WorldWideScience

Sample records for calpain 3-deficient mice

  1. Selective pseudohypertrophy of vastus medialis muscles associated with calpain 3 deficiency.

    Science.gov (United States)

    Vattemi, Gaetano; Neri, Marcella; Marini, Matteo; Gualandi, Francesca; Tonin, Paola; Bertolasi, Laura; Guglielmi, Valeria; Catalli, Claudio; Novelli, Giuseppe; Ferlini, Alessandra; Tomelleri, Giuliano

    2012-09-01

    Calpain 3 deficiency causes limb girdle muscular dystrophy type 2A, which is one of the most common forms of limb girdle muscular dystrophy. Nevertheless, calpainopathy is not always associated with mutations in the specific gene and secondary reduction in protein expression has been described. We report a case of a 43-year-old man who complained of thigh muscle stiffness and had muscle hypertrophy of both vastus medialis with prolonged myotonic contraction by percussion. A muscle biopsy showed dystrophic features and calpain 3 deficiency was shown by immunoblot analysis although mutations in the specific gene were not found. Known cases of secondary calpain 3 protein deficiency were ruled out and mutations in MD1 and MD2 genes were excluded. This patient represents the first case of calpain 3 deficiency with selective pseudohypertrophy of vastus medialis muscles.

  2. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  3. Spontaneous metastasis in matrix metalloproteinase 3-deficient mice

    DEFF Research Database (Denmark)

    Juncker-Jensen, Anna; Rømer, John; Pennington, Caroline J

    2009-01-01

    in tumorigenesis and metastatic growth. In this model the stromal expression of MMP-3 mRNA resembles the predominant MMP-3 expression pattern observed in human ductal breast carcinomas. We studied a cohort of 63 PyMT transgenic mice, either deficient for MMP-3 or wild-type controls. The degree of metastasis did...... not differ significantly between the two groups of mice, although the median lung metastasis volume was more than threefold increased in MMTV-PyMT mice deficient in MMP-3. Likewise, primary tumor growth rate and lymph node metastasis were not significantly affected by MMP-3-deficiency. By comparing m......RNA levels in MMP-3-deficient PyMT tumors with PyMT wild-type tumors we excluded compensatory transcriptional changes of other MMPs or their specific inhibitors. Thus, we conclude that genetic ablation of MMP-3 does not significantly affect tumor growth and metastasis in the MMTV-PyMT model....

  4. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  5. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  6. Timp3 deficient mice show resistance to developing breast cancer.

    Directory of Open Access Journals (Sweden)

    Hartland W Jackson

    Full Text Available Timp3 is commonly silenced in breast cancer, but mechanistic studies have identified both tumor promotion and suppression effects of this gene. We have taken a genetic approach to determine the impact of Timp3 loss on two mouse models of breast cancer. Interestingly, MMTV-PyMT Timp3-⁄- mice have delayed tumor onset and 36% of MMTV-Neu Timp3-⁄- mice remain tumor free. TIMP3 is a regulator of TNF signaling and similar to Timp3, Tnf or Tnfr1 loss delays early tumorigenesis. The tumor suppression in Timp3 null mice requires Tnfr1, but does not result in alterations in the local immune compartment. In the mammary gland, Timps are highly expressed in the stroma and through the transplantation of tumor cells we observe that Timp3 deficiency in the host is sufficient to delay the growth of early, but not advanced tumor cells. Together our data is the first to identify a tumor promoting role of endogenous Timp3 in vivo, the spatial and temporal windows of this effect, and its dependence on Tnfr1.

  7. m-Calpain is required for preimplantation embryonic development in mice

    Directory of Open Access Journals (Sweden)

    Williams Karen

    2006-01-01

    Full Text Available Abstract Background μ-calpain and m-calpain are ubiquitously expressed proteases implicated in cellular migration, cell cycle progression, degenerative processes and cell death. These heterodimeric enzymes are composed of distinct catalytic subunits, encoded by Capn1 (μ-calpain or Capn2 (m-calpain, and a common regulatory subunit encoded by Capn4. Disruption of the mouse Capn4 gene abolished both μ-calpain and m-calpain activity, and resulted in embryonic lethality, thereby suggesting essential roles for one or both of these enzymes during mammalian embryogenesis. Disruption of the Capn1 gene produced viable, fertile mice implying that either m-calpain could compensate for the loss of μ-calpain, or that the loss of m-calpain was responsible for death of Capn4-/- mice. Results To distinguish between the alternatives described above, we deleted an essential coding region in the mouse Capn2 gene in embryonic stems cells and transmitted this mutant allele through the mouse germline. Breeding of heterozygous animals failed to produce homozygous mutant live offspring or implanted embryos. A nested PCR genotyping protocol was established, and homozygous preimplantation mutant embryos were detected at the morula but not at the blastocyts stage. Conclusion We conclude that homozygous disruption of the Capn2 gene results in pre-implantation embryonic lethality between the morula and blastocyst stage. This establishes that μ-calpain and m-calpain have distinct functions, and that m-calpain is vital for development of the preimplantation murine embryo.

  8. FGFR3 deficient mice have accelerated fracture repair

    Science.gov (United States)

    Xie, Yangli; Luo, Fengtao; Xu, Wei; Wang, Zuqiang; Sun, Xianding; Xu, Meng; Huang, Junlan; Zhang, Dali; Tan, Qiaoyan; Chen, Bo; Jiang, Wanling; Du, Xiaolan; Chen, Lin

    2017-01-01

    Bone fracture healing is processed through multiple biological stages that partly recapitulates the skeletal development process. FGFR3 is a negative regulator of chondrogenesis during embryonic stage and plays an important role in both chondrogenesis and osteogenesis. We have investigated the role of FGFR3 in fracture healing using unstabilized fracture model and found that gain-of-function mutation of FGFR3 inhibits the initiation of chondrogenesis during cartilage callus formation. Here, we created closed, stabilized proximal tibia fractures with an intramedullary pin in Fgfr3-/-mice and their littermate wild-type mice. Fracture healing was evaluated by radiography, micro-CT, histology, and real-time polymerase chain reaction (RT-PCR) analysis. The fractured Fgfr3-/- mice had increased formation of cartilaginous callus, more fracture callus, and more rapid endochondral ossification in fracture sites with up-regulated expressions of chondrogenesis related gene. The fractures of Fgfr3-/- mice healed faster with accelerated fracture callus mineralization and up-regulated expression of osteoblastogenic genes. The healing of fractures in Fgfr3-/- mice was accelerated in the stage of formation of cartilage and endochondral ossification. Downregulation of FGFR3 activity can be considered as a potential bio-therapeutic strategy for fracture treatment. PMID:28924384

  9. Calpain Inhibition Attenuates Adipose Tissue Inflammation and Fibrosis in Diet-induced Obese Mice.

    Science.gov (United States)

    Muniappan, Latha; Javidan, Aida; Jiang, Weihua; Mohammadmoradi, Shayan; Moorleghen, Jessica J; Katz, Wendy S; Balakrishnan, Anju; Howatt, Deborah A; Subramanian, Venkateswaran

    2017-10-31

    Adipose tissue macrophages have been proposed as a link between obesity and insulin resistance. However, the mechanisms underlying these processes are not completely defined. Calpains are calcium-dependent neutral cysteine proteases that modulate cellular function and have been implicated in various inflammatory diseases. To define whether activated calpains influence diet-induced obesity and adipose tissue macrophage accumulation, mice that were either wild type (WT) or overexpressing calpastatin (CAST Tg), the endogenous inhibitor of calpains were fed with high (60% kcal) fat diet for 16 weeks. CAST overexpression did not influence high fat diet-induced body weight and fat mass gain throughout the study. Calpain inhibition showed a transient improvement in glucose tolerance at 5 weeks of HFD whereas it lost this effect on glucose and insulin tolerance at 16 weeks HFD in obese mice. However, CAST overexpression significantly reduced adipocyte apoptosis, adipose tissue collagen and macrophage accumulation as detected by TUNEL, Picro Sirius and F4/80 immunostaining, respectively. CAST overexpression significantly attenuated obesity-induced inflammatory responses in adipose tissue. Furthermore, calpain inhibition suppressed macrophage migration to adipose tissue in vitro. The present study demonstrates a pivotal role for calpains in mediating HFD-induced adipose tissue remodeling by influencing multiple functions including apoptosis, fibrosis and inflammation.

  10. Downregulations of CD36 and Calpain-1, Inflammation, and Atherosclerosis by Simvastatin in Apolipoprotein E Knockout Mice.

    Science.gov (United States)

    Yin, Meihui; Liu, Qianqian; Yu, Lan; Yang, Yueyan; Lu, Meili; Wang, Hongxin; Luo, Duosheng; Rong, Xianglu; Tang, Futian; Guo, Jiao

    2017-01-01

    In the previous in vitro study, we found that simvastatin decreased the protein expression of CD36, the scavenger receptor, and calpain-1, the Ca2+-sensitive cysteine protease, in oxidized low-density lipoprotein (oxLDL)-treated macrophages. In this in vivo study, we investigated whether simvastatin downregulates the expression of CD36 and calpain-1 and inhibits the inflammation and atherosclerosis in apolipoprotein E knockout (ApoE KO) mice. Twenty male 6-week-old ApoE KO mice were divided into 2 groups: the ApoE KO group and the ApoE KO + simvastatin (ApoE KO + Sim) group. Atherosclerotic lesions were evaluated and the expressions of CD68, CD36, and calpain-1 in aorta were examined. Simvastatin inhibited the atherosclerotic lesion in ApoE KO mice. In addition, simvastatin reduced the contents of oxLDL, thiobarbituric acid reactive substances, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in serum, decreased the mRNA and protein expressions of CD36 and reduced the mRNA expression of TNF-α and IL-6 in the aortas. Furthermore, simvastatin reduced the calpain activity and the protein expression of calpain-1 in the aorta. The results suggested that the attenuation of atherosclerotic lesions in ApoE KO mice by simvastatin might be associated with the downregulations of CD36 and calpain-1 and with inflammation. © 2017 S. Karger AG, Basel.

  11. Growth and development of skeletal muscle in mu-calpain knockout mice

    Science.gov (United States)

    The calpain system has been identified as a potential candidate in muscle growth and development due to its role in a variety of cellular processes such as cytoskeletal remodeling and myogenesis. The objective of this study was to evaluate growth and development of skeletal muscle in mu-calpain kno...

  12. Complement C3 deficiency attenuates chronic hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Eileen M Bauer

    Full Text Available Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice.Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.

  13. Pitx3 deficient mice as a genetic animal model of co-morbid depressive disorder and parkinsonism.

    Science.gov (United States)

    Kim, Kyoung-Shim; Kang, Young-Mi; Kang, Young; Park, Tae-Shin; Park, Hye-Yeon; Kim, Yoon-Jung; Han, Baek-Soo; Kim, Chun-Hyung; Lee, Chul-Ho; Ardayfio, Paul A; Han, Pyung-Lim; Jung, Bong-Hyun; Kim, Kwang-Soo

    2014-03-13

    Approximately 40-50% of all patients with Parkinson׳s disease (PD) show symptoms and signs of depressive disorders, for which neither pathogenic understanding nor rational treatment are available. Using Pit3x-deficient mice, a model for selective nigrostriatal dopaminergic neurodegeneration, we tested depression-related behaviors and acute stress responses to better understand how a nigrostriatal dopaminergic deficit increases the prevalence of depressive disorders in PD patients. Pitx3-deficient mice showed decreased sucrose consumption and preference in the two-bottle free-choice test of anhedonia. Acute restraint stress increased c-Fos (known as a neuronal activity marker) expression levels in various brain regions, including the prefrontal cortex, striatum, nucleus accumbens, and paraventricular nucleus of the hypothalamus (PVN), in both Pitx3+/+ and -/- mice. However, the stress-induced increases in c-Fos levels in the cortex, dorsal striatum, and PVN were significantly greater in Pitx3-/- than +/+ mice, suggesting that signs of depressive disorders in parkinsonism are related to altered stress vulnerability. Based on these results, we propose that Pitx3-/- mice may serve as a useful genetic animal model for co-morbid depressive disorder and parkinsonism. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Exacerbation of Facial Motoneuron Loss after Facial Nerve Axotomy in CCR3-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Derek A Wainwright

    2009-11-01

    Full Text Available We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type, a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3–/– mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2 –/– (recombination activating gene-2-deficient mice adoptively transferred CD4+ T-cells isolated from CCR3–/– mice, but not in CCR3–/– mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury.

  15. Gαi2- and Gαi3-Deficient Mice Display Opposite Severity of Myocardial Ischemia Reperfusion Injury

    Science.gov (United States)

    Köhler, David; Devanathan, Vasudharani; Bernardo de Oliveira Franz, Claudia; Eldh, Therese; Novakovic, Ana; Roth, Judith M.; Granja, Tiago; Birnbaumer, Lutz; Rosenberger, Peter; Beer-Hammer, Sandra; Nürnberg, Bernd

    2014-01-01

    G-protein-coupled receptors (GPCRs) are the most abundant receptors in the heart and therefore are common targets for cardiovascular therapeutics. The activated GPCRs transduce their signals via heterotrimeric G-proteins. The four major families of G-proteins identified so far are specified through their α-subunit: Gαi, Gαs, Gαq and G12/13. Gαi-proteins have been reported to protect hearts from ischemia reperfusion injury. However, determining the individual impact of Gαi2 or Gαi3 on myocardial ischemia injury has not been clarified yet. Here, we first investigated expression of Gαi2 and Gαi3 on transcriptional level by quantitative PCR and on protein level by immunoblot analysis as well as by immunofluorescence in cardiac tissues of wild-type, Gαi2-, and Gαi3-deficient mice. Gαi2 was expressed at higher levels than Gαi3 in murine hearts, and irrespective of the isoform being knocked out we observed an up regulation of the remaining Gαi-protein. Myocardial ischemia promptly regulated cardiac mRNA and with a slight delay protein levels of both Gαi2 and Gαi3, indicating important roles for both Gαi isoforms. Furthermore, ischemia reperfusion injury in Gαi2- and Gαi3-deficient mice exhibited opposite outcomes. Whereas the absence of Gαi2 significantly increased the infarct size in the heart, the absence of Gαi3 or the concomitant upregulation of Gαi2 dramatically reduced cardiac infarction. In conclusion, we demonstrate for the first time that the genetic ablation of Gαi proteins has protective or deleterious effects on cardiac ischemia reperfusion injury depending on the isoform being absent. PMID:24858945

  16. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice

    Directory of Open Access Journals (Sweden)

    Elodie Drapeau

    2014-06-01

    Full Text Available Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent.

  17. Proteomic and metabolomic characterization of streptozotocin-induced diabetic nephropathy in TIMP3-deficient mice.

    Science.gov (United States)

    Rossi, Claudia; Marzano, Valeria; Consalvo, Ada; Zucchelli, Mirco; Levi Mortera, Stefano; Casagrande, Viviana; Mavilio, Maria; Sacchetta, Paolo; Federici, Massimo; Menghini, Rossella; Urbani, Andrea; Ciavardelli, Domenico

    2017-11-13

    The tissue inhibitor of metalloproteinase TIMP3 is a stromal protein that restrains the activity of both protease and receptor in the extracellular matrix and has been found to be down-regulated in diabetic nephropathy (DN), the leading cause of end-stage renal disease in developed countries. In order to gain deeper insights on the association of loss of TIMP3 and DN, we performed differential proteomic analysis of kidney and blood metabolic profiling of wild-type and Timp3-knockout mice before and after streptozotocin (STZ) treatment, widely used to induce insulin deficiency and hyperglycemia. Kidney proteomic data and blood metabolic profiles suggest significant alterations of peroxisomal and mitochondrial fatty acids β-oxidation in Timp3-knockout mice compared to wild-type mice under basal condition. These alterations were exacerbated in response to STZ treatment. Proteomic and metabolomic approaches showed that loss of TIMP3 alone or in combination with STZ treatment results in significant alterations of kidney lipid metabolism and peripheral acylcarnitine levels, supporting the idea that loss of TIMP3 may generate a phenotype more prone to DN.

  18. Severe developmental B lymphopoietic defects in Foxp3-deficient mice are refractory to adoptive regulatory T cell therapy

    Directory of Open Access Journals (Sweden)

    Julia eRiewaldt

    2012-06-01

    Full Text Available The role of Foxp3-expressing regulatory T (Treg cells in tolerance and autoimmunity is well established. However, although of considerable clinical interest, the role of Treg cells in the regulation of hematopoietic homeostasis remains poorly understood. Thus, we analysed B and T lymphopoiesis in the scurfy (Sf mouse model of Treg cell deficiency. In these experiments, the near-complete block of B lymphopoiesis in the BM of adolescent Sf mice was attributed to autoimmune T cells. We could exclude a constitutive lympho-hematopoietic defect or a B cell-intrinsic function of Foxp3. Efficient B cell development in the BM early in ontogeny and pronounced extramedullary B lymphopoietic activity resulted in a peripheral pool of mature B cells in adolescent Sf mice. However, marginal zone B and B-1a cells were absent throughout ontogeny. Developmental B lymphopoietic defects largely correlated with defective thymopoiesis. Importantly, neonatal adoptive Treg cell therapy suppressed exacerbated production of inflammatory cytokines and restored thymopoiesis but was ineffective in recovering defective B lymphopoiesis, probably due to a failure to compensate production of stroma cell-derived IL-7 and CXCL12. Our observations on autoimmune-mediated incapacitation of the BM environment in Foxp3-deficient mice will have direct implications for the rational design of BM transplantation protocols for patients with severe genetic deficiencies in functional Foxp3+ Treg cells.

  19. Generation and characterization of epoxide hydrolase 3 (EPHX3-deficient mice.

    Directory of Open Access Journals (Sweden)

    Samantha L Hoopes

    Full Text Available Cytochrome P450 (CYP epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs, which play an important role in blood pressure regulation, protection against ischemia-reperfusion injury, angiogenesis, and inflammation. Epoxide hydrolases metabolize EETs to their corresponding diols (dihydroxyeicosatrienoic acids; DHETs which are biologically less active. Microsomal epoxide hydrolase (EPHX1, mEH and soluble epoxide hydrolase (EPHX2, sEH were identified >30 years ago and are capable of hydrolyzing EETs to DHETs. A novel epoxide hydrolase, EPHX3, was recently identified by sequence homology and also exhibits epoxide hydrolase activity in vitro with a substrate preference for 9,10-epoxyoctadecamonoenoic acid (EpOME and 11,12-EET. EPHX3 is highly expressed in the skin, lung, stomach, esophagus, and tongue; however, its endogenous function is unknown. Therefore, we investigated the impact of genetic disruption of Ephx3 on fatty acid epoxide hydrolysis and EET-related physiology in mice. Ephx3-/- mice were generated by excising the promoter and first four exons of the Ephx3 gene using Cre-LoxP methodology. LC-MS/MS analysis of Ephx3-/- heart, lung, and skin lysates revealed no differences in endogenous epoxide:diol ratios compared to wild type (WT. Ephx3-/- mice also exhibited no change in plasma levels of fatty acid epoxides and diols relative to WT. Incubations of cytosolic and microsomal fractions prepared from Ephx3-/- and WT stomach, lung, and skin with synthetic 8,9-EET, 11,12-EET, and 9,10-EpOME revealed no significant differences in rates of fatty acid diol formation between the genotypes. Ephx3-/- hearts had similar functional recovery compared to WT hearts following ischemia/reperfusion injury. Following intranasal lipopolysaccharide (LPS exposure, Ephx3-/- mice were not different from WT in terms of lung histology, bronchoalveolar lavage fluid cell counts, or fatty acid epoxide and diol levels. We conclude that genetic

  20. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance.

    Science.gov (United States)

    Sun, Yu B Y; Qu, Xinli; Howard, Victor; Dai, Lie; Jiang, Xiaoyun; Ren, Yi; Fu, Ping; Puelles, Victor G; Nikolic-Paterson, David J; Caruana, Georgina; Bertram, John F; Sleeman, Mark W; Li, Jinhua

    2015-08-01

    Signaling by TGF-β/Smad3 plays a key role in renal fibrosis. As obesity is one of the major risk factors of chronic and end-stage renal disease, we studied the role of Smad3 signaling in the pathogenesis of obesity-related renal disease. After switching to a high fat diet, the onset of Smad3 C-terminal phosphorylation, increase in albuminuria, and the early stages of peripheral and renal insulin resistance occurred at 1 day, and 4 and 8 weeks, respectively, in C57BL/6 mice. The loss of synaptopodin, a functional marker of podocytes, and phosphorylation of the Smad3 linker region (T179 and S213) appeared after 4 weeks of the high fat diet. This suggests a temporal pattern of Smad3 signaling activation leading to kidney injury and subsequent insulin resistance in the development of obesity-related renal disease. In vivo, Smad3 knockout attenuated the high fat diet-induced proteinuria, renal fibrosis, overall podocyte injury, and mitochondrial dysfunction in podocytes. In vitro palmitate caused a rapid activation of Smad3 in 30 min, loss of synaptopodin in 2 days, and impaired insulin signaling in 3 days in isolated mouse podocytes. Blockade of either Smad3 phosphorylation by SIS3 (a Smad3 inhibitor) or T179 phosphorylation by flavopiridol (a CDK9 inhibitor) prevented the palmitate-induced loss of synaptopodin and mitochondrial function in podocytes. Thus, Smad3 signaling plays essential roles in obesity-related renal disease and may be a novel therapeutic target.

  1. ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice.

    Science.gov (United States)

    Huang, Yun-Ying; Huang, Xiong-Qin; Zhao, Li-Yan; Sun, Fang-Yun; Chen, Wen-Liang; Du, Jie-Yi; Yuan, Feng; Li, Jie; Huang, Xue-Lian; Liu, Jie; Lv, Xiao-Fei; Guan, Yong-Yuan; Chen, Jian-Wen; Wang, Guan-Lei

    2014-11-01

    Palmitate, a common saturated free fatty acid (FFA), has been demonstrated to induce preadipocyte apoptosis in the absence of adipogenic stimuli, suggesting that preadipocytes may be prone to apoptosis under adipogenic insufficient conditions, like type 2 diabetes mellitus (T2DM). ClC-3, encoding Cl(-) channel or Cl(-)/H(+) antiporter, is critical for cell fate choices of proliferation versus apoptosis under diseased conditions. However, it is unknown whether ClC-3 is related with preadipocyte apoptosis induced by palmitate or T2DM. Palmitate, but not oleate, induced apoptosis and increase in ClC-3 protein expression and endoplasmic reticulum (ER) stress in 3T3-L1 preadipocyte. ClC-3 specific siRNA attenuated palmitate-induced apoptosis and increased protein levels of Grp78, ATF4, CHOP and phosphorylation of JNK1/2, whereas had no effects on increased phospho-PERK and phospho-eIF2α protein expression. Moreover, the enhanced apoptosis was shown in preadipocytes from high-sucrose/fat, low-dose STZ induced T2DM mouse model with hyperglycemia, hyperlipidemia (elevated serum TG and FFA levels) and insulin resistance. ClC-3 knockout significantly attenuated preadipocyte apoptosis and the above metabolic disorders in T2DM mice. These data demonstrated that ClC-3 deficiency prevent preadipocytes against palmitate-induced apoptosis via suppressing ER stress, and also suggested that ClC-3 may play a role in regulating cellular apoptosis and disorders of glucose and lipid metabolism during T2DM.

  2. Replenishment of Docosahexaenoic Acid (DHA) in Dietary n-3-Deficient Mice Fed DHA in Triglycerides or Phosphatidylcholines after Weaning.

    Science.gov (United States)

    Wang, Dan-Dan; Wu, Fang; Wen, Min; Ding, Lin; Du, Lei; Xue, Chang-Hu; Xu, Jie; Wang, Yu-Ming

    2018-01-16

    Previous studies have shown that DHA in triglyceride (TG) and phosphatidylcholine (PC) forms are different in their bioavailability. The aim of this study was to investigate the comparative effects of DHA-TG and DHA-PC on tissue DHA accretion in dietary n-3 polyunsaturated fatty acid deficient (n-3 Def) mice. The mice were fed with n-3 Def diet containing DHA-TG or DHA-PC (5 g/kg diet) for 2, 4, 7, or 14 d after weaning, respectively. The DHA levels in the cortex, liver, testis, and erythrocytes were analyzed by gas chromatography. For liver, DHA mainly existed in hepatic phospholipids relative to triglycerides. Both DHA-TG and DHA-PC could recover the hepatic DHA to a normal level. Interestingly, DHA-TG was more effective in increasing the DHA level in hepatic triglycerides, and DHA-PC was more effective in increasing the DHA level in hepatic phospholipids. For erythrocytes, during the first 7 d, no difference was observed after dietary DHA-TG and DHA-PC but a significantly higher DHA percentage was detected in the DHA-PC group after 14 d. For cortex, the DHA-TG group showed a higher cortical DHA level at the 4th day, but the DHA-PC group showed a higher cortical DHA level with a greater slope from Day 7 to Day 14, and the same trend was observed in testis. But unexpectedly, the DHA level in testis showed a downtrend from Day 7 to Day 14. This study suggests that, under dietary n-3-deficient condition, both DHA-TG and DHA-PC could recover the DHA level in tissues after weaning, and DHA-PC showed a better supplemental effect. Dietary DHA is essential for neurodevelopment which is usually accompanied by large amounts of DHA accretion in the brain. Our present study showed that DHA-PC had a better efficiency for DHA accretion in the brain and other tissues compared with DHA-TG. The findings are supposed to pave the way for the DHA in phospholipids as a novel nutrient added into the infant formula and assisted food for neurodevelopment. © 2018 Institute of Food

  3. Alkaline ceramidase 3 deficiency aggravates colitis and colitis-associated tumorigenesis in mice by hyperactivating the innate immune system

    Science.gov (United States)

    Wang, K; Xu, R; Snider, A J; Schrandt, J; Li, Y; Bialkowska, A B; Li, M; Zhou, J; Hannun, Y A; Obeid, L M; Yang, V W; Mao, C

    2016-01-01

    Increasing studies suggest that ceramides differing in acyl chain length and/or degree of unsaturation have distinct roles in mediating biological responses. However, still much remains unclear about regulation and role of distinct ceramide species in the immune response. Here, we demonstrate that alkaline ceramidase 3 (Acer3) mediates the immune response by regulating the levels of C18:1-ceramide in cells of the innate immune system and that Acer3 deficiency aggravates colitis in a murine model by augmenting the expression of pro-inflammatory cytokines in myeloid and colonic epithelial cells (CECs). According to the NCBI Gene Expression Omnibus (GEO) database, ACER3 is downregulated in immune cells in response to lipopolysaccharides (LPS), a potent inducer of the innate immune response. Consistent with these data, we demonstrated that LPS downregulated both Acer3 mRNA levels and its enzymatic activity while elevating C18:1-ceramide, a substrate of Acer3, in murine immune cells or CECs. Knocking out Acer3 enhanced the elevation of C18:1-ceramide and the expression of pro-inflammatory cytokines in immune cells and CECs in response to LPS challenge. Similar to Acer3 knockout, treatment with C18:1-ceramide, but not C18:0-ceramide, potentiated LPS-induced expression of pro-inflammatory cytokines in immune cells. In the mouse model of dextran sulfate sodium-induced colitis, Acer3 deficiency augmented colitis-associated elevation of colonic C18:1-ceramide and pro-inflammatory cytokines. Acer3 deficiency aggravated diarrhea, rectal bleeding, weight loss and mortality. Pathological analyses revealed that Acer3 deficiency augmented colonic shortening, immune cell infiltration, colonic epithelial damage and systemic inflammation. Acer3 deficiency also aggravated colonic dysplasia in a mouse model of colitis-associated colorectal cancer. Taken together, these results suggest that Acer3 has an important anti-inflammatory role by suppressing cellular or tissue C18:1-ceramide, a

  4. Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2

    OpenAIRE

    Grigorieva, Irina V.; Mirczuk, Samantha; Gaynor, Katherine U.; Nesbit, M. Andrew; Grigorieva, Elena F.; Wei, Qiaozhi; Ali, Asif; Fairclough, Rebecca J.; Stacey, Joanna M.; Stechman, Michael J.; Mihai, Radu; Kurek, Dorota; Fraser, William D.; Hough, Tertius; Condie, Brian G.

    2010-01-01

    Heterozygous mutations of GATA3, which encodes a dual zinc-finger transcription factor, cause hypoparathyroidism with sensorineural deafness and renal dysplasia. Here, we have investigated the role of GATA3 in parathyroid function by challenging Gata3+/– mice with a diet low in calcium and vitamin D so as to expose any defects in parathyroid function. This led to a higher mortality among Gata3+/– mice compared with Gata3+/+ mice. Compared with their wild-type littermates, Gata3+/– mice had lo...

  5. Comparative analyses of DHA-Phosphatidylcholine and recombination of DHA-Triglyceride with Egg-Phosphatidylcholine or Glycerylphosphorylcholine on DHA repletion in n-3 deficient mice.

    Science.gov (United States)

    Wu, Fang; Wang, Dan-Dan; Wen, Min; Che, Hong-Xia; Xue, Chang-Hu; Yanagita, Teruyoshi; Zhang, Tian-Tian; Wang, Yu-Ming

    2017-12-08

    Docosahexaenoic acid (DHA) is important for optimal neurodevelopment and brain function during the childhood when the brain is still under development. The effects of DHA-Phosphatidylcholine (DHA-PC) and the recombination of DHA-Triglyceride with egg PC (DHA-TG + PC) or α-Glycerylphosphorylcholine (DHA-TG + α-GPC) were comparatively analyzed on DHA recovery and the DHA accumulation kinetics in tissues including cerebral cortex, erythrocyte, liver, and testis were evaluated in the weaning n-3 deficient mice. The concentration of DHA in weaning n-3 deficient mice could be recovered rapidly by dietary DHA supplementation, in which DHA-PC exhibited the better efficacy than the recombination of DHA-Triglyceride with egg PC or α-GPC. Interestingly, DHA-TG + α-GPC exhibited the greater effect on DHA accumulation than DHA-TG + PC in cerebral cortex and erythrocyte (p DHA-PC. Meanwhile, DHA-TG + PC showed a similar effect to DHA-PC on DHA repletion in testis, which was better than that of DHA-TG + α-GPC (p DHA supplements could be applied targetedly based on the DHA recovery in different tissues, although the supplemental effects of the recombination of DHA-Triglyceride with egg PC or α-GPC were not completely equivalent to that of DHA-PC, which could provide some references to develop functional foods to support brain development and function.

  6. Caspr3-Deficient Mice Exhibit Low Motor Learning during the Early Phase of the Accelerated Rotarod Task

    Science.gov (United States)

    Hirata, Haruna; Takahashi, Aki; Shimoda, Yasushi; Koide, Tsuyoshi

    2016-01-01

    Caspr3 (Contactin-associated protein-like 3, Cntnap3) is a neural cell adhesion molecule belonging to the Caspr family. We have recently shown that Caspr3 is expressed abundantly between the first and second postnatal weeks in the mouse basal ganglia, including the striatum, external segment of the globus pallidus, subthalamic nucleus, and substantia nigra. However, its physiological role remains largely unknown. In this study, we conducted a series of behavioral analyses on Capsr3-knockout (KO) mice and equivalent wild-type (WT) mice to investigate the role of Caspr3 in brain function. No significant differences were observed in most behavioral traits between Caspr3-KO and WT mice, but we found that Caspr3-KO mice performed poorly during the early phase of the accelerated rotarod task in which latency to falling off a rod rotating with increasing velocity was examined. In the late phase, the performance of the Caspr3-KO mice caught up to the level of WT mice, suggesting that the deletion of Caspr3 caused a delay in motor learning. We then examined changes in neural activity after training on the accelerated rotarod by conducting immunohistochemistry using antibody to c-Fos, an indirect marker for neuronal activity. Experience of the accelerated rotarod task caused increases in the number of c-Fos-positive cells in the dorsal striatum, cerebellum, and motor cortex in both Caspr3-KO and WT mice, but the number of c-Fos-positive cells was significantly lower in the dorsal striatum of Caspr3-KO mice than in that of WT mice. The expression of c-Fos in the ventral striatum of Caspr3-KO and WT mice was not altered by the training. Our findings suggest that reduced activation of neural cells in the dorsal striatum in Caspr3-KO mice leads to a decline in motor learning in the accelerated rotarod task. PMID:26807827

  7. Sleep Homeostatic and Waking Behavioral Phenotypes in Egr3-Deficient Mice Associated with Serotonin Receptor 5-HT2 Deficits.

    Science.gov (United States)

    Grønli, Janne; Clegern, William C; Schmidt, Michelle A; Nemri, Rahmi S; Rempe, Michael J; Gallitano, Amelia L; Wisor, Jonathan P

    2016-12-01

    The expression of the immediate early gene early growth response 3 (Egr3) is a functional marker of brain activity including responses to novelty, sustained wakefulness, and sleep. We examined the role of this gene in regulating wakefulness and sleep. Electroencephalogram/electromyogram (EEG/EMG) were recorded in Egr3-/- and wild-type (WT) mice during 24 h baseline, 6 h sleep disruption and 6 h recovery. Serotonergic signaling was assessed with 6 h EEG/EMG recordings after injections of nonselective 5-HT2 antagonist (clozapine), selective 5-HT2 antagonists (5-HT2A; MDL100907 and 5-HT2BC; SB206553) and a cocktail of both selective antagonists, administered in a randomized order to each animal. Egr3-/- mice did not exhibit abnormalities in the timing of wakefulness and slow wave sleep (SWS); however, EEG dynamics in SWS (suppressed 1-3 Hz power) and in quiet wakefulness (elevated 3-8 Hz and 15-35 Hz power) differed in comparison to WT-mice. Egr3-/- mice showed an exaggerated response to sleep disruption as measured by active wakefulness, but with a blunted increase in homeostatic sleep drive (elevated 1-4 Hz power) relative to WT-mice. Egr3-/-mice exhibit greatly reduced sedative effects of clozapine at the electroencephalographic level. In addition, clozapine induced a previously undescribed dissociated state (low amplitude, low frequency EEG and a stable, low muscle tone) lasting up to 2 h in WT-mice. Egr3-/- mice did not exhibit this phenomenon. Selective 5-HT2A antagonist, alone or in combination with selective 5-HT2BC antagonist, caused EEG slowing coincident with behavioral quiescence in WT-mice but not in Egr3-/- mice. Egr3 has an essential role in regulating cortical arousal, wakefulness, and sleep, presumably by its regulation of 5-HT2 receptors.

  8. A novel role for APOBEC3: Susceptibility to sexual transmission of murine acquired immunodeficiency virus (mAIDS is aggravated in APOBEC3 deficient mice

    Directory of Open Access Journals (Sweden)

    Jones Philip H

    2012-06-01

    Full Text Available Abstract Background APOBEC3 proteins are host factors that restrict infection by retroviruses like HIV, MMTV, and MLV and are variably expressed in hematopoietic and non-hematopoietic cells, such as macrophages, lymphocytes, dendritic, and epithelia cells. Previously, we showed that APOBEC3 expressed in mammary epithelia cells function to limit milk-borne transmission of the beta-retrovirus, mouse mammary tumor virus. In this present study, we used APOBEC3 knockout mice and their wild type counterpart to query the role of APOBEC3 in sexual transmission of LP-BM5 MLV – the etiological agent of murine AIDs (mAIDs. Results We show that mouse APOBEC3 is expressed in murine genital tract tissues and gametes and that genital tract tissue of APOBEC3-deficient mice are more susceptible to infection by LP-BM5 virus. APOBEC3 expressed in genital tract tissues most likely plays a role in decreasing virus transmission via the sexual route, since mice deficient in APOBEC3 gene have higher genitalia and seminal plasma virus load and sexually transmit the virus more efficiently to their partners compared to APOBEC3+ mice. Moreover, we show that female mice sexually infected with LP-BM5 virus transmit the virus to their off-spring in APOBEC3-dependent manner. Conclusion Our data indicate that genital tissue intrinsic APOBEC3 restricts genital tract infection and limits sexual transmission of LP-BM5 virus.

  9. Prostaglandin F2alpha- and FAS-activating antibody-induced regression of the corpus luteum involves caspase-8 and is defective in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Flavell Richard A

    2003-02-01

    Full Text Available Abstract We recently demonstrated that caspase-3 is important for apoptosis during spontaneous involution of the corpus luteum (CL. These studies tested if prostaglandin F2α (PGF2α or FAS regulated luteal regression, utilize a caspase-3 dependent pathway to execute luteal cell apoptosis, and if the two receptors work via independent or potentially shared intracellular signaling components/pathways to activate caspase-3. Wild-type (WT or caspase-3 deficient female mice, 25–26 days old, were given 10 IU equine chorionic gonadotropin (eCG intraperitoneally (IP followed by 10 IU human chorionic gonadotropin (hCG IP 46 h later to synchronize ovulation. The animals were then injected with IgG (2 micrograms, i.v., the FAS-activating antibody Jo2 (2 micrograms, i.v., or PGF2α (10 micrograms, i.p. at 24 or 48 h post-ovulation. Ovaries from each group were collected 8 h later for assessment of active caspase-3 enzyme and apoptosis (measured by the TUNEL assay in the CL. Regardless of genotype or treatment, CL in ovaries collected from mice injected 24 h after ovulation showed no evidence of active caspase-3 or apoptosis. However, PGF2α or Jo2 at 48 h post-ovulation and collected 8 h later induced caspase-3 activation in 13.2 ± 1.8% and 13.7 ± 2.2 % of the cells, respectively and resulted in 16.35 ± 0.7% (PGF2α and 14.3 ± 2.5% TUNEL-positive cells when compared to 1.48 ± 0.8% of cells CL in IgG treated controls. In contrast, CL in ovaries collected from caspase-3 deficient mice whether treated with PGF2α , Jo2, or control IgG at 48 h post-ovulation showed little evidence of active caspase-3 or apoptosis. CL of WT mice treated with Jo2 at 48 h post-ovulation had an 8-fold increase in the activity of caspase-8, an activator of caspase-3 that is coupled to the FAS death receptor. Somewhat unexpectedly, however, treatment of WT mice with PGF2α at 48 h post-ovulation resulted in a 22-fold increase in caspase-8 activity in the CL, despite the fact

  10. Vital role of the calpain-calpastatin system for placental-integrity-dependent embryonic survival.

    Science.gov (United States)

    Takano, Jiro; Mihira, Naomi; Fujioka, Ryo; Hosoki, Emi; Chishti, Athar H; Saido, Takaomi C

    2011-10-01

    Although the calpain-calpastatin system has been implicated in a number of pathological conditions, its normal physiological role remains largely unknown. To investigate the functions of this system, we generated conventional and conditional calpain-2 knockout mice. The conventional calpain-2 knockout embryos died around embryonic day 15, preceded by cell death associated with caspase activation and DNA fragmentation in placental trophoblasts. In contrast, conditional knockout mice in which calpain-2 is expressed in the placenta but not in the fetus were spared. These results suggest that calpain-2 contributes to trophoblast survival via suppression of caspase activation. Double-knockout mice also deficient in calpain-1 and calpastatin resulted in accelerated and rescued embryonic lethality, respectively, suggesting that calpain-1 and -2 at least in part share similar in vivo functions under the control of calpastatin. Triple-knockout mice exhibited early embryonic lethality, a finding consistent with the notion that this protease system is vital for embryonic survival.

  11. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies

    Science.gov (United States)

    2012-01-01

    Background Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. Methods We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD) with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC), vimentin, MyoD and myogenin and counting internally nucleated fibers. Results We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Conclusions Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes. PMID:22443334

  12. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Hauerslev Simon

    2012-03-01

    Full Text Available Abstract Background Limb girdle muscular dystrophy (LGMD type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. Methods We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC, vimentin, MyoD and myogenin and counting internally nucleated fibers. Results We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Conclusions Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  13. Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice.

    Directory of Open Access Journals (Sweden)

    Shing Hwa Liu

    Full Text Available BACKGROUND: Honokiol, a small-molecular weight natural product, has previously been reported to activate apoptosis and inhibit gastric tumorigenesis. Whether honokiol inhibits the angiogenesis and metastasis of gastric cancer cells remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We tested the effects of honokiol on angiogenic activity and peritoneal dissemination using in vivo, ex vivo and in vitro assay systems. The signaling responses in human gastric cancer cells, human umbilical vascular endothelial cells (HUVECs, and isolated tumors were detected and analyzed. In a xenograft gastric tumor mouse model, honokiol significantly inhibited the peritoneal dissemination detected by PET/CT technique. Honokiol also effectively attenuated the angiogenesis detected by chick chorioallantoic membrane assay, mouse matrigel plug assay, rat aortic ring endothelial cell sprouting assay, and endothelial cell tube formation assay. Furthermore, honokiol effectively enhanced signal transducer and activator of transcription (STAT-3 dephosphorylation and inhibited STAT-3 DNA binding activity in human gastric cancer cells and HUVECs, which was correlated with the up-regulation of the activity and protein expression of Src homology 2 (SH2-containing tyrosine phosphatase-1 (SHP-1. Calpain-II inhibitor and siRNA transfection significantly reversed the honokiol-induced SHP-1 activity. The decreased STAT-3 phosphorylation and increased SHP-1 expression were also shown in isolated peritoneal metastatic tumors. Honokiol was also capable of inhibiting VEGF generation, which could be reversed by SHP-1 siRNA transfection. CONCLUSIONS/SIGNIFICANCE: Honokiol increases expression and activity of SPH-1 that further deactivates STAT3 pathway. These findings also suggest that honokiol is a novel and potent inhibitor of angiogenesis and peritoneal dissemination of gastric cancer cells, providing support for the application potential of honokiol in gastric cancer therapy.

  14. Vital Role of the Calpain-Calpastatin System for Placental-Integrity-Dependent Embryonic Survival▿†

    Science.gov (United States)

    Takano, Jiro; Mihira, Naomi; Fujioka, Ryo; Hosoki, Emi; Chishti, Athar H.; Saido, Takaomi C.

    2011-01-01

    Although the calpain-calpastatin system has been implicated in a number of pathological conditions, its normal physiological role remains largely unknown. To investigate the functions of this system, we generated conventional and conditional calpain-2 knockout mice. The conventional calpain-2 knockout embryos died around embryonic day 15, preceded by cell death associated with caspase activation and DNA fragmentation in placental trophoblasts. In contrast, conditional knockout mice in which calpain-2 is expressed in the placenta but not in the fetus were spared. These results suggest that calpain-2 contributes to trophoblast survival via suppression of caspase activation. Double-knockout mice also deficient in calpain-1 and calpastatin resulted in accelerated and rescued embryonic lethality, respectively, suggesting that calpain-1 and -2 at least in part share similar in vivo functions under the control of calpastatin. Triple-knockout mice exhibited early embryonic lethality, a finding consistent with the notion that this protease system is vital for embryonic survival. PMID:21791606

  15. Vital Role of the Calpain-Calpastatin System for Placental-Integrity-Dependent Embryonic Survival▿†

    OpenAIRE

    Takano, Jiro; Mihira, Naomi; Fujioka, Ryo; Hosoki, Emi; Chishti, Athar H.; Saido, Takaomi C.

    2011-01-01

    Although the calpain-calpastatin system has been implicated in a number of pathological conditions, its normal physiological role remains largely unknown. To investigate the functions of this system, we generated conventional and conditional calpain-2 knockout mice. The conventional calpain-2 knockout embryos died around embryonic day 15, preceded by cell death associated with caspase activation and DNA fragmentation in placental trophoblasts. In contrast, conditional knockout mice in which c...

  16. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice.

    Science.gov (United States)

    Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B

    2017-06-01

    The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3(-/-) ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3(flox/flox) ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.

  17. Targeted Gene Inactivation of Calpain-1 Suppresses Cortical Degeneration Due to Traumatic Brain Injury and Neuronal Apoptosis Induced by Oxidative Stress*

    Science.gov (United States)

    Yamada, Kaori H.; Kozlowski, Dorothy A.; Seidl, Stacey E.; Lance, Steven; Wieschhaus, Adam J.; Sundivakkam, Premanand; Tiruppathi, Chinnaswamy; Chishti, Imran; Herman, Ira M.; Kuchay, Shafi M.; Chishti, Athar H.

    2012-01-01

    Calpains are calcium-regulated cysteine proteases that have been implicated in the regulation of cell death pathways. Here, we used our calpain-1 null mouse model to evaluate the function of calpain-1 in neural degeneration following a rodent model of traumatic brain injury. In vivo, calpain-1 null mice show significantly less neural degeneration and apoptosis and a smaller contusion 3 days post-injury than wild type littermates. Protection from traumatic brain injury corroborated with the resistance of calpain-1 neurons to apoptosis induced by oxidative stress. Biochemical analysis revealed that caspase-3 activation, extracellular calcium entry, mitochondrial membrane permeability, and release of apoptosis-inducing factor from mitochondria are partially blocked in the calpain-1 null neurons. These findings suggest that the calpain-1 knock-out mice may serve as a useful model system for neuronal protection and apoptosis in traumatic brain injury and other neurodegenerative disorders in which oxidative stress plays a role. PMID:22367208

  18. Calpain 4 is not necessary for LFA-1-mediated function in CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Sarah A Wernimont

    2010-05-01

    Full Text Available T cell activation and immune synapse formation require the appropriate activation and clustering of the integrin, LFA-1. Previous work has reported that the calpain family of calcium-dependent proteases are important regulators of integrin activation and modulate T cell adhesion and migration. However, these studies have been limited by the use of calpain inhibitors, which have known off-target effects.Here, we used a LoxP/CRE system to specifically deplete calpain 4, a small regulatory calpain subunit required for expression and activity of ubiquitously expressed calpains 1 and 2, in CD4+ T cells. CD4+ and CD8+ T cells developed normally in Capn4(F/F:CD4-CRE mice and had severely diminished expression of Calpain 1 and 2, diminished talin proteolysis and impaired casein degradation. Calpain 4-deficient T cells showed no difference in adhesion or migration on the LFA-1 ligand ICAM-1 compared to control T cells. Moreover, there was no impairment in conjugation between Capn4(F/F:CD4-CRE T cells and antigen presenting cells, and the conjugates were still capable of polarizing LFA-1, PKC-theta and actin to the immune synapse. Furthermore, T cells from Capn4(F/F:CD4-CRE mice showed normal proliferation in response to either anti-CD3/CD28 coated beads or cognate antigen-loaded splenocytes. Finally, there were no differences in the rates of apoptosis following extrinsic and intrinsic apoptotic stimuli.Our findings demonstrate that calpain 4 is not necessary for LFA-1-mediated adhesion, conjugation or migration. These results challenge previous reports that implicate a central role for calpains in the regulation of T cell LFA-1 function.

  19. Disruption of calpain reduces lipotoxicity-induced cardiac injury by preventing endoplasmic reticulum stress.

    Science.gov (United States)

    Li, Shengcun; Zhang, Lulu; Ni, Rui; Cao, Ting; Zheng, Dong; Xiong, Sidong; Greer, Peter A; Fan, Guo-Chang; Peng, Tianqing

    2016-11-01

    Diabetes and obesity are prevalent in westernized countries. In both conditions, excessive fatty acid uptake by cardiomyocytes induces cardiac lipotoxicity, an important mechanism contributing to diabetic cardiomyopathy. This study investigated the effect of calpain disruption on cardiac lipotoxicity. Cardiac-specific capns1 knockout mice and their wild-type littermates (male, age of 4weeks) were fed a high fat diet (HFD) or normal diet for 20weeks. HFD increased body weight, altered blood lipid profiles and impaired glucose tolerance comparably in both capns1 knockout mice and their wild-type littermates. Calpain activity, cardiomyocyte cross-sectional areas, collagen deposition and triglyceride were significantly increased in HFD-fed mouse hearts, and these were accompanied by myocardial dysfunction and up-regulation of hypertrophic and fibrotic collagen genes as well as pro-inflammatory cytokines. These effects of HFD were attenuated by disruption of calpain in capns1 knockout mice. Mechanistically, deletion of capns1 in HFD-fed mouse hearts and disruption of calpain with calpain inhibitor-III, silencing of capn1, or deletion of capns1 in palmitate-stimulated cardiomyocytes prevented endoplasmic reticulum stress, apoptosis, cleavage of caspase-12 and junctophilin-2, and pro-inflammatory cytokine expression. Pharmacological inhibition of endoplasmic reticulum stress diminished palmitate-induced apoptosis and pro-inflammatory cytokine expression in cardiomyocytes. In summary, disruption of calpain prevents lipotoxicity-induced apoptosis in cardiomyocytes and cardiac injury in mice fed a HFD. The role of calpain is mediated, at least partially, through endoplasmic reticulum stress. Thus, calpain/endoplasmic reticulum stress may represent a new mechanism and potential therapeutic targets for cardiac lipotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Safety and Biodistribution Evaluation in CNGB3-Deficient Mice of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia.

    Science.gov (United States)

    Ye, Guo-jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Miller, Paul E; McPherson, Leslie; Ver Hoeve, James N; Smith, Leia M; Arndt, Tara; Mandapati, Savitri; Robinson, Paulette M; Calcedo, Roberto; Knop, David R; Hauswirth, William W; Chulay, Jeffrey D

    2016-03-01

    Applied Genetic Technologies Corporation (AGTC) is developing rAAV2tYF-PR1.7-hCNGB3, a recombinant adeno-associated virus (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. We report here results of a study evaluating safety and biodistribution of rAAV2tYF-PR1.7-hCNGB3 in CNGB3-deficient mice. Three groups of animals (n = 35 males and 35 females per group) received a subretinal injection in one eye of 1 μl containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two dose concentrations (1 × 10(12) or 4.2 × 10(12) vg/ml) and were euthanized 4 or 13 weeks later. There were no test-article-related changes in clinical observations, body weights, food consumption, ocular examinations, clinical pathology parameters, organ weights, or macroscopic observations at necropsy. Cone-mediated electroretinography (ERG) responses were detected after vector administration in the treated eyes in 90% of animals in the higher dose group and 31% of animals in the lower dose group. Rod-mediated ERG responses were reduced in the treated eye for all groups, with the greatest reduction in males given the higher dose of vector, but returned to normal by the end of the study. Microscopic pathology results demonstrated minimal mononuclear cell infiltrates in the retina and vitreous of some animals at the interim euthanasia and in the vitreous of some animals at the terminal euthanasia. Serum anti-AAV antibodies developed in most vector-injected animals. No animals developed antibodies to hCNGB3. Biodistribution studies demonstrated high levels of vector DNA in vector-injected eyes but little or no vector DNA in nonocular tissue. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations.

  1. Dietary vitamin D3 deficiency exacerbates sinonasal inflammation and alters local 25(OHD3 metabolism.

    Directory of Open Access Journals (Sweden)

    Jennifer K Mulligan

    Full Text Available Patients with chronic rhinosinusitis with nasal polyps (CRSwNP have been shown to be vitamin D3 (VD3 deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af mouse model of chronic rhinosinusitis (Af-CRS.Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined.Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A.VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1

  2. Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease

    Science.gov (United States)

    Ma, Wanli; Han, Weihong; Greer, Peter A.; Tuder, Rubin M.; Toque, Haroldo A.; Wang, Kevin K.W.; Caldwell, R. William; Su, Yunchao

    2011-01-01

    Pulmonary hypertension is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Several growth factors, including EGF, PDGF, and TGF-β1, are involved in pulmonary vascular remodeling during pulmonary hypertension. However, increased knowledge of the downstream signaling cascades is needed if effective clinical interventions are to be developed. In this context, calpain provides an interesting candidate therapeutic target, since it is activated by EGF and PDGF and has been reported to activate TGF-β1. Thus, in this study, we examined the role of calpain in pulmonary vascular remodeling in two rodent models of pulmonary hypertension. These data showed that attenuated calpain activity in calpain-knockout mice or rats treated with a calpain inhibitor resulted in prevention of increased right ventricular systolic pressure, right ventricular hypertrophy, as well as collagen deposition and thickening of pulmonary arterioles in models of hypoxia- and monocrotaline-induced pulmonary hypertension. Additionally, inhibition of calpain in vitro blocked intracellular activation of TGF-β1, which led to attenuated Smad2/3 phosphorylation and collagen synthesis. Finally, smooth muscle cells of pulmonary arterioles from patients with pulmonary arterial hypertension showed higher levels of calpain activation and intracellular active TGF-β. Our data provide evidence that calpain mediates EGF- and PDGF-induced collagen synthesis and proliferation of pulmonary artery smooth muscle cells via an intracrine TGF-β1 pathway in pulmonary hypertension. PMID:22005303

  3. Calpain 3 is important for muscle regeneration

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten

    2012-01-01

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study...

