, implementation, operation and total system performance will be discussed. (orig.)

  3. Status of the BEPC control system

    International Nuclear Information System (INIS)

    Zhao Jijiu; Yan Yonghe; Zhan Mingchuan; Yu Yulan; Luo Huiying; Wang Yaru; Geng Xiaosong

    1994-01-01

    The control system of the Beijing Electron Positron Collider (BEPC) was built by the end of 1987. Since then, it has been running safely and reliably. Due to the tight construction schedule, we adopted the control system structure of the new SPEAR of SLAC, which was a centralized control system. The system was not performing very well due to various problems such as low CPU power, limited memory of the VAX-11/750 control computer, a bottle-neck of the VAX-CAMAC-Channel etc. Since 1991 we have therefore been working on upgrading it to a distributed control system based on DECnet. The old console will be replaced by VAX-4090 workstations. The status of the system and the progress of the upgrading work are presented in this paper. ((orig.))

  4. Electron Cyclotron Resonance Heating (ECRH) Control System

    International Nuclear Information System (INIS)

    Heefner, J.W.; Williams, C.W.; Lauze, R.R.; Karsner, P.G.

    1985-01-01

    The ECRH Control System was installed on the Tandem Mirror Experiment-Upgrade (TMX-U) in 1980. The system provides approximately 1 MW of 28 GHz microwave power to the TMX-U plasma. The subsystems of ECRH that must be controlled include high-voltage charging supplies, series pass tubes, and magnet supplies. In addition to the devices that must be controlled, many interlocks must be continuously monitored. The previous control system used relay logic and analog controls to operate the system. This approach has many drawbacks such as lack of system flexibility and maintainability. In order to address these problems, it was decided to go with a CAMAC and Modicon based system that uses a Hewlett-Packard 9836C personal computer to replace the previous analog controls. 2 figs

  5. A distributed control system for the lower-hybrid current drive system on the Tokamak de Varennes

    International Nuclear Information System (INIS)

    Bagdoo, J.; Guay, J.M.; Chaudron, G.A.; Decoste, R.; Demers, Y.; Hubbard, A.

    1990-01-01

    An rf current drive system with an output power of 1 MW at 3.7 GHz is under development for the Tokamak de Varennes. The control system is based on an Ethernet local-area network of programmable logic controllers as front end, personal computers as consoles, and CAMAC-based DSP processors. The DSP processors ensure the PID control of the phase and rf power of each klystron, and the fast protection of high-power rf hardware, all within a 40 μs loop. Slower control and protection, event sequencing and the run-time database are provided by the programmable logic controllers, which communicate, via the LAN, with the consoles. The latter run a commercial process-control console software. The LAN protocol respects the first four layers of the ISO/OSI 802.3 standard. Synchronization with the tokamak control system is provided by commercially available CAMAC timing modules which trigger shot-related events and reference waveform generators. A detailed description of each subsystem and a performance evaluation of the system will be presented. (orig.)

  6. A distributed control system for the lower-hybrid current drive system on the Tokamak de Varennes

    Science.gov (United States)

    Bagdoo, J.; Guay, J. M.; Chaudron, G.-A.; Decoste, R.; Demers, Y.; Hubbard, A.

    1990-08-01

    An rf current drive system with an output power of 1 MW at 3.7 GHz is under development for the Tokamak de Varennes. The control system is based on an Ethernet local-area network of programmable logic controllers as front end, personal computers as consoles, and CAMAC-based DSP processors. The DSP processors ensure the PID control of the phase and rf power of each klystron, and the fast protection of high-power rf hardware, all within a 40 μs loop. Slower control and protection, event sequencing and the run-time database are provided by the programmable logic controllers, which communicate, via the LAN, with the consoles. The latter run a commercial process-control console software. The LAN protocol respects the first four layers of the ISO/OSI 802.3 standard. Synchronization with the tokamak control system is provided by commercially available CAMAC timing modules which trigger shot-related events and reference waveform generators. A detailed description of each subsystem and a performance evaluation of the system will be presented.

  7. Unique computer system for safeguards use

    International Nuclear Information System (INIS)

    Kuckertz, T.H.; Pratt, J.C.

    1981-01-01

    Microprocessors have been used to implement specialized scientific data processing systems since 1976. One such system, the LeCroy 3500, is presently being used by the Detection and Verification Group of the Energy Division at Los Alamos National Laboratory for a large variety of tasks involving measurement of various nuclear parameters associated with radioactive materials. The system is unique because it can do not only sophisticated pulse height and multi-scale analyses but also other analyses that are limited only by the availability fo CAMAC modules that would acquire data from exotic experiments. The system is also field portable which extends the range of experiments that it can control. Four applications of this system are described in this paper: (1) plutonium storage vault monitoring, (2) coded aperture image reconstruction, (3) spatial distribution of gamma radiation, and (4) nuclear waste management. 7 figures

  8. A longitudinal bunch monitoring system using LabVIEW reg-sign and high-speed oscilloscopes

    International Nuclear Information System (INIS)

    Barsotti, E.L.

    1994-10-01

    A new longitudinal bunch monitoring system has been installed at Fermilab for the Tevatron and Main Ring. For each machine, a signal from a broadband wall current monitor is sampled and digitized by a high-speed oscilloscope. A Macintosh computer, running LabVIEW-based software, controls the scopes and CAMAC timing modules and analyzes the acquired data. The resulting bunch parameters are used for a variety of purposes, including Tevatron collider luminosity calculation and injection analysis. This paper examines the system in detail

  9. Expansion of the data acquisition system for the 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tomita, Yoshiaki

    1981-02-01

    This report describes an expansion of the program of the data acquisition system for the 20 MV tandem accelerator. By the present expansion it became possible to change the accuisition mode or to use non-standard CAMAC modules with partial modification of the program according to well defined prescriptions. The modification can be made by writing microprograms for the MBD or appending subroutines for the reduced spectra in the LIST mode data acquisition. The new program can handle up to 32 ADC's in the standard LIST mode data acquisition. The present expansion aimed to increase the flexibility in data acquisition. It can also be applied to control experimental devices. (author)

  10. The data acquisition system for the Leeds Infirmary MWPC X-ray imaging detector

    International Nuclear Information System (INIS)

    Quinton, S.; Gibbings, D.; Jones, D.; Norton, H.

    1979-10-01

    An electronic system is described which is designed to acquire and process data from a MWPC X-ray imaging detector. Two dimensional information from the chamber is obtained by using cathode plane delay-line readout. A single crate CAMAC assembly is used as the chamber-computer interface. The use of control source units for the delay line scalers and TV display driver functions together with an intermediate memory in the crate allows input data rates up to 1MHz and TV display facilities without constant computer refreshing. (author)

  11. Design of the data acquisition system for the nuclear physics experiments at VECC

    International Nuclear Information System (INIS)

    Dhara, P.; Roy, A.; Maity, P.; Singhai, P.; Roy, P.S.

    2012-01-01

    The beam from K130 room temperature cyclotron is being extensively used for nuclear physics experiments for last three decades. The typical beam energy for the experiments is approximately 7-10 MeV/nucleon for heavy ions and 8-20 MeV/nucleon for light ions. The number of detectors used, may vary from one channel to few hundreds of detector channels. The proposed detector system for experiments with the superconducting cyclotron may have more than 1200 detector channels, and may be generating more than one million parameters per second. The VME (Versa Module Europa) and CAMAC (Computer Automated Measurement and Control) based data acquisition system (DAQ) is being used to cater the experimental needs. The current system has been designed based on various commercially available modules in NIM (Nuclear Instrumentation Module), CAMAC and VME form factor. This type of setup becomes very complicated to maintain for large number of detectors. Alternatively, the distributed DAQ system based on embedded technology is proposed. The traditional analog processing may be replaced by digital filters based FPGA (Field Programmable Gate Array) boards. This paper describes the design of current DAQ system and the status of the proposed scheme for distributed DAQ system with capability of handling heterogeneous detector systems. (author)

  12. Implementation and operation of VAX-based data acquisition system for the large coil task

    International Nuclear Information System (INIS)

    Baylor, L.R.; Blair, E.T.; Greenwood, D.E.; Munro, J.K.

    1985-01-01

    The VAX-based data acquisition system for the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is a second generation system that evolved from a PDP-11/60-based system used in the two-coil test and facility shakedown. The VAX 11/780 processor has been interfaced through a CAMAC fiber-optic byte serial highway to five existing LSI-11/23 frontend processors through dataway access port (DAP) modules. The VAX CAMAC interface has permitted the addition of analog input channels for the refrigeration system and analog and digital outputs to drive display devices. Software utilities are provided to operate the data acquisition hardware, maintain data base files, and display data. Graphical display of data is accomplished through the use of VAX IDL (Interactive Data Language), which provides device-independent data presentation. Output from IDL is available for Tektronix displays and has been extended to generate TKF and Versaplot graphics metafiles for hardcopy output to Versatec printer/plotters. In addition, a Sension display system is available for graphical display of real-time data in the form of strip chart and tabular displays. This paper describes the hardware and software design of the system and the operation of the system during the full-array testing sequence

  13. The data acquisition system PHON for the detectors of the PHOENICS experiment

    International Nuclear Information System (INIS)

    Schneider, W.

    1991-07-01

    The PHON data acquisition system for the PHOENICS experiment at the stretcher ring ELSA in Bonn and its development is described. PHON is based on a fast parallel CAMAC readout with VME front-end processors and a VAX/VMS computer, allowing c omfortable control and programming. The current configuration of the PHON system at the PHOENICS detector uses two CAMAC branches that are read out in parallel. The data is transferred to the VAX by either the ethernet (max. rate 100 kByte/sec) or a bus coupler device (max. rate 650 kByte/sec). On the VAX the data can be stored on a harddisk and analyzed by several PHON online tasks. The harddisk limits the maximum data rate to a value of approximately 180 kByte/sec. The maximum trigger rate achieved is about 150 Hz. Two kinds of user shells are realized to control the PHON system. A command shell follows the standard of the control language of the VMS operating system and a graphic user interface uses the 'X Window System'. The modular structure of the PHON system and the unique kind of creation of all PHON programs makes a further development of the system easy to do. (orig.) [de

  14. The data acquisition system PHON for the detectors of the PHOENICS experiment; Das Datenerfassungssystem PHON fuer die Detektoren des PHOENICS-Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, W.

    1991-07-01

    The PHON data acquisition system for the PHOENICS experiment at the stretcher ring ELSA in Bonn and its development is described. PHON is based on a fast parallel CAMAC readout with VME front-end processors and a VAX/VMS computer, allowing c omfortable control and programming. The current configuration of the PHON system at the PHOENICS detector uses two CAMAC branches that are read out in parallel. The data is transferred to the VAX by either the ethernet (max. rate 100 kByte/sec) or a bus coupler device (max. rate 650 kByte/sec). On the VAX the data can be stored on a harddisk and analyzed by several PHON online tasks. The harddisk limits the maximum data rate to a value of approximately 180 kByte/sec. The maximum trigger rate achieved is about 150 Hz. Two kinds of user shells are realized to control the PHON system. A command shell follows the standard of the control language of the VMS operating system and a graphic user interface uses the `X Window System`. The modular structure of the PHON system and the unique kind of creation of all PHON programs makes a further development of the system easy to do. (orig.). [Deutsch] Die vorliegende Arbeit beschreibt die Entwicklung und Funktion des Datenerfassungssystems PHON. Das System basiert auf einer parallelen Auslese von CAMAC-Branchen mit VME-Front-End-Prozessoren und einem VAX/VMS-Hauptrechner, der eine komfortable Programmsteuerung und -Entwicklung erlaubt. Momentan werden an dem PHOENICS-Detektor zwei CAMAC-Branche von jeweils einem VME-Front-End-Prozessor ausgelesen. Die Daten koennen wahlweise ueber Ethernet (max. Uebertragungsrate ca. 100 kByte/sec), oder ueber einen Buskoppler (max. 650 kByte/sec) auf den Hauptrechner (VAXStation 3200) transferiert werden. Dort koennen sie auf einer Festplatte abgespeichert und von verschiedenen Analyseprozessen verarbeitet werden. In dieser Konfiguration werden Datenraten von 180 kByte/sec erzielt. Die maximale Triggerrate betraegt etwa 150 Hz. Die Steuerung des PHON-Systems

  15. The new accelerator control system of GANIL

    International Nuclear Information System (INIS)

    Luong, T.T.; David, L.; Duneau, P.; De Saint Jores, P.; Lecorche, E.; Lemaitre, E.; Lermine, P.; Loyant, J.M.; Maugeais, C.; Regnault, F.; Roze, J.F.; Souf, A.; Ulrich, M.

    1994-01-01

    The new computer control system has operated the heavy ion accelerator GANIL from the beginning of 1993 and has reached a state of routine operation. It supersedes the obsolete initial system to cope with the harsh experimental conditions required by the very high intensity beams expected in the near future. Hardware and software implementations, as well as the human interface, are presented. Emphasis is placed on the three-layer distributed architecture adopted. An Ethernet local area network (LAN) links the basic components: a VAX/VMS cluster, XWINDOWS-interfaced operator consoles, VAXELN-driven CAMAC crate controllers and programmable logic controllers for the front end controls. Also the data management, through the INGRES relational database management system (RDBMS), as well as the operating software written in ADA, are described. The early experience with the new control system is reported and future developments discussed. ((orig.))

  16. The Ganil computer control system renewal

    International Nuclear Information System (INIS)

    David, L.; Lecorche, E.; Luong, T.T.; Ulrich, M.

    1990-01-01

    Since 1982 the GANIL heavy ion accelerator has been under the control of 16-bit minicomputers MITRA, programmable logic controllers and microprocessorized Camac controllers, structured into a partially centralized system. This control system has to be renewed to meet the increasing demands of the accelerator operation which aims to provide higher quality ion beams under more reliable conditions. This paper gives a brief description of the existing control system and then discusses the main issues of the design and the implementation of the future control system: distributed powerful processors federated through Ethernet and flexible network-wide database access, VME standard and front-end microprocessors, enhanced color graphic tools and workstation based operator interface

  17. The next generation control system of GANIL

    International Nuclear Information System (INIS)

    Luong, T.T.; David, L.; Lecorche, E.; Ulrich, M.

    1992-01-01

    The existing computer control system of GANIL is being renewed to fulfil the increasing requirements of the accelerator operation. This medium term major improvement is aiming at providing the physicists with a wider range of ion beams of higher quality under more flexible and reliable conditions. This paper gives a short description of the new control system envisioned. It consists of a three layer distributed architecture federating a VAX6000-410/VMS host computer, a real time control system made up of a dual host VAX3800 and workstation based operator consoles, and at the frontend segment: VME and CAMAC processors running under the VAXELN operating system, and programmable logic controllers for local controls. The basic issues with regard to architecture, human interface, information management, ... are discussed. Lastly, first implementations and operation results are presented. (author)

  18. The new accelerator control system of GANIL

    International Nuclear Information System (INIS)

    Luong, T.T.; David, L.; Duneau, P.; Saint Jores, P. De; Lecorche, E.; Lemaitre, E.; Lermine, P.; Loyant, J.M.; Maugeais, C.; Regnault, F.

    1993-01-01

    The new computer control system is conducting the heavy ion accelerator GANIL from the beginning of 1993 and has reached a state of routine operation. It was carried out to supersede the obsolete initial system and to cope with the harsh experimental conditions required by the very high intensity beams envisioned for the next future. Hardware and software implementations, as well as human interface, are presented. Emphasis is placed on the three-layer distributed architecture adopted. An ETHERNET local area network (LAN) links the basic components: a VAX/VMS cluster, XWINDOWS interfaced operator consoles, VAXELN driven CAMAC crate controllers and programmable logic controllers for front end controls. Also data management with the INGRES relational database management system (RDBMS), as well as operating software written in ADA language, are described. First experience with the new control system is reported. Finally, trend considerations are addressed. (author) 8 refs., 6 figs

  19. The S-1 Spheromak Control System

    International Nuclear Information System (INIS)

    Mathe, P.; Mika, R.; Oliaro, G.

