WorldWideScience

Sample records for caltech scientists create

  1. Caltech computer scientists develop FAST protocol to speed up Internet

    CERN Multimedia

    2003-01-01

    "Caltech computer scientists have developed a new data transfer protocol for the Internet fast enough to download a full-length DVD movie in less than five seconds. The protocol is called FAST, standing for Fast Active queue management Scalable Transmission Control Protocol" (1 page).

  2. Voyager, a journey into the unknown - an interview with Ed Stone (Caltech), Voyager project scientist

    CERN Multimedia

    CERN Video productions; Piotr Traczyk

    2012-01-01

    Voyager, a journey into the unknown - an interview with Ed Stone (Caltech), Voyager project scientist, interviewed on the 100th anniversary of the discovery of Cosmic Rays conference, Spaceparts, at CERN in November 2012.

  3. Interview of Edward C. Stone, Caltech and NASA Voyager project scientist on the occasion of the Spaceparts conference at CERN, on the 100th anniversary of the cosmic rays discovery

    CERN Multimedia

    CERN Visual Media Office

    2012-01-01

    Interview of Edward C. Stone, Caltech and NASA Voyager project scientist on the occasion of the Spaceparts conference at CERN, on the 100th anniversary of the cosmic rays discovery. He describes the Voyager mission since launch in 1977 to current position at the frontier of the solar system.

  4. IT Tools for Teachers and Scientists, Created by Undergraduate Researchers

    Science.gov (United States)

    Millar, A. Z.; Perry, S.

    2007-12-01

    Interns in the Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) program conduct computer science research for the benefit of earthquake scientists and have created products in growing use within the SCEC education and research communities. SCEC/UseIT comprises some twenty undergraduates who combine their varied talents and academic backgrounds to achieve a Grand Challenge that is formulated around needs of SCEC scientists and educators and that reflects the value SCEC places on the integration of computer science and the geosciences. In meeting the challenge, students learn to work on multidisciplinary teams and to tackle complex problems with no guaranteed solutions. Meantime, their efforts bring fresh perspectives and insight to the professionals with whom they collaborate, and consistently produces innovative, useful tools for research and education. The 2007 Grand Challenge was to design and prototype serious games to communicate important earthquake science concepts. Interns broke themselves into four game teams, the Educational Game, the Training Game, the Mitigation Game and the Decision-Making Game, and created four diverse games with topics from elementary plate tectonics to earthquake risk mitigation, with intended players ranging from elementary students to city planners. The games were designed to be versatile, to accommodate variation in the knowledge base of the player; and extensible, to accommodate future additions. The games are played on a web browser or from within SCEC-VDO (Virtual Display of Objects). SCEC-VDO, also engineered by UseIT interns, is a 4D, interactive, visualization software that enables integration and exploration of datasets and models such as faults, earthquake hypocenters and ruptures, digital elevation models, satellite imagery, global isochrons, and earthquake prediction schemes. SCEC-VDO enables the user to create animated movies during a session, and is now part

  5. Developing an Education and Public Outreach (EPO) program for Caltech's Tectonics Observatory

    Science.gov (United States)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2012-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past four years, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) inspire students to learn Earth Sciences, particularly tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools and community colleges. Our work toward these goals includes hosting local high school teachers and students each summer for six weeks of research experience (as part of Caltech's "Summer Research Connection"); organizing and hosting an NAGT conference aimed at Geoscience teachers at community colleges; participating in teacher training workshops (organized by the local school district); hosting tours for K-12 students from local schools as well as from China; and bringing hands-on activities into local elementary, middle, and high school classrooms. We also lead local school students and teachers on geology field trips through nearby canyons; develop education modules for undergraduate classes (as part of MARGINS program); write educational web articles on TO research (http://www.tectonics.caltech.edu/outreach/highlights/), and regularly give presentations to the general public. This year, we started providing content expertise for the development of video games to teach Earth Science, being created by GameDesk Institute. And we have just formed a scientist/educator partnership with a 6th grade teacher, to help in the school district's pilot program to incorporate new national science standards (NSTA's Next Generation Science Standards, current draft), as well as use Project-Based Learning. This presentation gives an overview of these activities.

  6. Next Generation Scientists - Creating opportunities for high school students through astronomical research

    Science.gov (United States)

    Kelly, Madeline; Cebulla, Hannah; Powers, Lynn

    2015-01-01

    Through various opportunities and experiences with extracurricular scientific research, primarily astronomical research with programs like NASA/IPAC Teacher Archive Research Project (NITARP), and the Mars Exploration Student Data Teams (MESDT), we have noticed a change in our learning style, career path, and general outlook on the scientific community that we strongly believe could also be added to the lives of many other high school students given similar opportunities. The purpose of our poster is to emphasize the importance of granting high school students opportunities to explore different styles and methods of learning. We believe that although crucial, a basic high school education is not enough to expose young adults to the scientific community and create enough interest for a career path. As a result, we wish to show that more of these programs and opportunities should be offered to a greater number of students of all ages, allowing them to explore their passions, develop their understanding of different fields, and determine the paths best suited to their interests. Within our poster, we will emphasize how these programs have specifically impacted our lives, what we hope to see in the future, and how we hope to attain the growth of such opportunities. We include such proposals as; increasing outreach programs, expanding the exposure of young students to the sciences, both in the classroom and out, allowing high school students to participate in active scientific research, and involving students in hands-on activities/experiments within school clubs, the classroom, at home, or at local events. Spreading these opportunities to directly interact with the sciences in similar manners as that of professional scientists will allow students to discover their interests, realize what being a scientist truly entails, and allow them to take the first steps into following their career paths.

  7. Angalasut, an education and outreach project to create a bridge between scientists, local population in Greenland and the general public

    Science.gov (United States)

    Bourgain, Pascaline

    2015-04-01

    Bridging Science and Society has now become a necessity for scientists to develop new partnerships with local communities and to raise the public interest for scientific activities. The French-Greenlandic educational project called "Angalasut" reflects this desire to create a bridge between science, local people and the general public. This program was set up on the 2012-2013 school year, as part of an international scientific program dedicated to study the interactions between the ocean and glaciers on the western coast of Greenland, in the Uummannaq fjord. Greenlandic and French school children were involved in educational activities, in classrooms and out on the field, associated with the scientific observations conducted in Greenland (glacier flow, ocean chemical composition and circulation, instrumentation...). In Greenland, the children had the opportunity to come on board the scientific sailing boat, and in France, several meetings were organized between the children and the scientists of the expedition. In the small village of Ikerasak, the children interviewed Elders about sea ice evolution in the area. These activities, coupled to the organization of public conferences and to the creation of a trilingual website of the project (French, Greenlandic, English) aimed at explaining why scientists come to study Greenland environment. This was the opportunity for scientists to discuss with villagers who could testify on their changing environment over the past decades. A first step toward a future collaboration between scientists and villagers that would deserve further development... The project Angalasut was also the opportunity for Greenlandic and French school children to exchange about their culture and their environment through Skype communications, the exchange of mails (drawings, shells...), the creation of a society game about European fauna and flora... A meeting in France between the two groups of children is considered, possibly in summer 2015

  8. Creating a Revolution in Science Education: The National Standards and Scientists

    Science.gov (United States)

    Alberts, Bruce

    1997-04-01

    Science education reforms provide a unique opportunity for revitalizing our public schools. For the first time in our history, we have a coherent national vision of where we want to go in science and math education, but the changes called for in the National Science and Mathematics Education Standards will be difficult to implement and take more than a decade to build. Science must become the fourth R in every school year, starting in kindergarten, not the dry memorization of science terms, but an exciting and empowering experience in problem-solving that takes advantage of the curiosity in children and increases each student's understanding of the world. Parents need to be convinced that this type of learning makes sense for their children. Teachers need to be reeducated to teach this type of science and mathematics, which means that inservice activities of high quality must be designed and supported in school districts. None of this will happen without the energetic and informed participation of the wider community, including our colleges and universities and large numbers of informed, idealistic scientists and engineers.

  9. The GLOBE/Madagascar Malaria Project: Creating Student/Educator/Scientist Partnerships With Regional Impact

    Science.gov (United States)

    Brooks, D.; Boger, R.; Rafalimanana, A.

    2006-05-01

    Malaria is a parasitic disease spread by mosquitoes in the genus Anopheles. It causes more than 300,000,000 acute illnesses and more than one million deaths annually, including the death of one African child every 30 seconds. Recent epidemiological trends include increases in malaria mortality and the emergence of drug-resistant parasites. Some experts believe that predicted climate changes during the 21st century will bring malaria to areas where it is not now common. The GLOBE Program is currently collaborating with students, educators, scientists, health department officials, and government officials in Madagascar to develop a program that combines existing GLOBE protocols for measuring atmospheric and water quality parameters with a new protocol for collecting and identifying mosquito larvae at the genus (Anopheles and non-Anopheles) level. There are dozens of Anopheles species and sub-species that are adapted to a wide range of micro-environmental conditions encountered in Madagascar's variable climate. Local data collection is essential because mosquitoes typically spend their entire lives within a few kilometers of their breeding sites. The GLOBE Program provides an ideal framework for such a project because it offers a highly structured system for defining experiment protocols that ensure consistent procedures, a widely dispersed network of observing sites, and a centralized data collection and reporting system. Following a series of training activities in 2005, students in Madagascar are now beginning to collect data. Basic environmental parameters and first attempts at larvae collection and identification are presented. Results from this project can be used to increase public awareness of malaria, to provide new scientific data concerning environmental impacts on mosquito breeding, and to provide better information for guiding effective mitigation strategies. Problems encountered include difficulties in visiting and communicating with remote school sites

  10. Repurposing the Caltech Robinson Hall Coelostat

    Science.gov (United States)

    Treffers, Richard R.; Loisos, G.; Ubbelohde, M.; Douglas, S.; Martinez, M.

    2013-01-01

    We describe the repurposing of the historic coelostat atop Caltech’s Robinson Hall for building lighting, public education and scientific research. The coelostat was originally part of George Ellery Hale’s vision of the Astrophysical Laboratory on the Caltech campus in 1932. The coelostat, designed by Russell Porter, has a 36 inch diameter primary mirror a 30 inch diameter secondary mirror and provides a 24 inch un-vignetted beam of sunlight into the building. Although constructed in the 1930s, due to wartime pressures and other projects, it was used only briefly in the 1970s and never fully realized. Recently Robinson Hall has been fully renovated to house the Ronald and Maxine Linde Center for Global Environmental Science. The coelostat operation was modernized replacing the old motors and automating all the motions. Each morning, if the weather cooperates, the dome slit opens, the mirrors configured and sunlight pours into the building. The beam of sunlight is divided into three parts. One part goes into a refracting telescope which projects a ten inch diameter of the sun onto a ground glass screen visible to the public. A second fraction is distributed to fiber optic fixtures that illuminate some of the basement rooms. The final fraction goes into two laboratories where it is used in experiments monitoring trace constituents of our atmosphere and for solar catalysis experiments. The instrument as originally conceived required at least two human operators. Now it is fully automatic and doing real science

  11. Design Goals for Federated Services across Caltech CODA

    OpenAIRE

    Sponsler, Ed

    2005-01-01

    Caltech CODA currently exists as 15 individual archives. Fortunately, each is an OAI Data Provider which allows OAI Service Providers the opportunity to federate the content into a central database for searching or other end user services. Ideally though, Caltech Library will design a Union Catalog using the OAI-PMH. This central database would provide a local implementation of a federated search interface, using a modification of eprints.org software. The Catalog would also support other epr...

  12. Boundary Organizations: Creating a Unique Model for Sustained Dialog Among Scientists and Decison Makers About Long-term Change

    Science.gov (United States)

    Duncan, B.; Carter, H.; Knight, E.; Meyer, R.

    2015-12-01

    California Ocean Science Trust is a boundary organization formed by the state of California. We work across traditional boundaries between government, science, and communities to build trust and understanding in ocean and coastal science. We work closely with decision makers to understand their priority needs and identify opportunities for science to have a meaningful impact, and we engage scientists and other experts to compile and translate information into innovative products that help to meet those needs. This often sparks new collaborations that live well beyond the products themselves. Through this unique model, we are deepening relationships and facilitating an ongoing dialogue between scientists, decision-makers, and communities. The West Coast of the United States is already experiencing climate-driven changes in marine conditions at both large and small spatial scales. Decision makers are increasingly concerned with the potential threats that these changes pose to coastal communities, industries, ecosystems, and species. Detecting and understanding these multi-stressor changes requires consideration across scientific disciplines and management jurisdictions. Research and monitoring programs must reflect this new reality: they should be designed to connect with the decision makers who may use their results. In this presentation, I will share how we are drawing from the West Coast Ocean Acidification and Hypoxia Science Panel - an interdisciplinary team of scientists convened by Ocean Science Trust from California, Oregon, Washington, and British Columbia - to develop actionable guidance for long-term monitoring for long-term change. Building on our experiences working with the Panel, I will discuss the unique model that boundary organizations provide for sustained dialog across traditionally siloed disciplines and management regimes, and share best practices and lessons learned in working across those boundaries.

  13. NUST-CERN-CALTECH jointly present showcase demo

    CERN Multimedia

    2003-01-01

    A demonstration of the Grid for physics analysis will be presented by a collective team comprising Caltech (USA), CERN (Switzerland), KEK (Japan), Sinica (Taiwan), UERJ (Rio De Janiro), PUB (Bucharestand) and NUST (Pakistan) at the ITU Telecom World 2003 Youth Forum & Exhibition in Geneva (1/2 page).

  14. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    2012-01-01

    and industrial intere sts. The paper concludes by stressing the potential danger of policy habitats who have promoted the evolution of robust scientists based on a competitive system where only the fittest survive. Robust scientists, it is argued, have the potential to become a new “invasive species......The concepts of “socially robust knowledge” and “mode 2 knowledge production” (Nowotny 2003, Gibbons et al. 1994) have migrated from STS into research policy practices. Both STSscholars and policy makers have been known to propomote the idea that the way forward for today’s scientist is to jump...... from the ivory tower and learn how to create highflying synergies with citizens, corporations and governments. In STS as well as in Danish research policy it has thus been argued that scientists will gain more support and enjoy greater success in their work by “externalizing” their research...

  15. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    and industrial interests. The paper concludes by stressing the potential danger of policy habitats who have promoted the evolution of robust scientists based on a competitive system where only the fittest survive. Robust scientists, it is argued, have the potential to become a new “invasive species......The concepts of “socially robust knowledge” and “mode 2 knowledge production” (Nowotny 2003, Gibbons et al. 1994) have migrated from STS into research policy practices. Both STS-scholars and policy makers have been known to propomote the idea that the way forward for today’s scientist is to jump...... from the ivory tower and learn how to create high-flying synergies with citizens, corporations and governments. In STS as well as in Danish research policy it has thus been argued that scientists will gain more support and enjoy greater success in their work by “externalizing” their research...

  16. 350 micron Polarimetry from the Caltech Submillimeter Observatory

    CERN Document Server

    Dotson, Jessie L; Kirby, Larry; Dowell, C Darren; Hildebrand, Roger H; Davidson, Jacqueline A

    2010-01-01

    We present a summary of data obtained with the 350 micron polarimeter, Hertz, at the Caltech Submillimeter Observatory. We give tabulated results and maps showing polarization vectors and flux contours. The summary includes over 4300 individual measurements in 56 Galactic sources and 2 galaxies. Of these measurements, 2153 have P >= 3\\sigma_p statistical significance. The median polarization of the entire data set is 1.46%.

  17. Technology Development for the Caltech Submillimeter Observatory Balanced Receivers

    CERN Document Server

    Kooi, J W; Monje, R; Force, B; Miller, D; Phillips, T G

    2012-01-01

    The Caltech Submillimeter Observatory (CSO) is located on top of Mauna Kea, Hawaii, at an altitude of 4.2 km. The existing suite of facility heterodyne receivers covering the submillimeter band is rapidly aging and in need of replacement. To facilitate deep integrations and automated spectral line surveys, a family of remote programmable, synthesized, dual-frequency balanced receivers covering the astronomical important 180 - 720 GHz atmospheric windows is in an advanced stage of development. Installation of the first set of receivers is expected in the spring of 2012. Dual-frequency observation will be an important mode of operation offered by the new facility instrumentation. Two band observations are accomplished by separating the H and V polarizations of the incoming signal and routing them via folded optics to the appropriate polarization sensitive balanced mixer. Scientifically this observation mode facilitates pointing for the higher receiver band under mediocre weather conditions and a doubling of sci...

  18. The Caltech Tomography Database and Automatic Processing Pipeline.

    Science.gov (United States)

    Ding, H Jane; Oikonomou, Catherine M; Jensen, Grant J

    2015-11-01

    Here we describe the Caltech Tomography Database and automatic image processing pipeline, designed to process, store, display, and distribute electron tomographic data including tilt-series, sample information, data collection parameters, 3D reconstructions, correlated light microscope images, snapshots, segmentations, movies, and other associated files. Tilt-series are typically uploaded automatically during collection to a user's "Inbox" and processed automatically, but can also be entered and processed in batches via scripts or file-by-file through an internet interface. As with the video website YouTube, each tilt-series is represented on the browsing page with a link to the full record, a thumbnail image and a video icon that delivers a movie of the tomogram in a pop-out window. Annotation tools allow users to add notes and snapshots. The database is fully searchable, and sets of tilt-series can be selected and re-processed, edited, or downloaded to a personal workstation. The results of further processing and snapshots of key results can be recorded in the database, automatically linked to the appropriate tilt-series. While the database is password-protected for local browsing and searching, datasets can be made public and individual files can be shared with collaborators over the Internet. Together these tools facilitate high-throughput tomography work by both individuals and groups. PMID:26087141

  19. Political scientists are limited by their reliance on existing data sets, and there is not enough emphasis on creating new data

    OpenAIRE

    Pack, Mark

    2012-01-01

    Writing in response to Peter John’s defence of political science, Mark Pack argues that research on party funding is not an academic success story but rather illustrates that political scientists simply do not know enough about what is really going in with Britain’s political finances.

  20. Create powerful Broader Impact Tools and k-16 inquiry lessons aligned to next generation standards for this generation of science students by building a partnership between scientists and educational coordinators

    Science.gov (United States)

    Cohen, E.; Quan, T. M.

    2012-12-01

    A model of collaboration between research scientists, educational non-profit organizations and practicing classroom teachers will be explained. This method can provide a researcher with support providing educationally sound age appropriate science lessons while doing what they love most, researching! Appointing an educational coordinator to fulfill broader impacts may sound out of the ordinary, but evaluators recognize the important aspect of finding experts to support research in the Broader Impact, just as you would in the science part of the grant. By creating a team using experts in their field, the scientist can focus on the science while the broader Impacts will impact students and teachers. There was a team made out of experts, research, and data from the International Ocean Drilling Program, Oklahoma State University, Rutgers, and public school teachers. The educational coordinator aligns the high end scientific work to standards and benchmark for each group of students. Once the content is academically leveled at age appropriate readiness, successful lessons can be created. The scientists provide content and the non-profits provide facilitation and a way to implement the lessons created over a national scope.

  1. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences†

    OpenAIRE

    Coderre, Raymond W.; Kristen A. Uekermann; Choi, Youngeun; Anderson, William J.

    2016-01-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In sh...

  2. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences

    OpenAIRE

    Coderre, Raymond W.; Kristen A. Uekermann; Youngeun Choi; Anderson, William J.

    2015-01-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In sh...

  3. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences†

    Science.gov (United States)

    Coderre, Raymond W.; Uekermann, Kristen A.; Choi, Youngeun; Anderson, William J.

    2016-01-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media’s coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype. PMID:27047603

  4. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences

    Directory of Open Access Journals (Sweden)

    Raymond W. Coderre

    2015-11-01

    Full Text Available Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media’s coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.

  5. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences.

    Science.gov (United States)

    Coderre, Raymond W; Uekermann, Kristen A; Choi, Youngeun; Anderson, William J

    2016-03-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media's coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.

  6. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences.

    Science.gov (United States)

    Coderre, Raymond W; Uekermann, Kristen A; Choi, Youngeun; Anderson, William J

    2016-03-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media's coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype. PMID:27047603

  7. Ranking scientists

    CERN Document Server

    Dorogovtsev, S N

    2015-01-01

    Currently the ranking of scientists is based on the $h$-index, which is widely perceived as an imprecise and simplistic though still useful metric. We find that the $h$-index actually favours modestly performing researchers and propose a simple criterion for proper ranking.

  8. VizieR Online Data Catalog: Second Caltech-Jodrell Bank VLBI Survey. I. (Taylor+ 1994)

    Science.gov (United States)

    Taylor, G. B.; Vermeulen, R. C.; Pearson, T. J.; Readhead, A. C. S.; Henstock, D. R.; Browne, I. W. A.; Wilkinson, P. N.

    1996-10-01

    We define the sample for the second Caltech-Jodrell Bank VLBI survey. This is a sample of 193 flat- or gigahertz-peaked-spectrum sources selected at 4850 MHz. This paper presents images of 91 sources with a resolution of ~1 mas, obtained using VLBI observations at 4992 MHz with a global array. The remaining images and the integrated radio spectra will be presented in a forthcoming paper by Henstock et al. (4 data files).

  9. VizieR Online Data Catalog: Second Caltech-Jodrell Bank VLBI Survey. II. (Henstock+ 1995)

    Science.gov (United States)

    Henstock, D. R.; Browne, I. W. A.; Wilkinson, P. N.; Taylor, G. B.; Vermeulen, R. C.; Pearson, T. J.; Readhead, A. C. S.

    1996-10-01

    This is the second of two papers presenting the Second Caltech- Jodrell Bank VLBI survey (CJ2). The CJ2 sample consists of 193 flat- and gigahertz-peaked-spectrum sources selected at 4850 MHz. In this paper we present images of the remaining 102 sources with ~1 mas resolution, obtained using VLBI snapshot observations at 4992 MHz with a global array. We also present integrated radio spectra for the entire CJ2 sample. (2 data files).

  10. Strange Happenings in the Dungeons- A new detector group at Caltech

    Science.gov (United States)

    Smith, R.

    In anticipation of the 30-m California Extremely Large Telescope (CELT), Caltech is increasing its depth of expertise in instrumentation, adaptive optics and detectors, to a level not seen for many decades. A single detector group will address both optical and IR needs for science and wavefront sensors with common technology wherever possible. The team is deploying several cameras on Palomar Mountain, and is beginning work on the Keck IR Multi-object Spectrograph. Development projects include testing low-noise amplifiers for IR adaptive optics and testing the 32-channel ASIC for the Rockwell Hawaii-2RG.

  11. Energy Efficiency Analysis of the Discharge Circuit of Caltech Spheromak Experiment

    OpenAIRE

    Kumar, Deepak; Moser, Auna L.; Bellan, Paul M.

    2010-01-01

    The Caltech spheromak experiment uses a size A ignitron in switching a 59-μF capacitor bank (charged up to 8 kV) across an inductive plasma load. Typical power levels in the discharge circuit are ~200 MW for a duration of ~10 μs. This paper describes the setup of the circuit and the measurements of various impedances in the circuit. The combined impedance of the size A ignitron and the cables was found to be significantly larger than the plasma impedance. This causes the ...

  12. VizieR Online Data Catalog: First Caltech-Jodrell Bank VLBI Survey. II. (Thakkar+ 1995)

    Science.gov (United States)

    Thakkar, D. D.; Xu, W.; Readhead, A. C. S.; Pearson, T. J.; Taylor, G. B.; Vermeulen, R. C.; Polatidis, A. G.; Wilkinson, P. N.

    1996-10-01

    We report lambda-18 cm VLBI observations made in 1991 September of a further 25 objects from the first Caltech-Jodrell Bank VLBI Survey (the CJ1 survey). The CJ1 sample is a complete, flux-density limited sample of 135 radio sources with total flux density at lambda-6cm between 0.7 and 1.3Jy. These observations complete the lambda-18cm part of the survey. Together with the results of Paper I (Polatidis et al., ), we have now observed 81 CJ1 sources at lambda-18cm. Later papers in the series will present lambda-6cm observations and the analysis and interpretation of the results. (2 data files).

  13. Creating standards: Creating illusions?

    DEFF Research Database (Denmark)

    Linneberg, Mai Skjøtt

    written standards may open up for the creation of illusions. These are created when written standards' content is not in accordance with the perception standard adopters and standard users have of the specific practice phenomenon's content. This general theoretical argument is exemplified by the specific...

  14. Cornell Caltech Atacama Telescope (CCAT): a 25 m aperture telescope above 5000 m altitude

    CERN Document Server

    Sebring, T A; Radford, S; Zmuidzinas, J; Sebring, Thomas A.; Giovanelli, Riccardo; Radford, Simon; Zmuidzinas, Jonas

    2006-01-01

    Cornell, California Institute of Technology (Caltech), and Jet Propulsion Lab (JPL) have joined together to study development of a 25 meter sub-millimeter telescope (CCAT) on a high peak in the Atacama region of northern Chile, where the atmosphere is so dry as to permit observation at wavelengths as short as 200 micron. The telescope is designed to deliver high efficiency images at that wavelength with a total 1/2 wavefront error of about 10 microns. With a 20 arc min field of view, CCAT will be able to accommodate large format bolometer arrays and will excel at carrying out surveys as well as resolving structures to the 2 arc sec. resolution level. The telescope will be an ideal complement to ALMA. Initial instrumentation will include both a wide field bolometer camera and a medium resolution spectrograph. Studies of the major telescope subsystems have been performed as part of an initial Feasibility Concept Study. Novel aspects of the telescope design include kinematic mounting and active positioning of pr...

  15. VizieR Online Data Catalog: First Caltech-Jodrell Bank VLBI Survey. III (Xu+ 1995)

    Science.gov (United States)

    Xu, W.; Readhead, A. C. S.; Pearson, T. J.; Polatidis, A. G.; Wilkinson, P. N.

    1996-02-01

    We present the 5GHz results from the first Caltech-Jodrell Bank (CJ1) VLBI survey. The 1.6GHz maps were presented in two separate papers, Polatidis et al. and Thakkar et al. . These three papers complete the first stage of this program to map at both 1.6 and 5GHz all objects accessible to Mark II VLBI in the complete sample of 135 objects with 1.3>S(5Ghz)>=0.7Jy, Dec(1950)>=35deg, and |b|>10deg. The combination of the CJ1 sample with the Pearson-Readhead (PR) sample provides a complete, flux density-limited sample of 200 objects with S(5GHz)>=0.7Jy, Dec(1950)>=35deg, |b|>10deg for which all of the objects accessible to Mark II VLBI have been mapped at both 5GHz (129 objects) and 1.6GHz (132 objects). In addition to the 5GHz VLBI maps, we present in this paper 5GHz MERLIN observations of 20 objects and 1.4GHz VLA observations of 92 objects in the combined CJ1 + PR sample. The VLA maps, together with L-band (1.3-1.7GHz) maps available in the literature, provide a complete set of VLA maps for the combined CJ1 + PR sample. Finally, we present the radio spectra of the objects in the CJ1 sample. The combined CJ1 + PR VLBI surveys provide a sample which is large enough for a number of important astrophysical and cosmological studies. These will be presented in further papers in this series. (4 data files).

  16. VizieR Online Data Catalog: First Caltech-Jodrell Bank VLBI Survey. I. (Polatidis+ 1995)

    Science.gov (United States)

    Polatidis, A. G.; Wilkinson, P. N.; Xu, W.; Readhead, A. C. S.; Pearson, T. J.; Taylor, G. B.; Vermeulen, R. C.

    1996-10-01

    We present the first results from the first Caltech-Jodrell Bank VLBI survey (the CJ1 survey). The CJ1 sample includes 135 radio sources with total flux density 1.3Jy>S_6cm>=0.7Jy, declination delta_1950>=35deg, and Galactic latitude |b^II|>10deg. It extends the flux density limit of the complete "PR" sample studied by Pearson & Readhead from 1.3 to 0.7Jy and increases the total number of sources from 65 to 200. The complete survey includes VLBI images at both lambda-18 and 6cm of all objects in the extended sample that have cores strong enough to be mapped with the Mark II VLBI system. These images provide a large enough sample to study, for example, the variety of morphologies exhibited by compact radio sources, cosmological evolution, superluminal motion, and misalignment between parsec-scale and kiloparsec-scale radio structures. In this paper we present lambda-18cm VLBI observations of 56 CJ1 and 31 PR sources made in 1990-1991, including images of 82 sources. The observations were made with a "snapshot" technique in which each source was observed in three 20-30-minute scans using an array of 12-16 antennas. The images have resolution 3-10mas and dynamic range greater than 100:1. Later papers in the series will present the remaining lambda-18cm observations, the lambda-6cm observations, and the analysis and interpretation of the results. (4 data files).

  17. Excel for Scientists and Engineers

    CERN Document Server

    Verschuuren, Dr Gerard

    2005-01-01

    For scientists and engineers tired of trying to learn Excel with examples from accounting, this self-paced tutorial is loaded with informative samples from the world of science and engineering. Techniques covered include creating a multifactorial or polynomial trendline, generating random samples with various characteristics, and tips on when to use PEARSON instead of CORREL. Other science- and engineering-related Excel features such as making columns touch each other for a histogram, unlinking a chart from its data, and pivoting tables to create frequency distributions are also covered.

  18. Inspiring Future Scientists

    Science.gov (United States)

    Betteley, Pat; Lee, Richard E., Jr.

    2009-01-01

    In an integrated science/language arts/technology unit called "How Scientists Learn," students researched famous scientists from the past and cutting-edge modern-day scientists. Using biography trade books and the internet, students collected and recorded data on charts, summarized important information, and inferred meaning from text. Then they…

  19. Scientists: Engage the Public!

    Science.gov (United States)

    Shugart, Erika C; Racaniello, Vincent R

    2015-01-01

    Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or "Sagan effect" associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist's career. There are a variety of approaches that scientists can take to become active in science communication.

  20. The Guggenheim Aeronautics Laboratory at Caltech and the creation of the modern rocket motor (1936-1946): How the dynamics of rocket theory became reality

    Science.gov (United States)

    Zibit, Benjamin Seth

    This thesis explores and unfolds the story of discovery in rocketry at The California Institute of Technology---specifically at Caltech's Guggenheim Aeronautics Laboratory---in the 1930s and 1940s. Caltech was home to a small group of engineering students and experimenters who, beginning in the winter of 1935--1936, formed a study and research team destined to change the face of rocket science in the United States. The group, known as the Guggenheim Aeronautics Laboratory (GALCIT, for short) Rocket Research Group, invented a new type of solid-rocket propellant, made distinct and influential discoveries in the theory of rocket combustion and design, founded the Jet Propulsion Laboratory, and incorporated the first American industrial concern devoted entirely to rocket motor production: The Aerojet Corporation. The theoretical work of team members, Frank Malina, Hsueh-shen Tsien, Homer J. Stewart, and Mark Mills, is examined in this thesis in detail. The author scrutinizes Frank Malina's doctoral thesis (both its assumptions and its mathematics), and finds that, although Malina's key assertions, his formulae, hold, his work is shown to make key assumptions about rocket dynamics which only stand the test of validity if certain approximations, rather than exact measurements, are accepted. Malina studied the important connection between motor-nozzle design and thrust; in his Ph.D. thesis, he developed mathematical statements which more precisely defined the design/thrust relation. One of Malina's colleagues on the Rocket Research Team, John Whiteside Parsons, created a new type of solid propellant in the winter of 1941--1942. This propellant, known as a composite propellant (because it simply was a relatively inert amalgam of propellant and oxidizer in non-powder form), became the forerunner of all modern solid propellants, and has become one of the seminal discoveries in the field of Twentieth Century rocketry. The latter chapters of this dissertation discuss the

  1. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  2. Characterization of a submillimeter high-angular-resolution camera with a monolithic silicon bolometer array for the Caltech Submillimeter Observatory

    OpenAIRE

    Wang, Nina; Hunter, T. R.; Benford, D. J.; Serabyn, E.; Lis, D.C.; Phillips, T. G.; Moseley, S. H.; Bpyce, K.; Szymkowiak, A.; C. Allen; Mott, B.; Gygax, J.

    1996-01-01

    We constructed a 24-pixel bolometer camera operating in the 350- and 450-µm atmospheric windows for the Caltech Submillimeter Observatory (CSO). This instrument uses a monolithic silicon bolometer array that is cooled to approximately 300 mK by a single-shot 3 He refrigerator. First-stage amplification is provided by field-effect transistors at approximately 130 K. The sky is imaged onto the bolometer array by means of several mirrors outside the Dewar and a cold off-axis elliptical mirror in...

  3. Social media for engineers and scientists

    CERN Document Server

    DiPietro, Jon

    2011-01-01

    This book explores the rising phenomena of internet-based social networking and discusses the particular challenges faced by engineers and scientists in adapting to this new, content-centric environment. Social networks are both a blessing and a curse to the engineer and scientist. The blessings are apparent: the abundance of free applications and their increasing mobility and transportability. The curse is that creating interesting and compelling content on these user-driven systems is best served by right-brain skills. But most engineers and scientists are left-brain oriented, have genera

  4. Scientists and Human Rights

    Science.gov (United States)

    Makdisi, Yousef

    2012-02-01

    The American Physical Society has a long history of involvement in defense of human rights. The Committee on International Freedom of Scientists was formed in the mid seventies as a subcommittee within the Panel On Public Affairs ``to deal with matters of an international nature that endangers the abilities of scientists to function as scientists'' and by 1980 it was established as an independent committee. In this presentation I will describe some aspects of the early history and the impetus that led to such an advocacy, the methods employed then and how they evolved to the present CIFS responsibility ``for monitoring concerns regarding human rights for scientists throughout the world''. I will also describe the current approach and some sample cases the committee has pursued recently, the interaction with other human rights organizations, and touch upon some venues through which the community can engage to help in this noble cause.

  5. How conservation scientists work

    OpenAIRE

    Grace, Marcus; Hare, Tony

    2008-01-01

    Being a conservation scientist is not easy. Some may regard it as a ‘soft’ science, and yet it necessarily draws on many other fields of cutting-edge science, such as genetics, ecology, climatology, and behavioural and reproductive science. But these scientists also find themselves working under a wide range of political, socio-economic, and cultural pressures. They often need to make tough, rapid decisions and therefore tread a difficult path between science and society.

  6. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  7. 30 GHz flux density measurements of the Caltech-Jodrell flat-spectrum sources with OCRA-p

    CERN Document Server

    Lowe, S R; Wilkinson, P N; Kus, A J; Browne, I W A; Pazderski, E; Feiler, R; Kettle, D

    2007-01-01

    To measure the 30-GHz flux densities of the 293 sources in the Caltech-Jodrell Bank flat-spectrum (CJF) sample. The measurements are part of an ongoing programme to measure the spectral energy distributions of flat spectrum radio sources and to correlate them with the milliarcsecond structures from VLBI and other measured astrophysical properties. The 30-GHz data were obtained with a twin-beam differencing radiometer system mounted on the Torun 32-m telescope. The system has an angular resolution of 1.2 arcmin. Together with radio spectral data obtained from the literature, the 30-GHz data have enabled us to identify 42 of the CJF sources as Giga-hertz Peaked Spectrum (GPS) sources. Seventeen percent of the sources have rising spectra (alpha > 0) between 5 and 30 GHz.

  8. The cryomechanical design of MUSIC: a novel imaging instrument for millimeter-wave astrophysics at the Caltech Submillimeter Observatory

    Science.gov (United States)

    Hollister, Matthew I.; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; Nguyen, Hien Trong; Noroozian, Omid; Sayers, Jack; Schlaerth, James; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip; Zmuidzinas, Jonas

    2010-07-01

    MUSIC (Multicolor Submillimeter kinetic Inductance Camera) is a new facility instrument for the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) developed as a collaborative effect of Caltech, JPL, the University of Colorado at Boulder and UC Santa Barbara, and is due for initial commissioning in early 2011. MUSIC utilizes a new class of superconducting photon detectors known as microwave kinetic inductance detectors (MKIDs), an emergent technology that offers considerable advantages over current types of detectors for submillimeter and millimeter direct detection. MUSIC will operate a focal plane of 576 spatial pixels, where each pixel is a slot line antenna coupled to multiple detectors through on-chip, lumped-element filters, allowing simultaneously imaging in four bands at 0.86, 1.02, 1.33 and 2.00 mm. The MUSIC instrument is designed for closed-cycle operation, combining a pulse tube cooler with a two-stage Helium-3 adsorption refrigerator, providing a focal plane temperature of 0.25 K with intermediate temperature stages at approximately 50, 4 and 0.4 K for buffering heat loads and heat sinking of optical filters. Detector readout is achieved using semi-rigid coaxial cables from room temperature to the focal plane, with cryogenic HEMT amplifiers operating at 4 K. Several hundred detectors may be multiplexed in frequency space through one signal line and amplifier. This paper discusses the design of the instrument cryogenic hardware, including a number of features unique to the implementation of superconducting detectors. Predicted performance data for the instrument system will also be presented and discussed.

  9. Methods & Strategies: Sculpt-a-Scientist

    Science.gov (United States)

    Jackson, Julie; Rich, Ann

    2014-01-01

    Elementary science experiences help develop students' views of science and scientific interests. As a result, teachers have been charged with the task of inspiring, cultivating, recruiting, and training the scientists needed to create tomorrow's innovations and solve future problems (Business Roundtable 2005). Who will these future…

  10. Engineers, scientists to benefit from CERN agreement

    CERN Multimedia

    2008-01-01

    Prime Minister Lawrence Gonzi will later this week sign a memorandum of understanding with the European Laboratory for Particle Physics in Geneva (CERN), the largest laboratory of its kind in the world, which will create new opportunities for Maltese engineers and scientists.

  11. Reconciling Scientists and Journalists

    Science.gov (United States)

    Rosner, H.