  4. Extracellular Calpain/Calpastatin Balance Is Involved in the Progression of Pulmonary Hypertension.

    Science.gov (United States)

    Wan, Feng; Letavernier, Emmanuel; Abid, Shariq; Houssaini, Amal; Czibik, Gabor; Marcos, Elisabeth; Rideau, Dominique; Parpaleix, Aurélien; Lipskaia, Larissa; Amsellem, Valérie; Gellen, Barnabas; Sawaki, Daigo; Derumeaux, Genevieve; Dubois-Randé, Jean-Luc; Delcroix, Marion; Quarck, Rozenn; Baud, Laurent; Adnot, Serge

    2016-09-01

    Excessive growth of pulmonary arterial (PA) smooth muscle cells (SMCs) is a major component of PA hypertension (PAH). The calcium-activated neutral cysteine proteases calpains 1 and 2, expressed by PASMCs, contribute to PH but are tightly controlled by a single specific inhibitor, calpastatin. Our objective was to investigate calpastatin during pulmonary hypertension (PH) progression and its potential role as an intracellular and/or extracellular effector. We assessed calpains and calpastatin in patients with idiopathic PAH and mice with hypoxic or spontaneous (SM22-5HTT(+) strain) PH. To assess intracellular and extracellular roles for calpastatin, we studied effects of the calpain inhibitor PD150606 on hypoxic PH in mice with calpastatin overexpression driven by the cytomegalovirus promoter (CMV-Cast) or C-reactive protein (CRP) promoter (CRP-Cast), inducing increased calpastatin production ubiquitously and in the liver, respectively. Chronically hypoxic and SM22-5HTT(+) mice exhibited increased lung calpastatin and calpain 1 and 2 protein levels and activity, both intracellularly and extracellularly. Prominent calpastatin and calpain immunostaining was found in PASMCs of remodeled vessels in mice and patients with PAH, who also exhibited increased plasma calpastatin levels. CMV-Cast and CRP-Cast mice showed similarly decreased PH severity compared with wild-type mice, with no additional effect of PD150606 treatment. In cultured PASMCs from wild-type and CMV-Cast mice, exogenous calpastatin decreased cell proliferation and migration with similar potency as PD150606 and suppressed fibronectin-induced potentiation. These results indicate that calpastatin limits PH severity via extracellular mechanisms. They suggest a new approach to the development of treatments for PH.

  5. Omega-3 deficiency impairs honey bee learning

    Science.gov (United States)

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  6. Omega-3 deficiency impairs honey bee learning.

    Science.gov (United States)

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania; Shafir, Sharoni

    2015-12-22

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3-poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3-rich diets, or omega-3-rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal.

  7. Dietary vitamin D3 deficiency exacerbates sinonasal inflammation and alters local 25(OH)D3 metabolism.

    Science.gov (United States)

    Mulligan, Jennifer K; Pasquini, Whitney N; Carroll, William W; Williamson, Tucker; Reaves, Nicholas; Patel, Kunal J; Mappus, Elliott; Schlosser, Rodney J; Atkinson, Carl

    2017-01-01

    Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to be vitamin D3 (VD3) deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af) mouse model of chronic rhinosinusitis (Af-CRS). Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined. Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH)2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC) associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A. VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1,25(OH)2D3

  8. Histomorphometric Parameters of the Growth Plate and Trabecular Bone in Wild-Type and Trefoil Factor Family 3 (Tff3)-Deficient Mice Analyzed by Free and Open-Source Image Processing Software.

    Science.gov (United States)

    Bijelić, Nikola; Belovari, Tatjana; Stolnik, Dunja; Lovrić, Ivana; Baus Lončar, Mirela

    2017-08-01

    Trefoil factor family 3 (Tff3) peptide is present during intrauterine endochondral ossification in mice, and its deficiency affects cancellous bone quality in secondary ossification centers of mouse tibiae. The aim of this study was to quantitatively analyze parameters describing the growth plate and primary ossification centers in tibiae of 1-month-old wild-type and Tff3 knock-out mice (n=5 per genotype) by using free and open-source software. Digital photographs of the growth plates and trabecular bone were processed by open-source computer programs GIMP and FIJI. Histomorphometric parameters were calculated using measurements made with FIJI. Tff3 knock-out mice had significantly smaller trabecular number and significantly larger trabecular separation. Trabecular bone volume, trabecular bone surface, and trabecular thickness showed no significant difference between the two groups. Although such histomorphological differences were found in the cancellous bone structure, no significant differences were found in the epiphyseal plate histomorphology. Tff3 peptide probably has an effect on the formation and quality of the cancellous bone in the primary ossification centers, but not through disrupting the epiphyseal plate morphology. This work emphasizes the benefits of using free and open-source programs for morphological studies in life sciences.

  9. Activation of calpain-1 in human carotid artery atherosclerotic lesions

    Directory of Open Access Journals (Sweden)

    Pedro Luis M

    2009-06-01

    Full Text Available Abstract Background In a previous study, we observed that oxidized low-density lipoprotein-induced death of endothelial cells was calpain-1-dependent. The purpose of the present paper was to study the possible activation of calpain in human carotid plaques, and to compare calpain activity in the plaques from symptomatic patients with those obtained from patients without symptoms. Methods Human atherosclerotic carotid plaques (n = 29, 12 associated with symptoms were removed by endarterectomy. Calpain activity and apoptosis were detected by performing immunohistochemical analysis and TUNEL assay on human carotid plaque sections. An antibody specific for calpain-proteolyzed α-fodrin was used on western blots. Results We found that calpain was activated in all the plaques and calpain activity colocalized with apoptotic cell death. Our observation of autoproteolytic cleavage of the 80 kDa subunit of calpain-1 provided further evidence for enzyme activity in the plaque samples. When calpain activity was quantified, we found that plaques from symptomatic patients displayed significantly lower calpain activity compared with asymptomatic plaques. Conclusion These novel results suggest that calpain-1 is commonly active in carotid artery atherosclerotic plaques, and that calpain activity is colocalized with cell death and inversely associated with symptoms.

  10. Calpain Activator Dibucaine Induces Platelet Apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2011-03-01

    Full Text Available Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.

  11. Conditional disruption of calpain in the CNS alters dendrite morphology, impairs LTP, and promotes neuronal survival following injury

    National Research Council Canada - National Science Library

    Amini, Mandana; Ma, Chun-lei; Farazifard, Rasoul; Zhu, Guoqi; Zhang, Yi; Vanderluit, Jacqueline; Zoltewicz, Joanna Susie; Hage, Fadi; Savitt, Joseph M; Lagace, Diane C; Slack, Ruth S; Beique, Jean-Claude; Baudry, Michel; Greer, Peter A; Bergeron, Richard; Park, David S

    2013-01-01

    Ubiquitous classical (typical) calpains, calpain-1 and calpain-2, are Ca(+2)-dependent cysteine proteases, which have been associated with numerous physiological and pathological cellular functions...

  12. Identification of active Plasmodium falciparum calpain to establish screening system for Pf-calpain-based drug development

    Directory of Open Access Journals (Sweden)

    Soh Byoung

    2013-02-01

    Full Text Available Abstract Background With the increasing resistance of malaria parasites to available drugs, there is an urgent demand to develop new anti-malarial drugs. Calpain inhibitor, ALLN, is proposed to inhibit parasite proliferation by suppressing haemoglobin degradation. This provides Plasmodium calpain as a potential target for drug development. Pf-calpain, a cysteine protease of Plasmodium falciparum, belongs to calpain-7 family, which is an atypical calpain not harboring Ca2+-binding regulatory motifs. In this present study, in order to establish the screening system for Pf-calpain specific inhibitors, the active form of Pf-calpain was first identified. Methods Recombinant Pf-calpain including catalytic subdomain IIa (rPfcal-IIa was heterologously expressed and purified. Enzymatic activity was determined by both fluorogenic substrate assay and gelatin zymography. Molecular homology modeling was carried out to address the activation mode of Pf-calpain in the aspect of structural moiety. Results Based on the measurement of enzymatic activity and protease inhibitor assay, it was found that the active form of Pf-calpain only contains the catalytic subdomain IIa, suggesting that Pf-calpain may function as a monomeric form. The sequence prediction indicates that the catalytic subdomain IIa contains all amino acid residues necessary for catalytic triad (Cys-His-Asn formation. Molecular modeling suggests that the Pf-calpain subdomain IIa makes an active site, holding the catalytic triad residues in their appropriate orientation for catalysis. The mutation analysis further supports that those amino acid residues are functional and have enzymatic activity. Conclusion The identified active form of Pf-calpain could be utilized to establish high-throughput screening system for Pf-calpain inhibitors. Due to its unique monomeric structural property, Pf-calpain could be served as a novel anti-malarial drug target, which has a high specificity for malaria parasite

  13. Aspirin Has Antitumor Effects via Expression of Calpain Gene in Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sang Koo Lee

    2008-01-01

    Full Text Available Aspirin and other nonsteroidal anti-inflammatory drugs show efficacy in the prevention of cancers. It is known that they can inhibit cyclooxygenases, and some studies have shown that they can induce apoptosis. Our objective in this study was to investigate the mechanism by which aspirin exerts its apoptosis effects in human cervical cancer HeLa cells. The effect of aspirin on the gene expression was studied by differential mRNA display RT-PCR. Among the isolated genes, mu-type calpain gene was upregulated by aspirin treatment. To examine whether calpain mediates the antitumor effects, HeLa cells were stably transfected with the mammalian expression vector pCR3.1 containing mu-type calpain cDNA (pCRCAL/HeLa, and tumor formations were measured in nude mice. When tumor burden was measured by day 49, HeLa cells and pCR/HeLa cells (vector control produced tumors of 2126 mm3 and 1638 mm3, respectively, while pCRCAL/HeLa cells produced markedly smaller tumor of 434 mm3 in volume. The caspase-3 activity was markedly elevated in pCRCAL/HeLa cells. The increased activity levels of caspase-3 in pCRCAL/HeLa cells, in parallel with the decreased tumor formation, suggest a correlation between caspase-3 activity and calpain protein. Therefore, we conclude that aspirin-induced calpain mediates an antitumor effect via caspase-3 in cervical cancer cells.

  14. TLR3 deficiency increases voluntary alcohol consumption.

    Science.gov (United States)

    Jang, Yujin; Lee, Min Hee; Park, Jong-Hwan; Han, Seung-Yun; Kim, Dong Kwan

    2016-03-23

    Toll-like receptors (TLRs) are innate immunity-related receptors. Many studies have indicated the involvement of TLRs in neurophysiology and neuropathology. One study showed that TLR3 regulates hippocampal memory and is highly expressed in the mesolimbic dopamine system, suggesting that TLR3 signaling may regulate alcohol consumption. The present study assessed the potential role of TLR3 in alcohol intake pattern. We used adult BalbC wild-type mice and TLR3 knockout mice and tested two-bottle alcohol preference over 15 days and one-bottle 2 or 4 h drinking in the dark over 4 consecutive days. The 10% alcohol consumption rate of TLR3 knockout mice increased on the 24 h free-choice test. Our findings support a potential regulatory role of TLR3 in alcohol consumption.

  15. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  16. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  17. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  18. Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model.

    Science.gov (United States)

    Gladding, Clare M; Sepers, Marja D; Xu, Jian; Zhang, Lily Y J; Milnerwood, Austen J; Lombroso, Paul J; Raymond, Lynn A

    2012-09-01

    In Huntington's disease (HD), the mutant huntingtin (mhtt) protein is associated with striatal dysfunction and degeneration. Excitotoxicity and early synaptic defects are attributed, in part, to altered NMDA receptor (NMDAR) trafficking and function. Deleterious extrasynaptic NMDAR localization and signalling are increased early in yeast artificial chromosome mice expressing full-length mhtt with 128 polyglutamine repeats (YAC128 mice). NMDAR trafficking at the plasma membrane is regulated by dephosphorylation of the NMDAR subunit GluN2B tyrosine 1472 (Y1472) residue by STriatal-Enriched protein tyrosine Phosphatase (STEP). NMDAR function is also regulated by calpain cleavage of the GluN2B C-terminus. Activation of both STEP and calpain is calcium-dependent, and disruption of calcium homeostasis occurs early in the HD striatum. Here, we show increased calpain cleavage of GluN2B at both synaptic and extrasynaptic sites, and elevated extrasynaptic total GluN2B expression in the YAC128 striatum. Calpain inhibition significantly reduced extrasynaptic GluN2B expression in the YAC128 but not wild-type striatum. Furthermore, calpain inhibition reduced whole-cell NMDAR current and the surface/internal GluN2B ratio in co-cultured striatal neurons, without affecting synaptic GluN2B localization. Synaptic STEP activity was also significantly higher in the YAC128 striatum, correlating with decreased GluN2B Y1472 phosphorylation. A substrate-trapping STEP protein (TAT-STEP C-S) significantly increased VGLUT1-GluN2B colocalization, as well as increasing synaptic GluN2B expression and Y1472 phosphorylation. Moreover, combined calpain inhibition and STEP inactivation reduced extrasynaptic, while increasing synaptic GluN2B expression in the YAC128 striatum. These results indicate that increased STEP and calpain activation contribute to altered NMDAR localization in an HD mouse model, suggesting new therapeutic targets for HD.

  19. Inhibition of calpain blocks the phagosomal escape of Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Gloria Lopez-Castejon

    Full Text Available Listeria monocytogenes is a gram-positive facultative intracellular bacterium responsible for the food borne infection listeriosis, affecting principally the immunocompromised, the old, neonates and pregnant women. Following invasion L. monocytogenes escapes the phagosome and replicates in the cytoplasm. Phagosome escape is central to L. monocytogenes virulence and is required for initiating innate host-defence responses such as the secretion of the cytokine interleukin-1. Phagosome escape of L. monocytogenes is reported to depend upon host proteins such as γ-interferon-inducible lysosomal thiol reductase and the cystic fibrosis transmembrane conductance regulator. The host cytosolic cysteine protease calpain is required in the life cycle of numerous pathogens, and previous research reports an activation of calpain by L. monocytogenes infection. Thus we sought to determine whether host calpain was required for the virulence of L. monocytogenes. Treatment of macrophages with calpain inhibitors blocked escape of L. monocytogenes from the phagosome and consequently its proliferation within the cytosol. This was independent of any direct effect on the production of bacterial virulence factors or of a bactericidal effect. Furthermore, the secretion of interleukin-1β, a host cytokine whose secretion induced by L. monocytogenes depends upon phagosome escape, was also blocked by calpain inhibition. These data indicate that L. monocytogenes co-opts host calpain to facilitate its escape from the phagosome, and more generally, that calpain may represent a cellular Achilles heel exploited by pathogens.

  20. Inhibition of calpain blocks the phagosomal escape of Listeria monocytogenes.

    Science.gov (United States)

    Lopez-Castejon, Gloria; Corbett, David; Goldrick, Marie; Roberts, Ian S; Brough, David

    2012-01-01

    Listeria monocytogenes is a gram-positive facultative intracellular bacterium responsible for the food borne infection listeriosis, affecting principally the immunocompromised, the old, neonates and pregnant women. Following invasion L. monocytogenes escapes the phagosome and replicates in the cytoplasm. Phagosome escape is central to L. monocytogenes virulence and is required for initiating innate host-defence responses such as the secretion of the cytokine interleukin-1. Phagosome escape of L. monocytogenes is reported to depend upon host proteins such as γ-interferon-inducible lysosomal thiol reductase and the cystic fibrosis transmembrane conductance regulator. The host cytosolic cysteine protease calpain is required in the life cycle of numerous pathogens, and previous research reports an activation of calpain by L. monocytogenes infection. Thus we sought to determine whether host calpain was required for the virulence of L. monocytogenes. Treatment of macrophages with calpain inhibitors blocked escape of L. monocytogenes from the phagosome and consequently its proliferation within the cytosol. This was independent of any direct effect on the production of bacterial virulence factors or of a bactericidal effect. Furthermore, the secretion of interleukin-1β, a host cytokine whose secretion induced by L. monocytogenes depends upon phagosome escape, was also blocked by calpain inhibition. These data indicate that L. monocytogenes co-opts host calpain to facilitate its escape from the phagosome, and more generally, that calpain may represent a cellular Achilles heel exploited by pathogens.

  1. Calpain Inhibition Reduces Axolemmal Leakage in Traumatic Axonal Injury

    Directory of Open Access Journals (Sweden)

    János Sándor

    2009-12-01

    Full Text Available Calcium-induced, calpain-mediated proteolysis (CMSP has recently been implicated to the pathogenesis of diffuse (traumatic axonal injury (TAI. Some studies suggested that subaxolemmal CMSP may contribute to axolemmal permeability (AP alterations observed in TAI. Seeking direct evidence for this premise we investigated whether subaxolemmal CMSP may contribute to axolemmal permeability alterations (APA and pre-injury calpain-inhibition could reduce AP in a rat model of TAI. Horseradish peroxidase (HRP, a tracer that accumulates in axons with APA was administered one hour prior to injury into the lateral ventricle; 30 min preinjury a single tail vein bolus injection of 30 mg/kg MDL-28170 (a calpain inhibitor or its vehicle was applied in Wistar rats exposed to impact acceleration brain injury. Histological detection of traumatically injured axonal segments accumulating HRP and statistical analysis revealed that pre-injury administration of the calpain inhibitor MDL-28170 significantly reduced the average length of HRP-labeled axonal segments. The axono-protective effect of pre-injury calpain inhibition recently demonstrated with classical immunohistochemical markers of TAI was further corroborated in this experiment; significant reduction of the length of labeled axons in the drug-treated rats implicate CMSP in the progression of altered AP in TAI.

  2. Rbfox1 downregulation and altered calpain 3 splicing by FRG1 in a mouse model of Facioscapulohumeral muscular dystrophy (FSHD.

    Directory of Open Access Journals (Sweden)

    Mariaelena Pistoni

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is a common muscle disease whose molecular pathogenesis remains largely unknown. Over-expression of FSHD region gene 1 (FRG1 in mice, frogs, and worms perturbs muscle development and causes FSHD-like phenotypes. FRG1 has been implicated in splicing, and we asked how splicing might be involved in FSHD by conducting a genome-wide analysis in FRG1 mice. We find that splicing perturbations parallel the responses of different muscles to FRG1 over-expression and disease progression. Interestingly, binding sites for the Rbfox family of splicing factors are over-represented in a subset of FRG1-affected splicing events. Rbfox1 knockdown, over-expression, and RNA-IP confirm that these are direct Rbfox1 targets. We find that FRG1 is associated to the Rbfox1 RNA and decreases its stability. Consistent with this, Rbfox1 expression is down-regulated in mice and cells over-expressing FRG1 as well as in FSHD patients. Among the genes affected is Calpain 3, which is mutated in limb girdle muscular dystrophy, a disease phenotypically similar to FSHD. In FRG1 mice and FSHD patients, the Calpain 3 isoform lacking exon 6 (Capn3 E6- is increased. Finally, Rbfox1 knockdown and over-expression of Capn3 E6- inhibit muscle differentiation. Collectively, our results suggest that a component of FSHD pathogenesis may arise by over-expression of FRG1, reducing Rbfox1 levels and leading to aberrant expression of an altered Calpain 3 protein through dysregulated splicing.

  3. Rbfox1 downregulation and altered calpain 3 splicing by FRG1 in a mouse model of Facioscapulohumeral muscular dystrophy (FSHD).

    Science.gov (United States)

    Pistoni, Mariaelena; Shiue, Lily; Cline, Melissa S; Bortolanza, Sergia; Neguembor, Maria Victoria; Xynos, Alexandros; Ares, Manuel; Gabellini, Davide

    2013-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a common muscle disease whose molecular pathogenesis remains largely unknown. Over-expression of FSHD region gene 1 (FRG1) in mice, frogs, and worms perturbs muscle development and causes FSHD-like phenotypes. FRG1 has been implicated in splicing, and we asked how splicing might be involved in FSHD by conducting a genome-wide analysis in FRG1 mice. We find that splicing perturbations parallel the responses of different muscles to FRG1 over-expression and disease progression. Interestingly, binding sites for the Rbfox family of splicing factors are over-represented in a subset of FRG1-affected splicing events. Rbfox1 knockdown, over-expression, and RNA-IP confirm that these are direct Rbfox1 targets. We find that FRG1 is associated to the Rbfox1 RNA and decreases its stability. Consistent with this, Rbfox1 expression is down-regulated in mice and cells over-expressing FRG1 as well as in FSHD patients. Among the genes affected is Calpain 3, which is mutated in limb girdle muscular dystrophy, a disease phenotypically similar to FSHD. In FRG1 mice and FSHD patients, the Calpain 3 isoform lacking exon 6 (Capn3 E6-) is increased. Finally, Rbfox1 knockdown and over-expression of Capn3 E6- inhibit muscle differentiation. Collectively, our results suggest that a component of FSHD pathogenesis may arise by over-expression of FRG1, reducing Rbfox1 levels and leading to aberrant expression of an altered Calpain 3 protein through dysregulated splicing.

  4. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90

    Science.gov (United States)

    Baba, Koichi; Nishida, Kohji

    2012-08-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death `apoptosis' is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer's disease and Parkinson's disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter.

  5. Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition

    Science.gov (United States)

    Stoffel, Wilhelm; Hammels, Ina; Jenke, Bitta; Binczek, Erika; Schmidt-Soltau, Inga; Brodesser, Susanne; Schauss, Astrid; Etich, Julia; Heilig, Juliane; Zaucke, Frank

    2016-01-01

    Systemic loss of neutral sphingomyelinase (SMPD3) in mice leads to a novel form of systemic, juvenile hypoplasia (dwarfism). SMPD3 deficiency in mainly two growth regulating cell types contributes to the phenotype, in chondrocytes of skeletal growth zones to skeletal malformation and chondrodysplasia, and in hypothalamic neurosecretory neurons to systemic hypothalamus–pituitary–somatotropic hypoplasia. The unbiased smpd3−/− mouse mutant and derived smpd3−/− primary chondrocytes were instrumental in defining the enigmatic role underlying the systemic and cell autonomous role of SMPD3 in the Golgi compartment. Here we describe the unprecedented role of SMPD3. SMPD3 deficiency disrupts homeostasis of sphingomyelin (SM), ceramide (Cer) and diacylglycerol (DAG) in the Golgi SMPD3-SMS1 (SM-synthase1) cycle. Cer and DAG, two fusogenic intermediates, modify the membrane lipid bilayer for the initiation of vesicle formation and transport. Dysproteostasis, unfolded protein response, endoplasmic reticulum stress and apoptosis perturb the Golgi secretory pathway in the smpd3−/− mouse. Secretion of extracellular matrix proteins is arrested in chondrocytes and causes skeletal malformation and chondrodysplasia. Similarly, retarded secretion of proteo-hormones in hypothalamic neurosecretory neurons leads to hypothalamus induced combined pituitary hormone deficiency. SMPD3 in the regulation of the protein vesicular secretory pathway may become a diagnostic target in the etiology of unknown forms of juvenile growth and developmental inhibition. PMID:27882938

  6. FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Siru Zhou

    2015-06-01

    Full Text Available Most cartilaginous tumors are formed during skeletal development in locations adjacent to growth plates, suggesting that they arise from disordered endochondral bone growth. Fibroblast growth factor receptor (FGFR3 signaling plays essential roles in this process; however, the role of FGFR3 in cartilaginous tumorigenesis is not known. In this study, we found that postnatal chondrocyte-specific Fgfr3 deletion induced multiple chondroma-like lesions, including enchondromas and osteochondromas, adjacent to disordered growth plates. The lesions showed decreased extracellular signal-regulated kinase (ERK activity and increased Indian hedgehog (IHH expression. The same was observed in Fgfr3-deficient primary chondrocytes, in which treatment with a mitogen-activated protein kinase (MEK inhibitor increased Ihh expression. Importantly, treatment with an inhibitor of IHH signaling reduced the occurrence of chondroma-like lesions in Fgfr3-deficient mice. This is the first study reporting that the loss of Fgfr3 function leads to the formation of chondroma-like lesions via downregulation of MEK/ERK signaling and upregulation of IHH, suggesting that FGFR3 has a tumor suppressor-like function in chondrogenesis.

  7. Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2.

    Science.gov (United States)

    Cui, Guimei; Wei, Pan; Zhao, Yuxi; Guan, Zhenhong; Yang, Li; Sun, Wanchun; Wang, Shuangxi; Peng, Qisheng

    2014-11-07

    The calcium-dependent protease calpain2 is involved in macrophages apoptosis. Brucella infection-induced up-regulation of intracellular calcium level is an essential factor for the intracellular survival of Brucella within macrophages. Here, we hypothesize that calcium-dependent E3 ubiquitin ligase Nedd4 ubiquitinates calpain2 and inhibits Brucella infection-induced macrophage apoptosis via degradation of calpain2.Our results reveal that Brucella infection induces increases in Nedd4 activity in an intracellular calcium dependent manner. Furthermore, Brucella infection-induced degradation of calpain2 is mediated by Nedd4 ubiquitination of calpain2. Brucella infection-induced calpain2 degradation inhibited macrophages apoptosis. Treatment of Brucella infected macrophages with calcium chelator BAPTA or Nedd4 knock-down decreased Nedd4 activity, prevented calpain2 degradation, and resulted in macrophages apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. 1,25(OH)2D3 Deficiency Induces Colon Inflammation via Secretion of Senescence-Associated Inflammatory Cytokines

    Science.gov (United States)

    Zhi, Chunchun; Shen, Ming; Sun, Weiwei; Miao, Dengshun; Yuan, Xiaoqin

    2016-01-01

    Epidemiological studies showed that 1,25-Dihydroxyvitamin D[1,25(OH)2D3] insufficiency appears to be associated with aging and colon cancer while underlying biological mechanisms remain largely unknown. Inflammatory bowel disease is one of the risk factors for colon cancer. In this study, we investigated whether 1,25(OH)2D3 deficiency has an impact on the colon of 25-hydroxyvitamin D 1α-hydroxylase knockout [Cyp27b1−/−] mice fed on a rescue diet (high calcium, phosphate, and lactose) from weaning to 10 months of age. We found that 1,25(OH)2D3 deficient mice displayed significant colon inflammation phenotypes including shortened colon length, thinned and disordered mucosal structure, and inflammatory cell infiltration. DNA damage, cellular senescence and the production of senescence-associated inflammatory cytokines were also increased significantly in the colon of Cyp27b1−/−mice. Furthermore, the levels of ROS in the colon were increased significantly, whereas the expression levels of antioxidative genes were down-regulated dramatically in the colon of Cyp27b1−/−mice. Taken together, our results demonstrated that 1,25(OH)2D3 deficiency could induce colon inflammation, which may result from increased oxidative stress and DNA damage, subsequently, induced cell senescence and overproduction of senescence-associated secretory factors. Therefore, our findings suggest that 1,25(OH)2D3 may play an important role in preventing the development and progression of colon inflammation and colon cancer. PMID:26790152

  9. Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis

    Science.gov (United States)

    Briz, Victor; Hsu, Yu-Tien; Li, Yi; Lee, Erin; Bi, Xiaoning; Baudry, Michel

    2013-01-01

    Memory consolidation has been suggested to be protein synthesis-dependent. Recent data indicate that BDNF-induced dendritic protein synthesis is a key event in memory formation through activation of the mammalian target of rapamycin (mTOR) pathway. BDNF also activates calpain, a calcium-dependent cysteine protease, which has been shown to play a critical role in learning and memory. This study was therefore directed at testing the hypothesis that calpain activity is required for BDNF-stimulated local protein synthesis, and at identifying the underlying molecular mechanism. In rat hippocampal slices, cortical synaptoneurosomes, and cultured neurons, BDNF-induced mTOR pathway activation and protein translation were blocked by calpain inhibition. BDNF treatment rapidly reduced levels of hamartin and tuberin, negative regulators of mTOR, in a calpain-dependent manner. Treatment of brain homogenates with purified calpain-1 and calpain-2 truncated both proteins. BDNF treatment increased phosphorylation of both Akt and ERK, but only the effect on Akt was blocked by calpain inhibition. Levels of PTEN (phosphatase and tensin homolog deleted on chromosome ten), a phosphatase that inactivates Akt, were decreased following BDNF treatment, and calpain inhibition reversed this effect. Calpain-2 but not calpain-1 treatment of brain homogenates resulted in PTEN degradation. In cultured cortical neurons, knock-down of calpain-2 but not calpain-1 by siRNA completely suppressed the effect of BDNF on mTOR activation. Our results reveal a critical role for calpain-2 in BDNF-induced mTOR signaling and dendritic protein synthesis via PTEN, hamartin and tuberin degradation. This mechanism therefore provides a link between proteolysis and protein synthesis that might contribute to synaptic plasticity. PMID:23467348

  10. PC1/3 Deficiency Impacts Pro-opiomelanocortin Processing in Human Embryonic Stem Cell-Derived Hypothalamic Neurons

    Directory of Open Access Journals (Sweden)

    Liheng Wang

    2017-02-01

    Full Text Available We recently developed a technique for generating hypothalamic neurons from human pluripotent stem cells. Here, as proof of principle, we examine the use of these cells in modeling of a monogenic form of severe obesity: PCSK1 deficiency. The cognate enzyme, PC1/3, processes many prohormones in neuroendocrine and other tissues. We generated PCSK1 (PC1/3-deficient human embryonic stem cell (hESC lines using both short hairpin RNA and CRISPR-Cas9, and investigated pro-opiomelanocortin (POMC processing using hESC-differentiated hypothalamic neurons. The increased levels of unprocessed POMC and the decreased ratios (relative to POMC of processed POMC-derived peptides in both PCSK1 knockdown and knockout hESC-derived neurons phenocopied POMC processing reported in PC1/3-null mice and PC1/3-deficient patients. PC1/3 deficiency was associated with increased expression of melanocortin receptors and PRCP (prolylcarboxypeptidase, a catabolic enzyme for α-melanocyte stimulating hormone (αMSH, and reduced adrenocorticotropic hormone secretion. We conclude that the obesity accompanying PCSK1 deficiency may not be primarily due to αMSH deficiency.

  11. Moderation of calpain activity promotes neovascular integration and lumen formation during VEGF-induced pathological angiogenesis.

    Directory of Open Access Journals (Sweden)

    Mien V Hoang

    2010-10-01

    Full Text Available Successful neovascularization requires that sprouting endothelial cells (ECs integrate to form new vascular networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological angiogenesis induced by vascular endothelial growth factor-A (VEGF, thereby limiting the utility of VEGF for therapeutic angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant calpain activity is responsible for aberrant VEGF neovessel architecture and integration. Calpains are a family of intracellular calcium-dependent, non-lysosomal cysteine proteases that regulate cellular functions through proteolysis of numerous substrates.In a mouse skin model of VEGF-driven angiogenesis, retroviral transduction with dominant-negative (DN calpain-I promoted neovessel integration and lumen formation, reduced blind ends, and improved vascular perfusion. Moderate doses of calpain inhibitor-I improved VEGF-driven angiogenesis similarly to DN calpain-I. Conversely, retroviral transduction with wild-type (WT calpain-I abolished neovessel integration and lumen formation. In vitro, moderate suppression of calpain activity with DN calpain-I or calpain inhibitor-I increased the microtubule-stabilizing protein tau in endothelial cells (ECs, increased the average length of microtubules, increased actin cable length, and increased the interconnectivity of vascular cords. Conversely, WT calpain-I diminished tau, collapsed microtubules, disrupted actin cables, and inhibited integration of cord networks. Consistent with the critical importance of microtubules for vascular network integration, the microtubule-stabilizing agent taxol supported vascular cord integration whereas microtubule dissolution with nocodazole collapsed cord networks.These findings implicate VEGF-induction of calpain activity and impairment of cytoskeletal dynamics in the failure of VEGF-induced neovessels to form and

  12. Contribution of Calpain and Caspases to Cell Death in Cultured Monkey RPE Cells.

    Science.gov (United States)

    Nakajima, Emi; Hammond, Katherine B; Hirata, Masayuki; Shearer, Thomas R; Azuma, Mitsuyoshi

    2017-10-01

    AMD is the leading cause of human vision loss after 65 years of age. Several mechanisms have been proposed: (1) age-related failure of the choroidal vasculature leads to loss of RPE; (2) RPE dysfunctions due to accumulation of phagocytized, but unreleased A2E (N-retinylidene-N-retinylethanolamine); (3) zinc deficiency activation of calpain and caspase proteases, leading to cell death. The purpose of the present study is to compare activation of calpain and caspase in monkey RPE cells cultured under hypoxia or with A2E. Monkey primary RPE cells were cultured under hypoxic conditions in a Gaspak pouch or cultured with synthetic A2E. Immunoblotting was used to detect activation of calpain and caspase. Calpain inhibitor, SNJ-1945, and pan-caspase inhibitor, z-VAD-fmk, were used to confirm activation of the proteases. (1) Hypoxia and A2E each decreased viability of RPE cells in a time-dependent manner. (2) Incubation under hypoxia alone induced activation of calpain, but not caspases. SNJ-1945 inhibited calpain activation, but z-VAD-fmk did not. (3) Incubation with A2E alone induced activation of calpain, caspase-9, and caspase-3. SNJ-1945 inhibited calpain activation. z-VAD-fmk inhibited caspase activation, suggesting no interaction between calpain and caspases. Hypoxia activated the calpain pathway, while A2E activated both calpain and caspase pathways in monkey RPE cells. Such knowledge may be utilized in the treatment of AMD if inhibitor drugs against calpain and/or caspase are used to prevent RPE dysfunction caused by hypoxia or A2E.

  13. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation.

    Science.gov (United States)

    Jenny Zhou, Huanjiao; Qin, Lingfeng; Zhang, Haifeng; Tang, Wenwen; Ji, Weidong; He, Yun; Liang, Xiaoling; Wang, Zongren; Yuan, Qianying; Vortmeyer, Alexander; Toomre, Derek; Fuh, Germaine; Yan, Minghong; Kluger, Martin S; Wu, Dianqing; Min, Wang

    2016-09-01

    Cerebral cavernous malformations (CCMs) are vascular malformations that affect the central nervous system and result in cerebral hemorrhage, seizure and stroke. CCMs arise from loss-of-function mutations in one of three genes: KRIT1 (also known as CCM1), CCM2 or PDCD10 (also known as CCM3). PDCD10 mutations in humans often result in a more severe form of the disease relative to mutations in the other two CCM genes, and PDCD10-knockout mice show severe defects, the mechanistic basis for which is unclear. We have recently reported that CCM3 regulates exocytosis mediated by the UNC13 family of exocytic regulatory proteins. Here, in investigating the role of endothelial cell exocytosis in CCM disease progression, we found that CCM3 suppresses UNC13B- and vesicle-associated membrane protein 3 (VAMP3)-dependent exocytosis of angiopoietin 2 (ANGPT2) in brain endothelial cells. CCM3 deficiency in endothelial cells augments the exocytosis and secretion of ANGPT2, which is associated with destabilized endothelial cell junctions, enlarged lumen formation and endothelial cell-pericyte dissociation. UNC13B deficiency, which blunts ANGPT2 secretion from endothelial cells, or treatment with an ANGPT2-neutralizing antibody normalizes the defects in the brain and retina caused by endothelial-cell-specific CCM3 deficiency, including the disruption of endothelial cell junctions, vessel dilation and pericyte dissociation. Thus, enhanced secretion of ANGPT2 in endothelial cells contributes to the progression of CCM disease, providing a new therapeutic approach for treating this devastating pathology.

  14. Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses

    Science.gov (United States)

    Macqueen, Daniel J.; Wilcox, Alexander H.

    2014-01-01

    The calpains are a superfamily of proteases with extensive relevance to human health and welfare. Vast research attention is given to the vertebrate ‘classical’ subfamily, making it surprising that the evolutionary origins, distribution and relationships of these genes is poorly characterized. Consequently, there exists uncertainty about the conservation of gene family structure, function and expression that has been principally defined from work with mammals. Here, more than 200 vertebrate classical calpains were incorporated in phylogenetic analyses spanning an unprecedented range of taxa, including jawless and cartilaginous fish. We demonstrate that the common vertebrate ancestor had at least six classical calpains, including a single gene that gave rise to CAPN11, 1, 2 and 8 in the early jawed fish lineage, plus CAPN3, 9, 12, 13 and a novel calpain gene, hereafter named CAPN17. We reveal that while all vertebrate classical calpains have been subject to persistent purifying selection during evolution, the degree and nature of selective pressure has often been lineage-dependent. The tissue expression of the complete classic calpain family was assessed in representative teleost fish, amphibians, reptiles and mammals. This highlighted systematic divergence in expression across vertebrate taxa, with most classic calpain genes from fish and amphibians having more extensive tissue distribution than in amniotes. Our data suggest that classical calpain functions have frequently diverged during vertebrate evolution and challenge the ongoing value of the established system of classifying calpains by expression. PMID:24718597

  15. Calpain2 mediates Rab5-driven focal adhesion disassembly and cell migration.

    Science.gov (United States)

    Mendoza, Pablo A; Silva, Patricio; Díaz, Jorge; Arriagada, Cecilia; Canales, Jimena; Cerda, Oscar; Torres, Vicente A

    2017-11-03

    The early endosome protein Rab5 was recently shown to promote cell migration by enhancing focal adhesion disassembly through mechanisms that remain elusive. Focal adhesion disassembly is associated to proteolysis of talin, in a process that requires calpain2. Since calpain2 has been found at vesicles and endosomal compartments, we hypothesized that Rab5 stimulates calpain2 activity, leading to enhanced focal adhesion disassembly in migrating cells. We observed that calpain2 co-localizes with EEA1-positive early endosomes and co-immunoprecipitates with EEA1 and Rab5 in A549 lung carcinoma cells undergoing spreading, whereas Rab5 knock-down decreased the accumulation of calpain2 at early endosomal-enriched fractions. In addition, Rab5 silencing decreased calpain2 activity, as shown by cleavage of the fluorogenic substrate tBOC-LM-CMAC and the endogenous substrate talin. Accordingly, Rab5 promoted focal adhesion disassembly in a calpain2-dependent manner, as expression of GFP-Rab5 accelerated focal adhesion disassembly in nocodazole-synchronized cells, whereas pharmacological inhibition of calpain2 with N-acetyl-Leu-Leu-Met prevented both focal adhesion disassembly and cell migration induced by Rab5. In summary, these data uncover Rab5 as a novel regulator of calpain2 activity and focal adhesion proteolysis leading to cell migration.

  16. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    Science.gov (United States)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  17. Receptor-Interacting Protein Kinase 3 Deficiency Delays Cutaneous Wound Healing.

    Directory of Open Access Journals (Sweden)

    Andrew Godwin

    Full Text Available Wound healing consists of a complex, dynamic and overlapping process involving inflammation, proliferation and tissue remodeling. A better understanding of wound healing process at the molecular level is needed for the development of novel therapeutic strategies. Receptor-interacting protein kinase 3 (RIPK3 controls programmed necrosis in response to TNF-α during inflammation and has been shown to be highly induced during cutaneous wound repair. However, its role in wound healing remains to be demonstrated. To study this, we created dorsal cutaneous wounds on male wild-type (WT and RIPK3-deficient (Ripk3-/- mice. Wound area was measured daily until day 14 post-wound and skin tissues were collected from wound sites at various days for analysis. The wound healing rate in Ripk3-/- mice was slower than the WT mice over the 14-day course; especially, at day 7, the wound size in Ripk3-/- mice was 53% larger than that of WT mice. H&E and Masson-Trichrome staining analysis showed impaired quality of wound closure in Ripk3-/- wounds with delayed re-epithelialization and angiogenesis and defected granulation tissue formation and collagen deposition compared to WT. The neutrophil infiltration pattern was altered in Ripk3-/- wounds with less neutrophils at day 1 and more neutrophils at day 3. This altered pattern was also reflected in the differential expression of IL-6, KC, IL-1β and TNF-α between WT and Ripk3-/- wounds. MMP-9 protein expression was decreased with increased Timp-1 mRNA in the Ripk3-/- wounds compared to WT. The microvascular density along with the intensity and timing of induction of proangiogenic growth factors VEGF and TGF-β1 were also decreased or delayed in the Ripk3-/- wounds. Furthermore, mouse embryonic fibroblasts (MEFs from Ripk3-/- mice migrated less towards chemoattractants TGF-β1 and PDGF than MEFs from WT mice. These results clearly demonstrate that RIPK3 is an essential molecule to maintain the temporal manner of the

  18. Asymmetric Localization of Calpain 2 during Neutrophil Chemotaxis

    OpenAIRE

    Nuzzi, Paul A.; Senetar, Melissa A.; Huttenlocher, Anna

    2007-01-01

    Chemoattractants induce neutrophil polarization through localized polymerization of F-actin at the leading edge. The suppression of rear and lateral protrusions is required for efficient chemotaxis and involves the temporal and spatial segregation of signaling molecules. We have previously shown that the intracellular calcium-dependent protease calpain is required for cell migration and is involved in regulating neutrophil chemotaxis. Here, we show that primary neutrophils and neutrophil-like...

  19. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    a sequential C-terminal degradation pattern characteristic of this dipeptylpeptidase. The substrate primary structure was not found to be essential for regulation of the proteolytic activity of the cysteine peptidases studied. However, the degradation patterns obtained imply that calpains are involved...... in degradation of desmin early post-mortem, targeting the non-helical region of the desmin molecule and resulting in depolymerisation and initial disorganisation of the intermediate filament structures of the muscle cell....

  20. Muscle pathology in 31 patients with calpain 3 gene mutations..

    Science.gov (United States)

    Nadaj-Pakleza, Aleksandra A; Dorobek, M; Nestorowicz, K; Ryniewicz, B; Szmidt-Sałkowska, E; Kamińska, A M

    2013-01-01

    At present, more than 20 different forms of limb-girdle muscular dystrophies (LGMDs) are known (at least 7 autosomal dominant and 14 autosomal recessive). Although these different forms show some typical phenotypic characteristics, the existing clinical overlap makes their differential diagnosis difficult. Limb-girdle muscular dystrophy type 2 (LGMD2A) is the most prevalent LGMD in many European as well as Brazilian communities and is caused by mutations in the gene CAPN3. Laboratory testing, such as calpain immunohistochemistry and Western-blot analysis, is not totally reliable, since up to 20% of molecularly confirmed LGMD2A show normal content of calpain 3 and a third of LGMD2A biopsies have normal calpain 3 proteo-lytic activity in the muscle. Thus, genetic testing is considered as the only reliable diagnostic criterion in LGMD2A. In an attempt to find a correlation between genotype and muscle pathology in limb-girdle muscular dystrophy 2A we performed histopathological investigation of a group of 31 patients subdivided according to the type of pathologic CAPN3 gene mutation. In all biopsies typical features of muscular dystrophy such as fiber necrosis and regeneration, variation in fiber size and fibrosis were noted. Lobulated fibers were often encountered in the muscle biopsies of LGMD2A patients. Such fibers were more frequent in patients with 550delA mutation. These findings may be helpful in establishing diagnostic strategies in LGMD.

  1. Inhibition of Starvation-Triggered Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in ARPE-19 Cells by Taurine through Modulating the Expression of Calpain-1 and Calpain-2.

    Science.gov (United States)

    Zhang, Yuanyuan; Ren, Shu; Liu, Yuci; Gao, Kun; Liu, Zheng; Zhang, Zhou

    2017-10-14

    Age-related macular degeneration (AMD) is a complex disease with multiple initiators and pathways that converge on death for retinal pigment epithelial (RPE) cells. In this study, effects of taurine on calpains, autophagy, endoplasmic reticulum (ER) stress, and apoptosis in ARPE-19 cells (a human RPE cell line) were investigated. We first confirmed that autophagy, ER stress and apoptosis in ARPE-19 cells were induced by Earle's balanced salt solution (EBSS) through starvation to induce RPE metabolic stress. Secondly, inhibition of ER stress by 4-phenyl butyric acid (4-PBA) alleviated autophagy and apoptosis, and suppression of autophagy by 3-methyl adenine (3-MA) reduced the cell apoptosis, but the ER stress was minimally affected. Thirdly, the apoptosis, ER stress and autophagy were inhibited by gene silencing of calpain-2 and overexpression of calpain-1, respectively. Finally, taurine suppressed both the changes of the important upstream regulators (calpain-1 and calpain-2) and the activation of ER stress, autophagy and apoptosis, and taurine had protective effects on the survival of ARPE-19 cells. Collectively, this data indicate that taurine inhibits starvation-triggered endoplasmic reticulum stress, autophagy, and apoptosis in ARPE-19 cells by modulating the expression of calpain-1 and calpain-2.

  2. Inhibition of Starvation-Triggered Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in ARPE-19 Cells by Taurine through Modulating the Expression of Calpain-1 and Calpain-2

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2017-10-01

    Full Text Available Age-related macular degeneration (AMD is a complex disease with multiple initiators and pathways that converge on death for retinal pigment epithelial (RPE cells. In this study, effects of taurine on calpains, autophagy, endoplasmic reticulum (ER stress, and apoptosis in ARPE-19 cells (a human RPE cell line were investigated. We first confirmed that autophagy, ER stress and apoptosis in ARPE-19 cells were induced by Earle’s balanced salt solution (EBSS through starvation to induce RPE metabolic stress. Secondly, inhibition of ER stress by 4-phenyl butyric acid (4-PBA alleviated autophagy and apoptosis, and suppression of autophagy by 3-methyl adenine (3-MA reduced the cell apoptosis, but the ER stress was minimally affected. Thirdly, the apoptosis, ER stress and autophagy were inhibited by gene silencing of calpain-2 and overexpression of calpain-1, respectively. Finally, taurine suppressed both the changes of the important upstream regulators (calpain-1 and calpain-2 and the activation of ER stress, autophagy and apoptosis, and taurine had protective effects on the survival of ARPE-19 cells. Collectively, this data indicate that taurine inhibits starvation-triggered endoplasmic reticulum stress, autophagy, and apoptosis in ARPE-19 cells by modulating the expression of calpain-1 and calpain-2.

  3. Nutritional Omega-3 Deficiency Alters Glucocorticoid Receptor-Signaling Pathway and Neuronal Morphology in Regionally Distinct Brain Structures Associated with Emotional Deficits

    Directory of Open Access Journals (Sweden)

    Thomas Larrieu

    2016-01-01

    Full Text Available Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC. Here we show that hypothalamic-pituitary-adrenal (HPA axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits.

  4. Expression of the gene for large subunit of m-calpain is elevated in ...

    Indian Academy of Sciences (India)

    Calpain is an intracellular nonlysosomal protease involved in essential regulatory or processing functions of the cell, mediated by physiological concentrations of Ca2З. However, in an environment of abnormal intracellular calcium, such as that seen in Duchenne muscular dystrophy (DMD), calpain is suggested to cause ...

  5. Calpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats

    NARCIS (Netherlands)

    Granic, Ivica; Nyakas, Csaba; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Halmy, Laszlo G.; Gross, Gerhard; Schoemaker, Hans; Moeller, Achim; Nimmrich, Volker

    2010-01-01

    Amyloid-beta (A beta) is toxic to neurons and such toxicity is - at least in part - mediated via the NMDA receptor. Calpain, a calcium dependent cystein protease, is part of the NMDA receptor-induced neurodegeneration pathway, and we previously reported that inhibition of calpain prevents

  6. Calpain inhibitors reduce retinal hypoxia in ischemic retinopathy by improving neovascular architecture and functional perfusion.

    Science.gov (United States)

    Hoang, Mien V; Smith, Lois E H; Senger, Donald R

    2011-04-01

    In ischemic retinopathies, underlying hypoxia drives abnormal neovascularization that damages retina and causes blindness. The abnormal neovasculature is tortuous and leaky and fails to alleviate hypoxia, resulting in more pathological neovascularization and retinal damage. With an established model of ischemic retinopathy we found that calpain inhibitors, when administered in moderation, reduced architectural abnormalities, reduced vascular leakage, and most importantly reduced retinal hypoxia. Mechanistically, these calpain inhibitors improved stability and organization of the actin cytoskeleton in retinal endothelial cells undergoing capillary morphogenesis in vitro, and they similarly improved organization of actin cables within new blood vessels in vivo. Hypoxia induced calpain activity in retinal endothelial cells and severely disrupted the actin cytoskeleton, whereas calpain inhibitors preserved actin cables under hypoxic conditions. Collectively, these findings support the hypothesis that hyper-activation of calpains by hypoxia contributes to disruption of the retinal endothelial cell cytoskeleton, resulting in formation of neovessels that are defective both architecturally and functionally. Modest suppression of calpain activity with calpain inhibitors restores cytoskeletal architecture and promotes formation of a functional neovasculature, thereby reducing underlying hypoxia. In sharp contrast to "anti-angiogenesis" strategies that cannot restore normoxia and may aggravate hypoxia, the therapeutic strategy described here does not inhibit neovascularization. Instead, by improving the function of neovascularization to reduce underlying hypoxia, moderate calpain inhibition offers a method for alleviating retinal ischemia, thereby suggesting a new treatment paradigm based on improvement rather than inhibition of new blood vessel growth. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. S-nitrosation of calpains is associated with cardioprotection in myocardial I/R injury.

    Science.gov (United States)

    Totzeck, Matthias; Korste, Sebastian; Miinalainen, Ilkka; Hendgen-Cotta, Ulrike B; Rassaf, Tienush

    2017-07-01

    Myocardial infarction remains the single leading cause of death worldwide. Upon reperfusion of occluded arteries, deleterious cellular mediators particularly located at the mitochondria level can be activated, thus limiting the outcome in patients. This may lead to the so-called ischemia/reperfusion (I/R) injury. Calpains are cysteine proteases and mediators of caspase-independent cell death. Recently, they have emerged as central transmitters of cellular injury in several cardiac pathologies e.g. hypertrophy and acute I/R injury. Here we investigated the role of cardiac calpains in acute I/R in relation to mitochondrial integrity and whether calpains can be effectively inhibited by posttranslational modification by S-nitrosation. Taking advantage of the a cardiomyocyte cell line (HL1), we determined S-nitrosation by the Biotin-switch approach, cell viability and intracellular calcium concentration after simulated ischemia and reoxygenation - all in dependence of supplementation with nitrite, which is known as an 'hypoxic nitric oxide (NO) donor'. Likewise, using an in vivo I/R model, calpain S-nitrosation, calpain activity and myocardial I/R injury were characterized in vivo. Nitrite administration resulted in an increased S-nitrosation of calpains, and this was associated with an improved cell-survival. No impact was detected on calcium levels. In line with these in vitro experiments, nitrite initiated calpain S-nitrosation in vivo and caused an infarct sparing effect in an in vivo myocardial I/R model. Using electron microscopy in combination with immuno-gold labeling we determined that calpain 10 increased, while calpain 2 decreased in the course of I/R. Nitrite, in turn, prevented an I/R induced increase of calpains 10 at mitochondria and reduced levels of calpain 1. Lethal myocardial injury remains a key aspect of myocardial I/R. We show that calpains, as key players in caspase-independent apoptosis, increasingly locate at mitochondria following I

  8. Mechanism of Action of Thalassospiramides, A New Class of Calpain Inhibitors

    KAUST Repository

    Lu, Liang

    2015-03-05

    Thalassospiramides comprise a large family of lipopeptide natural products produced by Thalassospira and Tistrella marine bacteria. Here we provide further evidence of their nanomolar inhibitory activity against the human calpain 1 protease. Analysis of structure-activity relationship data supported our hypothesis that the rigid 12-membered ring containing an α,β-unsaturated carbonyl moiety is the pharmacologically active functional group, in contrast to classic electrophilic "warheads" in known calpain inhibitors. Using a combination of chemical modifications, mass spectrometric techniques, site-directed mutagenesis, and molecular modeling, we show the covalent binding of thalassospiramide\\'s α,β-unsaturated carbonyl moiety to the thiol group of calpain\\'s catalytic Cys115 residue by a Michael 1,4-addition reaction. As nanomolar calpain inhibitors with promising selectivity and low toxicity from natural sources are rare, we consider thalassospiramides as promising drug leads.