    1983-01-01

    The use of a CAMAC based DEC LSI-11/23 microcomputer to perform all control functions for the S-1 Spheromak is described. The system monitors and controls the three coil systems, Toroidal, Poloidal, and Equilibrium field coils and their associated power sources, the water cooling system, the personnel and machine safety system, the machine and diagnostic timing system and the control room display and operator interface. Future requirements include control of the vacuum system, the gas injection system and interface to the PPPL Data Acquisition System DEC10. The computer is connected to five remotely located CAMAC crates by a fiber-optic serial highway operating at five megahertz. These crates contain interface modules required to control the S-1 experiment. These modules include: D/A and A/D converters, fast transient digitizers, timing modules, temperature sensing modules, CRT alphanumeric display drivers, watchdog timers, and relay and TTL parallel I/O ports. The computer itself resides in crate number0 and consists of an LSI-11/23 with hardware floating post processor, memory management, 256K bytes of memory, four RS-232 serial ports and a 30 megabyte hard disk with a one megabyte floppy disk backup. The majority of software is written in FORTRAN with a few speed critical programs written in PDP-11 MACRO assembly language. The software simulates a sequential state machine which allows easily changeable logic since all logic is represented by standard Boolean Fortran statements. The RSX-11/m operating system allows multiple tasks to be active simultaneously. This provides computing time for operator interactions, editing of critical machine parameters, data analysis and transmission of data to other computers while still maintaining the scan activity which constantly monitors machine parameters

  20. Design and implementation of a control and data acquisition system for pellet injectors

    International Nuclear Information System (INIS)

    Baylor, L.R.; Burris, R.D.; Greenwood, D.E.; Stewart, K.A.

    1985-01-01

    A stand-alone control and data acquisition system for pellet injectors has been designed and implemented to support pellet injector development at Oak Ridge Laboratory (ORNL) and to enable ORNL pellet injectors to be installed on various fusion experimental devices. The stand-alone system permits LOCAL operation of the injector from a nearby panel and REMOTE operation from the experiment control room. Major components of the system are (1) an Allen-Bradley PLC 2/30 programmable controller, (2) a VAX minicomputer, and (3) a CAMAC serial highway interface. The programmable logic controller (PLC) is used to perform all control functions of the injector. In LOCAL, the operator interface is provided by an intelligent panel system that has a keypad and pushbutton module programmed from the PLC. In REMOTE, the operator interfaces via a VAX-based color graphics display and uses a trackball and keyboard to issue commands. Communications between the remote and local controls and to the fusion experiment supervisory system are via the CAMAC highway. The VAX archives transient data from pellet shots and trend data acquired from the PLC. Details of the hardware and software design and the operation of the system are presented in this paper. 3 refs., 1 fig

  1. CAMAC programmable-control frequency synthesizer

    International Nuclear Information System (INIS)

    Yumaguzin, T.Kh.; Vyazovkin, D.E.; Nazirov, Eh.P.; Tuktarov, R.F.

    1989-01-01

    Synthesizer allows to set frequency with 0.015% accuracy and to scan it with variable step. Frequency controlled divider with further summing-up of divided frequency with fundamental one is used in synthesizer, and it has allowed to use digit of the input code and to obtain 3-4 MHz frequency range. Variation of operation flowsheet in the other frequency range is possible. K-155 and K-531 series microcircuits were used during development

  2. Electronic detecting equipment in the Camac standard

    International Nuclear Information System (INIS)

    Basiladze, S.G.

    1981-01-01

    Basic tends of development of electron detecting equipment of modern facilities for experiments in nuclear physics are considered. Special attention is paid to developments of specialized hybrid integrated circuits, specialized processors for selection of events, usage of integrated circuits of memories in detecting units as well as to prospects of developing nuclear electronics standards [ru

  3. Slow coincidences for CAMAC multiparameter analysis

    International Nuclear Information System (INIS)

    Akimov, Yu.K.; Kalinin, A.I.; Tissol'd, E.; Fromm, V.D.; Ekstein, P.

    1978-01-01

    A coincidence circuit with controlled parameters is described. The circuit has six coincidence inputs and one input for anticoincidences. A pulse duration in channels is changed from 0.25 to 5 μs and delay time, within 8 μs. The circuit is developed for multiparameter spectrometric analysis with the use of amplitude-digital and time-digital convertors. Its introduction permits one to diminish considerably the ''dead'' time of apparatus and to select rapidly and reliably strictly correlated digital information from convertors

  4. Two Word CAMAC I/O module

    International Nuclear Information System (INIS)

    Barker, L.L.

    1981-05-01

    This note describes the 2 Word I/O subsystem and details its operating characteristics. SLAC drawings in the 926-306 series support this device and should be referenced for construction and connection details

  5. ORIC RF system: preparation for HHIRF

    International Nuclear Information System (INIS)

    Mosko, S.W.; Rylander, J.D.; Schulze, G.K.

    1977-01-01

    The integration of the Oak Ridge Isochronous Cyclotron (ORIC) into the Holifield Heavy Ion Research Facility (HHIRF) requires several rf system modifications to permit injection of ion beams from the 25 MV tandem electrostatic accelerator into ORIC. A new dee eliminates structural interference with the injected beam path and provides an opportunity to improve the mechanical stability of the resonator and to reduce rf voltage gradients in areas susceptible to sparking. Space for structural improvements is realized by reducing the ion beam aperture from 4.8 cm to 2.4 cm. The complexity of the original ORIC rf power system was substantially reduced. A new broadband solid state driver amplifier between the frequency synthesizer and the main power amplifier eliminates most circuit tuning and permits the use of a new simplified dee rf voltage regulator loop. Most of the remaining instrumentation and control circuitry is TTL compatible and will eventually tie to the ORIC computer control system through a CAMAC interface

  6. Communication systems in JT-60 control

    International Nuclear Information System (INIS)

    Kimura, T.; Hosogane, N.; Kondo, I.; Kumahara, T.; Kurihara, K.; Yonekawa, I.; Yoshino, R.

    1983-01-01

    A new concept in communication is applied to the JT-60 control system which handles a large amount of data for the plant support and monitoring and for the discharge control including plasma feedback control. The communication systems are characterized by 1) adoption of an efficient protocol in the central highways which are composed of dual serial CAMAC ones, 2) standardization of the protocol and data format between the central controller and each subsystem one, 3) adoption of a polling method for plant monitoring and of block transfer for discharge conditions and results, and 4) use of novel modules for the fast data transfer in the real-time systems. A compact tool has also been developed for testing the data communication

  7. Data transfer in on-line systems

    International Nuclear Information System (INIS)

    Zacharov, V.

    1978-01-01

    The problem of transfer of data in both directions between experimental equipment and process systems on the one hand, and hardware processors on the other, is an important one. This fundamental question is discussed in the coxtent of contemporary practice, where the principal processing element is the minicomputer. Although several interface conventions are considered, practice is dominated by the CAMAC system, and the main emphasis is to review recent developments in that system, particularly in the area of distributed configurations. The impact of new microcircuit technology on the way in which data transfers are performed is only beginning. The present discussion trys to assess this impact and to identify the main changes that are expected to occur. (Auth.)

  8. Timing system control software in the SLC

    International Nuclear Information System (INIS)

    Thompson, K.; Phinney, N.

    1985-04-01

    A new timing system that allows precision (approx.1 to 2 ns) control of the trigger times of klystrons, beam position monitors, and other devices on a pulse-to-pulse basis at up to 360 Hz is in operation in the first third of the SLAC linear accelerator. The control software is divided between a central host VAX and local Intel 8086-based microprocessor clusters. Facilities exist to set up and adjust the timing of devices or groups of devices independently for beam pulses having different destinations and purposes, which are run in an interlaced fashion during normal machine operation. Upgrading of the system is currently underway, using a new version of the Programmable Delay Unit CAMAC module to allow pipelining of timing information for three machine pulses. An overview of the current state of the system is presented in this paper, with an emphasis on software control

  9. Upgrading a TEXTOR Data Acquisition system for remote participation using Java and Corba

    International Nuclear Information System (INIS)

    Korten, M.; Becks, B.; Blom, H.; Busch, P.; Kemmerling, G.; Kooijman, W.; Krom, J.G.; Laat, C.T.A.M. de; Lourens, W.; Meer, E. van der; Nideroest, B.; Oomens, A.A.M.; Wijnoltz, F.; Samm, U.

    2000-01-01

    The partners in the Trilateral Euregio Cluster (TEC) are implementing and developing Remote Participation technologies that are expected to support a joint research programme on the experimental facility TEXTOR-94. A common TEC architecture for our heterogeneous data acquisition and storage systems is seen to be one of the major issues. As a consequence, legacy systems will be affected and have to be upgraded for optimised wide area network communication, platform independent data access and display. The object oriented redesign of the system to be described follows theses guidelines. The architecture of the system under development uses Java as programming environment and CORBA as Client/Server communication standard. It is described in this paper, how an operational Data Acquisition CAMAC subsystem of TEXTOR-94 based on OpenVMS and Decnet communications could be redesigned into an open, object oriented architecture in a platform independent way. A suitable Web Browser is required on the client side without further installation of application software to run the server. CORBA static method invocations are used for the communication between the client and server. At the server side, there is only Java code on top of the existing commercial OpenVMS CAMAC device driver. A modular object oriented software design permitted to eliminate dependencies of the generic module levels from the underlying bus systems. Porting of the Java code to other platforms like Windows NT and Linux has proven to be successful

  10. Software for the Local Control and Instrumentation System for MFTF

    International Nuclear Information System (INIS)

    Labiak, W.G.

    1979-01-01

    There are nine different systems requiring over fifty computers in the Local Control and Instrumentation System for the Mirror Fusion Test Facility. Each computer system consists of an LSI-11/2 processor with 32,000 words of memory, a serial driver that implements the CAMAC serial highway protocol. With this large number of systems it is important that as much software as possible be common to all systems. A serial communications system has been developed for data transfers between the LSI-11/2's and the supervisory computers. This system is based on the RS 232 C interface with modem control lines. Six modem control lines are used for hardware handshaking, which allows totally independent full duplex communications to occur. Odd parity on each byte and a 16-bit checksum are used to detect errors in transmission

  11. The computer-based control system of the NAC accelerator

    International Nuclear Information System (INIS)

    Burdzik, G.F.; Bouckaert, R.F.A.; Cloete, I.; Du Toit, J.S.; Kohler, I.H.; Truter, J.N.J.; Visser, K.

    1982-01-01

    The National Accelerator Centre (NAC) of the CSIR is building a two-stage accelerator which will provide charged-particle beams for the use in medical and research applications. The control system for this accelerator is based on three mini-computers and a CAMAC interfacing network. Closed-loop control is being relegated to the various subsystems of the accelerators, and the computers and CAMAC network will be used in the first instance for data transfer, monitoring and servicing of the control consoles. The processing power of the computers will be utilized for automating start-up and beam-change procedures, for providing flexible and convenient information at the control consoles, for fault diagnosis and for beam-optimizing procedures. Tasks of a localized or dedicated nature are being off-loaded onto microcomputers, which are being used either in front-end devices or as slaves to the mini-computers. On the control consoles only a few instruments for setting and monitoring variables are being provided, but these instruments are universally-linkable to any appropriate machine variable

  12. MAST data acquisition system

    International Nuclear Information System (INIS)

    Shibaev, S.; Counsell, G.; Cunningham, G.; Manhood, S.J.; Thomas-Davies, N.; Waterhouse, J.

    2006-01-01

    The data acquisition system of the Mega-Amp Spherical Tokamak (MAST) presently collects up to 400 MB of data in about 3000 data items per shot, and subsequent fast growth is expected. Since the start of MAST operations (in 1999) the system has changed dramatically. Though we continue to use legacy CAMAC hardware, newer VME, PCI, and PXI based sub-systems collect most of the data now. All legacy software has been redesigned and new software has been developed. Last year a major system improvement was made-replacement of the message distribution system. The new message system provides easy connection of any sub-system independently of its platform and serves as a framework for many new applications. A new data acquisition controller provides full control of common sub-systems, central error logging, and data acquisition alarms for the MAST plant. A number of new sub-systems using Linux and Windows OSs on VME, PCI, and PXI platforms have been developed. A new PXI unit has been designed as a base sub-system accommodating any type of data acquisition and control devices. Several web applications for the real-time MAST monitoring and data presentation have been developed

  13. Computer data-acquisition and control system for Thomson-scattering measurements

    International Nuclear Information System (INIS)

    Stewart, K.A.; Foskett, R.D.; Kindsfather, R.R.; Lazarus, E.A.; Thomas, C.E.

    1983-03-01

    The Thomson-Scattering Diagnostic System (SCATPAK II) used to measure the electron temperature and density in the Impurity Study Experiment is interfaced to a Perkin-Elmer 8/32 computer that operates under the OS/32 operating system. The calibration, alignment, and operation of this diagnostic are all under computer control. Data acquired from 106 photomultiplier tubes installed on 15 spectrometers are transmitted to the computer by eighteen 12-channel, analog-to-digital integrators along a CAMAC serial highway. With each laser pulse, 212 channels of data are acquired: 106 channels of signal plus background and 106 channels of background only. Extensive use of CAMAC instrumentation enables large amounts of data to be acquired and control processes to be performed in a time-dependent environment. The Thomson-scattering computer system currently operates in three modes: user interaction and control, data acquisition and transmission, and data analysis. This paper discusses the development and implementation of this system as well as data storage and retrieval

  14. Centralization and Decentralization in the TRIUMF control system

    International Nuclear Information System (INIS)

    Dohan, D.A.; Gurd, D.P.

    1984-01-01

    Distributed control is characterized by a number of different concepts relating to hardware, software, data bases, and control stations. Although some control system designs are more centralized than others, all contain elements of both approaches. In particular, the TRIUMF system contains a unique blend of centralized and distributed attributes, deriving primarily from the multi-sourced CAMAC and memory systems at its executive node. The increased demands of an expanding accelerator laboratory have made it timely to consider strategies for expansion of the TRIUMF Control System. These requirements have led to reflections on one of the major themes of this conference - centralized vs distributed digital control systems for accelerators. This paper discusses the way in which the TRIUMF system successfully combines elements of both approaches

  15. Data-acquisition systems for the present and the future

    International Nuclear Information System (INIS)

    Drobnis, D.D.

    1982-09-01

    Basic components of today's acquisition systems are surveyed. These include front-end tools such as microprocessors, programmable controllers, and CAMAC interfaces. Some key concepts in large central real-time systems are examined: Hardware and Software architecture, and data base structure. Some trends in present data acquisition system design are analyzed, including increasing distribution of system functions and expansion to hierarchical multi-processor netowrks. With the evolution of microprocessors, front-end intelligence is growing into front-end computing power. Real-time host systems are becoming increasingly sophisticated human interface and data base management tools, with increasingly complex operating systems, and increasing amounts of memory, mass storage, and computing power. And the ultimate analysis of plasma data is becoming increasingly sophisticated

  16. Changing of the ELAN data acquisition to an integrated system with VME frontend acquisition and VAX work station analysis; Umruestung der ELAN-Datenerfassung auf ein integriertes System mit VME-Frontend-Erfassung und VAX-Workstation-Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, W.

    1991-07-01

    A new data acquisition system for the experiment ELAN at the electron stretcher accelerator ELSA had become necessary due to changes in the experimental setup. The data acquisition and analysis which formerly both were performed by a single computer system are now separately done by a VMEbus-Computer and a VAX-Workstation. Based on the software components MECDAS (Mainz Experiment Control and Data Acquisition System) and GOOSY (GSI Online Offline System) a powerfull tool for data acquisition and analysis has been adapted to the requirements of the ELAN experiment. (orig.). [Deutsch] Ziel dieser Arbeit war die Bereitstellung eines neuen Datenerfassungssystems fuer das ELAN-Experiment am Physikalischen Institut der Universitaet Bonn. Als Grundlage hierzu dienten das an der Universitaet Mainz entwickelte System MECDAS und das von der Gesellschaft fuer Schwerionenforschung in Darmstadt stammende Softwarepaket GOOSY. Die Auslese der vom Experiment kommenden Daten wird ueber ein CAMAC-System von MECDAS auf einem VME-Rechner vorgenommen. Dazu wurden in MECDAS neue Auslesealgorithmen eingebettet, die sich teilweise aus experimentellen Notwendigkeiten ergaben und zum anderen den vollen 24-bit Zugriff auf den CAMAC-Bus ermoeglichten. Die gepufferten Daten werden zu einer VAX-Workstation weitergeleitet, auf der sie von GOOSY-Prozessen gesichert und anaylsiert werden. (orig.).