    2006-12-01

    The very nature of scientists' and journalists' jobs can put them at cross-purposes. Scientists work for years on one research project, slowly accumulating data, and are hesitant to draw sweeping conclusions without multiple rounds of hypothesis-testing. Journalists, meanwhile, are often looking for "news"—a discovery that was just made ("scientists have just discovered that...") or that defies conventional wisdom and is therefore about to turn society's thinking on its head. The very criteria that the mediamakers often use to determine newsworthiness can automatically preclude some scientific progress from making the news. There are other built-in problems in the relationship between journalists and scientists, some of which we can try to change and others of which we can learn to work around. Drawing on my personal experience as a journalist who has written for a wide variety of magazines, newspapers, and web sites, this talk will illustrate some of the inherent difficulties and offer some suggestions for how to move beyond them. It will provide a background on the way news decisions are made and how the journalist does her job, with an eye toward finding common ground and demonstrating how scientists can enjoy better relationships with journalists—relationships that can help educate the public on important scientific topics and avoid misrepresentation of scientific knowledge in the media.

  12. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  13. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  14. Soldier and scientist

    Directory of Open Access Journals (Sweden)

    Major Gen. H.H. Stable

    1950-04-01

    Full Text Available Most military libraries contain a number of works regarding the soldier's relationship with his colleagues, such as: “Soldier and Sailor "," Soldier and Airman ", " Soldiers and Statesmen " and so on. It is curious perhaps that no work has so far appeared entitled "Soldier and Scientist ". Yet, from this fact the point emerges that   whereas-in the past, the combination of the soldier and the scientist was uncommon, it is now being appreciated that such is indeed desirable and people are perhaps wishing to improve their knowledge on the subject

  15. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  16. From Atmospheric Scientist to Data Scientist

    Science.gov (United States)

    Knuth, S. L.

    2015-12-01

    Most of my career has been spent analyzing data from research projects in the atmospheric sciences. I spent twelve years researching boundary layer interactions in the polar regions, which included five field seasons in the Antarctic. During this time, I got both a M.S. and Ph.D. in atmospheric science. I learned most of my data science and programming skills throughout this time as part of my research projects. When I graduated with my Ph.D., I was looking for a new and fresh opportunity to enhance the skills I already had while learning more advanced technical skills. I found a position at the University of Colorado Boulder as a Data Research Specialist with Research Computing, a group that provides cyber infrastructure services, including high-speed networking, large-scale data storage, and supercomputing, to university students and researchers. My position is the perfect merriment between advanced technical skills and "softer" skills, while at the same time understanding exactly what the busy scientist needs to understand about their data. I have had the opportunity to help shape our university's data education system, a development that is still evolving. This presentation will detail my career story, the lessons I have learned, my daily work in my new position, and some of the exciting opportunities that opened up in my new career.

  17. Doctoral Scientists in Oceanography.

    Science.gov (United States)

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    The purpose of this report was to classify and count doctoral scientists in the United States trained in oceanography and/or working in oceanography. Existing data from three sources (National Research Council's "Survey of Earned Doctorates," and "Survey of Doctorate Recipients," and the Ocean Sciences Board's "U.S. Directory of Marine…

  18. Talk Like a Scientist

    Science.gov (United States)

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  19. Developing Scientists' "Soft" Skills

    Science.gov (United States)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  20. Early Primary Invasion Scientists

    Science.gov (United States)

    Spellman, Katie V.; Villano, Christine P.

    2011-01-01

    "We really need to get the government involved," said one student, holding his graph up to USDA scientist Steve Seefeldt. Dr. Steve studies methods to control "invasive" plants, plants that have been introduced to an area by humans and have potential to spread rapidly and negatively affect ecosystems. The first grader and his classmates had become…

  1. Ethics for life scientists

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.; Bogers, R.J.

    2004-01-01

    In this book we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good insight into business ethics, a branch of applied ethics that until now is far ahead of ethics for life scientists. In the second part, ethics

  2. Becoming a Spider Scientist

    Science.gov (United States)

    Patrick, Patricia; Getz, Angela

    2008-01-01

    In this integrated unit, third grade students become spider scientists as they observe spiders in their classroom to debunk some common misconceptions about these intimidating creatures. "Charlotte's Web" is used to capture students' interest. In addition to addressing philosophical topics such as growing-up, death, and friendship; E.B. White's…

  3. Creating Poetry.

    Science.gov (United States)

    Drury, John

    Encouraging exploration and practice, this book offers hundreds of exercises and numerous tips covering every step involved in creating poetry. Each chapter is a self-contained unit offering an overview of material in the chapter, a definition of terms, and poetry examples from well-known authors designed to supplement the numerous exercises.…

  4. Creating Tribes.

    Science.gov (United States)

    Robyn, Elisa

    2000-01-01

    Suggests the use of the "tribal" metaphor to foster team building and collaborative learning in college classes. Offers examples of how linking students in the classroom in tribes builds identification and interdependence through such activities as creating a group myth and participating in membership rituals. The tribal metaphor has also led to…

  5. Communicating Ocean Sciences to Informal Audiences: A Scientist-Educator Partnership to Prepare the Next Generation of Scientists

    Science.gov (United States)

    Halversen, Catherine; Tran, Lynn Uyen

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a college course that creates and develops partnerships between science educators in informal science education institutions, such as museums, science centers and aquariums, and ocean scientists in colleges and universities. For the course, a scientist and educator team-teach…

  6. Experimental and analytical studies of merging plasma loops on the Caltech solar loop experiment

    Science.gov (United States)

    Pitigoi-Aron, Gabriela

    and personal factors and perceptions with emphasis on mentors' influence; (5) Negative influence of salary difference with respect to private practitioners. The findings of this study were similar to the available studies on foreign-trained dentists and to most of the studies already done on domestically trained dentists. The major factors found were comparable with the up-to-date literature. The elevated research drive, the intellectual challenges, the work environment, the desire to teach, and the mentors' influence were among those which mirrored almost perfectly the other studies. Some fine differences were found for foreign-trained dentists, such as a lighter financial burden caused by smaller student debt and the irrelevance of military practice experience. The study provides a number of suggestions for enhancing the recruiting and retaining process for dental academia: (1) Support and enhance the research capacity of dental schools; (2) Create structures to develop mentors; (3) Invest to build prestige; (4) Find creative ways to offset lower salaries; (5) Foster a pleasant academic working environment; (6) Use international activities to recruit international dentists. The study revealed factors that have been influential in participants' decisions to choose an academic career, in general and at Pacific. It is hoped that this study will be a useful reference in the increasingly difficult endeavor of adding and retaining world-class dental educators.

  7. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    The question of how to measure research quality recently gained prominence in the context of Danish research policy, as part of implementing a new model for the allocating of funds to universities. The measurement device took the form of a bibliometric indicator. Analyzing the making of the indic......The question of how to measure research quality recently gained prominence in the context of Danish research policy, as part of implementing a new model for the allocating of funds to universities. The measurement device took the form of a bibliometric indicator. Analyzing the making...... was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  8. The Great Scientists

    Science.gov (United States)

    Meadows, Jack

    1989-11-01

    This lively history of the development of science and its relationship to society combines vivid biographies of twelve pivotal scientists, commentary on the social and historical events of their time, and over four hundred illustrations, including many in color. The biographies span from classical times to the Atomic Age, covering Aristotle, Galileo, Harvey, Newton, Lavoisier, Humboldt, Faraday, Darwin, Pasteur, Curie, Freud, and Einstein. Through the biographies and a wealth of other material, the volume reveals how social forces have influenced the course of science. Along with the highly informative color illustrations, it contains much archival material never before published, ranging from medieval woodcuts, etchings from Renaissance anatomy texts, and pages from Harvey's journal, to modern false-color x-rays and infrared photographs of solar flares. A beautifully-designed, fact-filled, stimulating work, The Great Scientists will fascinate anyone with an interest in science and how history can influence scientific discovery.

  9. The Caltech-NRAO Stripe 82 Survey (CNSS) Paper I: The Pilot Radio Transient Survey In 50 deg$^2$

    CERN Document Server

    Mooley, K P; Bourke, S; Horesh, A; Myers, S T; Frail, D A; Kulkarni, S R; Levitan, D B; Kasliwal, M M; Cenko, S B; Cao, Y; Bellm, E; Laher, R R

    2016-01-01

    We have commenced a multi-year program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the SDSS Stripe 82 region. The CNSS will deliver five epochs over the entire $\\sim$270 deg$^2$ of Stripe 82, an eventual deep combined map with a rms noise of $\\sim$40 $\\mu$Jy and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3". This first paper presents the results from an initial pilot survey of a 50 deg$^2$ region of Stripe 82, involving four epochs spanning logarithmic timescales between one week and 1.5 years, with the combined map having a median rms noise of 35 $\\mu$Jy. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg$^2$ survey. Classification of variable and transient sources relied heavily on the wealth of multi-wavelength data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Trans...

  10. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS

    International Nuclear Information System (INIS)

    Type IIn supernovae (SNe IIn) are rare events, constituting only a few percent of all core-collapse SNe, and the current sample of well-observed SNe IIn is small. Here, we study the four SNe IIn observed by the Caltech Core-Collapse Project (CCCP). The CCCP SN sample is unbiased to the extent that object selection was not influenced by target SN properties. Therefore, these events are representative of the observed population of SNe IIn. We find that a narrow P-Cygni profile in the hydrogen Balmer lines appears to be a ubiquitous feature of SNe IIn. Our light curves show a relatively long rise time (>20 days) followed by a slow decline stage (0.01-0.15 mag day–1), and a typical V-band peak magnitude of MV = –18.4 ± 1.0 mag. We measure the progenitor star wind velocities (600-1400 km s–1) for the SNe in our sample and derive pre-explosion mass-loss rates (0.026-0.12 M☉ yr–1). We compile similar data for SNe IIn from the literature and discuss our results in the context of this larger sample. Our results indicate that typical SNe IIn arise from progenitor stars that undergo luminous-blue-variable-like mass loss shortly before they explode.

  11. Review of Caltech Workshop and some parametric questions for a high-luminosity asymmetric B-factory collider

    International Nuclear Information System (INIS)

    The potential to probe the Standard Model and beyond with studies in the B-meson system has resulted in the investigation of techniques to perform this physics. One of the most promising is to produce the Υ(4S) resonance, moving in the laboratory frame, using an e+e- storage-ring collider with different energies in the two beams. In this paper, the author summarizes the results of that workshop in this paper, and also investigate some parametric questions incorporating several of the constraints discussed there. The purpose of the Caltech Workshop was to consider the accelerator physics issues faced in attempting to achieve a high-luminosity asymmetric e+e- storage-ring B-factory in the Ecm ∼ 10-GeV region. There were four working groups, chosen to address what were perceived to be the most difficult areas: beam-beam limitations, optics, beam current limitations, and small beam pipe at the interaction point (IP). The author summarizes the conclusions from each of these groups in the following sections. Many of these considerations apply as well to symmetric B-factory colliders

  12. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Cenko, S. Bradley; Becker, Adam B. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Leonard, Douglas C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Moon, Dae-Sik [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Sand, David J. [Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117 (United States); Soderberg, Alicia M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kiewe, Michael [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Scheps, Raphael [King' s College, University of Cambridge, Cambridge CB2 1ST (United Kingdom); Birenbaum, Gali [12 Amos St, Ramat Chen, Ramat Gan 52233 (Israel); Chamudot, Daniel [20 Chen St, Petach Tikvah 49520 (Israel); Zhou, Jonathan, E-mail: iair.arcavi@weizmann.ac.il [101 Dunster Street, Box 398, Cambridge, MA 02138 (United States)

    2012-09-10

    We present R-band light curves of Type II supernovae (SNe) from the Caltech Core-Collapse Project (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three apparently distinct classes: plateau, slowly declining, and rapidly declining events. The last class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. As analysis of additional CCCP data goes on and larger samples are collected, demographic studies of core-collapse SNe will likely continue to provide new constraints on progenitor scenarios.

  13. Caltech Core-Collapse Project (CCCP) Observations of Type II Supernovae: Evidence for Three Distinct Photometric Subtypes

    CERN Document Server

    Arcavi, Iair; Cenko, S Bradley; Fox, Derek B; Leonard, Douglas C; Moon, Dae-Sik; Sand, David J; Soderberg, Alicia M; Kiewe, Michael; Yaron, Ofer; Becker, Adam B; Scheps, Raphael; Birenbaum, Gali; Chamudot, Daniel; Zhou, Jonathan

    2012-01-01

    We present R-Band light curves of Type II supernovae (SNe) from the Caltech Core Collapse Project (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three distinct classes: plateau, slowly declining and rapidly declining events. The last class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. As analysis of additional CCCP data goes on and larger samples are collected, demographic studies of core collapse SNe will ...

  14. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  15. [The critical scientists' voice].

    Science.gov (United States)

    Lewgoy, F

    2000-01-01

    The intricate debate over genetically modified organisms (GMOs) involves powerful economic interests, as well as ethical, legal, emotional and scientific aspects, some of which are dealt with in this paper.(It is possible to identify two main groups of scientists across the GMOs divide: the triumphalist and the critical group.) Scientists in the triumphalist group state that GMOs and their derivatives are safe for the environment and do not offer health hazards any more than similar, non-genetically modified, products. This view is disputed by the critical scientists, who are prompted by the scarcity of studies on the environmental impacts and toxicity of GMOs, and who point out flaws in tests performed by the same companies which hold the patents. They are also critical of the current state of the process of gene transference, lacking accuracy, a fact which, coupled with the scant knowledge available about 97% of the genome functions, may produce unforseeable effects with risks for the environment and public health yet to be assessed. Examples of such effects are: the transference of alien genes [??] to other species, the emergence of toxins, the creation of new viruses, the impacts on beneficial insects and on biodiversity in general. PMID:16683329

  16. A neural network-based approach to noise identification of interferometric GW antennas: the case of the 40 m Caltech laser interferometer

    International Nuclear Information System (INIS)

    In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis

  17. Ernest Rutherford: scientist supreme

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. [Physics Department, University of Canterbury, Christchurch (New Zealand)

    1998-09-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  18. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  19. Scientists need political literacy

    Science.gov (United States)

    Simarski, Lynn Teo

    Scientists need to sharpen their political literacy to promote public and congressional awareness of science policy issues. This was the message of a panel of politically savvy scientists at a recent workshop at the American Association for the Advancement of Science's annual meeting in Washington, D.C. Researchers can maximize their lobbying efforts by targeting critical points of the legislative and federal funding cycles, the panel said, and by understanding the differences between the science and policy processes.Drastic modifications to the federal budget process this year will influence how much funding flows to research and development. A new feature for FY 1991-1993 is caps on federal expenditure in three areas: defense, foreign aid, and domestic “discretionary” spending. (Most of the agencies that fund geophysics fall into the domestic category.) Money cannot now be transferred from one of these areas to another, said Michael L. Telson, analyst for the House Budget Committee, and loopholes will be “very tough to find.” What is more, non-defense discretionary spending has dropped over a decade from 24% of the budget to the present 15%. Another new requirement is the “pay-as-you-go” system. Under this, a bill that calls for an increase in “entitlement” or other mandatory spending must offset this by higher taxes or by a cut in other spending.

  20. Developmental Potential among Creative Scientists

    Science.gov (United States)

    Culross, Rita R.

    2008-01-01

    The world of creative scientists is dramatically different in the 21st century than it was during previous centuries. Whether biologists, chemists, physicists, engineers, mathematicians, or computer scientists, the livelihood of research scientists is dependent on their abilities of creative expression. The view of a solitary researcher who…

  1. Public Information Personnel and Scientists.

    Science.gov (United States)

    Dunwoody, Sharon L.; Ryan, Michael

    A study examined the attitudes of scientists toward public information personnel and media coverage. Of 456 subjects (half social and behavioral scientists and half biological scientists) chosen randomly from the "American Men and Women of Science" reference books, 287 responded to the seven-page, two-part questionnaire. Part one contained 34…

  2. WFIRST CGI Adjutant Scientist

    Science.gov (United States)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  3. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.;

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  4. Voices of Romanian scientists

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    As Romania has now become a Member State of CERN, Romanian scientists share their thoughts about this new era of partnership for their community.   Members of ATLAS from Romanian institutes at CERN (from left to right): Dan Ciubotaru, Michele Renda, Bogdan Blidaru, Alexandra Tudorache, Marina Rotaru, Ana Dumitriu, Valentina Tudorache, Adam Jinaru, Calin Alexa. On 17 July 2016, Romania became the twenty-second Member State of CERN, 25 years after the first cooperation agreement with the country was signed. “CERN and Romania already have a long history of strong collaboration”, says Emmanuel Tsesmelis, head of Relations with Associate Members and Non-Member States. “We very much look forward to strengthening this collaboration as Romania becomes CERN’s twenty-second Member State, which promises the development of mutual interests in scientific research, related technologies and education,” he affirms. Romania&...

  5. The Caltech-NRAO Stripe 82 Survey (CNSS). I. The Pilot Radio Transient Survey In 50 deg2

    Science.gov (United States)

    Mooley, K. P.; Hallinan, G.; Bourke, S.; Horesh, A.; Myers, S. T.; Frail, D. A.; Kulkarni, S. R.; Levitan, D. B.; Kasliwal, M. M.; Cenko, S. B.; Cao, Y.; Bellm, E.; Laher, R. R.

    2016-02-01

    We have commenced a multiyear program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the Sloan Digital Sky Survey Stripe 82 region. The CNSS will deliver five epochs over the entire ˜270 deg2 of Stripe 82, an eventual deep combined map with an rms noise of ˜40 μJy and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3″. This first paper presents the results from an initial pilot survey of a 50 deg2 region of Stripe 82, involving four epochs spanning logarithmic timescales between 1 week and 1.5 yr, with the combined map having a median rms noise of 35 μJy. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg2 survey. Data editing, calibration, imaging, source extraction, cataloging, and transient identification were completed in a semi-automated fashion within 6 hr of completion of each epoch of observations, using dedicated computational hardware at the NRAO in Socorro and custom-developed data reduction and transient detection pipelines. Classification of variable and transient sources relied heavily on the wealth of multiwavelength legacy survey data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Transient Factory. A total of {3.9}-0.9+0.5% of the few thousand detected point sources were found to vary by greater than 30%, consistent with similar studies at 1.4 and 5 GHz. Multiwavelength photometric data and light curves suggest that the variability is mostly due to shock-induced flaring in the jets of active galactic nuclei (AGNs). Although this was only a pilot survey, we detected two bona fide transients, associated with an RS CVn binary and a dKe star. Comparison with existing legacy survey data (FIRST, VLA-Stripe 82) revealed additional highly variable and transient sources on timescales between 5 and 20 yr, largely

  6. The Scientist as Illustrator.

    Science.gov (United States)

    Iwasa, Janet H

    2016-04-01

    Proficiency in art and illustration was once considered an essential skill for biologists, because text alone often could not suffice to describe observations of biological systems. With modern imaging technology, it is no longer necessary to illustrate what we can see by eye. However, in molecular and cellular biology, our understanding of biological processes is dependent on our ability to synthesize diverse data to generate a hypothesis. Creating visual models of these hypotheses is important for generating new ideas and for communicating to our peers and to the public. Here, I discuss the benefits of creating visual models in molecular and cellular biology and consider steps to enable researchers to become more effective visual communicators.

  7. Data Processing for Scientists.

    Science.gov (United States)

    Heumann, K F

    1956-10-26

    This brief survey of integrated and electronic data processing has touched on such matters as the origin of the concepts, their use in business, machines that are available, indexing problems, and, finally, some scientific uses that surely foreshadow further development. The purpose of this has been to present for the consideration of scientists a point of view and some techniques which have had a phenomenal growth in the business world and to suggest that these are worth consideration in scientific data-handling problems (30). To close, let me quote from William Bamert on the experience of the C. and O. Railroad once more (8, p. 121): "Frankly, we have been asked whether we weren't planning for Utopia-the implication being that everyone except starry-eyed visionaries knows that Utopia is unattainable. Our answer is that of course we are! Has anyone yet discovered a better way to begin program planning of this nature? Our feeling is that compromise comes early enough in the normal order of things."

  8. Administration for Defence Scientists

    Directory of Open Access Journals (Sweden)

    G. E. Gale

    1953-01-01

    Full Text Available All scientific work must be carried out against a background of adequate administrative support if it is to become effective and produce useful results. Administration is not a job for which we, as scientists, are particularly trained; and it is a thing of which we tend to fight shy, partly because, author suppose, most Of peoples are associate the administrator with highly unpleasant matters such as income tax, delays in getting our pay cheques, and so on - For that reason we do not feel, always pay  sufficient attention to administrative affairs ; rather like the ostrich, we try to escape from them by merely ignoring them. But that is a wrong and unfruitful attitude to adopt. All live so much under the activities of the trained administrator that should, if, it  give a great deal of thought to our own administrative problems deliberate and conscious thought to them-and make an honest and heart-searching self analysis regarding our own possible failings.

  9. Do scientists trace hot topics?

    OpenAIRE

    Tian Wei; Menghui Li; Chensheng Wu; Xiao-Yong Yan; Ying Fan; Zengru Di; Jinshan Wu

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries,...

  10. Scientists work on nextgen web

    CERN Multimedia

    Bagla, Pallava

    2007-01-01

    "Scientists at the European Organisation for Nuclear Research or CERN are busy mastering the nextgen web. Very soon, the worldwide we as it is called will peak and scientists are already working on the replacement called GRID computing." (1/2 page)

  11. Seven scientists advise

    International Nuclear Information System (INIS)

    The Scientific Advisory Committee of the International Atomic Energy Agency held its second series of meetings in Vienna on 4-5 June 1959. The members of the Committee are seven distinguished scientists from different countries: Dr. H.J. Bhabha (India), Sir John Cockcroft (UK), Professor V.S. Emelyanov (USSR), Dr. B. Goldschmidt (France), Dr. B. Gross (Brazil), Dr. W.B. Lewis (Canada) and Professor I.I. Rabi (USA). The function of the Committee is to provide the Director General and through him the Board of Governors with scientific and technical advice on questions relating to the Agency's activities. Subjects for consideration by the Committee can be submitted by the Director General either on his own behalf or on behalf of the Board. At its recent session, the Committee considered several aspects of the Agency's scientific programme, including the proposed conferences, symposia and seminars for 1960, scientific and technical publications, and the research contracts which had been or were to be awarded by the Agency. The programme of conferences for the current year had been approved earlier by the Board of Governors on the recommendation of the Committee. A provisional list of 17 conferences, symposia and seminars for 1960 was examined by the Committee and recommendations were made to the Director General. The Committee also examined the Agency's policy on the award of contracts for research work and studies. An important subject before the Committee was the principles and regulations for the application of Agency safeguards. Another subject considered by the Committee was the possibility of a project for an exchange of knowledge on controlled thermonuclear fusion. The Committee also examined a proposal for the determination of the world-wide distribution of hydrogen and oxygen isotopes in water. Exact information on the distribution of hydrogen and oxygen isotopes in rain, in rivers, in ground water and in oceans would be important for areas with limited water

  12. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  13. Collaborating with Scientists in Education and Public Engagement

    Science.gov (United States)

    Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda

    2016-10-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement, such as connecting them to opportunities, creating useful resources, and providing training. The advisory board will assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events.LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves.This poster will share the status and current findings of the scientist advisory board, and the lessons learned regarding planetary scientists' needs, abilities, and interests in participating in education and public engagement programs.

  14. Dual thinking for scientists

    Directory of Open Access Journals (Sweden)

    Marten Scheffer

    2015-06-01

    Full Text Available Recent studies provide compelling evidence for the idea that creative thinking draws upon two kinds of processes linked to distinct physiological features, and stimulated under different conditions. In short, the fast system-I produces intuition whereas the slow and deliberate system-II produces reasoning. System-I can help see novel solutions and associations instantaneously, but is prone to error. System-II has other biases, but can help checking and modifying the system-I results. Although thinking is the core business of science, the accepted ways of doing our work focus almost entirely on facilitating system-II. We discuss the role of system-I thinking in past scientific breakthroughs, and argue that scientific progress may be catalyzed by creating conditions for such associative intuitive thinking in our academic lives and in education. Unstructured socializing time, education for daring exploration, and cooperation with the arts are among the potential elements. Because such activities may be looked upon as procrastination rather than work, deliberate effort is needed to counteract our systematic bias.

  15. Development of a polarization resolved spectroscopic diagnostic for measurements of the magnetic field in the Caltech coaxial magnetized plasma jet experiment

    Science.gov (United States)

    Shikama, Taiichi; Bellan, Paul M.

    2011-11-01

    Measurements of the magnetic field strength in current-carrying magnetically confined plasmas are necessary for understanding the underlying physics governing the dynamical behavior. Such a measurement would be particularly useful in the Caltech coaxial magnetized plasma gun, an experiment used for fundamental studies relevant to spheromak formation, astrophysical jet formation/propagation, solar coronal physics, and the general behavior of twisted magnetic flux tubes that intercept a boundary. In order to measure the field strength in the Caltech experiment, a non-perturbing spectroscopic method is being implemented to observe the Zeeman splitting in the emission spectra. The method is based on polarization-resolving spectroscopy of the Zeeman-split σ components, a technique previously used in both solar and laboratory plasmas. We have designed and constructed an optical system that can simultaneously detect left- and right-circularly polarized emission with both high throughput and small extinction ratio. The system will be used on the 489.5 nm NII line, chosen because of its simple Zeeman structure and minimal Stark broadening.

  16. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  17. SCIENCE, SCIENTISTS, AND POLICY ADVOCACY

    Science.gov (United States)

    Effectively resolving the typical ecological policy issue requires providing an array of scientific information to decision-makers. In my experience, the ability of scientists (and scientific information) to inform constructively ecological policy deliberations has been diminishe...

  18. The Local-Cosmopolitan Scientist

    OpenAIRE

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-01-01

    In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutio...

  19. Mentors, networks, and resources for early career female atmospheric scientists

    Science.gov (United States)

    Hallar, A. G.; Avallone, L. M.; Edwards, L. M.; Thiry, H.; Ascent

    2011-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT is a multi-faceted approach to retaining these junior scientists through the challenges in their research and teaching career paths. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory - Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. An external evaluation of the three workshop cohorts concludes that the workshops have been successful in establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  20. Young Scientist in Classroom

    Science.gov (United States)

    Doran, Rosa

    Bringing space exploration recent results and future challenges and opportunities to the knowledge of students has been a preoccupation of educators and space agencies for quite some time. The will to foster student’s interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of “Big Data”. Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student’s path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission’s results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes and Radio Antennas - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a

  1. Young Scientist in Classroom

    Science.gov (United States)

    Doran, Rosa

    Bringing space exploration recent results and future challenges and opportunities to the knowledge of students has been a preoccupation of educators and space agencies for quite some time. The will to foster student’s interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of “Big Data”. Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student’s path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission’s results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes and Radio Antennas - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a

  2. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  3. Best practices in bioinformatics training for life scientists

    DEFF Research Database (Denmark)

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik;

    2013-01-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to envi...

  4. Best practices in bioinformatics training for life scientists

    NARCIS (Netherlands)

    Via, A.; Blicher, T.; Bongcam-Rudloff, E.; Brazas, M.D.; Brooksbank, C.; Budd, A.; Rivas, J. De Las; Dreyer, J.; Fernandes, P.L.; Gelder, C.W. van; Jacob, J.; Jimenez, R.C.; Loveland, J.; Moran, F.; Mulder, N.; Nyronen, T.; Rother, K.; Schneider, M.V.; Attwood, T.K.

    2013-01-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environ

  5. Reciprocal Engagement Between a Scientist and Visual Displays

    Science.gov (United States)

    Nolasco, Michelle Maria

    and function of extremely small objects. Second, three descriptive areas appear to influence the scientist's interactions: the small biological objects' features, the interview context, and the interview space. Finally, the interaction of the scientist's body with the visual displays created a unique engagement that allowed the scientist to share his understanding about extremely small biological objects.

  6. Do scientists trace hot topics?

    CERN Document Server

    Wei, Tian; Wu, Chensheng; Yan, XiaoYong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  7. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  8. Award Set for Future Scientists

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thirteen-year-old Zhou Licheng is a pupil at the Beijing Xicheng Experimental School, and recently won second prize in the "Future Scientist Award" for his invention - a device that prevents smoke from coming down the flue. He won a 10,000-yuan cash prize, and his school was also awarded 40,000 yuan. The "Future Scientist Award" was set up through the joint efforts of the Ministry of Education, the China Association for Science and Technology, and the Hong Kong H. S. Chau Foundation. Its aim is to reward

  9. Increasing retention of early career female atmospheric scientists

    Science.gov (United States)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  10. Science, Scientists, and Public Policy.

    Science.gov (United States)

    Schooler, Dean, Jr.

    The politically relevant behavior of scientists in the formulation of public policy by the United States government from 1945-68 is studied. The following types of policy issues are treated: science, space, weather, weapons, deterrence and defense, health, fiscal and monetary, pollution, conservation, antitrust, transportation safety, trade and…

  11. Issues in Training Family Scientists.

    Science.gov (United States)

    Ganong, Lawrence H.; And Others

    1995-01-01

    Issues related to graduate education in family science, especially at the doctoral level, are explored. Discusses competencies family scientists should have, as well as experiences necessary to help students acquire them. Proposes ideas for a core curriculum, identifies controversies and unresolved issues, and examines training for the future.…

  12. The Gonzo Scientist. Flunking Spore.

    Science.gov (United States)

    Bohannon, John

    2008-10-24

    The blockbuster video game Spore is being marketed as a science-based adventure that brings evolution, cell biology, and even astrophysics to the masses. But after grading the game's science with a team of researchers, the Gonzo Scientist has some bad news. PMID:18948523

  13. How scientists develop competence in visual communication

    Science.gov (United States)

    Ostergren, Marilyn

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This examination takes the form of an extensive multi-disciplinary integrative literature review and a series of interviews with graduate-level science students. The results are presented as a conceptual framework that lays out the components of competence in visual communication, including the communicative goals of science visuals, the characteristics of effective visuals, the skills and knowledge needed to create effective visuals and the learning experiences that promote the acquisition of these forms of skill and knowledge. This conceptual framework can be used to inform pedagogy and thus help graduate students achieve a higher level of competency in this area; it can also be used to identify aspects of acquiring competence in visual communication that need further study.

  14. Challenges and responsibilities for public sector scientists.

    Science.gov (United States)

    Van Montagu, Marc

    2010-11-30

    Current agriculture faces the challenge of doubling food production to meet the food needs of a population expected to reach 9 billion by mid-century whilst maintaining soil and water quality and conserving biodiversity. These challenges are more overwhelming for the rural poor, who are the custodians of environmental resources and at the same time particularly vulnerable to environmental degradation. Solutions have to come from concerted actions by different segments of society in which public sector science plays a fundamental role. Public sector scientists are at the root of all the present generation of GM crop traits under cultivation and more will come with the new knowledge that is being generated by systems biology. To speed up innovation, molecular biologists must interact with scientists from the different fields as well as with stakeholders outside the academic world in order to create an environment capable of capturing value from public sector knowledge. I highlight here the measures that have to be taken urgently to guarantee that science and technology can tackle the problems of subsistence farmers.

  15. Ozone Gardens for the Citizen Scientist

    Science.gov (United States)

    Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily

    2016-01-01

    NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.

  16. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  17. The Scientist as Sentinel (Invited)

    Science.gov (United States)

    Oreskes, N.

    2013-12-01

    Scientists have been warning the world for some time about the risks of anthropogenic interference in the climate system. But we struggle with how, exactly, to express that warning. The norms of scientific behavior enjoin us from the communication strategies normally associated with warnings. If a scientist sounds excited or emotional, for example, it is often assumed that he has lost his capac¬ity to assess data calmly and therefore his conclusions are suspect. If the scientist is a woman, the problem is that much worse. In a recently published article my colleagues and I have shown that scientists have systematically underestimated the threat of climate change (Brysse et al., 2012). We suggested that this occurs for norma¬tive reasons: The scientific values of rationality, dispassion, and self-restraint lead us to demand greater levels of evidence in support of surprising, dramatic, or alarming conclusions than in support of less alarming conclusions. We call this tendency 'err¬ing on the side of least drama.' However, the problem is not only that we err on the side of least drama in our assessment of evidence, it's also that we speak without drama, even when our conclusions are dramatic. We speak without the emotional cadence that people expect to hear when the speaker is worried. Even when we are worried, we don't sound as if we are. In short, we are trying to act as sentinels, but we lack the register with which to do so. Until we find those registers, or partner with colleagues who are able to speak in the cadences that communicating dangers requires, our warnings about climate change will likely continue to go substantially unheeded.

  18. Tracing scientist's research trends realtimely

    OpenAIRE

    Wang, Xianwen; Wang, Zhi; Xu, Shenmeng

    2012-01-01

    In this research, we propose a method to trace scientists' research trends realtimely. By monitoring the downloads of scientific articles in the journal of Scientometrics for 744 hours, namely one month, we investigate the download statistics. Then we aggregate the keywords in these downloaded research papers, and analyze the trends of article downloading and keyword downloading. Furthermore, taking both the download of keywords and articles into consideration, we design a method to detect th...

  19. Mathematics for engineers and scientists

    CERN Document Server

    Jeffrey, Alan

    2004-01-01

    Although designed as a textbook with problem sets in each chapter and selected answers at the end of the book, Mathematics for Engineers and Scientists, Sixth Edition serves equally well as a supplemental text and for self-study. The author strongly encourages readers to make use of computer algebra software, to experiment with it, and to learn more about mathematical functions and the operations that it can perform.

  20. Science, the Scientists and Values

    Science.gov (United States)

    Leshner, Alan

    2012-02-01

    Although individual scientists engage in research for diverse reasons, society only supports the enterprise because it benefits humankind. We cannot always predict how that will happen, or whether individual projects will have clear and direct benefits, but in the aggregate, there is widespread agreement that we are all better off because of the quality and diversity of the science that is done. However, what scientists do and how it benefits humankind is often unclear to the general public and can at times be misunderstood or misrepresented. Moreover, even when members of the public do understand what science is being done they do not always like what it is showing and feel relatively free to disregard or distort its findings. This happens most often when findings are either politically inconvenient or encroach upon issues of core human values. The origins of the universe can fit into that latter category. This array of factors contributes to the obligation of scientists to reach out to the public and share the results of their work and its implications. It also requires the scientific community to engage in genuine dialogue with the public and find common ground where possible.

  1. RUSSIAN SCIENTISTS IN JAPAN: LIFE AND WORK OF PROMINENT JAPANOLOGISTS

    Directory of Open Access Journals (Sweden)

    Ms. Darya V. Kiba

    2016-06-01

    Full Text Available This article is devoted to the life and work of prominent Japanologists Nikolai Alexandrovich Nevsky, Oleg Pletner, and Orestes Viktorovich Pletner. The author traces the contribution of scientists to the establishment of scientific relations between the USSR and Japan, examines the major life milestones of scientists in Japan. After receiving an excellent education in Russia, researchers lived in Japan for a long time. They were the founders of new scientific trends, and created a scientific heritage that has not been studied. The Pletner brothers, N. A. Nevsky can be brought into line with such scientists as N. I. Conrad, E. D. Polivanov, S. G. Eliseev, O. O. Rosenberg who were "Golden Age" orientalists of Japanese Studies in St. Petersburg. N. A. Nevsky and O. V. Pletner returned to the USSR. The author considers their fate in Soviet Russia and concludes that political history of the Soviet state in the 1930s made it impossible to strengthen and expand Japanologists School.

  2. Finding Common Ground Between Earth Scientists and Evangelical Christians

    Science.gov (United States)

    Grant Ludwig, L.

    2015-12-01

    In recent decades there has been some tension between earth scientists and evangelical Christians in the U.S., and this tension has spilled over into the political arena and policymaking on important issues such as climate change. From my personal and professional experience engaging with both groups, I find there is much common ground for increasing understanding and communicating the societal relevance of earth science. Fruitful discussions can arise from shared values and principles, and common approaches to understanding the world. For example, scientists and Christians are engaged in the pursuit of truth, and they value moral/ethical decision-making based on established principles. Scientists emphasize the benefits of research "for the common good" while Christians emphasize the value of doing "good works". Both groups maintain a longterm perspective: Christians talk about "the eternal" and geologists discuss "deep time". Both groups understand the importance of placing new observations in context of prior understanding: scientists diligently reference "the literature" while Christians quote "chapter and verse". And members of each group engage with each other in "fellowship" or "meetings" to create a sense of community and reinforce shared values. From my perspective, earth scientists can learn to communicate the importance and relevance of science more effectively by engaging with Christians in areas of common ground, rather than by trying to win arguments or debates.

  3. A scientist at the seashore

    CERN Document Server

    Trefil, James S

    2005-01-01

    ""A marvelous excursion from the beach to the ends of the solar system . . . captivating.""-The New York Times""So easy to understand yet so dense with knowledge that you'll never look at waves on a beach the same way again.""-San Francisco Chronicle""One of the best popular science books.""-The Kansas City Star""Perfect for the weekend scientist.""-The Richmond News-LeaderA noted physicist and popular science writer heads for the beach to answer common and uncommon questions about the ocean. James S. Trefil, author of Dover Publications' The Moment of Creation: Big Bang Physics from Before th

  4. Creating Community for Early-Career Geoscientists

    OpenAIRE

    Berghuijs, W. R. (Wouter); Harrigan, S.; Kipnis, E.L.; Dogulu, N.; Floriancic, M.; Müller, H; I. Pohle; Saia, S.M.; Sedlar, F.; Smoorenburg, M.; Teutschbein, C.; T. H. M. van Emmerik

    2015-01-01

    The American Geophysical Union (AGU) and the European Geosciences Union (EGU) play central roles in nurturing the next generation of geoscientists. Students and young scientists make up about one quarter of the unions’ active memberships [American Geophysical Union, 2013; European Geosciences Union, 2014], creating a major opportunity to include a new generation of geoscientists as more active contributors to the organizations’ activities, rather than merely as consumers. Both organizations a...