  9. SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons.

    Science.gov (United States)

    Han, Qingjian; Kim, Yong Ho; Wang, Xiaoming; Liu, Di; Zhang, Zhi-Jun; Bey, Alexandra L; Lay, Mark; Chang, Wonseok; Berta, Temugin; Zhang, Yan; Jiang, Yong-Hui; Ji, Ru-Rong

    2016-12-21

    Abnormal pain sensitivity is commonly associated with autism spectrum disorders (ASDs) and affects the life quality of ASD individuals. SHANK3 deficiency was implicated in ASD and pain dysregulation. Here, we report functional expression of SHANK3 in mouse dorsal root ganglion (DRG) sensory neurons and spinal cord presynaptic terminals. Homozygous and heterozygous Shank3 complete knockout (Δe4-22) results in impaired heat hyperalgesia in inflammatory and neuropathic pain. Specific deletion of Shank3 in Nav1.8-expressing sensory neurons also impairs heat hyperalgesia in homozygous and heterozygous mice. SHANK3 interacts with transient receptor potential subtype V1 (TRPV1) via Proline-rich region and regulates TRPV1 surface expression. Furthermore, capsaicin-induced spontaneous pain, inward currents in DRG neurons, and synaptic currents in spinal cord neurons are all reduced after Shank3 haploinsufficiency. Finally, partial knockdown of SHANK3 expression in human DRG neurons abrogates TRPV1 function. Our findings reveal a peripheral mechanism of SHANK3, which may underlie pain deficits in SHANK3-related ASDs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Impairment of survival signaling and efferocytosis in TRPC3-deficient macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Jean-Yves; Smedlund, Kathryn; Lee, Robert [Department of Physiology and Pharmacology and the Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Av, Toledo, OH 43614 (United States); Abramowitz, Joel; Birnbaumer, Lutz [Laboratory of Membrane Signaling, Department of Signal Transduction, National Institute of Environmental Health Science, Research Triangle Park, NC 23709 (United States); Vazquez, Guillermo, E-mail: Guillermo.Vazquez@utoledo.edu [Department of Physiology and Pharmacology and the Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Av, Toledo, OH 43614 (United States)

    2011-07-08

    Highlights: {yields} We examined the role of TRPC3 channel in macrophage survival, apoptosis and efferocytic properties. {yields} TRPC3-deficient macrophages exhibit impaired survival signaling, increased apoptosis and impaired efferocytosis. {yields} These findings suggest that macrophage TRPC3 is an essential component for macrophage survival and clearance of apoptotic cells. -- Abstract: We have recently shown that in macrophages proper operation of the survival pathways phosphatidylinositol-3-kinase (PI3K)/AKT and nuclear factor kappa B (NFkB) has an obligatory requirement for constitutive, non-regulated Ca{sup 2+} influx. In the present work we examined if Transient Receptor Potential Canonical 3 (TRPC3), a member of the TRPC family of Ca{sup 2+}-permeable cation channels, contributes to the constitutive Ca{sup 2+} influx that supports macrophage survival. We used bone marrow-derived macrophages obtained from TRPC3{sup -/-} mice to determine the activation status of survival signaling pathways, apoptosis and their efferocytic properties. Treatment of TRPC3{sup +/+} macrophages with the pro-apoptotic cytokine TNF{alpha} induced time-dependent phosphorylation of I{kappa}B{alpha}, AKT and BAD, and this was drastically reduced in TRPC3{sup -/-} macrophages. Compared to TRPC3{sup +/+} cells TRPC3{sup -/-} macrophages exhibited reduced constitutive cation influx, increased apoptosis and impaired efferocytosis. The present findings suggest that macrophage TRPC3, presumably through its constitutive function, contributes to survival signaling and efferocytic properties.

  11. Expression of the calpain system is associated with poor clinical outcome in gastro-oesophageal adenocarcinomas.

    Science.gov (United States)

    Storr, Sarah J; Pu, Xuan; Davis, Jillian; Lobo, Dileep; Reece-Smith, Alex M; Parsons, Simon L; Madhusudan, Srinivasan; Martin, Stewart G

    2013-11-01

    Surgery is critical in the management of gastro-oesophageal cancer, and the addition of neo-adjuvant chemotherapy has proved to be of benefit. The calpain system has been implicated in tumour progression and response to various anti-cancer therapies, and therefore expression of the system was determined in this tumour type. Two cohorts of gastro-oesophageal adenocarcinomas were investigated for calpain-1, calpain-2, calpain-9 and calpastatin expression using conventional immunohistochemistry. 88 patients who received neo-adjuvant chemotherapy and 140 patients who received surgery alone were investigated using a tissue microarray approach. Calpain-1, calpain-2 and calpastatin expression was associated with adverse cancer-specific survival in the neo-adjuvant cohort (P = 0.004, P = 0.001 and P = 0.012 respectively); which remained significant in multivariate analysis (Hazard ratio (HR) = 0.337; 95% confidence interval (CI) = 0.140-0.81; P = 0.015, HR = 0.375; 95% CI = 0.165-0.858; P = 0.020 and HR = 0.481; 95% CI = 0.257-0.900; P = 0.022 respectively). Calpain-1 and calpastatin expression was also associated with adverse cancer specific survival in the primary surgery cohort (P = 0.001 and P = 0.013 respectively); which remained significant in multivariate analysis (HR = 0.309; 95% CI = 0.159-0.601; P = 0.001 and HR = 0.418; 95% CI = 0.205-0.850; P = 0.016 respectively). Calpain-9 expression was not associated with cancer-specific survival in the neo-adjuvant and primary surgery cohorts. Determining the expression levels of calpain-1, calpain-2 and calpastatin may provide clinically relevant prognostic information for gastro-oesophageal adenocarcinomas; these findings warrant further studies in larger cohorts of patients.

  12. Effects of calpain genotypes on meat tenderness and carcass traits of Angus bulls.

    Science.gov (United States)

    Chung, H Y; Davis, M E

    2011-10-01

    Relationships of the calpain system with meat tenderness and carcass traits were examined for 94 purebred Angus bulls with genotypes of the calpain classified by RFLP (restriction fragment length polymorphism) and SSCP (Single strand conformation polymorphism) analysis. Designing of primers based on the calpain regulatory subunit (CAPNS) and u-calpian (CAPN1) genes. Bulls from 15 months of age were slaughtered, and carcass traits, including fat thickness (FAT); longissimus muscle area (LMA); percentage of kidney, pelvic, and heart fat (KPH); hot carcass weight (HCW); marbling score (MAR); and quality grade (QUL), were analyzed. Measurements regarding meat tenderness involved activities of calpastatin (CAC), u-calpain (UAC), m-calpain (MAC), Warner-Bratzler Shear Force (WBS) and myofibril fragmentation index (MFI). Statistical significances of the calpain genotypes accounted for variations in MAR and QUL at CAPNS locus, and both loci explained variations of UAC and MAC. Significant mean differences in genotypes of CAPNS locus were found for MAR (BB > AB > AA) and QUL (AB > BB > AA). UAC showed significant correlations with MAC, CAC, MFI, FAT, and MAR, and we found that MAC correlated with WBS, FAT, HCW, MAR, and QUL. Strong positive correlation detected between LMA and HCW, and MAR and QUL, and a negative correlation between MFI and MAR was estimated. From the result it may be possible to use the calpain genotypes classified by RFLP and SSCP analysis in marker assisted selection programs to estimate UAC and MAC precisely regardless meat tenderness and to improve MAR and QUL of beef cattle.

  13. Suppression of calpain expression by NSAIDs is associated with inhibition of cell migration in rat duodenum.

    Science.gov (United States)

    Silver, Kristopher; Littlejohn, A; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D

    2017-05-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Calpain Inhibition Improves Erectile Function in a Rat Model of Cavernous Nerve Injury.

    Science.gov (United States)

    Wan, Zhi-Hua; Li, Guo-Hao; Guo, Yong-Lian; Li, Wen-Zhou; Chen, Lin

    2015-01-01

    Erectile dysfunction (ED) after cavernous nerve (CN) injury remains difficult to treat. Calpain plays a critical role in causing neurodegenerative diseases. This study aimed to evaluate whether calpain inhibition preserves erectile function in a rat model of CN injury. Rats underwent sham surgery or CN crush injury. The CN-crushed rats were treated with vehicle or MDL-28170, a specific calpain inhibitor. At 1, 2, 3, and 7 days post-surgery, major pelvic ganglia (MPG) were harvested, followed by the measurement of erectile function, respectively. At 28 days, penile tissue and distal CN were harvested, followed by the measurement of erectile function in rats. Calpain activity in MPG and corpus cavernosum, as well as TGF-β1/Smad2 and collagen content in corpus cavernosum, were measured by western blot. Neuronal nitric oxide synthase (nNOS) was observed by immunohistochemistry. Increased calpain activity was observed in MPG and corpus cavernosum. CN crush markedly attenuated the erectile responses and nNOS expression in CN, and these were improved by MDL-28170 treatment. Furthermore, treatment prevented increased TGF-β1/Smad2 and collagen expression in corpus cavernosum. Our results suggested that calpain activation plays a role in pathogenesis of CN injury-associated ED. Calpain inhibition could be a novel approach for preventing the development of ED following CN injury. © 2015 S. Karger AG, Basel.

  15. Calpain-mediated cleavage of DARPP-32 in Alzheimer's disease.

    Science.gov (United States)

    Cho, Kwangmin; Cho, Mi-Hyang; Seo, Jung-Han; Peak, Jongjin; Kong, Kyoung-Hye; Yoon, Seung-Yong; Kim, Dong-Hou

    2015-10-01

    Toxicity induced by aberrant protein aggregates in Alzheimer's disease (AD) causes synaptic disconnection and concomitant progressive neurodegeneration that eventually impair cognitive function. cAMP-response element-binding protein (CREB) is a transcription factor involved in the molecular switch that converts short-term to long-term memory. Although disturbances in CREB function have been suggested to cause memory deficits in both AD and AD animal models, the mechanism of CREB dysfunction is still unclear. Here, we show that the dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP-32), a key inhibitor of protein phosphate-1 (PP-1) that regulates CREB phosphorylation, is cleaved by activated calpain in both AD brains and neuronal cells treated with amyloid-β or okadaic acid, a protein phosphatase-2A inhibitor that induces tau hyperphosphorylation and neuronal death. We found that DARPP-32 is mainly cleaved at Thr(153) by calpain and that this cleavage of DARPP-32 reduces CREB phosphorylation via loss of its inhibitory function on PP1. Our results suggest a novel mechanism of DARPP-32-CREB signalling dysregulation in AD. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Pharmacological inhibition of caspase and calpain proteases: a novel strategy to enhance the homing responses of cord blood HSPCs during expansion.

    Directory of Open Access Journals (Sweden)

    V M Sangeetha

    Full Text Available BACKGROUND: Expansion of hematopoietic stem/progenitor cells (HSPCs is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. METHODOLOGY/PRINCIPAL FINDINGS: CB derived CD34(+ cells were expanded using a combination of growth factors with and without Caspase inhibitor -zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homing-related molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice. CONCLUSION/SIGNIFICANCE: Our present study reveals another novel aspect of the regulation of caspase and calpain proteases in the biology of HSPCs. The priming of the homing responses of the inhibitor-cultured HSPCs compared to the cytokine-graft suggests that the modulation of these proteases may help in overcoming the major homing defects prevalent in the expansion cultures thereby facilitating the manipulation of cells for transplant

  17. Molecular determinants of survival motor neuron (SMN protein cleavage by the calcium-activated protease, calpain.

    Directory of Open Access Journals (Sweden)

    Jennifer L Fuentes

    2010-12-01

    Full Text Available Spinal muscular atrophy (SMA is a leading genetic cause of childhood mortality, caused by reduced levels of survival motor neuron (SMN protein. SMN functions as part of a large complex in the biogenesis of small nuclear ribonucleoproteins (snRNPs. It is not clear if defects in snRNP biogenesis cause SMA or if loss of some tissue-specific function causes disease. We recently demonstrated that the SMN complex localizes to the Z-discs of skeletal and cardiac muscle sarcomeres, and that SMN is a proteolytic target of calpain. Calpains are implicated in muscle and neurodegenerative disorders, although their relationship to SMA is unclear. Using mass spectrometry, we identified two adjacent calpain cleavage sites in SMN, S192 and F193. Deletion of small motifs in the region surrounding these sites inhibited cleavage. Patient-derived SMA mutations within SMN reduced calpain cleavage. SMN(D44V, reported to impair Gemin2 binding and amino-terminal SMN association, drastically inhibited cleavage, suggesting a role for these interactions in regulating calpain cleavage. Deletion of A188, a residue mutated in SMA type I (A188S, abrogated calpain cleavage, highlighting the importance of this region. Conversely, SMA mutations that interfere with self-oligomerization of SMN, Y272C and SMNΔ7, had no effect on cleavage. Removal of the recently-identified SMN degron (Δ268-294 resulted in increased calpain sensitivity, suggesting that the C-terminus of SMN is important in dictating availability of the cleavage site. Investigation into the spatial determinants of SMN cleavage revealed that endogenous calpains can cleave cytosolic, but not nuclear, SMN. Collectively, the results provide insight into a novel aspect of the post-translation regulation of SMN.

  18. Calpain-1 knockout reveals broad effects on erythrocyte deformability and physiology

    Science.gov (United States)

    Wieschhaus, Adam; Khan, Anwar; Zaidi, Asma; Rogalin, Henry; Hanada, Toshihiko; Liu, Fei; De Franceschi, Lucia; Brugnara, Carlo; Rivera, Alicia; Chishti, Athar H.

    2014-01-01

    Pharmacological inhibitors of cysteine proteases have provided useful insights into the regulation of calpain activity in erythrocytes. However, the precise biological function of calpain activity in erythrocytes remains poorly understood. Erythrocytes express calpain-1, an isoform regulated by calpastatin, the endogenous inhibitor of calpains. In the present study, we investigated the function of calpain-1 in mature erythrocytes using our calpain-1-null [KO (knockout)] mouse model. The calpain-1 gene deletion results in improved erythrocyte deformability without any measurable effect on erythrocyte lifespan in vivo. The calcium-induced sphero-echinocyte shape transition is compromised in the KO erythrocytes. Erythrocyte membrane proteins ankyrin, band 3, protein 4.1R, adducin and dematin are degraded in the calcium-loaded normal erythrocytes but not in the KO erythrocytes. In contrast, the integrity of spectrin and its state of phosphorylation are not affected in the calcium-loaded erythrocytes of either genotype. To assess the functional consequences of attenuated cytoskeletal remodelling in the KO erythrocytes, the activity of major membrane transporters was measured. The activity of the K+–Cl− co-transporter and the Gardos channel was significantly reduced in the KO erythrocytes. Similarly, the basal activity of the calcium pump was reduced in the absence of calmodulin in the KO erythrocyte membrane. Interestingly, the calmodulin-stimulated calcium pump activity was significantly elevated in the KO erythrocytes, implying a wider range of pump regulation by calcium and calmodulin. Taken together, and with the atomic force microscopy of the skeletal network, the results of the present study provide the first evidence for the physiological function of calpain-1 in erythrocytes with therapeutic implications for calcium imbalance pathologies such as sickle cell disease. PMID:22870887

  19. Vascular smooth muscle cell spreading onto fibrinogen is regulated by calpains and phospholipase C.

    Science.gov (United States)

    Paulhe, F; Bogyo, A; Chap, H; Perret, B; Racaud-Sultan, C

    2001-11-09

    Fibrinogen deposition and smooth muscle cell migration are important causes of atherosclerosis and angiogenesis. Involvement of calpains in vascular smooth muscle cell adhesion onto fibrinogen was investigated. Using calpain inhibitors, we showed that activation of calpains was required for smooth muscle cell spreading. An increase of (32)P-labeled phosphatidic acid and phosphatidylinositol-3,4-bisphosphate, respective products of phospholipase C and phosphoinositide 3-kinase activities, was measured in adherent cells. Addition of the calpain inhibitor calpeptin strongly decreased phosphatidic acid and phosphatidylinositol-3,4-bisphosphate. However, smooth muscle cell spreading was prevented by the phospholipase C inhibitor U-73122, but poorly modified by phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Moreover, PLC was found to act upstream of the PI 3-kinase IA isoform. Thus, our data provide the first evidence that calpains are required for smooth muscle cell spreading. Further, phospholipase C activation is pointed as a key step of cell-spreading regulation by calpains. Copyright 2001 Academic Press.

  20. Calpain-like: A Ca(2+) dependent cystein protease in Entamoeba histolytica cell death.

    Science.gov (United States)

    Monroy, Virginia Sánchez; Flores, Olivia Medel; García, Consuelo Gómez; Maya, Yesenia Chávez; Fernández, Tania Domínguez; Pérez Ishiwara, D Guillermo

    2015-12-01

    Entamoeba histolytica programmed cell death (PCD) induced by G418 is characterized by the release of important amounts of intracellular calcium from reservoirs. Nevertheless, no typical caspases have been detected in the parasite, the PCD phenotype is inhibited by the cysteine protease inhibitor E-64. These results strongly suggest that Ca(2+)-dependent proteases could be involved in PCD. In this study, we evaluate the expression and activity of a specific dependent Ca(2+) protease, the calpain-like protease, by real-time quantitative PCR (RTq-PCR), Western blot assays and a enzymatic method during the induction of PCD by G418. Alternatively, using cell viability and TUNEL assays, we also demonstrated that the Z-Leu-Leu-Leu-al calpain inhibitor reduced the rate of cell death. The results demonstrated 4.9-fold overexpression of calpain-like gene 1.5 h after G418 PCD induction, while calpain-like protein increased almost two-fold with respect to basal calpain-like expression after 3 h of induction, and calpain activity was found to be approximately three-fold higher 6 h after treatment compared with untreated trophozoites. Taken together, these results suggest that this Ca(2+)-dependent protease could be involved in the executory phase of PCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effect of Nutrient Restriction and Re-Feeding on Calpain Family Genes in Skeletal Muscle of Channel Catfish (Ictalurus punctatus)

    OpenAIRE

    Elena Preziosa; Shikai Liu; Genciana Terova; Xiaoyu Gao; Hong Liu; Huseyin Kucuktas; Jeffery Terhune; Zhanjiang Liu

    2013-01-01

    BACKGROUND: Calpains, a superfamily of intracellular calcium-dependent cysteine proteases, are involved in the cytoskeletal remodeling and wasting of skeletal muscle. Calpains are generated as inactive proenzymes which are activated by N-terminal autolysis induced by calcium-ions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we characterized the full-length cDNA sequences of three calpain genes, clpn1, clpn2, and clpn3 in channel catfish, and assessed the effect of nutrient restriction and ...

  2. The combination of lithium and L-Dopa/Carbidopa reduces MPTP-induced abnormal involuntary movements (AIMs) via calpain-1 inhibition in a mouse model: relevance for Parkinson's disease therapy

    Science.gov (United States)

    Lazzara, Carol A.; Riley, Rebeccah R.; Rane, Anand; Andersen, Julie K.; Kim, Yong-Hwan

    2015-01-01

    Lithium has recently been suggested to have neuroprotective effects in several models of neurodegenerative disease including Parkinson’s disease (PD). Levodopa (L-Dopa) replacement therapy remains the most common and effective treatment for PD, although it induces the complication of L-Dopa induced dyskinesia after years of use. Here we examined the potential use of lithium in combination with L-Dopa/Carbidopa for both reducing MPTP-induced abnormal involuntary movements (AIMs) as well as protecting against cell death in MPTP-lesioned mice. Chronic lithium administration (0.127% LiCl in the feed) in the presence of daily L-Dopa/Carbidopa injection for a period of 2 months was sufficient to effectively reduce MPTP-induced AIMs in mice. Mechanistically, lithium was found to suppress MPTP-induced calpain activities in vivo coinciding with down-regulation of calpain-1 but not calpain-2 expression in both the striatum (ST) and the brain stem (BS). Calpain inhibition has previously been associated with increased levels of the rate-limiting enzyme in dopamine synthesis, tyrosine hydroxylase (TH), which is probably mediated by the up-regulation of the transcription factors MEF-2A and 2D. Lithium was found to induce up-regulation of TH expression in the ST and the BS, as well as in N27 rat dopaminergic cells. Further, histone acetyltransferase (HAT) expression was substantially up-regulated by lithium treatment in vitro. These results suggest the potential use of lithium in combination with L-Dopa/Carbidopa not only as a neuroprotectant, but also for reducing AIMs and possibly alleviating potential side-effects associated with the current treatment for PD. PMID:26119916

  3. CRYβA3/A1-Crystallin Knockout Develops Nuclear Cataract and Causes Impaired Lysosomal Cargo Clearance and Calpain Activation.

    Directory of Open Access Journals (Sweden)

    Shylaja Hegde

    Full Text Available βA3/A1-crystallin is an abundant structural protein of the lens that is very critical for lens function. Many different genetic mutations have been shown to associate with different types of cataracts in humans and in animal models. βA3/A1-crystallin has four Greek key-motifs that organize into two crystallin domains. It shown to bind calcium with moderate affinity and has putative calcium-binding site. Other than in the lens, βA3/A1 is also expressed in retinal astrocytes, retinal pigment epithelial (RPE cells, and retinal ganglion cells. The function of βA3/A1-crystallin in the retinal cell types is well studied; however, a clear understanding of the function of this protein in the lens has not yet been established. In the current study, we generated the βA3/A1-crystallin knockout (KO mouse and explored the function of βA3/A1-crystallin in lens development. Our results showed that βA3-KO mice develop congenital nuclear cataract and exhibit persistent fetal vasculature condition. At the cellular level KO lenses show defective lysosomal clearance and accumulation of nuclei, mitochondria, and autophagic cargo in the outer cortical region of the lens. In addition, the calcium level and the expression and activity of calpain-3 were increased in KO lenses. Taken together, these results suggest the lack of βA3-crystallin function in lenses, alters calcium homeostasis which in turn causes lysosomal defects and calpain activation. These defects are responsible for the development of nuclear cataract in KO lenses.

  4. Interaction between Calpain-1 and HSP90: New Insights into the Regulation of Localization and Activity of the Protease

    Science.gov (United States)

    Averna, Monica; De Tullio, Roberta; Pedrazzi, Marco; Bavestrello, Margherita; Pellegrini, Matteo; Salamino, Franca; Pontremoli, Sandro; Melloni, Edon

    2015-01-01

    Here we demonstrate that heat shock protein 90 (HSP90) interacts with calpain-1, but not with calpain-2, and forms a discrete complex in which the protease maintains its catalytic activity, although with a lower affinity for Ca2+. Equilibrium gel distribution experiments show that this complex is composed by an equal number of molecules of each protein partner. Moreover, in resting cells, cytosolic calpain-1 is completely associated with HSP90. Since calpain-1, in association with HSP90, retains its proteolytic activity, and the chaperone is displaced by calpastatin also in the absence of Ca2+, the catalytic cleft of the protease is not involved in this association. Thus, calpain-1 can form two distinct complexes depending on the availability of calpastatin in the cytosol. The occurrence of a complex between HSP90 and calpain-1, in which the protease is still activable, can prevent the complete inhibition of the protease even in the presence of high calpastatin levels. We also demonstrate that in basal cell conditions HSP90 and calpain-1, but not calpain-2, are inserted in the multi-protein N-Methyl-D-Aspartate receptor (NMDAR) complex. The amount of calpain-1 at the NMDAR cluster is not modified in conditions of increased [Ca2+]i, and this resident protease is involved in the processing of NMDAR components. Finally, the amount of calpain-1 associated with NMDAR cluster is independent from Ca2+-mediated translocation. Our findings show that HSP90 plays an important role in maintaining a given and proper amount of calpain-1 at the functional sites. PMID:25575026

  5. Influence of early pH decline on calpain activity in porcine muscle

    DEFF Research Database (Denmark)

    Pomponio, Luigi; Ertbjerg, Per; Karlsson, Anders H

    2010-01-01

    This study investigated the influence of post-mortem pH decline on calpain activity and myofibrillar degradation.From 80 pigs, 30 Longissimus dorsi (LD) muscles were selected on the basis of pH values at 3 h post-mortem and classified into groups of 10 as fast, intermediate and slow pH decline....... The rate of pH decline early post-mortem differed between the three groups, but the ultimate pH values were similar at 24 h. Calpain activity and autolysis from 1 to 72 h post-mortem were determined using casein zymography and studied in relation to myofibrillar fragmentation. Colour and drip loss were...... measured. A faster decrease in pH resulted in reduced level of l-calpain activity and increased autolysis of the enzyme, and hence an earlier loss of activity due to activation of l-calpain in muscles with a fast pH decline. Paralleling the l-calpain activation in muscles with a fast pH decline a higher...

  6. Therapeutic Efficacy of E-64-d, a Selective Calpain Inhibitor, in Experimental Acute Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Zifeng Zhang

    2015-01-01

    Full Text Available This study aims to investigate the therapeutic effect of calpain inhibitor E-64-d on SCI and to find a new approach to treat SCI. When an SCI rat model was established, it was immediately administered with E-64-d. RT-PCR and Western blotting were used to determine the protein and mRNA levels of calpain 1 and 68-kD NFP. TUNEL staining and NeuN labeling were performed to analyze neuronal apoptosis in the lesion. Immunohistochemistry assay was carried out to observe the expressions of calpain 1 and GFAP. Cyclooxygenase-2 activity was measured to show the immune response status. Locomotor function was evaluated by inclined plane test and Basso, Beattie, and Bresnahan locomotor rating scale. The results showed that calpain 1 was activated after SCI occurred. Treatment with E-64-d decreased expressions of calpain 1 and GFAP, alleviated neuronal apoptosis, inhibited cyclooxygenase-2 activity, and resulted in the promoted locomotor function. Furthermore, combination of E-64-d and MP had better efficacy than did E-64-d or MP alone. E-64-d is expected to be applied to treat SCI, and its alliance with MP may provide a valid strategy for SCI therapy.

  7. PARP1-mediated necrosis is dependent on parallel JNK and Ca2+/calpain pathways

    Science.gov (United States)

    Douglas, Diana L.; Baines, Christopher P.

    2014-01-01

    ABSTRACT Poly(ADP-ribose) polymerase-1 (PARP1) is a nuclear enzyme that can trigger caspase-independent necrosis. Two main mechanisms for this have been proposed: one involving RIP1 and JNK kinases and mitochondrial permeability transition (MPT), the other involving calpain-mediated activation of Bax and mitochondrial release of apoptosis-inducing factor (AIF). However, whether these two mechanisms represent distinct pathways for PARP1-induced necrosis, or whether they are simply different components of the same pathway has yet to be tested. Mouse embryonic fibroblasts (MEFs) were treated with either N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) or β-Lapachone, resulting in PARP1-dependent necrosis. This was associated with increases in calpain activity, JNK activation and AIF translocation. JNK inhibition significantly reduced MNNG- and β-Lapachone-induced JNK activation, AIF translocation, and necrosis, but not calpain activation. In contrast, inhibition of calpain either by Ca2+ chelation or knockdown attenuated necrosis, but did not affect JNK activation or AIF translocation. To our surprise, genetic and/or pharmacological inhibition of RIP1, AIF, Bax and the MPT pore failed to abrogate MNNG- and β-Lapachone-induced necrosis. In conclusion, although JNK and calpain both contribute to PARP1-induced necrosis, they do so via parallel mechanisms. PMID:25052090

  8. Tissue-Specific Expression of the Chicken Calpain2 Gene

    Directory of Open Access Journals (Sweden)

    Zeng-Rong Zhang

    2010-01-01

    Full Text Available We quantified chicken calpain 2 (CAPN2 expression in two Chinese chicken breeds (mountainous black-bone chicken breed [MB] and a commercial meat type chicken breed [S01] to discern the tissue and ontogenic expression pattern and its effect on muscle metabolism. Real-time quantitative PCR assay was developed for accurate measurement of the CAPN2 mRNA expression in various tissues from chickens of different ages (0, 2, 4, 6, 8, 10, and 12 weeks. Results showed that the breast muscle and leg muscle tissues had the highest expression of CAPN2 compared to the other tissues from the same individual (P<.05. Overall, the CAPN2 mRNA level exhibited a “rise” developmental change in all tissues. The S01 chicken had a higher expression of the CAPN2 mRNA in all tissues than the MB chicken. Our results suggest that chicken CAPN2 expression may be related to chicken breeds and tissues.

  9. Calpains: general characteristics and role in various states of the organism

    Directory of Open Access Journals (Sweden)

    N. F. Starodub

    2014-02-01

    Full Text Available Calpains are a family of cytoplasmic calcium-dependent proteinases with papain-like activity. They participate in a variety of processes in the body: age changes, functioning of endothelium and pulmonary system, regulation of apoptosis and necrosis, development of various hypometabolic states, arterial hypertension, diabetes and chronic kidney disease, tumor growth. It is concluded that calpains, causing limited proteolysis of substrates, play an important role in a wide range of biological phenome­na. Their activity is associated with the response to the calcium-dependent signaling and the effects of aging. Inhibition of calpains activity contributes to inhibition of endothelial dysfunction, cardiovascular disease, formation of structural and functional changes in the kidney tissue, has neuroprotective effect, preventing sarcopenia, reduces inflammatory reactions caused by hyperventilation of the lungs.

  10. Tear me down: Role of calpain in the development of cardiac ventricular hypertrophy

    Science.gov (United States)

    Patterson, Cam; Portbury, Andrea; Schisler, Jonathan C.; Willis, Monte S.

    2011-01-01

    Cardiac hypertrophy develops most commonly in response to hypertension and is an independent risk factor for the development of heart failure. The mechanisms by which cardiac hypertrophy may be reversed to reduce this risk have not been fully determined to the point where mechanism-specific therapies have been developed. Recently, proteases in the calpain family have been implicated in regulating the development of cardiac hypertrophy in preclinical animal models. In this review, we summarize the molecular mechanisms by which calpain inhibition has been shown to modulate the development of cardiac (specifically ventricular) hypertrophy. The context within which calpain inhibition might be developed for therapeutic intervention of cardiac hypertrophy is then discussed. PMID:21817165

  11. Neurotropin®inhibits calpain activity upregulated by specific alternation of rhythm in temperature in the mesencephalon of rats.

    Science.gov (United States)

    Fujisawa, Hiroki; Numazawa, Takumi; Kawamura, Minoru; Naiki, Mitsuru

    2017-02-15

    Neurotropin® (NTP), an analgesic for chronic pain, has antihyperalgesic effects in specific alternation of rhythm in temperature (SART)-stressed rats. Previous studies have shown that SART stress induces hyperalgesia, as well as post-translational modification of proteins (including substrates for calpain, a calcium-dependent cysteine protease) in the mesencephalon of rats. To better understand the mechanism of action of NTP, we investigated whether SART stress activates calpain in the mesencephalon of rats and whether NTP inhibits this activation. Wistar rats were exposed to SART stress for 5days. NTP (200NU/kg/day) was administered intraperitoneally every day from the onset of SART stress. The mechanical pain threshold was measured using the Randall-Selitto test on the 6th day. Thereafter, the rat mesencephalon was immediately collected and calpain activity was examined using western blot analysis with a calpain cleavage site-specific antibody. SART stress induced hyperalgesia and increased the calpain activity in the mesencephalon of rats. In contrast, NTP treatment attenuated the hyperalgesia and prevented the increase in calpain activity in the mesencephalon of SART-stressed rats. Interestingly, a negative correlation was identified between calpain activity and mechanical pain threshold in SART-stressed rats treated with or without NTP. Furthermore, NTP inhibited calpain activity on mammalian uncoordinated-18 in rat mesencephalon homogenate and Ac-LLY-AFC as substrates in an in vitro cell-free system. Our data demonstrate that NTP treatment prevents SART stress-induced calpain activation in the mesencephalon of rats and suggests that NTP-mediated antihyperalgesia is associated with an inhibition of calpain activity in the mesencephalon. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dual Vulnerability of Tau to Calpains and Caspase-3 Proteolysis Under Neurotoxic and Neurodegenerative Conditions

    Directory of Open Access Journals (Sweden)

    Ming Cheng Liu

    2010-11-01

    Full Text Available Axonally specific microtubule-associated protein tau is an important component of neurofibrillary tangles found in AD (Alzheimer's disease and other tauopathy diseases such as CTE (chronic traumatic encephalopathy. Such tau aggregate is found to be hyperphosphorylated and often proteolytically fragmented. Similarly, tau is degraded following TBI (traumatic brain injury. In the present study, we examined the dual vulnerability of tau to calpain and caspase-3 under neurotoxic and neurodegenerative conditions. We first identified three novel calpain cleavage sites in rat tau (four-repeat isoform as Ser130 ↓ Lys131, Gly157 ↓ Ala158 and Arg380 ↓ Glu381. Fragment-specific antibodies to target the major calpain-mediated TauBDP-35K (35 kDa tau-breakdown product and the caspase-mediated TauBDP-45K respectively were developed. In rat cerebrocortical cultures treated with excitotoxin [NMDA (N-methyl-D-aspartate], tau is significantly degraded into multiple fragments, including a dominant signal of calpain-mediated TauBDP-35K with minimal caspase-mediated TauBDP-45K. Following apoptosis-inducing EDTA treatment, tau was truncated only to TauBDP-48K/45K-exclusively by caspase. Cultures treated with another apoptosis inducer STS (staurosporine, dual fragmentation by calpain (TauBDP-35K and caspase-3 (TauBDP-45K was observed. Tau was also fragmented in injured rat cortex following TBI in vivo to BDPs of 45-42 kDa (minor, 35 kDa and 15 kDa, followed by TauBDP-25K. Calpain-mediated TauBDP-35K-specific antibody confirmed robust signals in the injured cortex, while caspase-mediated TauBDP-45K-specific antibody only detected faint signals. Furthermore, intravenous administration of a calpain-specific inhibitor SNJ-1945 strongly suppressed the TauBDP-35K formation. Taken together, these results suggest that tau protein is dually vulnerable to calpain and caspase-3 proteolysis under different neurotoxic and injury conditions.

  13. Inhibition of Starvation-Triggered Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in ARPE-19 Cells by Taurine through Modulating the Expression of Calpain-1 and Calpain-2

    OpenAIRE

    Yuanyuan Zhang; Shu Ren; Yuci Liu; Kun Gao; Zheng Liu; Zhou Zhang

    2017-01-01

    Age-related macular degeneration (AMD) is a complex disease with multiple initiators and pathways that converge on death for retinal pigment epithelial (RPE) cells. In this study, effects of taurine on calpains, autophagy, endoplasmic reticulum (ER) stress, and apoptosis in ARPE-19 cells (a human RPE cell line) were investigated. We first confirmed that autophagy, ER stress and apoptosis in ARPE-19 cells were induced by Earle’s balanced salt solution (EBSS) through starvation to induce RPE me...

  14. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2.

    Science.gov (United States)

    Yin, Yaling; Wang, Yali; Gao, Di; Ye, Jinwang; Wang, Xin; Fang, Lin; Wu, Dongqin; Pi, Guilin; Lu, Chengbiao; Zhou, Xin-Wen; Yang, Ying; Wang, Jian-Zhi

    2016-06-09

    Cholinergic impairments and tau accumulation are hallmark pathologies in sporadic Alzheimer's disease (AD), however, the intrinsic link between tau accumulation and cholinergic deficits is missing. Here, we found that overexpression of human wild-type full-length tau (termed hTau) induced a significant reduction of α4 subunit of nicotinic acetylcholine receptors (nAChRs) with an increased cleavage of the receptor producing a ~55kDa fragment in primary hippocampal neurons and in the rat brains, meanwhile, the α4 nAChR currents decreased. Further studies demonstrated that calpains, including calpain-1 and calpain-2, were remarkably activated with no change of caspase-3, while simultaneous suppression of calpain-2 by selective calpain-2 inhibitor but not calpain-1 attenuated the hTau-induced degradation of α4 nAChR. Finally, we demonstrated that hTau accumulation increased the basal intracellular calcium level in primary hippocampal neurons. We conclude that the hTau accumulation inhibits nAChRs α4 by activating calpain-2. To our best knowledge, this is the first evidence showing that the intracellular accumulation of tau causes cholinergic impairments.

  15. Evidence supporting the role of calpain in the α-processing of amyloid-β precursor protein.

    Science.gov (United States)

    Nguyen, Huey T; Sawmiller, Darrell R; Wu, Qi; Maleski, Jerome J; Chen, Ming

    2012-04-13

    Amyloid plaques are a hallmark of the aging and senile dementia brains, yet their mechanism of origins has remained elusive. A central issue is the regulatory mechanism and identity of α-secretase, a protease responsible for α-processing of amyloid-β precursor protein (APP). A remarkable feature of this enzyme is its high sensitivity to a wide range of cellular stimulators, many of which are agonists for Ca(2+) signaling. This feature, together with previous work in our laboratory, has suggested that calpain, a Ca(2+)-dependent protease, plays a key role in APP α-processing. In this study we report that overexpression of the μ-calpain gene in HEK293 cells resulted in a 2.7-fold increase of the protein levels. Measurements of intracellular calpain enzymatic activity revealed that the calpain overexpressing cells displayed a prominent elevation of the activity compared to wild-type cells. When the cells were stimulated by nicotine, glutamate or phorbol 12,13-dibutylester, the activity increase was even more remarkable and sensitive to calpeptin, a calpain inhibitor. Meanwhile, APP secretion from the calpain overexpressing cells was robustly increased under both resting and stimulated conditions over wild-type cells. Furthermore, cell surface biotinylation experiments showed that μ-calpain was clearly detected among the cell surface proteins. These data together support our view that calpain should be a reasonable candidate for α-secretase for further study. This model is discussed with an interesting fact that three other deposited proteins (tau, spectrin and crystalline) are also the known substrates of calpain. Finally we discuss some current misconceptions in senile dementia research. Published by Elsevier Inc.

  16. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype

    Science.gov (United States)

    Murakami, Shunichi; Balmes, Gener; McKinney, Sandra; Zhang, Zhaoping; Givol, David; de Crombrugghe, Benoit

    2004-01-01

    We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1. PMID:14871928

  17. Calpain system protein expression in carcinomas of the pancreas, bile duct and ampulla.

    Science.gov (United States)

    Storr, Sarah J; Zaitoun, Abed M; Arora, Arvind; Durrant, Lindy G; Lobo, Dileep N; Madhusudan, Srinivasan; Martin, Stewart G

    2012-11-09

    Pancreatic cancer, including cancer of the ampulla of Vater and bile duct, is very aggressive and has a poor five year survival rate; improved methods of patient stratification are required. We assessed the expression of calpain-1, calpain-2 and calpastatin in two patient cohorts using immunohistochemistry on tissue microarrays. The first cohort was composed of 68 pancreatic adenocarcinomas and the second cohort was composed of 120 cancers of the bile duct and ampulla. In bile duct and ampullary carcinomas an association was observed between cytoplasmic calpastatin expression and patient age (P = 0.036), and between nuclear calpastatin expression and increased tumour stage (P = 0.026) and the presence of vascular invasion (P = 0.043). In pancreatic cancer, high calpain-2 expression was significantly associated with improved overall survival (P = 0.036), which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.342; 95% confidence interva l = 0.157-0.741; P = 0.007). In cancers of the bile duct and ampulla, low cytoplasmic expression of calpastatin was significantly associated with poor overall survival (P = 0.012), which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.595; 95% confidence interval = 0.365-0.968; P = 0.037). The results suggest that calpain-2 and calpastatin expression is important in pancreatic cancers, influencing disease progression. The findings of this study warrant a larger follow-up study.

  18. Calpain system protein expression in carcinomas of the pancreas, bile duct and ampulla

    Directory of Open Access Journals (Sweden)

    Storr Sarah J

    2012-11-01

    Full Text Available Abstract Background Pancreatic cancer, including cancer of the ampulla of Vater and bile duct, is very aggressive and has a poor five year survival rate; improved methods of patient stratification are required. Methods We assessed the expression of calpain-1, calpain-2 and calpastatin in two patient cohorts using immunohistochemistry on tissue microarrays. The first cohort was composed of 68 pancreatic adenocarcinomas and the second cohort was composed of 120 cancers of the bile duct and ampulla. Results In bile duct and ampullary carcinomas an association was observed between cytoplasmic calpastatin expression and patient age (P = 0.036, and between nuclear calpastatin expression and increased tumour stage (P = 0.026 and the presence of vascular invasion (P = 0.043. In pancreatic cancer, high calpain-2 expression was significantly associated with improved overall survival (P = 0.036, which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.342; 95% confidence interva l = 0.157-0.741; P = 0.007. In cancers of the bile duct and ampulla, low cytoplasmic expression of calpastatin was significantly associated with poor overall survival (P = 0.012, which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.595; 95% confidence interval = 0.365-0.968; P = 0.037. Conclusion The results suggest that calpain-2 and calpastatin expression is important in pancreatic cancers, influencing disease progression. The findings of this study warrant a larger follow-up study.

  19. Expression of the gene for large subunit of m-calpain is elevated in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 79; Issue 2. Expression of the gene for large subunit of m-calpain is elevated in skeletal muscle from Duchenne muscular dystrophy patients. Tajamul Hussain Harleen Mangath C. Sundaram M. P. J. S. Anandaraj. Volume 79 Issue 2 August 2000 pp 77-80 ...

  20. Association of the calpain-10 gene with type 2 diabetes in Europeans

    DEFF Research Database (Denmark)

    Tsuchiya, Takafumi; Schwarz, Peter E H; Bosque-Plata, Laura Del

    2006-01-01

    We conducted pooled and meta-analyses of the association of the calpain-10 gene (CAPN10) polymorphisms SNP-43, Indel-19 and SNP-63 individually and as haplotypes with type 2 diabetes (T2D) in 3237 patients and 2935 controls of European ancestry. In the pooled analyses, the common SNP-43*G allele ...

  1. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP.

    Science.gov (United States)

    Xu, Jian; Kurup, Pradeep; Zhang, Yongfang; Goebel-Goody, Susan M; Wu, Peter H; Hawasli, Ammar H; Baum, Matthew L; Bibb, James A; Lombroso, Paul J

    2009-07-22

    NMDA receptor (NMDAR)-mediated excitotoxicity plays an important role in several CNS disorders, including epilepsy, stroke, and ischemia. Here we demonstrate the involvement of striatal-enriched protein tyrosine phosphatase (STEP) in this critical process. STEP(61) is an alternatively spliced member of the family that is present in postsynaptic terminals. In an apparent paradox, STEP(61) regulates extracellular signal-regulated kinase 1/2 (ERK1/2) and p38, two proteins with opposing functions; activated p38 promotes cell death, whereas activated ERK1/2 promotes cell survival. We found that synaptic stimulation of NMDARs promoted STEP(61) ubiquitination and degradation, concomitant with ERK1/2 activation. In contrast, extrasynaptic stimulation of NMDARs invoked calpain-mediated proteolysis of STEP(61), producing the truncated cleavage product STEP(33) and activation of p38. The calpain cleavage site on STEP was mapped to the kinase interacting motif, a domain required for substrate binding. As a result, STEP(33) neither interacts with nor dephosphorylates STEP substrates. A synthetic peptide spanning the calpain cleavage site efficiently reduced STEP(61) degradation and attenuated p38 activation and cell death in slice models. Furthermore, this peptide was neuroprotective when neurons were subjected to excitotoxicity or cortical slices were exposed to ischemic conditions. These findings suggest a novel mechanism by which differential NMDAR stimulation regulates STEP(61) to promote either ERK1/2 or p38 activation and identifies calpain cleavage of STEP(61) as a valid target for the development of neuroprotective therapy.

  2. Phosphorylation prevents C/EBP{beta} from the calpain-dependent degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuan-yuan; Li, Shu-fen; Qian, Shu-wen; Zhang, You-you; Liu, Yuan; Tang, Qi-Qun; Li, Xi, E-mail: lixi@shmu.edu.cn

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Phosphorylation protected C/EBP{beta} from {mu}-calpain-mediated proteolysis in vitro. Black-Right-Pointing-Pointer Phosphorylation mimic C/EBP{beta} was insensitive to calpain accelerator and inhibitor. Black-Right-Pointing-Pointer Phosphorylation on Thr{sub 188} contributed more to the stabilization of C/EBP{beta}. -- Abstract: CCAAT/enhancer-binding protein (C/EBP) {beta} plays an important role in proliferation and differentiation of 3T3-L1 preadipocytes. C/EBP{beta} is sequentially phosphorylated during the 3T3-L1 adipocyte differentiation program, first by MAPK/Cyclin A/cdk2 on Thr{sub 188} and subsequently by GSK3{beta} on Ser{sub 184} or Thr{sub 179}. Dual phosphorylation is critical for the gain of DNA binding activity of C/EBP{beta}. In this manuscript, we found that phosphorylation also contributed to the stability of C/EBP{beta}. Both ex vivo and in vitro experiments showed that phosphorylation by MAPK/Cyclin A/cdk2 and GSK3{beta} protected C/EBP{beta} from {mu}-calpain-mediated proteolysis, while phosphorylation on Thr{sub 188} by MAPK/Cyclin A/cdk2 contributed more to the stabilization of C/EBP{beta}, Further studies indicated that phosphorylation mimic C/EBP{beta} was insensitive to both calpain accelerator and calpain inhibitor. Thus, phosphorylation might contribute to the stability as well as the gain of DNA binding activity of C/EBP{beta}.

  3. Altered Ca2+ kinetics associated with α-actinin-3 deficiency may explain positive selection for ACTN3 null allele in human evolution.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available Over 1.5 billion people lack the skeletal muscle fast-twitch fibre protein α-actinin-3 due to homozygosity for a common null polymorphism (R577X in the ACTN3 gene. α-Actinin-3 deficiency is detrimental to sprint performance in elite athletes and beneficial to endurance activities. In the human genome, it is very difficult to find single-gene loss-of-function variants that bear signatures of positive selection, yet intriguingly, the ACTN3 null variant has undergone strong positive selection during recent evolution, appearing to provide a survival advantage where food resources are scarce and climate is cold. We have previously demonstrated that α-actinin-3 deficiency in the Actn3 KO mouse results in a shift in fast-twitch fibres towards oxidative metabolism, which would be more "energy efficient" in famine, and beneficial to endurance performance. Prolonged exposure to cold can also induce changes in skeletal muscle similar to those observed with endurance training, and changes in Ca2+ handling by the sarcoplasmic reticulum (SR are a key factor underlying these adaptations. On this basis, we explored the effects of α-actinin-3 deficiency on Ca2+ kinetics in single flexor digitorum brevis muscle fibres from Actn3 KO mice, using the Ca2+-sensitive dye fura-2. Compared to wild-type, fibres of Actn3 KO mice showed: (i an increased rate of decay of the twitch transient; (ii a fourfold increase in the rate of SR Ca2+ leak; (iii a threefold increase in the rate of SR Ca2+ pumping; and (iv enhanced maintenance of tetanic Ca2+ during fatigue. The SR Ca2+ pump, SERCA1, and the Ca2+-binding proteins, calsequestrin and sarcalumenin, showed markedly increased expression in muscles of KO mice. Together, these changes in Ca2+ handling in the absence of α-actinin-3 are consistent with cold acclimatisation and thermogenesis, and offer an additional explanation for the positive selection of the ACTN3 577X null allele in populations living in cold environments

  4. TBI and sex: crucial role of progesterone protecting the brain in an omega-3 deficient condition.

    Science.gov (United States)

    Tyagi, Ethika; Agrawal, Rahul; Ying, Zhe; Gomez-Pinilla, Fernando

    2014-03-01

    We assessed whether the protective action of progesterone on traumatic brain injury (TBI) could be influenced by the consumption of omega-3 fatty acids during early life. Pregnant Sprague-Dawley rats were fed on omega-3 adequate or deficient diet from 3rd day of pregnancy and their female offspring were kept on the same diets up to the age of 15 weeks. Ovariectomy was performed at the age of 12 weeks to deprive animals from endogenous steroids until the time of a fluid percussion injury (FPI). Dietary n-3 fatty acid deficiency increased anxiety in sham animals and TBI aggravated the effects of the deficiency. Progesterone replacement counteracted the effects of TBI on the animals reared under n-3 deficiency. A similar pattern was observed for markers of membrane homeostasis such as 4-Hydroxynonenal (HNE) and secreted phospholipases A2 (sPLA2), synaptic plasticity such as brain derived neurotrophic factor (BDNF), syntaxin (STX)-3 and growth associated protein (GAP)-43, and for growth inhibitory molecules such as myelin-associated glycoprotein (MAG) and Nogo-A. Results that progesterone had no effects on sham n-3 deficient animals suggest that the availability of progesterone is essential under injury conditions. Progesterone treatment counteracted several parameters related to synaptic plasticity and membrane stability reduced by FPI and n-3 deficiency suggest potential targets for therapeutic applications. These results reveal the importance of n-3 preconditioning during early life and the efficacy of progesterone therapy during adulthood to counteract weaknesses in neuronal and behavioral plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Seasonal variation in red deer (Cervus elaphus) venison (M. longissimus dorsi) drip loss, calpain activity, colour and tenderness.

    Science.gov (United States)

    Wiklund, E; Dobbie, P; Stuart, A; Littlejohn, R P

    2010-11-01

    Sixty four young red deer (Cervus elaphus) stags (colour display life (Pcolour display life. A clear trend of increasing fluid loss during storage, calculated as amount of purge at 14 weeks of storage minus the amount of drip loss at 1 day post-slaughter, was evident, averaging 2.5% (SEM 0.17) over the four groups. The relative activities of the calpastatin-bound calpain, μ-calpain and m-calpain all exhibited a seasonal pattern although there was no evidence (P>0.05) that this affected tenderness. There was a highly significant (P<0.001) negative regression for the average over the four storage times of drip and purge on calpastatin-bound calpain activity. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  6. Glucose-6-Phosphatase Catalytic Subunit 3 (G6PC3 Deficiency Associated With Autoinflammatory Complications

    Directory of Open Access Journals (Sweden)

    Anoop Mistry

    2017-11-01

    Full Text Available G6PC3 deficiency typically causes severe congenital neutropenia, associated with susceptibility to infections, cardiac and urogenital abnormalities. However, here we describe two boys of Pakistani origin who were found to have G6PC3 deficiency due to c.130 C>T mutation, but who have clinical phenotypes that are typical for a systemic autoinflammatory syndrome. The index case presented with combination of unexplained fevers, severe mucosal ulcers, abdominal symptoms, and inflammatory arthritis. He eventually fully responded to anti-TNF therapy. In this study, we show that compared with healthy controls, neutrophils and monocytes from patients have reduced glycolytic reserve. Considering that healthy myeloid cells have been shown to switch their metabolic pathways to glycolysis in response to inflammatory cues, we studied what impact this might have on production of the inflammatory cytokines. We have demonstrated that patients’ monocytes, in response to lipopolysaccharide, show significantly increased production of IL-1β and IL-18, which is NLRP3 inflammasome dependent. Furthermore, additional whole blood assays have also shown an enhanced production of IL-6 and TNF from the patients’ cells. These cases provide further proof that autoinflammatory complications are also seen within the spectrum of primary immune deficiencies, and resulting from a wider dysregulation of the immune responses.

  7. 25-Hydroxyvitamin D3-deficiency enhances oxidative stress and corticosteroid resistance in severe asthma exacerbation.

    Directory of Open Access Journals (Sweden)

    Nan Lan

    Full Text Available Oxidative stress plays a significant role in exacerbation of asthma. The role of vitamin D in oxidative stress and asthma exacerbation remains unclear. We aimed to determine the relationship between vitamin D status and oxidative stress in asthma exacerbation. Severe asthma exacerbation patients with 25-hydroxyvitamin D3-deficiency (V-D deficiency or 25-hydroxyvitamin D-sufficiency (V-D sufficiency were enrolled. Severe asthma exacerbation with V-D-deficiency showed lower forced expiratory volume in one second (FEV1 compared to that with V-D-sufficiency. V-D-deficiency intensified ROS release and DNA damage and increased TNF-α, OGG1 and NFκB expression and NFκB phosphorylation in severe asthma exacerbation. Supplemental vitamin D3 significantly increased the rates of FEV1 change and decreased ROS and DNA damage in V-D-deficiency. Vitamin D3 inhibited LPS-induced ROS and DNA damage and were associated with a decline in TNF-α and NFκB in epithelial cells. H2O2 reduces nuclear translocation of glucocorticoid receptors in airway epithelial cell lines. V-D pretreatment enhanced the dexamethasone-induced nuclear translocation of glucocorticoid receptors in airway epithelial cell lines and monocytes from 25-hydroxyvitamin D3-deficiency asthma patients. These findings indicate that V-D deficiency aggravates oxidative stress and DNA damage, suggesting a possible mechanism for corticosteroid resistance in severe asthma exacerbation.