  17. An improved data acquisition system at the Saskatchewan Accelerator Laboratory

    International Nuclear Information System (INIS)

    Norum, W.E.

    1994-01-01

    An improved data acquisition system has been in service at the Saskatchewan Accelerator Laboratory for the past 14 months. The system has shown itself to be reliable and easy to use having collected over 800 gigabytes of data for a number of experiments. The system is based on a VME front end computer acquiring data from CAMAC and FASTBUS modules and forwarding the data via an Ethernet connection to an acquisition workstation for archiving and on-line analysis. A multiprocessor real-time operating system in the front end computer makes increasing the performance of the system a simple matter of adding an additional processor to the VME chassis. Experimenters need only write a high-level description of their experiment which is transformed into a C program for the front end computer by a translation program. Special requirements are met by facilities for direct inclusion of user C or FORTRAN code

  18. Front hadron calorimeter of the European hybrid spectrometer monitoring system

    International Nuclear Information System (INIS)

    Borotav, M.; Vlasov, E.V.; David, Zh. and others.

    1985-01-01

    A complex system for light control (SLC) of the front hadron calorimeter (FHC) of the European hybrid spectrometer is described. The FHC includes 200 plastic scintillators. The SLC permits to conduct autonomous correction of multiplication factor drift of photoelectron multipliers (PEM) and to identify failed elements. Control functions are exercised by two independent subsystems. The first one is a part of the general system of data acquisition. The second one - a system of on-line control of FHC state is intended for continuous successive by-channel analog-to-digital transformation of signals-responses on reper light pulses recorded from the PEM dinodes. The systems are presented in the CAMAC standard. The structural diagram of the system, functional correlation of modules and ideology of software are presented. On-line control permits to bring the detector in the mode corresponding to any of earlier conducted calibrations at the accuracy of 5%

  19. Standard interfaces for program-modular multiprocessor systems

    International Nuclear Information System (INIS)

    Chernykh, E.V.

    1982-01-01

    The peculiarities of the structures of existing and developed standard interfaces used in automation systems for nuclear physical experiments are considered. general structural characteristics of multiprocessor system interfaces are revealed. The comparison of the existing system CAMAC crate and designed standards of COMPEX, E3S and FASTBUS interfaces by capacity and relative cost is carried out. The analysis of the given data shows that operation of any interface is more advantageous at the rates close to capacity values, the relative cost being minimum. In this case the advantage is on the side of interfaces with greater capacity values for which at a moderated decrease of the exchange or requests processing rate the relative costs grow slower. A higher capacity of one-cycle exchange is provided with functional data way specialization in the interface. The conclusion is drawn that most perspective trend in the development of automation systems for high energy physics experiments is using FASTBUS standard

  20. Large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Seeger, P.A.; Scheer, J.W.; Suehiro, S.

    1980-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK8600 2048K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron x-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources

  1. Transient waveform acquisition system for the ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Young, K.G.; Burris, R.D.; Hillis, D.H.; Overbey, D.R.

    1984-10-01

    The transient waveform system described in this report is designed to acquire analog waveforms from the ELMO Bumpy Torus (EBT) diagnostic experiments. Pressure, density, synchrotron radiation, etc., are acquired and digitized with a Kinetic Systems TR812 transient recorder and associated modules located in a CAMAC crate. The system can simultaneously acquire, display, and transmit sets of data consisting of identification parameters and up to 1024 data points for 1 to 64 input signals (frequency range = 0.01 pulse/s to 100 kHz) of data every one or more minutes; thus, it can run continuously without operator intervention. The data are taken on a VAX 11/780 and transmitted to a data base on a DECSystem-10. To aid the programmer in making future modifications to the system, detailed documentation using the Yourdon structural methods has been given

  2. PEP computer control system

    International Nuclear Information System (INIS)

    1979-03-01

    This paper describes the design and performance of the computer system that will be used to control and monitor the PEP storage ring. Since the design is essentially complete and much of the system is operational, the system is described as it is expected to 1979. Section 1 of the paper describes the system hardware which includes the computer network, the CAMAC data I/O system, and the operator control consoles. Section 2 describes a collection of routines that provide general services to applications programs. These services include a graphics package, data base and data I/O programs, and a director programm for use in operator communication. Section 3 describes a collection of automatic and semi-automatic control programs, known as SCORE, that contain mathematical models of the ring lattice and are used to determine in real-time stable paths for changing beam configuration and energy and for orbit correction. Section 4 describes a collection of programs, known as CALI, that are used for calibration of ring elements

  3. Computer control of the high-voltage power supply for the DIII-D electron cyclotron heating system

    International Nuclear Information System (INIS)

    Clow, D.D.; Kellman, D.H.

    1992-01-01

    This paper reports on the DIII-D Electron Cyclotron Heating (ECH) high voltage power supply which is controlled by a computer. Operational control is input via keyboard and mouse, and computer/power supply interfact is accomplished with a Computer Assisted Monitoring and Control (CAMAC) system. User-friendly tools allow the design and layout of simulated control panels on the computer screen. Panel controls and indicators can be changed, added or deleted, and simple editing of user-specific processes can quickly modify control and fault logic. Databases can be defined, and control panel functions are easily referred to various data channels. User-specific processes are written and linked using Fortran, to manage control and data acquisition through CAMAC. The resulting control system has significant advantages over the hardware it emulates: changes in logic, layout, and function are quickly and easily incorporated; data storage, retrieval, and processing are flexible and simply accomplished; physical components subject to wear and degradation are minimized. In addition, the system can be expanded to multiplex control of several power supplies, each with its own database, through a single computer console

  4. Continuous and real-time data acquisition system for superconducting tokamaks HT-7 and TRIAM-1M

    International Nuclear Information System (INIS)

    Wang, F.; Luo, J.R.; Nakamura, K.; Sato, K.N.; Hanada, K.; Sakamoto, M.; Idei, H.; Kawasaki, S.; Nakashima, H.

    2006-01-01

    Conventional data acquisition systems cannot deal with data acquisition for a long-time discharge of a nuclear fusion reactor. Thus, continuous data acquisition with a real-time data presentation during discharge must be developed. Two data acquisition systems, which include alternating CAMAC data acquisition and long-time PCI data acquisition, are designed for the long-time operation of HT-7 tokamak. Since an effective alternating mode is adopted, the alternating CAMAC data acquisition can accurately and continuously acquire data at a rate of 10 kHz. The acquired data is immediately transmitted to a data server and real-time results can be presented during the plasma discharge. As for the long-time PCI data acquisition, a special kind of PCI A/D card, which has a hard disk on board, is designed to collect data at a max speed of 200 kHz. Thus, the total sampling duration is only related to the capacity of the hard disk on board. These two types of data acquisitions were applied to HT-7 tokamak and a 250 s discharge was acquired. These data acquisition systems were also successfully demonstrated on a 2500 s plasma discharge on TRIAM-1M. This paper describes the two data acquisitions in detail

  5. Computer control of the high-voltage power supply for the DIII-D Electron Cyclotron Heating system

    International Nuclear Information System (INIS)

    Clow, D.D.; Kellman, D.H.

    1991-10-01

    The D3-D Electron Cyclotron Heating (ECH) high voltage power supply is controlled by a computer. Operational control is input via keyboard and mouse, and computer/power supply interface is accomplished with a Computer Assisted Monitoring and Control (CAMAC) system. User-friendly tools allow the design and layout of simulated control panels on the computer screen. Panel controls and indicators can be changed, added or deleted, and simple editing of user-specific processes can quickly modify control and fault logic. Databases can be defined, and control panel functions are easily referred to various data channels. User-specific processes are written and linked using Fortran, to manage control and data acquisition through CAMAC. The resulting control system has significant advantages over the hardware it emulates: changes in logic, layout, and function are quickly and easily incorporated; data storage, retrieval, and processing are flexible and simply accomplished, physical components subject to wear and degradation are minimized. In addition, the system can be expanded to multiplex control of several power supplied, each with its own database, through a single computer and console. 5 refs., 4 figs., 1 tab

  6. The vacuum system of the Karlsruhe magnetic spectrograph 'Little John'

    International Nuclear Information System (INIS)

    Buschmann, J.; Gils, H.J.; Jelitto, H.; Krisch, J.; Ludwig, G.; Manger, D.; Rebel, H.; Seith, W.; Zagromski, S.

    1985-02-01

    The vacuum equipment of the magnetic spectrograph Little John is described. The system is characterized by the following special features: The sliding exit flange of the target chamber can be moved to the desired angle of observation without affecting the high vacuum. The pressure maintained is less by a factor of ten than the pressure in the incoming beam tubing. The vacuum system is divided into several separate pumping sections. Ground loops are strictly avoided. All actual states of relevance are fed back to the control panels. The vacuum installation is protected by hardware interlocking systems as well as by a real time program written in FORTRAN in cooperation with CAMAC interfacing. (orig.) [de

  7. A multi-parameter, acquisition system positron annihilation lifetime spectrometer

    International Nuclear Information System (INIS)

    Sharshar, T.

    2004-01-01

    A positron annihilation lifetime spectrometer employing a multi-parameter acquisition system has been prepared for various purposes such as the investigation and characterization of solid-state materials. The fast-fast coincidence technique was used in the present spectrometer with a pair of plastic scintillation detectors. The acquisition system is based on the Kmax software and on CAMAC modules. The data are acquired in event-by-event list mode. The time spectrum for the desired energy windows can be obtained by off-line data sorting and analysis. The spectrometer for event-by-event data acquisition is an important step to construct a positron age-momentum correlation (AMOC) spectrometer. The AMOC technique is especially suited for the observation of positron transitions between different states during their lifetime. The system performance was tested and the results were presented and discussed

  8. Instrumentation and control of the Doublet III Neutral Beam Injector System

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks.

  9. A portable data acquisition system on J.I.P.P. T-II ICRF experiment

    International Nuclear Information System (INIS)

    Hidekuma, S.

    1982-03-01

    This system has been developed for the data acquisition in the J.I.P.P. T-II ICRF experiment. It is composed of the LSI-11/2(56KB), a dual floppy disk drive, CAMAC modules, a graphic display and an interface module to the HITAC 10-II system. The operating system is RT-11. This system has functions of the data acquisition through A-D converters (max.32ch), the transfer of the data to the HITAC 10-II system and the preservation of them in its floppy disk. Furthermore, a user can easily develop his application programs with this system. The operating procedures of this system are described. (author)

  10. Instrumentation and control of the Doublet III Neutral Beam Injector System

    International Nuclear Information System (INIS)

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks

  11. WindoWorks: A flexible program for computerized testing of accelerator control system electronic circuit boards

    International Nuclear Information System (INIS)

    Utterback, J.

    1993-09-01

    Since most accelerator control system circuit boards reside in a commercial bus architecture, such as CAMAC or VMEbus, a computerized test station is needed for exercising the boards. This test station is needed for the development of newly designed prototypes, for commissioning newly manufactured boards, for diagnosing boards which have failed in service, and for long term testing of boards with intermittent failure problems. WindoWorks was created to address these needs. It is a flexible program which runs on a PC compatible computer and uses a PC to bus crate interface. WindoWorks was designed to give the user a flexible way to test circuit boards. Each test is incapsulated into a window. By bringing up several different windows the user can run several different tests simultaneously. The windows are sizable, and moveable. They have data entry boxes so that the test can be customized to the users preference. The windows can be used in conjunction with each other in order to create supertests. There are several windows which are generic. They can be used to test basic functions on any VME (or CAMAC) board. There are other windows which have been created to test specific boards. New windows for testing specific boards can be easily created by a Pascal programmer using the WindoWorks framework

  12. The TRISTAN control system

    International Nuclear Information System (INIS)

    Kurokawa, Shinichi; Akiyama, Atsuyoshi; Ishii, Kazuhiro; Kadokura, Eiichi; Katoh, Tadahiko; Kawamoto, Takashi; Kikutani, Eiji; Kimura, Yoshitaka; Koiso, Haruyo; Komada, Ichitaka; Kudo, Kikuo; Naito, Takashi; Oide, Katsunobu; Takeda, Shigeru; Uchino, Kenji; Urakawa, Junji; Shinomoto, Manabu; Kurihara, Michio; Abe, Kenichi

    1986-01-01

    The 8 GeV accumulation ring and the 30 GeV main ring of TRISTAN, an accelerator-storage ring complex at KEK, are controlled by a highly computerized control system. Twenty-four minicomputers are linked by optical fiber cables to form an N-to-N token ring network. The transmission speed on the cables is 10 Mbps. From each minicomputer, a CAMAC serial highway extends to the controlled equipment. At present, twenty minicomputers are connected to the network and are used to control the accumulation ring. The software system is based on the NODAL language devised at the CERN SPS. The KEK NODAL system retains main features of the original NODAL: the interpretive scheme, the multi-computer programming facility, and the data-module concept. In addition, it has the following features: (1) fast execution due to the compiler-interpreter method, (2) a multi-computer file system (3), a full-screen editing facility, and (4) a dynamic linkage scheme for data modules and NODAL functions. The accelerators are operated through five operator consoles, each of which is mangaged by one minicomputer in the network. An operator console contains two 20-inch high-resolution color graphic displays, a pair of touch-panels, and ten small TV monitors. One touch-panel is used to select a program and a piece of equipment to be controlled; the other is used mainly to perform the console actions. (orig.)

  13. Digital Low Level RF Systems for Fermilab Main Ring and Tevatron

    Science.gov (United States)

    Chase, B.; Barnes, B.; Meisner, K.

    1997-05-01

    At Fermilab, a new Low Level RF system is successfully installed and operating in the Main Ring. Installation is proceeding for a Tevatron system. This upgrade replaces aging CAMAC/NIM components for an increase in accuracy, reliability, and flexibility. These VXI systems are based on a custom three channel direct digital synthesizer(DDS) module. Each synthesizer channel is capable of independent or ganged operation for both frequency and phase modulation. New frequency and phase values are computed at a 100kHz rate on the module's Analog Devices ADSP21062 (SHARC) digital signal processor. The DSP concurrently handles feedforward, feedback, and beam manipulations. Higher level state machines and the control system interface are handled at the crate level using the VxWorks operating system. This paper discusses the hardware, software and operational aspects of these LLRF systems.

  14. Modular system for the control of complex accelerators using portable software

    International Nuclear Information System (INIS)

    von der Schmitt, H.; Aufhaus, H.

    1982-01-01

    When designing the Mainz Microtron control system, care was taken to achieve an expandable system with long-lived application software. A multi-processor system was built from the beginning. The software is split into modules, according to function and position in hierarchy, which are distributed over the computers. The decoupling which results from modularity eases software development and maintainance. RATFOR was chosen as implementation language. With a message system for communication between the modules, several aims were reached at once: (1) symbolic addressing of the accelerator components throughout the software layers, (2) transparent access to I/O devices (CAMAC) at remote computers, (3) multitasking in FORTRAN (and RATFOR) programs, (4) a separating layer for adaptation to different operating systems - essential points for software portability. The system is in operation since April 1979 for the control of MAMI stage I

  15. A modular multiple use system for precise time and frequency measurement and distribution

    Science.gov (United States)

    Reinhardt, V. S.; Adams, W. S.; Lee, G. M.; Bush, R. L.

    1978-01-01

    A modular CAMAC based system is described which was developed to meet a variety of precise time and frequency measurement and distribution needs. The system was based on a generalization of the dual mixer concept. By using a 16 channel 100 ns event clock, the system can intercompare the phase of 16 frequency standards with subpicosecond resolution. The system has a noise floor of 26 fs and a long term stability on the order of 1 ps or better. The system also used a digitally controlled crystal oscillator in a control loop to provide an offsettable 5 MHz output with subpicosecond phase tracking capability. A detailed description of the system is given including theory of operation and performance. A method to improve the performance of the dual mixer technique is discussed when phase balancing of the two input ports cannot be accomplished.