  5. How can scientists bring research to use: the HENVINET experience

    OpenAIRE

    Bartonova Alena

    2012-01-01

    Abstract Background Health concerns have driven the European environmental policies of the last 25 years, with issues becoming more complex. Addressing these concerns requires an approach that is both interdisciplinary and engages scientists with society. In response to this requirement, the FP6 coordination action “Health and Environment Network” HENVINET was set up to create a permanent inter-disciplinary network of professionals in the field of health and environment tasked to bridge the c...

  6. Communicating Ecology Through Art: What Scientists Think

    Directory of Open Access Journals (Sweden)

    Guy Ballard

    2012-06-01

    Full Text Available Many environmental issues facing society demand considerable public investment to reverse. However, this investment will only arise if the general community is supportive, and community support is only likely if the issues are widely understood. Scientists often find it difficult to communicate with the general public. The role of the visual and performing arts is often overlooked in this regard, yet the arts have long communicated issues, influenced and educated people, and challenged dominant paradigms. To assess the response of professional ecologists to the role of the arts in communicating science, a series of constructed performances and exhibitions was integrated into the program of a national ecological conference over five days. At the conclusion of the conference, responses were sought from the assembled scientists and research students toward using the arts for expanding audiences to ecological science. Over half the delegates said that elements of the arts program provided a conducive atmosphere for receiving information, encouraged them to reflect on alternative ways to communicate science, and persuaded them that the arts have a role in helping people understand complex scientific concepts. A sizeable minority of delegates (24% said they would consider incorporating the arts in their extension or outreach efforts. Incorporating music, theatre, and dance into a scientific conference can have many effects on participants and audiences. The arts can synthesize and convey complex scientific information, promote new ways of looking at issues, touch people's emotions, and create a celebratory atmosphere, as was evident in this case study. In like manner, the visual and performing arts should be harnessed to help extend the increasingly unpalatable and urgent messages of global climate change science to a lay audience worldwide.

  7. Scientists Debunk the '5-Second Rule'

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160990.html Scientists Debunk the '5-Second Rule' Germs can transfer ... he said in a Rutgers news release. The scientists dropped foods of different textures, such as watermelon, ...

  8. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Yourself Fundraising & Local Events Matching Gift Fundraising Events Donate Stocks Give by ... Create Your Plate Create Your Plate is a simple and effective way to manage your blood glucose levels and lose weight. With this method, ...

  10. Students work as scientists for the summer

    DEFF Research Database (Denmark)

    Ryde, Marianne Vang

    2006-01-01

    Each year, Risø offers its PhD students a course to challenge the natural scientists of the future and to provide them with a more balanced view of their own role as scientists in society.......Each year, Risø offers its PhD students a course to challenge the natural scientists of the future and to provide them with a more balanced view of their own role as scientists in society....

  11. Young scientists in the making

    CERN Multimedia

    Corinne Pralavorio

    2011-01-01

    Some 700 local primary-school children will be trying out the scientific method for themselves from February to June. After "Draw me a physicist", the latest project "Dans la peau d’un chercheur" ("Be a scientist for a day") is designed to give children a taste of what it's like to be a scientist. Both schemes are the fruit of a partnership between CERN, "PhysiScope" (University of Geneva) and the local education authorities in the Pays de Gex and the Canton of Geneva.   Juliette Davenne (left) and Marie Bugnon (centre) from CERN's Communication Group prepare the mystery boxes for primary schools with Olivier Gaumer (right) of PhysiScope. Imagine a white box that rattles and gives off a strange smell when you shake it… How would you go about finding out what's inside it without opening it? Thirty primary-school teachers from the Pays de Gex and the Canton of Geneva tried out this exercise on Wednesday 26 ...

  12. Scientists Discover Sugar in Space

    Science.gov (United States)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  13. Scientists Talking to Students through Videos

    Science.gov (United States)

    Chen, Junjun; Cowie, Bronwen

    2014-01-01

    The benefits of connecting school students with scientists are well documented. This paper reports how New Zealand teachers brought scientists into the classrooms through the use of videos of New Zealand scientists talking about themselves and their research. Two researchers observed lessons in 9 different classrooms in which 23 educational videos…

  14. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  15. Connect the Book: The Tarantula Scientist

    Science.gov (United States)

    Brodie, Carolyn S.

    2005-01-01

    This column describes the book, "The Tarantula Scientist," that features the work of arachnologist Sam Marshall, a scientist who studies spiders and their eight-legged relatives. Marshall is one of only four or five scientists who specializes in the study of tarantulas. The informative text and outstanding photographs follow Sam as he takes a…

  16. A new high transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3 nm ions at ambient concentrations

    Directory of Open Access Journals (Sweden)

    A. Franchin

    2015-06-01

    from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high transmission inlet for the Caltech nano-radial DMA (nRDMA that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in mobility equivalent diameter (corresponding to 1.2 × 10−4 m2 V−1 s−1 in electrical mobility. We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a Particle Size Magnifier (PSM and a booster Condensation Particle Counter (CPC as a counter. With this setup, we were able to measure size distributions of ions between 1.3 and 6 nm, corresponding to a mobility range from 1.2 × 10−4 to 5.8 × 10−6 m2 V−1 s−1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD 7 measurement campaign at CERN. We achieved a higher size resolution than techniques currently used in field measurements, and maintained a good transmission efficiency at moderate inlet and sheath air flows (2.5 and 30 LPM, respectively. In this paper, by measuring size distribution at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 μm.

  17. A new high transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3 nm ions at ambient concentrations

    Science.gov (United States)

    Franchin, A.; Downard, A. J.; Kangasluoma, J.; Nieminen, T.; Lehtipalo, K.; Steiner, G.; Manninen, H. E.; Petäjä, T.; Flagan, R. C.; Kulmala, M.

    2015-06-01

    Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all DMAs have an unfavorable potential gradient at the outlet (e.g. long column, Vienna type) or at the inlet (nano-radial DMA). This feature prevents them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in mobility equivalent diameter (corresponding to 1.2 × 10-4 m2 V-1 s-1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a Particle Size Magnifier (PSM) and a booster Condensation Particle Counter (CPC) as a counter. With this setup, we were able to measure size distributions of ions between 1.3 and 6 nm, corresponding to a mobility range from 1.2 × 10-4 to 5.8 × 10-6 m2 V-1 s-1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD 7 measurement campaign at CERN. We achieved a higher size resolution than techniques currently used in field measurements, and maintained a good transmission efficiency at moderate inlet and sheath air flows (2.5 and 30 LPM, respectively). In this paper, by measuring size distribution at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 μm.

  18. LHCb Early Career Scientist Awards

    CERN Multimedia

    Patrick Koppenburg for the LHCb Collaboration

    2016-01-01

    On 15 September 2016, the LHCb collaboration awarded the first set of prizes for outstanding contributions of early career scientists.   From left to right: Guy Wilkinson (LHCb spokesperson), Sascha Stahl, Kevin Dungs, Tim Head, Roel Aaij, Conor Fitzpatrick, Claire Prouvé, Patrick Koppenburg (chair of committee) and Sean Benson. Twenty-five nominations were submitted and considered by the committee, and 5 prizes were awarded to teams or individuals for works that had a significant impact within the last year. The awardees are: Roel Aaij, Sean Benson, Conor Fitzpatrick, Rosen Matev and Sascha Stahl for having implemented and commissioned the revolutionary changes to the LHC Run-2 high-level-trigger, including the first widespread deployment of real-time analysis techniques in High Energy Physics;   Kevin Dungs and Tim Head for having launched the Starterkit initiative, a new style of software tutorials based on modern programming methods. “Starterkit is a group of ph...

  19. Refugee scientists and nuclear energy

    International Nuclear Information System (INIS)

    The coming together of many of the world's experts in nuclear physics in the 1930's was largely the result of the persecution of Jews in Germany and later in Italy. Initially this meant there were no jobs for young physicists to go into as the senior scientists had been sacked. Later, it resulted in the assembly of many of the world's foremost physicists in the United States, specifically at the Los Alamos Laboratory to work on the Manhattan Project. The rise of antisemitism in Italy (to where many physicists had fled at first) provoked the emigration of Fermi, the leading expert on neutrons at that time. The politics, physics and personalities in the 1930's, relevant to the development of nuclear energy, are discussed. (UK)

  20. Special Functions for Applied Scientists

    CERN Document Server

    Mathai, A M

    2008-01-01

    Special Functions for Applied Scientists provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at the PhD level and covers a wide-array of topics and begins by introducing elementary classical special functions. From there, differential equations and some applications into statistical distribution theory are examined. The fractional calculus chapter covers fractional integrals and fractional derivatives as well as their applications to reaction-diffusion problems in physics, input-output analysis, Mittag-Leffler stochastic processes and related topics. The authors then cover q-hypergeometric functions, Ramanujan's work and Lie groups. The latter half of this volume presents applications into stochastic processes, random variables, Mittag-Leffler processes, density estimation, order statistics, and problems in astrophysics. Professor Dr. A.M. Mathai is Emeritus Professor of Mathematics and Statistics, McGill ...

  1. Is evaluation of scientist's objective

    CERN Document Server

    Wold, A

    2000-01-01

    There is ample data demonstrating that female scientists advance at a far slower rate than their male colleagues. The low numbers of female professors in European and North American universities is, thus, not solely an effect of few women in the recruitment pool but also to obstacles specific to the female gender. Together with her colleague Christine Wennerås, Agnes Wold conducted a study of the evaluation process at the Swedish Medical Research Council. Evaluators judged the "scientific competence", "research proposal" and "methodology" of applicants for post-doctoral positions in 1995. By relating the scores for "scientific competence" to the applicants' scientific productivity and other factors using multiple regression, Wennerås and Wold demonstrated that the applicant's sex exerted a strong influence on the "competence" score so that male applicants were perceived as being more competent than female applicants of equal productivity. The study was published in Nature (vol 387, p 341-3, 1997) and inspir...

  2. Wide Field Instrument Adjutant Scientist

    Science.gov (United States)

    Spergel, David

    As Wide Field Instrument Adjutant Scientist, my goal will be to maximize the science capability of the mission in a cost-contained environment. I hope to work with the HQ, project and the FSWG to assure mission success. I plan to play a leadership role in communicating the WFIRST science capabilities to the astronomy community , obtain input from both science teams and the broader community that help derive performance requirements and calibration metrics. I plan to focus on developing the observing program for the deep fields and focus on using them to calibrate instrument performance and capabilities. I plan to organize workshops that will bring together WFIRST team members with astronomers working on LSST, Euclid, JWST, and the ELTs to maximize combined science return. I am also eager to explore the astrometric and stellar seismology capabilities of the instrument with a goal of maximizing science return without affecting science requirements.

  3. Yes! We Are Rocket Scientists!

    Science.gov (United States)

    Macduff, J. Trevor

    2006-01-01

    This article is an outline of what the author did in his classroom to incorporate the help of two volunteer engineers to create a powerful learning unit and cumulative review for his eighth-grade physical science students. This unit reviews what students have learned during the school year regarding force, motion, Newton's laws, gas laws, and…

  4. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    Science.gov (United States)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that

  5. Schmandt Receives 2013 Keiiti Aki Young Scientist Award: Citation

    Science.gov (United States)

    Fischer, Karen M.

    2014-09-01

    Brandon Schmandt earned his B.A. from Warren Wilson College and his Ph.D. from the University of Oregon. He was a postdoctoral scholar at the California Institute of Technology (Caltech) and is now an assistant professor at the University of New Mexico.

  6. A guide to understanding social science research for natural scientists.

    Science.gov (United States)

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes.

  7. Scratch for Budding Computer Scientists

    OpenAIRE

    Malan, David; Leitner, Henry

    2007-01-01

    Scratch is a "media-rich programming environment" recently developed by MIT's Media Lab that "lets you create your own animations, games, and interactive art." Although Scratch is intended to "enhance the development of technological fluency [among youths] at after-school centers in economically disadvantaged communities," we find rarkable potential in this programming environment for higher education as well.We propose Scratch as a first language for first-time programmers in introductory co...

  8. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  9. Walter sutton: physician, scientist, inventor.

    Science.gov (United States)

    Ramirez, Gregory J; Hulston, Nancy J; Kovac, Anthony L

    2015-01-01

    Walter S. Sutton (1877-1916) was a physician, scientist, and inventor. Most of the work on Sutton has focused on his recognition that chromosomes carry genetic material and are the basis for Mendelian inheritance. Perhaps less well known is his work on rectal administration of ether. After Sutton's work on genetics, he completed his medical degree in 1907 and began a 2-year surgical fellowship at Roosevelt Hospital, New York City, NY, where he was introduced to the technique of rectal administration of ether. Sutton modified the work of others and documented 100 cases that were reported in his 1910 landmark paper "Anaesthesia by Colonic Absorption of Ether". Sutton had several deaths in his study, but he did not blame the rectal method. He felt that his use of rectal anesthesia was safe when administered appropriately and believed that it offered a distinct advantage over traditional pulmonary ether administration. His indications for its use included (1) head and neck surgery; (2) operations when ether absorption must be minimized due to heart, lung, or kidney problems; and (3) preoperative pulmonary complications. His contraindications included (1) cases involving alimentary tract or weakened colon; (2) laparotomies, except when the peritoneal cavity was not opened; (3) incompetent sphincter or anal fistula; (4) orthopnea; and (5) emergency cases. Sutton wrote the chapter on "Rectal Anesthesia" in one of the first comprehensive textbooks in anesthesia, James Tayloe Gwathmey's Anesthesia. Walter Sutton died of a ruptured appendix in 1916 at age 39.

  10. Exploring Scientists' Working Timetable: A Global Survey

    CERN Document Server

    Wang, Xianwen; Zhang, Chunbo; Xu, Shenmeng; Wang, Zhi; Wang, Chuanli; Wang, Xianbing

    2013-01-01

    In our previous study (Wang et al., 2012), we analyzed scientists' working timetable of 3 countries, using realtime downloading data of scientific literatures. In this paper, we make a through analysis about global scientists' working habits. Top 30 countries/territories from Europe, Asia, Australia, North America, Latin America and Africa are selected as representatives and analyzed in detail. Regional differences for scientists' working habits exists in different countries. Besides different working cultures, social factors could affect scientists' research activities and working patterns. Nevertheless, a common conclusion is that scientists today are often working overtime. Although scientists may feel engaged and fulfilled about their hard working, working too much still warns us to reconsider the work - life balance.

  11. What Is the (ethical) Role of Scientists?

    Science.gov (United States)

    Oreskes, N.

    2014-12-01

    Many scientists are reluctant to speak out on issues of broad societal importance for fear that doing so crosses into territory that is not the scientists' domain. Others fear that scientists lose credibility when they address ethical and moral issues. A related concern is that discussing social or ethical questions runs the risk of politicizing science. Yet history shows that in the past, scientists often have spoken out on broad issues of societal concern, often (although not always) effectively. This paper explores the conditions under which scientists may be effective spokesmen and women on ethical and moral choices, and suggests some criteria by which scientists might decide when and whether it is appropriate for them to speak out beyond the circles of other technical experts.

  12. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  13. What do Scientists Want : Money or Fame?

    OpenAIRE

    Göktepe-Hultén, Devrim; Mahagaonkar, Prashanth

    2008-01-01

    What makes scientists patent and disclose inventions to employers? Using a new dataset on Max Planck scientists, we explore their motivations to patent and/or disclose inventions. We propose that patenting need not be used for monetary benefits. Scientists value reputation as important use patenting and disclosures as a signal to gain it. We find that it is not monetary benefits that drive patenting and disclosures but expectation of reputation. We also find that experience with the employer ...

  14. The Primary School Students' Views on Scientists and Scientific Knowledge (Sample of Kırşehir)

    OpenAIRE

    KAYA, Volkan Hasan; Özlem AFACAN; POLAT, Dilber; Ahmet URTEKİN

    2013-01-01

    Following the developments in natural and applied sciences and being acquainted with the evolution of disciplines, scientists' occupational and personality traits can shed light on the issues in teaching natural and applied sciences. For this reason, finding out what students think about scientists is important. Investigating students' views on the scientific knowledge that is produced by scientists might create the opportunity to determine the misconceptions existing in teaching natural and ...

  15. A new high-transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3 nm ions at ambient concentrations

    Science.gov (United States)

    Franchin, Alessandro; Downard, Andy; Kangasluoma, Juha; Nieminen, Tuomo; Lehtipalo, Katrianne; Steiner, Gerhard; Manninen, Hanna E.; Petäjä, Tuukka; Flagan, Richard C.; Kulmala, Markku

    2016-06-01

    Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all differential mobility analyzers (DMAs) have an unfavorable potential gradient at the outlet (e.g., long column, Vienna type) or at the inlet (nano-radial DMA), preventing them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in Millikan-Fuchs mobility equivalent diameter, Dp (corresponding to 1.2 × 10-4 m2 V-1 s-1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and as a booster a condensation particle counter (CPC). With this setup, we were able to measure size distributions of ions within a mobility range from 1.2 × 10-4 to 5.8 × 10-6 m2 V-1 s-1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD (Cosmics Leaving Outdoor Droplets) 7 measurement campaign at CERN. We achieved a higher size resolution (R = 5.5 at Dp = 1.47 nm) than techniques currently used in field measurements (e.g., Neutral cluster and Air Ion Spectrometer (NAIS), which has a R ˜ 2 at largest sizes, and R ˜ 1.8 at Dp = 1.5 nm) and maintained a good total transmission efficiency (6.3 % at Dp = 1.5 nm) at moderate inlet and sheath airflows (2.5 and 30 L min-1, respectively). In this paper, by measuring size distributions at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible

  16. Looking before leaping: Creating a software registry

    CERN Document Server

    Allen, Alice

    2014-01-01

    What lessons can be learned from examining numerous efforts to create a repository or directory of scientist-written software for a discipline? Astronomy has seen a number of efforts to build a repository or directory of scientist-written software, one of which is the Astrophysics Source Code Library (ASCL). The ASCL (ascl.net) was founded in 1999, had a period of dormancy, and was restarted in 2010. When taking over responsibility for the ASCL in 2010, Allen sought to answer the opening question, hoping this would better inform her work. We also provide specific steps the ASCL is taking to try to improve code sharing and discovery in astronomy and share recent improvements to the resource.

  17. ICTR-PHE: scientists engage with multidisciplinary research

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In 2016, the next edition of the unique conference that gathers scientists from a variety of fields will focus on many topics particularly dear to the heart of physicists, clinicians, biologists, and computer specialists. The call for abstracts is open until 16 October.   When detector physicists, radiochemists, nuclear-medicine physicians and other physicists, biologists, software developers, accelerator experts and oncologists think outside the box and get involved in multidisciplinary research, they create innovative healthcare. ICTR-PHE is a biennial event, co-organised by CERN, whose main aim is to foster multidisciplinary research by positioning itself at the crossing of physics, medicine and biology. At the ICTR-PHE conference, physicists, engineers, and computer scientists share their knowledge and technologies while doctors and biologists present their needs and vision for the medical tools of the future, thus triggering breakthrough ideas and technological developments in speci...

  18. A critical evaluation of science outreach via social media: its role and impact on scientists.

    Science.gov (United States)

    McClain, Craig; Neeley, Liz

    2014-01-01

    The role of scientists in social media and its impact on their careers are not fully explored.  While policies and best practices are still fluid, it is concerning that discourse is often based on little to no data, and some arguments directly contradict the available data.  Here, we consider the relevant but subjective questions about science outreach via social media (SOSM), specifically: (1) Does a public relations nightmare exist for science?; (2) Why (or why aren't) scientists engaging in social media?; (3) Are scientists using social media well?; and (4) Will social media benefit a scientist's career? We call for the scientific community to create tangible plans that value, measure, and help manage scientists' social media engagement.

  19. A critical evaluation of science outreach via social media: its role and impact on scientists.

    Science.gov (United States)

    McClain, Craig; Neeley, Liz

    2014-01-01

    The role of scientists in social media and its impact on their careers are not fully explored.  While policies and best practices are still fluid, it is concerning that discourse is often based on little to no data, and some arguments directly contradict the available data.  Here, we consider the relevant but subjective questions about science outreach via social media (SOSM), specifically: (1) Does a public relations nightmare exist for science?; (2) Why (or why aren't) scientists engaging in social media?; (3) Are scientists using social media well?; and (4) Will social media benefit a scientist's career? We call for the scientific community to create tangible plans that value, measure, and help manage scientists' social media engagement. PMID:25866620

  20. Creating more effective graphs

    CERN Document Server

    Robbins, Naomi B

    2012-01-01

    A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr

  1. Create Your Plate

    Medline Plus

    Full Text Available ... Student Resources History of Diabetes Resources for School Projects How to Reference Our Site Diabetes Basics Myths ... Close www.diabetes.org > Food and Fitness > Food > Planning Meals > Create Your Plate Share: Print Page Text ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... plates! Snap a photo and share it to social media with #CreateYourPlate . See the full gallery of submitted plates! * ... Insurance For Parents & Kids Know Your Rights We Can ...

  3. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  4. Create Your Plate

    Medline Plus

    Full Text Available ... Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- Diabetes Must Be Stopped - 2016- ...

  5. Create Your Plate

    Medline Plus

    Full Text Available ... deaths a year than breast cancer and AIDS combined. Your gift today will help us get closer ... Plate! Click on the plate sections below to add your food choices. Reset Plate Share Create Your ...

  6. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ... Blog Online Community Site Menu Are You at Risk? Diagnosis Lower Your Risk Risk Test Alert Day ...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ... Blog Online Community Site Menu Are You at Risk? Diagnosis Lower Your Risk Risk Test Alert Day ...

  8. Create Your Plate

    Medline Plus

    Full Text Available ... plates! Snap a photo and share it to social media with #CreateYourPlate . See the full gallery of ... you have an easy portion control solution that works. Last Reviewed: October 8, 2015 Last Edited: October ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... million battle diabetes and every 23 seconds someone new is diagnosed. Diabetes causes more deaths a year ... Month celebrations , the American Diabetes Association launched this new Create Your Plate interactive tool to help Latinos/ ...

  10. Response: Training Doctoral Students to Be Scientists

    Science.gov (United States)

    Pollio, David E.

    2012-01-01

    The purpose of this article is to begin framing doctoral training for a science of social work. This process starts by examining two seemingly simple questions: "What is a social work scientist?" and "How do we train social work scientists?" In answering the first question, some basic assumptions and concepts about what constitutes a "social work…

  11. Chinese, US scientists find new particle

    CERN Multimedia

    2003-01-01

    "Chinese and US scientists have discovered a new particle at the Beijing Electron Position Collider, which is hard to be explained with any known particles, according to scientists from the Institute of High Energy Physics under the Chinese Academy of Sciences Wednesday" (1/2 page).

  12. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  13. How Scientists Develop Competence in Visual Communication

    Science.gov (United States)

    Ostergren, Marilyn

    2013-01-01

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This…

  14. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series ...

  15. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  16. Scientists and Middle School Students; Learning and Working Together

    Science.gov (United States)

    Haste, T.

    2007-12-01

    Johns Hopkins University's Center for Talented Youth students enrolled in the Dynamic Earth class come from all over the world to study earth systems. Investigating plate action, crustal formation, glaciers, currents, weathering and atmospheric interactions, students develop a strong ability to identify the forces that continually change the landscape and the interconnectedness of the atmosphere, hydrosphere and lithosphere. As part of their regular course work, students work with a variety of cooperating scientists. US Geological Survey staff assists students in examining sand samples and exploring monitoring research on invasive foraminiferas in San Francisco Bay. Gulf of the Farallones National Marine Sanctuary and Mavericks Surf Ventures staff help students explore the off shore submarine formations of a storm swell at Half Moon Bay that develops into a world-class big wave. Students met a big wave surfer who described the ride and shared surf stories. A wave forecaster helped students use modeling software to create real-time forecasts. In the final project students assist faculty of University of Texas at Austin, Institute of Geophysics using cruise reports, project abstracts, and bathymetry images, in evaluating a series of submarine features in the Ross Sea, Antarctica. Students develop proposals and present their ideas in a seminar format, attended by cooperating scientists. Students have an opportunity to work with current scientists and learn how classroom "stuff" is used. One student commented, "I felt like I could talk with them about what they were doing and actually understand what they were talking about." Another stated, "I didn't know you could learn so much from forams. I always thought paleontology was about dinosaurs." As a result of the class, students understand the relevance of their learning, scientists like working with kids, and educators get excited about science. To evaluate program outcomes, the staff holds regular meetings with

  17. Predicting scientists' participation in public life.

    Science.gov (United States)

    Besley, John C; Oh, Sang Hwa; Nisbet, Matthew

    2013-11-01

    This research provides secondary data analysis of two large-scale scientist surveys. These include a 2009 survey of American Association for the Advancement of Science (AAAS) members and a 2006 survey of university scientists by the United Kingdom's Royal Society. Multivariate models are applied to better understand the motivations, beliefs, and conditions that promote scientists' involvement in communication with the public and the news media. In terms of demographics, scientists who have reached mid-career status are more likely than their peers to engage in outreach, though even after controlling for career stage, chemists are less likely than other scientists to do so. In terms of perceptions and motivations, a deficit model view that a lack of public knowledge is harmful, a personal commitment to the public good, and feelings of personal efficacy and professional obligation are among the strongest predictors of seeing outreach as important and in participating in engagement activities.

  18. Food scientists, material scientists seek common language to preserve flavor, aroma of food

    OpenAIRE

    Trulove, Susan

    2007-01-01

    Food scientists and material scientists agree that the primary purpose of food packaging is to protect the food. Once that is accomplished, the package has to protect sensory quality. One challenge to meeting the second goal is communication between food scientists and material scientists, according to research by Susan E. Duncan, professor of food science and technology in the College of Agriculture and Life Sciences at Virginia Tech.

  19. Analyzing Prospective Teachers' Images of Scientists Using Positive, Negative and Stereotypical Images of Scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Harrell, Pamela Esprivalo; Wojnowski, David

    2013-01-01

    Background and purpose: This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the…

  20. Dual use and the ethical responsibility of scientists.

    Science.gov (United States)

    Ehni, Hans-Jörg

    2008-01-01

    The main normative problem in the context of dual use is to determine the ethical responsibility of scientists especially in the case of unintended, harmful, and criminal dual use of new technological applications of scientific results. This article starts from an analysis of the concepts of responsibility and complicity, examining alternative options regarding the responsibility of scientists. Within the context of the basic conflict between the freedom of science and the duty to avoid causing harm, two positions are discussed: moral skepticism and the ethics of responsibility by Hans Jonas. According to these reflections, four duties are suggested and evaluated: stopping research, systematically carrying out research for dual-use applications, informing public authorities, and not publishing results. In the conclusion it is argued that these duties should be considered as imperfect duties in a Kantian sense and that the individual scientist should be discharged as much as possible from obligations which follow from them by the scientific community and institutions created for this purpose. PMID:18512027

  1. Best practices in bioinformatics training for life scientists.

    Science.gov (United States)

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrönen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K

    2013-09-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists. PMID:23803301

  2. Best practices in bioinformatics training for life scientists.

    Science.gov (United States)

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrönen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K

    2013-09-01

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.

  3. Best practices in bioinformatics training for life scientists.

    KAUST Repository

    Via, Allegra

    2013-06-25

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.

  4. Reinventing Biostatistics Education for Basic Scientists.

    Directory of Open Access Journals (Sweden)

    Tracey L Weissgerber

    2016-04-01

    Full Text Available Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students' fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists.

  5. Reinventing Biostatistics Education for Basic Scientists.

    Science.gov (United States)

    Weissgerber, Tracey L; Garovic, Vesna D; Milin-Lazovic, Jelena S; Winham, Stacey J; Obradovic, Zoran; Trzeciakowski, Jerome P; Milic, Natasa M

    2016-04-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students' fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  6. Reinventing Biostatistics Education for Basic Scientists.

    Science.gov (United States)

    Weissgerber, Tracey L; Garovic, Vesna D; Milin-Lazovic, Jelena S; Winham, Stacey J; Obradovic, Zoran; Trzeciakowski, Jerome P; Milic, Natasa M

    2016-04-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students' fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists.

  7. Reinventing Biostatistics Education for Basic Scientists

    Science.gov (United States)

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  8. Creating an Interactive PDF

    Science.gov (United States)

    Branzburg, Jeffrey

    2008-01-01

    There are many ways to begin a PDF document using Adobe Acrobat. The easiest and most popular way is to create the document in another application (such as Microsoft Word) and then use the Adobe Acrobat software to convert it to a PDF. In this article, the author describes how he used Acrobat's many tools in his project--an interactive…

  9. Create Your Plate

    Medline Plus

    Full Text Available ... October 8, 2015 Last Edited: October 19, 2015 Articles from Diabetes Forecast® magazine: wcie-meal-planning, In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian ...

  10. Create Your Plate

    Science.gov (United States)

    ... meal-planning, In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate ... Donate Today Diabetes touches everyone, and finding a cure is personal ...

  11. Creating Dialogue by Storytelling

    Science.gov (United States)

    Passila, Anne; Oikarinen, Tuija; Kallio, Anne

    2013-01-01

    Purpose: The objective of this paper is to develop practice and theory from Augusto Boal's dialogue technique (Image Theatre) for organisational use. The paper aims to examine how the members in an organisation create dialogue together by using a dramaturgical storytelling framework where the dialogue emerges from storytelling facilitated by…

  12. Creating resilient SMEs

    DEFF Research Database (Denmark)

    Dahlberg, Rasmus; Guay, Fanny

    2015-01-01

    operations those threats, if realized, might cause, and which provides a framework for building organizational resilience with the capability of an effective response that safeguards the interests of its key stakeholders, reputation, brand and value- creating activities. Resilience, on the other hand...

  13. Creating Pupils' Internet Magazine

    Science.gov (United States)

    Bognar, Branko; Šimic, Vesna

    2014-01-01

    This article presents an action research, which aimed to improve pupils' literary creativity and enable them to use computers connected to the internet. The study was conducted in a small district village school in Croatia. Creating a pupils' internet magazine appeared to be an excellent way for achieving the educational aims of almost all…

  14. Creating a Classroom Makerspace

    Science.gov (United States)

    Rivas, Luz

    2014-01-01

    What is a makerspace? Makerspaces are community-operated physical spaces where people (makers) create do-it-yourself projects together. These membership spaces serve as community labs where people learn together and collaborate on projects. Makerspaces often have tools and equipment like 3-D printers, laser cutters, and soldering irons.…

  15. Creating Historical Drama.

    Science.gov (United States)

    Cassler, Robert

    1990-01-01

    Describes creating for the National Archives Public Education Department a historical drama, "Second in the Realm," based on the story of the Magna Carta. Demonstrates the effectiveness of historical drama as a teaching tool. Explains the difficulties of writing such dramas and provides guidelines for overcoming these problems. (NL)

  16. Looking, Writing, Creating.

    Science.gov (United States)

    Katzive, Bonnie

    1997-01-01

    Describes how a middle school language arts teacher makes analyzing and creating visual art a partner to reading and writing in her classroom. Describes a project on art and Vietnam which shows how background information can add to and influence interpretation. Describes a unit on Greek mythology and Greek vases which leads to a related visual…

  17. Create Your Plate

    Medline Plus

    Full Text Available ... and Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For ... critical diabetes research and support vital diabetes education services that improve the lives of those with ... plates! Snap a photo and share it to social media with #CreateYourPlate . See the full gallery of ...

  18. Creating Innovative Opportunities

    DEFF Research Database (Denmark)

    Ljungberg, Daniel; McKelvey, Maureen; Lassen, Astrid Heidemann

    2012-01-01

    This paper develops lessons about how and why the founders and ventures involved in knowledge intensive entrepreneurship (KIE) manage the process of venture creation. The meta-analysis of the 86 case studies is based upon as conceptual model (from a systemic literature review), linked to illustra...... of knowledge networks to create innovative opportunities....

  19. MATLAB: Creating Functions

    OpenAIRE

    2003-01-01

    This interactive tutorial on MATLAB covers the following: Create M-files, scripts, and functions., Write HELP comments for the functions., Determine the order in which MATLAB chooses to execute entities with identical names.The interactions involve entering MATLAB instructions and observing the outcomes. Self-check questions are provided to help learners determine their level of understanding of the content presented.

  20. Creating White Australia

    DEFF Research Database (Denmark)

    McLisky, Claire Louise; Carey, Jane

    Vedtagelsen af White Australien som regeringens politik i 1901 viser, at hvidheden var afgørende for den måde, hvorpå den nye nation i Australien blev konstitueret. Og alligevel har historikere i vid udstrækning overset hvidhed i deres studier af Australiens race fortid. 'Creating White Australia...

  1. Creating Work Opportunities.

    OpenAIRE

    Michelle K. Derr; LaDonna Pavetti

    2008-01-01

    This brief profiles three programs that use difference approaches—unpaid work experience, subsidized employment, and unsubsidized transitional employment—to create work opportunities for TANF recipients who are living with a disability and have not been successful in finding competitive employment.

  2. Creating Happy Memories.

    Science.gov (United States)

    Weeks, Denise Jarrett

    2001-01-01

    Some teachers are building and sharing their wisdom and know-how through lesson study, in the process creating memorable learning experiences for students and for each other. This paper describes how lesson study can transform teaching and how schools are implementing lesson study. A sidebar presents questions to consider in lesson study. (SM)

  3. Create Your Plate

    Medline Plus

    Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...

  4. Create Your Plate

    Medline Plus

    Full Text Available ... meal-planning, In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate ... Donate Today Diabetes touches everyone, and finding a cure is personal ...

  5. Creating a Classroom Newspaper.

    Science.gov (United States)

    Buss, Kathleen, Ed.; McClain-Ruelle, Leslie, Ed.

    Based on the premise that students can learn a great deal by reading and writing a newspaper, this book was created by preservice instructors to teach upper elementary students (grades 3-5) newspaper concepts, journalism, and how to write newspaper articles. It shows how to use newspaper concepts to help students integrate knowledge from multiple…

  6. Creating Special Events

    Science.gov (United States)

    deLisle, Lee

    2009-01-01

    "Creating Special Events" is organized as a systematic approach to festivals and events for students who seek a career in event management. This book looks at the evolution and history of festivals and events and proceeds to the nuts and bolts of event management. The book presents event management as the means of planning, organizing, directing,…

  7. Vanderbilt University Study Creates New Roadmap for Cellular Activity - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    Scientists studying cellular processes have long sought to measure redox modifications because they provide one of the normal layers of cell control. But redox disruption or oxidative stress at the cellular level can also create a pathway to diseases like

  8. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  9. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... More Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well ... Why does saltwater sting your eyes? Select a video below to get answers to questions like these ...

  10. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  11. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Scientist Video Series Why can’t you see colors well in the dark? Do fish have eyelids? ... video series. Dr. Sheldon Miller answers questions about color blindness, whether it can be treated, and how ...

  12. The Scientist as Anti-Hero

    Science.gov (United States)

    Goran, Morris

    1976-01-01

    Suggests a new strategy for the proponents of science to rebut the cultural anti-science wave. This strategy involves publicizing the anti-hero scientist and presents a number of candidates from the past as examples. (GS)

  13. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Vision Research & Ophthalmology (DIVRO) Student Training Programs NEI Home About NEI Health Information News and Events Grants ... Research at NEI Education Programs Training and Jobs Home > NEI for Kids > Ask a Scientist Video Series ...

  14. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Eye Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and ... and comments to the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about this ...

  15. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  16. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see ... eyelids? Why does saltwater sting your eyes? Select a video below to get answers to questions like ...

  17. A Scientist's Guide to Science Denial

    Science.gov (United States)

    Rosenau, J.

    2012-12-01

    Why are so many scientifically uncontroversial topics, from evolution and the age of the earth to climate change and vaccines, so contentious in society? The American public respects science and scientists, yet seems remarkably unaware of - or resistant to accepting - what scientists have learned about the world around us. This resistance holds back science education and undermines public policy discussions. Scientists and science communicators often react to science denial as if it were a question of scientific knowledge, and respond by trying to correct false scientific claims. Many independent lines of evidence show that science denial is not primarily about science. People reject scientific claims which seem to conflict with their personal identity - often because they believe that accepting those claims would threaten some deeply-valued cultural, political, or religious affiliation. Only by identifying, addressing, and defusing the underlying political and cultural concerns can educators, scientists, and science communicators undo the harm done by science denial.

  18. Reinventing Biostatistics Education for Basic Scientists

    OpenAIRE

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Zoran Obradovic; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics tra...

  19. Knowledge transfer activities of scientists in nanotechnology

    OpenAIRE

    Zalewska-Kurek, Kasia; Egedova, Klaudia; Geurts, Peter A.Th.M.; Roosendaal, Hans E.

    2016-01-01

    In this paper, we present a theory of strategic positioning that explains scientists’ strategic behavior in knowledge transfer from university to industry. The theory is based on the drivers strategic interdependence and organizational autonomy and entails three modes of behavior of scientists: mode1, mode2, and mode3 (the research entrepreneur). The results of an empirical study conducted at a research institute for nanotechnology show that, to increase the likelihood of scientists engaging ...

  20. Scientists' self-presentation on the Internet

    OpenAIRE

    Lovász Bukvová, Helena

    2012-01-01

    The doctoral thesis studied the behaviour of scientists on Internet profiles. The scientific community is founded on communication. The advance of research, the evaluation of research results, the reputation of individual scientists - all rest on constant interaction among the community members. The Internet, as a flexible channel for world-wide communication, has a considerable potential for the scientific community. Besides often discussed consequences for scientific publishing, the Interne...

  1. Sky Fest: A Model of Successful Scientist Participation in E/PO

    Science.gov (United States)

    Dalton, H.; Shipp, S. S.; Shaner, A. J.; LaConte, K.; Shupla, C. B.