  8. Testosterone synthesis in patients with 17β-hydroxysteroid dehydrogenase 3 deficiency.

    Science.gov (United States)

    Werner, R; Kulle, A; Sommerfeld, I; Riepe, F G; Wudy, S; Hartmann, M F; Merz, H; Döhnert, U; Bertelloni, S; Holterhus, P-M; Hiort, O

    2012-01-01

    17β-hydroxysteroid dehydrogenase 3 (17β-HSD 3) deficiency is a rare cause of 46,XY disorders of sex development (DSD). At puberty, these patients experience a surge of androstenedione and also testosterone, leading to substantial virilization. The origin of testosterone synthesis in these patients remains elusive. We investigated the expression of the isoenzyme AKR1C3 (17β-HSD 5) in the testis and patient-derived genital skin fibroblasts (GSF) as well as the ability of GSF to synthesize testosterone. Supernatants of GSF cultures and serum samples of one patient before and after gonadectomy were analyzed by liquid and gas chromatography/mass spectrometry. The androgenic potential of GSF-derived supernatants was also assessed by androgen receptor-mediated transactivation of a reporter gene in transiently transfected Chinese hamster ovary cells. Although AKR1C3 is expressed both in the testes and in GSF, androstenedione is rapidly metabolized and is not synthesized to testosterone. The transactivation potential of GSF supernatants towards the androgen receptor is declining within 48 h. However, under testis-equivalent androstenedione concentration, testosterone can be synthesized in 17β-HSD 3-negative GSF. After gonadectomy, both androstenedione and testosterone decline rapidly in vivo. In 17β-HSD 3 deficiency, relevant amounts of testosterone are synthesized most probably through AKR1C3 in the testis and not peripherally in GSF. Copyright © 2012 S. Karger AG, Basel.

  9. Vitamin D3 deficiency differentially affects functional and disease outcomes in the G93A mouse model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Jesse A Solomon

    Full Text Available UNLABELLED: Amyotrophic lateral sclerosis (ALS is a neuromuscular disease characterized by motor neuron death in the central nervous system. Vitamin D supplementation increases antioxidant activity, reduces inflammation and improves motor neuron survival. We have previously demonstrated that vitamin D(3 supplementation at 10× the adequate intake improves functional outcomes in a mouse model of ALS. OBJECTIVE: To determine whether vitamin D deficiency influences functional and disease outcomes in a mouse model of ALS. METHODS: At age 25 d, 102 G93A mice (56 M, 46 F were divided into two vitamin D(3 groups: 1 adequate (AI; 1 IU D(3/g feed and 2 deficient (DEF; 0.025 IU D(3/g feed. At age 113 d, tibialis anterior (TA, quadriceps (quads and brain were harvested from 42 mice (22 M and 20 F, whereas the remaining 60 mice (34 M and 26 F were followed to endpoint. RESULTS: During disease progression, DEF mice had 25% (P=0.022 lower paw grip endurance AUC and 19% (P=0.017 lower motor performance AUC vs. AI mice. Prior to disease onset (CS 2, DEF mice had 36% (P=0.016 lower clinical score (CS vs. AI mice. DEF mice reached CS 2 six days later vs. AI mice (P=0.004, confirmed by a logrank test which revealed that DEF mice reached CS 2 at a 43% slower rate vs. AI mice (HR= .57; 95% CI: 0.38, 1.74; P=0.002. Body weight-adjusted TA (AI: r=0.662, P=0.001; DEF: r=0.622, P=0.006 and quads (AI: r=0.661, P=0.001; DEF: r=0.768; P<0.001 weights were strongly correlated with age at CS 2. CONCLUSION: Vitamin D(3 deficiency improves early disease severity and delays disease onset, but reduces performance in functional outcomes following disease onset, in the high-copy G93A mouse.

  10. Crystal structure of calpain-3 penta-EF-hand (PEF) domain - a homodimerized PEF family member with calcium bound at the fifth EF-hand.

    Science.gov (United States)

    Partha, Sarathy K; Ravulapalli, Ravikiran; Allingham, John S; Campbell, Robert L; Davies, Peter L

    2014-07-01

    Calpains are Ca(2+) dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca(2+) signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy. Biophysical and modeling studies with the PEF domain of calpain-3 support the suggestion that full-length calpain-3 exists as a homodimer. Here, we report the crystallization of calpain-3's PEF domain and its crystal structure in the presence of Ca(2+) , which provides evidence for the homodimer architecture of calpain-3 and supports the molecular model that places a protease core at either end of the elongated dimer. Unlike other calpain PEF domain structures, the calpain-3 PEF domain contains a Ca(2+) bound at the EF5-hand used for homodimer association. Three of the four Ca(2+) -binding EF-hands of the PEF domains are concentrated near the protease core, and have the potential to radically change the local charge within the dimer during Ca(2+) signaling. Examination of the homodimer interface shows that there would be steric clashes if the calpain-3 large subunit were to try to pair with a calpain small subunit. Database Structural data are available in the Protein Data Bank database under accession number 4OKH. © 2014 FEBS.

  11. Crystal structure of calpain-3 penta-EF-hand (PEF) domain - a homodimerized PEF family member with calcium bound at the fifth EF-hand

    Energy Technology Data Exchange (ETDEWEB)

    Partha, Sarathy K.; Ravulapalli, Ravikiran; Allingham, John S.; Campbell, Robert L.; Davies, Peter L. [Queens

    2014-08-21

    Calpains are Ca2+dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca2+ signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy. Biophysical and modeling studies with the PEF domain of calpain-3 support the suggestion that full-length calpain-3 exists as a homodimer. Here, we report the crystallization of calpain-3's PEF domain and its crystal structure in the presence of Ca2+, which provides evidence for the homodimer architecture of calpain-3 and supports the molecular model that places a protease core at either end of the elongated dimer. Unlike other calpain PEF domain structures, the calpain-3 PEF domain contains a Ca2+ bound at the EF5-hand used for homodimer association. Three of the four Ca2+-binding EF-hands of the PEF domains are concentrated near the protease core, and have the potential to radically change the local charge within the dimer during Ca2+ signaling. Examination of the homodimer interface shows that there would be steric clashes if the calpain-3 large subunit were to try to pair with a calpain small subunit.

  12. Effects of Calcium Ion, Calpains, and Calcium Channel Blockers on Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Mitsuru Nakazawa

    2011-01-01

    Full Text Available Recent advances in molecular genetic studies have revealed many of the causative genes of retinitis pigmentosa (RP. These achievements have provided clues to the mechanisms of photoreceptor degeneration in RP. Apoptosis is known to be a final common pathway in RP and, therefore, a possible therapeutic target for photoreceptor rescue. However, apoptosis is not a single molecular cascade, but consists of many different reactions such as caspase-dependent and caspase-independent pathways commonly leading to DNA fractionation and cell death. The intracellular concentration of calcium ions is also known to increase in apoptosis. These findings suggest that calpains, one of the calcium-dependent proteinases, play some roles in the process of photoreceptor apoptosis and that calcium channel antagonists may potentially inhibit photoreceptor apoptosis. Herein, the effects of calpains and calcium channel antagonists on photoreceptor degeneration are reviewed.

  13. Calpain 3 is a rapid-action, unidirectional proteolytic switch central to muscle remodeling.

    Science.gov (United States)

    de Morrée, Antoine; Lutje Hulsik, David; Impagliazzo, Antonietta; van Haagen, Herman H H B M; de Galan, Paula; van Remoortere, Alexandra; 't Hoen, Peter A C; van Ommen, Gertjan B; Frants, Rune R; van der Maarel, Silvère M

    2010-08-04

    Calpain 3 (CAPN3) is a cysteine protease that when mutated causes Limb Girdle Muscular Dystrophy 2A. It is thereby the only described Calpain family member that genetically causes a disease. Due to its inherent instability little is known of its substrates or its mechanism of activity and pathogenicity. In this investigation we define a primary sequence motif underlying CAPN3 substrate cleavage. This motif can transform non-related proteins into substrates, and identifies >300 new putative CAPN3 targets. Bioinformatic analyses of these targets demonstrate a critical role in muscle cytoskeletal remodeling and identify novel CAPN3 functions. Among the new CAPN3 substrates are three E3 SUMO ligases of the Protein Inhibitor of Activated Stats (PIAS) family. CAPN3 can cleave PIAS proteins and negatively regulates PIAS3 sumoylase activity. Consequently, SUMO2 is deregulated in patient muscle tissue. Our study thus uncovers unexpected crosstalk between CAPN3 proteolysis and protein sumoylation, with strong implications for muscle remodeling.

  14. Simvastatin inhibited oxLDL-induced proatherogenic effects through calpain-1-PPARγ-CD36 pathway.

    Science.gov (United States)

    Yang, Xueyan; Yin, Meihui; Yu, Lan; Lu, Meili; Wang, Hongxin; Tang, Futian; Zhang, Yingjie

    2016-12-01

    We previously reported that simvastatin, an inhibitor of HMG-CoA reductase, inhibits atherosclerosis in rats. The present study was designed to investigate the effect of simvastatin on mouse peritoneal macrophage foam cell formation, the early feature of atherosclerosis, and explore its mechanisms. The results showed that simvastatin decreased cholesterol content and DiI-oxLDL (1,1'-didodecyl 3,3,3',3'-indocarbocyanine perchlorate - oxidized low-density lipoprotein) uptake, reduced the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the medium, down-regulated the mRNA and protein expression of CD36 (a fatty acid receptor), and reduced the mRNA expressions of peroxisome proliferator-activated receptor gamma (PPARγ), TNF-α, and IL-6 in macrophages treated with oxLDL. However, PPARγ agonist troglitazone partly abolished the effects of simvastatin on foam cells. In addition, simvastatin reduced the protein expression of calpain-1, a Ca(2+)-sensitive cysteine protease, in oxLDL-treated macrophages. Furthermore, PD150606, a specific calpain inhibitor, reduced mRNA expressions of PPARγ and CD36 in macrophages treated with oxLDL. Combination of simvastatin and PD150606 had no further effect on mRNA expression of PPARγ and CD36 compared with either alone. However, over-expression of calpain-1 in macrophages partly reversed the simvastatin effects, including cell cholesterol content, mRNA expressions of PPARγ, and CD36. The results suggested that simvastatin inhibits foam cell formation of oxLDL-treated macrophages through a calpain-1-PPARγ-CD36 pathway.

  15. Hypoxia reduces mature hERG channels through calpain up-regulation.

    Science.gov (United States)

    Lamothe, Shawn M; Song, WonJu; Guo, Jun; Li, Wentao; Yang, Tonghua; Baranchuk, Adrian; Graham, Charles H; Zhang, Shetuan

    2017-11-01

    Human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium current (IKr) potassium channel, which is important for cardiac repolarization. Impairment of hERG function is the primary cause of acquired long QT syndrome, which predisposes individuals to cardiac arrhythmias and sudden death. Patients with hypoxia due to conditions such as cardiac ischemia or obstructive sleep apnea display increased incidence of cardiac arrhythmias and sudden death. We sought to understand the mechanisms that underlie hypoxia-associated cardiac arrhythmias. Using cell biology and electrophysiologic techniques, we found that hypoxic culture of hERG-expressing human embryonic kidney (HEK) cells and neonatal rat cardiomyocytes reduced hERG current/IKr and mature ERG channel expression with a concomitant increase in calpain expression. Calpain was actively released into the extracellular milieu and degraded cell-surface hERG. In contrast to hERG, the ether-a-go-go (EAG) channel was not reduced by hypoxic culture. By making chimeric channels between hERG and EAG, we identified that hypoxia-induced calpain degraded hERG by targeting its extracellular S5-pore linker. The scorpion toxin BeKm-1, which is known to selectively bind to the S5-pore linker of hERG, prevented hypoxia-induced hERG reduction. Our data provide novel information about hypoxia-mediated hERG dysfunction and may have biological and clinical implications in hypoxia-associated diseases.-Lamothe, S. M., Song, W., Guo, J., Li, W., Yang, T., Baranchuk, A., Graham, C. H., Zhang, S. Hypoxia reduces mature hERG channels through calpain up-regulation. © FASEB.

  16. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract.

    Science.gov (United States)

    Liu, Ke; Lyu, Lei; Chin, David; Gao, Junyuan; Sun, Xiurong; Shang, Fu; Caceres, Andrea; Chang, Min-Lee; Rowan, Sheldon; Peng, Junmin; Mathias, Richard; Kasahara, Hideko; Jiang, Shuhong; Taylor, Allen

    2015-01-27

    Although the ocular lens shares many features with other tissues, it is unique in that it retains its cells throughout life, making it ideal for studies of differentiation/development. Precipitation of proteins results in lens opacification, or cataract, the major blinding disease. Lysines on ubiquitin (Ub) determine fates of Ub-protein substrates. Information regarding ubiquitin proteasome systems (UPSs), specifically of K6 in ubiquitin, is undeveloped. We expressed in the lens a mutant Ub containing a K6W substitution (K6W-Ub). Protein profiles of lenses that express wild-type ubiquitin (WT-Ub) or K6W-Ub differ by only ∼2%. Despite these quantitatively minor differences, in K6W-Ub lenses and multiple model systems we observed a fourfold Ca(2+) elevation and hyperactivation of calpain in the core of the lens, as well as calpain-associated fragmentation of critical lens proteins including Filensin, Fodrin, Vimentin, β-Crystallin, Caprin family member 2, and tudor domain containing 7. Truncations can be cataractogenic. Additionally, we observed accumulation of gap junction Connexin43, and diminished Connexin46 levels in vivo and in vitro. These findings suggest that mutation of Ub K6 alters UPS function, perturbs gap junction function, resulting in Ca(2+) elevation, hyperactivation of calpain, and associated cleavage of substrates, culminating in developmental defects and a cataractous lens. The data show previously unidentified connections between UPS and calpain-based degradative systems and advance our understanding of roles for Ub K6 in eye development. They also inform about new approaches to delay cataract and other protein precipitation diseases.

  17. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress.

    Science.gov (United States)

    Louis, Xavier Lieben; Thandapilly, Sijo Joseph; Kalt, Wilhelmina; Vinqvist-Tymchuk, Melinda; Aloud, Basma Milad; Raj, Pema; Yu, Liping; Le, Hoa; Netticadan, Thomas

    2014-08-01

    The purpose of this study was to examine the efficacy of an aqueous wild blueberry extract and five wild blueberry polyphenol fractions on an in vitro model of heart disease. Adult rat cardiomyocytes were pretreated with extract and fractions, and then exposed to norepinephrine (NE). Cardiomyocyte hypertrophy, cell death, oxidative stress, apoptosis and cardiomyocyte contractile function as well as the activities of calpain, superoxide dismutase (SOD) and catalase (CAT) were measured in cardiomyocytes treated with and without NE and blueberry fraction (BF). Four of five blueberry fractions prevented cell death and cardiomyocyte hypertrophy induced by NE. Total phenolic fraction was used for all further analysis. The NE-induced increase in oxidative stress, nuclear condensation, calpain activity and lowering of SOD and CAT activities were prevented upon pretreatment with BF. Reduced contractile function was also significantly improved with BF pretreatment. Blueberry polyphenols prevent NE-induced adult cardiomyocyte hypertrophy and cell death. The protective effects of BF may be in part attributed to a reduction in calpain activity and oxidative stress.

  18. Investigation of biochemical changes of the ovine calpain 3 exon-10 polymorphism.

    Science.gov (United States)

    Muto, Yukiyo; Morton, Jim; Palmer, David

    2015-12-01

    Calpain 3 (CAPN3) is a tissue specific calpain, and its mRNA is the most expressed calpain isoform in skeletal muscles. Many mutations and polymorphisms within the human CAPN3 gene have been reported and related to limb-girdle muscular dystrophy. Several reports link CAPN3 polymorphisms and meat quality. An association between three allele variants in exon-10 of ovine CAPN3 and the yield of fat trimmed meat cuts has been reported. This research investigated the biochemical significance of polymorphic variation in CAPN3. CAPN3 mRNA sequences were obtained from muscle samples collected from lambs which were homozygous for each of the three alleles. Four single base substitutions were found besides those in exon-10, but none of them, including the variations within exon-10, caused a change in amino acid sequence. The expression of CAPN3 mRNA and the amounts of CAPN3 protein were also compared among genotypes, and no significant differences were found. These results suggest that the reported association of specific allele variants within CAPN3 exon-10 to phenotype variations were not direct effects of CAPN3 polymorphisms. Interspecies analyses of the CAPN3 sequences indicated that the sequence reported here is more likely to be the correct common ovine CAPN3 sequence than the reference sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Calpain-2 Regulates TNF-α Expression Associated with Neuropathic Pain Following Motor Nerve Injury.

    Science.gov (United States)

    Chen, Shao-Xia; Liao, Guang-Jie; Yao, Pei-Wen; Wang, Shao-Kun; Li, Yong-Yong; Zeng, Wei-An; Liu, Xian-Guo; Zang, Ying

    2018-02-22

    Both calpain-2 (CALP2) and tumor necrosis factor-α (TNF-α) contribute to persistent bilateral hypersensitivity in animals subjected to L5 ventral root transection (L5-VRT), a model of selective motor fiber injury without sensory nerve damage. However, specific upstream mechanisms regulating TNF-α overexpression and possible relationships linking CALP2 and TNF-α have not yet been investigated in this model. We examined changes in CALP2 and TNF-α protein levels and alterations in bilateral mechanical threshold within 24 h following L5-VRT model injury. We observed robust elevation of CALP2 and TNF-α in bilateral dorsal root ganglias (DRGs) and bilateral spinal cord neurons. CALP2 and TNF-α protein induction by L5-VRT were significantly inhibited by pretreatment using the calpain inhibitor MDL28170. Administration of CALP2 to rats without nerve injury further supported a role of CALP2 in the regulation of TNF-α expression. Although clinical trials of calpain inhibition therapy for alleviation of neuropathic pain induced by motor nerve injury have not yet shown success, our observations linking CALP2 and TNF-α provide a framework of a systems approach based perspective for treating neuropathic pain. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Lesions of entorhinal cortex produce a calpain-mediated degradation of brain spectrin in dentate gyrus. I. Biochemical studies.

    Science.gov (United States)

    Seubert, P; Ivy, G; Larson, J; Lee, J; Shahi, K; Baudry, M; Lynch, G

    1988-09-06

    Lesions of the rat entorhinal cortex cause extensive synaptic restructuring and perturbation of calcium regulation in the dentate gyrus of hippocampus. Calpain is a calcium-activated protease which has been implicated in degenerative phenomena in muscles and in peripheral nerves. In addition, calpain degrades several major structural neuronal proteins and has been proposed to play a critical role in the morphological changes observed following deafferentation. In this report we present evidence that lesions of the entorhinal cortex produce a marked increase in the breakdown of brain spectrin, a substrate for calpain, in the dentate gyrus. Two lines of evidence indicate that this effect is due to calpain activation: (i) the spectrin breakdown products observed following the lesion are indistinguishable from calpain-generated spectrin fragments in vitro; and (ii) their appearance can be reduced by prior intraventricular in fusion of leupeptin, a calpain inhibitor. Levels of spectrin breakdown products are increased as early as 4 h post-lesion, reach maximal values at 2 days, and remain above normal to some degree for at least 27 days. In addition, a small but significant increase in spectrin proteolysis is also observed in the hippocampus contralateral to the lesioned side in the first week postlesion. At 2 days postlesion the total spectrin immunoreactivity (native polypeptide plus breakdown products) increases by 40%, suggesting that denervation of the dentate gyrus produces not only an increased rate of spectrin degradation but also an increased rate of spectrin synthesis. These results indicate that calpain activation and spectrin degradation are early biochemical events following deafferentation and might well participate in the remodelling of postsynaptic structures. Finally, the magnitude of the observed effects as well as the stable nature of the breakdown products provide a sensitive assay for neuronal pathology.

  1. Calpain-3 impairs cell proliferation and stimulates oxidative stress-mediated cell death in melanoma cells.

    Directory of Open Access Journals (Sweden)

    Daniele Moretti

    Full Text Available Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84 of Calpain-3 gene (CAPN3, which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species, which lead to oxidative modification of phospholipids (formation of F2-isoprostanes and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression.

  2. Different Roles for Contracture and Calpain in Calcium Paradox-Induced Heart Injury

    Science.gov (United States)

    Zhang, Jian-Ying; Bi, Sheng-Hui; Xu, Ming; Jin, Zhen-Xiao; Yang, Yang; Jiang, Xiao-Fan; Zhou, Jing-Jun

    2012-01-01

    The Ca2+ paradox represents a good model to study Ca2+ overload injury in ischemic heart diseases. We and others have demonstrated that contracture and calpain are involved in the Ca2+ paradox-induced injury. This study aimed to elucidate their roles in this model. The Ca2+ paradox was elicited by perfusing isolated rat hearts with Ca2+-free KH media for 3 min or 5 min followed by 30 min of Ca2+ repletion. The LVDP was measured to reflect contractile function, and the LVEDP was measured to indicate contracture. TTC staining and the quantification of LDH release were used to define cell death. Calpain activity and troponin I release were measured after Ca2+ repletion. Ca2+ repletion of the once 3-min Ca2+ depleted hearts resulted in almost no viable tissues and the disappearance of contractile function. Compared to the effects of the calpain inhibitor MDL28170, KB-R7943, an inhibitor of the Na+/Ca2+ exchanger, reduced the LVEDP level to a greater extent, which was well correlated with improved contractile function recovery and tissue survival. The depletion of Ca2+ for 5 min had the same effects on injury as the 3-min Ca2+ depletion, except that the LVEDP in the 5-min Ca2+ depletion group was lower than the level in the 3-min Ca2+ depletion group. KB-R7943 failed to reduce the level of LVEDP, with no improvement in the LVDP recovery in the hearts subjected to the 5-min Ca2+ depletion treatment; however, KB-R7943 preserved its protective effects in surviving tissue. Both KB-R7943 and MDL28170 attenuated the Ca2+ repletion-induced increase in calpain activity in 3 min or 5 min Ca2+ depleted hearts. However, only KB-R7943 reduced the release of troponin I from the Ca2+ paradoxic heart. These results provide evidence suggesting that contracture is the main cause for contractile dysfunction, while activation of calpain mediates cell death in the Ca2+ paradox. PMID:23284963

  3. Neuroprotective Effects of Oxytocin Hormone after an Experimental Stroke Model and the Possible Role of Calpain-1.

    Science.gov (United States)

    Etehadi Moghadam, Sepideh; Azami Tameh, Abolfazl; Vahidinia, Zeinab; Atlasi, Mohammad Ali; Hassani Bafrani, Hassan; Naderian, Homayoun

    2018-03-01

    Different mechanisms will be activated during ischemic stroke. Calpain proteases play a pivotal role in neuronal death after ischemia damage through apoptosis. Anti-apoptotic activities of the oxytocin (OT) in different ischemic tissues were reported in previous studies. Recently, a limited number of studies have noted the protective effects of OT in the brain. In the present study, the neuroprotective potential of OT in an animal model of transient middle cerebral artery occlusion (tMCAO) and the possible role of calpain-1 in the penumbra region were assessed. Adult male Wistar rats underwent 1 hour of tMCAO and were treated with nasal administration of OT. After 24 hours of reperfusion, infarct size was evaluated by triphenyltetrazolium chloride. Immunohistochemical staining and Western blotting were used to examine the expression of calpain-1. Nissl staining was performed for brain tissue morphology evaluation. OT reduced the infarct volume of the cerebral cortex and striatum compared with the ischemia control group significantly (P < .05). Calpain-1 overexpression, which was caused by ischemia, decreased after OT administration (P < .05). The number of pyknotic nuclei in neurons increased dramatically in the ischemic area and OT attenuated the apoptosis of neurons in the penumbra region (P < .01). We provided evidence for the neuroprotective role of OT after tMCAO through calpain-1 attenuation. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Calpain-1 Expression in Triple-Negative Breast Cancer: A Potential Prognostic Factor Independent of the Proliferative/Apoptotic Index

    Directory of Open Access Journals (Sweden)

    Shadia M. Al-Bahlani

    2017-01-01

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive type of breast cancer in which calpain system plays an important role in its cellular processes including apoptosis and proliferation. Although such roles have been assessed in tumor pathogenesis, the correlation of its expression to the proliferating/apoptotic index has not been studied yet. Immunohistochemical staining of calpain-1 was performed on paraffin-embedded tissues to correlate its expression with clinicopathological variables and outcome. The proliferation activity was determined by calculating the percentage of cells expressing the Ki-67 antigen. The apoptotic index was assessed morphologically and biochemically using Haematoxylin & Eosin method and Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, respectively. Calpain-1 was significantly expressed in TNBC tissues varying from low to high with a significant correlation to lymph node status but not with the other clinicopathological variables, suggesting its role as a prognostic factor. In addition, a positive correlation was found between both apoptotic counts assays (P<0.001, r=0.547 as well as with proliferation (P=0.045. Calpain-1 expression had no significant correlation with either proliferation (P=0.29 or apoptotic indices (P=0.071 and P=0.100. Determining calpain-1 expression may provide relevant prognostic value for TNBC cancer patients.

  5. Calpain-10 genetic polymorphisms and polycystic ovary syndrome risk: a meta-analysis and meta-regression.

    Science.gov (United States)

    Shen, Wenjing; Li, Tianren; Hu, Yanjie; Liu, Hongbo; Song, Min

    2013-12-01

    Recent evidences suggest that common functional polymorphisms in the promoter region of the Calpain-10 gene may have an impact on an individual's susceptibility to polycystic ovary syndrome (PCOS), but individually published results are inconclusive. Our meta-analysis is aimed to provide a more precise estimation of the relationships between Calpain-10 genetic polymorphisms and PCOS risk. An extensive literature search for relevant studies was conducted on PubMed, Embase, Web of Science, Cochrane Library, and CBM databases from inception through April 1st, 2013. This meta-analysis was performed using the STATA 12.0 software. The crude odds ratio (OR) with 95% confidence interval (CI) was calculated. Fourteen case-control studies were included with a total of 2123 PCOS patients and 3612 healthy controls. Nine common SNPs in the Calpain-10 gene were addressed. Our meta-analysis indicated that UCSNP-19, UCSNP-63 and UCSNP-45 polymorphisms in the Calpain-10 gene might be associated with increased PCOS risk. However, no statistically significant association was observed in UCSNP-43, UCSNP-22, UCSNP-43, UCSNP-45, UCSNP-56, UCSNP-58, and UCSNP-110 polymorphisms. Further subgroup analysis by ethnicity revealed that UCSNP-19, UCSNP-63 and UCSNP-45 polymorphisms might decrease the risk of PCOS among Asian populations, but not among Caucasian populations. The current meta-analysis indicates that UCSNP-19, UCSNP-63 and UCSNP-45 polymorphisms in the Calpain-10 gene may be risk factors for PCOS, especially among Asian populations. © 2013.

  6. Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, University of Maryland, Baltimore, MD (United States); Kang, Ah-Young [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, Program of Immunology, Graduate School, Seoul National University, Seoul (Korea, Republic of); Ko, Ah-ra [Clinical Research Center, Samsung Biomedical Research Institute, Seoul (Korea, Republic of); Park, Hayne Cho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); So, Insuk [Department of Physiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Cheong, Hae Il [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Pediatrics, Seoul National University Children’s Hospital, Seoul (Korea, Republic of); Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Hwang, Young-Hwan [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Internal Medicine, Eulji General Hospital, Eulji University College of Medicine, Seoul (Korea, Republic of); and others

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for μ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpression of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independently regulated by calpain-mediated PC1 degradation. They suggest that the PC1 function on JAK2 and ERK signaling pathways might be regulated by calpains in response to the changes in intracellular calcium concentration. - Highlights: • Polycystin-1 is a target of ubiquitin-independent degradation by calpains. • The PEST domain is required for calpain-mediated degradation of polycystin-1. • Polycystin-1 may independently regulate JAK2 and ERK signaling pathways.

  7. [Effect of artenisiae scopariae and poriae powder on calpain-2 expression in liver tissue from rats with obstructive jaundice].

    Science.gov (United States)

    Cui, Yubao

    2015-05-01

    To explore the eff ect of artenisiae scopariae and poriae powder (ASPD) on calpain-2 expression in liver tissue from rats with obstructive jaundice. The rat model of obstructive jaundice was established. SD rats was divided into the control group, the obstructive jaundice group, the obstructive jaundice model plus ASPD group, the obstructive jaundice model plus saline group. Th e serum levels of TBIL, ALT, AST and other biochemical indexes were detected. The pathological changes of liver tissue were evaluated by HE staining. The calpain-2 mRNA and protein expression in liver was measured by Real-time PCR and immunohistochemistry or Western blot, respectively. The calpain-2 mRNA and protein expression levels were significantly up-regulated in live tissues from the rats with obstructive jaundice in a time-dependent manner. The ASPD could inhibit the calpain-2 expression in rats with obstructive jaundice concomitant with the decreased liver damage and the improved liver function, suggesting that calpain-2 was involved in endoplasmic reticulum stress-mediated cellular apoptosis and the occurrence of obstructive jaundice. ASPD could be used for patients with obstructive jaundice to promote the recovery of liver function after operation and to reduce the incidence of complications, which provide a theoretical basis for the reasonable application of traditional Chinese medicine in the peroperative period.

  8. A possible therapeutic potential of quercetin through inhibition of μ-calpain in hypoxia induced neuronal injury: a molecular dynamics simulation study

    Directory of Open Access Journals (Sweden)

    Anand Kumar Pandey

    2016-01-01

    Full Text Available The neuroprotective property of quercetin is well reported against hypoxia and ischemia in past studies. This property of quercetin lies in its antioxidant property with blood-brain barrier permeability and anti-inflammatory capabilities. µ-Calpain, a calcium ion activated intracellular cysteine protease causes serious cellular insult, leading to cell death in various pathological conditions including hypoxia and ischemic stroke. Hence, it may be considered as a potential drug target for the treatment of hypoxia induced neuronal injury. As the inhibitory property of µ-calpain is yet to be explored in details, hence, in the present study, we investigated the interaction of quercetin with µ-calpain through a molecular dynamics simulation study as a tool through clarifying the molecular mechanism of such inhibition and determining the probable sites and modes of quercetin interaction with the µ-calpain catalytic domain. In addition, we also investigated the structure-activity relationship of quercetin with μ-calpain. Affinity binding of quercetin with µ-calpain had a value of –28.73 kJ/mol and a Ki value of 35.87 µM that may be a probable reason to lead to altered functioning of µ-calpain. Hence, quercetin was found to be an inhibitor of µ-calpain which might have a possible therapeutic role in hypoxic injury.

  9. Increased μ-Calpain Activity in Blasts of Common B-Precursor Childhood Acute Lymphoblastic Leukemia Correlates with Their Lower Susceptibility to Apoptosis.

    Directory of Open Access Journals (Sweden)

    Anna Mikosik

    Full Text Available Childhood acute lymphoblastic leukemia (ALL blasts are characterized by inhibited apoptosis promoting fast disease progress. It is known that in chronic lymphocytic and acute myeloid leukemias the reduced apoptosis is strongly related with the activity of calpain-calpastatin system (CCS composed of cytoplasmic proteases--calpains--performing the modulatory proteolysis of key proteins involved in cell proliferation and apoptosis, and of their endogenous inhibitor--calpastatin. Here, the CCS protein abundance and activity was for the first time studied in childhood ALL blasts and in control bone marrow CD19+ B cells by semi-quantitative flow cytometry and western blotting of calpastatin fragments resulting from endogenous calpain activity. Significantly higher μ-calpain (CAPN1 gene transcription, protein amounts and activity (but not those of m-calpain, with calpastatin amount and transcription of its gene (CAST greatly varying were observed in CD19(+ ALL blasts compared to control cells. Significant inverse relation between the amount/activity of calpain and spontaneous apoptosis was noted. Patients older than 10 years (considered at higher risk displayed increased amounts and activities of blast calpain. Finally, treatment of blasts with the tripeptide calpain inhibitors II and IV significantly and in dose-dependent fashion increased the percentage of blasts entering apoptosis. Together, these findings make the CCS a potential new predictive tool and therapeutic target in childhood ALL.

  10. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

    DEFF Research Database (Denmark)

    Reinert, Line; Harder, Louis Andreas; Holm, Christian

    2012-01-01

    Herpes simplex viruses (HSVs) are highly prevalent neurotropic viruses. While they can replicate lytically in cells of the epithelial lineage, causing lesions on mucocutaneous surfaces, HSVs also establish latent infections in neurons, which act as reservoirs of virus for subsequent reactivation ...

  11. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

    DEFF Research Database (Denmark)

    Reinert, Line; Harder, Louis Andreas; Holm, Christian

    2012-01-01

    Herpes simplex viruses (HSVs) are highly prevalent neurotropic viruses. While they can replicate lytically in cells of the epithelial lineage, causing lesions on mucocutaneous surfaces, HSVs also establish latent infections in neurons, which act as reservoirs of virus for subsequent reactivation...

  12. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array.

    Science.gov (United States)

    Shinkai-Ouchi, Fumiko; Koyama, Suguru; Ono, Yasuko; Hata, Shoji; Ojima, Koichi; Shindo, Mayumi; duVerle, David; Ueno, Mika; Kitamura, Fujiko; Doi, Naoko; Takigawa, Ichigaku; Mamitsuka, Hiroshi; Sorimachi, Hiroyuki

    2016-04-01

    Calpains are intracellular Ca(2+)-regulated cysteine proteases that are essential for various cellular functions. Mammalian conventional calpains (calpain-1 and calpain-2) modulate the structure and function of their substrates by limited proteolysis. Thus, it is critically important to determine the site(s) in proteins at which calpains cleave. However, the calpains' substrate specificity remains unclear, because the amino acid (aa) sequences around their cleavage sites are very diverse. To clarify calpains' substrate specificities, 84 20-mer oligopeptides, corresponding to P10-P10' of reported cleavage site sequences, were proteolyzed by calpains, and the catalytic efficiencies (kcat/Km) were globally determined by LC/MS. This analysis revealed 483 cleavage site sequences, including 360 novel ones. Thekcat/Kms for 119 sites ranged from 12.5-1,710 M(-1)s(-1) Although most sites were cleaved by both calpain-1 and -2 with a similarkcat/Km, sequence comparisons revealed distinct aa preferences at P9-P7/P2/P5'. The aa compositions of the novel sites were not statistically different from those of previously reported sites as a whole, suggesting calpains have a strict implicit rule for sequence specificity, and that the limited proteolysis of intact substrates is because of substrates' higher-order structures. Cleavage position frequencies indicated that longer sequences N-terminal to the cleavage site (P-sites) were preferred for proteolysis over C-terminal (P'-sites). Quantitative structure-activity relationship (QSAR) analyses using partial least-squares regression and >1,300 aa descriptors achievedkcat/Kmprediction withr= 0.834, and binary-QSAR modeling attained an 87.5% positive prediction value for 132 reported calpain cleavage sites independent of our model construction. These results outperformed previous calpain cleavage predictors, and revealed the importance of the P2, P3', and P4' sites, and P1-P2 cooperativity. Furthermore, using our binary-QSAR model

  13. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann

    have shown that m-calpain is necessary for myoblast fusion leading to the formation of muscle fibers and that inhibition of this enzyme restricts myotube formation. Whether there is a link between stretchor load induced signaling and m-calpain expression and activation is not known. Using a magnetic...... documented and has been shown to affect transcription of specific gene sequences, protein synthesis, the immune system and increase in Ca2+ influx. The past 10 years has seen a dramatic increase in the understanding of how proteolytic enzymes such as calpains can affect the growth of muscle. In vivo studies...... bead stimulation assay and a C2C12 mouse myoblast cell population, we have found that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, an enzyme found to be required for muscle cell fusion. After a short period of stimulation, m-calpain relocates into focal...

  14. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tian-Li [Department of General Surgery, The People’s Hospital of Wuqing, Tianjin (China); Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Yue [Department of Respiration, Affiliated Hospital of Medical College of Chinese People’s Armed Police Force, Tianjin (China); Chen, Ao-Xiang; Sun, Xuan [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie, E-mail: gejie198003@163.com [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2014-04-04

    Highlights: • FOXD3 is down-regulated in breast cancer tissues. • FOXD3 inhibits breast cancer cell proliferation and invasion. • FoxD3 deficiency induces epithelial–mesenchymal transition. - Abstract: The transcription factor forkhead box D3 (FOXD3) plays an important role in the development of neural crest and gastric cancer cells. However, the function and mechanisms of FOXD3 in the breast tumorigenesis and progression is still limited. Here, we report that FOXD3 is a tumor suppressor of breast cancer tumorigenicity and aggressiveness. We found that FOXD3 is down-regulated in breast cancer tissues. Patients with low FOXD3 expression have a poor outcome. Depletion of FOXD3 expression promotes breast cancer cell proliferation and invasion in vitro, whereas overexpression of FOXD3 inhibits breast cancer cell proliferation and invasion both in vitro and in vivo. In addition, depletion of FOXD3 is linked to epithelial–mesenchymal transition (EMT)-like phenotype. Our results indicate FOXD3 exhibits tumor suppressive activity and may be useful for breast therapy.

  15. Bid and calpains cooperate to trigger oxaliplatin-induced apoptosis of cervical carcinoma HeLa cells.

    Science.gov (United States)

    Anguissola, Sergio; Köhler, Barbara; O'Byrne, Robert; Düssmann, Heiko; Cannon, Mary D; Murray, Frank E; Concannon, Caoimhin G; Rehm, Markus; Kögel, Donat; Prehn, Jochen H M

    2009-11-01

    The Bcl-2 homology 3-only protein Bid is an important mediator of death receptor-induced apoptosis. Recent reports and this study suggest that Bid may also mediate genotoxic drug-induced apoptosis of various human cancer cells. Here, we characterized the role of Bid and the mechanism of Bid activation during oxaliplatin-induced apoptosis of HeLa cervical cancer cells. Small hairpin RNA-mediated silencing of Bid protected HeLa cells against both death receptor- and oxaliplatin-induced apoptosis. Expression of a Bid mutant in which caspase-8 cleavage site was mutated (D59A) reactivated oxaliplatin-induced apoptosis in Bid-deficient cells but failed to reactivate death receptor-induced apoptosis, suggesting that caspase-8-mediated Bid cleavage did not contribute to oxaliplatin-induced apoptosis. Overexpression of bcl-2 or treatment with the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone abolished caspase-2, -8, -9, and -3 activation as well as Bid cleavage in response to oxaliplatin, suggesting that Bid cleavage occurred downstream of mitochondrial permeabilization and was predominantly mediated by caspases. We also detected an early activation of calpains in response to oxaliplatin. Calpain inhibition reduced Bid cleavage, mitochondrial depolarization, and activation of caspase-9, -3, -2, and -8 in response to oxaliplatin. Further experiments, however, suggested that Bid cleavage by calpains was not a prerequisite for oxaliplatin-induced apoptosis: single-cell imaging experiments using a yellow fluorescent protein-Bid-cyan fluorescent protein probe demonstrated translocation of full-length Bid to mitochondria that was insensitive to calpain or caspase inhibition. Moreover, calpain inhibition showed a potent protective effect in Bid-silenced cells. In conclusion, our data suggest that calpains and Bid act in a cooperative, but mutually independent, manner to mediate oxaliplatin-induced apoptosis of HeLa cells.

  16. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  17. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation.

    Science.gov (United States)

    Wang, Ting; Wang, Lichun; Moreno-Vinasco, Liliana; Lang, Gabriel D; Siegler, Jessica H; Mathew, Biji; Usatyuk, Peter V; Samet, Jonathan M; Geyh, Alison S; Breysse, Patrick N; Natarajan, Viswanathan; Garcia, Joe G N

    2012-08-29

    Exposure to particulate matter (PM) is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC) barrier integrity and enhanced cardiopulmonary dysfunction. Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER) in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm). Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. PM exposure induced tight junction protein Zona occludens-1 (ZO-1) relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin). N-acetyl-cysteine (NAC, 5 mM) reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2), in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  18. Passive stretch reduces calpain activity through nitric oxide pathway in unloaded soleus muscles.

    Science.gov (United States)

    Xu, Peng-Tao; Li, Quan; Sheng, Juan-Juan; Chang, Hui; Song, Zhen; Yu, Zhi-Bin

    2012-08-01

    Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.

  19. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes

    Science.gov (United States)

    Fang, Jing; Liu, Xiaona; Bolanos, Lyndsey; Barker, Brenden; Rigolino, Carmela; Cortelezzi, Agostino; Oliva, Esther N; Cuzzola, Maria; Grimes, H Leighton; Fontanillo, Celia; Komurov, Kakajan; MacBeth, Kyle; Starczynowski, Daniel T

    2017-01-01

    Despite the high response rates of individuals with myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)) to treatment with lenalidomide (LEN) and the recent identification of cereblon (CRBN) as the molecular target of LEN, the cellular mechanism by which LEN eliminates MDS clones remains elusive. Here we performed an RNA interference screen to delineate gene regulatory networks that mediate LEN responsiveness in an MDS cell line, MDSL. We identified GPR68, which encodes a G-protein-coupled receptor that has been implicated in calcium metabolism, as the top candidate gene for modulating sensitivity to LEN. LEN induced GPR68 expression via IKAROS family zinc finger 1 (IKZF1), resulting in increased cytosolic calcium levels and activation of a calcium-dependent calpain, CAPN1, which were requisite steps for induction of apoptosis in MDS cells and in acute myeloid leukemia (AML) cells. In contrast, deletion of GPR68 or inhibition of calcium and calpain activation suppressed LEN-induced cytotoxicity. Moreover, expression of calpastatin (CAST), an endogenous CAPN1 inhibitor that is encoded by a gene (CAST) deleted in del(5q) MDS, correlated with LEN responsiveness in patients with del(5q) MDS. Depletion of CAST restored responsiveness of LEN-resistant non-del(5q) MDS cells and AML cells, providing an explanation for the superior responses of patients with del(5q) MDS to LEN treatment. Our study describes a cellular mechanism by which LEN, acting through CRBN and IKZF1, has cytotoxic effects in MDS and AML that depend on a calcium- and calpain-dependent pathway. PMID:27294874

  20. 46,XY disorder of sex development (DSD) due to 17β-hydroxysteroid dehydrogenase type 3 deficiency.

    Science.gov (United States)

    Mendonca, Berenice B; Gomes, Nathalia Lisboa; Costa, Elaine M F; Inacio, Marlene; Martin, Regina M; Nishi, Mirian Y; Carvalho, Filomena Marino; Tibor, Francisco Denes; Domenice, Sorahia

    2017-01-01

    17β-hydroxysteroid dehydrogenase 3 deficiency consists of a defect in the last phase of steroidogenesis, in which androstenedione is converted into testosterone and estrone into estradiol. External genitalia range from female-like to atypical genitalia and most affected males are raised as females. Virilization in subjects with 17β-HSD3 deficiency occurs at the time of puberty and several of them change to male social sex. In male social sex patients, testes can be safely maintained, as long as they are positioned inside the scrotum The phenotype of 46,XY DSD due to 17β-HSD3 deficiency is extremely variable and clinically indistinguishable from other causes of 46,XY DSD such as partial androgen insensitivity syndrome and 5α-reductase 2 deficiency. Laboratory diagnosis is based on a low testosterone/androstenedione ratio due to high serum levels of androstenedione and low levels of testosterone. The disorder is caused by a homozygous or compound heterozygous mutations in the HSD17B3 gene that encodes the 17β-HSD3 isoenzyme leading to an impairment of the conversion of 17-keto into 17-hydroxysteroids. Molecular genetic testing confirms the diagnosis and provides the orientation for genetic counseling. Our proposal in this article is to review the previously reported cases of 17β-HSD3 deficiency adding our own cases. Copyright © 2016. Published by Elsevier Ltd.

  1. Methionine sulfoxide reductase B3 deficiency stimulates heme oxygenase-1 expression via ROS-dependent and Nrf2 activation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr

    2016-05-13

    Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G{sub 1}/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ER stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation. -- Highlights: •MsrB3 depletion induces HO-1 expression. •MsrB3 deficiency increases cellular ROS and ER stress. •MsrB3 deficiency activates Nrf2 by increasing its expression and nuclear import. •MsrB3 attenuates HO-1 induction by inhibiting ROS production and Nrf2 activation.

  2. Deleting Both PHLPP1 and CANP1 Rescues Impairments in Long-Term Potentiation and Learning in Both Single Knockout Mice

    Science.gov (United States)

    Liu, Yan; Sun, Jiandong; Wang, Yubin; Lopez, Dulce; Tran, Jennifer; Bi, Xiaoning; Baudry, Michel

    2016-01-01

    Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation (TBS)-induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression…

  3. Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury.

    Science.gov (United States)

    Zhang, Yi; Sauler, Maor; Shinn, Amanda S; Gong, Huan; Haslip, Maria; Shan, Peiying; Mannam, Praveen; Lee, Patty J

    2014-06-01

    High levels of inspired oxygen, hyperoxia, are frequently used in patients with acute respiratory failure. Hyperoxia can exacerbate acute respiratory failure, which has high mortality and no specific therapies. We identified novel roles for PTEN-induced putative kinase 1 (PINK1), a mitochondrial protein, and the cytosolic innate immune protein NLRP3 in the lung and endothelium. We generated double knockouts (PINK1(-/-)/NLRP3(-/-)), as well as cell-targeted PINK1 silencing and lung-targeted overexpression constructs, to specifically show that PINK1 mediates cytoprotection in wild-type and NLRP3(-/-) mice. The ability to resist hyperoxia is proportional to PINK1 expression. PINK1(-/-) mice were the most susceptible; wild-type mice, which induced PINK1 after hyperoxia, had intermediate susceptibility; and NLRP3(-/-) mice, which had high basal and hyperoxia-induced PINK1, were the least susceptible. Genetic deletion of PINK1 or PINK1 silencing in the lung endothelium increased susceptibility to hyperoxia via alterations in autophagy/mitophagy, proteasome activation, apoptosis, and oxidant generation. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Calpain-mediated cleavage of DARPP-32 in Alzheimer’s disease

    Science.gov (United States)

    Cho, Kwangmin; Cho, Mi-Hyang; Seo, Jung-Han; Peak, Jongjin; Kong, Kyoung-Hye; Yoon, Seung-Yong; Kim, Dong-Hou

    2015-01-01

    Toxicity induced by aberrant protein aggregates in Alzheimer’s disease (AD) causes synaptic disconnection and concomitant progressive neurodegeneration that eventually impair cognitive function. cAMP-response element-binding protein (CREB) is a transcription factor involved in the molecular switch that converts short-term to long-term memory. Although disturbances in CREB function have been suggested to cause memory deficits in both AD and AD animal models, the mechanism of CREB dysfunction is still unclear. Here, we show that the dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP-32), a key inhibitor of protein phosphate-1 (PP-1) that regulates CREB phosphorylation, is cleaved by activated calpain in both AD brains and neuronal cells treated with amyloid-β or okadaic acid, a protein phosphatase-2A inhibitor that induces tau hyperphosphorylation and neuronal death. We found that DARPP-32 is mainly cleaved at Thr153 by calpain and that this cleavage of DARPP-32 reduces CREB phosphorylation via loss of its inhibitory function on PP1. Our results suggest a novel mechanism of DARPP-32–CREB signalling dysregulation in AD. PMID:26178297

  5. Calpain 3 is a rapid-action, unidirectional proteolytic switch central to muscle remodeling.

    Directory of Open Access Journals (Sweden)

    Antoine de Morrée

    Full Text Available Calpain 3 (CAPN3 is a cysteine protease that when mutated causes Limb Girdle Muscular Dystrophy 2A. It is thereby the only described Calpain family member that genetically causes a disease. Due to its inherent instability little is known of its substrates or its mechanism of activity and pathogenicity. In this investigation we define a primary sequence motif underlying CAPN3 substrate cleavage. This motif can transform non-related proteins into substrates, and identifies >300 new putative CAPN3 targets. Bioinformatic analyses of these targets demonstrate a critical role in muscle cytoskeletal remodeling and identify novel CAPN3 functions. Among the new CAPN3 substrates are three E3 SUMO ligases of the Protein Inhibitor of Activated Stats (PIAS family. CAPN3 can cleave PIAS proteins and negatively regulates PIAS3 sumoylase activity. Consequently, SUMO2 is deregulated in patient muscle tissue. Our study thus uncovers unexpected crosstalk between CAPN3 proteolysis and protein sumoylation, with strong implications for muscle remodeling.

  6. Bcr-abl regulates Stat5 through Shp2, the interferon consensus sequence binding protein (Icsbp/Irf8), growth arrest specific 2 (Gas2) and calpain

    Science.gov (United States)

    Hjort, Elizabeth E.; Huang, Weiqi; Hu, Liping; Eklund, Elizabeth A.

    2016-01-01

    Icsbp/Irf8 is an interferon regulatory transcription factor that functions as a suppressor of myeloid leukemias. Consistent with this activity, Icsbp represses a set of genes encoding proteins that promote cell proliferation/survival. One such gene encodes Gas2, a calpain inhibitor. We previously found that increased Gas2-expression in Bcr-abl+ cells stabilized βcatenin; a Calpain substrate. This was of interest, because βcatenin contributes to disease progression in chronic myeloid leukemia (CML). Calpain has additional substrates implicated in leukemogenesis, including Stat5. In the current study, we hypothesized that Stat5 activity in CML is regulated by Gas2/Calpain. We found that Bcr-abl-induced, Shp2-dependent dephosphorylation of Icsbp impaired repression of GAS2 by this transcription factor. The consequent decrease in Calpain activity stabilized Stat5 protein; increasing the absolute abundance of both phospho and total Stat5. This enhanced repression of the IRF8 promoter by Stat5 in a manner dependent on Icsbp, Gas2 and Calpain, but not Stat5 tyrosine phosphorylation. During normal myelopoiesis, increased expression and phosphorylation of Icsbp inhibits Calpain. In contrast, constitutive activation of Shp2 in Bcr-abl+ cells impairs regulation of Gas2/Calpain by Icsbp, aberrantly stabilizing Stat5 and enhancing IRF8 repression. This novel feedback mechanism enhances leukemogenesis by increasing Stat5 and decreasing Icsbp. Bcr-abl targeted tyrosine kinase inhibitors (TKIs) provide long term disease control, but CML is not cured by these agents. Our studies suggest targeting Calpain might be a rational therapeutic approach to decrease persistent leukemia stem cells (LSCs) during TKI-treatment. PMID:27769062

  7. Inhibition of Calpain Prevents N-Methyl-D-aspartate-Induced Degeneration of the Nucleus Basalis and Associated Behavioral Dysfunction

    NARCIS (Netherlands)

    Nimmrich, Volker; Szabo, Robert; Nyakas, Csaba; Granic, Ivica; Reymann, Klaus G.; Schroeder, Ulrich H.; Gross, Gerhard; Schoemaker, Hans; Wicke, Karsten; Moeller, Achim; Luiten, Paul

    2008-01-01

    N-Methyl-D-aspartate( NMDA) receptor-mediated excitotoxicity is thought to underlie a variety of neurological disorders, and inhibition of either the NMDA receptor itself, or molecules of the intracellular cascade, may attenuate neurodegeneration in these diseases. Calpain, a calcium-dependent

  8. Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation.