  16. The control system for the multiple-pellet injector on the Joint European Torus

    International Nuclear Information System (INIS)

    Baylor, L.R.; Jernigan, T.C.; Stewart, K.A.

    1989-01-01

    A stand-alone control and data acquisition system for the Oak Ridge National Laboratory (ORNL) multiple-pellet injector installed on the Joint European Torus (JET) has been designed and installed with the injector. This system, which is based on a MicroVAX II computer and a programmable logic controller (PLC), is an upgrade of previous systems designed for ORNL pellet injectors installed on other fusion experiments. The primary control system upgrades are in the user interface, in the automation of sequential injector operation, and in the analysis of the transient data acquired for each pellet fired. The system is integrated into the JET CODAS environment through CAMAC communications modules with customized communications software. Routine operation of the injector is automated and requires no operator intervention. Details of the hardware and software design and the operation of the system are presented in this paper. 4 refs., 3 figs

  17. The trigger and DAQ systems of the NA59 experiment

    CERN Document Server

    Ünel, Gokhan; Ballestrero, Sergio

    2004-01-01

    The NA59 experiment on the CERN SPS-H2 beam-line took data during the summers of 1999 and 2000 to perform intercalibration studies of polarization measurement and to test the use of an aligned crystal as a quarter-wave plate. The analysis revealed a proof of concept for the birefringence property of aligned crystals for photons in the 30-170 GeV energy range. The 90-m-long detector for this fixed target experiment had two independent readout schemes: one for more than 120 time-to-digital and analog-to-digital converter channels to obtain tracking and energy information; and another for the readout of the silicon strip detectors to improve vertex resolution. The readout electronics of the Na59 experiment was based on VMEbus and CAMAC systems. Novel data acquisition and online monitoring software were written to work on the commodity hardware (PCs) running mainly the Linux operating system. 21 Refs.

  18. Multimicroprocessor system for high-energy physics experiment applications

    International Nuclear Information System (INIS)

    Piska, K.; Falkenberg, W.; Glasneck, C.P.; Pflugbeil, W.

    1982-01-01

    An autonomous modular multicomputer system based on the INTEL 8080 for program development and for application to the high-energy physics experiment 'RISK' is presented. The associated microcomputers (a three-processor configuration is realized) with uniform software systems can perform, in parallel, the interactively-controlled processing and monitoring of data accessible in the common memory block coupled to the processors via the direct shared bus. Data are acquired into the common memory buffer by the main processor, which is linked by the CAMAC interface with the experimental apparatus and optionally with a large-size computer. One microcomputer can be connected with the magnetic tape unit used for data recording. (orig.)

  19. The magnet power control system for the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Bell, H.H.

    1983-01-01

    This paper describes the desktop computer/CAMAC based system that controls the power source for the Tandem Mirror Experiment-Upgrade (TMX-U) magnet power system. Presently it contains 42 dc rectifier power supplies connected to 24 magnet coils arranged in 17 circuits. During each shot, the system delivers 22.6 MW dc to the magnets for about 3 s. The system is presently being changed to add six power supplies, two solenoidal throttle coils, and two reverse C-coils. When complete, the delivered power will increase to 36.9 MW. The closed-loop control system usually provides current (and thus, magnetic field) that is within 1% of the requested current. Achieving this accuracy required using grounding, shielding, and isolation methods to reduce noise and related problems

  20. The orphee versatile low-cost multiprocessor system for data acquisition and control of neutron spectrometers

    International Nuclear Information System (INIS)

    Koskas, G.

    1988-01-01

    This paper describes the new data acquisition and control system of the neutron scattering instruments at the ORPHEE research reactor. The existing system has undergone a complete change: the original CAMAC system and minicomputer controlling each experiment have given way to commercial CPU boards and microcomputers like the IBM-PC. The communication links between these two components are the IEEE 488 or RS232 standards. Emphasis is placed on the flexibility and modular nature of such a system which makes a maximum use of commercial products thus guaranteeing reliability and ease of use. A study of the requirements and evolutions, technical as well as philosophical, is detailed to demonstrate the motivation of the choice of the system architecture. A survey of the various hardware and software achievements and finally an overview of future improvements is given

  1. Report on a field-portable VME-based distributed data acquisition system

    International Nuclear Information System (INIS)

    Drigert, M.W.; Cole, J.D.; Reber, E.L.; Young, J.M.

    1996-01-01

    A development effort was started two years ago to develop a portable data acquisition system which could be used for performing arms control verification and environmental monitoring measurements with complex multi-detector systems in the field. A field portable data acquisition system has been developed around a VMEbus based micro-processor and standard TCP/IP network protocols. The hardware consists of a compact VME crate and a single CAMAC crate containing the signal processing electronics. The component processes of the data acquisition system transfer control and event data over a set of TCP/IP socket connections. The use of network sockets for the interprocess communications allows the data acquisition system to be operated transparently on one workstation or on a number of workstations distributed around a local network

  2. An automated system for the correlation measurement of γ-quanta energy distribution

    International Nuclear Information System (INIS)

    Ofengenden, R.G.; Berezin, F.N.; Patlan', Yu.V.; Shalejko, A.M.; Shidlyk, A.M.; Shchur, A.M.

    1983-01-01

    Hardware and software are described in brief for an automated system, to measure the energy and time distributions of gamma-quanta, which ensures accumulation and preliminary processing of experimental data while realizing various physical techniques for investigation. The system is based on the SM-4 computer and electronic-physical equipment produced in the CAMAC standard. In the SM-4 computer the RAFOS operational system is employed which has some advantages in solving the tasks of multidimensional data acquisition and analysis, when a high response and real-time operation are reqUired. Certain components of soltware are worked oUt and included in the system: an operational system version with a larger set of drivers which is adapted to the equipment configuration used; library of macrodeterminations and service object library; subsystem of tuning and testing; subsystem of data acquisition and initial processing

  3. Computer control system of TRISTAN

    International Nuclear Information System (INIS)

    Kurokawa, Shin-ichi; Shinomoto, Manabu; Kurihara, Michio; Sakai, Hiroshi.

    1984-01-01

    For the operation of a large accelerator, it is necessary to connect an enormous quantity of electro-magnets, power sources, vacuum equipment, high frequency accelerator and so on and to control them harmoniously. For the purpose, a number of computers are adopted, and connected with a network, in this way, a large computer system for laboratory automation which integrates and controls the whole system is constructed. As a distributed system of large scale, the functions such as electro-magnet control, file processing and operation control are assigned to respective computers, and the total control is made feasible by network connection, at the same time, as the interface with controlled equipment, the CAMAC (computer-aided measurement and control) is adopted to ensure the flexibility and the possibility of expansion of the system. Moreover, the language ''NODAL'' having network support function was developed so as to easily make software without considering the composition of more complex distributed system. The accelerator in the TRISTAN project is composed of an electron linear accelerator, an accumulation ring of 6 GeV and a main ring of 30 GeV. Two ring type accelerators must be synchronously operated as one body, and are controlled with one computer system. The hardware and software are outlined. (Kako, I.)

  4. Data processing system for real-time control

    International Nuclear Information System (INIS)

    Oasa, K.; Mochizuki, O.; Toyokawa, R.; Yahiro, K.

    1983-01-01

    Real-time control, for large Tokamak JT-60, requires various data processings between diagnostic devices to control system. These processings require to high speed performance so that it aims at giving information necessary for feedback control during discharges. Then, the architecture of this system has hierachical structure of processors. These processors are connected each other by the CAMAC modules and the optical communication network, which is the 5 M bytes/second CAMAC serial highway. This system has two kinds of intelligences for this purpose. One is ACM-PU pairs in some torus hall crates which has a microcomputerized auxiliary controller and a preprocessing unit. Other is real-time processor which has a minicomputer and preprocessing unit. Most of the real-time processing, for example Abel inversion are characteristic to the diagnostic devices. Such a processing is carried out by an ACM-PU pair in the crate dedicated to the diagnostic device. Some processings, however, are also necessary which compute secondary parameters as functions of primary parameters. A typical example is Zeff, which is a function of Te, Ne and bremsstrahluny intensity. The real-time processor is equipped for such secondary processings and transfer the results. Preprocessing unit -PU- attached to ACM and real-time processor contains a signal processor, which executes in parallel such function as move, add and multiply during one micro-instruction cycle of 200 nsec. According to the progress of the experiment, more high speed processing are required, so the authors developed the PU-X module that contains multi signal processors. After a shot, inter-shot-processor which consists of general-purpose computers, gathers data into the database, then analyze them, and improve these processes to more effective

  5. KDAS: General-Purpose Data Acquisition System Developed for KAIST-Tokamak

    International Nuclear Information System (INIS)

    Seo, Seong-Heon; Choe, Wonho; Chang, Hong-Young; Jeong, Seung-Ho

    2000-01-01

    The Korea Advanced Institute of Science and Technology (KAIST)-Tokamak Data Acquisition System (KDAS) was originally developed for KAIST-Tokamak (R/a = 0.53 m/0.14 m). It operates on a distributed system based on personal computers and has a driver-based hierarchical structure. Since KDAS can be dynamically composed of any number of available computers, and the hardware-dependent codes can be thoroughly separated into external drivers, it exhibits excellent system performance flexibility and extensibility and can optimize various user needs. It collectively controls the VXI, CAMAC, GPIB, and RS232 instrument hybrids. With these useful and convenient features, it can be applied to any computerized experiment, especially to fusion-related research. The system design and features are discussed in detail

  6. Project of the JINR heavy ion synchrotron on-line control system

    International Nuclear Information System (INIS)

    Glejbman, Eh.M.; Zhabitskij, V.M.; Ivanov, I.N.

    1983-01-01

    Description of the project of the JINR heavy ion synchrotron (HIS) on-line control system (OCS) which is a strong-focusing synchrotron designed for avarage energies, is given. Complete average stream of data from HIS constitutes approximately 500 byte/s, when operation cycle is 0.33 s. The structure of HIS OCS is a two-hierarchy system with the distributed processing and control, built using modular principle. The first, lower hierarchy level forms eight subsystems, each of them is oriented for automation of concrete functionally-technological system of the accelerator. The higher hierarchy is the central complex computer which is a multimicroprocessor computer. The hardware of HIS OCS is envisaged to be realized on the base of CAMAC moduls. HIS OCS software will be disigned as the SM computer specialized real-time system supplemented with applied programs and language interpreter for the accelerator control

  7. Old Wine in New Bottles-The SPEAR Control System Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rarback, Harvey

    1999-10-19

    The control systems for the SPEAR storage ring and injector were designed almost two decades ago and have worked reliably for us. Both systems are heavily dependent on the OpenVMS operating system and CAMAC. The realtime data reside in shared memory on a single computer for each control system. In order to use more modern client tools while preserving our investment in the hardware and software, we have installed an EPICS Portable Channel Access Server (CAS) on the control computers. The CAS will serve the existing realtime data as EPICS Process Variables (PVs) and allow us to use client tools like dm2k and IDL running on other workstations to more easily build new operator interfaces and develop accelerator physics programs. The CAS will also provide the infrastructure to help integrate new hardware controlled by EPICS Input/Output Controllers (IOCs).

  8. On-line computer system applied in a nuclear chemistry laboratory

    International Nuclear Information System (INIS)

    Banasik, Z.; Kierzek, J.; Parus, J.; Zoltowski, T.; Zalewski, J.

    1980-01-01

    A PDP-11/45 based computer system used in a radioanalytical chemical laboratory is described. It is mainly concerned with spectrometry of ionizing radiation and remote measurement of physico-chemical properties. The objectives in mind when constructing the hardware inter-connections and developing the software of the system were to minimize the work of the electronics and computer personnel and to provide maximum flexibility for the users. For the hardware interfacing, 3 categories of equipment are used: - LPS-11 Laboratory Peripheral System - CAMAC system with CA11F-P controller - interfaces from instrument manufacturers. Flexible operation has been achieved by using a 3-level programming structure: - data transfer by assembly language programs - data formatting using bit operations in FORTRAN - data evaluation by procedures written in FORTRAN. (Auth.)

  9. Use of the PASKAL' language for programming in experiment automation systems

    International Nuclear Information System (INIS)

    Ostrovnoj, A.I.

    1985-01-01

    A complex of standard solutions intended for realization of the main functions is suggested; execution of these solutions is provided by any system for experiment automation. They include: recording and accumulation of experimental data; visualization and preliminary processing of incoming data, interaction with the operator and system control; data filing. It is advisable to use standard software, to represent data processing algorithms as parallel processes, to apply the PASCAL' language for programming. Programming using CAMAC equipment is provided by complex of procedures similar to the set of subprograms in the FORTRAN language. Utilization of a simple data file in accumulation and processing programs ensures unified representation of experimental data and uniform access to them on behalf of a large number of programs operating both on-line and off-line regimes. The suggested approach is realized when developing systems on the base of the SM-3, SM-4 and MERA-60 computers with RAFOS operating system

  10. A computer-based spectrometry system for assessment of body radioactivity

    International Nuclear Information System (INIS)

    Venn, J.B.

    1985-01-01

    This paper describes a PDP-11 computer system operating under RT-11 for the acquisition and processing of pulse height spectra in the measurement of body radioactivity. SABRA (system for the assessment of body radioactivity) provides control of multiple detection systems from visual display consoles by means of a command language. A wide range of facilities is available for the display, processing and storage of acquired spectra and complex operations may be pre-programmed by means of the SABRE MACRO language. The hardware includes a CAMAC interface to the detection systems, disc cartridge drives for mass storage of data and programs, and data-links to other computers. The software is written in assembler language and includes special features for the dynamic allocation of computer memory and for safeguarding acquired data. (orig.)

  11. Moscow University race-track microtron control system: ideas and development

    International Nuclear Information System (INIS)

    Chepurnov, A.S.; Gribov, I.V.; Morozov, S.Yu.; Shumakov, A.V.; Zinoviev, S.V.

    1992-01-01

    Moscow University race-track microtron (RTM) control system is a star-shape network of LSI-11 compatible microcomputers. Each of them is connected with RTM systems via CAMAC; optical fiber coupling is also used. Control system software is designed on Pascal-1, supplemented with real time modules and Macro. A unified real time technique and reenterable data acquisition drivers allow to simplify development of control drivers and algorithms. Among the latter three main types are used: DDC methods, those, based on optimization technique and algorithms, applying models of microtron's systems. Man-machine interface is based on concept of the 'world of accelerator'. It supports means to design, within hardware possibilities, various computer images of the RTM. (author)

  12. Frequency to digital converter for IUAC Linac control system

    International Nuclear Information System (INIS)

    Jain, Mamta; Subramaiam, E.T.; Sahu, B.K.

    2015-01-01

    A frequency to digital converter CAMAC module has been designed and developed for LINAC control systems. This module is used to see the frequency difference of master clock and the resonator frequency digitally without using the oscilloscope. Later on this can be used for automatic tuning and locking of the cavities using piezoelectric actuator based tunner control. This module has eight independent channels to fulfill the need of all the eight cavities of the cryostat. A Schmitt trigger along with level converaccepts almost any form of pulse train, with 30 Vp-p. The time period is measured by counters clocked from a high resolution clock (10 MHz +/- 250 ps). The counter values are cross checked at both the input levels. Frequency is obtained from the computed time period by a special divisor core implemented inside the FPGA. The major task was the implementation of eight individual divisor cores and routing inside one Spartan 3s500E FPGA chip

  13. Automatic generation of configuration files for a distributed control system

    CERN Document Server

    Cupérus, J

    1995-01-01

    The CERN PS accelerator complex is composed of 9 interlinked accelerators for production and acceleration of various kinds of particles. The hardware is controlled through CAMAC, VME, G64, and GPIB modules, which in turn are controlled by more than 100 microprocessors in VME crates. To produce startup files for all these microprocessors, with the correct drivers, programs and parameters in each of them, is quite a challenge. The problem is solved by generating the startup files automatically from the description of the control system in a relational database. The generation process detects inconsistencies and incomplete information. Included in the startup files are data which are formally comments, but can be interpreted for run-time checking of interface modules and program activity.