    2014-12-01

    Participation in outreach events is an easy way for scientists to get involved with E/PO and reach many people with minimal time commitment. At the Lunar and Planetary Institute (LPI) in Houston, Texas, the E/PO team holds Sky Fest outreach events several times a year. These events each have a science content theme and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. LPI scientists have the opportunity to participate in Sky Fest events either by helping lead an activity or by giving the scientist presentation (a short lecture and/or demonstration). Scientists are involved in at least one preparation meeting before the event. This allows them to ask questions, understand what activity they will be leading, and learn the key points that they should be sharing with the public, as well as techniques for effectively teaching members of the public about the event topic. During the event, each activity is run by one E/PO specialist and one scientist, enabling the scientist to learn about effective E/PO practices from the E/PO specialist and the E/PO specialist to get more science information about the event topic. E/PO specialists working together with scientists at stations provides a more complete, richer experience for event participants. Surveys of event participants have shown that interacting one-on-one with scientists is often one of their favorite parts of the events. Interviews with scientists indicated that they enjoyed Sky Fest because there was very little time involved on their parts outside of the actual event; the activities were created and/or chosen by the E/PO professionals, and setup for the events was completed before they arrived. They also enjoyed presenting their topic to people without a background in science, and who would not have otherwise sought out the information that was presented.

  2. A Menu of Opportunities for Space and Earth Scientists in Education (MOSIE)

    Science.gov (United States)

    Morrow, C. A.; Harold, J. B.; Edwards, C. L.

    2001-12-01

    Space and earth scientists often report that they would be happy to become engaged in valuable education and public outreach (EPO) activity if they were offered a feasible way to get started. Motivated by the need to offer scientists useful ideas and options for EPO involvement, we have created prototype versions of two interconnected, web-based resources: 1) the "Menu of Opportunities for Scientists in Education" (MOSIE) and 2) the "Roles Matrix". Our MOSIE prototype features EPO options collected from a small group of high-impact projects that are national in scope, with diverse geographic access, and ongoing opportunities for scientists to play valuable EPO roles. Featured projects currently include Project ASTRO, an NSF-supported national network of astronomer-teacher partnerships, and several traveling science center exhibits supported by NSF and/or NASA, such as MarsQuest, the Space Weather Center, and New Views of the Hubble Space Telescope. We are also featuring scientists from the MOSIE projects in our web-based "Roles Matrix", which includes profiles of actual space and earth scientists successfully engaged in EPO. The goals of this web-based Matrix are to: 1) recognize scientists successfully involved in education and public outreach (EPO); 2) raise awareness of the diversity of roles scientists can play in EPO besides classroom or public presentation; 3) document a representative sample of the ways scientists are currently involved in EPO; and 4) provide role models for scientists in personally rewarding and effective EPO involvement. We will evolve the Roles Matrix and MOSIE based on user feedback to maximize their value in promoting fruitful partnerships between EPO professionals and the communities in space and earth science. This work is supported by the NASA Office of Space Science and the NSF Geosciences Directorate.

  3. Creating Organizational Cultures

    DEFF Research Database (Denmark)

    Mouton, Nico; Just, Sine Nørholm; Gabrielsen, Jonas

    2012-01-01

    Purpose – The purpose of this paper is to re-conceptualize the relations between rhetorical strategies and material practices in the processes whereby leaders create or change organizational cultures. Design/methodology/approach – The authors compare and contrast two broad perspectives on cultural...... insights. The authors propose an integrated perspective in which material practices and rhetorical strategies are seen as two analytical sides of the same ontological coin. This enables a fuller and more detailed explanation of how organizational cultures are created or changed. A brief illustration...... is provided of the merits of this approach by revisiting the case of Enron. Originality/value – The paper constitutes an initial exploration of how social scientific and rhetorical perspectives on organizational change may be brought closer together. It may provide the first step towards the development...

  4. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  5. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  6. Creating Engaging Online Courses

    OpenAIRE

    Susan Zvacek

    2009-01-01

    The importance of engagement for learning, specifically related to online coursework, is discussed in this paper. The cognitive basis for engagement and instructional strategies for integrating it into coursework are described, as well as the challenges that instructors face in creating robust learning environments. The roles of teacher and learner must also evolve to accommodate these new models, with increased student responsibility and accountability. Finally, practical examples are given ...

  7. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  8. Creating Geoscience Leaders

    Science.gov (United States)

    Buskop, J.; Buskop, W.

    2013-12-01

    The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.

  9. Exploring Innovation Ability of Scientist and Applying to Nobelist TD LEE Scientist Cooperation Network

    Institute of Scientific and Technical Information of China (English)

    FANG; Jin-qing; LIU; Qiang

    2012-01-01

    <正>Our work explores the innovation ability of Nobelist TD Lee and his scientist cooperation network. It is found that not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also TD Lee’s published papers has the multiple peaks with year evolution. The multiple peaks become a significant mark distinguished from other scientists. This

  10. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Jin-Qing Fang; Qiang Liu

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  11. Improving Communication Skills in Early Career Scientists

    Science.gov (United States)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  12. Creating new growth platforms.

    Science.gov (United States)

    Laurie, Donald L; Doz, Yves L; Sheer, Claude P

    2006-05-01

    Sooner or later, most companies can't attain the growth rates expected by their boards and CEOs and demanded by investors. To some extent, such businesses are victims of their own successes. Many were able to sustain high growth rates for a long time because they were in high-growth industries. But once those industries slowed down, the businesses could no longer deliver the performance that investors had come to take for granted. Often, companies have resorted to acquisition, though this strategy has a discouraging track record. Over time, 65% of acquisitions destroy more value than they create. So where does real growth come from? For the past 12 years, the authors have been researching and advising companies on this issue. With the support of researchers at Harvard Business School and Insead, they instituted a project titled "The CEO Agenda and Growth". They identified and approached 24 companies that had achieved significant organic growth and interviewed their CEOs, chief strategists, heads of R&D, CFOs, and top-line managers. They asked, "Where does your growth come from?" and found a consistent pattern in the answers. All the businesses grew by creating new growth platforms (NGPs) on which they could build families of products and services and extend their capabilities into multiple new domains. Identifying NGP opportunities calls for executives to challenge conventional wisdom. In all the companies studied, top management believed that NGP innovation differed significantly from traditional product or service innovation. They had independent, senior-level units with a standing responsibility to create NGPs, and their CEOs spent as much as 50% of their time working with these units. The payoff has been spectacular and lasting. For example, from 1985 to 2004, the medical devices company Medtronic grew revenues at 18% per year, earnings at 20%, and market capitalization at 30%. PMID:16649700

  13. Creating Places for People

    Directory of Open Access Journals (Sweden)

    Mehron Kirk

    2013-01-01

    Full Text Available The design of places has a huge impact on the success of urban areas. It has a role in helping develop a vision and identity within the built environment.  Designing public spaces must be centred around the place - its physical characteristics, activities that happen within it, and the emotional reaction of a place. The success of places is governed by the perception of those who use it; we can influence this as designers and continue to create places where people want to live, work, learn and play.

  14. TQC creates human being

    International Nuclear Information System (INIS)

    This book approaches scientifically for ideal personnel management which gives descriptions of business is human being such as three strategies which change personnel management and information on education, personnel management of Toyoda car body like human's way of thinking for personnel management and prospect of personnel management, gaining from TQC, activity in small group, like our company's QC circle, seeking of value of work and life and TQC creates human being such as advice on personnel management personnel management as function.

  15. Creating sustainable performance.

    Science.gov (United States)

    Spreitzer, Gretchen; Porath, Christine

    2012-01-01

    What makes for sustainable individual and organizational performance? Employees who are thriving-not just satisfied and productive but also engaged in creating the future. The authors found that people who fit this description demonstrated 16% better overall performance, 125% less burnout, 32% more commitment to the organization, and 46% more job satisfaction than their peers. Thriving has two components: vitality, or the sense of being alive and excited, and learning, or the growth that comes from gaining knowledge and skills. Some people naturally build vitality and learning into their jobs, but most employees are influenced by their environment. Four mechanisms, none of which requires heroic effort or major resources, create the conditions for thriving: providing decision-making discretion, sharing information about the organization and its strategy, minimizing incivility, and offering performance feedback. Organizations such as Alaska Airlines, Zingerman's, Quicken Loans, and Caiman Consulting have found that helping people grow and remain energized at work is valiant on its own merits-but it can also boost performance in a sustainable way. PMID:22299508

  16. Creating corporate advantage.

    Science.gov (United States)

    Collis, D J; Montgomery, C A

    1998-01-01

    What differentiates truly great corporate strategies from the merely adequate? How can executives at the corporate level create tangible advantage for their businesses that makes the whole more than the sum of the parts? This article presents a comprehensive framework for value creation in the multibusiness company. It addresses the most fundamental questions of corporate strategy: What businesses should a company be in? How should it coordinate activities across businesses? What role should the corporate office play? How should the corporation measure and control performance? Through detailed case studies of Tyco International, Sharp, the Newell Company, and Saatchi and Saatchi, the authors demonstrate that the answers to all those questions are driven largely by the nature of a company's special resources--its assets, skills, and capabilities. These range along a continuum from the highly specialized at one end to the very general at the other. A corporation's location on the continuum constrains the set of businesses it should compete in and limits its choices about the design of its organization. Applying the framework, the authors point out the common mistakes that result from misaligned corporate strategies. Companies mistakenly enter businesses based on similarities in products rather than the resources that contribute to competitive advantage in each business. Instead of tailoring organizational structures and systems to the needs of a particular strategy, they create plain-vanilla corporate offices and infrastructures. The company examples demonstrate that one size does not fit all. One can find great corporate strategies all along the continuum. PMID:10179655

  17. Women scientists joining Rokkasho women to sciences

    Energy Technology Data Exchange (ETDEWEB)

    Aratani, Michi [Office of Regional Collaboration, Institute for Environmental Sciences, Rokkasho, Aomori (Japan); Sasagawa, Sumiko

    1999-09-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  18. A distant light scientists and public policy

    CERN Document Server

    2000-01-01

    A collection of essays by a Nobel Prize Laureate on a wide range of critical issues facing the world, and the role of scientists in solving these problems. Kendall has been closely involved with the Union of Concerned Scientists, a group that began as an informal assocation at MIT in 1969 to protest US involvement in Vietnam and is today an organization with an annual budget exceeding $6 million, with 100,000 supporters worldwide. UCD is today a voice of authority in US government science policy, particularly with regard to environment issues, most recently the worldwide initiatives on global warming. Together, these essays represent both the sucessses and failures of science to impact public policy, the challenges facing scientists, and offers practical guidelines for involvement in science policy. The essays are roughly chronological, organized by subject with introductions, beginning with the controversies on nuclear power safety and Three Mile Island,then followed by sections on national security issues, ...

  19. Science communication a practical guide for scientists

    CERN Document Server

    Bowater, Laura

    2012-01-01

    Science communication is a rapidly expanding area and meaningful engagement between scientists and the public requires effective communication. Designed to help the novice scientist get started with science communication, this unique guide begins with a short history of science communication before discussing the design and delivery of an effective engagement event. Along with numerous case studies written by highly regarded international contributors, the book discusses how to approach face-to-face science communication and engagement activities with the public while providing tips to avoid potential pitfalls. This book has been written for scientists at all stages of their career, including undergraduates and postgraduates wishing to engage with effective science communication for the first time, or looking to develop their science communication portfolio.

  20. Women scientists joining Rokkasho women to sciences

    International Nuclear Information System (INIS)

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  1. Advice to young behavioral and cognitive scientists.

    Science.gov (United States)

    Weisman, Ronald G

    2008-02-01

    Modeled on Medawar's Advice to a Young Scientist [Medawar, P.B., 1979. Advice to a Young Scientist. Basic Books, New York], this article provides advice to behavioral and cognitive scientists. An important guiding principle is that the study of comparative cognition and behavior are natural sciences tasked with explaining nature. The author advises young scientists to begin with a natural phenomenon and then bring it into the laboratory, rather than beginning in the laboratory and hoping for an application in nature. He suggests collaboration as a way to include research outside the scientist's normal competence. He then discusses several guides to good science. These guides include Tinbergen's [Tinbergen, N., 1963. On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410-433. This journal was renamed Ethology in 1986. Also reprinted in Anim. Biol. 55, 297-321, 2005] four "why" questions, Platt's [Platt, J.R., 1964. Strong inference. Science 146, 347-353, (http://weber.ucsd.edu/~jmoore/courses/Platt1964.pdf)] notion of strong inference using multiple alternative hypotheses, and the idea that positive controls help scientists to follow Popper's [Popper, K.R., 1959. The Logic of Scientific Discovery. Basic Books, New York, p. 41] advice about disproving hypotheses. The author also recommends Strunk and White's [Strunk, W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New York] rules for sound writing, and he provides his personal advice on how to use the anticipation of peer review to improve research and how to decode editors' and reviewers' comments about submitted articles.

  2. Creating a TQM culture.

    Science.gov (United States)

    Lynn, G; Curto, C

    1992-11-01

    Creating a culture and environment for quality improvement is hard work that takes time and commitment. It is often frustrating and painful. For an organization to be successful in this transformation, leadership is not just important, it is vital. The leaders in TQM have new roles to play, roles that go against the grain of many of the forces that led to management success. The tasks of the leaders in a TQM organization emphasize building teamwork and removing barriers that prevent the organization from meeting customer needs. When Jamie Haughton, CEO of Corning, was asked where in his job he found the time to commit to TQM, he replied, "Continuous quality improvement is my job; it is the most important thing I do ... Quality is the primary responsibility of the leader."

  3. Creating Citizenship Communities

    Directory of Open Access Journals (Sweden)

    Ian Davies

    2012-09-01

    Full Text Available The project ‘Creating Citizenship Communities’ is funded by the EsméeFairbairn Foundation and is being conducted by a partnership team from theDepartment of Education, University of York and the National Foundation forEducational Research. This article describes the project design and drawsattention to issues emerging from data analysis. An indication is given of theactions to be taken with professionals and young people in light of theproject findings. An argument is made for the need to co-ordinate work inschools by developing stronger liaison between citizenship educationteachers and those responsible for whole school initiatives to promotecommunity engagement; and helping teachers to build on young people’sexisting knowledge and expertise in community matters to help themunderstand and act more effectively in society.

  4. Tourist-created Content

    DEFF Research Database (Denmark)

    Munar, Ana Maria

    2011-01-01

    Purpose – The purpose of this paper is to analyze the relationship between tourists' user-generated content on the web and destination branding, as well as to discuss the online strategies used by destination management organizations. Design/methodology/approach – The research adopts an exploratory...... study of social media sites and destination brands, relying on qualitative research methods, content analysis and field research. Findings – Tourists are largely contributing to destination image formation, while avoiding the use of the formal elements of the brands. The most popular strategies used...... by destination management organizations exhibit some crucial weaknesses. However, a strategy based on analytics brings new opportunities for destination branding. Originality/value – The study provides an innovative analysis of tourist-created content and its impact on destination branding and presents...

  5. Creating the living brand.

    Science.gov (United States)

    Bendapudi, Neeli; Bendapudi, Venkat

    2005-05-01

    It's easy to conclude from the literature and the lore that top-notch customer service is the province of a few luxury companies and that any retailer outside that rarefied atmosphere is condemned to offer mediocre service at best. But even companies that position themselves for the mass market can provide outstanding customer-employee interactions and profit from them, if they train employees to reflect the brand's core values. The authors studied the convenience store industry in depth and focused on two that have developed a devoted following: QuikTrip (QT) and Wawa. Turnover rates at QT and Wawa are 14% and 22% respectively, much lower than the typical rate in retail. The authors found six principles that both firms embrace to create a strong culture of customer service. Know what you're looking for: A focus on candidates' intrinsic traits allows the companies to hire people who will naturally bring the right qualities to the job. Make the most of talent: In mass-market retail, talent is generally viewed as a commodity, but that outlook becomes a self-fulfilling prophesy. Create pride in the brand: Service quality depends directly on employees' attachment to the brand. Build community: Wawa and QT have made concerted efforts to build customer loyalty through a sense of community. Share the business context: Employees need a clear understanding of how their company operates and how it defines success. Satisfy the soul: To win an employee's passionate engagement, a company must meet his or her needs for security, esteem, and justice. PMID:15929408

  6. Publications, peer review, and the young scientist

    Science.gov (United States)

    Kellett, R. L.

    As scientists and communicators, we all make our living through the expression of our ideas and the results of our scientific research. This expression takes many forms, but, most notably, published articles lie at the heart of our endeavors. I would like to present my opinions on some problems that I, as a young scientist, see in our profession.Several years ago, two wonderful letters appeared in Geology discussing the problems of honorary coauthorship [Zen, 1988, Means, 1988]. Honorary coauthorship is a by-product of the system set up to fund scientific research. More generally, the problem is the need to publish a great number of articles in order to survive.

  7. Career Management for Scientists and Engineers

    Science.gov (United States)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  8. AGU Hosts Networking Event for Female Scientists

    Science.gov (United States)

    McEntee, Chris

    2013-01-01

    At Fall Meeting this year I had the pleasure of cohosting a new event, a Networking Reception for Early Career Female Scientists and Students, with Jane Lubchenco, under secretary of Commerce for Oceans and Atmosphere and National Oceanic and Atmospheric Administration administrator, and Marcia McNutt, director of the U.S. Geological Survey. AGU recognizes the importance of having a diverse pool of new researchers who can enrich Earth and space sciences with their skills and innovation. That's why one of our four strategic goals is to help build the global talent pool and provide early-career scientists with networking opportunities like this one.

  9. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  10. Russian scientists decry savage job cuts

    Science.gov (United States)

    Stafford, Ned

    2016-09-01

    More than 100 scientists in Russia have signed an open letter to the country's president, Vladimir Putin, protesting over a lack of funding for research and reforms that they say have left Russian science mired in a chronic state of crisis.

  11. University scientists test Mars probe equipment

    CERN Multimedia

    2002-01-01

    Scientists at Leicester University have spent four years researching and designing the Flight Model Position Adjustable Workbench (PAW) at the university. It will be attached to the Beagle 2 probe before being sent to the Red Planet in the spring (1/2 page).

  12. Scientist Researches Way to Reduce Global Warming

    Science.gov (United States)

    For the last four years, scientists at the USDA, Agricultural Research Service, Northern Plains Agricultural Research Laboratory have been searching for alternative soil and crop management practices to reduce greenhouse gas emissions and increase carbon and nitrogen sequestration. “If we can redu...

  13. Galaxy Zoo: Motivations of Citizen Scientists

    Science.gov (United States)

    Raddick, M. Jordan; Bracey, Georgia; Gay, Pamela L.; Lintott, Chris J.; Cardamone, Carie; Murray, Phil; Schawinski, Kevin; Szalay, Alexander S.; Vandenberg, Jan

    2013-01-01

    Citizen science, in which volunteers work with professional scientists to conduct research, is expanding due to large online datasets. To plan projects, it is important to understand volunteers' motivations for participating. This paper analyzes results from an online survey of nearly 11000 volunteers in Galaxy Zoo, an astronomy citizen…

  14. New Zealand scientists in firing line

    CERN Multimedia

    2003-01-01

    "Kiwi scientists have a great chance to have their work bombarded with protons and to participate in world-class particle physics research, with the signing of a Memorandum of Understanding (MoU) between CERN (the European Organisation for Nuclear Research) and New Zealand" (1/2 page)

  15. What Scientists Who Study Emotion Agree About.

    Science.gov (United States)

    Ekman, Paul

    2016-01-01

    In recent years, the field of emotion has grown enormously-recently, nearly 250 scientists were identified who are studying emotion. In this article, I report a survey of the field, which revealed high agreement about the evidence regarding the nature of emotion, supporting some of both Darwin's and Wundt's 19th century proposals. Topics where disagreements remain were also exposed.

  16. U.S. Ethnic Scientists and Entrepreneurs

    Science.gov (United States)

    Kerr, William R.

    2007-01-01

    Immigrants are exceptionally important for U.S. technology development, accounting for almost half of the country's Ph.D. workforce in science and engineering. Most notably, the contribution of Chinese and Indian scientists and entrepreneurs in U.S. high-technology sectors increased dramatically in the 1990s. These ethnic scientific communities…

  17. Knowledge transfer activities of scientists in nanotechnology

    NARCIS (Netherlands)

    Zalewska-Kurek, Kasia; Egedova, Klaudia; Geurts, Peter A.Th.M.; Roosendaal, Hans E.

    2016-01-01

    In this paper, we present a theory of strategic positioning that explains scientists’ strategic behavior in knowledge transfer from university to industry. The theory is based on the drivers strategic interdependence and organizational autonomy and entails three modes of behavior of scientists: mode

  18. An Israeli Scientist's Approach to Human Values

    Science.gov (United States)

    Katzir-Katchalsky, A.

    1972-01-01

    Describes through examples some laboratory research with implications which can be used for asocial ends. Humanitarian values have to be upheld; therefore, scientists and science educators have to modify their techniques and procedures to make their research and programs useful for mankind. (PS)

  19. Scientists riff on fabric of the universe

    CERN Multimedia

    2008-01-01

    Their music may be the scourge of parents, but the thrashing guitars of heavy metal bands like Metallica and Iron Maiden could help explain the mysteries of the universe. The string vibrations from the frantic strumming of rock guitarists form the basis of String Theory, a mathematic theory that seeks to explain what the world is made of, says scientist Mark Lewney.

  20. Improving the scientist/journalist conversation.

    Science.gov (United States)

    Valenti, J M

    2000-10-01

    How well do scientists communicate to members of the mass media? A communication scholar reviews potential barriers to the essential dialogue necessary between those in the sciences and journalists who report science to the public. Suggestions for improving communication within this relationship, in spite of professional process differences, are offered, emphasizing adherence to shared ethical standards.

  1. Scientists hope collider makes a big bang

    CERN Multimedia

    Nickerson, Colin

    2007-01-01

    "In a 17-ile circular tunnel curving beneath the Swiss-French border, scientists are poised to recreate the universe's first trillionth of a second. The aim of the audacious undertaking is to solve one of the most perturbing puzzles of physics: How did matter attain mass and form the cosmos? (2 pages)

  2. A scientist's guide to engaging decision makers

    Science.gov (United States)

    Vano, J. A.

    2015-12-01

    Being trained as a scientist provides many valuable tools needed to address society's most pressing environmental issues. It does not, however, provide training on one of the most critical for translating science into action: the ability to engage decision makers. Engagement means different things to different people and what is appropriate for one project might not be for another. However, recent reports have emphasized that for research to be most useful to decision making, engagement should happen at the beginning and throughout the research process. There are an increasing number of boundary organizations (e.g., NOAA's Regional Integrated Sciences and Assessment program, U.S. Department of the Interior's Climate Science Centers) where engagement is encouraged and rewarded, and scientists are learning, often through trial and error, how to effectively include decision makers (a.k.a. stakeholders, practitioners, resource managers) in their research process. This presentation highlights best practices and practices to avoid when scientists engage decision makers, a list compiled through the personal experiences of both scientists and decision makers and a literature review, and how this collective knowledge could be shared, such as through a recent session and role-playing exercise given at the Northwest Climate Science Center's Climate Boot Camp. These ideas are presented in an effort to facilitate conversations about how the science community (e.g., AGU researchers) can become better prepared for effective collaborations with decision makers that will ultimately result in more actionable science.

  3. Non-natives: 141 scientists object

    NARCIS (Netherlands)

    Simberloff, D.; Van der Putten, W.H.

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. dsimberloff@utk.edu Jake Alexander Institute of Integrative

  4. Cautiously, Scientists Put Faith in Obama Promise

    Science.gov (United States)

    Field, Kelly

    2009-01-01

    This article reports that academic researchers are optimistic that President Barack Obama's approach to science heralds a new era of support for their work. When Mr. Obama named his top science and technology advisers only weeks after being elected, many scientists celebrated. After eight years of an administration that many academics believed…

  5. Creating new market space.

    Science.gov (United States)

    Kim, W C; Mauborgne, R

    1999-01-01

    Most companies focus on matching and beating their rivals. As a result, their strategies tend to take on similar dimensions. What ensues is head-to-head competition based largely on incremental improvements in cost, quality, or both. The authors have studied how innovative companies break free from the competitive pack by staking out fundamentally new market space--that is, by creating products or services for which there are no direct competitors. This path to value innovation requires a different competitive mind-set and a systematic way of looking for opportunities. Instead of looking within the conventional boundaries that define how an industry competes, managers can look methodically across them. By so doing, they can find unoccupied territory that represents real value innovation. Rather than looking at competitors within their own industry, for example, managers can ask why customers make the trade-off between substitute products or services. Home Depot, for example, looked across the substitutes serving home improvement needs. Intuit looked across the substitutes available to individuals managing their personal finances. In both cases, powerful insights were derived from looking at familiar data from a new perspective. Similar insights can be gleaned by looking across strategic groups within an industry; across buyer groups; across complementary product and service offerings; across the functional-emotional orientation of an industry; and even across time. To help readers explore new market space systematically, the authors developed a tool, the value curve, that can be used to represent visually a range of value propositions. PMID:10345394

  6. Involving Scientists in Outreach: Incentives, Barriers, and Recommendations from Research Findings

    Science.gov (United States)

    Melton, G.; Laursen, S.; Andrews, E.; Weaver, A.; Hanley, D.; Shamatha, J. H.

    2004-12-01

    Public agencies that fund scientific research are increasingly requiring that researchers invest some of their funding in education or outreach activities that have a "broader impact." Yet barriers exist that inhibit scientists' motivation to participate in K-12 outreach. We will share findings from a quantitative and qualitative study that examined the motivations, rewards, and obstacles for scientists who participate in outreach. We found that most researchers became interested in doing outreach out of a desire to contribute and an expectation of having fun and enjoying the experience. They typically gave outreach presentations away from work, acted as a resource for school teachers, or helped with teacher professional development. However, scientists viewed outreach as a form of volunteer work that was auxiliary to their other responsibilities. Thus, time constraints, a lack of information about outreach opportunities, and the lower value placed on outreach by departments constituted significant barriers to their participation. Scientists involved in outreach typically found their efforts to be rewarding, but occasionally factors left a negative impression, such as poor audience response, classroom management difficulties, organizational problems, or demonstrations not going as planned. Based upon our findings, we offer recommendations on how scientists' participation and experiences in K-12 outreach can be improved, including how to successfully recruit scientists, create a positive outreach experience, and increase institutional support for outreach work.

  7. Scientists' Perceptions of Communicating During Crises

    Science.gov (United States)

    Dohaney, J. A.; Hudson-Doyle, E.; Brogt, E.; Wilson, T. M.; Kennedy, B.

    2015-12-01

    To further our understanding of how to enhance student science and risk communication skills in natural hazards and earth science courses, we conducted a pilot study to assess the different perceptions of expert scientists and risk communication practitioners versus the perceptions of students. These differences will be used to identify expert views on best practice, and improve the teaching of communication skills at the University level. In this pilot study, a perceptions questionnaire was developed and validated. Within this, respondents (geoscientists, engineers, and emergency managers; n=44) were asked to determine their agreement with the use and effectiveness of specific communication strategies (within the first 72 hours after a devastating earthquake) when communicating to the public. In terms of strategies and information to the public, the respondents were mostly in agreement, but there were several statements which elicited large differences between expert responses: 1) the role and purpose of the scientific communication during crises (to persuade people to care, to provide advice, to empower people to take action); 2) the scientist's delivery (showing the scientists emotions and enthusiasm for scientific concepts they are discussing); and 3) the amount of data that is discussed (being comprehensive versus 'only the important' data). The most disagreed upon dimension was related to whether to disclose any political influence on the communication. Additionally, scientists identified that being an effective communicator was an important part of their job, and agreed that it is important to practice these skills. Respondents generally indicated that while scientists should be accountable for the science advice provided, they should not be held liable.

  8. Looking before Leaping: Creating a Software Registry

    Directory of Open Access Journals (Sweden)

    Alice Allen

    2015-11-01

    Full Text Available What lessons can be learned from examining numerous efforts to create a repository or directory of scientist-written software for a discipline? Astronomy has seen a number of efforts to build such a resource, one of which is the Astrophysics Source Code Library (ASCL. The ASCL (ascl.net was founded in 1999, had a period of dormancy, and was restarted in 2010. When taking over responsibility for the ASCL in 2010, the new editor sought to answer the opening question, hoping this would better inform the work to be done. We also provide specific steps the ASCL is taking to try to improve code sharing and discovery in astronomy and share recent improvements to the resource.

  9. Innovation from the Perspective of a Natural Scientist

    DEFF Research Database (Denmark)

    Kilstrup, Mogens

    2016-01-01

    four SAND axes. Analysis of fitness landscapes is in the present report used to visualize the events leading to incremental versus radical innovation, sustaining versus disruptive innovation, as well as the difference between technology and meaning-changes in design. Leading innovation models thus fit......Engineers and natural scientist are required to suggest successful utilization of their discoveries and secure property rights to their universities whenever possible. Here I develop a novel model that optimizes the process of innovation by dividing it into three separate phases following the pre-innovative...... discovery; i.e., an application phase, a design phase, and an entrepreneurial phase. The phases are identified in the well-described innovation of the electron tube from Edison’s light bulb. Each phase consists of an abductive process, where a large selection of possible solutions is created, followed...

  10. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2013-01-01

    Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.

  11. Scientific Inquiry for Scientists: Professional Development Needs and Resources for Scientists Working With K-12 Education

    Science.gov (United States)

    Laursen, S.; Smith, L.; McLaren, C.; Hyde Edgerly, K.; Buhr, S.

    2004-12-01

    As science educators based in institutional outreach programs, we work with many scientists on education and outreach projects involving teachers, students, and the public. While our scientist colleagues bring varied disciplinary interests, educational expertise, and communication skills to their education work, one strength that all scientists bring to these collaborations is their profound knowledge of the inquiry process. We have begun to develop a program of professional development for scientists that focuses on scientific inquiry in the classroom. Inquiry is the appropriate topic of focus for an initial professional development experience for scientists, because it is a crucial and broadly applicable part of national science education goals, and because all scientists understand it in a deep and personal way. As articulated in the National Science Education Standards, inquiry is both a recommended strategy for learning and teaching scientific concepts, and a content area in its own right, with the aim that students understand the process of science and can conduct scientific investigations. We will describe our multi-faceted program, which includes professional development workshops, development and sharing of resources, and a research-with-evaluation study to examine the readiness, response, and needs of the scientific community for professional development to further its education work. We will discuss ways in which scientists can apply their understanding of inquiry to their education work as well as identify other needs that must also be addressed. While inquiry is not the only thing that "busy scientists need to know," it is a good topic for starting fruitful conversations among scientists, K-12 educators, and those who bridge these communities.

  12. Not going it alone: scientists and their work featured online at FrontierScientists

    Science.gov (United States)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  13. Getting to Yes: Supporting Scientists in Education and Public Outreach

    Science.gov (United States)

    Buhr, S. M.; Lynds, S. E.; Smith, L. K.

    2011-12-01

    Research scientists are busy people, with many demands on their time and few institutional rewards for engagement in education and public outreach (EPO). However, scientist involvement in education has been called for by funding agencies, education researchers and the scientific organizations. In support of this idea, educators consistently rate interaction with scientists as the most meaningful element of an outreach project. What factors help scientists become engaged in EPO, and why do scientists stay engaged? This presentation describes the research-based motivations and barriers for scientists to be engaged in EPO, presents strategies for overcoming barriers, and describes elements of EPO that encourage and support scientist engagement.

  14. [The boycott against German scientists and the German language after World War I].

    Science.gov (United States)

    Reinbothe, R

    2013-12-01

    After the First World War, the Allied academies of sciences staged a boycott against German scientists and the German language. The objective of the boycott was to prevent the re-establishment of the prewar dominance of German scientists, the German language and German publications in the area of international scientific cooperation. Therefore the Allies excluded German scientists and the German language from international associations, congresses and publications, while they created new international scientific organizations under their leadership. Medical associations and congresses were also affected, e. g. congresses on surgery, ophthalmology and tuberculosis. Allied physicians replaced the "International Anti-Tuberculosis Association" founded in Berlin in 1902 with the "Union Internationale contre la Tuberculose"/"International Union against Tuberculosis", founded in Paris in 1920. Only French and English were used as the official languages of the new scientific organizations, just as in the League of Nations. The boycott was based on the fact that the German scientists had denied German war guilt and war crimes and glorified German militarism in a manifesto "To The Civilized World!" in 1914. The boycott first started in 1919 and had to be abolished in 1926, when Germany became a member of the League of Nations. Many German and foreign physicians as well as other scientists protested against the boycott. Some German scientists and institutions even staged a counter-boycott impeding the resumption of international collaboration. The boycott entailed an enduring decline of German as an international scientific language. After the Second World War scientists of the victorious Western Powers implemented a complete reorganization of the international scientific arena, based on the same organizational structures and language restrictions they had built up in 1919/1920. At the same time scientists from the U.S.A. staged an active language and publication policy, in

  15. [The boycott against German scientists and the German language after World War I].

    Science.gov (United States)

    Reinbothe, R

    2013-12-01

    After the First World War, the Allied academies of sciences staged a boycott against German scientists and the German language. The objective of the boycott was to prevent the re-establishment of the prewar dominance of German scientists, the German language and German publications in the area of international scientific cooperation. Therefore the Allies excluded German scientists and the German language from international associations, congresses and publications, while they created new international scientific organizations under their leadership. Medical associations and congresses were also affected, e. g. congresses on surgery, ophthalmology and tuberculosis. Allied physicians replaced the "International Anti-Tuberculosis Association" founded in Berlin in 1902 with the "Union Internationale contre la Tuberculose"/"International Union against Tuberculosis", founded in Paris in 1920. Only French and English were used as the official languages of the new scientific organizations, just as in the League of Nations. The boycott was based on the fact that the German scientists had denied German war guilt and war crimes and glorified German militarism in a manifesto "To The Civilized World!" in 1914. The boycott first started in 1919 and had to be abolished in 1926, when Germany became a member of the League of Nations. Many German and foreign physicians as well as other scientists protested against the boycott. Some German scientists and institutions even staged a counter-boycott impeding the resumption of international collaboration. The boycott entailed an enduring decline of German as an international scientific language. After the Second World War scientists of the victorious Western Powers implemented a complete reorganization of the international scientific arena, based on the same organizational structures and language restrictions they had built up in 1919/1920. At the same time scientists from the U.S.A. staged an active language and publication policy, in

  16. Tools for Engaging Scientists in Education and Public Outreach: Resources from NASA's Science Mission Directorate Forums

    Science.gov (United States)

    Buxner, S.; Grier, J.; Meinke, B. K.; Gross, N. A.; Woroner, M.

    2014-12-01

    The NASA Science Education and Public Outreach (E/PO) Forums support the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums foster collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. We will present tools to engage and resources to support scientists' engagement in E/PO efforts. Scientists can get connected to educators and find support materials and links to resources to support their E/PO work through the online SMD E/PO community workspace (http://smdepo.org) The site includes resources for scientists interested in E/PO including one page guides about "How to Get Involved" and "How to Increase Your Impact," as well as the NASA SMD Scientist Speaker's Bureau to connect scientists to audiences across the country. Additionally, there is a set of online clearinghouses that provide ready-made lessons and activities for use by scientists and educators: NASA Wavelength (http://nasawavelength.org/) and EarthSpace (http://www.lpi.usra.edu/earthspace/). The NASA Forums create and partner with organizations to provide resources specifically for undergraduate science instructors including slide sets for Earth and Space Science classes on the current topics in astronomy and planetary science. The Forums also provide professional development opportunities at professional science conferences each year including AGU, LPSC, AAS, and DPS to support higher education faculty who are teaching undergraduate courses. These offerings include best practices in instruction, resources for teaching planetary science and astronomy topics, and other special topics such as working with diverse students and the use of social media in the classroom. We are continually soliciting ways that we can better support scientists' efforts in effectively engaging in E/PO. Please contact Sanlyn Buxner (buxner@psi.edu) or Jennifer Grier (jgrier@psi.edu) to

  17. Scientist-teacher interactions: Catalysts for developing transformational classrooms

    Science.gov (United States)

    McCarty, Robbie Von

    Professional development leading to standards-based teaching practices in U.S. schools is a remarkably subtle and lengthy process. Research indicates that there are many effective tools for teaching through inquiry available to teachers (Lawson, Abraham, & Renner, 1989), but also that teachers continue to present traditional positivistic views of science (Hashweh, 1985; Maor & Taylor, 1995; Zucker, Young, & Luczak, 1996) and appear to view constructivism as a "method" of teaching rather than a way of thinking about learning (Tobin, Tippins, & Gallard, 1984). Teachers are expected to create enriched environments where students can develop the thinking skills of scientists (Roth & Roychoudhury, 1993) but the majority of teachers have never experienced such environments; the involvement of scientists in science education is encouraged by the NRC, AAAS, and NSTA. Teachers and students are expected to act as coresearchers, where negotiation, debate, consensus, and reflection are key. It is believed that scientist and teachers interacting as co-researchers could assist teachers in developing attitudes of freedom in exploration: the essence of science and a mindset that constructivism is a referent, or tool for critical reflection (Tobin, Tippins & Gallard, 1994). This study seeks to identify aspects of scientist-teacher interactions in the field that could serve as catalysts for developing transformational classrooms. Multiple data sources were collected for this study: audiotapes and transcripts of laboratory interactions and informal interviews, written narratives from applications and funding documents, field notes, and personal communications. Data were simultaneously collected, analyzed and coded as a perpetual review of the literature was conducted as in the grounded theory methodology defined by Glaser (1967) and later by Strauss & Corbin (1990). Findings indicate all four teachers valued field experiences in personal ways, developed new understandings of

  18. Scientists and Scientific Thinking: Understanding Scientific Thinking through an Investigation of Scientists Views about Superstitions and Religious Beliefs

    Science.gov (United States)

    Coll, Richard K.; Lay, Mark C.; Taylor, Neil

    2008-01-01

    Scientific literacy is explored in this paper which describes two studies that seek to understand a particular feature of the nature of science; namely scientists' habits of mind. The research investigated scientists' views of scientific evidence and how scientists judge evidence claims. The first study is concerned with scientists' views of what…

  19. Kristian Birkeland The First Space Scientist

    CERN Document Server

    Egeland, Alv

    2005-01-01

    At the beginning of the 20th century Kristian Birkeland (1867-1917), a Norwegian scientist of insatiable curiosity, addressed questions that had vexed European scientists for centuries. Why do the northern lights appear overhead when the Earth’s magnetic field is disturbed? How are magnetic storms connected to disturbances on the Sun? To answer these questions Birkeland interpreted his advance laboratory simulations and daring campaigns in the Arctic wilderness in the light of Maxwell’s newly discovered laws of electricity and magnetism. Birkeland’s ideas were dismissed for decades, only to be vindicated when satellites could fly above the Earth’s atmosphere. Faced with the depleting stocks of Chilean saltpeter and the consequent prospect of mass starvation, Birkeland showed his practical side, inventing the first industrial scale method to extract nitrogen-based fertilizers from the air. Norsk Hydro, one of modern Norway’s largest industries, stands as a living tribute to his genius. Hoping to demo...