    Science.gov (United States)

    Wan, Feng; Letavernier, Emmanuel; Le Saux, Claude Jourdan; Houssaini, Amal; Abid, Shariq; Czibik, Gabor; Sawaki, Daigo; Marcos, Elisabeth; Dubois-Rande, Jean-Luc; Baud, Laurent; Adnot, Serge; Derumeaux, Geneviève; Gellen, Barnabas

    2015-12-01

    The activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation. Mortality at 6 wk was higher in TG mice (24% in WT vs. 44% in TG, P < 0.05) driven by a significantly higher incidence of cardiac rupture during the first week post-MI, despite comparable infarct size and LV dysfunction and dilatation. Calpain activation post-MI was blunted in TG myocardium. In TG mice, inflammatory cell infiltration and activation were reduced in the infarct zone (IZ), particularly affecting M2 macrophages and CD4(+) T cells, which are crucial for scar healing. To elucidate the role of calpastatin overexpression in macrophages, we stimulated peritoneal macrophages obtained from TG and WT mice in vitro with IL-4, yielding an abrogated M2 polarization in TG but not in WT cells. Lymphopenic Rag1(-/-) mice receiving TG splenocytes before MI demonstrated decreased T-cell recruitment and M2 macrophage activation in the IZ day 5 after MI compared with those receiving WT splenocytes. Calpastatin overexpression prevented the activation of the calpain system after MI. It also impaired scar healing, promoted LV rupture, and increased mortality. Defective scar formation was associated with blunted CD4(+) T-cell and M2-macrophage recruitment. Copyright © 2015 the American Physiological Society.

  9. A20 (Tnfaip3 deficiency in myeloid cells protects against influenza A virus infection.

    Directory of Open Access Journals (Sweden)

    Jonathan Maelfait

    Full Text Available The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-κB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections.

  10. The effects of different chilling methods on meat quality and calpain activity of pork muscle longissimus dorsi.

    Science.gov (United States)

    Xu, Yang; Huang, Ji-Chao; Huang, Ming; Xu, Bao-Cai; Zhou, Guang-Hong

    2012-01-01

    The objective of this study was to investigate the effects of conventional chilling (0 to 4 °C), rapid chilling (RC, -20 °C for 30 min, followed by 0 to 4 °C), and short-duration chilling (0 to 4 °C for 30 min, followed by 25 °C) on meat quality and calpain activity of pork muscle longissimus dorsi (LD). The muscle quality characteristics pH, color, cooking loss, pressing loss and tenderness, and calpain activities were measured 0-, 3-, 12-, and 24-h postmortem. Results show that the RC resulted in a faster temperature decline of the muscle, and prevented the meat pH and Commission Internationale de l'Eclairage L* value from declining during postmortem aging. RC also reduced meat cooking loss and pressing loss compared with the other two chilling methods. However, the chilling methods did not significantly affect meat shear force. During the first 24-h postmortem, there was not a noticeable change in the activity of m-calpain. But μ-calpain activity decreased regardless of chilling method. In the rapidly chilled carcasses, μ-calpain activity remained the same 3- and 12-h postmortem. However, in the short-duration chilled and conventionally chilled carcasses, the activity was visibly reduced. At 24-h postmortem, no clear zones on the gel were observed in all three treatments. Conventional and RC methods are commonly used for pork in commercial practice nowadays. Compared with conventional chilling, the effect of RC on quality parameters of pork varies. In recent years, short-duration chilling (SC) is widely used in many Chinese pig slaughtering facilities. However, few researchers have studied the effect of SD on pork quality. Therefore, the present study investigated the effect of different chilling methods on functionalities or quality of chilled pork meat. © 2011 Institute of Food Technologists®

  11. Effect of nutrient restriction and re-feeding on calpain family genes in skeletal muscle of channel catfish (Ictalurus punctatus).

    Science.gov (United States)

    Preziosa, Elena; Liu, Shikai; Terova, Genciana; Gao, Xiaoyu; Liu, Hong; Kucuktas, Huseyin; Terhune, Jeffery; Liu, Zhanjiang

    2013-01-01

    Calpains, a superfamily of intracellular calcium-dependent cysteine proteases, are involved in the cytoskeletal remodeling and wasting of skeletal muscle. Calpains are generated as inactive proenzymes which are activated by N-terminal autolysis induced by calcium-ions. In this study, we characterized the full-length cDNA sequences of three calpain genes, clpn1, clpn2, and clpn3 in channel catfish, and assessed the effect of nutrient restriction and subsequent re-feeding on the expression of these genes in skeletal muscle. The clpn1 cDNA sequence encodes a protein of 704 amino acids, Clpn2 of 696 amino acids, and Clpn3 of 741 amino acids. Phylogenetic analysis of deduced amino acid sequences indicate that catfish Clpn1 and Clpn2 share a sequence similarity of 61%; catfish Clpn1 and Clpn3 of 48%, and Clpn2 and Clpn3 of only 45%. The domain structure architectures of all three calpain genes in channel catfish are similar to those of other vertebrates, further supported by strong bootstrap values during phylogenetic analyses. Starvation of channel catfish (average weight, 15-20 g) for 35 days influenced the expression of clpn1 (2.3-fold decrease, Pcatfish skeletal muscle showed significant differences only during the starvation period, with a 1.2- and 1.4- fold increase (P<0.01) after 17 and 35 days of starvation, respectively. We have assessed that fasting and refeeding may provide a suitable experimental model to provide us insight into the role of calpains during fish muscle atrophy and how they respond to changes in nutrient supply.

  12. Propofol Ameliorates Calpain-induced Collapsin Response Mediator Protein-2 Proteolysis in Traumatic Brain Injury in Rats

    Science.gov (United States)

    Yu, Yun; Jian, Min-Yu; Wang, Yun-Zhen; Han, Ru-Quan

    2015-01-01

    Background: Collapsin response mediator protein-2 (CRMP2), a multifunctional cytosolic protein highly expressed in the brain, is degraded by calpain following traumatic brain injury (TBI), possibly inhibiting posttraumatic neurite regeneration. Lipid peroxidation (LP) is involved in triggering postinjury CRMP2 proteolysis. We examined the hypothesis that propofol could attenuate LP, calpain-induced CRMP2 degradation, and brain injury after TBI. Methods: A unilateral moderate controlled cortical impact injury was induced in adult male Sprague-Dawley rats. The animals were randomly divided into seven groups: Sham control group, TBI group, TBI + propofol groups (including propofol 1 h, 2 h, and 4 h groups), TBI + U83836E group and TBI + fat emulsion group. The LP inhibitor U83836E was used as a control to identify that antioxidation partially accounts for the potential neuroprotective effects of propofol. The solvent of propofol, fat emulsion, was used as the vehicle control. Ipsilateral cortex tissues were harvested at 24 h post-TBI. Immunofluorescent staining, Western blot analysis, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling were used to evaluate LP, calpain activity, CRMP2 proteolysis and programmed cell death. The data were statistically analyzed using one-way analysis of variance and a paired t-test. Results: Propofol and U83836E significantly ameliorated the CRMP2 proteolysis. In addition, both propofol and U83836E significantly decreased the ratio of 145-kDa αII-spectrin breakdown products to intact 270-kDa spectrin, the 4-hydroxynonenal expression and programmed cell death in the pericontusional cortex at 24 h after TBI. There was no difference between the TBI group and the fat emulsion group. Conclusions: These results demonstrate that propofol postconditioning alleviates calpain-mediated CRMP2 proteolysis and provides neuroprotective effects following moderate TBI potentially by counteracting LP and reducing calpain activation

  13. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans.

    Science.gov (United States)

    Wang, Yubin; Hersheson, Joshua; Lopez, Dulce; Hammer, Monia; Liu, Yan; Lee, Ka-Hung; Pinto, Vanessa; Seinfeld, Jeff; Wiethoff, Sarah; Sun, Jiandong; Amouri, Rim; Hentati, Faycal; Baudry, Neema; Tran, Jennifer; Singleton, Andrew B; Coutelier, Marie; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra; Bi, Xiaoning; Houlden, Henry; Baudry, Michel

    2016-06-28

    A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Acetylcholine Attenuated TNF-α-Induced Apoptosis in H9c2 Cells: Role of Calpain and the p38-MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2015-07-01

    Full Text Available Background: Previous studies have shown that inflammation is associated with excessive activation of calpains. Acetylcholine (ACh has been reported to inhibit pro-inflammatory cytokine release and protect against cardiomyocyte injury. However, there is no direct evidence regarding whether ACh can regulate calpains to exert cardioprotection. To this end, we investigated the effect of ACh on tumour necrosis factor alpha (TNF-α-induced cardiomyocyte injury and further explored the underlying mechanism. Methods: Flow cytometry and transmission electron microscopy were performed to evaluate apoptosis and cellular ultrastructure. Western blotting was performed to assess changes in protein expression. siRNA was employed to silence specific proteins. Results: TNF-α treatment increased the expression of cleaved caspase-3, calpain-1 and p38-mitogen-activated protein kinase (p38-MAPK. The calpain inhibitor PD150606 and the p38-MAPK inhibitor SB203580 inhibited apoptosis induced by TNF-α. Moreover, SB203580 decreased the expression and activity of calpain-1, possibly related to the up-regulation of calpastatin. ACh significantly inhibited TNF-α-induced cell apoptosis, as evidenced by decreases in caspase-3 cleavage, p38-MAPK phosphorylation, and calpain-1 expression and activity as well as increases in calpastatin expression. These beneficial effects of ACh were abolished by atropine or M2AChR siRNA. Conclusion: Our results suggest that ACh ameliorated TNF-α-induced calpain activation by decreasing p38-MAPK phosphorylation and enhancing calpastatin expression, indicating that calpain may be an important link between inflammatory factors and myocardial cell apoptosis.

  15. Restriction fragment length polymorphism in calpain (CAPN2 gene in crossbred cattle

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Cassiano Lara

    2012-12-01

    Full Text Available With advances in molecular genetics have been possible to predict the genetic value of the animal, in particular its potential to transmit desired characters to their offspring, including characters difficult to evaluate or with low heritability, as is the case of the meat tenderization. It is known that Bos taurus indicus features differences in meat tenderization, being assigned this variability to their lowest proteolysis post-mortem, as result of high activity of calpastatin. This inhibitor decreases the activity of calpain, which are the enzymes responsible for the degradation of muscle fibers during the maturation of the meat. Moreover, there were previously observed differences in the frequencies of allele A of calpain among European breeds (Hereford, Aberdeen Angus and Holstein and Bos taurus indicus (Gir, Guzerá and Nelore. This variability has been related to tenderness of meat, as cattle with Bos taurus taurus origin have more tender meat than Bos taurus indicus, showing small values of shear force. One explanation is that the Capn2A product could confer greater proteolytic activity than the encoded by the allele Capn2B. If allele A is associated with tender meat, it will be possible the early identification of the animals that have the potential to produce meat with qualities that attend the needs of the consumer market, in order to add economic value to the final product of the animal production chain. For this reason, biochemical and genetic studies related to calpain and calpastatin systems have been considered promising for the clarification of the physiological changes that occur in muscle structure during the period post-mortem, whose results have contributed to the improvement of meat quality. The objectives of this study were to investigate the RFLP in calpain (Capn2 gene and its relation with meat tenderization in 252 crossbred (Bos taurus taurus x Bos taurus indicus. The analyses were carried through by PCR-RFLP technique

  16. Calpain 3 Expression Pattern during Gastrocnemius Muscle Atrophy and Regeneration Following Sciatic Nerve Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ronghua Wu

    2015-11-01

    Full Text Available Calpain 3 (CAPN3, also known as p94, is a skeletal muscle-specific member of the calpain family that is involved in muscular dystrophy; however, the roles of CAPN3 in muscular atrophy and regeneration are yet to be understood. In the present study, we attempted to explain the effect of CAPN3 in muscle atrophy by evaluating CAPN3 expression in rat gastrocnemius muscle following reversible sciatic nerve injury. After nerve injury, the wet weight ratio and cross sectional area (CSA of gastrocnemius muscle were decreased gradually from 1–14 days and then recovery from 14–28 days. The active form of CAPN3 (~62 kDa protein decreased slightly on day 3 and then increased from day 7 to 14 before a decrease from day 14 to 28. The result of linear correlation analysis showed that expression of the active CAPN3 protein level was negatively correlated with muscle wet weight ratio. CAPN3 knockdown by short interfering RNA (siRNA injection improved muscle recovery on days 7 and 14 after injury as compared to that observed with control siRNA treatment. Depletion of CAPN3 gene expression could promote myoblast differentiation in L6 cells. Based on these findings, we conclude that the expression pattern of the active CAPN3 protein is linked to muscle atrophy and regeneration following denervation: its upregulation during early stages may promote satellite cell renewal by inhibiting differentiation, whereas in later stages, CAPN3 expression may be downregulated to stimulate myogenic differentiation and enhance recovery. These results provide a novel mechanistic insight into the role of CAPN3 protein in muscle regeneration after peripheral nerve injury.

  17. In Silico Affinity Profiling of Neuroactive Polyphenols for Post-Traumatic Calpain Inactivation: A Molecular Docking and Atomistic Simulation Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2014-12-01

    Full Text Available Calcium-activated nonlysosomal neutral proteases, calpains, are believed to be early mediators of neuronal damage associated with neuron death and axonal degeneration after traumatic neural injuries. In this study, a library of biologically active small molecular weight calpain inhibitors was used for model validation and inhibition site recognition. Subsequently, two natural neuroactive polyphenols, curcumin and quercetin, were tested for their sensitivity and activity towards calpain’s proteolytic sequence and compared with the known calpain inhibitors via detailed molecular mechanics (MM, molecular dynamics (MD, and docking simulations. The MM and MD energy profiles (SJA6017 < AK275 < AK295 < PD151746 < quercetin < leupeptin < PD150606 < curcumin < ALLN < ALLM < MDL-28170 < calpeptin and the docking analysis (AK275 < AK295 < PD151746 < ALLN < PD150606 < curcumin < leupeptin < quercetin < calpeptin < SJA6017 < MDL-28170 < ALLM demonstrated that polyphenols conferred comparable calpain inhibition profiling. The modeling paradigm used in this study provides the first detailed account of corroboration of enzyme inhibition efficacy of calpain inhibitors and the respective calpain–calpain inhibitor molecular complexes’ energetic landscape and in addition stimulates the polyphenol bioactive paradigm for post-SCI intervention with implications reaching to experimental in vitro, in cyto, and in vivo studies.

  18. Identification of different domains of calpain and calpastatin from chicken blood and their role in post-mortem aging of meat during holding at refrigeration temperatures.

    Science.gov (United States)

    Biswas, A K; Tandon, S; Beura, C K

    2016-06-01

    The aim of this study was to develop a simple, specific and rapid analytical method for accurate identification of calpain and calpastatin from chicken blood and muscle samples. The method is based on liquid-liquid extraction technique followed by casein Zymography detection. The target compounds were extracted from blood and meat samples by tris buffer, and purified and separated on anion exchange chromatography. It has been observed that buffer (pH 6.7) containing 50 mM tris-base appears to be excellent extractant as activity of analytes was maximum for all samples. The concentrations of μ-, m-calpain and calpastatin detected in the extracts of blood, breast and thigh samples were 0.28-0.55, 1.91-2.05 and 1.38-1.52 Unit/g, respectively. For robustness, the analytical method was applied to determine the activity of calpains (μ and m) in eighty postmortem muscle samples. It has been observed that μ-calpain activity in breast and thigh muscles declined very rapidly at 48 h and 24 h, respectively while activity of m-calpain remained stable. Shear force values were also declined with the increase of post-mortem aging showing the presence of ample tenderness of breast and thigh muscles. Finally, it is concluded that the method standardized for the detection of calpain and calpastatin has the potential to be applied to identify post-mortem aging of chicken meat samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of nutrient restriction and re-feeding on calpain family genes in skeletal muscle of channel catfish (Ictalurus punctatus.

    Directory of Open Access Journals (Sweden)

    Elena Preziosa

    Full Text Available BACKGROUND: Calpains, a superfamily of intracellular calcium-dependent cysteine proteases, are involved in the cytoskeletal remodeling and wasting of skeletal muscle. Calpains are generated as inactive proenzymes which are activated by N-terminal autolysis induced by calcium-ions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we characterized the full-length cDNA sequences of three calpain genes, clpn1, clpn2, and clpn3 in channel catfish, and assessed the effect of nutrient restriction and subsequent re-feeding on the expression of these genes in skeletal muscle. The clpn1 cDNA sequence encodes a protein of 704 amino acids, Clpn2 of 696 amino acids, and Clpn3 of 741 amino acids. Phylogenetic analysis of deduced amino acid sequences indicate that catfish Clpn1 and Clpn2 share a sequence similarity of 61%; catfish Clpn1 and Clpn3 of 48%, and Clpn2 and Clpn3 of only 45%. The domain structure architectures of all three calpain genes in channel catfish are similar to those of other vertebrates, further supported by strong bootstrap values during phylogenetic analyses. Starvation of channel catfish (average weight, 15-20 g for 35 days influenced the expression of clpn1 (2.3-fold decrease, P<0.05, clpn2 (1.3-fold increase, P<0.05, and clpn3 (13.0-fold decrease, P<0.05, whereas the subsequent refeeding did not change the expression of these genes as measured by quantitative real-time PCR analysis. Calpain catalytic activity in channel catfish skeletal muscle showed significant differences only during the starvation period, with a 1.2- and 1.4- fold increase (P<0.01 after 17 and 35 days of starvation, respectively. CONCLUSION/SIGNIFICANCE: We have assessed that fasting and refeeding may provide a suitable experimental model to provide us insight into the role of calpains during fish muscle atrophy and how they respond to changes in nutrient supply.

  20. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity

    Science.gov (United States)

    Guo, Yiqi; Audry, Magali; Ciancanelli, Michael; Alsina, Laia; Azevedo, Joana; Herman, Melina; Anguiano, Esperanza; Sancho-Shimizu, Vanessa; Lorenzo, Lazaro; Pauwels, Elodie; Philippe, Paul Bastard; Pérez de Diego, Rebeca; Cardon, Annabelle; Vogt, Guillaume; Picard, Capucine; Andrianirina, Zafitsara Zo; Rozenberg, Flore; Lebon, Pierre; Plancoulaine, Sabine; Tardieu, Marc; Valérie Doireau; Jouanguy, Emmanuelle; Chaussabel, Damien; Geissmann, Frederic; Abel, Laurent

    2011-01-01

    Autosomal dominant TLR3 deficiency has been identified as a genetic etiology of childhood herpes simplex virus 1 (HSV-1) encephalitis (HSE). This defect is partial, as it results in impaired, but not abolished induction of IFN-β and -λ in fibroblasts in response to TLR3 stimulation. The apparently normal resistance of these patients to other infections, viral illnesses in particular, may thus result from residual TLR3 responses. We report here an autosomal recessive form of complete TLR3 deficiency in a young man who developed HSE in childhood but remained normally resistant to other infections. This patient is compound heterozygous for two loss-of-function TLR3 alleles, resulting in an absence of response to TLR3 activation by polyinosinic-polycytidylic acid (poly(I:C)) and related agonists in his fibroblasts. Moreover, upon infection of the patient’s fibroblasts with HSV-1, the impairment of IFN-β and -λ production resulted in high levels of viral replication and cell death. In contrast, the patient’s peripheral blood mononuclear cells responded normally to poly(I:C) and to all viruses tested, including HSV-1. Consistently, various TLR3-deficient leukocytes from the patient, including CD14+ and/or CD16+ monocytes, plasmacytoid dendritic cells, and in vitro derived monocyte-derived macrophages, responded normally to both poly(I:C) and HSV-1, with the induction of antiviral IFN production. These findings identify a new genetic etiology for childhood HSE, indicating that TLR3-mediated immunity is essential for protective immunity to HSV-1 in the central nervous system (CNS) during primary infection in childhood, in at least some patients. They also indicate that human TLR3 is largely redundant for responses to double-stranded RNA and HSV-1 in various leukocytes, probably accounting for the redundancy of TLR3 for host defense against viruses, including HSV-1, outside the CNS. PMID:21911422

  1. Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Vissing, K.; Overgaard, K.; Nedergaard, A.

    2008-01-01

    , and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified...... for muscle Ca2+-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P creatine kinase and myoglobin were all attenuated after the repeated...... not change at any specific time point post-exercise for either intervention. Our mRNA results suggest a regulation on the calpain-calpastatin expression response to muscle damaging eccentric exercise, but not concentric exercise. Although a repeated bout effect was demonstrated in terms of muscle function...

  2. Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain.

    Science.gov (United States)

    Sundaramoorthy, Pasupathi; Sim, Jae Jun; Jang, Yeong-Su; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Mander, Poonam; Chul, Oh Byung; Shim, Won-Sik; Oh, Seung Hyun; Nam, Ky-Youb; Kim, Hwan Mook

    2015-01-01

    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.

  3. Generation and Characterization of dickkopf3 Mutant Mice

    Science.gov (United States)

    del Barco Barrantes, Ivan; Montero-Pedrazuela, Ana; Guadaño-Ferraz, Ana; Obregon, Maria-Jesus; Martinez de Mena, Raquel; Gailus-Durner, Valérie; Fuchs, Helmut; Franz, Tobias J.; Kalaydjiev, Svetoslav; Klempt, Martina; Hölter, Sabine; Rathkolb, Birgit; Reinhard, Claudia; Morreale de Escobar, Gabriella; Bernal, Juan; Busch, Dirk H.; Wurst, Wolfgang; Wolf, Eckhard; Schulz, Holger; Shtrom, Svetlana; Greiner, Erich; Hrabé de Angelis, Martin; Westphal, Heiner; Niehrs, Christof

    2006-01-01

    dickkopf (dkk) genes encode a small family of secreted Wnt antagonists, except for dkk3, which is divergent and whose function is poorly understood. Here, we describe the generation and characterization of dkk3 mutant mice. dkk3-deficient mice are viable and fertile. Phenotypic analysis shows no major alterations in organ morphology, physiology, and most clinical chemistry parameters. Since Dkk3 was proposed to function as thyroid hormone binding protein, we have analyzed deiodinase activities, as well as thyroid hormone levels. Mutant mice are euthyroid, and the data do not support a relationship of dkk3 with thyroid hormone metabolism. Altered phenotypes in dkk3 mutant mice were observed in the frequency of NK cells, immunoglobulin M, hemoglobin, and hematocrit levels, as well as lung ventilation. Furthermore, dkk3-deficient mice display hyperactivity. PMID:16508007

  4. Features of Immune and Metabolic Changes in patients with Combined Endocrine Pathology and Vitamin D3 Deficiency

    Directory of Open Access Journals (Sweden)

    Yu.I. Komisarenko

    2014-06-01

    Methods. The examined patients with DM type 1 and type 2 combined with autoimmune thyroiditis had reduced levels of D3 vitamin. They were divided into two groups of 28 and 30 patients respectively. All patients with autoimmune thyroiditis had hypothyroidism. The levels of Th1-cytokine profile (IFN-γ, TNF-α, IL-2, IL-6, IL-12, Th2-profile (IL-4, IL-5 and IL-10 and IL-17 were determined. The amount of vitamin D3 was assessed by the level of 25(OHD. Results. The patients with combined endocrine disorders — DM and autoimmune thyroiditis (with hypothyroidism secondary to vitamin D3 deficiency had a significant increase in the background concentration of Th1-cytokine profile (IFN-γ, TNF-α, IL-2, IL-6, IL-12 and a reduced cytokine concentrations of Th2-cytokine profile (IL-4, IL-5 as well as IL-10 and IL-17. Conclusions. The presence of two endocrine diseases and florid vitamin D3 deficiency leads to an imbalance in the immune status of patients, supports an autoimmune inflammatory process and contributes to the progression or advanced development of complications. Further research may confirm the need for the use of vitamin D3 for the prevention and treatment of multiple endocrinopathy to correct metabolic and immunological changes.

  5. Effects of an n-3-deficient diet on brain, retina, and liver fatty acyl composition in artificially reared rats.

    Science.gov (United States)

    Moriguchi, Toru; Lim, Sun-Young; Greiner, Rebecca; Lefkowitz, William; Loewke, James; Hoshiba, Junji; Salem, Norman

    2004-08-01

    Rat pups born to dams fed a diet with 3.1% of total fatty acids as alpha-linolenic acid (LNA) were fed, using an artificial rearing system, either an n-3-deficient (n-3-Def) or an n-3-adequate (n-3-Adq) diet. Both diets contained 17.1% linoleic acid, but the n-3-Adq diet also contained 3.1% LNA. The percentage of brain docosahexaenoic acid (DHA) continuously decreased (71%) with time over the 29 days of the experiment, with concomitant increases in docosapentaenoic acid (DPAn-6). In the retina, the percentage of DHA rose in the n-3-Adq group, with an apparent increased rate around the time of eye opening. However, there was a flat curve for the percentage of DHA in the n-3-Def group and a rising DPAn-6 with time. Liver DHA was highest at the time of birth in the n-3-Adq group but fell off somewhat over the course of 29 days. This decrease was more pronounced in the n-3-Def group, and the DPAn-6 rose considerably during the second half of the experiment. This method presents a first-generation model for n-3 deficiency that is more similar to the case of human nutrition than is the commonly employed two-generation model. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.

  6. Suppression of NHE1 by small interfering RNA inhibits HIF-1α-induced angiogenesis in vitro via modulation of calpain activity.

    Science.gov (United States)

    Mo, Xian-Gang; Chen, Qing-Wei; Li, Xing-Sheng; Zheng, Min-Ming; Ke, Da-Zhi; Deng, Wei; Li, Gui-Qiong; Jiang, Jin; Wu, Zhi-Qin; Wang, Li; Wang, Peng; Yang, Yan; Cao, Guang-Yi

    2011-03-01

    Hypoxia-inducible factor-1 (HIF-1) orchestrates angiogenesis under hypoxic conditions mainly due to increased expression of such target genes as vascular endothelial growth factor (VEGF). Na+/H+exchanger-1 (NHE1), a potential HIF target gene product, plays a pivotal role in proliferation, survival, migration, adhesion and so on. However, it is unknown whether NHE1 is involved in HIF-1α-induced angiogenesis. This present study demonstrated that the expression of NHE1 was much higher in human umbilical vein endothelial cells (HUVECs) infected with adenovirus encoding HIF-1α (rAd-HIF) than with vacuum adenovirus (vAd). HIF-1α also increased the expression of VEGF, the expression and activity of calpains, and the intracellular pH. Moreover, small interfering RNA targeting NHE1 (NHE1 siRNA) dramatically decreased the expression of NHE1 and thus lowered the intracellular pH, and it also attenuated the protein expression of calpain-2 but not calpain-1, resulting in the lower calpain activity. Furthermore, HIF-1α enhanced the proliferation, migration and Matrigel tube formation, which were inhibited by NHE1 siRNA. Finally, the inhibitory effect of NHE1 siRNA was reversed by VEGF and the reversibility of the later was abrogated by the calpain inhibitor ALLM. In conclusion, the findings have revealed that NHE1 might participate in HIF-1-induced angiogenesis due, at least in part, to the alteration of the calpain activity, suggesting that NHE1 as well as calpains might represent a potential target of controlling angiogenesis in response to the hypoxic stress under various pathological conditions. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Calpain-5 gene variants are associated with diastolic blood pressure and cholesterol levels

    Directory of Open Access Journals (Sweden)

    Morón Francisco J

    2007-01-01

    Full Text Available Abstract Background Genes implicated in common complex disorders such as obesity, type 2 diabetes mellitus (T2DM or cardiovascular diseases are not disease specific, since clinically related disorders also share genetic components. Cysteine protease Calpain 10 (CAPN10 has been associated with T2DM, hypertension, hypercholesterolemia, increased body mass index (BMI and polycystic ovary syndrome (PCOS, a reproductive disorder of women in which isunlin resistance seems to play a pathogenic role. The calpain 5 gene (CAPN5 encodes a protein homologue of CAPN10. CAPN5 has been previously associated with PCOS by our group. In this new study, we have analysed the association of four CAPN5 gene variants(rs948976A>G, rs4945140G>A, rs2233546C>T and rs2233549G>A with several cardiovascular risk factors related to metabolic syndrome in general population. Methods Anthropometric measurements, blood pressure, insulin, glucose and lipid profiles were determined in 606 individuals randomly chosen from a cross-sectional population-based epidemiological survey in the province of Segovia in Central Spain (Castille, recruited to investigate the prevalence of anthropometric and physiological parameters related to obesity and other components of the metabolic syndrome. Genotypes at the four polymorphic loci in CAPN5 gene were detected by polymerase chain reaction (PCR. Results Genotype association analysis was significant for BMI (p ≤ 0.041, diastolic blood pressure (p = 0.015 and HDL-cholesterol levels (p = 0.025. Different CAPN5 haplotypes were also associated with diastolic blood pressure (DBP (0.0005 ≤ p ≤ 0.006 and total cholesterol levels (0.001 ≤ p ≤ 0.029. In addition, the AACA haplotype, over-represented in obese individuals, is also more frequent in individuals with metabolic syndrome defined by ATPIII criteria (p = 0.029. Conclusion As its homologue CAPN10, CAPN5 seems to influence traits related to increased risk for cardiovascular diseases. Our

  8. Susceptibility of Phytomonas serpens to calpain inhibitors in vitro: interference on the proliferation, ultrastructure, cysteine peptidase expression and interaction with the invertebrate host

    Science.gov (United States)

    de Oliveira, Simone Santiago Carvalho; Gonçalves, Diego de Souza; Garcia-Gomes, Aline dos Santos; Gonçalves, Inês Correa; Seabra, Sergio Henrique; Menna-Barreto, Rubem Figueiredo; Lopes, Angela Hampshire de Carvalho Santos; D’Avila-Levy, Claudia Masini; dos Santos, André Luis Souza; Branquinha, Marta Helena

    2016-01-01

    A pleiotropic response to the calpain inhibitor MDL28170 was detected in the tomato parasite Phytomonas serpens. Ultrastructural studies revealed that MDL28170 caused mitochondrial swelling, shortening of flagellum and disruption of trans Golgi network. This effect was correlated to the inhibition in processing of cruzipain-like molecules, which presented an increase in expression paralleled by decreased proteolytic activity. Concomitantly, a calcium-dependent cysteine peptidase was detected in the parasite extract, the activity of which was repressed by pre-incubation of parasites with MDL28170. Flow cytometry and Western blotting analyses revealed the differential expression of calpain-like proteins (CALPs) in response to the pre-incubation of parasites with the MDL28170, and confocal fluorescence microscopy confirmed their surface location. The interaction of promastigotes with explanted salivary glands of the insect Oncopeltus fasciatus was reduced when parasites were pre-treated with MDL28170, which was correlated to reduced levels of surface cruzipain-like and gp63-like molecules. Treatment of parasites with anti-Drosophila melanogaster (Dm) calpain antibody also decreased the adhesion process. Additionally, parasites recovered from the interaction process presented higher levels of surface cruzipain-like and gp63-like molecules, with similar levels of CALPs cross-reactive to anti-Dm-calpain antibody. The results confirm the importance of exploring the use of calpain inhibitors in studying parasites’ physiology. PMID:27925020

  9. Preapoptotic protease calpain-2 is frequently suppressed in adult T-cell leukemia

    Science.gov (United States)

    Ishihara, Makoto; Araya, Natsumi; Sato, Tomoo; Tatsuguchi, Ayako; Saichi, Naomi; Utsunomiya, Atae; Nakamura, Yusuke; Nakagawa, Hidewaki; Yamano, Yoshihisa

    2013-01-01

    Adult T-cell leukemia (ATL) is one of the most aggressive hematologic malignancies caused by human T-lymphotropic virus type 1 (HTLV-1) infection. The prognosis of ATL is extremely poor; however, effective strategies for diagnosis and treatment have not been established. To identify novel therapeutic targets and diagnostic markers for ATL, we employed focused proteomic profiling of the CD4+CD25+CCR4+ T-cell subpopulation in which HTLV-1–infected cells were enriched. Comprehensive quantification of 14 064 peptides and subsequent 2-step statistical analysis using 29 cases (6 uninfected controls, 5 asymptomatic carriers, 9 HTLV-1–associated myelopathy/tropical spastic paraparesis patients, 9 ATL patients) identified 91 peptide determinants that statistically classified 4 clinical groups with an accuracy rate of 92.2% by cross-validation test. Among the identified 17 classifier proteins, α-II spectrin was drastically accumulated in infected T cells derived from ATL patients, whereas its digestive protease calpain-2 (CAN2) was significantly downregulated. Further cell cycle analysis and cell growth assay revealed that rescue of CAN2 activity by overexpressing constitutively active CAN2 (Δ19CAN2) could induce remarkable cell death on ATL cells accompanied by reduction of α-II spectrin. These results support that proteomic profiling of HTLV-1–infected T cells could provide potential diagnostic biomarkers and an attractive resource of therapeutic targets for ATL. PMID:23538341

  10. KERAGAMAN GEN CALPASTATIN, CALPAIN 3 DAN MYOSTATIN PADA DOMBA DI UP3 JONGGOL

    Directory of Open Access Journals (Sweden)

    Cece Sumantri

    2012-04-01

    Full Text Available The aim of this study was to identify the genetic polymorphisms of calpastatin (CAST, calpain 3 (CAPN3 and myostatin (MSTN on local sheep at Jonggol Animal Science Teaching and Research Unit (JASTRU. A total number of 294 blood samples were collected from JASTRU. The identification of polymorhism in CAST and CAPN3 genes performed by using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP while MSTN gene by using PCR-SSCP methods. The results showed that CAST|MspI, CAST|NcoI and CAPN3|MaeII loci were polymorphic, whereas The MSTN locus was monomorphic for G (1.0. The frequency of allele M (0.87 on the locus (CAST|MspI higher than the N allele (0.13. At locus CAST|NcoI, the frequency of allele M (0.96 higher than the N allele (0.04. At the CAPN3|MaeII, allele G (0.85 and allele T (0.15. Locus CAST|NcoI has higher observed heterozygosity (Ho = 0.92 compared to CAPN3|MaeII and CAST|MspI (Ho = 0.74-0.77, however has lower compared to CAPN3|MaeII and CAST|MspI in expected of heterozygosity (He = 0.08 vs 0.23-0.26 and in index fixation (Fis = -0.04 vs 0.03-0.12.

  11. Diets derived from maize monoculture cause maternal infanticides in the endangered European hamster due to a vitamin B3 deficiency.

    Science.gov (United States)

    Tissier, Mathilde L; Handrich, Yves; Dallongeville, Odeline; Robin, Jean-Patrice; Habold, Caroline

    2017-01-25

    From 1735 to 1940, maize-based diets led to the death of hundreds of thousands of people from pellagra, a complex disease caused by tryptophan and vitamin B3 deficiencies. The current cereal monoculture trend restricts farmland animals to similarly monotonous diets. However, few studies have distinguished the effects of crop nutritional properties on the reproduction of these species from those of other detrimental factors such as pesticide toxicity or agricultural ploughing. This study shows that maize-based diets cause high rates of maternal infanticides in the European hamster, a farmland species on the verge of extinction in Western Europe. Vitamin B3 supplementation is shown to effectively restore reproductive success in maize-fed females. This study pinpoints how nutritional deficiencies caused by maize monoculture could affect farmland animal reproduction and hence their fitness. © 2017 The Author(s).

  12. Chronic active Epstein–Barr virus infection as the initial symptom in a Janus kinase 3 deficiency child

    Science.gov (United States)

    Zhong, Linqing; Wang, Wei; Ma, Mingsheng; Gou, Lijuan; Tang, Xiaoyan; Song, Hongmei

    2017-01-01

    Abstract Rationale: With the progress of sequencing technology, an increasing number of atypical primary immunodeficiency (PID) patients have been discovered, including Janus kinase 3 (JAK3) gene deficiency. Patient concerns: We report a patient who presented with chronic active Epstein–Barr virus (CAEBV) infection but responded poorly to treatment with ganciclovir. Diagnoses: Next-generation sequencing (NGS) was performed, including all known PID genes, after which Sanger sequencing was performed to verify the results. Genetic analysis revealed that our patient had 2 novel compound heterozygous mutations of JAK3, a gene previously reported to cause a rare form of autosomal recessive severe combined immunodeficiency with recurrent infections. The p.H27Q mutation came from his father, while p. R222H from his mother. Thus, his diagnosis was corrected for JAK3-deficiency PID and CAEBV. Interventions: Maintenance treatment of subcutaneous injection of recombinant human interferon α-2a was given to our patient with 2 MU, 3 times a week. Outcomes: Interferon alpha was applied and the EBV infection was gradually controlled and his symptoms ameliorated remarkably. Our patient is in good health now and did not have relapses. Lessons: The diagnoses of PID should be taken into consideration when CAEBV patients respond poorly to conventional treatments. Good results of our patient indicate that interferon α-2a may be an alternative treatment for those who are unwilling to accept hematopoietic stem cell transplantation (HSCT) like our patient. Literature review identified 59 additional cases of JAK3 deficiency with various infections. PMID:29049190

  13. Concurrent calpain and caspase-3 mediated proteolysis of alpha II-spectrin and tau in rat brain after methamphetamine exposure: a similar profile to traumatic brain injury.

    Science.gov (United States)

    Warren, Matthew W; Kobeissy, Firas H; Liu, Ming Cheng; Hayes, Ronald L; Gold, Mark S; Wang, Kevin K W

    2005-12-05

    Neurotoxicity in rat cortex and hippocampus following acute methamphetamine administration was characterized and compared to changes following traumatic brain injury. Doses of 10, 20, and 40 mg/kg of methamphetamine produced significant increases in calpain- and caspase-cleaved alpha II-spectrin and tau protein fragments, suggesting cell injury or death. Changes in proteolytic products were significantly increased over vehicle controls. Use of fragment specific biomarkers detected prominent calpain-mediated protein fragments in the cortex and hippocampus while caspase-mediated protein fragments were also detected in the hippocampus. Remarkably, proteolytic product increases at the 40 mg/kg dose after 24 h were as high as those observed in experimental traumatic brain injury. Use of calpain and caspase proteolytic inhibitors may be useful in preventing methamphetamine-induced neurotoxicity.

  14. Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain.

    Directory of Open Access Journals (Sweden)

    Pasupathi Sundaramoorthy

    Full Text Available Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+ supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa, its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+ levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain in a dose-dependent manner. Phosphorylated FAK (p-FAK was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.

  15. Long-Term Follow-up of a Case with Proprotein Convertase 1/3 Deficiency: Transient Diabetes Mellitus with Intervening Diabetic Ketoacidosis During Growth Hormone Therapy.

    Science.gov (United States)

    Tuli, Gerdi; Tessaris, Daniele; Einaudi, Silvia; De Sanctis, Luisa; Matarazzo, Patrizia

    2017-09-01

    Proprotein convertase 1/3 (PC1/3) deficiency is a very rare disease characterized by severe intractable diarrhea in the first years of life, followed by obesity and several hormonal deficiencies later. Diabetes mellitus requiring insulin treatment and diabetic ketoacidosis have not been reported in this disorder. We herein present a girl with PC1/3 deficiency who has been followed from birth to 17 years of age. She developed deficiencies of all pituitary hormones over time as well as diabetes mellitus while receiving growth hormone (GH) therapy. She was complicated with diabetic ketoacidosis during dietary management of diabetes mellitus, thus insulin treatment was initiated. Insulin requirement to regulate hyperglycemia was short-lived. Repeat oral glucose tolerance test five years later was normal. The findings of this patient show that diabetes mellitus can develop at any time during follow-up of cases with proportein convertase 1/3 deficiency especially under GH therapy.

  16. C3 deficiency ameliorates the negative effects of irradiation of the young brain on hippocampal development and learning.

    Science.gov (United States)

    Kalm, Marie; Andreasson, Ulf; Björk-Eriksson, Thomas; Zetterberg, Henrik; Pekny, Milos; Blennow, Kaj; Pekna, Marcela; Blomgren, Klas

    2016-04-12

    Radiotherapy in the treatment of pediatric brain tumors is often associated with debilitating late-appearing adverse effects, such as intellectual impairment. Areas in the brain harboring stem cells are particularly sensitive to irradiation (IR) and loss of these cells may contribute to cognitive deficits. It has been demonstrated that IR-induced inflammation negatively affects neural progenitor differentiation. In this study, we used mice lacking the third complement component (C3-/-) to investigate the role of complement in a mouse model of IR-induced injury to the granule cell layer (GCL) of the hippocampus. C3-/- and wild type (WT) mice received a single, moderate dose of 8 Gy to the brain on postnatal day 10. The C3-/- mice displayed 55 % more microglia (Iba-1+) and a trend towards increase in proliferating cells in the GCL compared to WT mice 7 days after IR. Importantly, months after IR C3-/- mice made fewer errors than WT mice in a reversal learning test indicating better learning capacity in C3-/- mice after IR. Notably, months after IR C3-/- and WT mice had similar GCL volumes, survival of newborn cells (BrdU), microglia (Iba-1) and astrocyte (S100β) numbers in the GCL. In summary, our data show that the complement system contributes to IR-induced loss of proliferating cells and maladaptive inflammatory responses in the acute phase after IR, leading to impaired learning capacity in adulthood. Targeting the complement system is hence promising for future strategies to reduce the long-term adverse consequences of IR in the young brain.

  17. NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets

    Science.gov (United States)

    Hu, Changyun; Ding, Heyuan; Li, Yangyang; Pearson, James A.; Zhang, Xiaojun; Flavell, Richard A.; Wong, F. Susan; Wen, Li

    2015-01-01

    Studies in animal models and human subjects have shown that both innate and adaptive immunity contribute to the pathogenesis of type 1 diabetes (T1D). Whereas the role of TLR signaling pathways in T1D has been extensively studied, the contribution of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein (NLRP) 3 inflammasome pathway remains to be explored. In this study, we report that NLRP3 plays an important role in the development of T1D in the nonobese diabetic (NOD) mouse model. NLRP3 deficiency not only affected T-cell activation and Th1 differentiation, but also modulated pathogenic T-cell migration to the pancreatic islet. The presence of NLRP3 is critical for the expression of the chemokine receptors CCR5 and CXCR3 on T cells. More importantly, NLRP3 ablation reduced the expression of chemokine genes CCL5 and CXCL10 on pancreatic islet cells in an IRF-1–dependent manner. Our results suggest that molecules involved in chemotaxis, accompanied by the activation of the NLRP3 inflammasome, may be effective targets for the treatment of T1D. PMID:26305961

  18. Effects of a Caspase and a Calpain Inhibitor on Resting Energy Expenditures in Normal and Hypermetabolic Rats: a Pilot Study

    Science.gov (United States)

    VANA, P. G.; LAPORTE, H. M.; KENNEDY, R. H.; GAMELLI, R. L.; MAJETSCHAK, M.

    2017-01-01

    Summary Several diseases induce hypermetabolism, which is characterized by increases in resting energy expenditures (REE) and whole body protein loss. Exaggerated protein degradation is thought to be the driving force underlying this response. The effects of caspase and calpain inhibitors on REE in physiological and hypermetabolic conditions, however, are unknown. Thus, we studied whether MDL28170 (calpain inhibitor) or z-VAD-fmk (caspase inhibitor) affect REE under physiological conditions and during hypermetabolism post-burn. Rats were treated five times weekly and observed for 6 weeks. Treatment was started 2 h (early) or 48 h (late) after burn. In normal rats, MDL28170 transiently increased REE to 130 % of normal during week 2–4. z-VAD-fmk reduced REE by 20–25 % throughout the observation period. Within 14 days after burns, REE increased to 130±5 %. Whereas MDL28170/early treatment did not affect REE, MDL28170/late transiently increased REE to 180±10 % of normal by week 4 post-burn. In contrast, with z-VAD-fmk/early REE remained between 90–110 % of normal post-burn. z-VAD-fmk/late did not affect burn-induced increases in REE. These data suggest that caspase cascades contribute to the development of hypermetabolism and that burn-induced hypermetabolism can be pharmacologically modulated. Our data point towards caspase cascades as possible therapeutic targets to attenuate hypermetabolism after burns, and possibly in other catabolic disease processes. PMID:27070748

  19. Genetic disruption of calpain correlates with loss of membrane blebbing and differential expression of RhoGDI-1, cofilin and tropomyosin

    DEFF Research Database (Denmark)

    Larsen, Anna Karina; Lametsch, Rene; Elce, John S.

    2008-01-01

    blebbing was significantly reduced in calpain-knockout cells, and genetic rescue fully restored the wild-type phenotype in knockout cells. Proteomic comparison of wild-type and knockout cells identified decreased levels of RhoGDI-1 (Rho GDP-dissociation inhibitor) and cofilin 1, and increased levels...

  20. Human U87 astrocytoma cell invasion induced by interaction of βig-h3 with integrin α5β1 involves calpain-2.

    Directory of Open Access Journals (Sweden)

    Jie Ma

    Full Text Available It is known that βig-h3 is involved in the invasive process of many types of tumors, but its mechanism in glioma cells has not been fully clarified. Using immunofluorescent double-staining and confocal imaging analysis, and co-immunoprecipitation assays, we found that βig-h3 co-localized with integrin α5β1 in U87 cells. We sought to elucidate the function of this interaction by performing cell invasion assays and gelatin zymography experiments. We found that siRNA knockdowns of βig-h3 and calpain-2 impaired cell invasion and MMP secretion. Moreover, βig-h3, integrins and calpain-2 are known to be regulated by Ca(2+, and they are also involved in tumor cell invasion. Therefore, we further investigated if calpain-2 was relevant to βig-h3-integrin α5β1 interaction to affect U87 cell invasion. Our data showed that βig-h3 co-localized with integrin α5β1 to enhance the invasion of U87 cells, and that calpain-2, is involved in this process, acting as a downstream molecule.

  1. Calpastatin overexpression in the skeletal muscle of mice prevents clenbuterol-induced muscle hypertrophy and phenotypic shift.

    Science.gov (United States)

    Douillard, Aymeric; Galbes, Olivier; Begue, Gwenaelle; Rossano, Bernadette; Levin, John; Vernus, Barbara; Bonnieu, Anne; Candau, Robin; Py, Guillaume

    2012-04-01

    Accumulating evidence suggests that the calpain/calpastatin system is involved in skeletal muscle remodelling induced by β(2) -adrenoceptor agonist treatment. In addition to other pathways, the Akt/mammalian target of rapamycin (mTOR) pathway, controlling protein synthesis, and the calcium/calmodulin-dependent protein kinase 2 (CamK2) and AMP-activated protein kinase (AMPK) pathways, recently identified as calpain substrates, could be relevant in β(2) -adrenoceptor agonist-induced skeletal muscle remodelling. In the present study we investigated muscle hypertrophy and phenotypic shifts, as well as the molecular response of components of the Akt/mTOR pathway (i.e. Akt, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), ribosomal protein S6 (rpS6), CamK2 and AMPK), in response to calpastatin overexpression in the skeletal muscle of mice treated with 1 mg/kg per day clenbuterol for 21 days. Using gene electrotransfer of a calpastatin expression vector into the tibialis anterior of adult mice, we found that calpastatin overexpression attenuates muscle hypertrophy and phenotypic shifts induced by clenbuterol treatment. At the molecular level, calpastatin overexpression markedly decreased calpain activity, but was ineffective in altering the phosphorylation of Akt, 4E-BP1 and rpS6. In contrast, calpastatin overexpression increased the protein expression of both total AMPK and total CamK2. In conclusion, the results support the contention that the calpain/calpastatin system plays a crucial role in skeletal muscle hypertrophy and phenotypic shifts under chronic clenbuterol treatment, with AMPK and CamK2 probably playing a minor role. Moreover, the calpastatin-induced inhibition of hypertrophy under clenbuterol treatment was not related to a decreased mTOR-dependent initiation of protein translation. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.

  2. Increased fibrosis and interstitial fluid pressure in two different types of syngeneic murine carcinoma grown in integrin β3-subunit deficient mice.

    Science.gov (United States)

    Friman, Tomas; Gustafsson, Renata; Stuhr, Linda B; Chidiac, Jean; Heldin, Nils-Erik; Reed, Rolf K; Oldberg, Ake; Rubin, Kristofer

    2012-01-01

    Stroma properties affect carcinoma physiology and direct malignant cell development. Here we present data showing that α(V)β(3) expressed by stromal cells is involved in the control of interstitial fluid pressure (IFP), extracellular volume (ECV) and collagen scaffold architecture in experimental murine carcinoma. IFP was elevated and ECV lowered in syngeneic CT26 colon and LM3 mammary carcinomas grown in integrin β(3)-deficient compared to wild-type BALB/c mice. Integrin β(3)-deficiency had no effect on carcinoma growth rate or on vascular morphology and function. Analyses by electron microscopy of carcinomas from integrin β(3)-deficient mice revealed a coarser and denser collagen network compared to carcinomas in wild-type littermates. Collagen fibers were built from heterogeneous and thicker collagen fibrils in carcinomas from integrin β(3)-deficient mice. The fibrotic extracellular matrix (ECM) did not correlate with increased macrophage infiltration in integrin β(3)-deficient mice bearing CT26 tumors, indicating that the fibrotic phenotype was not mediated by increased inflammation. In conclusion, we report that integrin β(3)-deficiency in tumor stroma led to an elevated IFP and lowered ECV that correlated with a more fibrotic ECM, underlining the role of the collagen network for carcinoma physiology.

  3. Increased fibrosis and interstitial fluid pressure in two different types of syngeneic murine carcinoma grown in integrin β3-subunit deficient mice.

    Directory of Open Access Journals (Sweden)

    Tomas Friman

    Full Text Available Stroma properties affect carcinoma physiology and direct malignant cell development. Here we present data showing that α(Vβ(3 expressed by stromal cells is involved in the control of interstitial fluid pressure (IFP, extracellular volume (ECV and collagen scaffold architecture in experimental murine carcinoma. IFP was elevated and ECV lowered in syngeneic CT26 colon and LM3 mammary carcinomas grown in integrin β(3-deficient compared to wild-type BALB/c mice. Integrin β(3-deficiency had no effect on carcinoma growth rate or on vascular morphology and function. Analyses by electron microscopy of carcinomas from integrin β(3-deficient mice revealed a coarser and denser collagen network compared to carcinomas in wild-type littermates. Collagen fibers were built from heterogeneous and thicker collagen fibrils in carcinomas from integrin β(3-deficient mice. The fibrotic extracellular matrix (ECM did not correlate with increased macrophage infiltration in integrin β(3-deficient mice bearing CT26 tumors, indicating that the fibrotic phenotype was not mediated by increased inflammation. In conclusion, we report that integrin β(3-deficiency in tumor stroma led to an elevated IFP and lowered ECV that correlated with a more fibrotic ECM, underlining the role of the collagen network for carcinoma physiology.

  4. Reduced syncytin-1 expression in choriocarcinoma BeWo cells activates the calpain1-AIF-mediated apoptosis, implication for preeclampsia.

    Science.gov (United States)

    Huang, Qiang; Chen, Haibin; Wang, Fengchao; Brost, Brian C; Li, Jinping; Gao, Yu; Li, Zongfang; Gao, Ya; Jiang, Shi-Wen

    2014-08-01

    Placentas associated with preeclampsia are characterized by extensive apoptosis in trophoblast lineages. Syncytin-1 (HERVWE1) mediates the fusion of cytotrophoblasts to form syncytiotrophoblasts, which assume the placental barrier, fetal-maternal exchange and endocrine functions. While decreased syncytin-1 expression has been observed in preeclamptic placentas, it is not clear if this alteration is involved in trophoblast apoptosis. In the current study, we found that siRNA-mediated knockdown of syncytin-1 led to apoptosis in choriocarcinoma BeWo, a cell line of trophoblastic origin. Characterization of the apoptotic pathways indicated that this effect does not rely on the activation of caspases. Rather, decreased syncytin-1 levels activated the apoptosis inducing factor (AIF) apoptotic pathway by inducing the expression, cleavage, and nuclear translocation of AIF. Moreover, calpain1, the cysteine protease capable of cleaving AIF, was upregulated by syncytin-1 knockdown. Furthermore, treatment with calpain1 inhibitor MDL28170 effectively reversed AIF cleavage, AIF nuclear translocation, and cell apoptosis triggered by syncytin-1 downregulation, verifying the specific action of calpain1-AIF pathway in trophoblast apoptosis. We confirmed that preeclamptic placentas express lower levels of syncytin-1 than normal placentas, and observed an inverse correlation between syncytin-1 and AIF/calpain1 mRNA levels, a result consistent with the in vitro findings. Immunohistochemistry analyses indicated decreased syncytin-1 and increased AIF and calpain1 protein levels in apoptotic cells of preeclamptic placentas. These findings have for the first time revealed that decreased levels of syncytin-1 can trigger the AIF-mediated apoptosis pathway in BeWo cells. This novel mechanism may contribute to the structural and functional deficiencies of syncytium frequently observed in preeclamptic placentas.