  14. RZP 202 - a modular system for surface density measurement

    International Nuclear Information System (INIS)

    Severa, L.; Merinsky, J.

    The sensing element is an ionization chamber of the type that has maximum sensitivity to beta radiation of the used radionuclide ( 147 Pm, 85 Kr, 90 Sr- 90 Y) or to gamma radiation of radionuclide 241 Am. Collimation shields were developed for the said sources. Measurement of the ionization currents is made with an electrometer with a vibration capacitor. Invariable configuration is secured by a measuring arm. The modular units are of the CAMAC system design. The surface density meters measure deviations from the rated surface density. The scale for inputting surface density is linear. The configuration, functional continuity of the individual parts and the possibility of variant designs of surface density meters are described and the technical parameters of RZP 202 and its configuration and design are given

  15. Multiple-user data acquisition and analysis system

    International Nuclear Information System (INIS)

    Manzella, V.; Chrien, R.E.; Gill, R.L.; Liou, H.I.; Stelts, M.L.

    1981-01-01

    The nuclear physics program at the Brookhaven National Laboratory High Flux Beam Reactor (HFBR) employs a pair of PDP-11 computers for the dual functions of data acquisition and analysis. The data acquisition is accomplished through CAMAC and features a microprogrammed branch driver to accommodate various experimental inputs. The acquisition computer performs the functions of multi-channel analyzers, multiscaling and time-sequenced multichannel analyzers and gamma-ray coincidence analyzers. The data analysis computer is available for rapid processing of data tapes written by the acquisition computer. The ability to accommodate many users is facilitated by separating the data acquisition and analysis functions, and allowing each user to tailor the analysis to the specific requirements of his own experiment. The system is to be upgraded soon by the introduction of a dual port disk to allow a data base to be available to each computer

  16. Data acquisition system for MEGHA

    International Nuclear Information System (INIS)

    Chappell, S.P.G.; Hunt, R.A.; Smith, D.; Rae, W.D.M.; Clarke, N.M.; Freer, M.; Fulton, B.R.; Jagpal, S.S.; Singer, S.M.; Watson, D.L.

    2000-01-01

    A multi-channel data acquisition system has been commissioned for the Charissa 'MEGHA' detector array. It is designed to read multiparameter events where there are many potential channels (320) but where only a fraction of these are active in any typical event. Custom-built pre- and main amplifiers process the amplitude (energy) signal from each detector and the system records both amplitude and time of arrival for each signal within an event. The signal amplitude is converted to time using the standard Wilkinson technique and then combined with its time of arrival into a single time trace. These traces are converted by multi-hit TDCs, which only convert the active channels and thus reduce the processing load. Additional custom-built CAMAC modules organise the TDC output into a suitable form for storage and transmission to a network of processor terminals over standard ethernet. This paper presents a description of the data acquisition system from preamplifier through to final storage in a VME-based system and subsequent distribution to a network of Sun terminals over ethernet. The system performance is illustrated with results from heavy-ion elastic scattering recorded with position sensitive strip detectors

  17. A powerful modular versatile and low cost multiprocessor system for data acquisition and control of neutron spectrometers

    International Nuclear Information System (INIS)

    Koskas, G.

    1987-04-01

    This paper describes the new data acquisition and control systems of the neutron scattering instruments at the ORPHEE research reactor. The existing system has undergone a complete change: the original CAMAC system and minicomputer controlling each experiment have given way to commercial CPU boards and microcomputers like the IBM PC. The communication links between these 2 components are the IEEE 488 or RS 232 standards. Emphasis is placed on flexibility and modular nature of such a system which makes a maximum use of commercial products thus guaranteeing reliability and ease of use. A study of the requirements and evolutions, technical as well as philosophical, is detailed in order to demonstrate the motivation of the choice of the system architecture. A survey of the various hardware and software achievements and finally an overview on the future improvements is given [fr

  18. A rule-based computer control system for PBX-M neutral beams

    International Nuclear Information System (INIS)

    Frank, K.T.; Kozub, T.A.; Kugel, H.W.

    1987-01-01

    The Princeton Beta Experiment (PBX) neutral beams have been routinely operated under automatic computer control. A major upgrade of the computer configuration was undertaken to coincide with the PBX machine modification. The primary tasks included in the computer control system are data acquisition, waveform reduction, automatic control and data storage. The portion of the system which will remain intact is the rule-based approach to automatic control. Increased computational and storage capability will allow the expansion of the knowledge base previously used. The hardware configuration supported by the PBX Neutral Beam (XNB) software includes a dedicated Microvax with five CAMAC crates and four process controllers. The control algorithms are rule-based and goal-driven. The automatic control system raises ion source electrical parameters to selected energy goals and maintains these levels until new goals are requested or faults are detected

  19. A flexible LabVIEWTM-based data acquisition and analysis system for scanning microscopy

    International Nuclear Information System (INIS)

    Morse, Daniel H.; Antolak, Arlyn J.; Bench, Graham S.; Roberts, Mark L.

    1999-01-01

    A new data analysis system has been developed with computer-controlled beam and sample positioning, video sample imaging, multiple large solid angle detectors for X-rays and gamma-rays, and surface barrier detectors for charged particles. The system uses the LabVIEW TM programming language allowing it to be easily ported between different computer operating systems. In the present configuration, digital signal processors are directly interfaced to a SCSI CAMAC controller. However, the modular software design permits the substitution of other hardware with LabVIEW-supported drivers. On-line displays of histogram and two-dimensional elemental map images provide a user-friendly data acquisition interface. Subregions of the two-dimensional maps may be selected interactively for detailed analysis or for subsequent scanning. Off-line data processing of archived data currently yields elemental maps, analyzed spectra and reconstructions of tomographic data

  20. A flexible Labviewtrademark-based data acquisition and analysis system for scanning microscopy

    International Nuclear Information System (INIS)

    Morse, Daniel H.; Antolak, Arlyn J.; Bench, Graham S.; Roberts, Mark L.

    1998-01-01

    A new data analysis system has been developed with computer-controlled beam and sample positioning, video sample imaging, multiple large solid angle detectors for x-rays and gamma-rays, and surface barrier detectors for charged particles. The system uses the LabVIEWtrademark programming language allowing it to be easily ported between different computer operating systems. In the present configuration, digital signal processors are directly interfaced to a SCSI CAMAC controller. However, the modular software design permits the substitution of other hardware with LabVIEW-supported drivers. On-line displays of histogram and two-dimensional elemental map images provide a user-friendly data acquisition interface. Subregions of the two-dimensional maps may be selected interactively for detailed analysis or for subsequent scanning. Off-line data processing of archived data currently yields elemental maps, analyzed spectra and reconstructions of tomographic data

  1. Development of control and data processing system for CO{sub 2} laser interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Shinichi; Kawano, Yasunori; Tsuchiya, Katsuhiko; Inoue, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-11-01

    CO{sub 2} laser interferometer diagnostic has been operating to measure the central electron density in JT-60U plasmas. We have developed a control and data processing system for the CO{sub 2} laser interferometer with flexible functions of data acquisition, data processing and data transfer in accordance with the sequence of JT-60U discharges. This system is mainly composed of two UNIX workstations and CAMAC clusters, in which the high reliability was obtained by sharing the data process functions to the each workstations. Consequently, the control and data processing system becomes to be able to provide electron density data immediately after a JT-60U discharge, routinely. The realtime feedback control of electron density in JT-60U also becomes to be available by using a reference density signal from the CO{sub 2} laser interferometer. (author)

  2. Development of control and data processing system for CO2 laser interferometer

    International Nuclear Information System (INIS)

    Chiba, Shinichi; Kawano, Yasunori; Tsuchiya, Katsuhiko; Inoue, Akira

    2001-11-01

    CO 2 laser interferometer diagnostic has been operating to measure the central electron density in JT-60U plasmas. We have developed a control and data processing system for the CO 2 laser interferometer with flexible functions of data acquisition, data processing and data transfer in accordance with the sequence of JT-60U discharges. This system is mainly composed of two UNIX workstations and CAMAC clusters, in which the high reliability was obtained by sharing the data process functions to the each workstations. Consequently, the control and data processing system becomes to be able to provide electron density data immediately after a JT-60U discharge, routinely. The realtime feedback control of electron density in JT-60U also becomes to be available by using a reference density signal from the CO 2 laser interferometer. (author)

  3. The Linux based distributed data acquisition system for the ISTRA+ experiment

    International Nuclear Information System (INIS)

    Filin, A.; Inyakin, A.; Novikov, V.; Obraztsov, V.; Smirnov, N.; Vlassov, E.; Yuschenko, O.

    2001-01-01

    The DAQ hardware of the ISTRA+ experiment consists of the VME system crate that contains two PCI-VME bridges interfacing two PCs with VME, external interrupts receiver, the readout controller for dedicated front-end electronics, the readout controller buffer memory module, the VME-CAMAC interface, and additional control modules. The DAQ computing consist of 6 PCs running the Linux operating system and linked into LAN. The first PC serves the external interrupts and acquires the data from front-end electronic. The second one is the slow control computer. The remaining PCs host the monitoring and data analysis software. The Linux based DAQ software provides the external interrupts processing, the data acquisition, recording, and distribution between monitoring and data analysis tasks running at DAQ PCs. The monitoring programs are based on two packages for data visualization: home-written one and the ROOT system. MySQL is used as a DAQ database

  4. Automated IBM PC/XT/AT based measurement and control system for the DRON-3M X-ray diffractometer

    International Nuclear Information System (INIS)

    Tulaev, A.B.

    1989-01-01

    An automated IBM PC/XT/AT based measurement and control system for the DRON-3M X-ray diffractometer is decribed. The system permits carrying out of real time diffractometer control automatic X-spectra measurement and data acquisition, as well as experimental information computing and representation. The electronic of the system consists of a CAMAC crate with analog and power modules, and a control and measurement organization module, performed as a single bord in the standard of PC electronics. The system provides X-spectra acquisition with volume up to 4K in the angle range from 100 to 160 degrees with a resolution of 0.01 degree, a dead time less than 1mks and an exposition time from tenths of a second to dozens of minutes. 3 refs.; 5 figs

  5. SABRE: a computer-based system for the assessment of body radioactivity by photon spectrometry. Part 4

    International Nuclear Information System (INIS)

    Venn, J.B.

    1982-02-01

    A PDP-11/10 computer system is described for the acquisition and processing of pulse height spectra from detectors used for the measurement of body radioactivity. Version 4 of SABRE (System for the Assessment of Body Radioactivity) provides control of multiple detection systems from visual display consoles by means of a command language. A wide range of facilities is available for the display, processing and storage of acquired spectra and complex operations may be pre-programmed by means of the SABRE MACRO language. The hardware includes a CAMAC interface to the detection systems, disc cartridge drives for mass storage of data and programs, and data-links to other computers. The software is written in assembler language and includes special features for the dynamic allocation of computer memory and for safeguarding acquired data. (author)

  6. Fast multichannel analog storage system

    International Nuclear Information System (INIS)

    Freytag, D.R.

    1982-11-01

    A Multichannel Analog Storage System based on a commercial 32-channel parallel in/serial out (PISO) analog shift register is described. The basic unit is a single width CAMAC module containing 512 analog cells and the associated logic for data storage and subsequent readout. At sampling rates of up to 30 MHz the signals are strobed directly into the PISO. At higher rates signals are strobed into a fast presampling stage and subsequently transferred in block form into an array of PISO's. Sampling rates of 300 MHz have been achieved with the present device and 1000 MHz are possible with improved signal drivers. The system is well suited for simultaneous handling of many signal channels with moderate numbers of samples in each channel. RMS noise over full scale signal has been measured as 1:3000 (approx. = 11 bit). However, nonlinearities in the response and differences in sensitivity of the analog cells require an elaborate calibration system in order to realize 11 bit accuracy for the analog information

  7. Development of a system of measuring double-differential cross sections for proton-induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Harada, M.; Watanabe, Y.; Sato, K. [Kyushu Univ., Fukuoka (Japan); Meigo, S.

    1997-03-01

    We report the present status of a counter telescope and a data acquisition system which are being developed for the measurement of double-differential cross sections of all light-charged particles emitted from proton-induced reactions on {sup 12}C at incident energies less than 90 MeV. The counter telescope consists of an active collimator made of a plastic scintillator, two thin silicon {Delta}E-detectors and a CsI(Tl) E-detectors with photo-diode readout. Signals from each detector are processed using the data acquisition system consisting of the front-end electronics (CAMAC) and two computers connected with the ethernet LAN: a personal computer as the data collector and server, and a UNIX workstation as the monitor and analyzer. (author)

  8. Proposed data acquisition system for an associated particle neutron generator and a LYSO gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kwang Pyo; Sim, Cheul Muu; Em, V. T.; Lee, Seung Wook; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Park, Seong Yong; Park, Jin; Kim, Hee Jung [Kyungwon Enterprise, Seoul (Korea, Republic of)

    2005-07-01

    A data acquisition system has been designed that deals with essentially two signals: a sharp timing pulse (with a width of roughly 20 nanoseconds) from a Hamamatsu H6568 square photomultiplier tube utilizing a 16-pixel ZnO(Ga) phosphor-coated alpha particle detector, and a long energy pulse (with a falltime of roughly 200 microseconds) from a LYSO detector designed for extreme precision in measuring the energy of gamma rays. These two detectors have been selected because they exhibit ideal characteristics for the ultimate goal of this system: detection and identification of drugs, explosives, and chemical warfare agents at a comparably very high rate of speed while maintaining reliable decision-making capacity. The entire data acquisition Will be designed and each component Will be specified with a commercially-available electronic module utilizing a VME bus or high speed CAMAC.

  9. Data acquisition and analysis system for the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Milner, W.T.; Biggerstaff, J.A.; Hensley, D.C.; Sayer, R.O.

    1979-01-01

    The Holifield Heavy Ion Research Facility is a national resource which will serve a large number of nuclear and atomic physicists who expect to perform experiments which vary widely in type and complexity. Although much consideration must be given to the problem of rapid acquisition and processing of many-parameter data, an equal emphasis will be placed on operational simplicity and the standardization of hardware and software. Two active experimental counting areas and two or more setup areas are served by three remotely located Perkin--Elmer 8/32 computers which are interfaced to the user equipment by means of three CAMAC branch highways. Other equipment includes a large disk system, alphanumeric/graphic terminals and printer--plotters located in each of the counting areas. The system operation as well as techniques for the rapid sorting of data into large (approx. 10 million channels) histograms on disk are discussed

  10. Main results on the RF amplitude and phase regulation systems in operation at GANIL

    International Nuclear Information System (INIS)

    Joubert, A.; Ducoudret, B.; Labiche, J.C.; Loyant, J.M.

    1984-06-01

    The general features of the amplitude and phase regulations and their control systems are briefly reviewed. These feedback control systems are fully under the control of the main computer aided by dedicated CAMAC microprocessors for actions such as starting, parameters tuning or phase stability surveying. Numerous results obtained with spectrum analysis method give the actual RF purity and the residual modulation and crossmodulation noise level for all RF signals picked up in the RF resonators. A typical value for the noise immunity is 80 dB below the carrier at 100 Hz deviation. Another set of results gives the actual long term phase drift between resonators (< 0.2 RF degree within 6 hours). The stability of the RF phases is confirmed by on line beam phase measurements

  11. A data acquisition system for the wide angle shower apparatus (WASA)

    International Nuclear Information System (INIS)

    Gustafsson, L.; Carius, S.; Fransson, K.; Sukhanov, A.

    1994-01-01

    A new data acquisition system based on concepts such as data switches and multiple-processors is described. The main topic is how data coming from a multicrate front-end in CAMAC, VME and FASTBUS are transported over different links to a buffer-matrix data switch and further into a farm of microprocessors. Modularity, scalability and multilevel data monitoring are important parts of the design goals that are presented. The system is intended for use in an experiment searching for rare events where high interaction rates are necessary and where a fast and selective trigger is difficult to define. Other experimental constraints, the trigger logical structure and the performance of the data acquisition are also described

  12. Micron system for automatization and analysis of measurements in nuclear photoemulsion

    International Nuclear Information System (INIS)

    Dajon, M.I.; Kotel'nikov, K.A.; Martynov, A.G.; Rappoport, V.M.; Smirnitskij, V.A.; Ozerskij, M.A.