  20. Stress and morale of academic biomedical scientists.

    Science.gov (United States)

    Holleman, Warren L; Cofta-Woerpel, Ludmila M; Gritz, Ellen R

    2015-05-01

    Extensive research has shown high rates of burnout among physicians, including those who work in academic health centers. Little is known, however, about stress, burnout, and morale of academic biomedical scientists. The authors interviewed department chairs at one U.S. institution and were told that morale has plummeted in the past five years. Chairs identified three major sources of stress: fear of not maintaining sufficient funding to keep their positions and sustain a career; frustration over the amount of time spent doing paperwork and administrative duties; and distrust due to an increasingly adversarial relationship with the executive leadership.In this Commentary, the authors explore whether declining morale and concerns about funding, bureaucracy, and faculty-administration conflict are part of a larger national pattern. The authors also suggest ways that the federal government, research sponsors, and academic institutions can address these concerns and thereby reduce stress and burnout, increase productivity, and improve overall morale of academic biomedical scientists.

  1. Conservation beyond science: scientists as storytellers

    Directory of Open Access Journals (Sweden)

    Diogo Veríssimo

    2014-11-01

    Full Text Available As scientists we are often unprepared and unwilling to communicate our passion for what we do to those outside our professional circles. Scientific literature can also be difficult or unattractive to those without a professional interest in research. Storytelling can be a successful approach to enable readers to engage with the challenges faced by scientists. In an effort to convey to the public what it means to be a field biologist, 18 Portuguese biologists came together to write a book titled “BIOgraphies: The lives of those who study life”, in the original Portuguese “BIOgrafias: Vidas de quem estuda a vida”. This book is a collection of 35 field stories that became career landmarks for those who lived them. We discuss the obstacles and opportunities of the publishing process and reflect on the lessons learned for future outreach efforts.

  2. Tradition and Innovation in Scientists' Research Strategies

    CERN Document Server

    Foster, Jacob G; Evans, James A

    2013-01-01

    What factors affect a scientist's choice of research problem? Qualitative research in the history, philosophy, and sociology of science suggests that this choice is shaped by an "essential tension" between the professional demand for productivity and a conflicting drive toward risky innovation. We examine this tension empirically in the context of biomedical chemistry. We use complex networks to represent the evolving state of scientific knowledge, as expressed in publications. We then define research strategies relative to these networks. Scientists can introduce novel chemicals or chemical relationships--or delve deeper into known ones. They can consolidate existing knowledge clusters, or bridge distant ones. Analyzing such choices in aggregate, we find that the distribution of strategies remains remarkably stable, even as chemical knowledge grows dramatically. High-risk strategies, which explore new chemical relationships, are less prevalent in the literature, reflecting a growing focus on established know...

  3. Emeritus Scientists, Mathematicians and Engineers (ESME) program

    Energy Technology Data Exchange (ETDEWEB)

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children's natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  4. Only Human: Scientists, Systems, and Suspect Statistics

    Directory of Open Access Journals (Sweden)

    Tom E Hardwicke

    2014-12-01

    Full Text Available It is becoming increasingly clear that science has sailed into troubled waters. Recent revelations about cases of serious research fraud and widespread ‘questionable research practices’ have initiated a period of critical self-reflection in the scientific community and there is growing concern that several common research practices fall far short of the principles of robust scientific inquiry. At a recent symposium, ‘Improving Scientific Practice: Dealing with the Human Factors’ held at The University of Amsterdam, the notion of the objective, infallible, and dispassionate scientist was firmly challenged. The symposium was guided by the acknowledgement that scientists are only human, and thus subject to the desires, needs, biases, and limitations inherent to the human condition. In this article, five post-graduate students from University College London describe the issues addressed at the symposium and evaluate proposed solutions to the scientific integrity crisis.

  5. Nobelist TD Lee Scientist Cooperation Network and Scientist Innovation Ability Model

    Institute of Scientific and Technical Information of China (English)

    FANG; Jin-qing; LIU; Qiang

    2013-01-01

    We have studied Nobelist TD Lee scientist cooperation network(TDLSCN)and their innovation ability(Fig.1a).It is found that TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation network,but also the number of TD Lee’s published article appears the phenomenon of multiple-peak with year evolution,which becomes Nobelist TD Lee’s

  6. Intelligent Systems for Engineers and Scientists

    CERN Document Server

    Hopgood, Adrian A

    2011-01-01

    The third edition of this bestseller examines the principles of artificial intelligence and their application to engineering and science, as well as techniques for developing intelligent systems to solve practical problems. Covering the full spectrum of intelligent systems techniques, it incorporates knowledge-based systems, computational intelligence, and their hybrids. Using clear and concise language, Intelligent Systems for Engineers and Scientists, Third Edition features updates and improvements throughout all chapters. It includes expanded and separated chapters on genetic algorithms and

  7. Modelling biological complexity: a physical scientist's perspective

    OpenAIRE

    Coveney, Peter V.; Fowler, Philip W.

    2005-01-01

    We discuss the modern approaches of complexity and self-organization to understanding dynamical systems and how these concepts can inform current interest in systems biology. From the perspective of a physical scientist, it is especially interesting to examine how the differing weights given to philosophies of science in the physical and biological sciences impact the application of the study of complexity. We briefly describe how the dynamics of the heart and circadian rhythms, canonical exa...

  8. Strategic career planning for physician-scientists

    OpenAIRE

    Shimaoka, Motomu

    2015-01-01

    Building a successful professional career in the physician-scientist realm is rewarding but challenging, especially in the dynamic and competitive environment of today’s modern society. This educational review aims to provide readers with five important career development lessons drawn from the business and social science literatures. Lessons 1–3 describe career strategy, with a focus on promoting one’s strengths while minimizing fixing one’s weaknesses (Lesson 1); effective time management i...

  9. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael

    2013-01-01

    This comprehensively revised - essentially rewritten - new edition of the 1990 edition (described as ""extremely useful"" by MATHEMATICAL REVIEWS and as ""understandable and comprehensive"" by Scitech) guides readers through the dense array of mathematical information in the International Tables Volume A. Thus, most scientists seeking to understand a crystal structure publication can do this from this book without necessarily having to consult the International Tables themselves. This remains the only book aimed at non-crystallographers devoted to teaching them about crystallogr

  10. Cultural isolation of third-world scientists

    International Nuclear Information System (INIS)

    The isolation of third world scientists from the modes of production and from the culture of their countries seems to be related to the alienation of the urban culture of these countries from their respective rural backgrounds. It is suggested that this alienation may be overcome by directly interfacing modern science and technology to the corresponding elements in their rural culture through the process of education. (author)

  11. How Dare You Scientists Espouse Different Thoughts!

    OpenAIRE

    Cairns, John

    2010-01-01

    On May 7, 2010, a letter signed by 255 members of the US National Academy of Sciences deplored attacks on both science and scientists who researched climate science or related fields. The assaults in the letter rely on two main components. First, statements contradict the preponderance of scientific evidence without a comparable body of evidence to the contrary. Second, as the size of the Intergovernmental Panel on Climate Change (IPCC) reports grows, so does the probability of minor errors. ...

  12. Credentialing Data Scientists: A Domain Repository Perspective

    Science.gov (United States)

    Lehnert, K. A.; Furukawa, H.

    2015-12-01

    A career in data science can have many paths: data curation, data analysis, metadata modeling - all of these in different commercial or scientific applications. Can a certification as 'data scientist' provide the guarantee that an applicant or candidate for a data science position has just the right skills? How valuable is a 'generic' certification as data scientist for an employer looking to fill a data science position? Credentials that are more specific and discipline-oriented may be more valuable to both the employer and the job candidate. One employment sector for data scientists are the data repositories that provide discipline-specific data services for science communities. Data science positions within domain repositories include a wide range of responsibilities in support of the full data life cycle - from data preservation and curation to development of data models, ontologies, and user interfaces, to development of data analysis and visualization tools to community education and outreach, and require a substantial degree of discipline-specific knowledge of scientific data acquisition and analysis workflows, data quality measures, and data cultures. Can there be certification programs for domain-specific data scientists that help build the urgently needed workforce for the repositories? The American Geophysical Union has recently started an initiative to develop a program for data science continuing education and data science professional certification for the Earth and space sciences. An Editorial Board has been charged to identify and develop curricula and content for these programs and to provide input and feedback in the implementation of the program. This presentation will report on the progress of this initiative and evaluate its utility for the needs of domain repositories in the Earth and space sciences.

  13. How political scientists got Trump exactly wrong

    OpenAIRE

    Gruber, Lloyd

    2016-01-01

    One of the major casualties of the 2016 election season has been the reputation of political science, a discipline whose practitioners had largely dismissed Donald Trump’s chances of gaining the Republican nomination. Lloyd Gruber describes just how wrong political scientists were about Trump, and explains why they should have been able to predict his success. Looking ahead to the fall general election, he questions whether voters will want Trump’s trigger-happy fingers on America’s nuclear b...

  14. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2010-01-01

    Intended for a first course in modern physics, following an introductory course in physics with calculus, Modern Physics for Scientists and Engineers begins with a brief and focused account of the historical events leading to the formulation of modern quantum theory, while later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac Equation and Quantum Field Theory, and a robust pedagogy and ancillary package including an accompanying website with computer applets assists students in learning the essential material.

  15. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-01

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  16. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    Science.gov (United States)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  17. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-01

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks. PMID:27276380

  18. The scientist's education and a civic conscience.

    Science.gov (United States)

    Donald, Kelling J; Kovac, Jeffrey

    2013-09-01

    A civic science curriculum is advocated. We discuss practical mechanisms for (and highlight the possible benefits of) addressing the relationship between scientific knowledge and civic responsibility coextensively with rigorous scientific content. As a strategy, we suggest an in-course treatment of well known (and relevant) historical and contemporary controversies among scientists over science policy or the use of sciences. The scientific content of the course is used to understand the controversy and to inform the debate while allowing students to see the role of scientists in shaping public perceptions of science and the value of scientific inquiry, discoveries and technology in society. The examples of the activism of Linus Pauling, Alfred Nobel and Joseph Rotblat as scientists and engaged citizens are cited. We discuss the role of science professors in informing the social conscience of students and consider ways in which a treatment of the function of science in society may find, coherently, a meaningful space in a science curriculum at the college level. Strategies for helping students to recognize early the crucial contributions that science can make in informing public policy and global governance are discussed. PMID:23096773

  19. The scientist's education and a civic conscience.

    Science.gov (United States)

    Donald, Kelling J; Kovac, Jeffrey

    2013-09-01

    A civic science curriculum is advocated. We discuss practical mechanisms for (and highlight the possible benefits of) addressing the relationship between scientific knowledge and civic responsibility coextensively with rigorous scientific content. As a strategy, we suggest an in-course treatment of well known (and relevant) historical and contemporary controversies among scientists over science policy or the use of sciences. The scientific content of the course is used to understand the controversy and to inform the debate while allowing students to see the role of scientists in shaping public perceptions of science and the value of scientific inquiry, discoveries and technology in society. The examples of the activism of Linus Pauling, Alfred Nobel and Joseph Rotblat as scientists and engaged citizens are cited. We discuss the role of science professors in informing the social conscience of students and consider ways in which a treatment of the function of science in society may find, coherently, a meaningful space in a science curriculum at the college level. Strategies for helping students to recognize early the crucial contributions that science can make in informing public policy and global governance are discussed.

  20. The accidental data scientist big data applications and opportunities for librarians and information professionals

    CERN Document Server

    Affelt, Amy

    2015-01-01

    Harvard Business Review recently named the data scientist described as a high-ranking professional with the training and curiosity to make discoveries in the world of Big Data as "the sexiest job of the 21st century." Librarians and information professionals have always worked with data in order to meet the information needs of their constituents, thus "Big Data" is not a new concept for them though it is spawning new approaches along with a language all its own. InThe Accidental Data Scientist, Amy Affelt shows information professionals how to leverage their skills and training to master emerging tools, techniques, and vocabulary; create mission-critical Big Data research deliverables; and discover rewarding new career opportunities by embracing their inner Data Scientist.

  1. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    Science.gov (United States)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus

  2. Working with Scientists Who Interact with Public Audiences

    Science.gov (United States)

    Schatz, D.; Witzel, L.; Gurton, S.; McCann, S. E.

    2015-11-01

    President Obama has called for all STEM-based federal employees to share their expertise and passion with the public. Alan Leshner, Executive Director of AAAS, has advocated the same for all scientists. But what are the best ways to prepare scientists as effective science communicators? How do scientists find resources to become better science communicators? How do scientists connect with other scientists interested in education and outreach? This panel, with representatives from an informal science education institution, a university, and a professional association, offered insights to answer these questions from their experience of working with scientists engaged with public audiences.

  3. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    Science.gov (United States)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  4. Big Data: An Opportunity for Collaboration with Computer Scientists on Data-Driven Science

    Science.gov (United States)

    Baru, C.

    2014-12-01

    Big data technologies are evolving rapidly, driven by the need to manage ever increasing amounts of historical data; process relentless streams of human and machine-generated data; and integrate data of heterogeneous structure from extremely heterogeneous sources of information. Big data is inherently an application-driven problem. Developing the right technologies requires an understanding of the applications domain. Though, an intriguing aspect of this phenomenon is that the availability of the data itself enables new applications not previously conceived of! In this talk, we will discuss how the big data phenomenon creates an imperative for collaboration among domain scientists (in this case, geoscientists) and computer scientists. Domain scientists provide the application requirements as well as insights about the data involved, while computer scientists help assess whether problems can be solved with currently available technologies or require adaptaion of existing technologies and/or development of new technologies. The synergy can create vibrant collaborations potentially leading to new science insights as well as development of new data technologies and systems. The area of interface between geosciences and computer science, also referred to as geoinformatics is, we believe, a fertile area for interdisciplinary research.

  5. Scientists as Correspondents: Exploratorium "Ice Stories" for International Polar Year Project Educational Outreach

    Science.gov (United States)

    McGillivary, P. A.; Fall, K. R.; Miller, M.; Higdon, R.; Andrews, M.; O'Donnell, K.

    2008-12-01

    As part of the 2007-2009 International Polar Year (IPY), an educational outreach developed by the Exploratorium science museum of San Francisco builds on prior high latitude programs to: 1) create public awareness of IPY research; 2) increase public understanding of the scientific process; and, 3) stimulate a new relationship between scientists and outreach. Funded by the National Science Foundation, a key "Ice Stories" innovation is to facilitate "scientist correspondents" reporting directly to the public. To achieve this, scientists were furnished multimedia equipment and training to produce material for middle school students to adults. Scientists submitted blogs of text, images, and video from the field which were edited, standardized for format, and uploaded by Exploratorium staff, who coordinated website content and management. Online links to educational partner institutions and programs from prior Exploratorium high latitude programs will extend "Ice Stories" site visits beyond the @250,000 unique in-house users/year to more than 28 million webpage users/year overall. We review relevant technical issues, the variety of scientist participation, and what worked best and recommendations for similar efforts in the future as a legacy for the IPY.

  6. Scientist-Educator Partnerships: the Cornerstone of Astrophysics E/PO

    Science.gov (United States)

    Meinke, Bonnie K.; Smith, Denise A.; Lawton, Brandon; Eisenhamer, Bonnie; Jirdeh, Hussein

    2015-11-01

    For nearly two decades, NASA has partnered scientists and educators by embedding Education and Public Outreach (E/PO) programs and funding in its science missions and research activities. This enables scientist and educators to work side-by-side in translating cutting-edge NASA science and technology for classrooms, museums, and public venues.The Office of Public Outreach at the Space Telescope Science Institute (STScI) is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As home to both Hubble Space Telescope and the future James Webb Space Telescope, STScI leverages the expertise of its scientists to create partnerships with its collocated Education Team to translate cutting-edge NASA science into new and effective learning tools. In addition, STScI is home of the NASA Science Mission Directorate (SMD) Astrophysics Science E/PO Forum, which facilitates connections both within the SMD E/PO community and beyond to scientists and educators across all NASA Astrophysics missions. These collaborations strengthen partnerships, build best practices, and enhance coherence for NASA SMD-funded E/PO missions and programs.We will present examples of astronomers’ engagement in our E/PO efforts, such as NASA Science4Girls.

  7. Facebook and Edublogs and Twitter, Oh My! Using Social Media to Connect Scientists to the Public

    Science.gov (United States)

    Cobabe-Ammann, E.; Stockman, S. A.; Wood, E. L.

    2008-12-01

    Social media is changing the way that the public receives and responds to news and information. By integrating technology, social interaction and the construction of words and pictures, social media creates multidirectional communication pathways that allow people to directly interact with the purveyors of information. Social media forums (e.g., Edublogs, Facebook, Second Life, and Twitter) are increasingly used by scientists and science programs to directly connect with the public, eliminating the "filter" of the news media. This creates both opportunities and challenges for scientists wanting to make sure that accurate information is reaching their audience. Here we talk about how NASA missions and programs have been using social media as an outreach tool and how social media can be used to bring authentic science to the public.

  8. Data sharing by scientists: practices and perceptions.

    Directory of Open Access Journals (Sweden)

    Carol Tenopir

    Full Text Available BACKGROUND: Scientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers--data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results. METHODOLOGY/PRINCIPAL FINDINGS: A total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region. CONCLUSIONS/SIGNIFICANCE: Barriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE will both bring attention and resources to the issue and make it easier for scientists to

  9. Professional conduct of scientists during volcanic crises

    Science.gov (United States)

    ,; Newhall, Chris; Aramaki, Shigeo; Barberi, Franco; Blong, Russell; Calvache, Marta; Cheminee, Jean-Louis; Punongbayan, Raymundo; Siebe, Claus; Simkin, Tom; Sparks, Stephen; Tjetjep, Wimpy

    1999-01-01

    Stress during volcanic crises is high, and any friction between scientists can distract seriously from both humanitarian and scientific effort. Friction can arise, for example, if team members do not share all of their data, if differences in scientific interpretation erupt into public controversy, or if one scientist begins work on a prime research topic while a colleague with longer-standing investment is still busy with public safety work. Some problems arise within existing scientific teams; others are brought on by visiting scientists. Friction can also arise between volcanologists and public officials. Two general measures may avert or reduce friction: (a) National volcanologic surveys and other scientific groups that advise civil authorities in times of volcanic crisis should prepare, in advance of crises, a written plan that details crisis team policies, procedures, leadership and other roles of team members, and other matters pertinent to crisis conduct. A copy of this plan should be given to all current and prospective team members. (b) Each participant in a crisis team should examine his or her own actions and contribution to the crisis effort. A personal checklist is provided to aid this examination. Questions fall generally in two categories: Are my presence and actions for the public good? Are my words and actions collegial, i.e., courteous, respectful, and fair? Numerous specific solutions to common crisis problems are also offered. Among these suggestions are: (a) choose scientific team leaders primarily for their leadership skills; (b) speak publicly with a single scientific voice, especially when forecasts, warnings, or scientific disagreements are involved; (c) if you are a would-be visitor, inquire from the primary scientific team whether your help would be welcomed, and, in general, proceed only if the reply is genuinely positive; (d) in publications, personnel evaluations, and funding, reward rather than discourage teamwork. Models are

  10. Data sharing by scientists: Practices and perceptions

    Science.gov (United States)

    Tenopir, C.; Allard, S.; Douglass, K.; Aydinoglu, A.U.; Wu, L.; Read, E.; Manoff, M.; Frame, M.

    2011-01-01

    Background: Scientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers - data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results. Methodology/Principal Findings: A total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data) but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints) respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region. Conclusions/Significance: Barriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE) will both bring attention and resources to the issue and make it easier for scientists to apply sound

  11. Tools You Can Use! E/PO Resources for Scientists and Faculty to Use and Contribute To: EarthSpace and the NASA SMD Scientist Speaker’s Bureau

    Science.gov (United States)

    Buxner, Sanlyn; Shupla, C.; CoBabe-Ammann, E.; Dalton, H.; Shipp, S.

    2013-10-01

    The Planetary Science Education and Public Outreach (E/PO) Forum has helped to create two tools that are designed to help scientists and higher-education science faculty make stronger connections with their audiences: EarthSpace, an education clearinghouse for the undergraduate classroom; and NASA SMD Scientist Speaker’s Bureau, an online portal to help bring science - and scientists - to the public. Are you looking for Earth and space science higher education resources and materials? Come explore EarthSpace, a searchable database of undergraduate classroom materials for faculty teaching Earth and space sciences at both the introductory and upper division levels! In addition to classroom materials, EarthSpace provides news and information about educational research, best practices, and funding opportunities. All materials submitted to EarthSpace are peer reviewed, ensuring that the quality of the EarthSpace materials is high and also providing important feedback to authors. Your submission is a reviewed publication! Learn more, search for resources, join the listserv, sign up to review materials, and submit your own at http://www.lpi.usra.edu/earthspace. Join the new NASA SMD Scientist Speaker’s Bureau, an online portal to connect scientists interested in getting involved in E/PO projects (e.g., giving public talks, classroom visits, and virtual connections) with audiences! The Scientist Speaker’s Bureau helps educators and institutions connect with NASA scientists who are interested in giving presentations, based upon the topic, logistics, and audience. The information input into the database will be used to help match scientists (you!) with the requests being placed by educators. All Earth and space scientists funded by NASA - and/or engaged in active research using NASA’s science - are invited to become part of the Scientist Speaker’s Bureau. Submit your information into the short form at http://www.lpi.usra.edu/education/speaker.

  12. Galaxy Zoo: Motivations of Citizen Scientists

    CERN Document Server

    Raddick, M Jordan; Gay, Pamela L; Lintott, Chris J; Cardamone, Carie; Murray, Phil; Schawinski, Kevin; Szalay, Alexander S; Vandenberg, Jan

    2013-01-01

    Citizen science, in which volunteers work with professional scientists to conduct research, is expanding due to large online datasets. To plan projects, it is important to understand volunteers' motivations for participating. This paper analyzes results from an online survey of nearly 11,000 volunteers in Galaxy Zoo, an astronomy citizen science project. Results show that volunteers' primary motivation is a desire to contribute to scientific research. We encourage other citizen science projects to study the motivations of their volunteers, to see whether and how these results may be generalized to inform the field of citizen science.

  13. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  14. Mathematics for natural scientists II advanced methods

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.

  15. Essential Java for Scientists and Engineers

    CERN Document Server

    Hahn, Brian D; Malan, Katherine M

    2003-01-01

    Essential Java serves as an introduction to the programming language, Java, for scientists and engineers, and can also be used by experienced programmers wishing to learn Java as an additional language. The book focuses on how Java, and object-oriented programming, can be used to solve science and engineering problems. Many examples are included from a number of different scientific and engineering areas, as well as from business and everyday life. Pre-written packages of code are provided to help in such areas as input/output, matrix manipulation and scientific graphing. Java source code and

  16. Dealing with the Data Scientist Shortage

    Energy Technology Data Exchange (ETDEWEB)

    Ryan Hart; Troy Hiltbrand

    2014-06-01

    Few areas in the economy have generated as much attention as big data and advanced analytics in recent years due to its potential of revolutionizing the way that business function in the coming years. One of the major challenges that organizations face in implementing analytics that have the potential of providing them a competitive advantage in the market is that of finding the elusive data scientist needed to execute on big data strategy. This article addresses what some business are doing to bridge that gap between vision and reality.

  17. Practical Statistics for Environmental and Biological Scientists

    CERN Document Server

    Townend, John

    2012-01-01

    All students and researchers in environmental and biological sciences require statistical methods at some stage of their work. Many have a preconception that statistics are difficult and unpleasant and find that the textbooks available are difficult to understand. Practical Statistics for Environmental and Biological Scientists provides a concise, user-friendly, non-technical introduction to statistics. The book covers planning and designing an experiment, how to analyse and present data, and the limitations and assumptions of each statistical method. The text does not refer to a specific comp

  18. Scientists Explain Catalysis Neutralizing Car's Tail Gas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The neutralization of the car's tail gas is a problem of practical importance in the eyes of both experimental and theoretical physicists. Recently, a group of CAS scientists join hands with the Queen's University of Belfast in the UK to make advances in exploring the process of CO oxidation in a bid to reduce the air pollution caused by the car's exhaust gas. The work has been supported by the "National 973Program" and the CAS Foundation for Overseas Studies. On March 4,its result was published by the Internet edition of the Journal of the American Chemical Society.

  19. Web life: The Evil Mad Scientist Project

    Science.gov (United States)

    2009-04-01

    What is it? Have you ever tried to electrocute a hot dog? Wondered how to make a robot out of a toothbrush, watch battery and phone-pager motor? Seen a cantaloupe melon and thought, "Hmm, I could make this look like the Death Star from the original Star Wars films"? If you have not, but you would like to - preferably as soon as you can find a pager motor - then this is the site for you. The Evil Mad Scientist Project (EMSP) blog is packed full of ideas for unusual, silly and frequently physics-related creations that bring science out of the laboratory and into kitchens, backyards and tool sheds.

  20. Persistent, Global Identity for Scientists via ORCID

    CERN Document Server

    Evrard, August E; Holmquist, Jane; Damon, James; Dietrich, Dianne

    2015-01-01

    Scientists have an inherent interest in claiming their contributions to the scholarly record, but the fragmented state of identity management across the landscape of astronomy, physics, and other fields makes highlighting the contributions of any single individual a formidable and often frustratingly complex task. The problem is exacerbated by the expanding variety of academic research products and the growing footprints of large collaborations and interdisciplinary teams. In this essay, we outline the benefits of a unique scholarly identifier with persistent value on a global scale and we review astronomy and physics engagement with the Open Researcher and Contributor iD (ORCID) service as a solution.

  1. Scientists as facilitators: An objective technique to illustrate a zone of stakeholder consensus

    OpenAIRE

    Dankel, Dorothy Jane; Heino, Mikko; Dieckmann, Ulf

    2009-01-01

    The inherent conflicts between objectives in fisheries management (e.g. yield max-imization vs. conservation interests) often create problems for managers, scientists and stake-holders. However, some seemingly contrasting objectives may be compatible (e.g. economic yield and ecosystem preservation) and could promote stakeholder consensus. Formalized scientific facilitation through the framework we present here aids stakeholders in objective-setting and managers in the policy-making process. T...

  2. Whole-Tooth Regeneration: It Takes a Village of Scientists, Clinicians, and Patients

    OpenAIRE

    Snead, Malcolm L.

    2008-01-01

    A team of senior scientists was formed in 2006 to create a blueprint for the regeneration of whole human teeth along with all of the supporting structure of the dentition. The team included experts from diverse fields, each with a reputation for stellar accomplishment. Participants attacked the scientific issues of tooth regeneration but, more importantly, each agreed to work collaboratively with experts from other disciplines to form a learning organization. A commitment to learn from one an...

  3. Scientists Zero in On Cause of Rare, Disfiguring Skin Disorder

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_161115.html Scientists Zero In on Cause of Rare, Disfiguring Skin ... leaves those affected with red, scaly skin. Now, scientists say they may have pinpointed both the cause ...

  4. SCIENCE, SCIENTISTS, AND POLICY ADVOCACY - MAY 16, 2007

    Science.gov (United States)

    Effectively resolving many current ecological policy issues requires an array of scientific information. Sometimes scientific information is summarized for decision-makers by policy analysts or others, but often it comes directly from scientists. The ability of scientists (and sc...

  5. Scientists and Educators Working Together: Everyone Teaches, Everyone Learns

    Science.gov (United States)

    Lebofsky, Larry A.; Lebofsky, N. R.; McCarthy, D. W.; Canizo, T. L.; Schmitt, W.; Higgins, M. L.

    2013-10-01

    The primary author has been working with three of the authors (Lebofsky, McCarthy, and Cañizo) for nearly 25 years and Schmitt and Higgins for 17 and 8 years, respectively. This collaboration can be summed up with the phrase: “everyone teaches, everyone learns.” What NASA calls E/PO and educators call STEM/STEAM, requires a team effort. Exploration of the Solar System and beyond is a team effort, from research programs to space missions. The same is true for science education. Research scientists with a long-term involvement in science education have come together with science educators, classroom teachers, and informal science educators to create a powerful STEM education team. Scientists provide the science content and act as role models. Science educators provide the pedagogy and are the bridge between the scientists and the teacher. Classroom teachers and informal science educators bring their real-life experiences working in classrooms and in informal settings and can demonstrate scientists’ approaches to problem solving and make curriculum more engaging. Together, we provide activities that are grade-level appropriate, inquiry-based, tied to the literacy, math, and science standards, and connected directly to up-to-date science content and ongoing research. Our programs have included astronomy camps for youth and adults, professional development for teachers, in-school and after-school programs, family science events, and programs in libraries, science centers, and museums. What lessons have we learned? We are all professionals and can learn from each other. By engaging kids and having them participate in activities and ask questions, we can empower them to be the presenters for others, even their families. The activities highlighted on our poster represent programs and collaborations that date back more than two decades: Use models and engage the audience, do not just lecture. Connect the activity with ongoing science and get participants outside to

  6. Grzegorz Rozenberg: A Magical Scientist and Brother

    Science.gov (United States)

    Salomaa, Arto

    This is a personal description of Grzegorz Rozenberg. There is something magical in the fact that one man, Grzegorz, has been able to obtain so many and such good results in so numerous and diverse areas of science. This is why I have called him a “magical scientist.” He is also a very interdisciplinary scientist. In some sense this is due to his educational background. His first degree was in electronics engineering, the second a master’s in computer science, and the third a Ph.D. in mathematics. However, in the case of Grzegorz, the main drive for new disciplines comes from his tireless search for new challenges in basic science, rather than following known tracks. Starting with fundamental automata and language theory, he soon extended his realm to biologically motivated developmental languages, and further to concurrency, Petri nets, and graph grammars. During the past decade, his main focus has been on natural computing, a term coined by Grzegorz himself to mean either computing taking place in nature or human-designed computing inspired by nature.

  7. Kristian Birkeland, The First Space Scientist

    Science.gov (United States)

    Egeland, A.; Burke, W. J.

    2005-05-01

    At the beginning of the 20th century Kristian Birkeland (1867-1917), a Norwegian scientist of insatiable curiosity, addressed questions that had vexed European scientists for centuries. Why do the northern lights appear overhead when the Earth's magnetic field is disturbed? How are magnetic storms connected to disturbances on the Sun? To answer these questions Birkeland interpreted his advance laboratory simulations and daring campaigns in the Arctic wilderness in the light of Maxwell's newly discovered laws of electricity and magnetism. Birkeland's ideas were dismissed for decades, only to be vindicated when satellites could fly above the Earth's atmosphere. Faced with the depleting stocks of Chilean saltpeter and the consequent prospect of mass starvation, Birkeland showed his practical side, inventing the first industrial scale method to extract nitrogen-based fertilizers from the air. Norsk Hydro, one of modern Norway's largest industries, stands as a living tribute to his genius. Hoping to demonstrate what we now call the solar wind, Birkeland moved to Egypt in 1913. Isolated from his friends by the Great War, Birkeland yearned to celebrate his 50th birthday in Norway. The only safe passage home, via the Far East, brought him to Tokyo where in the late spring of 1917 he passed away. Link: http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-10100-22-39144987-0,00.html?changeHeader=true

  8. On the social responsibility of scientists.

    Science.gov (United States)

    Beckwith, J

    2001-01-01

    The author outlines the history of genetics in the United States, looking at all the social and political implications of it, too often underestimated by the geneticists themselves. In contrast to physicists, who were forced to recognize the consequences of their role in the development of the atomic bomb and who openly carried a historical burden from their past, geneticists had no historical memory and were essentially ignorant of their own "atomic" history: the Eugenics movement in the first half of 20th century, which significantly affected social policy in the United State and Europe. Few geneticists, in fact, until recently, were aware of the Eugenics movement itself. It was only with the extreme misuse of genetics by German scientists and the Nazi Government that some English and US geneticists began to speak out more openly. The author sees in this lack of awareness the major responsibility of geneticists for the misrepresentation and misuse of science and also calls for a better interaction between scientists and those who work in other social fields; a communication gap between the two cultures holds dangers for us all. PMID:11758276

  9. The Earth We are Creating

    OpenAIRE

    Moriarty, Patrick; Honnery, Damon

    2015-01-01

    Abstract: Over the past decade, a number of Earth System scientists have advocated that we need a new geological epoch, the Anthropocene, to describe the changes to Earth that have occurred since the 1800s. The preceding epoch, the Holocene (the period from the end of Earth’s last glaciation about 12 millennia ago), has offered an unusually stable physical environment for human civilisations. In the new Anthropocene epoch, however, we can no longer count on this climate stability which we hav...

  10. The Earth We are Creating

    OpenAIRE

    Patrick Moriarty; Damon Honnery

    2014-01-01

    Over the past decade, a number of Earth System scientists have advocated that we need a new geological epoch, the Anthropocene, to describe the changes to Earth that have occurred since the 1800s. The preceding epoch, the Holocene (the period from the end of Earth's last glaciation about 12 millennia ago), has offered an unusually stable physical environment for human civilisations. In the new Anthropocene epoch, however, we can no longer count on this climate stability which we have long tak...

  11. Copied citations create renowned papers?

    OpenAIRE

    Simkin, M. V.; Roychowdhury, V. P.

    2003-01-01

    Recently we discovered (cond-mat/0212043) that the majority of scientific citations are copied from the lists of references used in other papers. Here we show that a model, in which a scientist picks three random papers, cites them,and also copies a quarter of their references accounts quantitatively for empirically observed citation distribution. Simple mathematical probability, not genius, can explain why some papers are cited a lot more than the other.

  12. Investigation of the Secondary School Students' Images of Scientists

    Science.gov (United States)

    Akgün, Abuzer

    2016-01-01

    The overall purpose of this study is to explore secondary school students' images of scientists. In addition to this comprehensive purpose, it is also investigated that if these students' current images of scientists and those in which they see themselves as a scientist in the near future are consistent or not. The study was designed in line with…

  13. 7 CFR 91.18 - Financial interest of a scientist.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Financial interest of a scientist. 91.18 Section 91.18... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist shall perform a laboratory analysis on any product in which he is directly or indirectly...

  14. Pathways for impact: scientists' different perspectives on agricultural innovation

    NARCIS (Netherlands)

    Röling, N.G.

    2009-01-01

    This paper takes the viewpoint of a social scientist and looks at agricultural scientists' pathways for science impact. Awareness of these pathways is increasingly becoming part and parcel of the professionalism of the agricultural scientist, now that the pressure is on to mobilize smallholders and

  15. Creating

    DEFF Research Database (Denmark)

    Andersen, Kristina Vaarst; Lorenzen, Mark; Laursen, Stine

    2012-01-01

    This unique book reveals the procedural aspects of knowledge-based urban planning, development and assessment. Concentrating on major knowledge city building processes, and providing state-of-the-art experiences and perspectives, this important compendium explores innovative models, approaches...

  16. Creating Our Own Online Community

    Directory of Open Access Journals (Sweden)

    Mihaela TUTUNEA

    2006-01-01

    Full Text Available Creating our own online community is easy to do, by welcoming those who have an active presence online; first of all, we must have a well developed strategy of our own "empire", starting from the idea of creating the final benefit for our cyber-consumers.

  17. Engaging Students and Scientists through ROV Competitions

    Science.gov (United States)

    Zande, J.

    2004-12-01

    The Marine Advanced Technology Education (MATE) Center's network of regional and national remotely operated vehicle (ROV) competitions for students provide a unique and exciting way for the scientific community to get involved in education and outreach and meet broader impact requirements. From Hawaii to New England, MATE's ROV competitions also facilitate collaborations among the scientific community, professional societies, government agencies, business and industry, and public aquaria. Since 2001, the MATE Center and organizations such as the Marine Technology Society (MTS), NOAA's Office of Ocean Exploration, and the Birch Aquarium at Scripps Institution of Oceanography, among others, have challenged 1,000+ students to design and build ROVs for underwater tasks based on science and exploration missions taking place in the real world. From the Monterey Bay Aquarium Research Institute to Woods Hole Oceanographic Institution (WHOI), more than 60 scientists, engineers, and their organizations have supported the students participating in these events and, in doing so, have contributed to E&O and increased the awareness and impact of their work. What does it take to get involved with this E&O effort? That depends on the time, technical expertise, facilities, equipment, building materials, and/or funds that you can afford to contribute. Examples of how scientists and their institutions have and continue to support MATE's ROV competitions include: -Serving as technical advisors, judges, and competition-day technical assistants. -Sharing time and technical expertise as mentors. -Providing access to facilities and equipment. -Donating building materials and supplies. -Hosting the event at your institution. In addition to helping you to become involved in E&O and meet broader impact requirements, benefits to you include: -Exposing yourself to technologies that could support your science. -Getting ideas for creative and inexpensive solutions to challenges that you may face

  18. Preparing Scientists to be Community Partners

    Science.gov (United States)

    Pandya, R. E.