  5. Reduced syncytin-1 expression in chriocarcinoma BeWo cells activates the calpain1-AIF-mediated apoptosis, implication for preeclampsia

    Science.gov (United States)

    Huang, Qiang; Chen, Haibin; Wang, Fengchao; Brost, Brian C.; Li, Jinping; Gao, Yu; Li, Zongfang; Gao, Ya; Jiang, Shi-Wen

    2015-01-01

    Placentas associated with preeclampsia are characterized by extensive apoptosis in trophoblast lineages. Syncytin-1 (HERVWE1) mediates the fusion of cytotrophoblasts to form syncytiotrophoblasts, which assume the placental barrier, fetal-maternal exchange and endocrine functions. While decreased syncytin-1 expression has been observed in preeclamptic placentas, it is not clear if this alteration is involved in trophoblast apoptosis. In the current study we found that siRNA-mediated knockdown of syncytin-1 led to apoptosis in choriocarcinoma BeWo, a cell line of trophoblastic origin. Characterization of the apoptotic pathways indicated that this effect does not rely on the activation of caspases. Rather, decreased syncytin-1 levels activated the AIF apoptotic pathway by inducing the expression, cleavage, and nuclear translocation of AIF. Moreover, calpain1, the cysteine protease capable of cleaving AIF, was upregulated by syncytin-1 knockdown. Furthermore, treatment with calpain1 inhibitor MDL28170 effectively reversed AIF cleavage, AIF nuclear translocation, and cell apoptosis triggered by syncytin-1 downregulation, verifying the specific action of calpain1-AIF pathway in trophoblast apoptosis. We confirmed that preeclamptic placentas express lower levels of syncytin-1 than normal placentas, and observed an inverse correlation between syncytin-1 and AIF/calpain1 mRNA levels, a result consistent with the in vitro findings. Immunohistochemistry analyses indicated decreased syncytin-1, increased AIF and calpain1 protein levels in apoptotic cells of preeclamptic placentas. These findings have for the first time revealed that decreased levels of syncytin-1 can trigger the AIF-mediated apoptosis pathway in BeWo cells. This novel mechanism may contribute to the structural and functional deficiencies of syncytium frequently observed in preeclamptic placentas. PMID:24413738

  6. Similar to spironolactone, oxymatrine is protective in aldosterone-induced cardiomyocyte injury via inhibition of calpain and apoptosis-inducing factor signaling.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Xiao

    Full Text Available Accumulating evidence indicates that oxymatrine (OMT possesses variously pharmacological properties, especially on the cardiovascular system. We previously demonstrated that activated calpain/apoptosis-inducing factor (AIF-mediated pathway was the key molecular mechanism in aldosterone (ALD induces cardiomyocytes apoptosis. In the present study, we extended the experimentation by investigating the effect of OMT on cardiomyocytes exposed to ALD, as compared to spironolactone (Spiro, a classical ALD receptor antagonist. Cardiomyocytes were pre-incubated with OMT, Spiro or vehicle for 1 h, and then, cardiomyocytes were exposed to ALD 24 h. The cell injury was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and lactate dehydrogenase (LDH leakage ratio. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL assay, annexin V/PI staining, and relative caspase-3 activity assay. Furthermore, expression of pro-apoptotic proteins including truncated Bid (tBid, calpain and AIF were evaluated by western blot analysis. ALD stimulation increased cardiomyocytes apoptosis, caspase-3 activity and protein expression of calpain, tBid and AIF in the cytosol (p<0.05. Pre-incubated with cardiomyocytes injury and increased caspase-3 activity were significantly attenuated (p<0.05. Furthermore, OMT suppressed ALD-induced high expression of calpain and AIF. And these effects of OMT could be comparable to Spiro. These findings indicated that OMT might be a potential cardioprotective-agent against excessive ALD-induced cardiotoxicity, at least in part, mediated through inhibition of calpain/AIF signaling.

  7. CD73 and AMPD3 deficiency enhance metabolic performance via erythrocyte ATP that decreases hemoglobin oxygen affinity

    Science.gov (United States)

    O’Brien III, William G.; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi

    2015-01-01

    Erythrocytes are the key target in 5′-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3−/− mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism. PMID:26249166

  8. Calpain and reactive oxygen species targets Bax for mitochondrial permeabilisation and caspase activation in zerumbone induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Praveen K Sobhan

    Full Text Available Fluorescent protein based signaling probes are emerging as valuable tools to study cell signaling because of their ability to provide spatio- temporal information in non invasive live cell mode. Previously, multiple fluorescent protein probes were employed to characterize key events of apoptosis in diverse experimental systems. We have employed a live cell image based approach to visualize the key events of apoptosis signaling induced by zerumbone, the active principle from ginger Zingiber zerumbet, in cancer cells that enabled us to analyze prominent apoptotic changes in a hierarchical manner with temporal resolution. Our studies substantiate that mitochondrial permeabilisation and cytochrome c dependent caspase activation dominate in zerumbone induced cell death. Bax activation, the essential and early event of cell death, is independently activated by reactive oxygen species as well as calpains. Zerumbone failed to induce apoptosis or mitochondrial permeabilisation in Bax knockout cells and over-expression of Bax enhanced cell death induced by zerumbone confirming the essential role of Bax for mitochondrial permeabilsation. Simultaneous inhibition of reactive oxygen species and calpain is required for preventing Bax activation and cell death. However, apoptosis induced by zerumbone was prevented in Bcl 2 and Bcl-XL over-expressing cells, whereas more protection was afforded by Bcl 2 specifically targeted to endoplasmic reticulum. Even though zerumbone treatment down-regulated survival proteins such as XIAP, Survivin and Akt, it failed to affect the pro-apoptotic proteins such as PUMA and BIM. Multiple normal diploid cell lines were employed to address cytotoxic activity of zerumbone and, in general, mammary epithelial cells, endothelial progenitor cells and smooth muscle cells were relatively resistant to zerumbone induced cell death with lesser ROS accumulation than cancer cells.

  9. Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development.

    Science.gov (United States)

    Liang, Zhe; Brown, Roy C; Fletcher, Jennifer C; Opsahl-Sorteberg, Hilde-Gunn

    2015-09-01

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental for development and growth, being essential to confer and maintain epidermal cell identity that allows development beyond the globular embryo stage. We show that DEK1 expression is highest in the actively dividing cells of seeds, meristems and vasculature. We further show that eliminating Arabidopsis DEK1 function leads to changes in developmental cues from the first zygotic division onward, altered microtubule patterns and misshapen cells, resulting in early embryo abortion. Expression of the embryonic marker genes WOX2, ATML1, PIN4, WUS and STM, related to axis organization, cell identity and meristem functions, is also altered in dek1 embryos. By monitoring cell layer-specific DEK1 down-regulation, we show that L1- and 35S-induced down-regulation mainly affects stem cell functions, causing severe shoot apical meristem phenotypes. These results are consistent with a requirement for DEK1 to direct layer-specific cellular activities and set downstream developmental cues. Our data suggest that DEK1 may anchor cell wall positions and control cell division and differentiation, thereby balancing the plant's requirement to maintain totipotent stem cell reservoirs while simultaneously directing growth and organ formation. A role for DEK1 in regulating microtubule-orchestrated cell wall orientation during cell division can explain its effects on embryonic development, and suggests a more general function for calpains in microtubule organization in eukaryotic cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. A cardioprotective agent of a novel calpain inhibitor, SNJ-1945, exerts beta1 actions on left ventricular mechanical work and energetics.

    Science.gov (United States)

    Yoshikawa, Yoshiro; Zhang, Guo-Xing; Obata, Koji; Matsuyoshi, Hiroko; Asada, Keiji; Taniguchi, Shigeki; Takaki, Miyako

    2010-08-01

    We have previously shown that a newly developed calpain inhibitor, SNJ-1945 (SNJ), with good aqueous solubility prevents the heart from KCl arrest-reperfusion injury associated with the impairment of total Ca(2+) handling by inhibiting the proteolysis of alpha-fodrin as a cardioplegia. The aim of the present study was to investigate certain actions of this calpain inhibitor, SNJ, on left ventricular (LV) mechanical work and energetics in cross-circulated excised rat hearts undergoing blood perfusion with 40 microM SNJ. Mean end-systolic pressure at midrange LV volume and systolic pressure-volume area (PVA) at mLVV (a total mechanical energy/beat) were significantly increased by SNJ perfusion (P work and energetics mediated via beta(1)-adrenergic receptors associated with the enhancement of total Ca(2+) handling in excitation-contraction coupling and with unchanged contractile efficiency. In clinical settings, this pharmacological action of SNJ is beneficial as an additive agent for cardioplegia.

  11. Calpain- and caspase-mediated alphaII-spectrin and tau proteolysis in rat cerebrocortical neuronal cultures after ecstasy or methamphetamine exposure.

    Science.gov (United States)

    Warren, Matthew W; Zheng, Wenrong; Kobeissy, Firas H; Cheng Liu, Ming; Hayes, Ronald L; Gold, Mark S; Larner, Stephen F; Wang, Kevin K W

    2007-08-01

    Abuse of 3,4-methylenedioxymethamphetamine (MDMA or Ecstasy) and methamphetamine (Meth or Speed) is a growing international problem with an estimated 250 million users of psychoactive drugs worldwide. It is important to demonstrate and understand the mechanism of neurotoxicity so potential prevention and treatment therapies can be designed. In this study rat primary cerebrocortical neuron cultures were challenged with MDMA and Meth (1 or 2 mM) for 24 and 48 h and compared to the excitotoxin N-methyl-D-aspartate (NMDA). The neurotoxicity of these drugs, as assessed by microscopy, lactate dehydrogenase release and immunoblot, was shown to be both dose- and time-dependent. Immunoblot analysis using biomarkers of cell death showed significant proteolysis of both alphaII-spectrin and tau proteins. Breakdown products of alphaII-spectrin (SBDPs) of 150, 145, and 120 kDa and tau breakdown products (TBDPs) of 45, 32, 26, and 14 kDa were observed. The use of the protease inhibitors calpain inhibitor SJA6017 and caspase inhibitors z-VAD-fmk and Z-D-DCB, attenuated drug-induced alphaII-spectrin and tau proteolysis. The calpain inhibitor reduced the calpain-induced breakdown products SBDP145 and TBDP14, but there was an offset increase in the caspase-mediated breakdown products SBDP120 and TBDP45. The caspase inhibitors, on the other hand, decreased SBDP120 and TBDP45. These data suggest that both MDMA and Meth trigger concerted proteolytic attacks of the structural proteins by both calpain and caspase family of proteases. The ability of the protease inhibitors to reduce the damage caused by these drugs suggests that the treatment arsenal could include similar drugs as possible tools to combat the drug-induced neurotoxicity in vivo.

  12. [Analgesic effect of calpain inhibitor ALLN on the zymosan-induced paw inflammatory pain and its effect on the expression of cyclooxygenase-2 in the spinal dorsal horn].

    Science.gov (United States)

    Wang, Jing-Jie; Chen, Guang-Jun; Chen, Wen; Du, Jin; Luo, Ai-Lun; Huang, Yu-Guang

    2012-02-01

    To examine the analgesic effect of calpain inhibitor ALLN on the zymosan-induced paw inflammatory pain and its effect on the expression of cyclooxygenase-2 (COX-2) in the spinal dorsal horn. Forty-eight Sprague-Dawley rats were equally divided into three groups: control group, sham-operated group, and zymosan group. According to Meller's method, zymosan (1.25 mg) was injected intraplantarly to induce paw inflammation in zymosan group; an equal volume of PBS was administered in the sham-operated group. Mechanical withdrawal threshold (MWT) and maximum thickness of paw were tested or measured before and 0.5, 1, 2, 4, 8, and 24 hours after injection. All rats were killed at different occasions following surgery to examine calpain activity in the spinal dorsal horn with Western blot analysis. Another sixty-four Sprague-Dawley rats were divided into three groups: sham-operated group, zymosan-induced paw inflammation with intraperitoneal dimethyl sulphoxide (DMSO) treatment group, and zymosan-induced paw inflammation with intraperitoneal calpain inhibitor ALLN treatment group. MWT and maximum thickness of paw were tested or measured before and 0.5, 1, 2, 4, 8, and 24 hours after injection. All rats were killed at different occasions following surgery to examine the COX-2 expression in the spinal dorsal horn with Western blot analysis. MWT significantly decreased in the rats with zymosan-induced paw inflammation, while the maximum thickness of paw significantly increased, compared with control and sham-operated rats (P horn was dramatically activated after zymosan injection (P horn compared with DMSO treatment (P effective to attenuate zymosan-induced paw inflammatory pain. Calpain activation may be one aspect of the signaling cascade that increases the COX-2 expression in the spinal cord and contributes to mechanical hyperalgesia after peripheral inflammatory injury.

  13. FRET-FLIM investigation of PSD95-NMDA receptor interaction in dendritic spines; control by calpain, CaMKII and Src family kinase.

    Directory of Open Access Journals (Sweden)

    Kim Doré

    Full Text Available Little is known about the changes in protein interactions inside synapses during synaptic remodeling, as their live monitoring in spines has been limited. We used a FRET-FLIM approach in developing cultured rat hippocampal neurons expressing fluorescently tagged NMDA receptor (NMDAR and PSD95, two essential proteins in synaptic plasticity, to examine the regulation of their interaction. NMDAR stimulation caused a transient decrease in FRET between the NMDAR and PSD95 in spines of young and mature neurons. The activity of both CaMKII and calpain were essential for this effect in both developmental stages. Meanwhile, inhibition of Src family kinase (SFK had opposing impacts on this decrease in FRET in young versus mature neurons. Our data suggest concerted roles for CaMKII, SFK and calpain activity in regulating activity-dependent separation of PSD95 from GluN2A or GluN2B. Finally, we found that calpain inhibition reduced spine growth that was caused by NMDAR activity, supporting the hypothesis that PSD95-NMDAR separation is implicated in synaptic remodeling.

  14. A Functional Interplay between 5-Lipoxygenase and μ-Calpain Affects Survival and Cytokine Profile of Human Jurkat T Lymphocyte Exposed to Simulated Microgravity

    Directory of Open Access Journals (Sweden)

    Valeria Gasperi

    2014-01-01

    Full Text Available A growing body of evidence strongly indicates that both simulated and authentic weightlessness exert a broad range of effects on mammalian tissues and cells, including impairment of immune cell function and increased apoptotic death. We previously reported that microgravity-dependent activation of 5-lipoxygenase (5-LOX might play a central role in the initiation of apoptosis in human T lymphocytes, suggesting that the upregulation of this enzyme might be (at least in part responsible for immunodepression observed in astronauts during space flights. Herein, we supplement novel information about the molecular mechanisms underlying microgravity-triggered apoptotic cell death and immune system deregulation, demonstrating that under simulated microgravity human Jurkat T cells increase the content of cytosolic DNA fragments and cytochrome c (typical hallmarks of apoptosis and have an upregulated expression and activity of µ-calpain. These events were paralleled by the unbalance of interleukin- (IL- 2 and interferon- (INF- γ, anti- and proapoptotic cytokines, respectively, that seemed to be dependent on the functional interplay between 5-LOX and µ-calpain. Indeed, we report unprecedented evidence that 5-LOX inhibition reduced apoptotic death, restored the initial IL-2/INF-γ ratio, and more importantly reverted µ-calpain activation induced by simulated microgravity.

  15. Decreased calpain activity in chronic myeloid leukemia impairs apoptosis by increasing survivin in myeloid progenitors and xiap1 in differentiating granulocytes

    Science.gov (United States)

    Huang, Weiqi; Bei, Ling; Hjort, Elizabeth E.; Eklund, Elizabeth A.

    2017-01-01

    Chronic Myeloid Leukemia (CML) is characterized by translocations between chromosomes 9 and 22, resulting in expression of Bcr-abl oncogenes. Although the clinical course of CML was revolutionized by development of Bcr-abl-directed tyrosine kinase inhibitors (TKIs), CML is not cured by these agents. Specifically, the majority of subjects relapsed in clinical trials attempting TKI discontinuation, suggesting persistence of leukemia stem cells (LSCs) even in molecular remission. Identifying mechanisms of CML-LSC persistence may suggest rationale therapeutic targets to augment TKI efficacy and lead to cure. Apoptosis resistance is one proposed mechanism. In prior studies, we identified increased expression of Growth Arrest Specific 2 (Gas2; a Calpain inhibitor) in Bcr-abl+ bone marrow progenitor cells. A number of previously described Calpain substrates might influence apoptosis in CML, including βcatenin and the X-linked Inhibitor of Apoptosis Protein 1 (Xiap1). We previously found Gas2/Calpain dependent stabilization of βcatenin in CML, and increased expression of βcatenin target genes, including Survivin (also an IAP). In the current work, we investigate contributions of Survivin and Xiap1 to Fas-resistance in Bcr-abl+ bone marrow cells. Inhibitors of these proteins are currently in clinical trials for other malignancies, but a role for either IAP in CML-LSC persistence is unknown. PMID:28881589

  16. Changes of protein oxidation, calpain and cytoskeletal proteins (alpha tubulin and pNF-H) levels in rat brain after nerve agent poisoning.

    Science.gov (United States)

    RamaRao, Golime; Acharya, J N; Bhattacharya, B K

    2011-06-24

    Highly toxic organophosphorus (OP) nerve agents, sarin and soman act by inhibiting acetylcholinesterase (AChE) function at neuronal synapses and cause many toxic effects including death within minutes. The effect of nerve agents on protein oxidation, calpain, and cytoskeletal protein levels was not well known. In the present study we investigated these parameters after subcutaneous injection of sarin (120 μg/kg) and soman (80 μg/kg) in the rat brain. Results indicate that several rat brain proteins were intensely oxidized after nerve agent poisoning. Immunoreactivity levels of μ-calpain were significantly elevated in cerebral cortex and cerebellum regions of rat brain from 2.5 h to 30 days. Alpha tubulin levels reduced from 1 to 7 days in the supernatant and 1 to 3 days in the pellet fractions of cerebellum and cerebral cortex, where as phosphorylation of high molecular weight neurofilament (pNF-H) was increased significantly in nerve agent intoxicated rat brains as compared to control rats. AChE activity was inhibited up to 3 days after nerve agent exposure in plasma and brain. Results suggest that altered protein oxidation, calpain and cytoskeletal protein levels are due to multiple mechanisms of nerve agents actions and these changes might be involved in nerve agent induced complex neurotoxicity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Chronic administration of a leupeptin-derived calpain inhibitor fails to ameliorate severe muscle pathology in a canine model of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Martin K Childers

    2012-01-01

    Full Text Available Calpains likely play a role in the pathogenesis of Duchenne muscular dystrophy (DMD. Accordingly, calpain inhibition may provide therapeutic benefit to DMD patients. In the present study, we sought to measure benefit from administration of a novel calpain inhibitor, C101, in a canine muscular dystrophy model. Specifically, we tested the hypothesis that treatment with C101 mitigates progressive weakness and severe muscle pathology observed in young dogs with golden retriever muscular dystrophy (GRMD. Young (6 week-old GRMD dogs were treated daily with either C101 (17mg/kg twice daily oral dose, n=9 or placebo (vehicle only, n=7 for 8 weeks. A battery of functional tests, including tibiotarsal joint angle, muscle/fat composition, and pelvic limb muscle strength were performed at baseline and every two weeks during the 8-week study. Results indicate that C101-treated GRMD dogs maintained strength in their cranial pelvic limb muscles (tibiotarsal flexors while placebo-treated dogs progressively lost strength. However, concomitant improvement was not observed in posterior pelvic limb muscles (tibiotarsal extensors. C101 treatment did not mitigate force drop following repeated eccentric contractions and no improvement was seen in the development of joint contractures, lean muscle mass or muscle histopathology. Taken together, these data do not support the hypothesis that treatment with C101 mitigates progressive weakness or ameliorates severe muscle pathology observed in young dogs with GRMD.

  18. Calpain inhibitors and antioxidants act synergistically to prevent cell necrosis: effects of the novel dual inhibitors (cysteine protease inhibitor and antioxidant) BN 82204 and its pro-drug BN 82270.

    Science.gov (United States)

    Pignol, Bernadette; Auvin, Serge; Carré, Denis; Marin, Jean-Grégoire; Chabrier, Pierre-Etienne

    2006-08-01

    Cell death is a common feature observed in neurodegenerative disorders, and is often associated with calpain activation and overproduction of reactive oxygen species (ROS). This study investigated the use of calpain inhibitors and antioxidants in combination to protect cells against necrosis. Maitotoxin (MTX), which induces a massive influx of calcium, was used to provoke neuronal cell death. This toxin increased, in a concentration-dependent manner, both calpain activity and ROS formation. Calpain inhibitors or antioxidants inhibited MTX-induced necrosis only marginally (below 20%), whereas their association protected against cell death by 40-66% in a synergistic manner. BN 82204, which possesses both calpain-cathepsin L inhibitory and antioxidant properties, and its acetylated pro-drug BN 82270, totally protected cells at 100 microm. The pro-drug BN 82270, which had better cell penetration, was twice as effective as the active principle BN 82204 in protecting glioma C6 or neuroblastoma SHSY5Y cells against death. These results suggest the potential therapeutic relevance of using a single molecule with multiple activities (cysteine protease inhibitor/antioxidant), and warrant further in vivo investigations in models of neuronal disorders.

  19. Identification and association of the single nucleotide polymorphisms in calpain3 (CAPN3 gene with carcass traits in chickens

    Directory of Open Access Journals (Sweden)

    Du Hua-Rui

    2009-03-01

    Full Text Available Abstract Background The aim of this study is to screen single nucleotide polymorphisms (SNP of chicken Calpain3 (CAPN3 gene and to analyze the potential association between CAPN3 gene polymorphisms and carcass traits in chickens. We screened CAPN3 single nucleotide polymorphisms (SNP in 307 meat-type quality chicken from 5 commercial pure lines (S01, S02, S03, S05, and D99 and 4 native breeds from Guangdong Province (Huiyang Huxu chicken and Qingyuan Ma chicken and Sichuan Province (Caoke chicken and Shandi Black-bone chicken, China. Results Two SNPs (11818T>A and 12814T>G were detected by single strand conformation polymorphism (SSCP method and were verified by DNA sequencing. Association analysis showed that the 12814T>G genotypes were significantly associated with body weight (BW, carcass weight (CW, breast muscle weight (BMW, and leg muscle weight (LMW. Haplotypes constructed on the two SNPs (H1, TG; H2, TT; H3, AG; and H4, AT were associated with BW, CW (P P Conclusion We speculated that the CAPN3 gene was a major gene affecting chicken muscle growth and carcass traits or it was linked with the major gene(s. Diplotypes H1H2 and H2H2 might be advantageous for carcass traits.

  20. Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation.

    Directory of Open Access Journals (Sweden)

    Terry B Huff

    2011-03-01

    Full Text Available High-frequency electrical stimulation is becoming a promising therapy for neurological disorders, however the response of the central nervous system to stimulation remains poorly understood. The current work investigates the response of myelin to electrical stimulation by laser-scanning coherent anti-Stokes Raman scattering (CARS imaging of myelin in live spinal tissues in real time. Paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation. Retraction was seen to begin minutes after the onset of stimulation and continue for up to 10 min after stimulation was ceased, but was found to reverse after a 2 h recovery period. The myelin retraction resulted in exposure of Kv 1.2 potassium channels visualized by immunofluorescence. Accordingly, treating the stimulated tissue with a potassium channel blocker, 4-aminopyridine, led to the appearance of a shoulder peak in the compound action potential curve. Label-free CARS imaging of myelin coupled with multiphoton fluorescence imaging of immuno-labeled proteins at the nodes of Ranvier revealed that high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down.

  1. Chronic active Epstein-Barr virus infection as the initial symptom in a Janus kinase 3 deficiency child: Case report and literature review.

    Science.gov (United States)

    Zhong, Linqing; Wang, Wei; Ma, Mingsheng; Gou, Lijuan; Tang, Xiaoyan; Song, Hongmei

    2017-10-01

    With the progress of sequencing technology, an increasing number of atypical primary immunodeficiency (PID) patients have been discovered, including Janus kinase 3 (JAK3) gene deficiency. We report a patient who presented with chronic active Epstein-Barr virus (CAEBV) infection but responded poorly to treatment with ganciclovir. Next-generation sequencing (NGS) was performed, including all known PID genes, after which Sanger sequencing was performed to verify the results. Genetic analysis revealed that our patient had 2 novel compound heterozygous mutations of JAK3, a gene previously reported to cause a rare form of autosomal recessive severe combined immunodeficiency with recurrent infections. The p.H27Q mutation came from his father, while p. R222H from his mother. Thus, his diagnosis was corrected for JAK3-deficiency PID and CAEBV. Maintenance treatment of subcutaneous injection of recombinant human interferon α-2a was given to our patient with 2 MU, 3 times a week. Interferon alpha was applied and the EBV infection was gradually controlled and his symptoms ameliorated remarkably. Our patient is in good health now and did not have relapses. The diagnoses of PID should be taken into consideration when CAEBV patients respond poorly to conventional treatments. Good results of our patient indicate that interferon α-2a may be an alternative treatment for those who are unwilling to accept hematopoietic stem cell transplantation (HSCT) like our patient. Literature review identified 59 additional cases of JAK3 deficiency with various infections.

  2. Th2 Regulation of Viral Myocarditis in Mice: Different Roles for TLR3 versus TRIF in Progression to Chronic Disease

    Directory of Open Access Journals (Sweden)

    Eric D. Abston

    2012-01-01

    Full Text Available Viral infections are able to induce autoimmune inflammation in the heart. Here, we investigated the role of virus-activated Toll-like receptor (TLR3 and its adaptor TRIF on the development of autoimmune coxsackievirus B3 (CVB3 myocarditis in mice. Although TLR3- or TRIF-deficient mice developed similarly worse acute CVB3 myocarditis and viral replication compared to control mice, disease was significantly worse in TRIF compared to TLR3-deficient mice. Interestingly, TLR3-deficient mice developed an interleukin (IL-4-dominant T helper (Th2 response during acute CVB3 myocarditis with elevated markers of alternative activation, while TRIF-deficient mice elevated the Th2-associated cytokine IL-33. Treatment of TLR3-deficient mice with recombinant IL-33 improved heart function indicating that elevated IL-33 in the context of a classic Th2-driven response protects against autoimmune heart disease. We show for the first time that TLR3 versus TRIF deficiency results in different Th2 responses that uniquely influence the progression to chronic myocarditis.

  3. Calpain inhibition reduces amplitude and accelerates decay of the late sodium current in ventricular myocytes from dogs with chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Albertas Undrovinas

    Full Text Available Calpain is an intracellular Ca²⁺-activated protease that is involved in numerous Ca²⁺ dependent regulation of protein function in many cell types. This paper tests a hypothesis that calpains are involved in Ca²⁺-dependent increase of the late sodium current (INaL in failing heart. Chronic heart failure (HF was induced in 2 dogs by multiple coronary artery embolization. Using a conventional patch-clamp technique, the whole-cell INaL was recorded in enzymatically isolated ventricular cardiomyocytes (VCMs in which INaL was activated by the presence of a higher (1 μM intracellular [Ca²⁺] in the patch pipette. Cell suspensions were exposed to a cell- permeant calpain inhibitor MDL-28170 for 1-2 h before INaL recordings. The numerical excitation-contraction coupling (ECC model was used to evaluate electrophysiological effects of calpain inhibition in silico. MDL caused acceleration of INaL decay evaluated by the two-exponential fit (τ₁ = 42±3.0 ms τ₂ = 435±27 ms, n = 6, in MDL vs. τ₁ = 52±2.1 ms τ₂ = 605±26 control no vehicle, n = 11, and vs. τ₁ = 52±2.8 ms τ₂ = 583±37 ms n = 7, control with vehicle, P<0.05 ANOVA. MDL significantly reduced INaL density recorded at -30 mV (0.488±0.03, n = 12, in control no vehicle, 0.4502±0.0210, n = 9 in vehicle vs. 0.166±0.05pA/pF, n = 5, in MDL. Our measurements of current-voltage relationships demonstrated that the INaL density was decreased by MDL in a wide range of potentials, including that for the action potential plateau. At the same time the membrane potential dependency of the steady-state activation and inactivation remained unchanged in the MDL-treated VCMs. Our ECC model predicted that calpain inhibition greatly improves myocyte function by reducing the action potential duration and intracellular diastolic Ca²⁺ accumulation in the pulse train.Calpain inhibition reverses INaL changes in failing dog ventricular

  4. Distinct molecular regulation of glycogen synthase kinase-3alpha isozyme controlled by its N-terminal region: functional role in calcium/calpain signaling.

    Science.gov (United States)

    Azoulay-Alfaguter, Inbar; Yaffe, Yakey; Licht-Murava, Avital; Urbanska, Malgorzata; Jaworski, Jacek; Pietrokovski, Shmuel; Hirschberg, Koret; Eldar-Finkelman, Hagit

    2011-04-15

    Glycogen synthase kinase-3 (GSK-3) is expressed as two isozymes α and β. They share high similarity in their catalytic domains but differ in their N- and C-terminal regions, with GSK-3α having an extended glycine-rich N terminus. Here, we undertook live cell imaging combined with molecular and bioinformatic studies to understand the distinct functions of the GSK-3 isozymes focusing on GSK-3α N-terminal region. We found that unlike GSK-3β, which shuttles between the nucleus and cytoplasm, GSK-3α was excluded from the nucleus. Deletion of the N-terminal region of GSK-3α resulted in nuclear localization, and treatment with leptomycin B resulted in GSK-3α accumulation in the nucleus. GSK-3α rapidly accumulated in the nucleus in response to calcium or serum deprivation, and accumulation was strongly inhibited by the calpain inhibitor calpeptin. This nuclear accumulation was not mediated by cleavage of the N-terminal region or phosphorylation of GSK-3α. Rather, we show that calcium-induced GSK-3α nuclear accumulation was governed by GSK-3α binding with as yet unknown calpain-sensitive protein or proteins; this binding was mediated by the N-terminal region. Bioinformatic and experimental analyses indicated that nuclear exclusion of GSK-3α was likely an exclusive characteristic of mammalian GSK-3α. Finally, we show that nuclear localization of GSK-3α reduced the nuclear pool of β-catenin and its target cyclin D1. Taken together, these data suggest that the N-terminal region of GSK-3α is responsible for its nuclear exclusion and that binding with a calcium/calpain-sensitive product enables GSK-3α nuclear retention. We further uncovered a novel link between calcium and nuclear GSK-3α-mediated inhibition of the canonical Wnt/β-catenin pathway.

  5. Mechanical Stimulation of C2C12 Cells Increases m-Calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann; Karlsson, Anders H

    to stretch- or load-induced signaling is now beginning to be understood as a factor which affects gene sequences, protein synthesis and an increase in Ca2+ infux in myocytes. Evidence of the involvement of Ca2+ dependent activity in myoblast fusion, cell membrane and cytoskeleton component reorganization due......Abstract Mechanical Stimulation of C2C12 Cells Increases m-calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion A. Grossi, A. H. Karlsson, M. A. Lawson; Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark...

  6. Variation at the Calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle

    Directory of Open Access Journals (Sweden)

    Bunch Rowan J

    2008-07-01

    Full Text Available Abstract Background Quantitative Trait Loci (QTL affecting meat tenderness have been reported on Bovine chromosome 10. Here we examine variation at the Calpain 3 (CAPN3 gene in cattle, a gene located within the confidence interval of the QTL, and which is a positional candidate gene based on the biochemical activity of the protein. Results We identified single nucleotide polymorphisms (SNP in the genomic sequence of the CAPN3 gene and tested three of these in a sample of 2189 cattle. Of the three SNP genotyped, the CAPN3:c.1538+225G>T had the largest significant additive effect, with an allele substitution effect in the Brahman of α = -0.144 kg, SE = 0.060, P = 0.016, and the polymorphism explained 1.7% of the residual phenotypic variance in that sample of the breed. Significant haplotype substitution effects were found for all three breeds, the Brahman, the Belmont Red, and the Santa Gertrudis. For the common haplotype, the haplotype substitution effect in the Brahman was α = 0.169 kg, SE = 0.056, P = 0.003. The effect of this gene was compared to Calpastatin in the same sample. The SNP show negligible frequencies in taurine breeds and low to moderate minor allele frequencies in zebu or composite animals. Conclusion These associations confirm the location of a QTL for meat tenderness in this region of bovine chromosome 10. SNP in or near this gene may be responsible for part of the overall difference between taurine and zebu breeds in meat tenderness, and the greater variability in meat tenderness found in zebu and composite breeds. The evidence provided so far suggests that none of these tested SNP are causative mutations.

  7. Neuroprotection of vestibular sensory cells from gentamicin ototoxicity obtained using nitric oxide synthase inhibitors, reactive oxygen species scavengers, brain-derived neurotrophic factors and calpain inhibitors.

    Science.gov (United States)

    Takumida, Masaya; Anniko, Matti; Shimizu, Akira; Watanabe, Hiroshi

    2003-01-01

    In order to devise a new treatment for inner ear disorders, the efficacy of a nitric oxide synthase inhibitor (L-N(G)-nitroarginine methylester [L-NAME]), a radical scavenger (D-methionine), a neurotrophin (brain-derived neurotrophic factor [BDNF]) and a calpain inhibitor (leupeptin) for protection from hair cell damage was investigated. The effects of these drugs on gentamicin-induced production of nitric oxide (NO) and reactive oxygen species (ROS) were studied by means of the fluorescence indicators 4,5-diaminofluorescein diacetate and dihydrotetramethylrosamine. The effect on gentamicin-induced vestibular hair cell damage was examined by using an in vitro LIVE/DEAD system. L-NAME inhibited the production of NO, D-methionine and BDNF restricted the production of ROS and leupeptin inhibited neither NO nor ROS. All the drugs used limited the vestibular hair cell damage caused by gentamicin. The combinations L-NAME + BDNF, L-NAME + leupeptin and D-methionine + BDNF had a significantly stronger preventive effect on hair cell damage. It is suggested that combined treatment with a radical inhibitor and either a neurotrophin or calpain inhibitor may help to treat inner ear disorders more effectively.

  8. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

    DEFF Research Database (Denmark)

    Bang, Bo; Baadsgaard, Ole; Skov, Lone

    2004-01-01

    been demonstrated to play a role in the execution of programmed cell death induced by other stimuli, e.g. TNF-alpha. The purpose of the present study was therefore to investigate whether inhibitors of cysteine cathepsins and calpains could prevent UVB-induced apoptosis in HeLa cells and keratinocytes....... This was done by investigating the effect of the irreversible cysteine protease inhibitor zFA-fmk, the cathepsin B inhibitor CA-074-Me and the calpain inhibitor ALLN on the viability of UVB-irradiated human keratinocytes and HeLa cells. At concentrations of 10 microM and above zVAD-fmk conferred partial dose......-dependent protection against UVB-induced apoptosis in HeLa cells and keratinocytes. Moreover, caspase-3 activity was completely blocked at zVAD-fmk concentrations of 1 microM in HeLa cells. This indicates that caspase-independent mechanisms could be involved in UVB-induced apoptosis. However, the protease inhibitors z...

  9. Comparison of protein degradation, protein oxidation, and μ-calpain activation between pale, soft, and exudative and red, firm, and nonexudative pork during postmortem aging.

    Science.gov (United States)

    Yin, Y; Zhang, W G; Zhou, G H; Guo, B

    2014-08-01

    The objective of this study was to investigate the differences in protein modifications between pale, soft, and exudative (PSE) and red, firm, and nonexudative (RFN) pork during postmortem (PM) aging. Longissimus dorsi (LD) including 8 PSE and 8 RFN muscles were individually removed from 16 carcasses. These 16 LD muscles were vacuum packaged at 24 h after slaughter and stored at 4°C for 1, 3, and 5 d. The centrifugation loss, drip loss, color, protein solubility, protein oxidation, protein degradation including desmin, troponin T, and integrin, and μ-calpain activation were determined. The pH of PSE samples was significantly lower than that of RFN samples at both 1 and 24 h PM (P 0.05). In addition, PSE pork presented a lower solubility of sarcoplasmic protein, myofibrillar protein, and total protein than RFN pork except the solubility of myofibrillar protein at d 1 (P degradation products of integrin were detected in PSE pork compared to that of RFN pork at d 1 (P Red, firm, and nonexudative pork presented lower intensity of intact 80 kDa calpain and greater intensity of autolyzed 76 kDa product compared to PSE pork (P degradation including desmin and integrin, and the level of protein solubility in PSE pork could contribute to its low water holding capacity during PM storage.

  10. Variants within the calpain-10 gene on chromosome 2q37 (NIDDM1) and relationships to type 2 diabetes, insulin resistance, and impaired acute insulin secretion among Scandinavian Caucasians

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Urhammer, Søren A; Berglund, Lars Erik

    2002-01-01

    Variations in the calpain-10 gene (CAPN10) have been identified among Mexican-Americans, and an at-risk haplotype combination (112/121) defined by three polymorphisms, UCSNP-43, -19, and -63, confers increased risk of type 2 diabetes. Here we examine the three polymorphisms in 1,594 Scandinavian ...

  11. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants.

    Science.gov (United States)

    Zhuo, Chunliu; Wang, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-06-14

    Plasma membrane intrinsic proteins (PIPs), which belong to aquaporins (AQPs) superfamily, are subdivided into two groups, PIP1 and PIP2, based on sequence similarity. Several PIP2s function as water channels, while PIP1s have low or no water channel activity, but have a role in water permeability through interacting with PIP2. A cold responsive PIP2 named as MfPIP2-7 was isolated from Medicago falcata (hereafter falcata), a forage legume with great cold tolerance, and transgenic tobacco plants overexpressing MfPIP2-7 were analyzed in tolerance to multiple stresses including freezing, chilling, and nitrate reduction in this study. MfPIP2-7 transcript was induced by 4 to 12 h of cold treatment and 2 h of abscisic acid (ABA) treatment. Pretreatment with inhibitor of ABA synthesis blocked the cold induced MfPIP2-7 transcript, indicating that ABA was involved in cold induced transcription of MfPIP2-7 in falcata. Overexpression of MfPIP2-7 resulted in enhanced tolerance to freezing, chilling and NO3 (-) deficiency in transgenic tobacco (Nicotiana tabacum L.) plants as compared with the wild type. Moreover, MfPIP2-7 was demonstrated to facilitate H2O2 diffusion in yeast. Higher transcript levels of several stress responsive genes, such as NtERD10B, NtERD10C, NtDREB1, and 2, and nitrate reductase (NR) encoding genes (NtNIA1, and NtNIA2) were observed in transgenic plants as compared with the wild type with dependence upon H2O2. In addition, NR activity was increased in transgenic plants, which led to alterations in free amino acid components and concentrations. The results suggest that MfPIP2-7 plays an important role in plant tolerance to freezing, chilling, and NO3 (-) deficiency by promoted H2O2 diffusion that in turn up-regulates expression of NIAs and multiple stress responsive genes.

  12. Effects of polymorphisms in the calpastatin and μ-calpain genes on meat tenderness in 3 French beef breeds.

    Science.gov (United States)

    Allais, S; Journaux, L; Levéziel, H; Payet-Duprat, N; Raynaud, P; Hocquette, J F; Lepetit, J; Rousset, S; Denoyelle, C; Bernard-Capel, C; Renand, G

    2011-01-01

    The objectives of the study were to evaluate allelic frequencies and to test the association of polymorphisms in the calpastatin (CAST) and µ-calpain (CAPN1) genes with meat tenderness in 3 French beef breeds. A total of 1,114 Charolais, 1,254 Limousin, and 981 Blonde d'Aquitaine purebred young bulls were genotyped for 3 SNP in the CAST gene and 4 SNP in the CAPN1 gene. Two of these markers, 1 in each gene, can be found in Australian or American commercial genetic tests. Others have previously been reported in American studies or are newly evidenced SNP. The quantitative traits studied were Warner-Bratzler shear force and a tenderness score evaluated by trained sensory panels. All the SNP were informative in the 3 breeds. Associations of individual markers or haplotypes with traits were analyzed. The results differed in the 3 breeds. The G allele of a CAST marker (position 97574679 on Btau4.0) was found to exert a significant effect on the shear force (+0.18 phenotypic SD; RSD) and tenderness score (-0.22 RSD) in the Blonde d'Aquitaine breed. In the same breed, this marker was associated with another CAST SNP (position 97576054 on Btau4.0) such that the GA haplotype appeared to be associated with tougher meat. Two CAPN1 markers (positions 45221250 and 45241089 on Btau4.0) had a significant effect on both traits in the Charolais breed (from |0.11| to |0.25| RSD). In the same breed, these markers were associated with another CAPN1 SNP (position 45219395 on Btau4.0) such that the ACA and AGG haplotypes appeared to be associated with a tender meat and a tougher meat, respectively. Consequently, the present results indicate that the effects of the markers studied are breed-specific and cannot be extended to all Bos taurus breeds. Further studies are also required to identify other more appropriate markers for French beef breeds.

  13. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle.

    Science.gov (United States)

    Goonasekera, Sanjeewa A; Lam, Chi K; Millay, Douglas P; Sargent, Michelle A; Hajjar, Roger J; Kranias, Evangelia G; Molkentin, Jeffery D

    2011-03-01

    Muscular dystrophies (MDs) comprise a group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. The primary defect common to most MDs involves disruption of the dystrophin-glycoprotein complex (DGC). This leads to sarcolemmal instability and Ca(2+) influx, inducing cellular necrosis. Here we have shown that the dystrophic phenotype observed in δ-sarcoglycan–null (Sgcd(–/–)) mice and dystrophin mutant mdx mice is dramatically improved by skeletal muscle–specific overexpression of sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA1). Rates of myofiber central nucleation, tissue fibrosis, and serum creatine kinase levels were dramatically reduced in Sgcd(–/–) and mdx mice with the SERCA1 transgene, which also rescued the loss of exercise capacity in Sgcd(–/–) mice. Adeno-associated virus–SERCA2a (AAV-SERCA2a) gene therapy in the gastrocnemius muscle of Sgcd(–/–) mice mitigated dystrophic disease. SERCA1 overexpression reversed a defect in sarcoplasmic reticulum Ca(2+) reuptake that characterizes dystrophic myofibers and reduced total cytosolic Ca(2+). Further, SERCA1 overexpression almost completely rescued the dystrophic phenotype in a mouse model of MD driven solely by Ca(2+) influx. Mitochondria isolated from the muscle of SERCA1-Sgcd(–/–) mice were no longer swollen and calpain activation was reduced, suggesting protection from Ca(2+)-driven necrosis. Our results suggest a novel therapeutic approach using SERCA1 to abrogate the altered intracellular Ca(2+) levels that underlie most forms of MD.

  14. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy.

    Science.gov (United States)

    Yang, Pei-Ming; Tseng, Ho-Hsing; Peng, Chih-Wen; Chen, Wen-Shu; Chiu, Shu-Jun

    2012-02-01

    The outcome of producing apoptotic defects in cancer cells is the primary obstacle that limits the therapeutic efficacy of anticancer agents, and hence the development of novel agents targeting novel non-canonical cell death pathways has become an imperative mission for clinical research. Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid commonly found in fruits and vegetables. In this study, we investigated the potential anticancer effects of fisetin on breast cancer cells. The result showed fisetin induced higher cytotoxicity in human breast cancer MCF-7 than in MDA-MB-231 cells otherwise it did not exert any detectable cytotoxicity in non-tumorigenic MCF-10A cells. We found fisetin can trigger a novel form of atypical apoptosis in caspase-3-deficient MCF-7 cells, which was characterized by several apoptotic features, including plasma membrane rupture, mitochondrial depolarization, activation of caspase-7, -8 and -9, and PARP cleavage; however, neither DNA fragmentation and phosphotidylserine (PS) externalization was observed. Although p53 was also activated by fisetin, the fisetin-induced apoptosis was not rescued by the p53 inhibitor pifithrin-α. In contrast, the fisetin-induced apoptosis was abrogated by pan-caspase inhibitor z-VAD-fmk. Furthermore, inhibition of autophagy by fisetin was shown as additional route to prompt anticancer activity in MCF-7 cells. These data allow us to propose that fisetin appears as a new potential anticancer agent which can be applied to develop a clinical protocol of human breast cancers.

  15. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Padmesh S Rajput

    Full Text Available Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD. However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5.To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2. Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32 and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/- and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice.This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the pathophysiology of Huntington's disease.

  16. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  17. EspC, an Autotransporter Protein Secreted by Enteropathogenic Escherichia coli, Causes Apoptosis and Necrosis through Caspase and Calpain Activation, Including Direct Procaspase-3 Cleavage

    Directory of Open Access Journals (Sweden)

    Antonio Serapio-Palacios

    2016-06-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC has the ability to antagonize host apoptosis during infection through promotion and inhibition of effectors injected by the type III secretion system (T3SS, but the total number of these effectors and the overall functional relationships between these effectors during infection are poorly understood. EspC produced by EPEC cleaves fodrin, paxillin, and focal adhesion kinase (FAK, which are also cleaved by caspases and calpains during apoptosis. Here we show the role of EspC in cell death induced by EPEC. EspC is involved in EPEC-mediated cell death and induces both apoptosis and necrosis in epithelial cells. EspC induces apoptosis through the mitochondrial apoptotic pathway by provoking (i a decrease in the expression levels of antiapoptotic protein Bcl-2, (ii translocation of the proapoptotic protein Bax from cytosol to mitochondria, (iii cytochrome c release from mitochondria to the cytoplasm, (iv loss of mitochondrial membrane potential, (v caspase-9 activation, (vi cleavage of procaspase-3 and (vii an increase in caspase-3 activity, (viii PARP proteolysis, and (ix nuclear fragmentation and an increase in the sub-G1 population. Interestingly, EspC-induced apoptosis was triggered through a dual mechanism involving both independent and dependent functions of its EspC serine protease motif, the direct cleavage of procaspase-3 being dependent on this motif. This is the first report showing a shortcut for induction of apoptosis by the catalytic activity of an EPEC protein. Furthermore, this atypical intrinsic apoptosis appeared to induce necrosis through the activation of calpain and through the increase of intracellular calcium induced by EspC. Our data indicate that EspC plays a relevant role in cell death induced by EPEC.

  18. µ-Calpain conversion of antiapoptotic Bfl-1 (BCL2A1 into a prodeath factor reveals two distinct alpha-helices inducing mitochondria-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Juan García Valero

    Full Text Available Anti-apoptotic Bfl-1 and pro-apoptotic Bax, two members of the Bcl-2 family sharing a similar structural fold, are classically viewed as antagonist regulators of apoptosis. However, both proteins were reported to be death inducers following cleavage by the cysteine protease µ-calpain. Here we demonstrate that calpain-mediated cleavage of full-length Bfl-1 induces the release of C-terminal membrane active α-helices that are responsible for its conversion into a pro-apoptotic factor. A careful comparison of the different membrane-active regions present in the Bfl-1 truncated fragments with homologous domains of Bax show that helix α5, but not α6, of Bfl-1 induces cell death and cytochrome c release from purified mitochondria through a Bax/Bak-dependent mechanism. In contrast, both helices α5 and α6 of Bax permeabilize mitochondria regardless of the presence of Bax or Bak. Moreover, we provide evidence that the α9 helix of Bfl-1 promotes cytochrome c release and apoptosis through a unique membrane-destabilizing action whereas Bax-α9 does not display such activities. Hence, despite a common 3D-structure, C-terminal toxic domains present on Bfl-1 and Bax function in a dissimilar manner to permeabilize mitochondria and induce apoptosis. These findings provide insights for designing therapeutic approaches that could exploit the cleavage of endogenous Bcl-2 family proteins or the use of Bfl-1/Bax-derived peptides to promote tumor cell clearance.

  19. Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3.

    Science.gov (United States)

    Koentges, Christoph; Pfeil, Katharina; Meyer-Steenbuck, Maximilian; Lother, Achim; Hoffmann, Michael M; Odening, Katja E; Hein, Lutz; Bode, Christoph; Bugger, Heiko

    2016-01-01

    Lack of the mitochondrial deacetylase sirtuin 3 (SIRT3) impairs mitochondrial function and increases the susceptibility to induction of the mitochondrial permeability transition pore. Because these alterations contribute to myocardial ischemia-reperfusion (IR) injury, we hypothesized that SIRT3 deficiency may increase cardiac injury following myocardial IR. Hearts of 10-week-old mice were perfused in the isolated working mode and subjected to 17.5 min of global no-flow ischemia, followed by 30 min of reperfusion. Measurements before ischemia revealed a decrease in cardiac power (-20%) and rate pressure product (-15%) in SIRT3(-/-) mice. Mitochondrial state 3 respiration (-15%), ATP synthesis (-39%), and ATP/O ratios (-29%) were decreased in hearts of SIRT3(-/-) mice. However, percent recovery of cardiac power (WT 94% ± 9%; SIRT3(-/-) 89% ± 9%) and rate pressure product (WT 89% ± 16%; SIRT3(-/-) 96% ± 3%) following IR was similar in both groups. Myocardial infarct size was not increased in SIRT3(-/-) mice following permanent ligation of the left anterior descending coronary artery (LAD). Left ventricular pressure and dP/dtmax, and mitochondrial respiration and ATP synthesis were not different between groups following LAD ligation. Thus, despite pre-existing defects in cardiac function and mitochondrial respiratory capacity in SIRT3(-/-) mice, SIRT3 deficiency does not additionally impair cardiac function following IR or following myocardial infarction.

  20. Quercetin glycosides and chlorogenic acid in highbush blueberry leaf decoction prevent cataractogenesis in vivo and in vitro: Investigation of the effect on calpains, antioxidant and metal chelating properties.

    Science.gov (United States)

    Ferlemi, Anastasia-Varvara; Makri, Olga E; Mermigki, Penelope G; Lamari, Fotini N; Georgakopoulos, Constantinos D

    2016-04-01

    The present study investigates whether highbush blueberry leaf polyphenols prevent cataractogenesis and the underlying mechanisms. Chlorogenic acid, quercetin, rutin, isoquercetin and hyperoside were quantified in Vaccinium corymbosum leaf decoction (BBL) using HPLC-DAD. Wistar rats were injected subcutaneously with 20 μmol selenite (Na2SeO3)/kg body weight on postnatal (PN) day 10 (Se, n = 8-10/group) only or also intraperitoneally with 100 mg dry BBL/kg body weight on PN days 11 and 12 (SeBBL group, n = 10). Control group received only normal saline (C). Cataract evaluation revealed that BBL significantly prevented lens opacification. It, also, protected lens from selenite oxidative attack and prevented calpain activation, as well as protein loss and aggregation. In vitro studies showed that quercetin attenuated porcine lens turbidity caused by [Formula: see text] or Ca(2+) and interacted efficiently with those ions according to UV-Vis titration experiments. Finally, rutin, isoquercetin and hyperoside moderately inhibited pure human μ-calpain. Conclusively, blueberry leaf extract, a rich source of bioactive polyphenols, prevents cataractogenesis by their strong antioxidant, chelating properties and through direct/indirect inhibition of lens calpains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Induction of cell cycle arrest and apoptosis in caspase-3 deficient MCF-7 cells by Dillenia suffruticosa root extract via multiple signalling pathways.