    1987-01-01

    The automatized ''Micron'' system designed for measuring, processing and analyzing events in nuclear photoemulsion is described. The flowsheets of the device, program packages for searching neutrino interactions in nuclear photoemulsion and plotting target diagrams in X-ray emulsion chambers are presented. The ''Micron'' system consists of the following functional units: a three-coordinate measuring microscope MPEh-11 combined with a coordinate recording unit, designed for measuring coordinates of grains in the emulsion and displaying them on a peripheral, a control unit based on ''Elektronika-60'' microcomputer, a controller KK-60 for connecting the CAMAC highway, an analog-to-digital display with the keyboard. The PDP-11/70 is the basic computer. The event of charmed Λ c + barion production followed by the Λ c + →Σ + π + π - decay observed in nuclear photoemulsion is described

  13. Software data acquisition system for the ''Chateau de Cristal'' multicounter 74 BaF2

    International Nuclear Information System (INIS)

    Adzama, G.

    1985-01-01

    The ''Chateau de Cristal'' is a 74 BaF2 detector assembly. Other detectors such as Ge (up to 12) and particle detectors can be added to this multidetector. The data acquisition system hardware and software are implemented in 3 VME crates. The operating system is handled by 68000 Motorola microprocessors. This work is dedicated to the initialization and control tasks of the multidetector. Handling of high voltage power supply for the 74 BaF2 detectors via a RS 232 C serial port, CAMAC initialization for the ADC 4300 Lecroy and DFC modules, data exchange between the 3 VME crates and automatic energy calibration for the BaF2 detectors. All the software is written in 68000 Motorola assembly language [fr

  14. A real-time data-acquisition and analysis system with distributed UNIX workstations

    International Nuclear Information System (INIS)

    Yamashita, H.; Miyamoto, K.; Maruyama, K.; Hirosawa, H.; Nakayoshi, K.; Emura, T.; Sumi, Y.

    1996-01-01

    A compact data-acquisition system using three RISC/UNIX TM workstations (SUN TM /SPARCstation TM ) with real-time capabilities of monitoring and analysis has been developed for the study of photonuclear reactions with the large-acceptance spectrometer TAGX. One workstation acquires data from memory modules in the front-end electronics (CAMAC and TKO) with a maximum speed of 300 Kbytes/s, where data size times instantaneous rate is 1 Kbyte x 300 Hz. Another workstation, which has real-time capability for run monitoring, gets the data with a buffer manager called NOVA. The third workstation analyzes the data and reconstructs the event. In addition to a general hardware and software description, priority settings and run control by shell scripts are described. This system has recently been used successfully in a two month long experiment. (orig.)

  15. Control system reliability at Jefferson Lab

    International Nuclear Information System (INIS)

    White, K.S.; Areti, H.; Garza, O.

    1997-01-01

    At Thomas Jefferson National Accelerator Facility (Jefferson Lab), the availability of the control system is crucial to the operation of the accelerator for experimental programs. Jefferson Lab's control system, uses 68040 based microprocessors running VxWorks, Unix workstations, and a variety of VME, CAMAC. GPIB, and serial devices. The software consists of control system toolkit software, commercial packages, and over 200 custom and generic applications, some of which are highly complex. The challenge is to keep this highly diverse and still growing system, with over 162,000 control points, operating reliably, while managing changes and upgrades to both the hardware and software. Downtime attributable to the control system includes the time to troubleshoot and repair problems and the time to restore the machine to operation of the scheduled program. This paper describes the availability of the control system during the last year, the heaviest contributors to downtime and the response to problems. Strategies for improving the robustness of the control system am detailed and include changes in hardware, software, procedures and processes. The improvements range from the routine preventive hardware maintenance, to improving their ability to detect, predict and prevent problems. This paper also describes the software tools used to assist in control system troubleshooting, maintenance and failure recovery processes

  16. A distributed real-time system for event-driven control and dynamic data acquisition on a fusion plasma experiment

    International Nuclear Information System (INIS)

    Sousa, J.; Combo, A.; Batista, A.; Correia, M.; Trotman, D.; Waterhouse, J.; Varandas, C.A.F.

    2000-01-01

    A distributed real-time trigger and timing system, designed in a tree-type topology and implemented in VME and CAMAC versions, has been developed for a magnetic confinement fusion experiment. It provides sub-microsecond time latencies for the transport of small data objects allowing event-driven discharge control with failure counteraction, dynamic pre-trigger sampling and event recording as well as accurate simultaneous triggers and synchronism on all nodes with acceptable optimality and predictability of timeliness. This paper describes the technical characteristics of the hardware components (central unit composed by one or more reflector crates, event and synchronism reflector cards, event and pulse node module, fan-out and fan-in modules) as well as software for both tests and integration on a global data acquisition system. The results of laboratory operation for several configurations and the overall performance of the system are presented and analysed

  17. Status of JT-60 data processing system

    International Nuclear Information System (INIS)

    Matsuda, T.; Tsugita, T.; Oshima, T.; Sakata, S.; Sato, M.; Koiwa, M.; Aoyagi, T.

    2000-01-01

    The JT-60 data processing system is a large computer complex and gradually modernized by utilizing progressing computer and network technology. There are two major changes in our system. A main computer of FACOM M-780 has been replaced with compatible GS8300 using state-of-art CMOS technology, which results in lower power and space usage with nearly the same performance. Now it can handle ∼500 MB of data per discharge. A gigabit ethernet switch with FDDI ports has been introduced to cope with the increase of handling data. The switch will connect a tera-byte (TB) data server at the bandwidth of a gigabit per second with the main computer and many data acquisition workstations. Other developments in our system are the realization of three workstation-based plans, the TB data server, the VME-based fast data acquisition system and a CICU. The TB data server is basically a UNIX workstation with ∼100 GB RAID disks and ∼900 GB MO auto-exchangers. The VME-based fast data acquisition system has been developed to enlarge the present TMDS. The CICU, which has a function of interfacing the main computer with the CAMAC system, has been replaced with the workstation-based system after the fine tuning

  18. Updated overview of the Tevatron control system

    International Nuclear Information System (INIS)

    Lucas, P.

    1987-10-01

    A single unified control system is used for all of the Fermilab accelerators and storage rings, from the LINAC to the Tevatron and antiproton source. A review of the general features is given - these include a 'host' system consisting of a number of minicomputers integrated with many distributed microprocessors in a variety of subsystems, usage of an in-house developed protocol, GAS, for communication between the two classes of machines, and a Parameter Page program, designed in conjunction with the system database, which allows a wide variety of quantities to be read and set in a coherent fashion. Recent developments include the implementation of a block transfer and 'fast time plot' facility through CAMAC, inclusion of several new computers in the host, a better understanding of system throughput, greatly improved reliability, advent of programs which sequence a large number of independent operations, and the construction of new hardware subsystems. Possible future system upgrades will be briefly presented. A summary of the utilization of a quite large software staff, at a time when the system is no longer under construction, will be discussed

  19. Final report on the FMIT Control System

    International Nuclear Information System (INIS)

    Johnson, J.A.

    1985-01-01

    The computer control system for the Fusion Materials Irradiation Test Facility (FMIT) prototype accelerator was designed using distributed intelligence driven by a distributed database. The system consists of two minicomputers in the central control room and four microcomputers residing in CAMAC crates located near appropriate subsystems of the accelerator. The system uses single vendor hardware as much as practical in an attempt to minimize the maintenance problems. Local control consoles are an integral part of each node computer to provide subsystem check-out. The main console is located in the central control room and permits one-point operation of the complete control system. Automatic surveillance is provided for each data channel by the node computer with out-of-bounds alarms sent to the main console. Report by exception is used for data logging. This control system has been operational for two years. The computers are too heavily loaded and the operator response is slower than desired. A system upgrade to a faster local-area network has been undertaken and is scheduled to be operational by conference time

  20. Independent measuring station for the GNEJS neutron spectrometer information and measurement system

    International Nuclear Information System (INIS)

    Gorokhov, I.S.; Laptev, A.B.; Marchenkov, V.V.; Tubol'tsev, Yu.V.; Fokin, E.Yu.; Shcherbakov, O.A.

    1984-01-01

    An independent measuring station (IMS) being a part of the information and measuring system of the neutron time-of-flight spectrometer is described. IMS represents the time (time-to-amplitude or time-to-angular) module analyzer assembled on the base of one or several CAMAC crates. The station permits to perform time measurements as well as the time measurements with amplitude weighing in an independent mode with subseqUent data transmission the central PDP-11/05 computer. The station processor unit is an independent controller. The software consists of the programming langUage of the controller from local terminal and programs ensuring measuring and shaping the spectra with their output on TV display devic. communication with the computer and dialogue with the operator

  1. Minus 3: a general purpose data acquisition system at LBL's 88''-cyclotron and superhilac

    International Nuclear Information System (INIS)

    Maples, C.; Sivak, J.

    1979-05-01

    MINUS 3 is a general, multi-tasked data acquisition package operating on the ModComp IV/25 computers at both the 88''-Cyclotron and SuperHILAC. It currently can acquire data via three different channels: interrupt; serial DMA link; and remote slave units for histogram type data. Two additional acquisition paths, CAMAC (with programmable differential branch drivers) and MODACS (for multiple CPU linkages and control) are scheduled to be added in the near future. The package operates in a prioritized, time-available mode which permits it to dynamically adapt to microscopic data rate structures due to beam characteristics at different accelerators. Special hardware has been added to the graphics system to provide enhanced high-speed interactive capability. The program framework is also designed as a parasitic environment in which users may, in parallel, attach their own specialized and independent code

  2. Some selection criteria for computers in real-time systems for high energy physics

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1980-01-01

    The right choice of program source is for the organization of real-time systems of great importance as cost and reliability are decisive factors. Some selection criteria for program sources for high energy physics multiwire chamber spectrometers (MWCS) are considered in this report. MWCS's accept bits of information from event pattens. Large and small computers, microcomputers and intelligent controllers in CAMAC crates are compared with respect to the following characteristics: data exchange speed, number of addresses for peripheral devices, cost of interfacing a peripheral device, sizes of buffer and mass memory, configuration costs, and the mean time between failures (MTBF). The results of comparisons are shown by plots and histograms which allow the selection of program sources according to the above criteria. (Auth.)

  3. Research and development on a sub 100 PICO second time-of-flight system based on silicon avalanche diodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y.; Hirsch, A.; Hauger, A.; Scharenberg, R.; Tincknell, M. [Purdue Univ., West Lafayette, IN (United States); Rai, G. [Lawrence Berkeley Lab., CA (United States)

    1991-12-31

    Particle identification requires a momentum measurement and a second independent determination either energy loss (dE/dx) or time of flight (TOF). To cover a momentum range from 0.1 GeV/c to 1.5 GeV/c in the STAR detector requires both the dE/dx and TOF techniques. This research is designed to develop the avalanche diode (AVD) detectors for TOF systems and evaluate their performance. The test of a small prototype system would be carried out at Purdue and at accelerator test beam sites. The Purdue group has developed a complete test setup for evaluating the time resolution of the AVD`s which includes fast-slow electronic channels, CAMAC based electronic modules and a temperature controlled environment. The AVDs also need to be tested in a 0.5 tesla magnetic field. The Purdue group would augment this test set up to include a magnetic field.

  4. Overview of data acquisition system for SST-1 diagnostics

    International Nuclear Information System (INIS)

    Sharma, Manika; Mansuri, Imran; Raval, Tushar; Sharma, A.L; Pradhan, S.

    2016-01-01

    Highlights: • An account of architecture and data acquisition activities of SST-1 data acquisition system (DAS) for SST-1 diagnostics and subsystems. • PXI based Data acquisition system and CAMAC based Data acquisition system for slow and fast plasma diagnostics. • SST-1 DAS interface and its communication with SST-1 central control system. Integration of SST-1 DAS with timing system. • SST-1 DAS data archival and data analysis. - Abstract: The recent first phase operations of SST-1 in short pulse mode have provided an excellent opportunity for the essential initial tests and benchmark of the SST-1 Data Acquisition System. This paper describes the SST-1 Data Acquisition systems (DAS), which with its heterogeneous composition and distributed architecture, aims to cover a wide range of slow to fast channels interfaced with a large set of diagnostics. The DAS also provides the essential user interface for data acquisition to cater both on and off-line data usage. The central archiving and retrieval service is based on a dual step architecture involving a combination of Network Attached Server (NAS) and a Storage Area Network (SAN). SST-1 Data Acquisition Systems have been reliably operated in the SST-1 experimental campaigns. At present different distributed DAS caters the need of around 130 channels from different SST-1 diagnostics and its subsystems. PXI based DAS and CAMAC based DAS have been chosen to cater the need, with sampling rates varying from 10Ksamples/sec to 1Msamples/sec. For these large sets of channels acquiring from individual diagnostics and subsystems has been a combined setup, subjected to a gradual phase of optimization and tests resulting into a series of improvisations over the recent operations. In order to facilitate a reliable data acquisition, the model further integrates the objects of the systems with the Central Control System of SST-1 using the TCP/IP communication. The associated DAS software essentially addresses the

  5. Overview of data acquisition system for SST-1 diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Manika, E-mail: bithi@ipr.res.in; Mansuri, Imran; Raval, Tushar; Sharma, A.L; Pradhan, S.

    2016-11-15

    Highlights: • An account of architecture and data acquisition activities of SST-1 data acquisition system (DAS) for SST-1 diagnostics and subsystems. • PXI based Data acquisition system and CAMAC based Data acquisition system for slow and fast plasma diagnostics. • SST-1 DAS interface and its communication with SST-1 central control system. Integration of SST-1 DAS with timing system. • SST-1 DAS data archival and data analysis. - Abstract: The recent first phase operations of SST-1 in short pulse mode have provided an excellent opportunity for the essential initial tests and benchmark of the SST-1 Data Acquisition System. This paper describes the SST-1 Data Acquisition systems (DAS), which with its heterogeneous composition and distributed architecture, aims to cover a wide range of slow to fast channels interfaced with a large set of diagnostics. The DAS also provides the essential user interface for data acquisition to cater both on and off-line data usage. The central archiving and retrieval service is based on a dual step architecture involving a combination of Network Attached Server (NAS) and a Storage Area Network (SAN). SST-1 Data Acquisition Systems have been reliably operated in the SST-1 experimental campaigns. At present different distributed DAS caters the need of around 130 channels from different SST-1 diagnostics and its subsystems. PXI based DAS and CAMAC based DAS have been chosen to cater the need, with sampling rates varying from 10Ksamples/sec to 1Msamples/sec. For these large sets of channels acquiring from individual diagnostics and subsystems has been a combined setup, subjected to a gradual phase of optimization and tests resulting into a series of improvisations over the recent operations. In order to facilitate a reliable data acquisition, the model further integrates the objects of the systems with the Central Control System of SST-1 using the TCP/IP communication. The associated DAS software essentially addresses the

  6. Development of DUMAS data processing system

    International Nuclear Information System (INIS)

    Sakamoto, Hiroshi

    1982-01-01

    In the field of nuclear experiments, the speed-up of data processing has been required recently along with the increase of the amount of data per event or the rate of event occurrence per unit time. In the DUMAS project of RCNP, the development of data processing system has been required, which can perform the high speed transfer and processing. The system should transfer the data of 5 multiwire proportional counters and other counters from the laboratory to the counting room at the rate of 1000 events every second, and also should perform considerably complex processes such as histogramming, particle identification, calculation of various polarizations as well as dumping to the secondary memory in the counting room. Furthermore, easy start-up, adjustment, inspection and maintenance and non-special hardware and software should be considered. A system presently being investigated for satisfying the above requirements is described. The main points are as follows: to employ CAMAC system for the interface with readout circuit, to transfer data between the laboratory and the counting room by converting the byte-serial transfer to the bit-serial optical fiber communication, and to unify the data processing computers to the PDP-11 family by connecting two miniature computers. Development of such a data processing system seems to be useful as an preparatory research for the development of NUMATRON measuring instruments. (Wakatsuki, Y.)