    2012-12-01

    Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential

  19. Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement

    Science.gov (United States)

    Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  20. From Science to Business: Preparing Female Scientists and Engineers for Successful Transitions into Entrepreneurship--Summary of a Workshop

    Science.gov (United States)

    Didion, Catherine Jay; Guenther, Rita S.; Gunderson, Victoria

    2012-01-01

    Scientists, engineers, and medical professionals play a vital role in building the 21st- century science and technology enterprises that will create solutions and jobs critical to solving the large, complex, and interdisciplinary problems faced by society: problems in energy, sustainability, the environment, water, food, disease, and healthcare.…

  1. The Maturation of a Scientist: An Autobiography.

    Science.gov (United States)

    Roizman, Bernard

    2015-11-01

    I was shaped by World War II, years of near starvation as a war refugee, postwar chaos, life in several countries, and relative affluence in later life. The truth is that as I was growing up I wanted to be a writer. My aspirations came to an end when, in order to speed up my graduation from college, I took courses in microbiology. It was my second love at first sight-that of my wife preceded it. I view science as an opportunity to discover the designs in the mosaics of life. What initiates my search of discovery is an observation that makes no sense unless there exists a novel design. Once the design is revealed there is little interest in filling all the gaps. I was fortunate to understand that what lasts are not the scientific reports but rather the generations of scientists whose education I may have influenced. PMID:26958904

  2. Scientists assess impact of Indonesia fires

    Science.gov (United States)

    Showstack, Randy

    The fires burning in Indonesia over the past several months are setting aflame the biomass and wildlife habitat of the tropical forests, spreading a dangerously unhealthy haze across the populous country and nearby nations in southeast Asia, causing transportation hazards, and sending plumes of smoke up into the troposphere.Most of the fires have been set—by big landowners, commercial loggers, and small farmers—in attempts to clear and cultivate the land, as people have done in the past. But this year a drought induced by El Niño limited the rainfall that could help extinguish the flames and wash away the smoke and haze. In addition, some scientists say that smoke could even delay the monsoon, which usually arrives in early November.

  3. Strategic career planning for physician-scientists.

    Science.gov (United States)

    Shimaoka, Motomu

    2015-05-01

    Building a successful professional career in the physician-scientist realm is rewarding but challenging, especially in the dynamic and competitive environment of today's modern society. This educational review aims to provide readers with five important career development lessons drawn from the business and social science literatures. Lessons 1-3 describe career strategy, with a focus on promoting one's strengths while minimizing fixing one's weaknesses (Lesson 1); effective time management in the pursuit of long-term goals (Lesson 2); and the intellectual flexibility to abandon/modify previously made decisions while embracing emerging opportunities (Lesson 3). Lesson 4 explains how to maximize the alternative benefits of English-language fluency (i.e., functions such as signaling and cognition-enhancing capabilities). Finally, Lesson 5 discusses how to enjoy happiness and stay motivated in a harsh, zero-sum game society.

  4. Research Education in Training of Scientists

    Directory of Open Access Journals (Sweden)

    Ali Rıza ERDEM

    2012-01-01

    Full Text Available Research refers to the application of scientific analysis method in a systematic and careful way. In this respect, research education aims the acquisition of ‘technical proficiency in research’ along with ‘scientific att itudes and treatments’. As a result, research invariably underlines the knowledge and skill for the introduction of technical proficiency and scientific analysis method in a biçimsel, systematic and elaborate way. As for scientific att itudes and treatments, they are regarded as instinctive thoughts and approaches which ease problem solving, scientific productivity, as well as converting research technical proficiency into practise. In that way, the teaching staff who will undertake the responsibility for training of scientists are supposed to perform eff ectively research education in three major realms: (1 Education, and Training (2 Post- Graduate Th esis Guidance (3 Being a Scientific Jury Member/Journal Refree.

  5. Moments in the Life of a Scientist

    Science.gov (United States)

    Rossi, Bruno

    1990-08-01

    Bruno Rossi has long been an influential figure in diverse areas of physics and in this volume he presents a fascinating account of his life and work as an experimental physicist. He discusses his scientific contributions, from experiments that played a major role in establishing the nature and properties of cosmic rays to those establishing the existence of a solar wind and others that laid the foundations of X-ray astronomy. Rossi provides close insight into his actual experiences as a scientist and the motivations that gave direction to his research, and he recounts the beginning of very significant stages in high energy physics and space research. He writes evocatively of the many places where he worked--of Florence, Arcetri, Padua, and Venice, of the mountains of Colorado and the deserts of New Mexico. His narrative also provides insight into the life of a Jewish family in fascist Italy. The text is accompanied by photographs taken throughout Rossi's career.

  6. Linear functional analysis for scientists and engineers

    CERN Document Server

    Limaye, Balmohan V

    2016-01-01

    This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, c...

  7. Mathematics for natural scientists fundamentals and basics

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book, the first in a two part series, covers a course of mathematics tailored specifically for physics, engineering and chemistry students at the undergraduate level. It is unique in that it begins with logical concepts of mathematics first encountered at A-level and covers them in thorough detail, filling in the gaps in students' knowledge and reasoning. Then the book aids the leap between A-level and university-level mathematics, with complete proofs provided throughout and all complex mathematical concepts and techniques presented in a clear and transparent manner. Numerous examples and problems (with answers) are given for each section and, where appropriate, mathematical concepts are illustrated in a physics context. This text gives an invaluable foundation to students and a comprehensive aid to lecturers. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.

  8. Cell scientist to watch--Melina Schuh.

    Science.gov (United States)

    Schuh, Melina; Bobrowska, Anna

    2016-01-01

    Melina Schuh received her diploma degree in biochemistry from the University of Bayreuth, Germany, where she completed her Diploma thesis with Stefan Heidmann and Christian Lehner. She went on to do her PhD with Jan Ellenberg at the European Molecular Biology Laboratory in Heidelberg, Germany. In 2009, after a bridging postdoc with Jan, Melina started her own group at the MRC Laboratory of Molecular Biology in Cambridge, UK. Since January 2016, she is a Director at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, and will establish a new department focussing on meiosis. She is an EMBO Young Investigator and a recipient of the 2014 Lister Institute Research Prize, the 2014 Biochemical Society Early Career Award and the 2015 John Kendrew Young Scientist Award. Her lab is studying meiosis in mammalian oocytes, including human oocytes.

  9. Young Engineers and Scientists: A Mentorship Program

    Science.gov (United States)

    Boice, D. C.; Hooper, J.

    1996-09-01

    Southwest Research Institute (SwRI) hosts the Young Engineers and Scientists (YES) mentorship program instituted in 1993 in applied physical sciences, information sciences, and engineering for high school juniors and seniors living in San Antonio. The aim of YES is to increase the number of students, including females and minorities, seeking careers in these fields and to enhance the participants' chances of success in achieving their career goals. The program is divided into two parts: an intensive three-week group training session held at SwRI in the summer where students are paired with SwRI staff members on a one-to-one basis, and individual research projects completed during the academic year in which students earn credit at their high school. Several students have completed or are currently working on projects in astronomy. A brief description of the YES program is given with examples from the summer workshop and independent student projects.

  10. Business planning for scientists and engineers

    Energy Technology Data Exchange (ETDEWEB)

    Servo, J.C.; Hauler, P.D.

    1992-03-01

    Business Planning for Scientists and Engineers is a combination text/workbook intended for use by individuals and firms having received Phase II SBIR funding (Small Business Innovation Research). It is used to best advantage in combination with other aspects of the Commercialization Assistance Project developed by Dawnbreaker for the US Department of Energy. Although there are many books on the market which indicate the desired contents of a business plan, there are none which clearly indicate how to find the needed information. This book focuses on the how of business planning: how to find the needed information; how to keep yourself honest about the market potential; how to develop the plan; how to sell and use the plan.

  11. The challenges for scientists in avoiding plagiarism.

    Science.gov (United States)

    Fisher, E R; Partin, K M

    2014-01-01

    Although it might seem to be a simple task for scientists to avoid plagiarism and thereby an allegation of research misconduct, assessment of trainees in the Responsible Conduct of Research and recent findings from the National Science Foundation Office of Inspector General regarding plagiarism suggests otherwise. Our experiences at a land-grant academic institution in assisting researchers in avoiding plagiarism are described. We provide evidence from a university-wide multi-disciplinary course that understanding how to avoid plagiarism in scientific writing is more difficult than it might appear, and that a failure to learn the rules of appropriate citation may cause dire consequences. We suggest that new strategies to provide training in avoiding plagiarism are required.

  12. Climate Change: On Scientists and Advocacy

    Science.gov (United States)

    Schmidt, Gavin A.

    2014-01-01

    Last year, I asked a crowd of a few hundred geoscientists from around the world what positions related to climate science and policy they would be comfortable publicly advocating. I presented a list of recommendations that included increased research funding, greater resources for education, and specific emission reduction technologies. In almost every case, a majority of the audience felt comfortable arguing for them. The only clear exceptions were related to geo-engineering research and nuclear power. I had queried the researchers because the relationship between science and advocacy is marked by many assumptions and little clarity. This despite the fact that the basic question of how scientists can be responsible advocates on issues related to their expertise has been discussed for decades most notably in the case of climate change by the late Stephen Schneider.

  13. Boscovich: scientist and man of letters

    Science.gov (United States)

    Proverbio, E.

    Ruggiero Giuseppe Boscovich (1711-1781) is known as one of the most important scientists of the second half of XVIII century, but he was active also as a man of letters, especially through an abundant production of poems in Latin verse. We try to interpret these two, apparently antinomic, aspects of his character in the framework of the culture of his epoch, in which science and literary productions were not considered as two separate or opposite fields, but only two different aspects of human knowledge. In particular we review the field of his poetic production in which this fundamental unity of knowledge is most evident, namely his poems with didactic-scientific subjects, which are examples of high-level popularization of the latest progresses in science (in particular astronomy and Newtonian physics) by means of elegant Latin verse.

  14. The challenges for scientists in avoiding plagiarism.

    Science.gov (United States)

    Fisher, E R; Partin, K M

    2014-01-01

    Although it might seem to be a simple task for scientists to avoid plagiarism and thereby an allegation of research misconduct, assessment of trainees in the Responsible Conduct of Research and recent findings from the National Science Foundation Office of Inspector General regarding plagiarism suggests otherwise. Our experiences at a land-grant academic institution in assisting researchers in avoiding plagiarism are described. We provide evidence from a university-wide multi-disciplinary course that understanding how to avoid plagiarism in scientific writing is more difficult than it might appear, and that a failure to learn the rules of appropriate citation may cause dire consequences. We suggest that new strategies to provide training in avoiding plagiarism are required. PMID:24785995

  15. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2015-01-01

    The second edition of Modern Physics for Scientists and Engineers is intended for a first course in modern physics. Beginning with a brief and focused account of the historical events leading to the formulation of modern quantum theory, later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac equation and quantum field theory, as well as a robust pedagogy and ancillary package, including an accompanying website with computer applets, assist students in learning the essential material. The applets provide a realistic description of the energy levels and wave functions of electrons in atoms and crystals. The Hartree-Fock and ABINIT applets are valuable tools for studying the properties of atoms and semiconductors.

  16. Quantum Genetic Algorithms for Computer Scientists

    Directory of Open Access Journals (Sweden)

    Rafael Lahoz-Beltra

    2016-10-01

    Full Text Available Genetic algorithms (GAs are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data has led to a new class of GAs known as “Quantum Genetic Algorithms” (QGAs. In this review, we present a discussion, future potential, pros and cons of this new class of GAs. The review will be oriented towards computer scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.

  17. COGNITION IN ROBOTS AND ROBOT SCIENTISTS

    Directory of Open Access Journals (Sweden)

    Soundrarajan.B

    2012-07-01

    Full Text Available The ability of intuition and self- learning in humans is responsible for developing their intelligence, reasoning and socialising. All this human characteristics can enable the robots to evolve into humans. In this context i explain that robots with developing intelligence can solve the problems of various scientific phenomenon such as black-hole, time travels and even in robotics the problems in sensors and actuators which do not impart human level DOF and movement thus making them do everything we can do. Imagine a robot doing yoga, karate, even a ballet all by itself without the rusty old controls and commands. Researchers have come with all kinds of robots and best of all social robots for social interaction so we have come with all kinds of robots what’s next? Robot scientists and researchers! Why not? It is highly evident that robot can think in new dimensions to solve issues.

  18. Developing School-Scientist Partnerships: Lessons for Scientists from Forests-of-Life

    Science.gov (United States)

    Falloon, Garry; Trewern, Ann

    2013-02-01

    The concept of partnerships between schools and practicing scientists came to prominence in the United States in the mid 1980s. The call by government for greater private sector involvement in education to raise standards in science achievement saw a variety of programmes developed, ranging from short-term sponsorships through to longer-term, project-based interactions. Recently, school-scientist partnerships (SSPs) have been rekindled as a means of assisting schools to motivate and inspire students in science, improve levels of teachers' science knowledge, and increase awareness of the type and variety of career opportunities available in the sciences (Rennie and Howitt, 2009). This article summarises research that used an interpretive case study method to examine the performance of a two-year SSP pilot between a government-owned science research institute, and 200 students from two Intermediate (years 7 and 8) schools in New Zealand. It explored the experiences of scientists involved in the partnerships, and revealed difficulties in bridging the void that existed between the outcomes-driven, commercially-focused world of research scientists, and the more process-oriented, tightly structured, and conservative world of teachers and schools. Findings highlight the pragmatic realities of establishing partnerships, from the perspective of scientists. These include acute awareness of the nature of school systems, conventions and environments; the science, technological and pedagogical knowledge of teachers; teacher workload issues and pressures, curriculum priorities and access to science resources. The article identifies areas where time and effort should be invested to ensure successful partnership outcomes.

  19. An example of woman scientist in France

    Science.gov (United States)

    Cazenave, A.

    2002-12-01

    Although the presence of women in sciences has been increasing in the past few decades in Europe, it remains incredibly low at the top levels. Recent statistics from the European Commission indicate that now women represent 50 per cent of first degree students in many countries. However, the proportion of women at each stage of the scientific career decreases almost linearly, reaching less than 10 per cent at the highest level jobs. From my own experience, I don't think that this results from sexism nor discrimination. Rather, I think that this is a result of complex cultural factors making women subconsciously persuaded that top level jobs are destined to male scientists only. Many women scientists drop the idea of playing a role at high-level research, considering it is a way of exerting power (a matter reserved to men). Others give up the possibility of combining childcare and high level commitments in research. And too many (married women) still find only natural to sacrifice their own scientific ambitions to the benefit of their spouse's career. In this poster, I briefly present my personal experience. I chose to prioritize scientific productivity and expertise versus hierarchical responsibilities. Besides I tried to keep a satisfactory balance between family demand and research involvement. This was indeed facilitated by the French system, which provides substantial support to women's work (nurseries, recreation centers during school holidays, etc.). To my point of view, the most promising way of increasing the number of women at top levels in research is through education and mentality evolution

  20. Using Citizen Scientists to Gather, Analyze, and Disseminate Information About Neighborhood Features That Affect Active Living.

    Science.gov (United States)

    Winter, Sandra J; Goldman Rosas, Lisa; Padilla Romero, Priscilla; Sheats, Jylana L; Buman, Matthew P; Baker, Cathleen; King, Abby C

    2016-10-01

    Many Latinos are insufficiently active, partly due to neighborhoods with little environmental support for physical activity. Multi-level approaches are needed to create health-promoting neighborhoods in disadvantaged communities. Participant "citizen scientists" were adolescent (n = 10, mean age = 12.8 ± 0.6 years) and older adult (n = 10, mean age = 71.3 ± 6.5 years), low income Latinos in North Fair Oaks, California. Citizen scientists conducted environmental assessments to document perceived barriers to active living using the Stanford Healthy Neighborhood Discovery Tool, which records GPS-tracked walking routes, photographs, audio narratives, and survey responses. Using a community-engaged approach, citizen scientists subsequently attended a community meeting to engage in advocacy training, review assessment data, prioritize issues to address and brainstorm potential solutions and partners. Citizen scientists each conducted a neighborhood environmental assessment and recorded 366 photographs and audio narratives. Adolescents (n = 4), older adults (n = 7) and community members (n = 4) collectively identified reducing trash and improving personal safety and sidewalk quality as the priority issues to address. Three adolescent and four older adult citizen scientists volunteered to present study findings to key stakeholders. This study demonstrated that with minimal training, low-income, Latino adolescent and older adult citizen scientists can: (1) use innovative technology to gather information about features of their neighborhood environment that influence active living, (2) analyze their information and identify potential solutions, and (3) engage with stakeholders to advocate for the development of healthier neighborhoods.

  1. Partnering With Scientists To Increase the Visibility and Use of Published Global Climate Change Data

    Science.gov (United States)

    Schmidt, L. J.; Scott, M.; Geiger-Wooten, N.; McCaffrey, M. S.; Anderson, D. M.; Eakin, C. M.

    2003-12-01

    Scientific journal articles are notoriously difficult for non-scientists or scientists outside a specialty to comprehend. Yet in societally relevant fields such as global climate change, there is an urgent need to make the published results of scientific research more accessible and useable to a broad audience. NOAA's World Data for Paleoclimatology attempts to meet this need using the Internet to distribute raw data and information products from scientific publications. The Data Center creates "What's New" pages highlighting data from recent publications, along with descriptions and ancillary information such as photographs. The Data Center also authors a "Climate TimeLine", online slide sets and photo gallery, and "Paleo Perspectives" web pages that describe the broader significance of scientific research, and how the data are used to improve our understanding of global warming, drought, and climate change. With the goal to inform and engage, the Climate Time Line provides interactive activities, and information that can be integrated into the classroom. The approach benefits a diverse audience by demystifying climate science and making it more accessible, and benefits scientists by increasing the visibility and use of scientists' published data. The success of the approach can be seen in web site user statistics and comments, and numerous awards for providing valuable information via the Internet. To solve the challenge of simplifying complex scientific problems while maintaining the accuracy and integrity of the scientific information, the World Data Center works closely with scientists who contribute the data. Underlying the effort are the hundreds of scientists who have contributed their data to the World Data Center, and reviewed and edited the online extensions of their research.

  2. Using Citizen Scientists to Gather, Analyze, and Disseminate Information About Neighborhood Features That Affect Active Living.

    Science.gov (United States)

    Winter, Sandra J; Goldman Rosas, Lisa; Padilla Romero, Priscilla; Sheats, Jylana L; Buman, Matthew P; Baker, Cathleen; King, Abby C

    2016-10-01

    Many Latinos are insufficiently active, partly due to neighborhoods with little environmental support for physical activity. Multi-level approaches are needed to create health-promoting neighborhoods in disadvantaged communities. Participant "citizen scientists" were adolescent (n = 10, mean age = 12.8 ± 0.6 years) and older adult (n = 10, mean age = 71.3 ± 6.5 years), low income Latinos in North Fair Oaks, California. Citizen scientists conducted environmental assessments to document perceived barriers to active living using the Stanford Healthy Neighborhood Discovery Tool, which records GPS-tracked walking routes, photographs, audio narratives, and survey responses. Using a community-engaged approach, citizen scientists subsequently attended a community meeting to engage in advocacy training, review assessment data, prioritize issues to address and brainstorm potential solutions and partners. Citizen scientists each conducted a neighborhood environmental assessment and recorded 366 photographs and audio narratives. Adolescents (n = 4), older adults (n = 7) and community members (n = 4) collectively identified reducing trash and improving personal safety and sidewalk quality as the priority issues to address. Three adolescent and four older adult citizen scientists volunteered to present study findings to key stakeholders. This study demonstrated that with minimal training, low-income, Latino adolescent and older adult citizen scientists can: (1) use innovative technology to gather information about features of their neighborhood environment that influence active living, (2) analyze their information and identify potential solutions, and (3) engage with stakeholders to advocate for the development of healthier neighborhoods. PMID:26184398

  3. Alaska Case Study: Scientists Venturing Into Field with Journalists Improves Accuracy

    Science.gov (United States)

    Ekwurzel, B.; Detjen, J.; Hayes, R.; Nurnberger, L.; Pavangadkar, A.; Poulson, D.

    2008-12-01

    Issues such as climate change, stem cell research, public health vaccination, etc., can be fraught with public misunderstanding, myths, as well as deliberate distortions of the fundamental science. Journalists are adept at creating print, radio, and video content that can be both compelling and informative to the public. Yet most scientists have little time or training to devote to developing media content for the public and spend little time with journalists who cover science stories. We conducted a case study to examine whether the time and funding invested in exposing journalists to scientists in the field over several days would improve accuracy of media stories about complex scientific topics. Twelve journalists were selected from the 70 who applied for a four-day environmental journalism fellowship in Alaska. The final group achieved the goal of a broad geographic spectrum of the media outlets (small regional to large national organizations), medium (print, radio, online), and experience (early career to senior producers). Reporters met with a diverse group of scientists. The lessons learned and successful techniques will be presented. Initial results demonstrate that stories were highly accurate and rich with audio or visual content for lay audiences. The journalists have also maintained contact with the scientists, asking for leads on emerging stories and seeking new experts that can assist in their reporting. Science-based institutions should devote more funding to foster direct journalist-scientist interactions in the lab and field. These positive goals can be achieved: (1) more accurate dissemination of science information to the public; (2) a broader portion of the scientific community will become a resource to journalists instead of the same eloquent few in the community; (3) scientists will appreciate the skill and pressures of those who survive the media downsizing and provide media savvy content; and (4) the public may incorporate science evidence

  4. Some Scientists Think There's a Melon inside

    Science.gov (United States)

    Primary Science Review, 2007

    2007-01-01

    The Ancient Greeks saw the world as earth, air, fire and water. This article presents some children's ideas about what makes up the Earth. Children were asked to share what they thought the Earth was made of, how old it is, how long it took to create, and what is inside it. The answers indicate that they often have emerging though vague ideas…

  5. Creating R Packages: A Tutorial

    OpenAIRE

    Leisch, Friedrich

    2008-01-01

    This tutorial gives a practical introduction to creating R packages. We discuss how object oriented programming and S formulas can be used to give R code the usual look and feel, how to start a package from a collection of R functions, and how to test the code once the package has been created. As running example we use functions for standard linear regression analysis which are developed from scratch.

  6. All Men are Created Equal

    Institute of Scientific and Technical Information of China (English)

    黄婉欣

    2015-01-01

    <正>I have a dream that one day this nation will rise up and live out the true meaning of its creed:"We hold these truths to be self-evident,that all men are created equal."This is an abstract from Martin Luther King’s famous speech I Have a Dream,which we all learnt in middle school."All men are created equal",he said,and he devoted his

  7. Creating a Universe, a Conceptual Model

    Directory of Open Access Journals (Sweden)

    James R. Johnson

    2016-10-01

    Full Text Available Space is something. Space inherently contains laws of nature: universal rules (mathematics, space dimensions, types of forces, types of fields, and particle species, laws (relativity, quantum mechanics, thermodynamics, and electromagnetism and symmetries (Lorentz, Gauge, and symmetry breaking. We have significant knowledge about these laws of nature because all our scientific theories assume their presence. Their existence is critical for developing either a unique theory of our universe or more speculative multiverse theories. Scientists generally ignore the laws of nature because they “are what they are” and because visualizing different laws of nature challenges the imagination. This article defines a conceptual model separating space (laws of nature from the universe’s energy source (initial conditions and expansion (big bang. By considering the ramifications of changing the laws of nature, initial condition parameters, and two variables in the big bang theory, the model demonstrates that traditional fine tuning is not the whole story when creating a universe. Supporting the model, space and “nothing” are related to the laws of nature, mathematics and multiverse possibilities. Speculation on the beginning of time completes the model.

  8. The revolution in couple therapy: a practitioner-scientist perspective.

    Science.gov (United States)

    Johnson, Susan M

    2003-07-01

    This article offers an overview of the expanding field of couple therapy, focusing on what the author considers to be new and even revolutionary in this field. In terms of outcome research, this article suggests that differential treatment effects are discernable. Emotionally focused therapy (EFT) appears to demonstrate the best outcomes at present. The most significant differences between research studies and everyday clinical practice may be the levels of therapist supervision rather than the essential nature of clients. The manualization of treatment is also viewed positively in this review. Areas of growth are the mapping of the territory of distress, understanding the process of change, couple therapy as an effective intervention for "individual" disorders, and the integration into couple therapy of clinical research, such as the research on gender and responses in therapy, and research on adult attachment. Practitioner-scientists can contribute to this evolving field by systematic observation and by reminding researchers of the need for clinical relevance. Couple therapy is now integrating description, prediction and explanation. As a result, theory, practice and systematic investigation are beginning to create a coherent whole.

  9. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms.

  10. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  11. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  12. CMS Create #2 | 3-4 October | Register now!

    CERN Multimedia

    2016-01-01

    CMS Create brings together CERN members and students from IPAC Design Genève (see here). The goal is to build a prototype exhibit illustrating what CMS does and how it does it. The exhibit will introduce the world of a particle physics detector to the general public, and to younger visitors in particular.    CMS Create, hosted by IdeaSquare, was first held in November 2015. There were 4 highly diverse teams made of participants from many educational backgrounds and from 15 nationalities. 36% of these were women; a figure we hope will grow this year. The 25 participants were CMS physicists, computer scientists, engineers, other CMS collaborators and IPAC students. The 2015 winning exhibit is now permanently installed in the visitor reception centre at CMS Point 5, which was visited by 20.600 visitors during 2015. Are you creative and motivated to share your ideas?  Take part in CMS Create #2, meet with scientists and designers from all over the world and explain to CER...

  13. Activities of Asian Students and Young Scientists on Photogrammetry and Remote Sensing

    Science.gov (United States)

    Miyazaki, H.; Lo, C.-Y.; Cho, K.

    2012-07-01

    This paper reports a history and future prospects of the activities by Asian students and young scientists on photogrammetry and remote sensing. For future growths of academic fields, active communications among students and young scientists are indispensable. In some countries and regions in Asia, local communities are already established by youths and playing important roles of building networks among various schools and institutes. The networks are expected to evolve innovative cooperations after the youths achieve their professions. Although local communities are getting solid growth, Asian youths had had little opportunities to make contacts with youths of other countries and regions. To promote youth activities among Asian regions, in 2007, Asian Association on Remote Sensing (AARS) started a series of programs involving students and young scientists within the annual conferences, the Asian Conference on Remote Sensing (ACRS). The programs have provided opportunities and motivations to create networks among students and young scientists. As a result of the achievements, the number of youth interested and involved in the programs is on growing. In addition, through the events held in Asian region by ISPRS Student Consortium (ISPRSSC) and WG VI/5, the Asian youths have built friendly partnership with ISPRSSC. Currently, many Asian youth are keeping contacts with ACRS friends via internet even when they are away from ACRS. To keep and expand the network, they are planning to establish an Asian youth organization on remote sensing. This paper describes about the proposals and future prospects on the Asian youth organization.

  14. Communicating uncertainty to agricultural scientists and professionals

    Science.gov (United States)

    Milne, Alice; Glendining, Margaret; Perryman, Sarah; Gordon, Taylor; Whitmore, Andrew

    2016-04-01

    Models of agricultural systems often aim to predict the impacts of weather and soil nutrients on crop yields and the environment. These models are used to inform scientists, policy makers and farmers on the likely effects of management. For example, a farmer might be interested in the effect of nitrogen fertilizer on his yield, whilst policy makers might be concerned with the possible polluting effects of fertilizer. There are of course uncertainties related to any model predictions and these must be communicated effectively if the end user is to draw proper conclusions and so make sound decisions. We searched the literature and found several methods for expressing the uncertainty in the predictions produced by models. We tested six of these in a formal trial. The methods we considered were: calibrated phrases, such as 'very uncertain' and 'likely', similar to those used by the IPCC; probabilities that the true value of the uncertain quantity lay within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. We held a series of three workshops at which the participants were invited to assess the six different methods of communicating the uncertainty. In total 64 individuals took part in our study. These individuals were either scientists, policy makers or those who worked in the agricultural industry. The test material comprised four sets of results from models. These results were displayed using each of the six methods described above. The participants were asked to evaluate the methods by filling in a questionnaire. The questions were intended to test how straightforward the content was to interpret and whether each method displayed sufficient information. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to

  15. Return mobility of scientists and knowledge circulation : an exploratory approach to scientists attitudes and perspectives

    OpenAIRE

    Fontes, Margarida

    2007-01-01

    The paper addresses the international mobility and return of scientists and its implications for regions/countries with weaker scientific and technological systems. It focuses on the “return dilemma” and, using the Portuguese case as empirical setting, discusses the conditions for return, the “diaspora” alternative and the role of policies in minimising the impacts of mobility flows. Despite the growing importance assumed by scientific mobility, our understanding of mobility flows, in particu...

  16. Scientists present their design for Einstein Telescope

    CERN Multimedia

    ASPERA Press Release

    2011-01-01

    Plans shape up for a revolutionary new observatory that will explore black holes and the Big Bang. This detector will ‘see’ the Universe in gravitational waves.   A new era in astronomy will come a step closer when scientists from across Europe present their design study today for an advanced observatory capable of making precision measurements of gravitational waves – minute ripples in the fabric of spacetime – predicted to emanate from cosmic catastrophes such as merging black holes and collapsing stars and supernovae. It also offers the potential to probe the earliest moments of the Universe just after the Big Bang, which are currently inaccessible. The Einstein Observatory (ET) is a so-called third-generation gravitational-wave (GW) detector, which will be 100 times more sensitive than current instruments. Like the first two generations of GW detectors, it is based on the measurement of tiny changes (far less than the size of an atomic nucleus) in the le...

  17. The first scientist Anaximander and his legacy

    CERN Document Server

    Rovelli, Carlo

    2011-01-01

    Carlo Rovelli, a leading theoretical physicist, uses the figure of Anaximander as the starting point for an examination of scientific thinking itself: its limits, its strengths, its benefits to humankind, and its controversial relationship with religion. Anaximander, the sixth-century BC Greek philosopher, is often called the first scientist because he was the first to explain that order in the world was due to natural forces, not supernatural ones. He is the first person known to rnunderstand that the Earth floats in space; to believe that the sun, the moon, and the stars rotate around it--seven centuries before Ptolemy; to argue that all animals came from the sea and evolved; and to posit that universal laws rncontrol all change in the world. Anaximander taught Pythagoras, who would build on Anaximander's scientific theories by applying mathematical laws to natural phenomena. rnrnIn the award-winning Anaximander and the Birth of Scientific Thought, Rovelli restores Anaximander to his place in the history of...

  18. Stephen C. Woods: a precocious scientist.

    Science.gov (United States)

    Smith, Gerard P

    2011-04-18

    To investigate the early scientific development of Steve Woods, I reviewed his research during the first decade after he received his doctoral degree in 1970. The main parts of his research program were conditioned insulin secretion and hypoglycemia, Pavlovian conditioning of insulin secretion before a scheduled access to food, and basal insulin as a negative-feedback signal from fat mass to the brain. These topics were pursued with experimental ingenuity; the resulting publications were interesting, clear, and rhetorically effective. Although the theoretical framework for his experiments with insulin was homeostatic, by the end of the decade he suggested that classic negative-feedback homeostasis needed to be revised to include learning acquired by lifestyle. Thus, Woods functioned as a mature scientist from the beginning of his research-he was very precocious. This precocity also characterized his teaching and mentoring as recalled by two of his students during that time, Joseph Vasselli and Paul Kulkosky. The most unusual and exemplary aspect of his precocity is that the outstanding performance of his first decade was maintained during the subsequent 30years. PMID:21232549

  19. Scientists' views about attribution of global warming.

    Science.gov (United States)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.

  20. Stephen C. Woods: a precocious scientist.

    Science.gov (United States)

    Smith, Gerard P

    2011-04-18

    To investigate the early scientific development of Steve Woods, I reviewed his research during the first decade after he received his doctoral degree in 1970. The main parts of his research program were conditioned insulin secretion and hypoglycemia, Pavlovian conditioning of insulin secretion before a scheduled access to food, and basal insulin as a negative-feedback signal from fat mass to the brain. These topics were pursued with experimental ingenuity; the resulting publications were interesting, clear, and rhetorically effective. Although the theoretical framework for his experiments with insulin was homeostatic, by the end of the decade he suggested that classic negative-feedback homeostasis needed to be revised to include learning acquired by lifestyle. Thus, Woods functioned as a mature scientist from the beginning of his research-he was very precocious. This precocity also characterized his teaching and mentoring as recalled by two of his students during that time, Joseph Vasselli and Paul Kulkosky. The most unusual and exemplary aspect of his precocity is that the outstanding performance of his first decade was maintained during the subsequent 30years.

  1. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Science.gov (United States)

    Dudo, Anthony; Besley, John C

    2016-01-01

    Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.

  2. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Science.gov (United States)

    Dudo, Anthony; Besley, John C

    2016-01-01

    Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences. PMID:26913869

  3. Hackathon: Call for applications - the search for cinema-loving scientists is on

    CERN Multimedia

    CinéGlobe Team

    2014-01-01

    CinéGlobe, the International Film Festival at CERN, is organising the “Story Matter” Hackathon in partnership with the Tribeca Film Institute, Festival Tous Écrans and the Lift Conference.   The Hackathon is an international workshop devoted to science and interactive storytelling, organised as part of the CinéGlobe International Film Festival. The initiative aims to create stories from science and science from stories. From 15 to 19 March 2014 at the Globe of Science and Innovation, film-makers chosen for their artistic and storytelling skills will join forces with cutting-edge technology experts and field-leading scientists to discover and, in teams, create works of art based on the fusion of these three disciplines. During the Hackathon, each team will be tasked with working together to explore interactive ways to tell stories. Their goal will be to create non-linear multimedia works which illuminate the hidden stories behind science us...

  4. Creating Spaces for Literacy, Creating Spaces for Learning

    Science.gov (United States)

    Howard, Christy

    2016-01-01

    This study represents the practices of a middle school social studies teacher as she focuses on integrating questioning, reading, and writing in her content area. This teacher uses literacy strategies to engage students in practices of reading multiple texts and writing to showcase learning. She creates opportunities for students to make…

  5. MEASURING SCIENTISTS' PERFORMANCE: A VIEW FROM ORGANISMAL BIOLOGISTS

    OpenAIRE

    Martin Ricker; Hernández, Héctor M.; Douglas C. Daly

    2009-01-01

    Increasingly, academic evaluations quantify performance in science by giving higher rank to scientists (as well as journals and institutions) who publish more articles and have more citations. In Mexico, for example, a centralized federal agency uses such bibliometric statistics for evaluating the performance of all Mexican scientists. In this article we caution against using this form of evaluation as an almost exclusive tool of measuring and comparing scientists´ performance. We argue that ...

  6. Challenges and opportunities for reinvigorating the physician-scientist pipeline

    OpenAIRE

    Daye, Dania; Patel, Chirag B.; Ahn, Jaimo; Nguyen, Freddy T.

    2015-01-01

    Physician-scientists, with in-depth training in both medicine and research, are uniquely poised to address pressing challenges at the forefront of biomedicine. In recent years, a number of organizations have outlined obstacles to maintaining the pipeline of physician-scientists, classifying them as an endangered species. As in-training and early-career physician-scientists across the spectrum of the pipeline, we share here our perspective on the current challenges and available opportunities ...

  7. Association of Polar Early Career Scientists Promotes Professional Skills

    Science.gov (United States)

    Pope, Allen; Fugmann, Gerlis; Kruse, Frigga

    2014-06-01

    As a partner organization of AGU, the Association of Polar Early Career Scientists (APECS; http://www.apecs.is) fully supports the views expressed in Wendy Gordon's Forum article "Developing Scientists' `Soft' Skills" (Eos, 95(6), 55, doi:10.1002/2014EO060003). Her recognition that beyond research skills, people skills and professional training are crucial to the success of any early-career scientist is encouraging.

  8. The motivations of scientists as drivers of international mobility decisions

    OpenAIRE

    Pellens, Maikel

    2012-01-01

    Recent research has explored the influence of the motivations and preferences of scientists (their ‘taste for science’, or preference for basic research, independence, publishing and peer recognition) on career decisions such as selection in industry versus academia. This paper continues this stream of research by examining the role played by the motivations of academic scientists in the international mobility decision. We hypothesize that the motivations of scientists affect the outcome o...

  9. NUCLEAR ESPIONAGE: Report Details Spying on Touring Scientists.

    Science.gov (United States)

    Malakoff, D

    2000-06-30

    A congressional report released this week details dozens of sometimes clumsy attempts by foreign agents to obtain nuclear secrets from U.S. nuclear scientists traveling abroad, ranging from offering scientists prostitutes to prying off the backs of their laptop computers. The report highlights the need to better prepare traveling researchers to safeguard secrets and resist such temptations, say the two lawmakers who requested the report and officials at the Department of Energy, which employs the scientists. PMID:17769833

  10. The Primary School Students' Views on Scientists and Scientific Knowledge (Sample of Kırşehir

    Directory of Open Access Journals (Sweden)

    Volkan Hasan KAYA

    2013-04-01

    Full Text Available Following the developments in natural and applied sciences and being acquainted with the evolution of disciplines, scientists' occupational and personality traits can shed light on the issues in teaching natural and applied sciences. For this reason, finding out what students think about scientists is important. Investigating students' views on the scientific knowledge that is produced by scientists might create the opportunity to determine the misconceptions existing in teaching natural and applied sciences. In this vein, the current study investigates primary school students' views on scientists and scientific knowledge. The current research is framed within case study research, one of the qualitative research methods. The population of the study is the students in classes between 6 and 8 grades in Kaman in Kırşehir. The participants of the study were 60 students (20 students in each grade of a primary school in the county, Kaman. 9 open-ended questions on "scientists" and "scientific knowledge" were used as the data collection instrument. The students were asked to provide their written responses to the questions and the data collected were subject to content analysis. The findings of the study revealed that the students were of the opinion that scientists are people that share some traits such as inventing and discovering, involving in scientific work, helping people and working hard. While almost half of the students in all grades claim that scientific knowledge can change in course of time, the rest think that it does not.

  11. On Creating and Sustaining Alternatives

    DEFF Research Database (Denmark)

    Kyng, Morten

    2015-01-01

    This paper presents and discusses an initiative aimed at creating direct and long lasting influence on the use and development of telemedicine and telehealth by healthcare professionals, patients and citizens. The initiative draws on ideas, insights, and lessons learned from Participatory Design...... (PD) as well as from innovation theory and software ecosystems. Last, but not least, the ongoing debate on public finances/economy versus tax evasion by major private companies has been an important element in shaping the vision and creating support for the initiative. This vision is about democratic...