    Science.gov (United States)

    Foo, Jhi Biau; Yazan, Latifah Saiful; Tor, Yin Sim; Armania, Nurdin; Ismail, Norsharina; Imam, Mustapha Umar; Yeap, Swee Keong; Cheah, Yoke Kqueen; Abdullah, Rasedee; Ismail, Maznah

    2014-06-19

    Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells. Dillenia suffruticosa root was extracted by sequential solvent extraction. The anti-proliferative activity of DCM-DS was determined by using MTT assay. The mode of cell death was evaluated by using inverted light microscope and Annexin-V/PI-flow cytometry analysis. Cell cycle analysis and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry. MCF-7 cells were co-treated with antioxidants α-tocopherol and ascorbic acid to evaluate whether the cell death was mainly due to oxidative stress. GeXP-based multiplex system was employed to investigate the expression of apoptotic, growth and survival genes in MCF-7 cells. Western blot analysis was performed to confirm the expression of the genes. DCM-DS was cytotoxic to the MCF-7 cells in a time-and dose-dependent manner. The IC50 values of DCM-DS at 24, 48 and 72 hours were 20.3 ± 2.8, 17.8 ± 1.5 and 15.5 ± 0.5 μg/mL, respectively. Cell cycle analysis revealed that DCM-DS induced G0/G1 and G2/M phase cell cycle arrest in MCF-7 cells at low concentration (12.5 and 25 μg/mL) and high concentration (50 μg/mL), respectively. Although Annexin-V/PI-flow cytometry analysis has confirmed that DCM-DS induced apoptosis in MCF-7 cells, the distinct characteristics of apoptosis such as membrane blebbing, chromatin condensation, nuclear fragmentation and formation of apoptotic bodies were not observed under microscope. DCM-DS induced formation of ROS in MCF-7 cells. Nevertheless, co-treatment with antioxidants did not attenuate the cell death at low concentration of DCM-DS. The pro-apoptotic gene JNK was up-regulated whereby anti-apoptotic genes AKT1 and

  2. Calpain3 is expressed in a proteolitically active form in papillomavirus-associated urothelial tumors of the urinary bladder in cattle.

    Directory of Open Access Journals (Sweden)

    Sante Roperto

    Full Text Available BACKGROUND: Calpain 3 (Capn3, also named p94, is a skeletal muscle tissue-specific protein known to be responsible for limb-girdle muscular dystrophy type 2A (LGMD2A. Recent experimental studies have hypothesized a pro-apoptotic role of Capn3 in some melanoma cell lines. So far the link between calpain3 and tumors comes from in vitro studies. The objective of this study was to describe Capn3 activation in naturally occurring urothelial tumors of the urinary bladder in cattle. METHODS AND FINDINGS: Here we describe, for the first time in veterinary and comparative oncology, the activation of Capn3 in twelve urothelial tumor cells of the urinary bladder of cattle. Capn3 protein was initially identified with nanoscale liquid chromatography coupled with tandem mass spectrometry (nano LC-MS/MS in a co-immunoprecipitation experiment on E2F3, known to be a transcription factor playing a crucial role in bladder carcinogenesis in humans. Capn3 expression was then confirmed by reverse transcription polymerase chain reaction (RT-PCR. Finally, the Ca(2+-dependent proteolytic activity of Capn3 was assayed following ion exchange chromatography. Morphologically, Capn3 expression was documented by immunohistochemical methods. In fact numerous tumor cells showed an intracytoplasmic immunoreactivity, which was more rarely evident also at nuclear level. In urothelial tumors, bovine papillomavirus type 2 (BPV-2 DNA was amplified by PCR and the expression of E5 protein, the major oncogenic protein of BVP-2, was detected by western blotting, immunohistochemistry, and immunofluorescence. E2F3 overexpression and pRb protein downregulation were shown by western blotting. CONCLUSION: The role of capn3 protein in urothelial cancer of the urinary bladder remains to be elucidated: further studies would be required to determine the precise function of this protease in tumor development and progression. However, we suggest that activated Capn3 may be involved in molecular

  3. Aberrant hypertrophy in Smad3-deficient chondrocytes is rescued by restoring TAK1-ATF-2 signaling: a potential clinical implication for osteoarthritis

    Science.gov (United States)

    Li, Tian-Fang; Gao, Lin; Sheu, Tzong-Jen; Sampson, Erik R.; Flick, Lisa M.; Konttinen, Yrjo T.; Chen, Di; Schwarz, Edward M.; Zuscik, Michael J.; Jonason, Jennifer H.; O’Keefe, Regis J.

    2010-01-01

    Objective To investigate the biological significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and ATF-2 in the TGF-β signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. Methods Joint disease in Smad3 knockout (Smad3−/−) mice was examined by micro-CT and histology. Numerous in vitro methods including immunostaining, real-time PCR, Western blotting, an ATF-2 DNA-binding assay and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3−/− mice. Results Smad3−/− mice gradually developed an end-stage OA phenotype. TGF-β-induced TAK1-ATF-2 signaling was disrupted in Smad3−/− chondrocytes at the level of p38 MAP kinase activation resulting in reduced ATF-2 phosphorylation and transcriptional activity. Re-introduction of Smad3 into the Smad3−/− cells restored the normal p38 response to TGF-β. Phospho-p38 formed a complex with Smad3 by binding to the Smad3 MH1-linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAP kinase phosphatase-1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild type and Smad3−/− chondrocytes. p38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms α, β and γ, but not δ. Conclusions Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1-ATF-2 signaling, most likely by disrupting the Smad3-phospho-p38 complex and, thereby, promoting p38 dephosphorylation and inactivation by MKP-1. p38 and ATF-2 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic approach for OA. PMID:20506210

  4. Novel Bioinformatics-Based Approach for Proteomic Biomarkers Prediction of Calpain-2 & Caspase-3 Protease Fragmentation: Application to βII-Spectrin Protein

    Science.gov (United States)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Kobeissy, Firas

    2017-01-01

    The crucial biological role of proteases has been visible with the development of degradomics discipline involved in the determination of the proteases/substrates resulting in breakdown-products (BDPs) that can be utilized as putative biomarkers associated with different biological-clinical significance. In the field of cancer biology, matrix metalloproteinases (MMPs) have shown to result in MMPs-generated protein BDPs that are indicative of malignant growth in cancer, while in the field of neural injury, calpain-2 and caspase-3 proteases generate BDPs fragments that are indicative of different neural cell death mechanisms in different injury scenarios. Advanced proteomic techniques have shown a remarkable progress in identifying these BDPs experimentally. In this work, we present a bioinformatics-based prediction method that identifies protease-associated BDPs with high precision and efficiency. The method utilizes state-of-the-art sequence matching and alignment algorithms. It starts by locating consensus sequence occurrences and their variants in any set of protein substrates, generating all fragments resulting from cleavage. The complexity exists in space O(mn) as well as in O(Nmn) time, where N, m, and n are the number of protein sequences, length of the consensus sequence, and length per protein sequence, respectively. Finally, the proposed methodology is validated against βII-spectrin protein, a brain injury validated biomarker.

  5. Association of Calpain (CAPN) 10 (UCSNP-43, rs3792267) gene polymorphism with elevated serum androgens in young women with the most severe phenotype of polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Anastasia, Karela; Koika, Vasiliki; Roupas, Nikolaos D; Armeni, Anastasia; Marioli, Dimitra; Panidis, Dimitrios; George, Adonakis; Georgopoulos, Neoklis A

    2015-01-01

    To highlight a possible association of Calpain (CAPN 10) gene UCSNP-43 polymorphism with hormonal and metabolic traits of young women with different phenotypes of polycystic ovary syndrome (PCOS). PCOS women were genotyped for the CAPN 10 gene UCSNP-43 polymorphism. A comparison of clinical and biochemical features of women with PCOS stratified on the basis of the CAPN 10 gene UCSNP-43 variants was assessed. Anthropometric, hormonal and biochemical measurements were carried out in 668 PCOS women and 200 healthy controls. Subjects were also genotyped for the CAPN 10 gene UCSNP-43 polymorphism. The genotype frequency distributions between groups and controls were compared using the chi-square test. The association of the polymorphism with the clinical and biochemical features of the study cohort was estimated as well. No association of the frequency of CAPN 10 gene UCSNP-43 polymorphism with PCOS was detected. No association of the polymorphism with the anthropometric, biochemical and hormonal features was detected both in PCOS and control women. The polymorphism was associated with serum Δ4 androstenedione (p = 0.018), as well as with 17-OH progesterone (17-hydroxyprogesterone) among women with PCOS phenotype A (p = 0.012). CAPN 10 gene polymorphism UCSNP-43 is deprived of a metabolic contribution to cardiovascular disease (CVD). However, due to its association with androgen excess in phenotype A, CAPN 10 gene polymorphism UCSNP-43 could be used as a genetic marker for CVD in young PCOS women.

  6. 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside confers neuroprotection in cell and animal models of ischemic stroke through calpain1/PKA/CREB-mediated induction of neuronal glucose transporter 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shu; Cheng, Qiong; Li, Lu; Liu, Mei; Yang, Yumin; Ding, Fei, E-mail: dingfei@ntu.edu.cn

    2014-06-15

    Salidroside is proven to be a neuroprotective agent of natural origin, and its analog, 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside (named SalA-4 g), has been synthesized in our lab. In this study, we showed that SalA-4 g promoted neuronal survival and inhibited neuronal apoptosis in primary hippocampal neurons exposed to oxygen and glucose deprivation (OGD) and in rats subjected to ischemia by transient middle cerebral artery occlusion (MCAO), respectively, and that SalA-4 g was more neuroprotective than salidroside. We further found that SalA-4 g elevated glucose uptake in OGD-injured primary hippocampal neurons and increased the expression and recruitment of glucose transporter 3 (GLUT3) in ischemic brain. Signaling analysis revealed that SalA-4 g triggered the phosphorylation of CREB, and increased the expression of PKA RII in primary hippocampal neurons exposed to OGD injury, while inhibition of PKA/CREB by H-89 alleviated the elevation in glucose uptake and GLUT3 expression, and blocked the protective effects of SalA-4 g. Moreover, SalA-4 g was noted to inhibit intracellular Ca{sup 2+} influx and calpain1 activation in OGD-injured primary hippocampal neurons. Our results suggest that SalA-4 g neuroprotection might be mediated by increased glucose uptake and elevated GLUT3 expression through calpain1/PKA/CREB pathway. - Highlights: • A salidroside (Sal) analog (SalA-4 g) is prepared to be more neuroprotective than Sal. • SalA-4 g protected hippocampal neurons from oxygen and glucose deprivation insult. • SalA-4 g reduced ischemic injury after transient middle cerebral artery occlusion in rats. • Neuroprotection of SalA-4 g was mediated by GLUT3 level via calpain/PKA/CREB pathway.

  7. Common polymorphisms of calpain-10 and the risk of Type 2 Diabetes in a Tunisian Arab population: a case-control study

    Directory of Open Access Journals (Sweden)

    Mahjoub Touhami

    2010-05-01

    Full Text Available Abstract Background Genetic variations in the calpain-10 gene (CAPN10, in particular the at-risk diplotype (112/121, were previously implicated with increased risk of type 2 diabetes (T2D. Methods We examined the association of CAPN10 UCSNP-43 (rs3792267, UCSNP-19 (rs3842570, and UCSNP-63 (rs5030952 SNPs with T2D in 917 Tunisian T2D patients and 748 non-diabetic controls. CAPN10 genotyping was done by PCR-RFLP. Results Enrichment of UCSNP-19 2R (minor allele and 2R/2R genotype was found in T2D patients; the allele and genotype distribution of UCSNP-43 and UCSNP-63 alleles and genotypes were not significantly different between patient groups and non-diabetic control subjects. Regression analysis demonstrated progressive increases in T2D risk in 3R/2R [OR (95% CI = 1.35 (1.08 - 1.68] and 2R/2R [OR (95% CI = 1.61 (1.20 - 2.18] genotypes. Of the six haplotypes detected, enrichment of haplotype 111 (UCSNP-43/UCSNP-19/UCSNP-63 was seen in patients (Pc = 0.034; the distribution of the other haplotypes was comparable between patients and control subjects; neither haplotype 211 nor haplotype 212 was observed. Furthermore, the frequency of all CAPN10 diplotypes identified, including the "high-risk diplotype (112/121 reported for Mexican-Americans and Northern Europeans, were comparable between patients and controls. Conclusions CAPN10 UCSNP-19 variant, and the 111 haplotype contribute to the risk of T2D in Tunisian subjects; no significant associations between CAPN10 diplotypes and T2D were demonstrated for Tunisians.

  8. Arsenic exposure and calpain-10 polymorphisms impair the function of pancreatic beta-cells in humans: a pilot study of risk factors for T2DM.

    Directory of Open Access Journals (Sweden)

    Andrea Díaz-Villaseñor

    Full Text Available The incidence of type 2 diabetes mellitus (T2DM is increasing worldwide and diverse environmental and genetic risk factors are well recognized. Single nucleotide polymorphisms (SNPs in the calpain-10 gene (CAPN-10, which encodes a protein involved in the secretion and action of insulin, and chronic exposure to inorganic arsenic (iAs through drinking water have been independently associated with an increase in the risk for T2DM. In the present work we evaluated if CAPN-10 SNPs and iAs exposure jointly contribute to the outcome of T2DM. Insulin secretion (beta-cell function and insulin sensitivity were evaluated indirectly through validated indexes (HOMA2 in subjects with and without T2DM who have been exposed to a gradient of iAs in their drinking water in northern Mexico. The results were analyzed taking into account the presence of the risk factor SNPs SNP-43 and -44 in CAPN-10. Subjects with T2DM had significantly lower beta-cell function and insulin sensitivity. An inverse association was found between beta-cell function and iAs exposure, the association being more pronounced in subjects with T2DM. Subjects without T2DM who were carriers of the at-risk genotype SNP-43 or -44, also had significantly lower beta-cell function. The association of SNP-43 with beta-cell function was dependent on iAs exposure, age, gender and BMI, whereas the association with SNP-44 was independent of all of these factors. Chronic exposure to iAs seems to be a risk factor for T2DM in humans through the reduction of beta-cell function, with an enhanced effect seen in the presence of the at-risk genotype of SNP-43 in CAPN-10. Carriers of CAPN-10 SNP-44 have also shown reduced beta-cell function.

  9. [Association analysis of SNP-63 and indel-19 variant in the calpain-10 gene with polycystic ovary syndrome in women of reproductive age].

    Science.gov (United States)

    Flores-Martínez, Silvia Esperanza; Castro-Martínez, Anna Gabriela; López-Quintero, Andrés; García-Zapién, Alejandra Guadalupe; Torres-Rodríguez, Ruth Noemí; Sánchez-Corona, José

    2015-01-01

    Polycystic ovary syndrome is a complex and heterogeneous disease involving both reproductive and metabolic problems. It has been suggested a genetic predisposition in the etiology of this syndrome. The identification of calpain-10 gene (CAPN10) as the first candidate gene for type 2 diabetes mellitus, has focused the interest in investigating their possible relation with the polycystic ovary syndrome, because this syndrome is associated with hyperinsulinemia and insulin resistance, two metabolic abnormalities associated with type 2 diabetes mellitus. To investigate if there is association between the SNP-63 and the variant indel-19 of the CAPN10 gene and polycystic ovary syndrome in women of reproductive age. This study included 101 women (55 with polycystic ovary syndrome and 46 without polycystic ovary syndrome). The genetic variant indel-19 was identified by electrophoresis of the amplified fragments by PCR, and the SNP-63 by PCR-RFLP. The allele and genotype frequencies of the two variants do not differ significatly between women with polycystic ovary syndrome and control women group. The haplotype 21 (defined by the insertion allele of indel-19 variant and C allele of SNP-63) was found with higher frequency in both study groups, being more frequent in the polycystic ovary syndrome patients group, however, this difference was not statistically significant (p = 0.8353). The results suggest that SNP-63 and indel-19 variant of the CAPN10 gene do not represent a risk factor for polycystic ovary syndrome in our patients group. Copyright © 2015. Published by Masson Doyma México S.A.

  10. Assessing optimal neural network architecture for identifying disease-associated multi-marker genotypes using a permutation test, and application to calpain 10 polymorphisms associated with diabetes.

    Science.gov (United States)

    North, B V; Curtis, D; Cassell, P G; Hitman, G A; Sham, P C

    2003-07-01

    Biallelic markers, such as single nucleotide polymorphisms (SNPs), provide greater information for localising disease loci when treated as multilocus haplotypes, but often haplotypes are not immediately available from multilocus genotypes in case-control studies. An artificial neural network allows investigation of association between disease phenotype and tightly linked markers without requiring haplotype phase and without modelling any evolutionary history for the disease-related haplotypes. The network assesses whether marker haplotypes differ between cases and controls to the extent that classification of disease status based on multi-marker genotypes is achievable. The network is "trained" to "recognise" affection status based on supplied marker genotypes, and then for each multi-marker genotype it produces outputs which aim to approximate the associated affection status. Next, the genotypes are permuted relative to affection status to produce many random datasets and the process of training and recording of outputs is repeated. The extent to which the ability to predict affection for the real dataset exceeds that for the random datasets measures the statistical significance of the association between multi-marker genotype and affection. This permutation test performs well with simulated case-control datasets, particularly when major gene effects are present. We have explored the effects of systematically varying different network parameters in order to identify their optimal values. We have applied the permutation test to 4 SNPs of the calpain 10 (CAPN10) gene typed in a case-control sample of subjects with type 2 diabetes, impaired glucose tolerance, and controls. We show that the neural network produces more highly significant evidence for association than do single marker tests corrected for the number of markers genotyped. The use of a permutation test could potentially allow conditional analyses which could incorporate known risk factors alongside marker

  11. Arsenic Exposure and Calpain-10 Polymorphisms Impair the Function of Pancreatic Beta-Cells in Humans: A Pilot Study of Risk Factors for T2DM

    Science.gov (United States)

    Díaz-Villaseñor, Andrea; Cruz, Laura; Cebrián, Arturo; Hernández-Ramírez, Raúl U.; Hiriart, Marcia; García-Vargas, Gonzálo; Bassol, Susana; Sordo, Monserrat; Gandolfi, A. Jay; Klimecki, Walter T.; López-Carillo, Lizbeth; Cebrián, Mariano E.; Ostrosky-Wegman, Patricia

    2013-01-01

    The incidence of type 2 diabetes mellitus (T2DM) is increasing worldwide and diverse environmental and genetic risk factors are well recognized. Single nucleotide polymorphisms (SNPs) in the calpain-10 gene (CAPN-10), which encodes a protein involved in the secretion and action of insulin, and chronic exposure to inorganic arsenic (iAs) through drinking water have been independently associated with an increase in the risk for T2DM. In the present work we evaluated if CAPN-10 SNPs and iAs exposure jointly contribute to the outcome of T2DM. Insulin secretion (beta-cell function) and insulin sensitivity were evaluated indirectly through validated indexes (HOMA2) in subjects with and without T2DM who have been exposed to a gradient of iAs in their drinking water in northern Mexico. The results were analyzed taking into account the presence of the risk factor SNPs SNP-43 and -44 in CAPN-10. Subjects with T2DM had significantly lower beta-cell function and insulin sensitivity. An inverse association was found between beta-cell function and iAs exposure, the association being more pronounced in subjects with T2DM. Subjects without T2DM who were carriers of the at-risk genotype SNP-43 or -44, also had significantly lower beta-cell function. The association of SNP-43 with beta-cell function was dependent on iAs exposure, age, gender and BMI, whereas the association with SNP-44 was independent of all of these factors. Chronic exposure to iAs seems to be a risk factor for T2DM in humans through the reduction of beta-cell function, with an enhanced effect seen in the presence of the at-risk genotype of SNP-43 in CAPN-10. Carriers of CAPN-10 SNP-44 have also shown reduced beta-cell function. PMID:23349674

  12. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice1

    Science.gov (United States)

    Lalani, Almin I.; Moore, Carissa R.; Luo, Chang; Kreider, Benjamin Z.; Liu, Yan; Morse, Herbert C.; Xie, Ping

    2014-01-01

    Myeloid cells, including granulocytes, monocytes, macrophages and dendritic cells, are crucial players in innate immunity and inflammation. These cells constitutively or inducibly express a number of receptors of the TNF receptor and Toll-like receptor (TLR) families, whose signals are transduced by TRAF molecules. In vitro studies showed that TRAF3 is required for TLR-induced type I interferon production, but the in vivo function of TRAF3 in myeloid cells remains unknown. Here we report the generation and characterization of myeloid cell-specific TRAF3-deficient (M-TRAF3−/−) mice, which allowed us to gain insights into the in vivo functions of TRAF3 in myeloid cells. We found that TRAF3 ablation did not affect the maturation or homeostasis of myeloid cells in young adult mice, even though TRAF3-deficient macrophages and neutrophils exhibited constitutive NF-κB2 activation. However, in response to injections with LPS (a bacterial mimic) or polyI:C (a viral mimic), M-TRAF3−/− mice exhibited an altered profile of cytokine production. M-TRAF3−/− mice immunized with T cell-independent (TI) and -dependent (TD) antigens displayed elevated TI IgG3 as well as TD IgG2b responses. Interestingly, 15–22 month old M-TRAF3−/− mice spontaneously developed chronic inflammation or tumors, often affecting multiple organs. Taken together, our findings indicate that TRAF3 expressed in myeloid cells regulates immune responses in myeloid cells and acts to inhibit inflammation and tumor development in mice. PMID:25422508

  13. BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice.

    Science.gov (United States)

    Pereyra, Andrea S; Wang, Zhong-Min; Messi, Maria Laura; Zhang, Tan; Wu, Hanzhi; Register, Thomas C; Forbes, Elizabeth; Devarie-Baez, Nelmi O; Files, Daniel Clark; Abba, Martin C; Furdui, Cristina; Delbono, Osvaldo

    2017-08-01

    Loss of muscle mass and force with age leads to fall risk, mobility impairment, and reduced quality of life. This article shows that BDA-410, a calpain inhibitor, induced loss of body weight and fat but not lean mass or skeletal muscle proteins in a cohort of sedentary 23-month-old mice. Food and water intake and locomotor activity were not modified, whereas BDA-410 treatment decreased intramyocellular lipid and perigonadal fat, increased serum nonesterified fatty acids, and upregulated the genes mediating lipolysis and oxidation, lean phenotype, muscle contraction, muscle transcription regulation, and oxidative stress response. This finding is consistent with our recent report that lipid accumulation in skeletal myofibers is significantly correlated with slower fiber-contraction kinetics and diminished power in obese older adult mice. A proteomic analysis and immunoblot showed downregulation of the phosphatase PPP1R12B, which increases phosphorylated myosin half-life and modulates the calcium sensitivity of the contractile apparatus. This study demonstrates that BDA-410 exerts a beneficial effect on skeletal muscle contractility through new, alternative mechanisms, including enhanced lipolysis, upregulation of "lean phenotype-related genes," downregulation of the PP1R12B phosphatase, and enhanced excitation-contraction coupling. This single compound holds promise for treating age-dependent decline in muscle composition and strength. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Association of two synonymous splicing-associated CpG single nucleotide polymorphisms in calpain 10 and solute carrier family 2 member 2 with type 2 diabetes.

    Science.gov (United States)

    Karambataki, Maria; Malousi, Andigoni; Tzimagiorgis, Georgios; Haitoglou, Constantinos; Fragou, Aikaterini; Georgiou, Elisavet; Papadopoulou, Foteini; Krassas, Gerasimos E; Kouidou, Sofia

    2017-02-01

    Coding synonymous single nucleotide polymorphisms (SNPs) have attracted little attention until recently. However, such SNPs located in epigenetic, CpG sites modifying exonic splicing enhancers (ESEs) can be informative with regards to the recently verified association of intragenic methylation and splicing. The present study describes the association of type 2 diabetes (T2D) with the exonic, synonymous, epigenetic SNPs, rs3749166 in calpain 10 (CAPN10) glucose transporter (GLUT4) translocator and rs5404 in solute carrier family 2, member 2 (SLC2A2), also termed GLUT2, which, according to prior bioinformatic analysis, strongly modify the splicing potential of glucose transport-associated genes. Previous association studies reveal that only rs5404 exhibits a strong negative T2D association, while data on the CAPN10 polymorphism are contradictory. In the present study DNA from blood samples of 99 Greek non-diabetic control subjects and 71 T2D patients was analyzed. In addition, relevant publicly available cases (40) resulting from examination of 110 Personal Genome Project data files were analyzed. The frequency of the rs3749166 A allele, was similar in the patients and non-diabetic control subjects. However, AG heterozygotes were more frequent among patients (73.24% for Greek patients and 54.55% for corresponding non-diabetic control subjects; P=0.0262; total cases, 52.99 and 75.00%, respectively; P=0.0039). The rs5404 T allele was only observed in CT heterozygotes (Greek non-diabetic control subjects, 39.39% and Greek patients, 22.54%; P=0.0205; total cases, 34.69 and 21.28%, respectively; P=0.0258). Notably, only one genotype, heterozygous AG/CC, was T2D-associated (Greek non-diabetic control subjects, 29.29% and Greek patients, 56.33%; P=0.004; total cases, 32.84 and 56.58%, respectively; P=0.0008). Furthermore, AG/CC was strongly associated with very high (≥8.5%) glycosylated plasma hemoglobin levels among patients (P=0.0002 for all cases). These results reveal

  15. Oral treatment with herbal formula B307 alleviates cardiac failure in aging R6/2 mice with Huntington’s disease via suppressing oxidative stress, inflammation, and apoptosis

    Directory of Open Access Journals (Sweden)

    Lin CL

    2015-07-01

    Full Text Available Ching-Lung Lin,1 Sheue-Er Wang,2 Chih-Hsiang Hsu,1 Shuenn-Jyi Sheu,3 Chung-Hsin Wu1 1Department of Life Science, National Taiwan Normal University, Taipei, 2Department of Pathological Inspection, Soeurs de Saint Paul de Chartres Medical Corporate Body, Taoyuan City, 3Brion Research Institute of Taiwan, New Taipei City, Taiwan Abstract: Cardiac failure is often observed in aging patients with Huntington’s disease (HD. However, conventional pharmacological treatments for cardiac failure in HD patients have rarely been studied. Chinese herbal medicines, especially combined herbal formulas, have been widely used to treat cardiac dysfunctions over the centuries. Thus, we assess whether oral treatment with herbal formula B307 can alleviate cardiac failure in transgenic mice with HD. After oral B307 or vehicle treatment for 2 weeks, cardiac function and cardiomyocytes in 12-week-old male R6/2 HD mice and their wild-type littermate controls (WT were examined and then compared via echocardiography, immunohistochemistry, and Western blotting. We found that cardiac performance in aging R6/2 HD mice had significantly deteriorated in comparison with their WT (P<0.01. Cardiac expressions of superoxide dismutase 2 (SOD2 and B-cell lymphoma 2 (Bcl-2 in aging R6/2 HD mice were significantly lower than their WT (P<0.01, but cardiac expressions of tumor necrosis factor alpha (TNF-α, neurotrophin-3 (3-NT, 4-hydroxynonenal (4-HNE, Bcl-2-associated X protein (Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly higher than their WT (P<0.05. Furthermore, we found that cardiac performance in aging R6/2 HD mice had significantly improved under oral B307 treatment (P<0.05. Cardiac expressions of SOD2 and Bcl-2 of aging R6/2 HD mice were significantly higher under oral B307 treatment (P<0.01, but cardiac expressions of TNF-α, 3-NT, 4-HNE, Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly

  16. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Zhenshan Wang

    2015-11-01

    Full Text Available Adenylyl Cyclase 3 (AC3 plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE. In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/− and wild-type (AC3+/+ mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE.

  17. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  18. NLRP3 inflammasome mediates interleukin-1β production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice.

    Science.gov (United States)

    Kang, Min-Jung; Jo, Sung-Gang; Kim, Dong-Jae; Park, Jong-Hwan

    2017-04-01

    Acinetobacter baumannii is a multi-drug resistant, Gram-negative bacteria and infection with this organism is one of the major causes of mortality in intensive care units. Inflammasomes are multiprotein oligomers that include caspase-1, and their activation is required for maturation of interleukin-1β (IL-1β). Inflammasome signalling is involved in host defences against various microbial infections, but the precise mechanism by which A. baumannii activates inflammasomes and the roles of relevant signals in host defence against pulmonary A. baumannii infection are unknown. Our results showed that NLRP3, ASC and caspase-1, but not NLRC4, are required for A. baumannii-induced production of IL-1β in macrophages. An inhibitor assay revealed that various pathways, including P2X7R, K + efflux, reactive oxygen species production and release of cathepsins, are involved in IL-1β production in macrophages in response to A. baumannii. Interleukin-1β production in bronchoalveolar lavage (BAL) fluid was impaired in NLRP3-deficient and caspase-1/11-deficient mice infected with A. baumannii, compared with that in wild-type (WT) mice. However, the bacterial loads in BAL fluid and lungs were comparable between WT and NLRP3-deficient or caspase-1/11-deficient mice. The severity of lung pathology was reduced in NLRP3- deficient, caspase-1/11- deficient and IL-1-receptor-deficient mice, although the recruitment of immune cells and production of inflammatory cytokines and chemokines were not altered in these mice. These findings indicate that A. baumannii leads to the activation of NLRP3 inflammasome, which mediates IL-1β production and lung pathology. © 2016 John Wiley & Sons Ltd.

  19. Selective cognitive deficits and reduced hippocampal brain-derived neurotrophic factor mRNA expression in small-conductance calcium-activated K+ channel deficient mice

    DEFF Research Database (Denmark)

    Jacobsen, J P R; Redrobe, J P; Hansen, H H

    2009-01-01

    Small-conductance calcium-activated K(+) channels 1-3 (SK1-3) are important for neuronal firing regulation and are considered putative CNS drug targets. For instance non-selective SK blockers improve performance in animal models of cognition. The SK subtype(s) involved herein awaits identification...... and the question is difficult to address pharmacologically due to the lack of subtype-selective SK-channel modulators. In this study, we used doxycycline-induced conditional SK3-deficient (T/T) mice to address the cognitive consequences of selective SK3 deficiency. In T/T mice SK3 protein is near-eliminated from...... performed equally well in passive avoidance, object recognition and the Morris water maze. Thus, some aspects of working/short-term memory are disrupted in T/T mice. Using in situ hybridization, we further found the cognitive deficits in T/T mice to be paralleled by reduced brain-derived neurotrophic factor...

  20. Evaluation of Limb-Girdle Muscular Dystrophy

    Science.gov (United States)

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  1. A novel recombinant 6Aβ15-THc-C chimeric vaccine (rCV02) mitigates Alzheimer's disease-like pathology, cognitive decline and synaptic loss in aged 3 × Tg-AD mice.

    Science.gov (United States)

    Yu, Yun-Zhou; Liu, Si; Wang, Hai-Chao; Shi, Dan-Yang; Xu, Qing; Zhou, Xiao-Wei; Sun, Zhi-Wei; Huang, Pei-Tang

    2016-06-03

    Alzheimer's disease (AD) is a neurodegenerative disorder that impairs memory and cognition. Targeting amyloid-β (Aβ) may be currently the most promising immunotherapeutic strategy for AD. In this study, a recombinant chimeric 6Aβ15-THc-C immunogen was formulated with alum adjuvant as a novel Aβ B-cell epitope candidate vaccine (rCV02) for AD. We examined its efficacy in preventing the cognitive deficit and synaptic impairment in 3 × Tg-AD mice. Using a toxin-derived carrier protein, the rCV02 vaccine elicited robust Aβ-specific antibodies that markedly reduced AD-like pathology and improved behavioral performance in 3 × Tg-AD mice. Along with the behavioral improvement in aged 3 × Tg-AD mice, rCV02 significantly decreased calpain activation concurrent with reduced soluble Aβ or oligomeric forms of Aβ, probably by preventing dynamin 1 and PSD-95 degradation. Our data support the hypothesis that reducing Aβ levels in rCV02-immunized AD mice increases the levels of presynaptic dynamin 1 and postsynaptic PSD-95 allowing functional recovery of cognition. In conclusion, this novel and highly immunogenic rCV02 shows promise as a new candidate prophylactic vaccine for AD and may be useful for generating rapid and strong Aβ-specific antibodies in AD patients with pre-existing memory Th cells generated after immunization with conventional tetanus toxoid vaccine.

  2. Of mice and men

    CERN Multimedia

    1973-01-01

    At the end of March , sixty mice were irradiated at the synchro-cyclotron in the course of an experimental programme studying radiation effects on mice and plants (Vicia faba bean roots) being carried out by the CERN Health Physics Group.

  3. The MICE Online Systems

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Muon Ionization Cooling Experiment (MICE) is designed to test transverse cooling of a muon beam, demonstrating an important step along the path toward creating future high intensity muon beam facilities. Protons in the ISIS synchrotron impact a titanium target, producing pions which decay into muons that propagate through the beam line to the MICE cooling channel. Along the beam line, particle identification (PID) detectors, scintillating fiber tracking detectors, and beam diagnostic tools identify and measure individual muons moving through the cooling channel. The MICE Online Systems encompass all tools; including hardware, software, and documentation, within the MLCR (MICE Local Control Room) that allow the experiment to efficiently record high quality data. Controls and Monitoring (C&M), Data Acquisition (DAQ), Online Monitoring and Reconstruction, Data Transfer, and Networking all fall under the Online Systems umbrella. C&M controls all MICE systems including the target, conventional an...

  4. Oral treatment with the herbal formula B401 protects against aging-dependent neurodegeneration by attenuating oxidative stress and apoptosis in the brain of R6/2 mice.

    Science.gov (United States)

    Wang, Sheue-Er; Lin, Ching-Lung; Hsu, Chih-Hsiang; Sheu, Shuenn-Jyi; Wu, Chung-Hsin

    2015-01-01

    Neurodegeneration is characterized by progressive neurological deficits due to selective neuronal loss in the nervous system. Huntington's disease (HD) is an incurable neurodegenerative disorder. Neurodegeneration in HD patients shows aging-dependent pattern. Our previous study has suggested that a herbal formula B401 may have neuroprotective effects in the brains of R6/2 mice. To clarify possible mechanisms for neurodegeneration, which improves the understanding the aging process. This study focuses on clarifying neurodegenerative mechanisms and searching potential therapeutic targets in HD patients. The oxidative stress and apoptosis were compared in the brain tissue between R6/2 HD mice with and without oral B401 treatment. Expressions of proteins for oxidative stress and apoptosis in the brain tissue of R6/2 HD mice were examined by using immunostaining and Western blotting techniques. R6/2 HD mice with oral B401 treatment significantly reduced reactive oxygen species levels in the blood, but markedly increased expressions of superoxide dismutase 2 in the brain tissue. Furthermore, R6/2 HD mice with oral B401 treatment significantly increased expressions of B-cell lymphoma 2 (Bcl-2), but significantly reduced expressions of Bcl-2-associated X protein (Bax), calpain, and caspase-3 in the brain tissue. Our findings provide evidence that the herbal formula B401 can remedy for aging-dependent neurodegeneration of R6/2 mice via suppressing oxidative stress and apoptosis in the brain. We suggest that the herbal formula B401 can be developed as a potential health supplement for ameliorating aging-dependent neurodegeneration.

  5. Delayed paraplegia after spinal cord ischemic injury requires caspase-3 activation in mice.

    Science.gov (United States)

    Kakinohana, Manabu; Kida, Kotaro; Minamishima, Shizuka; Atochin, Dmitriy N; Huang, Paul L; Kaneki, Masao; Ichinose, Fumito

    2011-08-01

    Delayed paraplegia remains a devastating complication after ischemic spinal cord injury associated with aortic surgery and trauma. Although apoptosis has been implicated in the pathogenesis of delayed neurodegeneration, mechanisms responsible for the delayed paraplegia remain incompletely understood. The aim of this study was to elucidate the role of apoptosis in delayed motor neuron degeneration after spinal cord ischemia. Mice were subjected to spinal cord ischemia induced by occlusion of the aortic arch and left subclavian artery for 5 or 9 minutes. Motor function in the hind limb was evaluated up to 72 hours after spinal cord ischemia. Histological studies were performed to detect caspase-3 activation, glial activation, and motor neuron survival in the serial spinal cord sections. To investigate the impact of caspase-3 activation on spinal cord ischemia, outcome of the spinal cord ischemia was examined in mice deficient for caspase-3. In wild-type mice, 9 minutes of spinal cord ischemia caused immediate paraplegia, whereas 5 minutes of ischemia caused delayed paraplegia. Delayed paraplegia after 5 minutes of spinal cord ischemia was associated with histological evidence of caspase-3 activation, reactive astrogliosis, microglial activation, and motor neuron loss starting at approximately 24 to 48 hours after spinal cord ischemia. Caspase-3 deficiency prevented delayed paraplegia and motor neuron loss after 5 minutes of spinal cord ischemia, but not immediate paraplegia after 9 minutes of ischemia. The present results suggest that caspase-3 activation is required for delayed paraplegia and motor neuron degeneration after spinal cord ischemia.

  6. Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model.

    Directory of Open Access Journals (Sweden)

    Ken Murakami

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein-coupled receptors (S1P1-5. Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1 or transforming growth factor β1 (TGF-β1 levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.

  7. Sweet taste receptor deficient mice have decreased adiposity and increased bone mass.

    Directory of Open Access Journals (Sweden)

    Becky R Simon

    Full Text Available Functional expression of sweet taste receptors (T1R2 and T1R3 has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.

  8. Pathogenic roles of CD14, galectin-3, and OX40 during experimental cerebral malaria in mice.

    Directory of Open Access Journals (Sweden)

    Miranda S Oakley

    Full Text Available An in-depth knowledge of the host molecules and biological pathways that contribute towards the pathogenesis of cerebral malaria would help guide the development of novel prognostics and therapeutics. Genome-wide transcriptional profiling of the brain tissue during experimental cerebral malaria (ECM caused by Plasmodium berghei ANKA parasites in mice, a well established surrogate of human cerebral malaria, has been useful in predicting the functional classes of genes involved and pathways altered during the course of disease. To further understand the contribution of individual genes to the pathogenesis of ECM, we examined the biological relevance of three molecules -- CD14, galectin-3, and OX40 that were previously shown to be overexpressed during ECM. We find that CD14 plays a predominant role in the induction of ECM and regulation of parasite density; deletion of the CD14 gene not only prevented the onset of disease in a majority of susceptible mice (only 21% of CD14-deficient compared to 80% of wildtype mice developed ECM, p<0.0004 but also had an ameliorating effect on parasitemia (a 2 fold reduction during the cerebral phase. Furthermore, deletion of the galectin-3 gene in susceptible C57BL/6 mice resulted in partial protection from ECM (47% of galectin-3-deficient versus 93% of wildtype mice developed ECM, p<0.0073. Subsequent adherence assays suggest that galectin-3 induced pathogenesis of ECM is not mediated by the recognition and binding of galectin-3 to P. berghei ANKA parasites. A previous study of ECM has demonstrated that brain infiltrating T cells are strongly activated and are CD44(+CD62L(- differentiated memory T cells [1]. We find that OX40, a marker of both T cell activation and memory, is selectively upregulated in the brain during ECM and its distribution among CD4(+ and CD8(+ T cells accumulated in the brain vasculature is approximately equal.

  9. II Infused Mice

    Directory of Open Access Journals (Sweden)

    Justin L. Wilson

    2012-01-01

    Full Text Available The anti-inflammatory properties of PPAR-α plays an important role in attenuating hypertension. The current study determines the anti-hypertensive and anti-inflammatory role of PPAR-α agonist during a slow-pressor dose of Ang II (400 ng/kg/min. Ten to twelve week old male PPAR-α KO mice and their WT controls were implanted with telemetry devices and infused with Ang II for 12 days. On day 12 of Ang II infusion, MAP was elevated in PPAR-α KO mice compared to WT (161±4 mmHg versus 145±4 mmHg and fenofibrate (145 mg/kg/day reduced MAP in WT + Ang II mice (134±7 mmHg. Plasma IL-6 levels were higher in PPAR-α KO mice on day 12 of Ang II infusion (30±4 versus 8±2 pg/mL and fenofibrate reduced plasma IL-6 in Ang II-treated WT mice (10±3 pg/mL. Fenofibrate increased renal expression of CYP4A, restored renal CYP2J expression, reduced the elevation in renal ICAM-1, MCP-1 and COX-2 in WT + Ang II mice. Our results demonstrate that activation of PPAR-α attenuates Ang II-induced hypertension through up-regulation of CYP4A and CYP2J and an attenuation of inflammatory markers such as plasma IL-6, renal MCP-1, renal expression of ICAM-1 and COX-2.

  10. DHA does not protect ELOVL4 transgenic mice from retinal degeneration

    Science.gov (United States)

    Li, Feng; Marchette, Lea D.; Brush, Richard S.; Elliott, Michael H.; Le, Yun-Zheng; Henry, Kimberly A.; Anderson, Ashley G.; Zhao, Chao; Sun, Xufang; Zhang, Kang

    2009-01-01

    Purpose Dominant Stargardt macular dystrophy (STGD3) is caused by several different mutations in a gene named ELOVL4, which shares sequence homologies with a family of genes that encode proteins involved in the ELOngation of Very Long chain fatty acids. Studies have suggested that patients with STGD3 have aberrant metabolism of docosahexaenoic acid (DHA, 22:6n3), the major polyunsaturated fatty acid (PUFA) in retinal rod outer segment membranes. We tested the effect of DHA on the progression of retinal degeneration in transgenic mice that express one of the mutations identified in STGD3. Methods Transgenic mice expressing mutant human ELOVL4 (TG2) were bred to mice expressing the fat-1 protein, which can convert n6 to n3 PUFA. Mice were maintained on an n3-deficient diet containing 10% safflower oil (SFO, enriched in n6 PUFA; n6/n3=273) so that four experimental groups were produced that differed only in levels of n3 PUFA and expression of the hELOVL4 transgene. These groups were identified by genotyping and named Fat1+/TG2+, Fat1–/TG2+, Fat1+/TG2–, and Fat1–/TG2–. All were continued on the SFO diet for 4 to 16 weeks such that those not expressing Fat1 would be deficient in n3 fatty acids. At both time points, animals were analyzed for retinal function by electroretinography (ERG), photoreceptor cell viability by outer nuclear layer (ONL) thickness measurements, fatty acid profiles in several tissues, and rhodopsin levels. Results Mice expressing the fat-1 transgene had significantly higher levels of n3 PUFA, primarily DHA, in retina, liver, and plasma lipids at 4 and 16 weeks of age. Retinal DHA levels in fat-1 mice were twice those of controls. By 16 weeks of age, mice expressing the mutant hELOVL4 transgene had a significantly greater loss of photoreceptor cells, reduced ERG amplitudes, and lower rhodopsin levels than control mice. There was no effect of retinal fatty acids on the rate of degeneration of retinas expressing the ELOVL4 transgene

  11. Novel quinazolinone MJ-29 triggers endoplasmic reticulum stress and intrinsic apoptosis in murine leukemia WEHI-3 cells and inhibits leukemic mice.

    Directory of Open Access Journals (Sweden)

    Chi-Cheng Lu

    Full Text Available The present study was to explore the biological responses of the newly compound, MJ-29 in murine myelomonocytic leukemia WEHI-3 cells in vitro and in vivo fates. We focused on the in vitro effects of MJ-29 on ER stress and mitochondria-dependent apoptotic death in WEHI-3 cells, and to hypothesize that MJ-29 might fully impair the orthotopic leukemic mice. Our results indicated that a concentration-dependent decrease of cell viability was shown in MJ-29-treated cells. DNA content was examined utilizing flow cytometry, whereas apoptotic populations were determined using annexin V/PI, DAPI staining and TUNEL assay. Increasing vital factors of mitochondrial dysfunction by MJ-29 were further investigated. Thus, MJ-29-provaked apoptosis of WEHI-3 cells is mediated through the intrinsic pathway. Importantly, intracellular Ca(2+ release and ER stress-associated signaling also contributed to MJ-29-triggered cell apoptosis. We found that MJ-29 stimulated the protein levels of calpain 1, CHOP and p-eIF2α pathways in WEHI-3 cells. In in vivo experiments, intraperitoneal administration of MJ-29 significantly improved the total survival rate, enhanced body weight and attenuated enlarged spleen and liver tissues in leukemic mice. The infiltration of immature myeloblastic cells into splenic red pulp was reduced in MJ-29-treated leukemic mice. Moreover, MJ-29 increased the differentiations of T and B cells but decreased that of macrophages and monocytes. Additionally, MJ-29-stimulated immune responses might be involved in anti-leukemic activity in vivo. Based on these observations, MJ-29 suppresses WEHI-3 cells in vitro and in vivo, and it is proposed that this potent and selective agent could be a new chemotherapeutic candidate for anti-leukemia in the future.

  12. Mice Drawer System

    Science.gov (United States)

    Cancedda, Ranieri

    2008-01-01

    The Mice Drawer System (MDS) is an Italian Space Agency (ASI) facility which is able to support mice onboard the International Space Station during long-duration exploration missions (from 100 to 150-days) by living space, food, water, ventilation and lighting. Mice can be accommodated either individually (maximum 6) or in groups (4 pairs). MDS is integrated in the Space Shuttle middeck during transportation (uploading and downloading) to the ISS and in an EXPRESS Rack in Destiny, the US Laboratory during experiment execution. Osteoporosis is a debilitating disease that afflicts millions of people worldwide. One of the physiological changes experienced by astronauts during space flight is the accelerated loss of bone mass due to the lack of gravitational loading on the skeleton. This bone loss experienced by astronauts is similar to osteoporosis in the elderly population. MDS will help investigate the effects of unloading on transgenic (foreign gene that has been inserted into its genome to exhibit a particular trait) mice with the Osteoblast Stimulating Factor-1, OSF-1, a growth and differentiation factor, and to study the genetic mechanisms underlying the bone mass pathophysiology. MDS will test the hypothesis that mice with an increased bone density are likely to be more protected from osteoporosis, when the increased bone mass is a direct effect of a gene involved in skeletogenesis (skeleton formation). Osteoporosis is a debilitating disease that afflicts millions worldwide. One of the physiological changes experienced by astronauts during space flight is the accelerated loss of bone mass due to the lack of gravitational loading on the skeleton, a loss that is similar to osteoporosis in the elderly population on Earth. Osteoblast Stimulating Factor-1 (OSF-1), also known as pleiotrophin (PTN) or Heparin-Binding Growth- Associated Molecule (HB-GAM) belongs to a family of secreted heparin binding proteins..OSF-1 is an extracellular matrix-associated growth and

  13. Partial Return Yoke for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Witte H.; Plate, S

    2013-05-03

    The international Muon Ionization Cooling Experiment (MICE) is a large scale experiment which is presently assembled at the Rutherford Appleton Laboratory in Didcot, UK. The purpose of MICE is to demonstrate the concept of ionization cooling experimentally. Ionization cooling is an important accelerator concept which will be essential for future HEP experiments such as a potential Muon Collider or a Neutrino Factory. The MICE experiment will house up to 18 superconducting solenoids, all of which produce a substantial amount of magnetic flux. Recently it was realized that this magnetic flux leads to a considerable stray magnetic field in the MICE hall. This is a concern as technical equipment in the MICE hall may may be compromised by this. In July 2012 a concept called partial return yoke was presented to the MICE community, which reduces the stray field in the MICE hall to a safe level. This report summarizes the general concept, engineering considerations and the expected shielding performance.

  14. Neuroglobin over expressing mice

    DEFF Research Database (Denmark)

    Raida, Zindy; Hundahl, Christian Ansgar; Nyengaard, Jens R

    2013-01-01

    thoroughly validated antibodies and oligos, we give a detailed brain anatomical characterization of transgenic mice over expressing Neuroglobin. Moreover, using permanent middle artery occlusion the effect of elevated levels of Neuroglobin on ischemic damage was studied. Lastly, the impact of mouse strain...... genetic background on ischemic damage was investigated. PRINCIPAL FINDINGS: A four to five fold increase in Neuroglobin mRNA and protein expression was seen in the brain of transgenic mice. A β-actin promoter was used to drive Neuroglobin over expression, but immunohistochemistry and in situ hybridization...... showed over expression to be confined to primarily the cortex, hippocampus, cerebellum, and only in neurons. The level and expression pattern of endogenous Neuroglobin was unaffected by insertion of the over expressing Ngb transgene. Neuroglobin over expression resulted in a significant reduction...

  15. The Status of MICE

    Science.gov (United States)

    Dobbs, A. J.; MICE Collaboration

    2017-09-01

    Muon beams of low emittance provide the basis for the intense, well characterised neutrino beams for a Neutrino Factory and for lepton-antilepton collisions at energies of up to several TeV at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam. MICE is being constructed in a series of Steps. The configuration currently in operation at the Rutherford Appleton Laboratory is optimised for the study of the properties of liquid hydrogen and lithium hydride that affect cooling. The plans for data taking in the present configuration will be described together with some preliminary results. A description of the next experimental configuration, used for the final cooling demonstration, is also presented.

  16. Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice

    Directory of Open Access Journals (Sweden)

    Marc S. Stieglitz

    2018-01-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/− mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure.

  17. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice.

    Science.gov (United States)

    Martínez-López, María; Iborra, Salvador; Conde-Garrosa, Ruth; Sancho, David

    2015-01-01

    The role of different DC subsets in priming and maintenance of immunity against Leishmania major (L. major) infection is debated. The transcription factor basic leucine zipper transcription factor, ATF-like 3 (Batf3) is essential for the development of mouse CD103(+) DCs and some functions of CD8α(+) DCs. We found that CD103(+) DCs were significantly reduced in the dermis of Batf3-deficient C57BL/6 mice. Batf3(-/-) mice developed exacerbated and unresolved cutaneous pathology following a low dose of intradermal L. major infection in the ear pinnae. Parasite load was increased 1000-fold locally and expanded systemically. Batf3 deficiency did not affect L. major antigen presentation to T cells, which was directly exerted by CD8α(-) conventional DCs (cDCs) in the skin draining LN. However, CD4(+) T-cell differentiation in the LN and skin was skewed to nonprotective Treg- and Th2-cell subtypes. CD103(+) DCs are major IL-12 producers during L. major infection. Local Th1 immunity was severely hindered, correlating with impaired IL-12 production and reduction in CD103(+) DC numbers. Adoptive transfer of WT but not IL-12p40(-/-) Batf3-dependent DCs significantly improved anti-L. major response in infected Batf3(-/-) mice. Our results suggest that IL-12 production by Batf3-dependent CD103(+) DCs is crucial for maintenance of local Th1 immunity against L. major infection. © 2014 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Of mice and men

    DEFF Research Database (Denmark)

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-01-01

    CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes...... and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co...

  19. Of mice and men

    DEFF Research Database (Denmark)

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-01-01

    Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where...... CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes...... and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co...

  20. Status of MICE

    Energy Technology Data Exchange (ETDEWEB)

    Bross, A.D.; /Fermilab; Kaplan, D.M.; / /IIT, Chicago

    2008-11-01

    Muon ionization cooling is the only practical method for preparing high-brilliance beams needed for a neutrino factory or muon collider. The muon ionization cooling experiment (MICE) under development at the Rutherford Appleton Laboratory comprises a dedicated beamline to generate a range of input emittance and momentum, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. A first measurement of emittance is performed in the upstream magnetic spectrometer with a scintillating-fiber tracker. A cooling cell will then follow, alternating energy loss in liquid hydrogen with RF acceleration. A second spectrometer identical to the first and a particle identification system will measure the outgoing emittance. Plans for measurements of emittance and cooling are described.

  1. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency

    DEFF Research Database (Denmark)

    Munthe-Fog, Lea; Hummelshøj, Tina; Honoré, Christian

    2009-01-01

    Ficolin-3, encoded by the FCN3 gene and expressed in the lung and liver, is a recognition molecule in the lectin pathway of the complement system. Heterozygosity for an FCN3 frameshift mutation (rs28357092), leading to a distortion of the C-terminal end of the molecule, occurs in people without...... disease (allele frequency among whites, 0.01). We describe a patient with recurrent infections who was homozygous for this mutation, who had undetectable serum levels of ficolin-3, and who had a deficiency in ficolin-3-dependent complement activation....

  2. Mice, men and MHC supertypes

    DEFF Research Database (Denmark)

    Lundegaard, Claus

    2010-01-01

    vaccine formulations. Toxoplasma gondii, an intracellular parasite, causes severe neurologic and ocular disease in congenitally infected and immunocompromised individuals. No protective vaccine exists against human toxoplasmosis. However, studies with mice have revealed immunodominant cytotoxic T...