  7. Development of a new discharge control system utilizing UNIX workstations and VME-bus systems for JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Hiromi; Sueoka, Michiharu; Takano, Shoji; Totsuka, Toshiyuki; Yonekawa, Izuru; Kurihara, Kenichi; Kimura, Toyoaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-01-01

    The JT-60 discharge control system, which had used HIDIC-80E 16 bit mini-computers and CAMAC systems since the start of JT-60 experiment in 1985, was renewed in March, 2001. The new system consists of a UNIX workstation and a VME-bus system, and features a distributed control system. The workstation performs message communication with a VME-bus system and controllers of JT-60 sub-systems and processing for discharge control because of its flexibility to construction of a new network and modifications of software. The VME-bus system performs discharge sequence control because it is suitable for fast real time control and flexible to the hardware extension. The replacement has improved the control function and reliability of the discharge control system and also has provided sufficient performance necessary for future modifications of JT-60. The new system has been running successfully since April 2001. The data acquisition speed was confirmed to be twice faster than the previous one. This report describes major functions of the discharge control system, technical ideas for developing the system and results of the initial operation in detail. (author)

  8. Conversion of a whole-body counter into a low-level whole-body scanning system controlled by a process computer

    International Nuclear Information System (INIS)

    Hamann, C.M.

    1976-01-01

    The report outlines the status of a research project in which a whole body counter with fixed geometries is converted into a scanning type system. The purpose of the project is the development of an adaptive system controlled by a process computer. The home-made scanning mechanics is explained, and a description is given of the advantages and the problems inherent in the application of step motors. For economic reasons no CAMAC system was purchased; instead, interfaces from and to the computer were designed which allowed the process periphery to be connected and operated. The inexpensive and relatively simple home-made designs are outlined; the example quoted refers to the conversion of a teletype output into a fast electronic data interface. (orig./ORU) [de

  9. ORNL 25 MV tandem accelerator control system

    International Nuclear Information System (INIS)

    Juras, R.C.; Biggerstaff, J.A.; Hoglund, D.E.

    1985-01-01

    The CAMAC-based control system for the 25 MV tandem electrostatic accelerator of the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory (ORNL) was specified by ORNL and built by the National Electrostatics Corporation. Two Perkin-Elmer 32-bit minicomputers are used in the system, a message switching computer and a supervisory computer. The message switching computer transmits and receives control information on six serial highways. This computer shares memory with the supervisory computer. Operator consoles are located on a serial highway; control is by means of a console CRT, trackball, and assignable shaft encoders and meters. Two identical consoles operate simultaneously: one is located in the tandem control room; the other is located in the cyclotron control room to facilitate operation during injection of tandem beams into the cyclotron or when beam lines under control of the cyclotron control system are used. The supervisory computer is used for accelerator parameter setup calculations, actual accelerator setup for new beams based on scaled, recorded parameters from previously run beams, and various other functions. Nearly seven years of control system operation and improvements will be discussed

  10. A fast multichannel analog storage system

    International Nuclear Information System (INIS)

    Freytag, D.R.

    1983-01-01

    A Multichannel Analog Storage System based on a commercial 32-channel parallel in/serial out (PISO) analog shift register is described. The basic unit is a single width CAMAC module containing 512 analog cells and the associated logic for data storage and subsequent readout. At sampling rates of up to 30 MHz the signals are strobed directly into the PISO. At higher rates signals are strobed into a fast presampling stage and subsequently transferred in block form into an array of PISO's. Sampling rates of 300 MHz have been achieved with the present device and 1000 MHz are possible with improved signal drivers. The system is well suited for simultaneous handling of many signal channels with moderate numbers of samples in each channel. RMS noise over full scale signal has been measured as 1:3000 (approx. =11 bit). However, nonlinearities in the response and differences in sensitivity of the analog cells require an elaborate calibration system in order to realize 11 bit accuracy for the analog information

  11. The DISTO data acquisition system at SATURNE

    International Nuclear Information System (INIS)

    Balestra, F.; Bedfer, Y.; Bertini, R.

    1998-01-01

    The DISTO collaboration has built a large-acceptance magnetic spectrometer designed to provide broad kinematic coverage of multiparticle final states produced in pp scattering. The spectrometer has been installed in the polarized proton beam of the Saturne accelerator in Saclay to study polarization observables in the rvec pp → pK + rvec Y (Y = Λ, Σ 0 or Y * ) reaction and vector meson production (ψ, ω and ρ) in pp collisions. The data acquisition system is based on a VME 68030 CPU running the OS/9 operating system, housed in a single VME crate together with the CAMAC interface, the triple port ECL memories, and four RISC R3000 CPU. The digitization of signals from the detectors is made by PCOS III and FERA front-end electronics. Data of several events belonging to a single Saturne extraction are stored in VME triple-port ECL memories using a hardwired fast sequencer. The buffer, optionally filtered by the RISC R3000 CPU, is recorded on a DLT cassette by DAQ CPU using the on-board SCSI interface during the acceleration cycle. Two UNIX workstations are connected to the VME CPUs through a fast parallel bus and the Local Area Network. They analyze a subset of events for on-line monitoring. The data acquisition system is able to read and record 3,500 ev/burst in the present configuration with a dead time of 15%

  12. Recent developments of the RFX control and data acquisition system

    International Nuclear Information System (INIS)

    Barana, O.; Luchetta, A.; Manduchi, G.; Taliercio, C.

    2004-01-01

    Although the new RFX machine is still under modification, most power supply systems have been used since early 2003 for testing an ITER high-power by-pass switch. This has given us the opportunity to verify the effectiveness of several choices we made in the development of the new data acquisition and control system of RFX. The system has been renewed both in its control and data acquisition components. For control, the new system employs Simatic S7 PLCs and a commercial Supervisory Control and Data Acquisition (SCADA) tool. Many improvements have been made to the MDSplus-based data acquisition system. The whole system has been ported from OpenVMS to Linux, using a server for data storage and CAMAC data acquisition, and a set of CompactPCI crates, each hosting a Linux PC board. Device-specific code is now entirely implemented in TDI, the scripting language of MDSplus. Our experience in the new system has been positive, especially for the data acquisition system

  13. Data Processing and Analysis Systems for JT-60U

    International Nuclear Information System (INIS)

    Matsuda, T.; Totsuka, T.; Tsugita, T.; Oshima, T.; Sakata, S.; Sato, M.; Iwasaki, K.

    2002-01-01

    The JT-60U data processing system is a large computer complex gradually modernized by utilizing progressive computer and network technology. A main computer using state-of-the-art CMOS technology can handle ∼550 MB of data per discharge. A gigabit ethernet switch with FDDI ports has been introduced to cope with the increase of handling data. Workstation systems with VMEbus serial highway drivers for CAMAC have been developed and used to replace many minicomputer systems. VMEbus-based fast data acquisition systems have also been developed to enlarge and replace a minicomputer system for mass data.The JT-60U data analysis system is composed of a JT-60U database server and a JT-60U analysis server, which are distributed UNIX servers. The experimental database is stored in the 1TB RAID disk of the JT-60U database server and is composed of ZENKEI and diagnostic databases. Various data analysis tools are available on the JT-60U analysis server. For the remote collaboration, technical features of the data analysis system have been applied to the computer system to access JT-60U data via the Internet. Remote participation in JT-60U experiments has been successfully conducted since 1996

  14. The specifications a multichannel analyser using microprocessor

    International Nuclear Information System (INIS)

    Pontes, E.W.

    The idea of a small nuclear data acquisition system (stand - alone CAMAC system) used for spectroscopy, is presented. The system is composed by an autonomous controller with microprocessor with one fast programable unit (1-2 μsec/CAMAC instructions) and with modulus of general functions as: CAMAC memory, interface for video, interface for analogy to digital converter and temporizing. (E.G.) [pt

  15. The Fermilab Accelerator control system

    Science.gov (United States)

    Bogert, Dixon

    1986-06-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100 000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A "Host" computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration, and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded "events" in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of "exception conditions" and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the "Host" processors.

  16. The Fermilab accelerator control system

    International Nuclear Information System (INIS)

    Bogert, D.

    1986-01-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A ''Host'' computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded ''events'' in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of 'exception conditions' and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the ''Host'' processors. (orig.)

  17. System for measurements and data processing in neutron physics researches

    International Nuclear Information System (INIS)

    Kadashevich, V.I.; Kondurov, I.A.; Nikolaev, S.N.; Ryabov, Yu.F.

    1976-01-01

    A system of measuring and computing means created for automation of studies in the field of the neutron physics is discussed. Within the framework of this system each experiment is provided with its individual measuring station which consists of a set of analog and digital modules implemented in accordance with the CAMAC standard. On the higher level of this system there are measuring-computing centres (MCC) which simultaneously serve a number of physical installations. These MCCs are based on ''Minsk-22'' computers whose computational facilities are used for the preliminary processing and for creation of temporary data archives. In its turn, all the MCCs are users of the time-sharing system on the basis of the ''Minsk-32'' computers. This system extends possibilities for user's fast data processing, archive creation and provides transfer of required information to the main computing system based on the BESM-6 computer. Transfer of information and preliminary processing are performed by remote terminals with the help of a special directive language

  18. A stand alone computer system to aid the development of mirror fusion test facility RF heating systems

    International Nuclear Information System (INIS)

    Thomas, R.A.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) control system architecture requires the Supervisory Control and Diagnostic System (SCDS) to communicate with a LSI-11 Local Control Computer (LCC) that in turn communicates via a fiber optic link to CAMAC based control hardware located near the machine. In many cases, the control hardware is very complex and requires a sizable development effort prior to being integrated into the overall MFTF-B system. One such effort was the development of the Electron Cyclotron Resonance Heating (ECRH) system. It became clear that a stand alone computer system was needed to simulate the functions of SCDS. This paper describes the hardware and software necessary to implement the SCDS Simulation Computer (SSC). It consists of a Digital Equipment Corporation (DEC) LSI-11 computer and a Winchester/Floppy disk operating under the DEC RT-11 operating system. All application software for MFTF-B is programmed in PASCAL, which allowed us to adapt procedures originally written for SCDS to the SSC. This nearly identical software interface means that software written during the equipment development will be useful to the SCDS programmers in the integration phase

  19. Doublet III neutral beam multi-stream command language system

    International Nuclear Information System (INIS)

    Campbell, L.; Garcia, J.R.

    1983-01-01

    A multi-stream command language system was developed to provide control of the dual source neutral beam injectors on the Doublet III experiment at GA Technologies Inc. The Neutral Beam command language system consists of three parts: compiler, sequencer, and interactive task. The command language, which was derived from the Doublet III tokamak command language, POPS, is compiled, using a recursive descent compiler, into reverse polish notation instructions which then can be executed by the sequencer task. The interactive task accepts operator commands via a keyboard. The interactive task directs the operation of three input streams, creating commands which are then executed by the sequencer. The streams correspond to the two sources within a Doublet III neutral beam, plus an interactive stream. The sequencer multiplexes the execution of instructions from these three streams. The instructions include reads and writes to an operator terminal, arithmetic computations, intrinsic functions such as CAMAC input and output, and logical instructions. The neutral beam command language system was implemented using Modular Computer Systems (ModComp) Pascal and consists of two tasks running on a ModComp Classic IV computer. The two tasks, the interactive and the sequencer, run independently and communicate using shared memory regions. The compiler runs as an overlay to the interactive task when so directed by operator commands. The system is succesfully being used to operate the three neutral beams on Doublet III

  20. A large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Suehiro, S.; Seeger, P.A.; Scheer, J.W.

    1982-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK 8600 2048 K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron X-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources. Modules which have been developed to date include a buffer for two-dimensional position-sensitive detectors, a mapper for high-speed coordinate transformations, a buffered time-of-flight clock, a time-correlator for synchronized diffraction experiments, and a display unit for data bus diagnostics. (orig.)

  1. The TJ-II data acquisition system: an overview

    International Nuclear Information System (INIS)

    Vega, J.; Cremy, C.; Sanchez, E.; Portas, A.

    1999-01-01

    The data acquisition system for the TJ-II fusion machine has been developed to coordinate actions among the several experimental systems devoted to data capture and storage: instrumentation mainframes (VXI, VME, CAMAC), control systems of diagnostics and a host-centralized database. Connectivity between these elements is achieved through local area networks, which ensure both good connections and system growth capability. Three hundred VXI based digitizer channels have been developed for TJ-II diagnostics. They are completely software programmable and provide signal analog conditioning. In addition, some of them supply a programmable DSP for real time signal processing. Data will be stored in a central server using a special compression technique that allows compaction rates of over 80%. A specific application software has been developed to provide user interface for digitizer programming, signal visualization and data processing during TJ-II discharges. The software is an event based application that can be remotely launched from any X terminal An authentication mechanism restricts access to authorised users only. (orig.)

  2. Doublet III neutral beam multi-stream command language system

    International Nuclear Information System (INIS)

    Campbell, L.; Garcia, J.R.

    1983-12-01

    A multi-stream command language system was developed to provide control of the dual source neutral beam injectors on the Doublet III experiment at GA Technologies Inc. The Neutral Beam command language system consists of three parts: compiler, sequencer, and interactive task. The command language, which was derived from the Doublet III tokamak command language, POPS, is compiled, using a recursive descent compiler, into reverse polish notation instructions which then can be executed by the sequencer task. The interactive task accepts operator commands via a keyboard. The interactive task directs the operation of three input streams, creating commands which are then executed by the sequencer. The streams correspond to the two sources within a Doublet III neutral beam, plus an interactive stream. The sequencer multiplexes the execution of instructions from these three streams. The instructions include reads and writes to an operator terminal, arithmetic computations, intrinsic functions such as CAMAC input and output, and logical instructions. The neutral beam command language system was implemented using Modular Computer Systems (ModComp) Pascal and consists of two tasks running on a ModComp Classic IV computer

  3. A Java-based data acquisition system for nuclear physics

    International Nuclear Information System (INIS)

    Swartz, K.B.; Visser, D.W.; Baris, J.M.

    2001-01-01

    Jam is a Java-based user-friendly data acquisition and analysis system developed for CAMAC-based nuclear physics experiments. The system is menu-driven and has been designed to minimize the expertise needed to perform the essential tasks necessary to collect and sort data. The front-end hardware is VME based and includes a MVME167 running VxWorks, which is networked to a Sun workstation. The sorting, display, and control routines are all written in Java, and the front-end code is written in C. With a Sparc 5 workstation, events with 10 parameters, 15 histograms, and 10 gate checks the system can collect and sort data up to event rates of 1 kHz. By only sorting a fraction of the events, but storing all events, it can be run at the front-end limit of 10 kHz. Java's promise of platform independence has been found to be realistic, and Jam has been used with no modifications to sort offline on multiple platforms. Jam has a modular design allowing it to be easily modified. For example, Jam has an interface to allow users to write their own fitting routines. This article discusses the system's design and performance, as well as some advantages and disadvantages of using Java

  4. DIII-D tokamak control and neutral beam computer system upgrades

    International Nuclear Information System (INIS)

    Penaflor, B.G.; McHarg, B.B.; Piglowski, D.A.; Pham, D.; Phillips, J.C.

    2004-01-01

    This paper covers recent computer system upgrades made to the DIII-D tokamak control and neutral beam computer systems. The systems responsible for monitoring and controlling the DIII-D tokamak and injecting neutral beam power have recently come online with new computing hardware and software. The new hardware and software have provided a number of significant improvements over the previous Modcomp AEG VME and accessware based systems. These improvements include the incorporation of faster, less expensive, and more readily available computing hardware which have provided performance increases of up to a factor 20 over the prior systems. A more modern graphical user interface with advanced plotting capabilities has improved feedback to users on the operating status of the tokamak and neutral beam systems. The elimination of aging and non supportable hardware and software has increased overall maintainability. The distinguishing characteristics of the new system include: (1) a PC based computer platform running the Redhat version of the Linux operating system; (2) a custom PCI CAMAC software driver developed by general atomics for the kinetic systems 2115 serial highway card; and (3) a custom developed supervisory control and data acquisition (SCADA) software package based on Kylix, an inexpensive interactive development environment (IDE) tool from borland corporation. This paper provides specific details of the upgraded computer systems

  5. Use of open systems for control, analysis, and data acquisition of the DIII-D tokamak

    International Nuclear Information System (INIS)

    Henline, P.A.