  12. Proceedings of the young scientist research awardee's meet: pre-proceedings volume

    International Nuclear Information System (INIS)

    Youth is the life line for the progress of any nation, be it science, academics, industry or enterpreneurship. In scientific research, it is always interesting to enumerate the ideas that are created by young minds. It is important to identify bright ideas and nurture the young scientists so that the promise shown through bright ideas will be directed towards logical execution. It is crucial for the funding agencies to be proactive to convert potential into performance. Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India supports extra mural research in nuclear and allied sciences, engineering and technology. With an aim to accomplish this objective, BRNS has been continuously encouraging and supporting scientists and engineers to pursue excellence in R and D programmes of interest and relevance to DAE. Papers relevant to INIS are indexed separately

  13. Connecting Scientists, College Students, Middle School Students & Elementary Students through Intergenerational Afterschool STEM Programming

    Science.gov (United States)

    Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.

    2015-12-01

    The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.

  14. Complex variables for scientists and engineers

    CERN Document Server

    Paliouras, John D

    2014-01-01

    This outstanding text for undergraduate students of science and engineering requires only a standard course in elementary calculus. Designed to provide a thorough understanding of fundamental concepts and create the basis for higher-level courses, the treatment features numerous examples and extensive exercise sections of varying difficulty, plus answers to selected exercises.The two-part approach begins with the development of the primary concept of analytic function, advancing to the Cauchy integral theory, the series development of analytic functions through evaluation of integrals by resid

  15. Science Enhancements by the MAVEN Participating Scientists

    Science.gov (United States)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.

    2014-01-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  16. Gabriel Richet: the Man and the Scientist.

    Science.gov (United States)

    Ardaillou, Raymond; Ronco, Pierre

    2016-02-01

    Gabriel Richet who died in Paris in October 2014 was the fourth of a brilliant dynasty of professors of medicine including a Nobel prize, his grandfather, Charles Richet. He behaved courageously during the Second World War and participated in the Campaign of France in 1940 and in the combats in the Vosges Mountains in 1945. His family participated in the resistance during the German occupation of France and three of his parents including his father, one of his brothers and one of his cousins were deported in Germany. At the end of the war, he was with Jean Hamburger the founder of French nephrology at Necker Hospital in Paris. He realized the first hemodialyses in France and was involved in the first allogenic transplantation that was not immediately rejected. From 1961 to 1985, he was the head of a school of nephrology at Tenon Hospital and attracted in his department many young collaborators and scientists. He was the first to describe the role of specialized cells of the collecting duct in the control of acid base equilibrium. He was the subject of a national and international recognition. Founding member of the International Society of Nephrology in 1960, he was elected his President from 1981-1984. His fame could be measured by the number of fellows and visiting facultiesfrom countries all over the world. When he retired in 1985, he left an important legacy involving several departments of nephrology directed by his ancient collaborators. After his retirement, he was an active member of the French Academy of Medicine and devoted much of his time to the history of medicine and, particularly, of nephrology. The main qualities of the man were his constant research of new ideas, his eagerness to work and his open mind to understand others.

  17. Gabriel Richet: the Man and the Scientist.

    Science.gov (United States)

    Ardaillou, Raymond; Ronco, Pierre

    2016-02-01

    Gabriel Richet who died in Paris in October 2014 was the fourth of a brilliant dynasty of professors of medicine including a Nobel prize, his grandfather, Charles Richet. He behaved courageously during the Second World War and participated in the Campaign of France in 1940 and in the combats in the Vosges Mountains in 1945. His family participated in the resistance during the German occupation of France and three of his parents including his father, one of his brothers and one of his cousins were deported in Germany. At the end of the war, he was with Jean Hamburger the founder of French nephrology at Necker Hospital in Paris. He realized the first hemodialyses in France and was involved in the first allogenic transplantation that was not immediately rejected. From 1961 to 1985, he was the head of a school of nephrology at Tenon Hospital and attracted in his department many young collaborators and scientists. He was the first to describe the role of specialized cells of the collecting duct in the control of acid base equilibrium. He was the subject of a national and international recognition. Founding member of the International Society of Nephrology in 1960, he was elected his President from 1981-1984. His fame could be measured by the number of fellows and visiting facultiesfrom countries all over the world. When he retired in 1985, he left an important legacy involving several departments of nephrology directed by his ancient collaborators. After his retirement, he was an active member of the French Academy of Medicine and devoted much of his time to the history of medicine and, particularly, of nephrology. The main qualities of the man were his constant research of new ideas, his eagerness to work and his open mind to understand others. PMID:26913875

  18. Science Enhancements by the MAVEN Participating Scientists

    Science.gov (United States)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.; Stevens, M.; Withers, P.

    2015-12-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  19. Creating an Innovative Learning Organization

    Science.gov (United States)

    Salisbury, Mark

    2010-01-01

    This article describes how to create an innovative learning (iLearning) organization. It begins by discussing the life cycle of knowledge in an organization, followed by a description of the theoretical foundation for iLearning. Next, the article presents an example of iLearning, followed by a description of the distributed nature of work, the…

  20. We create our own reality

    CERN Multimedia

    2003-01-01

    " Yes, we create our own reality. This is one of the most fundamental tenets of the ancient oriental religions, such as Buddhism. And during the last century, modern particle physics or quantum mechanics has discovered exactly the same thing" (1 page).

  1. Creating Space for Children's Literature

    Science.gov (United States)

    Serafini, Frank

    2011-01-01

    As teachers struggle to balance the needs of their students with the requirements of commercial reading materials, educators need to consider how teachers will create space for children's literature in today's classrooms. In this article, 10 practical recommendations for incorporating children's literature in the reading instructional framework…

  2. Scientists Track Collision of Powerful Stellar Winds

    Science.gov (United States)

    2005-04-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have tracked the motion of a violent region where the powerful winds of two giant stars slam into each other. The collision region moves as the stars, part of a binary pair, orbit each other, and the precise measurement of its motion was the key to unlocking vital new information about the stars and their winds. WR 140 Image Sequence Motion of Wind Collision Region Graphic superimposes VLBA images of wind collision region on diagram of orbit of Wolf-Rayet (WR) star and its giant (O) companion. Click on image for larger version (412K) CREDIT: Dougherty et al., NRAO/AUI/NSF In Motion: Shockwave File Animated Gif File AVI file Both stars are much more massive than the Sun -- one about 20 times the mass of the Sun and the other about 50 times the Sun's mass. The 20-solar-mass star is a type called a Wolf-Rayet star, characterized by a very strong wind of particles propelled outward from its surface. The more massive star also has a strong outward wind, but one less intense than that of the Wolf-Rayet star. The two stars, part of a system named WR 140, circle each other in an elliptical orbit roughly the size of our Solar System. "The spectacular feature of this system is the region where the stars' winds collide, producing bright radio emission. We have been able to track this collision region as it moves with the orbits of the stars," said Sean Dougherty, an astronomer at the Herzberg Institute for Astrophysics in Canada. Dougherty and his colleagues presented their findings in the April 10 edition of the Astrophysical Journal. The supersharp radio "vision" of the continent-wide VLBA allowed the scientists to measure the motion of the wind collision region and then to determine the details of the stars' orbits and an accurate distance to the system. "Our new calculations of the orbital details and the distance are vitally important to understanding the nature of these

  3. American Astronomical Society Honors NRAO Scientist

    Science.gov (United States)

    2005-01-01

    The American Astronomical Society (AAS) has awarded its prestigious George Van Biesbroeck Prize to Dr. Eric Greisen of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The society cited Greisen's quarter-century as "principal architect and tireless custodian" of the Astronomical Image Processing System (AIPS), a massive software package used by astronomers around the world, as "an invaluable service to astronomy." Dr. Eric Greisen Dr. Eric Greisen CREDIT: NRAO/AUI/NSF (Click on image for larger version) The Van Biesbroeck Prize "honors a living individual for long-term extraordinary or unselfish service to astronomy, often beyond the requirements of his or her paid position." The AAS, with about 7,000 members, is the major organization of professional astronomers in North America. " The Very Large Array (VLA) is the most productive ground-based telescope in the history of astronomy, and most of the more than 10,000 observing projects on the VLA have depended upon the AIPS software to produce their scientific results," said Dr. James Ulvestad, NRAO's Director of New Mexico Operations. "This same software package also has been the principal tool for scientists using the Very Long Baseline Array and numerous other radio telescopes around the world," Ulvestad added. Greisen, who received a Ph.D in astronomy from the California Institute of Technology, joined the NRAO in 1972. He moved from the observatory's headquarters in Charlottesville, Virginia, to its Array Operations Center in Socorro in 2000. Greisen, who learned of the award in a telephone call from the AAS President, Dr. Robert Kirschner of Harvard University, said, "I'm pleased for the recognition of AIPS and also for the recognition of the contributions of radio astronomy to astronomy as a whole." He added that "it wasn't just me who did AIPS. There were many others." The AIPS software package grew out of the need for an efficient tool for producing images with the VLA, which was being

  4. Supporting Space Scientists to Engage in Education and Public Outreach Using NASA Resources

    Science.gov (United States)

    Buxner, Sanlyn; Grier, Jennifer; Schneider, Nick; Manning, James G.; Schultz, Gregory; Low, Rusty; Gross, Nick; Shipp, Stephanie; Smith, Denise Anne; Schwerin, Theresa; Peticolas, Laura

    2015-08-01

    The NASA Education and Public Outreach (E/PO) Forums support scientists who are involved in E/PO and who wish to be involved. Over the past five years, we have conducted over 30 interviews with planetary scientists, in collaboration with the AAS Division of Planetary Sciences, to better understand their needs, barriers, attitudes, and understanding of education and outreach work. Scientists were asked to describe how they were engaged in E/PO activities, what support they currently had, what resources they were aware of, and what resources they needed to support their engagement of E/PO.Respondents reported that E/PO was important to them, even if they were not actively involved in it themselves. They reported that most of their efforts, other than university teaching, were done on a volunteer basis. Scientists reported barriers to their involvement in E/PO, the most prominent were a lack of time and funding. Some expressed confusion how to get started and a lack of knowledge about resources that could assist them. They reported a need for resources and professional development to support their E/PO work, including information about how to get involved in E/PO and how to work with students in a classroom, training to become a better communicator, strategies to effectively do E/PO, and resources to bring NASA science into their college classrooms.As a result of this work, the NASA SMD Forums have created resources and increased efforts to connect scientists to resources to support their efforts in E/PO including NASA Wavelength (nasawavelength.org) a source of peer reviewed resources for formal and informal educators, resources and tips guides for getting started and partnering in E/PO, and resources to higher education. These resources are available to anyone and can be found on the NASA SMD community site, http://smdepo.org.

  5. Growing scientists: A partnership between a university and a school district

    Science.gov (United States)

    Woods, Teresa Marie

    Precollege science education in the United States has virtually always been influenced by university scientists to one degree or another. Partnership models for university scientist---school district collaborations are being advocated to replace outreach models. Although the challenges for such partnerships are well documented, the means of fostering successful and sustainable science education partnerships are not well studied. This study addresses this need by empirically researching a unique scientist-educator partnership between a university and a school district utilizing case study methods. The development of the partnership, emerging issues, and multiple perspectives of participants were examined in order to understand the culture of the partnership and identify means of fostering successful science education partnerships. The findings show the partnership was based on a strong network of face-to-face relationships that fostered understanding, mutual learning and synergy. Specific processes instituted ensured equity and respect, and created a climate of trust so that an evolving common vision was maintained. The partnership provided synergy and resilience during the recent economic crisis, indicating the value of partnerships when public education institutions must do more with less. High staff turnover, however, especially of a key leader, threatened the partnership, pointing to the importance of maintaining multiple-level integration between institutions. The instrumental roles of a scientist-educator coordinator in bridging cultures and nurturing the collaborative environment are elucidated. Intense and productive collaborations between teams of scientists and educators helped transform leading edge disciplinary science content into school science learning. The innovative programs that resulted not only suggest important roles science education partnerships can play in twenty-first century learning, but they also shed light on the processes of educational

  6. Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space

    Science.gov (United States)

    2001-10-01

    Astronomers using the National Science Foundation's 12 Meter Telescope at Kitt Peak, AZ, have discovered the complex organic molecule vinyl alcohol in an interstellar cloud of dust and gas near the center of the Milky Way Galaxy. The discovery of this long-sought compound could reveal tantalizing clues to the mysterious origin of complex organic molecules in space. Vinyl Alcohol and its fellow isomers "The discovery of vinyl alcohol is significant," said Barry Turner, a scientist at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Va., "because it gives us an important tool for understanding the formation of complex organic compounds in interstellar space. It may also help us better understand how life might arise elsewhere in the Cosmos." Vinyl alcohol is an important intermediary in many organic chemistry reactions on Earth, and the last of the three stable members of the C2H4O group of isomers (molecules with the same atoms, but in different arrangements) to be discovered in interstellar space. Turner and his colleague A. J. Apponi of the University of Arizona's Steward Observatory in Tucson detected the vinyl alcohol in Sagittarius B -- a massive molecular cloud located some 26,000 light-years from Earth near the center of our Galaxy. The astronomers were able to detect the specific radio signature of vinyl alcohol during the observational period of May and June of 2001. Their results have been accepted for publication in the Astrophysical Journal Letters. Of the approximately 125 molecules detected in interstellar space, scientists believe that most are formed by gas-phase chemistry, in which smaller molecules (and occasionally atoms) manage to "lock horns" when they collide in space. This process, though efficient at creating simple molecules, cannot explain how vinyl alcohol and other complex chemicals are formed in detectable amounts. For many years now, scientists have been searching for the right mechanism to explain how the building

  7. Scientists' and Teachers' Perspectives about Collaboration

    Science.gov (United States)

    Munson, Bruce H.; Martz, Marti Ann; Shimek, Sarah

    2013-01-01

    The emphasis on science, technology, engineering, and mathematics (STEM) education is resulting in more opportunities for scientists and teachers to collaborate. The relationships can result in failed collaborations or success. We recently completed a 6-year regional project that used several approaches to develop scientist-teacher relationships.…

  8. Training Physician-Scientists for the 1990s.

    Science.gov (United States)

    Martin, Joseph B.

    1991-01-01

    The article examines trends in the supply of physician-scientists, with emphasis on M.D.-Ph.D. programs to train biomedical researchers. New initiatives, such as the National Institutes of Health Physician-Scientist Training Awards and the Dana Foundation Training Program in the Neurosciences, are described and general recommendations are offered.…

  9. Of Science and Scientists an Anthology of Anecdotes

    Science.gov (United States)

    Kothare, A. N.

    Although a lot is available in the form of biographies and writings of scientists, very little information is found on what made them not only great discoverers but humane too, blessed with humour, humility and humanism. This book helps to convey this very aspect of scientists who while being involved in their unique adventure are like us, the lesser mortals.

  10. International Scientists Programs:A New Gateway to Cooperation

    Institute of Scientific and Technical Information of China (English)

    XIN Ling

    2010-01-01

    @@ The Chinese Academy of Sciences(CAS)launched in 2009 a major effort to promote international cooperation and scientific innovation: the Visiting Professorship Program for Senior International Scientists and the Fellowship Program for Young International Scientists.As part of the Academy's long endeavor to attract foreign researchers,both programs received hundreds of applications from abroad.

  11. Assessing the bibliometric productivity of forest scientists in Italy

    Directory of Open Access Journals (Sweden)

    Francesca Giannetti

    2016-07-01

    Full Text Available Since 2010, the Italian Ministry of University and Research issued new evaluation protocols to select candidates for University professorships and assess the bibliometric productivity of Universities and Research Institutes based on bibliometric indicators, i.e. scientific paper and citation numbers and the h-index. Under this framework, the objective of this study was to quantify the bibliometric productivity of the Italian forest research community during the 2002-2012 period. We examined the following productivity parameters: (i the bibliometric productivity under the Forestry subject category at the global level; (ii compared the aggregated bibliometric productivity of Italian forest scientists with scientists from other countries; (iii analyzed publication and citation temporal trends of Italian forest scientists and their international collaborations; and (iv characterized productivity distribution among Italian forest scientists at different career levels. Results indicated the following: (i the UK is the most efficient country based on the ratio between Gross Domestic Spending (GDS on Research and Development (R&D and bibliometric productivity under the Forestry subject category, followed by Italy; (ii Italian forest scientist productivity exhibited a significant positive time trend, but was characterized by high inequality across authors; (iii one-half of the Italian forest scientist publications were written in collaboration with foreign scientists; (iv a strong relationship exists between bibliometric indicators calculated by WOS and SCOPUS, suggesting these two databases have the same potential to evaluate the forestry research community; and (v self-citations did not significantly affect the rank of Italian forest scientists.

  12. WANG Feiyue honored as distinguished scientist by ACM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Prof. WANG Feiyue, a renowned scholar in intelligent control from the CAS Institute of Automation, has been selected by the New York-based Association for Computing Machinery (ACM) as a distinguished scientist for his contributions to both the practical and theoretical aspects of computing and information technology. Altogether, 13 scientists received the honor across the world in 2007.

  13. The Rehabilitation Medicine Scientist Training Program: impact and lessons learned.

    Science.gov (United States)

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2009-03-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining National Institutes of Health funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well-developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program was funded by a K12 grant from the National Center for Medical Rehabilitation Research, as one strategy for increasing the number of research-productive physiatrists. The Rehabilitation Medicine Scientist Training Program's structure was revised in 2001 to improve the level of preparation of incoming trainees and to provide a stronger central mentorship support network. We describe the original and revised structure of the Rehabilitation Medicine Scientist Training Program and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that Rehabilitation Medicine Scientist Training Program trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 yrs of training.

  14. Trends in Scholarly Communication Among Biomedical Scientists in Greece

    OpenAIRE

    Βλαχάκη, Ασημίνα; Urquhart, Christine

    2011-01-01

    The aim and objectives are to examine the main changes in scholarly communication among Greek biomedical scientists (2007-2011). The methods include a bibliographic survey (two phases), and a questionnaire survey (three phases). Results indicate that awareness of open access publishing has increased since 2010, but that biomedical scientists in Greece are not very aware of the operations of open access journals.

  15. Hypatia's Sisters: Biographies of Women Scientists - Past and Present.

    Science.gov (United States)

    Schacher, Susan

    This booklet gives two- or three-page biographies of seventeen women scientists. They range in history from Agnodice (physician, 300 B.B.) to Jane Goodall (born 1934). In addition, brief sketches are given of twenty-three other women scientists. This anthology is intended to fill a need for curriculum materials and literature that provide positive…

  16. "Star Wars" on Campus: Scientists Debate the Wisdom of SDI.

    Science.gov (United States)

    Rosenblatt, Jean

    1987-01-01

    President Reagan's Strategic Defense Initiative is opposed by many university scientists, but government officials have no problem placing research contracts. Specific arrangements and personal opinions are cited, and the text of the Star Wars Petition signed by 6,500 faculty and graduate student scientists is included. (MSE)

  17. Russian scientists make desperate plea to save nuclear institute

    CERN Multimedia

    2003-01-01

    Scientists from a Russian nuclear research institute recently held a news conference in Moscow to publicize their work on a revolutionary new type of nuclear reactor. However, it transpired that the scientists were worried about their institute being closed down, and saw the news conference as an opportunity to draw attention to their plight (1 page).

  18. Scientist-Image Stereotypes: The Relationships among Their Indicators

    Science.gov (United States)

    Karaçam, Sedat

    2016-01-01

    The aim of this study is to examine primary school students' scientist-image stereotypes by considering the relationships among indicators. A total of 877 students attending Grades 6 and 7 in Düzce, Turkey participated in this study. The Draw-A-Scientist Test (DAST) was implemented during the 2013-2014 academic year to determine students' images…

  19. Most Social Scientists Shun Free Use of Supercomputers.

    Science.gov (United States)

    Kiernan, Vincent

    1998-01-01

    Social scientists, who frequently complain that the federal government spends too little on them, are passing up what scholars in the physical and natural sciences see as the government's best give-aways: free access to supercomputers. Some social scientists say the supercomputers are difficult to use; others find desktop computers provide…

  20. Overcoming the obstacles: Life stories of scientists with learning disabilities

    Science.gov (United States)

    Force, Crista Marie

    Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed

  1. SEMANTIC WEB (CREATING AND QUERYING

    Directory of Open Access Journals (Sweden)

    Vidya S. Dandagi

    2016-01-01

    Full Text Available Semantic Web is a system that allows machines to understand complex human requests. Depending on the meaning semantic web replies. Semantics is the learning of the meanings of linguistic appearance. It is the main branch of contemporary linguistics. Semantics is meaning of words, text or a phrase and relations between them. RDF provides essential support to the Semantic Web. To represent distributed information RDF is created. Applications can use RDF created and process it in an adaptive manner. Knowledge representation is done using RDF standards and it is machine understandable. This paper describes the creation of a semantic web using RDF, and retrieval of accurate results using SparQL query language.

  2. Creating a climate for excellence.

    Science.gov (United States)

    Lancaster, J

    1985-01-01

    Some people are motivated to achieve in a manner consistent with the goals of their organization while others pursue individual goals. The attitudes people hold determine their behavior. Therefore, the manager is charged with creating an environment that fosters employee commitment to organizational goals. To create a climate for achievement, managers must recognize that all employees want recognition. Employees perform more effectively when they understand the goals of the organization, know what is expected of them, and are part of a system that includes feedback and reinforcement. Generally, people perform more effectively in an environment with minimal threat and punishment; individual responsibility should be encouraged, rewards based on results, and a climate of trust and open communication should prevail.

  3. British scientists and the Manhattan Project: the Los Alamos years

    International Nuclear Information System (INIS)

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK)

  4. Managing scientists leadership strategies in research and development

    CERN Document Server

    Sapienza, Alice M

    1995-01-01

    Managing Scientists Leadership Strategies in Research and Development Alice M. Sapienza "I found ...this book to be exciting ...Speaking as someone who has spent 30 years grappling with these issues, I certainly would be a customer." -Robert I. Taber, PhD Senior Vice President of Research & Development Synaptic Pharmaceutical Corporation In today's climate of enormous scientific and technologic competition, it is more crucial than ever that scientists involved in research and development be managed well. Often trained as individual researchers, scientists can find integration into teams difficult. Managers, from both scientific and nonscientific backgrounds, who are responsible for these teams frequently find effective team building a long and challenging process. Managing Scientists offers strategies for fostering communication and collaboration among scientists. It shows how to build cohesive, productive, and focused teams to succeed in the competitive research and development marketplace. This book wil...

  5. Leadership Networking Connect, Collaborate, Create

    CERN Document Server

    (CCL), Center for Creative Leadership; Baldwin, David

    2011-01-01

    Networking is essential to effective leadership in today's organizations. Leaders who are skilled networkers have access to people, information, and resources to help solve problems and create opportunities. Leaders who neglect their networks are missing out on a critical component of their role as leaders. This book will help leaders take a new view of networking and provide insight into how to enhance their networks and become effective at leadership networking.

  6. Bubbles Created from Vacuum Fluctuation

    Institute of Scientific and Technical Information of China (English)

    刘辽; 贺锋

    2001-01-01

    We show that bubbles of S2 × S2 can be created from vacuum fluctuation in the background de Sitter universes of k =0.1, so the space-time foam-like structure might really be constructed from bubbles of S2×S2 in the very early inflating phase of our universe. Still, whether such a foam-like structure persisted during the later evolution of the universe is a problem unsolved at present.

  7. Creating a Mobile Library Website

    Science.gov (United States)

    Cutshall, Tom C.; Blake, Lindsay; Bandy, Sandra L.

    2011-01-01

    The overwhelming results were iPhones and Android devices. Since the library wasn't equipped technologically to develop an in-house application platform and because we wanted the content to work across all mobile platforms, we decided to focus on creating a mobile web-based platform. From the NLM page of mobile sites we chose the basic PubMed/…

  8. Strategies for Engaging NASA Earth Scientists in K-12 Education and Public Outreach

    Science.gov (United States)

    Meeson, Blanche W.; Gabrys, Robert E.

    2001-01-01

    Engagement of the Earth Science research community in formal education at the kindergarten through high school level and in various aspects of informal education and in professional development of practitioners in related fields has been and continues to be a challenge. A range of approaches is being used and new ones are constantly being tried. Fundamental to our strategies is an understanding of the priorities, skills, academic experiences, motivation, rewards and work experiences of most scientists. It is within this context that efforts to engage a scientist in education efforts are attempted. A key strategy is to limit our requests to activities where the scientist's contribution of time and expertise can have the most impact. Don't waste the scientist's time! Time is one of their most prized resources, it is extremely valuable to you, and to them, we treat their time like a treasured resource. The clearer a scientist's role, their unique contribution and the finite nature of their effort, the more likely they are to participate. It is critical that commitments made to scientists are kept. If they want and can do more, great! Don't expect or assume more will be forthcoming. Another approach that we use is to create periodic venues that, among other things, serve to identify individuals who have an interest or inclination to con , tribute to education efforts. Once identified we strive to determine their interests so that we can make the best match between their interests and the needs of the education program or efforts. In this way, we try to make the best use of their time while engaging them in efforts which will be personally rewarding, and will further the overall education objectives. In addition, we try to make it easier for scientists to participate by providing focused training, such as development of their interviewing skills, and exposure to key concepts, knowledge and skills which are well known among educators but are not common knowledge among

  9. Strategies for Engaging NASA Earth Scientists in K-12 Education and Public Outreach

    Science.gov (United States)

    Meeson, B. W.; Gabrys, R. E.

    2001-05-01

    Engagement of the Earth Science research community in formal education at the kindergarten through high school level and in various aspects of informal education and in professional development of practitioners in related fields has been and continues to be a challenge. A range of approaches is being used and new ones are constantly being tried. Fundamental to our strategies is an understanding of the priorities, skills, academic experiences, motivation, rewards and work experiences of most scientists. It is within this context that efforts to engage a scientist in education efforts are attempted. A key strategy is to limit our requests to activities where the scientist's contribution of time and expertise can have the most impact. Don't waste the scientist's time! Time is one of their most prized resources, it is extremely valuable to you, and to them - we treat their time like a treasured resource. The clearer a scientist's role, their unique contribution and the finite nature of their effort, the more likely they are to participate. It is critical that commitments made to scientists are kept. If they want and can do more -great! Don't expect or assume more will be forthcoming. Another approach that we use is to create periodic venues that, among other things, serve to identify individuals who have an interest or inclination to contribute to education efforts. Once identified we strive to determine their interests so that we can make the best match between their interests and the needs of the education program or efforts. In this way, we try to make the best use of their time while engaging them in efforts which will be personally rewarding, and will further the overall education objectives. In addition, we try to make it easier for scientists to participate by providing focused training, such as development of their interviewing skills, and exposure to key concepts, knowledge and skills which are well known among educators but are not common knowledge among

  10. Scientist to scientist colloquium steering committee planning session. Summary report of the proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The reason for holding a scientific colloquium of this nature is to bring together the most active scientific researchers for cross-disciplinary exchanges. As one scientist commented, it is a way to compensate for over-specialization. As a scientist/administrator noted, it helps administrators to have access to high-level scientific information in a setting where they can ask stupid questions. At a meeting of between 80 and 100 people small group exchanges are possible, allowing more in-depth discussion. In five days of meetings, there are many opportunities for a great number of these exchanges. The Keystone Process facilitates intermingling across disciplines and encourages debate. Because this meeting is unlike discipline-specific meetings, presenters must write a talk specifically for an interdisciplinary audience, touching on various scientific and social implications of their work. They use this opportunity to practice addressing a broad audience which includes their peers from other /fields, university administrators, industry executives, government officials, and members of the media who will help bring forefront scientific findings to the public. This report discusses purpose, funding, and outcome of the colloquium.

  11. Teaching Scientists to Fish, as Inspired by Jack Dymond

    Science.gov (United States)

    Franks, S. E.

    2004-12-01

    It is almost inconceivable that as Jack Dymond's graduate student for eight years, I never mastered the skill of fly-fishing, a pursuit so near and dear to his heart. In fact, Jack did inspire me, not to tie flies and cast, but eventually to teach fellow scientists to fish. The work I'll present - connecting scientists and educators to achieve societal benefit - is profoundly influenced by Jack's dedication to applying scientific understanding and critical thinking to societal issues. With colleagues in the Centers for Ocean Sciences Education Excellence (COSEE), http://www.cosee.net/, I enable scientists to efficiently make meaningful contributions to educational outreach. A key goal of the multi-Center, national COSEE Network is helping scientists build the skills and acquire the resources needed to share their science with diverse audiences. At Scripps, we are piloting an innovative approach to helping scientists meet funding agencies' broader impact requirements. Key elements of the approach include: 1) services to identify educational outreach options that best fit scientists' research and preferences; 2) assistance establishing partnerships with educational outreach providers who have the skills and resources to develop and implement effective programs and exhibits; and 3) nuts and bolts (line and fly) assistance writing proposal text, drafting budgets, and coordinating with institutional business offices to ensure that the proposed educational outreach effort is compelling and sufficiently funded. Where does the fishing lesson come in? We facilitators of scientist-educator partnerships empower scientists to launch enduring collaborations. Once comfortable working with top-notch educational organizations, scientists can tap these resources, project after project, often with little or no additional involvement on our part. Our initial investment in brokering the relationships is richly rewarded. By helping scientists get started, it's as if we are teaching

  12. The Effect of Informal and Formal Interaction between Scientists and Children at a Science Camp on Their Images of Scientists

    Science.gov (United States)

    Leblebicioglu, Gulsen; Metin, Duygu; Yardimci, Esra; Cetin, Pinar Seda

    2011-01-01

    A number of studies have already investigated children's stereotypical images of scientists as being male, old, bald, wearing eyeglasses, working in laboratories, and so forth. There have also been some interventions to impose more realistic images of scientists. In this study, a science camp was conducted in Turkey with a team of scientists…

  13. Development and Field Test of the Modified Draw-a-Scientist Test and the Draw-a-Scientist Rubric

    Science.gov (United States)

    Farland-Smith, Donna

    2012-01-01

    Even long before children are able to verbalize which careers may be interesting to them, they collect and store ideas about scientists. For these reasons, asking children to draw a scientist has become an accepted method to provide a glimpse into how children represent and identify with those in the science fields. Years later, these…

  14. Foundation Skills for Scientists: An Evolving Program

    Directory of Open Access Journals (Sweden)

    Elaine Khoo

    2010-06-01

    Full Text Available We have undertaken an integrated and collaborative approach to developing foundational skills of students in a first year, Introductory Biology course. The course is a large lecture and laboratory course with enrollments ranging from 800-1000 per year. Teaching and Learning experts were brought into the course as weekly ‘Foundation Skills for Scientists’ sessions were created. The initial challenges were to have effective knowledge exchange between collaborators and create an integrated course syllabus. Once effective sessions were created, the next challenge was to improve student valuation of them. High value was only achieved when the skill sessions were tightly linked to course assignments and activities and was delivered ‘just in time’. Even then, the challenge has been to motivate students to realize that the sessions are directly relevant to them. Overall, student performance has improved since the program was initiated as measured by rate of retention in the course, overall course marks and quality of writing.Nous avons utilisé une approche intégrée et collaborative pour approfondir les compétences de base des étudiants de première année qui suivent un cours d’introduction à la biologie. Il s’agit d’un cours magistral et en laboratoire, auquel s’inscrivent entre 800 et 1000 étudiants par an. Ce cours a bénéficié de l’apport d’experts en enseignement et en apprentissage afin d’appuyer le développement de séances hebdomadaires portant sur les compétences de base en sciences. Les difficultés initiales étaient de susciter un échange de connaissances efficace entre les collaborateurs et de créer un plan de cours intégré. Une fois les séances organisées, la difficulté suivante a été de faire en sorte que les étudiants les apprécient davantage. Ces derniers les ont jugées très utiles uniquement lorsqu’elles étaient étroitement liées aux tâches et aux

  15. To Boldly Go: Practical Career Advice for Young Scientists

    Science.gov (United States)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  16. The Value of Participating Scientists on NASA Planetary Missions

    Science.gov (United States)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  17. A Stochastic Sprint in the Vague Direction of Data Science: Perspectives from a Graduate Student and Aspiring Data Scientist.

    Science.gov (United States)

    Barberie, S. R.

    2015-12-01

    Since data science does not exist as a stand-alone discipline within major universities, learning data science, or even learning that data science exists is, for an aspiring researcher at the graduate or undergraduate level, something that only happens by accident. Here I present my own series of accidents that transformed me from a somewhat aimless graduate student into an aspiring data scientist and the challenges that that aspiration has created in fitting into traditional academic programs and finding a coherent path forward. I also present my current conundrum: with the clear intention of pursuing data science but an academic background in other subjects, where do I go from here? Do I start my education over, pursue professional certification courses and bootcamp programs, or engage in not-very-marketable self study? This career chasm creates a strange environment for aspiring data scientists where we have a destination, but not a clear road to get there. I also discuss how joining a data focused interest group called The Federation of Earth Science Information Partners (ESIP) bridged some of the gap left by Academia in allowing me to network and collaborate with real data scientists from a variety of backgrounds. Organizations like this may someday play an important role in helping aspiring data scientists find their place, although for the moment many gaps and obstacles still remain, and the path forward is far from clear.

  18. Development of Teachers as Scientists in Research Experiences for Teachers Programs

    Science.gov (United States)

    Faber, Courtney; Hardin, Emily; Klein-Gardner, Stacy; Benson, Lisa

    2014-11-01

    This study examined the teachers' development as scientists for participants in three National Science Foundation Research Experiences for Teachers. Participants included secondary science and math teachers with varying levels of education and experience who were immersed in research environments related to engineering and science topics. Teachers' functionality as scientists was assessed in terms of independence, focus, relationships with mentors, structure, and ability to create new concepts. Hierarchies developed within these constructs allowed tracking of changes in functionality throughout the 6-week programs. Themes were further identified in teachers' weekly journal entries and exit interviews through inductive coding. Increases in functionality as scientists were observed for all teachers who completed both the program and exit interview ( n = 27). Seven of the 27 teachers reached high science functionality; however, three of the teachers did not reach high functionality in any of the constructs during the program. No differences were observed in demographics or teaching experience between those who did and did not reach high functionality levels. Inductive coding revealed themes such as teachers' interactions with mentors and connections made between research and teaching, which allowed for descriptions of experiences for teachers at high and low levels of functionality. Teachers at high functionality levels adjusted to open-ended environments, transitioned from a guided experience to freedom, felt useful in the laboratory, and were self-motivated. In contrast, teachers at low functionality levels did not have a true research project, primarily focused on teaching aspects of the program, and did not display a transition of responsibilities.

  19. The Rationale, Feasibility, and Optimal Training of the Non-Physician Medical Nutrition Scientist

    Directory of Open Access Journals (Sweden)

    Susan E. Ettinger

    2015-01-01

    Full Text Available Dietary components have potential to arrest or modify chronic disease processes including obesity, cancer, and comorbidities. However, clinical research to translate mechanistic nutrition data into clinical interventions is needed. We have developed a one-year transitional postdoctoral curriculum to prepare nutrition scientists in the language and practice of medicine and in clinical research methodology before undertaking independent research. Candidates with an earned doctorate in nutrition science receive intensive, didactic training at the interface of nutrition and medicine, participate in supervised medical observerships, and join ongoing clinical research. To date, we have trained four postdoctoral fellows. Formative evaluation revealed several learning barriers to this training, including deficits in prior medical science knowledge and diverse perceptions of the role of the translational nutrition scientist. Several innovative techniques to address these barriers are discussed. We propose the fact that this “train the trainer” approach has potential to create a new translational nutrition researcher competent to identify clinical problems, collaborate with clinicians and researchers, and incorporate nutrition science across disciplines from “bench to bedside.” We also expect the translational nutrition scientist to serve as an expert resource to the medical team in use of nutrition as adjuvant therapy for the prevention and management of chronic disease.

  20. The Earth We are Creating

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2014-04-01

    Full Text Available Over the past decade, a number of Earth System scientists have advocated that we need a new geological epoch, the Anthropocene, to describe the changes to Earth that have occurred since the 1800s. The preceding epoch, the Holocene (the period from the end of Earth's last glaciation about 12 millennia ago, has offered an unusually stable physical environment for human civilisations. In the new Anthropocene epoch, however, we can no longer count on this climate stability which we have long taken for granted. Paradoxically, it is our own actions that are undermining this stability—for the first time in history, human civilisation is now capable of decisively influencing the energy and material flows of our planet. Particularly since the 1950s, under the twin drivers of growth in population and per capita income, we have seen unprecedented growth in oil use and energy use overall, vehicle numbers, air travel and so on. This unprecedented growth has resulted in us heading toward physical thresholds or tipping points in a number of areas, points that once crossed could irreversibly lead to structural change in vital Earth systems such as climate or ecosystems. We may have already passed three limits: climate change; rate of biodiversity loss; and alterations to the global nitrogen and phosphorus cycles. The solutions usually proposed for our predicament are yet more technical fixes, often relying on greater use of the Earth's ecosystems, biomass for bioenergy being one example of this, and one we explore in this paper. We argue that these are unlikely to work, and will merely replace one set of problems by another. We conclude that an important approach for achieving a more sustainable and equitable world is to reorient our future toward satisfying the basic human needs of all humanity, and at the same time minimising both our use of non-renewable resources and pollution of the Earth's soil, air and water.

  1. Publication pressure and scientific misconduct in medical scientists.

    Science.gov (United States)

    Tijdink, Joeri K; Verbeke, Reinout; Smulders, Yvo M

    2014-12-01

    There is increasing evidence that scientific misconduct is more common than previously thought. Strong emphasis on scientific productivity may increase the sense of publication pressure. We administered a nationwide survey to Flemish biomedical scientists on whether they had engaged in scientific misconduct and whether they had experienced publication pressure. A total of 315 scientists participated in the survey; 15% of the respondents admitted they had fabricated, falsified, plagiarized, or manipulated data in the past 3 years. Fraud was more common among younger scientists working in a university hospital. Furthermore, 72% rated publication pressure as "too high." Publication pressure was strongly and significantly associated with a composite scientific misconduct severity score.