    1993-10-01

    For the past several years, it has been evident that the very old MODCOMP 16-bit computers being used at DIII-D for control and data acquisition were no longer adequate to perform the services needed. In early 1992, the computer systems group began to look seriously into alternate systems to replace these aged MODCOMP systems. The decision was made to investigate open-quote OPEN close-quote system computers and also to maintain the compatibility with the large usage of CAMAC equipment as the real-time hardware interface. Information about the needs for real-time capabilities and open-quote OPEN close-quote systems ability to meet these needs is discussed. The needs include hardware requirements, operating system software which has known response rates, interconnectability and access of data from other workstations and computers. Some of the parameters and pitfalls of open systems are discussed as well as the advantages of OPEN systems for use in a real-time environment. The success at arriving at an OPEN systems solution is examined

  6. Manufacturing of central control system of 'JT-60' a plasma feasibility experiment device

    International Nuclear Information System (INIS)

    Kondo, Ikuo; Kimura, Toyoaki; Murai, Katsuji; Iba, Daizo; Takemaru, Koichi.

    1984-01-01

    For constructing a critical-plasma-experiment apparatus JT-60, it was necessary to develop a new control system which enables to operate safely and smoothly a large scale nuclear fusion apparatus and to carry out efficient experiment. For the purpose, the total system control facility composed of such controllers as CAMAC system, timing system and protective interlock panel with multi-computer system as the core was developed. This system generalizes, keeps watch on and controls the total facilities as the key point of the control system of JT-60, and allows flexible operation control corresponding to the diversified experimental projects. At the same time, it carries out the fast real-time control of high temperature, high density plasma. In this paper, the system constitution, function and the main contents of development of the total system control facility are reported. JT-60 is constructed to attain the critical plasma condition as the premise of nuclear fusion reactors and to scientifically verify controlled nuclear fusion. Plasma expe riment will be started in April, 1985. The real-time control of plasma for carrying out high beta operation is planned, intending to develop future economical practical reactors. (Kako, I.)

  7. A VMEbus general-purpose data acquisition system

    International Nuclear Information System (INIS)

    Ninane, A.; Nemry, M.; Martou, J.L.; Somers, F.

    1992-01-01

    We present a general-purpose, VMEbus based, multiprocessor data acquisition and monitoring system. Events, handled by a master CPU, are kept at the disposal of data storage and monitoring processes which can run on distinct processors. They access either the complete set of data or a fraction of them, minimizing the acquisition dead-time. The system is built with the VxWorks 5.0 real time kernel to which we have added device drivers for data acquisition and monitoring. The acquisition is controlled and the data are displayed on a workstation. The user interface is written in C ++ and re-uses the classes of the Interviews and the NIH libraries. The communication between the control workstation and the VMEbus processors is made through SUN RPCs on an Ethernet link. The system will be used for, CAMAC based, data acquisition for nuclear physics experiments as well as for the VXI data taking with the 4π configuration (100 neutron detectors) of the Brussels-Caen-Louvian-Strasbourg DEMON collaboration. (author)

  8. Radiation-acoustic system for solid state research

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Kalinichenko, A.I.; Kresnin, Yu.; Popov, G.F.

    1998-01-01

    The radiation-acoustic system (RAS) is designed for comprehensive investigation of thermoelastic (TE), thermophysical (TP) and thermodynamic (TD) characteristics of structural materials. It operation is based on radiation-acoustic method, which includes probing of investigated materials by pulsed electron beam and registration the exited thermo acoustic stress. The hardware includes a CAMAC crate, an IBM PC computer, a set of sensors, a strobe analog-digital converter, a commutators of analog signals, and drivers of physical parameters. The system allows to process thermo acoustic signals generated in beam-target interaction and to extract information about phase state, TE-, TP-, and TD characteristics of the target materials. The system was used for simultaneous measuring of phase state, TE-, TP-, and TD characteristics and for investigation of kinetics of structural phase transitions in multifunctional materials such as materials with the shape memory effect (CuAlNi, TiNi, TiNiFe, TiNiCu), rare-earth metals (Dy, Gd), high-temperature superconductors YBaCuO, piezoelectric crystals (TiBa, ZrTiPb-ceramics), polymers (PMMA, PTFE, PE) etc

  9. Improvement of the real-time processor in JT-60 data processing system

    International Nuclear Information System (INIS)

    Sakata, S.; Kiyono, K.; Sato, M.; Kominato, T.; Sueoka, M.; Hosoyama, H.; Kawamata, Y.

    2009-01-01

    Real-time processor, RTP is a basic subsystem in the JT-60 data processing system and plays an important role in JT-60 feedback control for plasma experiment. During the experiment, RTP acquires various diagnostic signals, processes them into a form of physical values, and transfers them as sensor signals to the particle supply and heating control supervisor for feedback control via reflective memory synchronization with 1 ms clock signals. After the start of RTP operation in 1997, to meet the demand for advanced plasma experiment, RTP had been improved continuously such as by addition of diagnostic signals with faster digitizers, reducing time for data transfer utilizing reflective memory instead of CAMAC. However, it is becoming increasingly difficult to maintain, manage, and improve the outdated RTP with limited system CPU capability. Currently, a prototype RTP system is being developed for the next real-time processing system, which is composed of clustered system utilizing VxWorks computer. The processes on the existing RTP system will be decentralized to the VxWorks computer to solve the issues of the existing RTP system. The prototype RTP system will start to operate in August 2008.

  10. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    International Nuclear Information System (INIS)

    Graca, S.; Santos, J.; Manso, M.E.

    2004-01-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut fuer Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusao Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls

  11. The MTX computer control system for the 400 kilowatt 140 GHz gyrotron

    International Nuclear Information System (INIS)

    Jackson, M.C.; Ferguson, S.W.; Petersen, D.E.

    1991-09-01

    A 400 kilowatt, 140 Ghz gyrotron is employed on MTX as a source of direct plasma heating and, additionally, as a driver for a free electron laser, which is used for plasma heating. The control system that operates this gyrotron uses a new graphics oriented software system called TACL (Thaumaturgic Automated Control Logic) developed by the Continuous Electron Beam Accelerator Facility (CEBAF) and owned by DOE. This control language does not require a software specialist, but is easily handled by the engineer or technician working on the system. All control logic and custom displays are entered via graphics oriented editors and no actual lines of code need to be written. The graphics displays make the gyrotron operation quite simple and allow individual users to define displays to meet their own needs or develop one for a specific set of tests to be run. The system, additionally, can be used for logging functions, which have been found quite useful in tracking long term trends in vacion current and calorimetry of gyrotron cooling circuits. The system is composed of one computer (HP 9000 series 300) controlling multiple CAMAC crates located at the various components used in the system. A second series 300 computer is used as a supervisor and is located in the main tokamak control room. This supervisory computer provides remote operation of the gyrotron, and also provides a link to the microwave transport vacuum control (also TACL). The supervisory computer, additionally, is used as a subsystem status summary point for permissives to the gyrotron control system

  12. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    Science.gov (United States)

    Graça, S.; Santos, J.; Manso, M. E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  13. VME Switch for CERN's PS Analog Video System

    CERN Document Server

    Acebes, I; Heinze, W; Lewis, J; Serrano, J

    2003-01-01

    Analog video signal switching is used in CERN's Proton Synchrotron (PS) complex to route the video signals coming from Beam Diagnostics systems to the Meyrin Control Room (MCR). Traditionally, this has been done with custom electromechanical relay-based cards controlled serially via CAMAC crates. In order to improve the robustness and maintainability of the system, while keeping it analog to preserve the low latency, a VME card based on Analog Devices' AD8116 analog matrix chip has been developed. Video signals go into the front panel and exit the switch through the P2 connector of the VME backplane. The module is a 16 input, 32 output matrix. Larger matrices can be built using more modules and bussing their outputs together, thanks to the high impedance feature of the AD8116. Another VME module takes the selected signals from the P2 connector and performs automatic gain to send them at nominal output level through its front panel. This paper discusses both designs and presents experimental test results.

  14. Overview of Fermi National Accelerator Lab Control System

    International Nuclear Information System (INIS)

    Lucas, P.W.

    1990-01-01

    Various facets of the control of the Fermilab accelerators, in particular the Tevatron, are presented. Since Fermilab contains a superconducting machine and a sophisticated injection complex, much of the controls functionality will of necessity be the same at the SSC. The various functions required at a large laboratory are discussed; these include computer-based fire and security alarms and a cable television system, as well as computer networks connected to accelerator hardware components. A description is given of that hardware, of which much is Camac but with considerable computer backplane bus equipment also present. A large fraction of the controls hardware has access to high precision real-time clocks. Our various networks are introduced, with the physical layer being a combination of copper and more modern optic cables, with the primary intercomputer link being Token Ring. A description of the computers is presented - basically these consist of operators' consoles, host VAXs, and link driving front ends. The software effort is detailed, with emphasis on consoles and microprocessors where the majority of effort has been placed. Future plans for the system are presented briefly. 3 refs., 2 figs., 2 tabs

  15. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Tucker, P.A.; Swanton, S.W.

    1987-01-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described: the Mark I and the Mark II. Both use a bidimensionally sensitive multiwire proportional counter (MWPC) as the basic X-ray image transducer coupled, in the case of the Mark I to a Digital LSI 11-23 microcomputer system via CAMAC, and in the case of the Mark II to a Digital LSI 11-73 microcomputer system via custom-built data acquisition hardware mounted directly on the Q-bus of the microcomputer. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multiframe exposures. The dedicated digital memories have a resolution of 512x512 pixels of 16 bits, matching well to the spatial resolution of the xenon-filled MWPC (0.5 mm fwhm over an aperture of 200 mm x 200 mm). A 512x512x4 bit video graphics system displays the images in grey scales or colour. (orig.)

  16. Developmental prototype for replacement of JT-60 timing system

    International Nuclear Information System (INIS)

    Akasaka, H.; Kawamata, Y.; Yonekawa, I.

    2004-01-01

    The present CAMAC based timing system has been used for synchronizing sequential events of the discharge and the data collection of the interesting JT-60U experiment plasma phenomena. However, a more flexible and sophisticated state-of-the-art timing system now is required to realize advanced plasma control with minimal maintenance costs. In this context, the versa module Europe (VME-bus) system with a high-speed data communication network using reflective memory (RM) modules and user-friendly application software based on MATLAB TM tools has been selected to develop the new prototype timing system. In the ZENKEI, the supervisory control system of the JT-60, the supervisory timing system provides the 50-μs master clock pulses, the various timing signal preparation logic, which is built into the digital signal processing (DSP) module in conjunction with the discharge sequence event signals, and the 6.2 MB/s high-speed communication data link provided by the RM module. Except the clock pulse generator (CPG) module, no other special timing module is necessary for this new timing system. The timing signal is prepared by software logic in conjunction with sequential events and the preset timer, is transferred to the subsystems through the RM module, where it is synchronized to the 50-μs clock pulses. The timing system of the subsystems also consists of hardware similar in structure to the ZENKEI timing system. The fundamental timing system configuration, the necessary functions, and the preliminary test results of the prototype system are reported in this presentation

  17. Synchronization in a PLC/VAX-based control and data-acquisition system of a nuclear-fusion experiment

    International Nuclear Information System (INIS)

    Schmidt, V.; Flor, G.; Hemming, O.N.; Luchetta, A.; Manduchi, G.; Vitturi, S.

    1990-01-01

    This paper describes the concept and implementation details of the synchronization mechanisms used in the control and data-acquisition system of the RFX (Reversed-Field Experiment) nuclear-fusion experimental device, at present under construction in Padova, Italy, within the framework of the co-ordinated nuclear-fusion research programme of the European Communities. The system employs industrial PLCs for the 'slow' control and monitoring functions, and a VAX-based CAMAC for the 'fast' functions of trigger-signal generation and data acquisition during the experiment pulses. All subsystems communicate via Ethernet, using compatible software protocols. The operational sequence of the complete system is governed by a single state machine implemented on a PLC-based supervisor system. Equivalent 'slave' state machines are implemented on all other subsystems (PLC- and VAX-based). These state machines are synchronized by means of the exchange of messages via Ethernet. This paper deals in detail with the following components which are involved in system synchronization: The Message Exchange System which implements the system-wide exchange of short messages; the Scheduler programs which implement the state machine on the various computing nodes, and which make use of the Message Exchange System. (orig.)

  18. Progress of data processing system in JT-60 utilizing the UNIX-based workstations

    International Nuclear Information System (INIS)

    Sakata, Shinya; Kiyono, Kimihiro; Oshima, Takayuki; Sato, Minoru; Ozeki, Takahisa

    2007-07-01

    JT-60 data processing system (DPS) possesses three-level hierarchy. At the top level of hierarchy is JT-60 inter-shot processor (MSP-ISP), which is a mainframe computer, provides communication with the JT-60 supervisory control system and supervises the internal communication inside the DPS. The middle level of hierarchy has minicomputers and the bottom level of hierarchy has individual diagnostic subsystems, which consist of the CAMAC and VME modules. To meet the demand for advanced diagnostics, the DPS has been progressed in stages from a three-level hierarchy system, which was dependent on the processing power of the MSP-ISP, to a two-level hierarchy system, which is decentralized data processing system (New-DPS) by utilizing the UNIX-based workstations and network technology. This replacement had been accomplished, and the New-DPS has been started to operate in October 2005. In this report, we describe the development and improvement of the New-DPS, whose functions were decentralized from the MSP-ISP to the UNIX-based workstations. (author)

  19. Study on Digital Pulse Shape Discrimination System in BF{sub 3} Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinhyeong; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, we develop the digital PSD system and discriminate the background signal of BF{sub 3}. Spectrum shapes are different according to the t{sub start} setting method, and it is favorable to set it as the certain ratio of maximum height. In future, it will be performed to vary t{sub start} point to optimize the pulse discrimination. To quantify the performance, Figure Of Merit (FOM) will be determined. For the nuclear non-proliferation and safeguards, an accurate and reliable measurement of nuclear material is essential. The nuclear material emits neutron and γ-ray, simultaneously. For the accurate detection of the nuclear material, neutron should be discriminated from γ-ray or background radiation. In previous study, N. S. Jung developed pulse shape analysis method based on NIM and CAMAC system. However, applications of other discrimination methods based on different detection modules or changing parameters are time-and-money consuming procedures in analogue systems. Today, the performance of digitizers is improved and it replaces some radiation measurement systems which require simple and portable equipment. Digital Pulse Shape Discrimination (PSD) method by using a digital oscilloscope is developed and applied to a neutron detection system by using BF{sub 3} detector in this study.

  20. The local area network for the plasma Diagnostics System of MFTF-B

    International Nuclear Information System (INIS)

    Lau, N.H.; Minor, E.G.

    1983-01-01

    The MFTF-B Plasma Diagnostics System will be implemented in stages, beginning with a start-up set of diagnostics and evolving toward a basic set. The start-up set contains 12 diagnostics which will acquire a total of about 800 Kbytes of data per machine pulse; the basic set contains 23 diagnostics which will acquire a total of about 8 Mbytes of data per pulse. Each diagnostic is controlled by a ''Foundation System'' consisting of a DEC LSI-11/23 microcomputer connected to CAMAC via a 5 Mbits/second serial fiber-optic link and connected to a supervisory computer (Perkin-Elmer 3250) via a 9600 baud RS232 link. The Foundation System is a building block used throughout MFTF-B for control and status monitoring. However, its 9600 baud link to the supervisor presents a bottleneck for the large data transfers required by diagnostics. To overcome this bottleneck the diagnostics Foundation Systems will be connected together with an additional LSI-11/23 called the ''master'' to form a Local Area Network (LAN) for data acquisition. The Diagnostics LAN has a ring architecture with token passing arbitration