  2. The Current Situation of Female Scientists in Argentina

    Science.gov (United States)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  3. The subjectivity of scientists and the Bayesian statistical approach

    CERN Document Server

    Press, James S

    2001-01-01

    Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysisScientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often a

  4. Publication pressure and scientific misconduct in medical scientists.

    Science.gov (United States)

    Tijdink, Joeri K; Verbeke, Reinout; Smulders, Yvo M

    2014-12-01

    There is increasing evidence that scientific misconduct is more common than previously thought. Strong emphasis on scientific productivity may increase the sense of publication pressure. We administered a nationwide survey to Flemish biomedical scientists on whether they had engaged in scientific misconduct and whether they had experienced publication pressure. A total of 315 scientists participated in the survey; 15% of the respondents admitted they had fabricated, falsified, plagiarized, or manipulated data in the past 3 years. Fraud was more common among younger scientists working in a university hospital. Furthermore, 72% rated publication pressure as "too high." Publication pressure was strongly and significantly associated with a composite scientific misconduct severity score. PMID:25747691

  5. Creatiing a Collaborative Research Network for Scientists

    Science.gov (United States)

    Gunn, W.

    2012-12-01

    This abstract proposes a discussion of how professional science communication and scientific cooperation can become more efficient through the use of modern social network technology, using the example of Mendeley. Mendeley is a research workflow and collaboration tool which crowdsources real-time research trend information and semantic annotations of research papers in a central data store, thereby creating a "social research network" that is emergent from the research data added to the platform. We describe how Mendeley's model can overcome barriers for collaboration by turning research papers into social objects, making academic data publicly available via an open API, and promoting more efficient collaboration. Central to the success of Mendeley has been the creation of a tool that works for the researcher without the requirement of being part of an explicit social network. Mendeley automatically extracts metadata from research papers, and allows a researcher to annotate, tag and organize their research collection. The tool integrates with the paper writing workflow and provides advanced collaboration options, thus significantly improving researchers' productivity. By anonymously aggregating usage data, Mendeley enables the emergence of social metrics and real-time usage stats on top of the articles' abstract metadata. In this way a social network of collaborators, and people genuinely interested in content, emerges. By building this research network around the article as the social object, a social layer of direct relevance to academia emerges. As science, particularly Earth sciences with their large shared resources, become more and more global, the management and coordination of research is more and more dependent on technology to support these distributed collaborations.

  6. Creating shareable representations of practice

    Directory of Open Access Journals (Sweden)

    Peter Goodyear

    1998-12-01

    Full Text Available This paper arises from a programme of research and postgraduate teaching which, over the last ten years, has sought to explore ways of providing better support for the continuing professional development of geographically dispersed communities of skilled workers through the use of computer-mediated communications (Goodyear, 1995. One issue is the problem of creating sustained on-line interactions that draw on both practitioner experience and research-based knowledge. Part of our explanation for the difficulties in stimulating a sustained and inclusive discussion, which bridges between academia and practice, lies in the affordances of text-based communication. Aspects of practice, we suggest, are difficult to render through written language. It can also be very hard to articulate practical knowledge that is held and used in tacit form. The situation is exacerbated by some of the expectations which participants bring to the electronic discussion. For example, one can begin to create a comprehensible description of a current work issue through writing an extended account of the .necessary organizational background - tasks, personnel, 'house-style', etc. - but such extended contributions are neither expected nor welcome in most on-line communications'environments. In the rest of this paper, we look at some of the ways in which multimedia communications (using video,, voice, etc. may be able to help with this block.

  7. Creating your own leadership brand.

    Science.gov (United States)

    Kerfoot, Karlene

    2002-01-01

    Building equity in a brand happens through many encounters. The initial attraction must be followed by the meeting of expectations. This creates a loyalty that is part of an emotional connection to that brand. This is the same process people go through when they first meet a leader and decide if this is a person they want to buy into. People will examine your style, your competence, and your standards. If you fail on any of these fronts, your ability to lead will be severely compromised. People expect more of leaders now, because they know and recognize good leaders. And, predictably, people are now more cynical of leaders because of the well-publicized excess of a few leaders who advanced their own causes at the expense of their people and their financial future. This will turn out to be a good thing, because it will create a higher standard of leadership that all must aspire to achieve. When the bar is raised for us, our standards of performance are also raised. PMID:12382542

  8. Martin Stutzmann: Editor, Teacher, Scientist and Friend

    Science.gov (United States)

    Cardona, Manuel

    2005-03-01

    On 2 January 1995 Martin Stutzmann became Editor-in-Chief of physica status solidi, replacing Professor E. Gutsche, who had led the journal through the stormy period involving the fall of the Iron Curtain, the unification of Germany and the change in its Eastern part, where physica status solidi was based, from socialism as found in the real world (a German concept) to real world capitalism. In 1995 it was thought that the process had been completed (we should have known better!) and after the retirement of Prof. Gutsche the new owners of physica status solidi (Wiley-VCH) decided that a change in scientific management was desirable to adapt to the new socio-political facts and to insure the scientific continuity of the journal.Martin had moved in 1993 from my department at the Max-Planck-Institute to Munich where he soon displayed a tremendous amount of science man- agement ability during the build-up of the Walter Schottky Institute. The search for a successor as Edi- tor-in-Chief was not easy: the job was not very glamorous after the upheavals which had taken place in the editorial world following the political changes. Somebody in the Editorial Boards must have suggested Martin Stutzmann. I am sure that there was opposition: one usually looks for a well-established person ready to leave his direct involvement in science and take up a new endeavor of a more administrative nature. Nevertheless, the powers that be soon realized that Martin was an excellent, if somewhat unconventional candidate who had enough energy to remain a topnotch scientist and to lead the journal in the difficult times ahead: he was offered the job. In the negotiations that followed, he insisted in getting the administrative structures that would allow him to improve the battered quality of the journal and to continue his scientific productivity. Today we are happy to see that he succeeded in both endeavors. The journal has since grown in size and considerably improved its quality

  9. Facilitating ethical reflection among scientists using the ethical matrix

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Forsberg, Ellen-Marie; Gamborg, Christian;

    2011-01-01

    Several studies have indicated that scientists are likely to have an outlook on both facts and values that are different to that of lay people in important ways. This is one significant reason it is currently believed that in order for scientists to exercise a reliable ethical reflection about...... their research it is necessary for them to engage in dialogue with other stakeholders. This paper reports on an exercise to encourage a group of scientists to reflect on ethical issues without the presence of external stakeholders. It reports on the use of a reflection process with scientists working in the area...... and values appeared to be embedded within the discussions. The finding from this exercise seems to indicate that even without the involvement of the wider stakeholder community, valuable reflection and worthwhile discourse can be generated from ethical reflection processes involving only scienitific project...

  10. Teaching today's young scientists fuels the science of tomorrow

    CERN Multimedia

    2006-01-01

    "Learning should be a voyage of discovery. Teachers at the Xplora Science Teachers conference shared their novel approaches to motivating students to treat science as an exciting exploration - and become the new generation of scientists Europe needs." (1½ page)

  11. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  12. Scientists' understanding of public communication of science and technology

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt; Kjaer, Carsten Rahbæk; Dahlgaard, Jørgen

    This paper reports on a Danish survey of scientists. The objective is to find out, in the context of the new 2003 Act on Universities, which introduces science communication and knowledge exchange as new obligations for the universities, how Danish university-based researchers within the natural......) responsibility for process of science communication. Specifically, they are very interested in appearing in the news media. We found a nuanced view on science in the mass media, which to us indicate that scientists are no longer "media shy", if they ever were. Scientists do seem to recognize the importance......Background Research into the field of science communication has tended to focus on public understanding of science or on the processes of science communication itself, e.g. by looking at science in the media. Few studies have explored how scientists understand science communication. At present...

  13. Can a Diary Encourage Others to be Citizen Scientists?

    Directory of Open Access Journals (Sweden)

    Jerry H. Kavouras

    2015-08-01

    Full Text Available Review of: Diary of a Citizen Scientist Chasing Tiger Beetles and Other New Ways of Engaging the World; Sharman Apt Russell; (2014. Oregon State University Press, Corvallis, OR. 222 pages.

  14. NIH scientists provide new insight into rare kidney cancer

    Science.gov (United States)

    NIH scientists have discovered a unique feature of a rare, hereditary form of kidney cancer that may provide a better understanding of its progression and metastasis, possibly laying the foundation for the development of new targeted therapies.

  15. A Systematic Identification and Analysis of Scientists on Twitter

    CERN Document Server

    Ke, Qing; Sugimoto, Cassidy R

    2016-01-01

    Metrics derived from Twitter and other social media---often referred to as altmetrics---are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. Our work contributes to the literature both methodologically and conceptually---we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use ...

  16. Scientists Rediscover a Rodent Thought to Be Extinct

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A rodent discovered last year in Laos may actually be a survivor of a group believed to have been extinct for 11 million years, an international group of scientists, including a CAS researcher, reported on March 9.

  17. Scientists Zero in On Brain Area Linked to 'Parkinson's Gait'

    Science.gov (United States)

    ... Scientists Zero in on Brain Area Linked to 'Parkinson's Gait' Discovery could lead to new treatments for ... play a role in walking difficulties that afflict Parkinson's disease patients, new research suggests. The prefrontal cortex ...

  18. The social responsibility of scientists: moonshine and morals.

    Science.gov (United States)

    Wolpert, L

    1989-04-01

    Two historical cases are used to explore the nature of the scientist's obligations to society on technological issues. The physicist Leo Szilard is praised as a moral scientist and a moral citizen for contributing to the development of the atomic bomb in the Manhattan Project and then arguing against its testing when the danger that Germany might use the bomb against the United States subsided. On the other hand, the scientists, including physicians, who promoted the views of the eugenics movement in Nazi Germany were immoral in not considering the social implications of their scientific conclusions. Wolpert maintains that, while there are no areas that should not be subject to research, the scientist's obligations are to make the reliability of the research clear and to inform the public about its possible ramifications.

  19. Scientists Explore Possible Way to Stop Zika in Its Tracks

    Science.gov (United States)

    ... 159433.html Scientists Explore Possible Way to Stop Zika in Its Tracks Gene pathway that allows virus ... they've identified a potential way to prevent Zika and similar viruses from spreading in the body. ...

  20. Scientists Map DNA of Zika Virus from Semen

    Science.gov (United States)

    ... news/fullstory_161474.html Scientists Map DNA of Zika Virus From Semen It's another step in trying to ... complete genetic "blueprint" -- genome -- of a sample of Zika virus derived from semen has been obtained by researchers. ...

  1. Scientists face trial over L'Aquila quake

    Science.gov (United States)

    Cartlidge, Edwin

    2010-07-01

    Seven scientists and technicians who were called upon to assess seismic activity ahead of the devastating earthquake that struck L'Aquila in the central Italian region of Abruzzo last year are being investigated for gross negligent manslaughter.

  2. UK's physical scientists are left disappointed by budget choices

    CERN Multimedia

    Massood, E

    1998-01-01

    Britain's physical scientist are concerned that almost 80 per cent of an extra 300 million pounds made available to research councils over the next three years has been reserved for the life sciences (2 pages).

  3. Office of Chief Scientist, Integrated Research Facility (OCSIRF)

    Data.gov (United States)

    Federal Laboratory Consortium — Introduction The Integrated Research Facility (IRF) is part of the Office of the Chief Scientist (OCS) for the Division of Clinical Research in the NIAID Office of...

  4. Scientists seek to explain how Big Bang let us live

    CERN Multimedia

    Hawke, N

    2000-01-01

    Scientists at CERN have opened an antimatter factory, the Antiproton Decelerator. They hope to discover why, in the Big Bang, the amount of matter and antimatter produced was not equal, so allowing the universe to exist at all (1 page).

  5. Science Educational Outreach Programs That Benefit Students and Scientists.

    Science.gov (United States)

    Clark, Greg; Russell, Josh; Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M; Beckham, Josh T; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-02-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  6. Science Educational Outreach Programs That Benefit Students and Scientists.

    Science.gov (United States)

    Clark, Greg; Russell, Josh; Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M; Beckham, Josh T; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-02-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  7. Social responsibility of scientists. Report on working group ten

    International Nuclear Information System (INIS)

    Three topics were discussed: the impact of Science and technology on the fate of mankind, the role of scientists in a nuclear age, and the establishment of an international Ethics Commission. Conclusions and recommendations are given to the Pugwash Conference

  8. Professor Atta invited to attend WSIS as `eminent scientist'

    CERN Multimedia

    2003-01-01

    Ministry of Science and Technology Prof. Atta-ur-Rahman has been nominated as an "eminent scientist" to attend the roundtables during "World Summit on the Information Society (WSIS)" on December 12 (1 paragraph).

  9. Scientists ID Key Fetal Cells Vulnerable to Zika

    Science.gov (United States)

    ... html Scientists ID Key Fetal Cells Vulnerable to Zika Lab study suggests possible mechanism for birth defects ... 29, 2016 (HealthDay News) -- The devastating mosquito-borne Zika virus can infect cells that play a role ...

  10. Italian scientists fear impact of cabinet reshuffle on reforms

    CERN Multimedia

    Abbott, A

    1998-01-01

    Scientists are nervous about the choice of Ortensio Zecchino for minister for research and universities in the new coalition government, mainly because the Italien Space, Energy and Environment agencies and CNR have not yet been formally approved (1 page).

  11. STaRRS in Yellowstone: Addressing Challenges Facing Student-Teacher-Scientist Partnerships

    Science.gov (United States)

    Houseal, A.; Gallagher, R.; Fuhrmann, B.; Sanford, R.

    2010-12-01

    The literature outlines many challenges faced by Student-Teacher-Scientist Partnerships (STSPs) including cultural differences between the scientific research and education communities. For example, shared vocabulary terms with dissimilar definitions can create communication problems. Other issues include accuracy in data collection, meeting the needs of a very diverse group of partners, connecting students with research science in a meaningful way, and maintaining the infrastructure necessary to develop and maintain these partnerships. Additionally, evidence, other than anecdotal, of the success of these partnerships is limited, especially as school year and research cycles are often on different schedules or have very different goals. Students, Teachers, and Rangers & Research Scientists: Investigating Systems at Mammoth Hot Springs in Yellowstone National Park (STaRRS) was an STSP developed to address some of these challenges, model some solutions within an STSP, and identify some possible outcomes for participating teachers and their students. Three strategies used to address some of these challenges that will be discussed briefly in this presentation include: (a) embedding the STSP in an already existing National Park Service environmental education program; (b) development of three types of research activities connecting teachers, students, and scientists to the research, and (c) a professional development (PD) model that included all partners in an on-going year-long process. Results from an accompanying research study will also be presented. Using a pretest-intervention-posttest design, this study revealed significant changes in attitude regarding science and scientists of participating STaRRS teachers. Student data gathered using a quasi-experimental pretest-intervention-posttest treatment and comparison group design also demonstrated significant changes in their attitudes and gains in earth science content knowledge.

  12. Synthesizing, summarizing, and sharing natural hazard information for non-scientists

    Science.gov (United States)

    MacPherson-Krutsky, C. C.; Bendick, R. O.

    2015-12-01

    To understand and plan for natural disasters scientists and city planners need the best science available underlying their hazard maps and hazard information. For areas where hazard data are sparse, the government mandated hazard material can be outdated or incomplete and does not reflect the most current science. This project critically examines the state of natural hazard information available for Missoula, Montana. It exposes weaknesses and strengths of current hazard assessment and develops methods for improving both existing data and how hazard information is presented for stakeholder use. This is done through expert critique from scientists who specialize in hazard-related fields and through stakeholder interviews. Initial findings show that some hazards are more poorly constrained than others. Earthquake data are sparse in this region and uncertainty is great. Significant work is needed to improve the underlying datasets and the methods by which the information is distributed. We propose creating user-friendly natural hazard information through a web-based medium along with expanding the data available for assessing seismic hazard near Missoula, MT using GPS measurements. This project serves as a case study for creating tools and methods for qualitatively and quantitatively examining hazard information in other locations.

  13. Why Scientists Chase Big Problems: Individual Strategy and Social Optimality

    OpenAIRE

    Bergstrom, Carl T.; Foster, Jacob G.; Song, Yangbo

    2016-01-01

    Scientists pursue collective knowledge, but they also seek personal recognition from their peers. When scientists decide whether or not to work on a big new problem, they weigh the potential rewards of a major discovery against the costs of setting aside other projects. These self-interested choices can potentially spread researchers across problems in an efficient manner, but efficiency is not guaranteed. We use simple economic models to understand such decisions and their collective consequ...

  14. Helping early career research scientists ascend the professional ladder.

    Science.gov (United States)

    King, Laina

    2013-08-01

    The Keystone Symposia Early Career Investigator Travel Award initiative is a unique successful research mentoring program tailored for 'end of the pipeline' life and biomedical scientists from academia and industry. Using targeted educational, mentoring, and networking activities, the program benefits early career scientists in solving a specific laboratory-based research question that is limiting their evolving research and could increase their ability to obtain new grants and improve their career progression. PMID:23889774

  15. Promoting Science Software Best Practices: A Scientist's Perspective (Invited)

    Science.gov (United States)

    Blanton, B. O.

    2013-12-01

    Software is at the core of most modern scientific activities, and as societal awareness of, and impacts from, extreme weather, disasters, and climate and global change continue to increase, the roles that scientific software play in analyses and decision-making are brought more to the forefront. Reproducibility of research results (particularly those that enter into the decision-making arena) and open access to the software is essential for scientific and scientists' credibility. This has been highlighted in a recent article by Joppa et al (Troubling Trends in Scientific Software Use, Science Magazine, May 2013) that describes reasons for particular software being chosen by scientists, including that the "developer is well-respected" and on "recommendation from a close colleague". This reliance on recommendation, Joppa et al conclude, is fraught with risks to both sciences and scientists. Scientists must frequently take software for granted, assuming that it performs as expected and advertised and that the software itself has been validated and results verified. This is largely due to the manner in which much software is written and developed; in an ad hoc manner, with an inconsistent funding stream, and with little application of core software engineering best practices. Insufficient documentation, limited test cases, and code unavailability are significant barriers to informed and intelligent science software usage. This situation is exacerbated when the scientist becomes the software developer out of necessity due to resource constraints. Adoption of, and adherence to, best practices in scientific software development will substantially increase intelligent software usage and promote a sustainable evolution of the science as encoded in the software. We describe a typical scientist's perspective on using and developing scientific software in the context of storm surge research and forecasting applications that have real-time objectives and regulatory constraints

  16. Immigration & Ideas: What Did Russian Scientists 'Bring' to the US?

    OpenAIRE

    Ganguli, Ina

    2014-01-01

    This paper examines how high-skilled immigrants contribute to knowledge diffusion using a rich dataset of Russian scientists and US citations to Soviet-era publications. Analysis of a panel of US cities and scientific fields shows that citations to Soviet-era work increased significantly with the arrival of immigrants. A difference-in-differences analysis with matched paper-pairs also shows that after Russian scientists moved to the US, citations to their Soviet-era papers increased relative ...

  17. Encouraging Advances Made by Chinese Scientists in Antarctic Research

    Institute of Scientific and Technical Information of China (English)

    Zhang Qingsong

    2003-01-01

    @@ Chinese scientists began involving in the Antarctic research in 1980. As the first step, some 40 Chinese scientists were sent to Antarctic stations of Australia and other countries during the period from 1980 to 1984. Then,China established two Antarctic stations of its own, and purchased an icebreaker, enabling China to carry on its own independent research program both on land and at sea.

  18. Challenges in Translational Research: The Views of Addiction Scientists

    OpenAIRE

    Ostergren, Jenny E.; Rachel R Hammer; Dingel, Molly J.; Koenig, Barbara A.; McCormick, Jennifer B

    2014-01-01

    OBJECTIVES: To explore scientists' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy. METHODS: We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public's view of addictio...

  19. Ranking scientists and departments in a consistent manner

    OpenAIRE

    Bouyssou, Denis; Marchant, Thierry

    2011-01-01

    International audience; The standard data that we use when computing bibliometric rankings of scientists are just their publication/citation records, i.e., so many papers with 0 citation, so many with 1 citation, so many with 2 citations, etc. The standard data for bibliometric rankings of departments have the same structure. It is therefore tempting (and many authors gave in to temptation) to use the same method for computing rankings of scientists and rankings of departments. Depending on t...

  20. Developing Earth and Space Scientists for the Future

    Science.gov (United States)

    Manduca, Cathryn A.; Cifuentes, Inés

    2007-09-01

    As the world's largest organization of Earth and space scientists, AGU safeguards the future of pioneering research by ensuring that ``the number and diversity of Earth and space scientists continue to grow through the flow of young talent into the field'' (AGU Strategic Plan 2008, Goal IV). Achieving this goal is the focus of the AGU Committee on Education and Human Resources (CEHR), one of the Union's three outreach committees.

  1. Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles

    Directory of Open Access Journals (Sweden)

    Hobin Jennifer A

    2012-04-01

    Full Text Available Abstract This report is based on the Federation of American Societies for Experimental Biology’s symposium, “Engaging basic Scientists in Translational Research: Identifying Opportunities, Overcoming Obstacles,” held in Chevy Chase, MD, March 24–25, 2011. Meeting participants examined the benefits of engaging basic scientists in translational research, the challenges to their participation in translational research, and the roles that research institutions, funding organizations, professional societies, and scientific publishers can play to address these challenges.

  2. Regulations for CAS Visiting Professorships for Senior International Scientists

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ 1.General Provisions. Article 1 These regulations are made in accordance with the Chinese Academy of Sciences (CAS) "Package Program for Talent Training & Recruitment" and "Guidelines of the Chinese Academy of Sciences for the Implementation of the Program for Attracting Overseas Scientists and Experts and Cultivating Talent through International Exchange",to guide the implementation of the "CAS Visiting Professorships for Senior International Scientists" (hereinafter referred to as the "Visiting Professorships Program").

  3. A global mechanism creating low atmospheric luminous cold plasmas

    Science.gov (United States)

    Gitle Hauge, Bjørn; Petter Strand, Erling

    2014-05-01

    Red, white/yellow and blue balls of light have been observed in the low atmosphere over the Hessdalen valley , Norway, standing still and moving horizontally with random speed. Characteristics of these transient luminous phenomena in Hessdalen, and data from America, suggest that the process which creates these low atmospheric plasmas is a global mechanism, not only localized to the remote and desolated Hessdalen valley in Norway (62Deg.N - 11Deg.E). Transient luminous phenomena's has been observed in the low atmosphere over the Hessdalen valley for over 200 years. The first written documentation goes back to 1811 when the priest Jakob Tode Krogh wrote about it in his diary. Since 1982, inhabitants, tourists, journalists and scientists have done recurrent observations. E.P.Strand conducted the first scientific campaign in 1984, documenting over 50 observations in one month. 15 years later, Norwegian and Italian scientists installed the first permanent automated research base here. In 2010 French researchers joined this collaboration and installed two additional research bases. This transient luminous phenomenon, TLP, has been detected simultaneously on optical and radar devices, but electromagnetic radiation from this phenomenon has until now eluded detection. Smirnov (1994) and Zou(1994) was among the first scientist who used plasma physics trying to explain this phenomenon. Work done by Pavia & Taft (2010 and 2012) suggests that the TLP in Hessdalen probably is dusty or cold plasma, arranged as a cluster of Coulomb crystals. Optical spectrum data obtained by Strand (1984), Teodorani (2004) and Hauge (2007) showing a continuous optical spectrum support this hypothesis. Pictures of spiraling light rays obtained by Strand in 1984, and Hauge in 2004 and 2010 suggests that this plasma is moving in a strong magnetic field, and might be created by it. Radar reflections from the TLP in Hessdalen obtained by Strand in 1984 and Montebugnoli and Monari in 2007 points

  4. Gap between science and media revisited: Scientists as public communicators

    Science.gov (United States)

    Peters, Hans Peter

    2013-01-01

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty—an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science–media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists. PMID:23940312

  5. The Immoral Landscape? Scientists Are Associated with Violations of Morality.

    Science.gov (United States)

    Rutjens, Bastiaan T; Heine, Steven J

    2016-01-01

    Do people think that scientists are bad people? Although surveys find that science is a highly respected profession, a growing discourse has emerged regarding how science is often judged negatively. We report ten studies (N = 2328) that investigated morality judgments of scientists and compared those with judgments of various control groups, including atheists. A persistent intuitive association between scientists and disturbing immoral conduct emerged for violations of the binding moral foundations, particularly when this pertained to violations of purity. However, there was no association in the context of the individualizing moral foundations related to fairness and care. Other evidence found that scientists were perceived as similar to others in their concerns with the individualizing moral foundations of fairness and care, yet as departing for all of the binding foundations of loyalty, authority, and purity. Furthermore, participants stereotyped scientists particularly as robot-like and lacking emotions, as well as valuing knowledge over morality and being potentially dangerous. The observed intuitive immorality associations are partially due to these explicit stereotypes but do not correlate with any perceived atheism. We conclude that scientists are perceived not as inherently immoral, but as capable of immoral conduct.

  6. Training Scientists to be Effective Communicators: AAAS Communicating Science Workshops

    Science.gov (United States)

    Cendes, L.; Lohwater, T.

    2012-12-01

    "Communicating Science: Tools for Scientists and Engineers" is a workshop program developed by AAAS to provide guidance and practice for scientists and engineers in communicating about science with public audiences. The program was launched at the 2008 AAAS Annual Meeting in Boston and has since provided 24 workshops for more than 1,500 scientist and engineer attendees at universities, science society meetings, and government agency labs around the United States. Each interactive workshop targets scientists and engineers specifically and has included content such as message development, defining audience, identifying opportunities for engaging the public, and practice with public presentations and cameras. The workshop format allows for collaborative learning through small-group discussion, resource sharing, and participation in critique of other participants' presentations. Continuous monitoring of the program includes on-site and online surveys and evaluation. On an assessment of workshops from 2008-2010, attendees reported that knowledge gained from the workshop helped in crafting messages about their scientific work for use in communicating with public audiences, and approximately 80 percent of respondents reported participation in communication with a public audience after attending the workshop. Through workshop content and feedback of participating scientists, this presentation will highlight some best practices and resources for scientists who want to take a proactive role in science communication.

  7. Finding Meaningful Roles for Scientists in science Education Reform

    Science.gov (United States)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  8. Identity Matching to Scientists: Differences that Make a Difference?

    Science.gov (United States)

    Andersen, Hanne Moeller; Krogh, Lars Brian; Lykkegaard, Eva

    2014-06-01

    Students' images of science and scientists are generally assumed to influence their related subject choices and aspirations for tertiary education within science and technology. Several research studies have shown that many young people hold rather stereotypical images of scientists, making it hard for them to see themselves as future scientists. Adolescents' educational choices are important aspects of their identity work, and recent theories link individual choice to the perceived match between self and prototypical persons associated with that choice. In the present study, we have investigated images of scientists among the segment of the upper secondary school students (20 % of the cohort) from which future Danish scientists are recruited. Their images were rather realistic, only including vague and predominantly positive stereotypical ideas. With a particular Science-and-Me (SAM) interview methodology, we inquired into the match between self- and prototypical-scientists ( N = 30). We found high perceived similarity within a core of epistemological characteristics, while dissimilarities typically related to a social domain. However, combining interview data with survey data, we found no significant statistical relation between prototype match and aspirations for tertiary education within science and technology. Importantly, the SAM dialogue revealed how students negotiate perceived differences, and we identified four negotiation patterns that all tend to reduce the impact of mismatches on educational aspirations. Our study raises questions about methodological issues concerning the traditional use of self-to-prototype matching as an explanatory model of educational choice.

  9. Scientific Visualization Made Easy for the Scientist

    Science.gov (United States)

    Westerhoff, M.; Henderson, B.

    2002-12-01

    amirar is an application program used in creating 3D visualizations and geometric models of 3D image data sets from various application areas, e.g. medicine, biology, biochemistry, chemistry, physics, and engineering. It has demonstrated significant adoption in the market place since becoming commercially available in 2000. The rapid adoption has expanded the features being requested by the user base and broadened the scope of the amira product offering. The amira product offering includes amira Standard, amiraDevT, used to extend the product capabilities by users, amiraMolT, used for molecular visualization, amiraDeconvT, used to improve quality of image data, and amiraVRT, used in immersive VR environments. amira allows the user to construct a visualization tailored to his or her needs without requiring any programming knowledge. It also allows 3D objects to be represented as grids suitable for numerical simulations, notably as triangular surfaces and volumetric tetrahedral grids. The amira application also provides methods to generate such grids from voxel data representing an image volume, and it includes a general-purpose interactive 3D viewer. amiraDev provides an application-programming interface (API) that allows the user to add new components by C++ programming. amira supports many import formats including a 'raw' format allowing immediate access to your native uniform data sets. amira uses the power and speed of the OpenGLr and Open InventorT graphics libraries and 3D graphics accelerators to allow you to access over 145 modules, enabling you to process, probe, analyze and visualize your data. The amiraMolT extension adds powerful tools for molecular visualization to the existing amira platform. amiraMolT contains support for standard molecular file formats, tools for visualization and analysis of static molecules as well as molecular trajectories (time series). amiraDeconv adds tools for the deconvolution of 3D microscopic images. Deconvolution is the

  10. Young Scientist in the Classroom (II)

    Science.gov (United States)

    Doran, Rosa

    2016-07-01

    Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a

  11. Young Scientist in the Classroom (IV)

    Science.gov (United States)

    Doran, Rosa

    2016-07-01

    Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a

  12. Young Scientist in the Classroom (III)

    Science.gov (United States)

    Doran, Rosa

    2016-07-01

    Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a

  13. Young Scientist in the Classroom (I)

    Science.gov (United States)

    Doran, Rosa

    2016-07-01

    Bringing space exploration recent results and future challenges and opportunities has been a preoccupation of educators and space agencies for quite some time. The will to foster student's interest and reawaken their interest for science topics and in particular research is something occupying the minds of educators in all corners of the globe. But the challenge is growing literally at the speed of light. We are in the age of "Big Data". Information is available, opportunities to build smart algorithms flourishing. The problem at hand is how we are going to make use of all this possibilities. How can we prepare students to the challenges already upon them? How can we create a scientifically literate and conscious new generation? They are the future of mankind and therefore this is a priority and should quickly be recognized as such. Empowering teachers for this challenge is the key to face the challenges and hold the opportunities. Teachers and students need to learn how to establish fruitful collaboration in the pursuit of meaningful teaching and learning experiences. Teachers need to embrace the opportunities this ICT world is offering and accompany student's path as tutors and not as explorers themselves. In this training session we intend to explore tools and repositories that bring real cutting edge science to the hands of educators and their students. A full space exploration will be revealed. Planetarium Software - Some tools tailored to prepare an observing session or to explore space mission's results will be presented in this topic. Participants will also have the opportunity to learn how to plan an observing session. This reveals to be an excellent tool to teach about celestial movements and give students a sense of what it means to explore for instance the Solar System. Robotic Telescopes - Having planned an observing session the participants will be introduced to the use of robotic telescopes, a very powerful tool that allows educators to address a

  14. PREFACE: FAIRNESS 2012: FAIR NExt Generation of ScientistS 2012

    Science.gov (United States)

    Arcones, Almudena; Bleicher, Marcus; Fritsch, Miriam; Galatyuk, Tetyana; Nicmorus, Diana; Petersen, Hannah; Ratti, Claudia; Tolos, Laura

    2013-03-01

    FAIRNESS 2012 was the first in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 3-8 September 2012 in Hersonissos, Greece. The workshop covered a wide range of topics, both theoretical developments and current experimental status, that concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference was to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permament position to present their work and to foster active informal discussions and the build-up of networks. Every participant at the meeting, with the exception of the organizers, gave an oral presentation and all sessions were followed by an hour long discussion period. During the talks questions were collected anonymously in a circulating box to stimulate these discussions. Since the physics program of FAIR is very broad, this was reflected in the wide range of topics covered at the conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron Spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics In each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2012 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the

  15. PREFACE: FAIRNESS 2013: FAIR NExt generation of ScientistS 2013

    Science.gov (United States)

    Petersen, Hannah; Destefanis, Marco; Galatyuk, Tetyana; Montes, Fernando; Nicmorus, Diana; Ratti, Claudia; Tolos, Laura; Vogel, Sascha

    2014-04-01

    FAIRNESS 2013 was the second edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 16-21 September 2013 in Berlin, Germany. The topics of the workshop cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in box to stimulate discussions. Since the physics program of FAIR is very broad, this is reflected in the wide range of topics covered at the Conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics For all of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2013 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of

  16. Creating responsible partnerships in tourism

    Directory of Open Access Journals (Sweden)

    Ana Spitzer

    2012-06-01

    Full Text Available RQ: Organisations do not provide sufficient time and effort to seek out companies for partners that would, with the assistance of responsible cooperation, contribute to better quality offers and consequently to increased income and the good reputation of both companies. Responsibilities and ethics is where organizations on bothsides would take on and accept their own norms, tasks, obligations and be aware that in a relationship there is a need to give explanations and justify one’s actions, such partnerships will be long and prosperous. This requires a great deal of knowledge and maturity together with a very important personal characteristic that is care. This study examines whether the creation of long term partnerships through responsible and more personal (friendlyrelations brings the organization to greater success.Purpose: The purpose of this research is to determine how important it is for organizations in the tourism industry to build long term relationships, what it should be based on and whether companies are willing to change the current methods of operations.Method: The method of research was an interview with individuals that had a certain position within a tourism company and had contacts with partners and were obligated to see out new ones. A paradigm model was built and the responses analysed.Results: The survey results are encouraging. The interviews showed that respondents were aware that it is necessary to have long term and responsible partnerships. They recognized that in today’s world there is a lack of collaboration that is based on understanding andthat there should be more relations on a personal level. It isrequired that this changes in the future. The participants specifically highlight financial irresponsibility in many companies that destroys collaboration.Organization: With the help of this study, the author attempts to contribute ideas to organizations on how to create solid collaboration with partners, as

  17. Creating healthy and just bioregions.

    Science.gov (United States)

    Pezzoli, Keith; Leiter, Robert Allen

    2016-03-01

    Dramatic changes taking place locally, regionally, globally, demand that we rethink strategies to improve public health, especially in disadvantaged communities where the cumulative impacts of toxicant exposure and other environmental and social stressors are most damaging. The emergent field of Sustainability Science, including a new bioregionalism for the 21st Century, is giving rise to promising place-based (territorially rooted) approaches. Embedded in this bioregional approach is an integrated planning framework (IPF) that enables people to map and develop plans and strategies that cut across various scales (e.g. from regional to citywide to neighborhood scale) and various topical areas (e.g. urban land use planning, water resource planning, food systems planning and "green infrastructure" planning) with the specific intent of reducing the impacts of toxicants to public health and the natural environment. This paper describes a case of bioregionally inspired integrated planning in San Diego, California (USA). The paper highlights food-water-energy linkages and the importance of "rooted" community-university partnerships and knowledge-action collaboratives in creating healthy and just bioregions.

  18. Creating healthy and just bioregions.

    Science.gov (United States)

    Pezzoli, Keith; Leiter, Robert Allen

    2016-03-01

    Dramatic changes taking place locally, regionally, globally, demand that we rethink strategies to improve public health, especially in disadvantaged communities where the cumulative impacts of toxicant exposure and other environmental and social stressors are most damaging. The emergent field of Sustainability Science, including a new bioregionalism for the 21st Century, is giving rise to promising place-based (territorially rooted) approaches. Embedded in this bioregional approach is an integrated planning framework (IPF) that enables people to map and develop plans and strategies that cut across various scales (e.g. from regional to citywide to neighborhood scale) and various topical areas (e.g. urban land use planning, water resource planning, food systems planning and "green infrastructure" planning) with the specific intent of reducing the impacts of toxicants to public health and the natural environment. This paper describes a case of bioregionally inspired integrated planning in San Diego, California (USA). The paper highlights food-water-energy linkages and the importance of "rooted" community-university partnerships and knowledge-action collaboratives in creating healthy and just bioregions. PMID:26812849

  19. Creating a winning organizational culture.

    Science.gov (United States)

    Campbell, Robert James

    2009-01-01

    This article explores the idea of how to create a winning organizational culture. By definition, a winning organizational culture is one that is able to make current innovations stick, while continuously changing based on the demands of the marketplace. More importantly, the article explores the notion that a winning organizational culture can have a profound impact on the conscious of the workforce, helping each individual to become a better, more productive person, who provides important services and products to the community. To form a basis toward defining the structure of what a winning organization culture looks like, 4 experts were asked 12 questions related to the development of an organizational culture. Three of the experts have worked intimately within the health care industry, while a fourth has been charged with turning around an organization that has had a losing culture for 17 years. The article provides insight into the role that values, norms, goals, leadership style, familiarity, and hiring practices play in developing a winning organizational culture. The article also emphasizes the important role that leaders perform in developing an organizational culture.

  20. Creating experimental color harmony map

    Science.gov (United States)

    Chamaret, Christel; Urban, Fabrice; Lepinel, Josselin

    2014-02-01

    Starting in the 17th century with Newton, color harmony is a topic that did not reach a consensus on definition, representation or modeling so far. Previous work highlighted specific characteristics for color harmony on com- bination of color doublets or triplets by means of a human rating on a harmony scale. However, there were no investigation involving complex stimuli or pointing out how harmony is spatially located within a picture. The modeling of such concept as well as a reliable ground-truth would be of high value for the community, since the applications are wide and concern several communities: from psychology to computer graphics. We propose a protocol for creating color harmony maps from a controlled experiment. Through an eye-tracking protocol, we focus on the identification of disharmonious colors in pictures. The experiment was composed of a free viewing pass in order to let the observer be familiar with the content before a second pass where we asked "to search for the most disharmonious areas in the picture". Twenty-seven observers participated to the experiments that was composed of a total of 30 different stimuli. The high inter-observer agreement as well as a cross-validation confirm the validity of the proposed ground-truth.