  3. Visual Selective Attention in Mice.

    Science.gov (United States)

    Wang, Lupeng; Krauzlis, Richard J

    2018-02-08

    Visual selective attention is a fundamental cognitive ability that allows us to process relevant visual stimuli while ignoring irrelevant distracters and has been extensively studied in human and non-human primate subjects. Mice have emerged as a powerful animal model for studying aspects of the visual system but have not yet been shown to exhibit visual selective attention. Differences in the organization of the visual systems of primates and mice raise the possibility that selective visual attention might not be present in mice, at least not in the forms that are well established in primates. Here, we tested for selective visual attention in mice by using three behavioral paradigms adapted from classic studies of attention. In a Posner-style cueing task, a spatial cue indicated the probable location of the relevant visual event, and we found that accuracy was higher and reaction times were shorter on validly cued trials. In a cue versus no-cue task, an informative spatial cue was provided on half the trials, and mice had higher accuracy and shorter reaction times with spatial cues and also lower detection thresholds measured from psychometric curves. In a filter task, the spatial cue indicated the location of the relevant visual event, and we found that mice could be trained to ignore irrelevant but otherwise identical visual events at uncued locations. Together, these results demonstrate that mice exhibit visual selective attention, paving the way to use classic attention paradigms in mice to study the genetic and neuronal circuit mechanisms of selective attention. Published by Elsevier Ltd.

  4. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    Science.gov (United States)

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  5. Inflammasome activation mediates inflammation and outcome in humans and mice with pneumococcal meningitis

    Science.gov (United States)

    2013-01-01

    Background Inflammasomes are multi-protein intracellular signaling complexes that have recently been hypothesized to play a role in the regulation of the inflammation response. We studied associations between inflammasome-associated cytokines IL-1β and IL-18 in cerebrospinal fluid (CSF) of patients with bacterial meningitis and clinical outcome, and pneumococcal serotype. In a murine model of pneumococcal meningitis we examined the pathophysiological roles of two inflammasome proteins, NLRP3 (Nod-like receptor protein-3) and adaptor protein ASC (apoptosis-associated speck-like protein). Methods In a nationwide prospective cohort study, CSF cytokine levels were measured and related to clinical outcome and pneumococcal serotype. In a murine model of pneumococcal meningitis using Streptococcus pneumoniae serotype 3, we examined bacterial titers, cytokine profiles and brain histology at 6 and 30 hours after inoculation in wild-type (WT), Asc and Nlrp3 deficient mice. Results In patients with bacterial meningitis, CSF levels of inflammasome associated cytokines IL-1β and IL-18 were related to complications, and unfavorable disease outcome. CSF levels of IL-1β were associated with pneumococcal serotype (pmeningitis, which may dependent on the pneumococcal serotype. PMID:23902681

  6. Interaction of extremophilic archaeal viruses with human and mouse complement system and viral biodistribution in mice.

    Science.gov (United States)

    Wu, Linping; Uldahl, Kristine Buch; Chen, Fangfang; Benasutti, Halli; Logvinski, Deborah; Vu, Vivian; Banda, Nirmal K; Peng, Xu; Simberg, Dmitri; Moghimi, Seyed Moein

    2017-10-01

    Archaeal viruses offer exceptional biophysical properties for modification and exploration of their potential in bionanotechnology, bioengineering and nanotherapeutic developments. However, the interaction of archaeal viruses with elements of the innate immune system has not been explored, which is a necessary prerequisite if their potential for biomedical applications to be realized. Here we show complement activation through lectin (via direct binding of MBL/MASPs) and alternative pathways by two extremophilic archaeal viruses (Sulfolobus monocaudavirus 1 and Sulfolobus spindle-shaped virus 2) in human serum. We further show some differences in initiation of complement activation pathways between these viruses. Since, Sulfolobus monocaudavirus 1 was capable of directly triggering the alternative pathway, we also demonstrate that the complement regulator factor H has no affinity for the viral surface, but factor H deposition is purely C3-dependent. This suggests that unlike some virulent pathogens Sulfolobus monocaudavirus 1 does not acquire factor H for protection. Complement activation with Sulfolobus monocaudavirus 1 also proceeds in murine sera through MBL-A/C as well as factor D-dependent manner, but C3 deficiency has no overall effect on viral clearance by organs of the reticuloendothelial system on intravenous injection. However, splenic deposition was significantly higher in C3 knockout animals compared with the corresponding wild type mice. We discuss the potential application of these viruses in biomedicine in relation to their complement activating properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comprehensive behavioral phenotyping of ryanodine receptor type3 (RyR3 knockout mice: Decreased social contact duration in two social interaction tests

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2009-05-01

    Full Text Available Dynamic regulation of the intracellular Ca2+ concentration is crucial for various neuronal functions such as synaptic transmission and plasticity, and gene expression. Ryanodine receptors (RyRs are a family of intracellular calcium release channels that mediate calcium-induced calcium release (CICR from the endoplasmic reticulum. Among the three RyR isoforms, RyR3 is preferentially expressed in the brain especially in the hippocampus and striatum. To investigate the behavioral effects of RyR3 deficiency, we subjected RyR3 knockout (RyR3-/- mice to a battery of behavioral tests. RyR3-/- mice exhibited significantly decreased social contact duration in two different social interaction tests, where two mice can freely move and make contacts with each other. They also exhibited hyperactivity and mildly impaired prepulse inhibition and latent inhibition while they did not show significant abnormalities in motor function and working and reference memory tests. These results suggest that RyR3 has an important role in locomotor activity and social behavior.

  8. Linkage disequilibrium in wild mice.

    Directory of Open Access Journals (Sweden)

    Cathy C Laurie

    2007-08-01

    Full Text Available Crosses between laboratory strains of mice provide a powerful way of detecting quantitative trait loci for complex traits related to human disease. Hundreds of these loci have been detected, but only a small number of the underlying causative genes have been identified. The main difficulty is the extensive linkage disequilibrium (LD in intercross progeny and the slow process of fine-scale mapping by traditional methods. Recently, new approaches have been introduced, such as association studies with inbred lines and multigenerational crosses. These approaches are very useful for interval reduction, but generally do not provide single-gene resolution because of strong LD extending over one to several megabases. Here, we investigate the genetic structure of a natural population of mice in Arizona to determine its suitability for fine-scale LD mapping and association studies. There are three main findings: (1 Arizona mice have a high level of genetic variation, which includes a large fraction of the sequence variation present in classical strains of laboratory mice; (2 they show clear evidence of local inbreeding but appear to lack stable population structure across the study area; and (3 LD decays with distance at a rate similar to human populations, which is considerably more rapid than in laboratory populations of mice. Strong associations in Arizona mice are limited primarily to markers less than 100 kb apart, which provides the possibility of fine-scale association mapping at the level of one or a few genes. Although other considerations, such as sample size requirements and marker discovery, are serious issues in the implementation of association studies, the genetic variation and LD results indicate that wild mice could provide a useful tool for identifying genes that cause variation in complex traits.

  9. Palatable meal anticipation in mice.

    Directory of Open Access Journals (Sweden)

    Cynthia T Hsu

    Full Text Available The ability to sense time and anticipate events is a critical skill in nature. Most efforts to understand the neural and molecular mechanisms of anticipatory behavior in rodents rely on daily restricted food access, which induces a robust increase of locomotor activity in anticipation of daily meal time. Interestingly, rats also show increased activity in anticipation of a daily palatable meal even when they have an ample food supply, suggesting a role for brain reward systems in anticipatory behavior, and providing an alternate model by which to study the neurobiology of anticipation in species, such as mice, that are less well adapted to "stuff and starve" feeding schedules. To extend this model to mice, and exploit molecular genetic resources available for that species, we tested the ability of wild-type mice to anticipate a daily palatable meal. We observed that mice with free access to regular chow and limited access to highly palatable snacks of chocolate or "Fruit Crunchies" avidly consumed the snack but did not show anticipatory locomotor activity as measured by running wheels or video-based behavioral analysis. However, male mice receiving a snack of high fat chow did show increased food bin entry prior to access time and a modest increase in activity in the two hours preceding the scheduled meal. Interestingly, female mice did not show anticipation of a daily high fat meal but did show increased activity at scheduled mealtime when that meal was withdrawn. These results indicate that anticipation of a scheduled food reward in mice is behavior, diet, and gender specific.

  10. Practical pathology of aging mice

    Directory of Open Access Journals (Sweden)

    Piper M. M. Treuting

    2011-06-01

    Full Text Available Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington.

  11. Dopamine and α-synuclein dysfunction in Smad3 null mice

    Directory of Open Access Journals (Sweden)

    Casarejos M José

    2011-10-01

    Full Text Available Abstract Background Parkinson's disease (PD is characterized by dopaminergic neurodegeneration in the substantia nigra (SN. Transforming growth factor-β1 (TGF-β1 levels increase in patients with PD, although the effects of this increment remain unclear. We have examined the mesostriatal system in adult mice deficient in Smad3, a molecule involved in the intracellular TGF-β1 signalling cascade. Results Striatal monoamine oxidase (MAO-mediated dopamine (DA catabolism to 3,4-dihydroxyphenylacetic acid (DOPAC is strongly increased, promoting oxidative stress that is reflected by an increase in glutathione levels. Fewer astrocytes are detected in the ventral midbrain (VM and striatal matrix, suggesting decreased trophic support to dopaminergic neurons. The SN of these mice has dopaminergic neuronal degeneration in its rostral portion, and the pro-survival Erk1/2 signalling is diminished in nigra dopaminergic neurons, not associated with alterations to p-JNK or p-p38. Furthermore, inclusions of α-synuclein are evident in selected brain areas, both in the perikaryon (SN and paralemniscal nucleus or neurites (motor and cingulate cortices, striatum and spinal cord. Interestingly, these α-synuclein deposits are detected with ubiquitin and PS129-α-synuclein in a core/halo cellular distribution, which resemble those observed in human Lewy bodies (LB. Conclusions Smad3 deficiency promotes strong catabolism of DA in the striatum (ST, decrease trophic and astrocytic support to dopaminergic neurons and may induce α-synuclein aggregation, which may be related to early parkinsonism. These data underline a role for Smad3 in α-synuclein and DA homeostasis, and suggest that modulatory molecules of this signalling pathway should be evaluated as possible neuroprotective agents.

  12. Voluntary Wheel Running in Mice.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.

  13. Magnetic eye tracking in mice.

    Science.gov (United States)

    Payne, Hannah L; Raymond, Jennifer L

    2017-09-05

    Eye movements provide insights about a wide range of brain functions, from sensorimotor integration to cognition; hence, the measurement of eye movements is an important tool in neuroscience research. We describe a method, based on magnetic sensing, for measuring eye movements in head-fixed and freely moving mice. A small magnet was surgically implanted on the eye, and changes in the magnet angle as the eye rotated were detected by a magnetic field sensor. Systematic testing demonstrated high resolution measurements of eye position of eye tracking offers several advantages over the well-established eye coil and video-oculography methods. Most notably, it provides the first method for reliable, high-resolution measurement of eye movements in freely moving mice, revealing increased eye movements and altered binocular coordination compared to head-fixed mice. Overall, magnetic eye tracking provides a lightweight, inexpensive, easily implemented, and high-resolution method suitable for a wide range of applications.

  14. Peptidoglycan recognition protein 3 and Nod2 synergistically protect mice from dextran sodium sulfate-induced colitis

    Science.gov (United States)

    Jing, Xuefang; Zulfiqar, Fareeha; Park, Shin Yong; Núñez, Gabriel; Dziarski, Roman; Gupta, Dipika

    2014-01-01

    Aberrant immune response and changes in the gut microflora are the main causes of inflammatory bowel disease (IBD). Peptidoglycan recognition proteins (Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4) are bactericidal innate immunity proteins that maintain normal gut microbiome, protect against experimental colitis, and are associated with inflammatory bowel disease in humans. Nod2 is an intracellular bacterial sensor and may be required for maintaining normal gut microbiome. Mutations in Nod2 are strongly associated with Crohn's disease, but the causative mechanism is not understood, and Nod2 role in ulcerative colitis is not known. Because IBD is likely caused by variable multiple mutations in different individuals, in this study we examined the combined role of Pglyrp3 and Nod2 in the development of experimental colitis in mice. We demonstrate that a combined deficiency of Pglyrp3 and Nod2 results in higher sensitivity to dextran sodium sulfate (DSS)-induced colitis compared with a single deficiency. Pglyrp3−/−Nod2−/− mice had decreased survival and higher loss of body weight, increased intestinal bleeding, higher apoptosis of colonic mucosa, elevated expression of cytokines and chemokines, altered gut microbiome, and increased levels of ATP in the colon. Increased sensitivity to DSS-induced colitis in Pglyrp3−/−Nod2−/− mice depended on increased apoptosis of intestinal epithelium, changed gut microflora, and elevated ATP. Pglyrp3 deficiency contributed colitispredisposing intestinal microflora and increased intestinal ATP, whereas Nod2 deficiency contributed higher apoptosis and responsiveness to increased level of ATP. In summary, Pglyrp3 and Nod2 are both required for maintaining gut homeostasis and protection against colitis, but their protective mechanisms differ. PMID:25114103

  15. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin

    2006-01-01

    -/-) mice. Atherogenesis involves both inflammation and lipid deposition, and we investigated the role of SP-D in the development of atherosclerosis. SP-D synthesis was localized to vascular endothelial cells. Atherosclerotic lesion areas were 5.6-fold smaller in the aortic roots in Spd-/- mice compared...... with wild-type C57BL/6N mice on an atherogenic diet. HDL cholesterol (HDL-C) was significantly elevated in Spd-/- mice. Treatment of Spd-/- mice with a recombinant fragment of human SP-D resulted in decreases of HDL-C (21%) as well as total cholesterol (26%), and LDL cholesterol (28%). Plasma TNF......-alpha was reduced in Spd-/- mice (45% difference). SP-D was proatherogenic in the mouse model used. The effect is likely to be due to the observed disturbances of plasma lipid metabolism and alteration of the inflammatory process, which underlie the reduced susceptibility to atherosclerosis in Spd-/- mice....

  16. MAUS: MICE Analysis User Software

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Muon Ionization Cooling Experiment (MICE) has developed the MICE Analysis User Software (MAUS) to simulate and analyse experimental data. It serves as the primary codebase for the experiment, providing for online data quality checks and offline batch simulation and reconstruction. The code is structured in a Map-Reduce framework to allow parallelization whether on a personal machine or in the control room. Various software engineering practices from industry are also used to ensure correct and maintainable physics code, which include unit, functional and integration tests, continuous integration and load testing, code reviews, and distributed version control systems. Lastly, there are various small design decisions like using JSON as the data structure, using SWIG to allow developers to write components in either Python or C++, or using the SCons python-based build system that may be of interest to other experiments.

  17. Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6J mice.

    Science.gov (United States)

    Smith, Craig M; Chua, Berenice E; Zhang, Cary; Walker, Andrew W; Haidar, Mouna; Hawkes, David; Shabanpoor, Fazel; Hossain, Mohammad Akhter; Wade, John D; Rosengren, K Johan; Gundlach, Andrew L

    2014-07-15

    Behavioural arousal in mammals is regulated by various interacting central monoamine- and peptide-neurotransmitter/receptor systems, which function to maintain awake, alert and active states required for performance of goal-directed activities essential for survival, including food seeking. Existing anatomical and functional evidence suggests the highly-conserved neuropeptide, relaxin-3, which signals via its cognate Gi/o-protein coupled receptor, RXFP3, contributes to behavioural arousal and feeding behaviour in rodents. In studies to investigate this possibility further, adult male C57BL/6J mice were treated with the selective RXFP3 antagonist peptides, R3(B1-22)R/I5(A) and R3(B1-22)R, and motivated food seeking and consumption was assessed as a reflective output of behavioural arousal. Compared to vehicle treatment, intracerebroventricular (icv) injection of RXFP3 antagonists reduced: (i) food anticipatory activity before meal time during food restriction; (ii) consumption of highly palatable food; (iii) consumption of regular chow during the initial dark phase, and; (iv) consumption of regular chow after mild (∼4-h) food deprivation. Effects were not due to sedation and appeared to be specifically mediated via antagonism of relaxin-3/RXFP3 signalling, as RXFP3 antagonist treatment did not alter locomotor activity in wild-type mice or reduce palatable food intake in relaxin-3 deficient (knock-out) mice. Notably, in contrast to similar studies in the rat, icv injection of RXFP3 agonists and infusion into the paraventricular hypothalamic nucleus did not increase food consumption in mice, suggesting species differences in relaxin-3/RXFP3-related signalling networks. Together, our data provide evidence that endogenous relaxin-3/RXFP3 signalling promotes motivated food seeking and consumption, and in light of the established biological and translational importance of other arousal systems, relaxin-3/RXFP3 networks warrant further experimental investigation

  18. Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts.

    Science.gov (United States)

    Zhang, Wenbo; Tao, Aibin; Lan, Ting; Cepinskas, Gediminas; Kao, Raymond; Martin, Claudio M; Rui, Tao

    2017-03-01

    The NLRP3 inflammasome is an intracellular multiple-protein complex that controls the maturation and release of interleukin (IL)-1β and IL-18. Endogenous carbon monoxide (CO) is anti-inflammatory. The aim of this study was to assess the effects/mechanisms of CO-releasing molecule-3 (CORM-3)-dependent modulation of the NLRP3 inflammasome in cardiac fibroblasts (CF) and its effect on myocardial function in sepsis. CF were treated with CORM-3 or inactive CORM-3 (iCORM-3) before NLRP3 inflammasome priming with lipopolysaccharides (LPS) or following activation with adenosine triphosphate (ATP). In parallel, cardiomyocytes (CM) were challenged with supernatants of LPS/ATP-stimulated CF or a cytokine mixture (Cyto-mix) containing IL-1β, IL-18, and HMGB1. In vivo, mice were treated with CORM-3 before or after LPS to induce sepsis (endotoxemia). Pretreatment of CF with CORM-3 prevented an LPS-induced increase in NLRP3 and pro-IL-1β expression. Treatment of CF with CORM-3 before ATP prevented ATP-induced activation of the NLRP3 inflammasome. Challenging CF with LPS/ATP promoted NLRP3 interactions with adaptor ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain), which was prevented by CORM-3. Challenging CM with supernatants of CF with LPS/ATP or Cyto-mix (IL-1β, IL-18, and HMGB1) resulted in CM apoptosis, which was attenuated with either a CORM-3 or IL-1 receptor antagonist. Finally, myocardial NLRP3 inflammasome activation and myocardial dysfunction in septic mice were abolished by CORM-3. In NLRP3-deficient mice with sepsis, CORM-3 did not show additional benefits in improving myocardial function. Our results indicate that CORM-3 suppresses NLRP3 inflammasome activation by blocking NLRP3 interactions with the adaptor protein ASC and attenuates myocardial dysfunction in mice with sepsis.

  19. Primordial Germ Cells in Mice

    OpenAIRE

    Saitou, Mitinori; Yamaji, Masashi

    2012-01-01

    Germ cell development creates totipotency through genetic as well as epigenetic regulation of the genome function. Primordial germ cells (PGCs) are the first germ cell population established during development and are immediate precursors for both the oocytes and spermatogonia. We here summarize recent findings regarding the mechanism of PGC development in mice. We focus on the transcriptional and signaling mechanism for PGC specification, potential pluripotency, and epigenetic reprogramming ...

  20. Amylin induces hypoglycemia in mice

    OpenAIRE

    Guerreiro, Luiz H.; Daniel DA Silva; Mauro Sola-Penna; Mizurini, Daniella M.; Lima,Luís M.T.R.

    2013-01-01

    Amylin is a 37-aminoacid pancreatic protein that exerts control over several metabolic events such as glycemia and lacticemia. Amylin has long been shown to induce increases in arterial plasma glucose. We decided to investigate whether amylin plays additional roles in the glucose metabolism. We evaluated glucose homeostasis using whole blood from the tail tip of fasting, conscious, unrestrained normal and streptozotocyn-induced diabetic mice following subcutaneous administration of mouse amyl...

  1. Semen collection from mice: electroejaculation.

    Science.gov (United States)

    Tecirlioğlu, R T; Hayes, E S; Trounson, A O

    2002-01-01

    The effects of device type (electrostimulator, function generator or computer-generated waveforms), waveform (square, triangle or sine wave), probe type (ring or strip) and anaesthetic compound (ketamine/xylazine combination or pentobarbitone sodium) were investigated on electroejaculation (EEJ) responses of C57B1 x CBA and C57Bl/6J mice. Ejaculates were analysed for total sperm count and motility variables using computer-assisted sperm analyses. Automated computer-generated waveforms delivered through a sound card were more effective and reproducible compared with waveforms generated by function generator and electrostimulator. Sine waves and triangle waves were found to be more effective in producing ejaculate than square waves. As an anaesthetic, pentobarbitone sodium tended to outperform ketamine/xylazine across waveforms and strains. Strip probes failed to produce any ejaculate regardless of the device or waveform employed. Sperm obtained by EEJ exhibited poor motility and C5B1/6J mice had lower motility variables than C57BI x CBA mice.

  2. Postnatal Hematopoiesis and Gut Microbiota in NOD Mice Deviate from C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Dina Silke Malling Damlund

    2016-01-01

    Full Text Available Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND 1–4 in NOD mice. Furthermore, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface in NOD compared to C57BL/6 mice.

  3. V-akt murine thymoma viral oncogene homolog 3 (AKT3) contributes to poor disease outcome in humans and mice with pneumococcal meningitis.

    Science.gov (United States)

    Valls Serón, Mercedes; Ferwerda, Bart; Engelen-Lee, JooYeon; Geldhoff, Madelijn; Jaspers, Valery; Zwinderman, Aeilko H; Tanck, Michael W; Baas, Frank; van der Ende, Arie; Brouwer, Matthijs C; van de Beek, Diederik

    2016-05-18

    Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are substantial, and long-term sequelae develop in about half of survivors. Here, we have performed a prospective nationwide genetic association study using the Human Exome BeadChip and identified gene variants in encoding dynactin 4 (DCTN4), retinoic acid early transcript 1E (RAET1E), and V-akt murine thymoma viral oncogene homolog 3 (AKT3) to be associated with unfavourable outcome in patients with pneumococcal meningitis. No clinical replication cohort is available, so we validated the role of one of these targets, AKT3, in a pneumococcal meningitis mouse model. Akt3 deficient mice had worse survival and increased histopathology scores for parenchymal damage (infiltration) and vascular infiltration (large meningeal artery inflammation) but similar bacterial loads, cytokine responses, compared to wild-type mice. We found no differences in cerebrospinal fluid cytokine levels between patients with risk or non-risk alleles. Patients with the risk genotype (rs10157763, AA) presented with low scores on the Glasgow Coma Scale and high rate of epileptic seizures. Thus, our results show that AKT3 influences outcome of pneumococcal meningitis.

  4. Responses to novelty in staggerer mutant mice.

    Science.gov (United States)

    Misslin, R; Cigrang, M; Guastavino, J M

    1986-01-01

    Responses to novelty in normal C57BL/6 and staggerer mutant mice were recorded. The normal mice confronted a novel object in their familiar environment showed avoidance and burying responses while the staggerer mutant mice contacted it. When given the opportunity to move around freely in simultaneously presented novel and familiar environments, the mutant mice more quickly entered the novel areas than normal animals. these data reveal a significant decrease in the neophobic components of the neotic behaviour in the staggerer mice. However, since the mutant mice did not show a locomotor deficit, the impairment of neophobia seems not to be due to the gait abnormalities of these animals. The results support the view that the cerebellum may contribute to the organization of complex behaviours. Copyright © 1986. Published by Elsevier B.V.

  5. How Ketamine Affects Livers of Pregnant Mice and Developing Mice?

    Directory of Open Access Journals (Sweden)

    Hoi Man Cheung

    2017-05-01

    Full Text Available It is well known that ketamine abuse can induce liver damage in adult addicts, but the effects of ketamine abuse in pregnant mothers on their offspring have received less attention. In this study, we investigated the effects of 5-day ketamine injections (30 mg/kg to pregnant Institute for Cancer Research (ICR mice during early gestation or mid-gestation on the aspartate aminotransferase (AST and alkaline phosphatase (ALP activities of the mothers and the offspring. We also looked into whether administering ketamine treatment to the mothers had any effects on the extent of fibrosis, cell proliferation and cell death in the livers of the newborns. No significant biochemical differences were found between treatment and control groups in the mothers. In the offspring, ketamine treatment mildly suppressed the gradual increase of hepatic AST activity in neonates during liver maturation. Measurements of hepatic ALP activity and lactic acid dehydrogenase (LDH immunoreactivity revealed that ketamine treatment may lead to increased cell death. Proliferation of liver cells of the newborns was also retarded as shown by reduced proliferative cell nuclear antigen (PCNA immunoreactivity in the ketamine groups. No obvious fibrosis was evident. Thus, we demonstrated that ketamine administration to pregnant mice suppressed hepatic development and also induced liver cell death of the offspring.

  6. 3-Acetylpyridine Neurotoxicity in Mice

    Science.gov (United States)

    Wecker, L.; Marrero-Rosado, B.; Engberg, M.E.; Johns, B.E.; Philpot, R.M.

    2016-01-01

    3-acetylpyridine (3-AP) is a metabolic antagonist used in research to decrease levels of nicotinamide (niacinamide) in laboratory animals. The administration of 3-AP followed by nicotinamide to rats leads to the selective destruction of neurons in the medial inferior olive, resulting in a loss of climbing fibers innervating cerebellar Purkinje cells and a consequent ataxia manifest by alterations in both balance and gait. Although 3-AP has also been administered to mice to destroy neurons in the inferior olive, there are limited studies quantifying the consequent effects on balance, and no studies on gait. Further, the relationship between 3-AP-induced lesions of the inferior olive and behavior has not been elucidated. Because 3-AP continues to be used for experiments involving mice, this study characterized the effects of this toxin on both balance and gait, and on the neuronal integrity of several brain regions involved in motor coordination. Results indicate that C57BL/6 mice are less sensitive to the neurotoxic effects of 3-AP than rats, and a dose more than 6.5 times that used for rats produces deficits in both balance and gait comparable to those in rats. This dose led to a significant (p< 0.05) loss of NeuN(+) neurons in several subregions of the inferior olive including the rostral medial nucleus, dorsomedial cell column, ventrolateral protrusion, and cap of Kooy. Further, the number of NeuN(+) neurons in these subregions, with the exception of the dorsomedial cell column, was significantly (p<0.05) related to rotorod performance, implicating their involvement in this behavior. PMID:27986589

  7. Testosterone and Dihydrotestosterone Differentially Improve Cognition in Aged Female Mice

    Science.gov (United States)

    Benice, Ted S.; Raber, Jacob

    2009-01-01

    Compared with age-matched male mice, female mice experience a more severe age-related cognitive decline (ACD). Since androgens are less abundant in aged female mice compared with aged male mice, androgen supplementation may enhance cognition in aged female mice. To test this, we assessed behavioral performance on a variety of tasks in 22- to…

  8. Mice embryology: a microscopic overview.

    Science.gov (United States)

    Salvadori, Maria Letícia Baptista; Lessa, Thais Borges; Russo, Fabiele Baldino; Fernandes, Renata Avancini; Kfoury, José Roberto; Braga, Patricia Cristina Baleeiro Beltrão; Miglino, Maria Angélica

    2012-10-01

    In this work, we studied the embryology of mice of 12, 14, and 18 days of gestation by gross observation, light microscopy, and scanning electron microscopy. Grossly, the embryos of 12 days were observed in C-shaped region of the brain, eye pigmentation of the retina, first, second, and third pharyngeal arches gill pit nasal region on the fourth ventricle brain, cervical curvature, heart, liver, limb bud thoracic, spinal cord, tail, umbilical cord, and place of the mesonephric ridge. Microscopically, the liver, cardiovascular system and spinal cord were observed. In the embryo of 14 days, we observed structures that make up the liver and heart. At 18 days of gestation fetuses, it was noted the presence of eyes, mouth, and nose in the cephalic region, chest and pelvic region with the presence of well-developed limbs, umbilical cord, and placenta. Scanning electron microscopy in 18 days of gestation fetuses evidenced head, eyes closed eyelids, nose, vibrissae, forelimb, heart, lung, kidney, liver, small bowel, diaphragm, and part of the spine. The results obtained in this work describe the internal and external morphology of mice, provided by an integration of techniques and review of the morphological knowledge of the embryonic development of this species, as this animal is of great importance to scientific studies. Copyright © 2012 Wiley Periodicals, Inc.

  9. Amylin induces hypoglycemia in mice

    Directory of Open Access Journals (Sweden)

    Luiz H. Guerreiro

    2013-03-01

    Full Text Available Amylin is a 37-aminoacid pancreatic protein that exerts control over several metabolic events such as glycemia and lacticemia. Amylin has long been shown to induce increases in arterial plasma glucose. We decided to investigate whether amylin plays additional roles in the glucose metabolism. We evaluated glucose homeostasis using whole blood from the tail tip of fasting, conscious, unrestrained normal and streptozotocyn-induced diabetic mice following subcutaneous administration of mouse amylin. Subcutaneous injection of 1 μg mouse amylin caused a transient decrease in whole blood glucose in both normal and diabetic mice in the absence of insulin. The blood glucose levels were lowest approximately 2 hours after amylin administration, after that they gradually recovered to the levels of the control group. The hypoglycemic effect followed a dose-dependent response ranging from 0.1 to 50 µg / mouse. These results reveal the ability for amylin in the direct control of glycemia at low doses in the absence of insulin.

  10. Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology.

    Science.gov (United States)

    Masopust, David; Sivula, Christine P; Jameson, Stephen C

    2017-07-15

    Mouse models have enabled breakthroughs in our understanding of the immune system, but it has become increasingly popular to emphasize their shortcomings when translating observations to humans. This review provides a brief summary of mouse natural history, husbandry, and the pros and cons of pursuing basic research in mice versus humans. Opportunities are discussed for extending the predictive translational value of mouse research, with an emphasis on exploitation of a "dirty" mouse model that better mimics the diverse infectious history that is typical of most humans. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Commissioning of the MICE RF System

    CERN Document Server

    Moss, A.; Stanley, T.; White, C.; Ronald, K.; Whyte, C.G.; Dick, A.J.; Speirs, D.C.; Alsari, S.

    2014-01-01

    The Muon Ionisation Cooling Experiment (MICE) is being constructed at Rutherford Appleton Laboratory in the UK. The muon beam will be cooled using multiple hydrogen absorbers then reaccelerated using an RF cavity system operating at 201MHz. This paper describes recent progress in commissioning the amplifier systems at their design operation conditions, installation and operation as part of the MICE project.

  12. Euthanasia of neonatal mice with carbon dioxide

    Science.gov (United States)

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  13. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd......-/-) mice. Atherogenesis involves both inflammation and lipid deposition, and we investigated the role of SP-D in the development of atherosclerosis. SP-D synthesis was localized to vascular endothelial cells. Atherosclerotic lesion areas were 5.6-fold smaller in the aortic roots in Spd-/- mice compared...... with wild-type C57BL/6N mice on an atherogenic diet. HDL cholesterol (HDL-C) was significantly elevated in Spd-/- mice. Treatment of Spd-/- mice with a recombinant fragment of human SP-D resulted in decreases of HDL-C (21%) as well as total cholesterol (26%), and LDL cholesterol (28%). Plasma TNF...

  14. Pion contamination in the MICE muon beam

    CERN Document Server

    Bogomilov, M.; Vankova-Kirilova, G.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; Palladino, V.; de Bari, A.; Cecchet, G.; Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.; Kuno, Y.; Sakamoto, H.; Ishimoto, S.; Japan, Ibaraki; Filthaut, F.; Hansen, O.M.; Ramberger, S.; Vretenar, M.; Asfandiyarov, R.; Blondel, A.; Drielsma, F.; Karadzhov, Y.; Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Oates, A.; Owens, P.; Stokes, G.; Warburton, P.; White, C.; Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.; Bayes, R.; Nugent, J.C.; Soler, F.J.P.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Hunt, C.; Lagrange, J-B.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Santos, E.; Savidge, T.; Uchida, M.A.; Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D.; Booth, C.N.; Hodgson, P.; Langlands, J.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J.; Dick, A.; Ronald, K.; Speirs, D.; Whyte, C.G.; Young, A.; Boyd, S.; Franchini, P.; Greis, J.R.; Pidcott, C.; Taylor, I.; Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.; Roberts, T.J.; Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.; Zisman, M.; Drews, M.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y.; Winter, M.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J.; Cline, D.; Yang, X.; Coney, L.; Hanson, G.G.; Heidt, C.

    2016-01-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than $\\sim$1\\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $f_\\pi < 1.4\\%$ at 90\\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  15. Mitochondrial adaptation in steatotic mice.

    Science.gov (United States)

    Einer, Claudia; Hohenester, Simon; Wimmer, Ralf; Wottke, Lena; Artmann, Renate; Schulz, Sabine; Gosmann, Christian; Simmons, Alisha; Leitzinger, Christin; Eberhagen, Carola; Borchard, Sabine; Schmitt, Sabine; Hauck, Stefanie M; von Toerne, Christine; Jastroch, Martin; Walheim, Ellen; Rust, Christian; Gerbes, Alexander L; Popper, Bastian; Mayr, Doris; Schnurr, Max; Vollmar, Angelika M; Denk, Gerald; Zischka, Hans

    2017-09-19

    Western lifestyle-associated malnutrition causes steatosis that may progress to liver inflammation and mitochondrial dysfunction has been suggested as a key factor in promoting this disease. Here we have molecularly, biochemically and biophysically analyzed mitochondria from steatotic wild type and immune-compromised mice fed a Western diet (WD) - enriched in saturated fatty acids (SFAs). WD-mitochondria demonstrated lipidomic changes, a decreased mitochondrial ATP production capacity and a significant sensitivity to calcium. These changes preceded hepatocyte damage and were not associated with enhanced ROS production. Thus, WD-mitochondria do not promote steatohepatitis per se, but demonstrate bioenergetic deficits and increased sensitivity to stress signals. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  16. Primordial Germ Cells in Mice

    Science.gov (United States)

    Saitou, Mitinori; Yamaji, Masashi

    2012-01-01

    Germ cell development creates totipotency through genetic as well as epigenetic regulation of the genome function. Primordial germ cells (PGCs) are the first germ cell population established during development and are immediate precursors for both the oocytes and spermatogonia. We here summarize recent findings regarding the mechanism of PGC development in mice. We focus on the transcriptional and signaling mechanism for PGC specification, potential pluripotency, and epigenetic reprogramming in PGCs and strategies for the reconstitution of germ cell development using pluripotent stem cells in culture. Continued studies on germ cell development may lead to the generation of totipotency in vitro, which should have a profound influence on biological science as well as on medicine. PMID:23125014

  17. Bortezomib alters sour taste sensitivity in mice

    Directory of Open Access Journals (Sweden)

    Akihiro Ohishi

    Full Text Available Chemotherapy-induced taste disorder is one of the critical issues in cancer therapy. Bortezomib, a proteasome inhibitor, is a key agent in multiple myeloma therapy, but it induces a taste disorder. In this study, we investigated the characteristics of bortezomib-induced taste disorder and the underlying mechanism in mice. Among the five basic tastes, the sour taste sensitivity of mice was significantly increased by bortezomib administration. In bortezomib-administered mice, protein expression of PKD2L1 was increased. The increased sour taste sensitivity induced by bortezomib returned to the control level on cessation of its administration. These results suggest that an increase in protein expression of PKD2L1 enhances the sour taste sensitivity in bortezomib-administered mice, and this alteration is reversed on cessation of its administration. Keywords: Taste disorder, Bortezomib, Sour taste, Chemotherapy, Adverse effect

  18. Responses of Male C57BL/6N Mice to Observing the Euthanasia of Other Mice

    Science.gov (United States)

    Boivin, Gregory P; Bottomley, Michael A; Grobe, Nadja

    2016-01-01

    The AVMA Panel on Euthanasia recommends that sensitive animals should not be present during the euthanasia of others, especially of their own species, but does not provide guidelines on how to identify a sensitive species. To determine if mice are a sensitive species we reviewed literature on empathy in mice, and measured the cardiovascular and activity response of mice observing euthanasia of conspecifics. We studied male 16-wk-old C57BL/6N mice and found no increase in cardiovascular parameters or activity in the response of the mice to observing CO2 euthanasia. Mice observing decapitation had an increase in all values, but this was paralleled by a similar increase during mock decapitations in which no animals were handled or euthanized. We conclude that CO2 euthanasia of mice does not have an impact on other mice in the room, and that euthanasia by decapitation likely only has an effect due to the noise of the guillotine. We support the conceptual idea that mice are both a sensitive species and display empathy, but under the controlled circumstances of the euthanasia procedures used in this study there was no signaling of stress to witnessing inhabitants in the room. PMID:27423146

  19. Metabolic characteristics of long-lived mice.

    Science.gov (United States)

    Bartke, Andrzej; Westbrook, Reyhan

    2012-01-01

    Genetic suppression of insulin/insulin-like growth factor signaling (IIS) can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH) release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor I. Long-lived GH-resistant GHR-KO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1(df)) and Snell dwarf (Pit1(dw)) mice lacking GH (along with prolactin and TSH), are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHR-KO mice. Indirect calorimetry revealed that both Ames dwarf and GHR-KO mice utilize more oxygen per gram (g) of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO(2)) were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO(2) did not differ between GHR-KO and normal mice. Thus, the increased metabolic rate of the GHR-KO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of GHR-KO mice.

  20. Metabolic characteristics of long-lived mice

    Directory of Open Access Journals (Sweden)

    Andrzej eBartke

    2012-12-01

    Full Text Available Genetic suppression of insulin/insulin-like growth factor signaling (IIS can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor (IGF-1. Long-lived GH-resistant GHRKO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1df and Snell dwarf (Pit1dw mice lacking GH (along with prolactin and TSH, are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHRKO mice. Indirect calorimetry revealed that both Ames dwarf and GHRKO mice utilize more oxygen per gram (g of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient (RQ, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO2 were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO2 did not differ between GHRKO and normal mice. Thus, the increased metabolic rate of the GHRKO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of

  1. Lessons from Tau-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yazi D. Ke

    2012-01-01

    Full Text Available Both Alzheimer's disease (AD and frontotemporal dementia (FTD are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to the umbrella term “tauopathies” for these conditions, also emphasizing the central role of tau in AD and FTD. Generation of transgenic mouse models expressing human tau in the brain has contributed to the understanding of the pathomechanistic role of tau in disease. To reveal the physiological functions of tau in vivo, several knockout mouse strains with deletion of the tau-encoding MAPT gene have been established over the past decade, using different gene targeting constructs. Surprisingly, when initially introduced tau knockout mice presented with no overt phenotype or malformations. The number of publications using tau knockout mice has recently markedly increased, and both behavioural changes and motor deficits have been identified in aged mice of certain strains. Moreover, tau knockout mice have been instrumental in identifying novel functions of tau, both in cultured neurons and in vivo. Importantly, tau knockout mice have significantly contributed to the understanding of the pathophysiological interplay between Aβ and tau in AD. Here, we review the literature that involves tau knockout mice to summarize what we have learned so far from depleting tau in vivo.

  2. Lovastatin protects against experimental plague in mice.

    Directory of Open Access Journals (Sweden)

    Saravanan Ayyadurai

    Full Text Available BACKGROUND: Plague is an ectoparasite-borne deadly infection caused by Yersinia pestis, a bacterium classified among the group A bioterrorism agents. Thousands of deaths are reported every year in some African countries. Tetracyclines and cotrimoxazole are used in the secondary prophylaxis of plague in the case of potential exposure to Y. pestis, but cotrimoxazole-resistant isolates have been reported. There is a need for additional prophylactic measures. We aimed to study the effectiveness of lovastatin, a cholesterol-lowering drug known to alleviate the symptoms of sepsis, for plague prophylaxis in an experimental model. METHODOLOGY: Lovastatin dissolved in Endolipide was intraperitoneally administered to mice (20 mg/kg every day for 6 days prior to a Y. pestis Orientalis biotype challenge. Non-challenged, lovastatin-treated and challenged, untreated mice were also used as control groups in the study. Body weight, physical behavior and death were recorded both prior to infection and for 10 days post-infection. Samples of the blood, lungs and spleen were collected from dead mice for direct microbiological examination, histopathology and culture. The potential antibiotic effect of lovastatin was tested on blood agar plates. CONCLUSIONS/SIGNIFICANCE: Lovastatin had no in-vitro antibiotic effect against Y. pestis. The difference in the mortality between control mice (11/15; 73.5% and lovastatin-treated mice (3/15; 20% was significant (P<0.004; Mantel-Haenszel test. Dead mice exhibited Y. pestis septicemia and inflammatory destruction of lung and spleen tissues not seen in lovastatin-treated surviving mice. These data suggest that lovastatin may help prevent the deadly effects of plague. Field observations are warranted to assess the role of lovastatin in the prophylaxis of human plague.

  3. Pulmonary Iron Homeostasis in Hepcidin Knockout Mice

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Deschemin

    2017-10-01

    Full Text Available Pulmonary iron excess is deleterious and contributes to a range of chronic and acute inflammatory diseases. Optimal lung iron concentration is maintained through dynamic regulation of iron transport and storage proteins. The iron-regulatory hormone hepcidin is also expressed in the lung. In order to better understand the interactions between iron-associated molecules and the hepcidin-ferroportin axis in lung iron balance, we examined lung physiology and inflammatory responses in two murine models of systemic iron-loading, either hepcidin knock-out (Hepc KO or liver-specific hepcidin KO mice (Hepc KOliv, which do (Hepc KOliv or do not (Hepc KO express lung hepcidin. We have found that increased plasma iron in Hepc KO mice is associated with increased pulmonary iron levels, consistent with increased cellular iron uptake by pulmonary epithelial cells, together with an increase at the apical membrane of the cells of the iron exporter ferroportin, consistent with increased iron export in the alveoli. Subsequently, alveolar macrophages (AM accumulate iron in a non-toxic form and this is associated with elevated production of ferritin. The accumulation of iron in the lung macrophages of hepcidin KO mice contrasts with splenic and hepatic macrophages which contain low iron levels as we have previously reported. Hepc KOliv mice with liver-specific hepcidin deficiency demonstrated same pulmonary iron overload profile as the Hepc KO mice, suggesting that pulmonary hepcidin is not critical in maintaining local iron homeostasis. In addition, the high iron load in the lung of Hepc KO mice does not appear to enhance acute lung inflammation or injury. Lastly, we have shown that intraperitoneal LPS injection is not associated with pulmonary hepcidin induction, despite high levels of inflammatory cytokines. However, intranasal LPS injection stimulates a hepcidin response, likely derived from AM, and alters pulmonary iron content in Hepc KO mice.

  4. Postnatal hematopoiesis and gut microbiota in NOD mice deviate from C57BL/6 mice

    DEFF Research Database (Denmark)

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss

    2016-01-01

    from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND) 1-4 in NOD mice. Furthermore...

  5. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice.

    Science.gov (United States)

    Liu, Ying-Juan; Li, Lai-Fu; Zhang, Yao-Hua; Guo, Hui-Fen; Xia, Min; Zhang, Meng-Wei; Jing, Xiao-Yuan; Zhang, Jing-Hua; Zhang, Jian-Xu

    2017-03-01

    Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Demodex musculi Infestation in Genetically Immunomodulated Mice

    Science.gov (United States)

    Smith, Peter C; Zeiss, Caroline J; Beck, Amanda P; Scholz, Jodi A

    2016-01-01

    Demodex musculi, a prostigmatid mite that has been reported infrequently in laboratory mice, has been identified with increasing frequency in contemporary colonies of immunodeficient mice. Here we describe 2 episodes of D. musculi infestation with associated clinical signs in various genetically engineered mouse strains, as well as treatment strategies and an investigation into transmissibility and host susceptibility. The first case involved D. musculi associated with clinical signs and pathologic lesions in BALB/c-Tg(DO11.10)Il13tm mice, which have a defect in type 2 helper T cell (Th2) immunity. Subsequent investigation revealed mite transmission to both parental strains (BALB/c-Tg[DO11.10] and BALB/c-Il13tm), BALB/c-Il13/Il4tm, and wild-type BALB/c. All Tg(DO11.10)Il13tm mice remained infested throughout the investigation, and D. musculi were recovered from all strains when they were cohoused with BALB/c-Tg(DO11.10)Il13tm index mice. However, only Il13tm and Il13/Il4tm mice demonstrated persistent infestation after index mice were removed. Only BALB/c-Tg(DO11.10)Il13tm showed clinical signs, suggesting that the phenotypic dysfunction of Th2 immunity is sufficient for persistent infestation, whereas clinical disease associated with D. musculi appears to be genotype-specific. This pattern was further exemplified in the second case, which involved NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) and C;129S4 Rag2tm1.1Flv Il2rgtm1.1Flv/J mice with varying degrees of blepharitis, conjunctivitis, and facial pruritis. Topical amitraz decreased mite burden but did not eliminate infestation or markedly ameliorate clinical signs. Furthermore, mite burden began to increase by 1 mo posttreatment, suggesting that topical amitraz is an ineffective treatment for D. musculi. These experiences illustrate the need for vigilance regarding opportunistic and uncommon pathogens in rodent colonies, especially among mice with immunologic deficits. PMID:27538858

  7. Cacao polyphenols ameliorate autoimmune myocarditis in mice.

    Science.gov (United States)

    Zempo, Hirofumi; Suzuki, Jun-ichi; Watanabe, Ryo; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2016-04-01

    Myocarditis is a clinically severe disease; however, no effective treatment has been established. The aim of this study was to determine whether cacao bean (Theobroma cacao) polyphenols ameliorate autoimmune myocarditis. We used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. Mice with induced EAM were treated with a cacao polyphenol extract (CPE, n=12) or vehicle (n=12). On day 21, hearts were harvested and analyzed. Elevated heart weight to body weight and fibrotic area ratios as well as high cardiac cell infiltration were observed in the vehicle-treated EAM mice. However, these increases were significantly suppressed in the CPE-treated mice. Reverse transcriptase-PCR revealed that mRNA expressions of interleukin (Il)-1β, Il-6, E-selectin, vascular cell adhesion molecule-1 and collagen type 1 were lower in the CPE group compared with the vehicle group. The mRNA expressions of nicotinamide adenine dinucleotide phosphate-oxidase (Nox)2 and Nox4 were increased in the vehicle-treated EAM hearts, although CPE treatment did not significantly suppress the transcription levels. However, compared with vehicle treatment of EAM hearts, CPE treatment significantly suppressed hydrogen peroxide concentrations. Cardiac myeloperoxidase activity, the intensity of dihydroethidium staining and the phosphorylation of nuclear factor-κB p65 were also lower in the CPE group compared with the vehicle group. Our data suggest that CPE ameliorates EAM in mice. CPE is a promising dietary supplement to suppress cardiovascular inflammation and oxidative stress.

  8. Effectiveness of BCG vaccination to aged mice

    Directory of Open Access Journals (Sweden)

    Ito Tsukasa

    2010-09-01

    Full Text Available Abstract Background The tuberculosis (TB still increases in the number of new cases, which is estimated to approach 10 million in 2010. The number of aged people has been growing all over the world. Ageing is one of risk factors in tuberculosis because of decreased immune responses in aged people. Mycobacterium bovis Bacillus Calmette Guérin (BCG is a sole vaccine currently used for TB, however, the efficacy of BCG in adults is still a matter of debate. Emerging the multidrug resistant Mycobacterium tuberculosis (MDR-TB make us to see the importance of vaccination against TB in new light. In this study, we evaluated the efficacy of BCG vaccination in aged mice. Results The Th1 responses, interferon-γ production and interleukin 2, in BCG inoculated aged mice (24-month-old were comparable to those of young mice (4- to 6-week-old. The protection activity of BCG in aged mice against Mycobacterium tuberculosis H37Rv was also the same as young mice. Conclusion These findings suggest that vaccination in aged generation is still effective for protection against tuberculosis.

  9. Thermogenic characterization of ghrelin receptor null mice.

    Science.gov (United States)

    Lin, Ligen; Sun, Yuxiang

    2012-01-01

    Ghrelin is the only known circulating orexigenic hormone that increases food intake and promotes adiposity, and these physiological functions of ghrelin are mediated through its receptor growth hormone secretagogue receptor (GHS-R). Ghrelin/GHS-R signaling plays a crucial role in energy homeostasis. Old GHS-R null mice exhibit a healthy phenotype-lean and insulin sensitive. Interestingly, the GHS-R null mice have increased energy expenditure, yet exhibit no difference in food intake or locomotor activity compared to wild-type mice. We have found that GHS-R is expressed in brown adipose tissue (BAT) of old mice. Ablation of GHS-R attenuates age-associated decline in thermogenesis, exhibiting a higher core body temperature. Indeed, the BAT of old GHS-R null mice reveals enhanced thermogenic capacity, which is consistent with the gene expression profile of increases in glucose/lipid uptake, lipogenesis, and lipolysis in BAT. The data collectively suggest that ghrelin/GHS-R signaling has important roles in thermogenesis. The recent discovery that BAT also regulates energy homeostasis in adult humans makes the BAT a new antiobesity target. Understanding the roles and molecular mechanisms of ghrelin/GHS-R in thermogenesis is of great significance. GHS-R antagonists might be a novel means of combating obesity by shifting adiposity balance from obesogenesis to thermogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Ghrelin reverses experimental diabetic neuropathy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kyoraku, Itaru; Shiomi, Kazutaka [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Kangawa, Kenji [Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka 565-8565 (Japan); Nakazato, Masamitsu, E-mail: nakazato@med.miyazaki-u.ac.jp [Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan)

    2009-11-20

    Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, suppresses inflammation and oxidative stress, and promotes cell survival and proliferation. We investigated the pharmacological potential of ghrelin in the treatment of polyneuropathy in uncontrolled streptozotocin (STZ)-induced diabetes in mice. Ghrelin or desacyl-ghrelin was administered daily for 4 weeks after STZ-induced diabetic polyneuropathy had developed. Ghrelin administration did not alter food intake, body weight gain, blood glucose levels, or plasma insulin levels when compared with mice given saline or desacyl-ghrelin administration. Ghrelin administration ameliorated reductions in motor and sensory nerve conduction velocities in diabetic mice and normalized their temperature sensation and plasma concentrations of 8-isoprostaglandin {alpha}, an oxidative stress marker. Desacyl-ghrelin failed to have any effect. Ghrelin administration in a mouse model of diabetes ameliorated polyneuropathy. Thus, ghrelin's effects represent a novel therapeutic paradigm for the treatment of this otherwise intractable disorder.

  11. Mapping pathological phenotypes in Reelin mutant mice

    Directory of Open Access Journals (Sweden)

    Caterina eMichetti

    2014-09-01

    Full Text Available Autism Spectrum Disorders (ASD are neurodevelopmental disorders with multifactorial origin characterized by social communication and behavioural perseveration deficits. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we investigated the behavioural, neurochemical and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reeler pups. We now report that adult male heterozygous reeler mice did not show social behaviour and communication deficits during male-female social interactions. Wildtype and heterozygous mice also showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection only heterozygous mice showed an over response to stress. At the end of the behavioural studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in heterozygous mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD

  12. Neurobehavioral toxicity of carbon nanotubes in mice.

    Science.gov (United States)

    Gholamine, Babak; Karimi, Isaac; Salimi, Amir; Mazdarani, Parisa; Becker, Lora A

    2017-04-01

    The aim of this study was to evaluate neurobehavioral toxicity of single-walled (SWNTs) and multiwalled carbon nanotubes (MWNTs) in mice. Male NMRI mice were randomized into 5 groups ( n = 10 each): Normal control (NC) group was injected intraperitoneally (i.p.) with phosphate-buffered saline (PBS) solution (pH 7.8; ca. 1 mL), MW80 and MW800 groups were injected with either i.p. 80 or 800 mg kg-1 MWNTs suspended in 1 mL of PBS and SW80 and SW800 groups were injected with either i.p. 80 or 800 mg kg-1 SWNTs suspended in 1 mL of PBS. After 2 weeks, five mice from each group were evaluated for brain-derived neurotrophic factor (BDNF) messenger RNA expression and protein content of brain tissues. Locomotion, anxiety, learning and memory, and depression were measured by open field test (OFT), elevated plus-maze (EPM), object recognition test (ORT), and forced swimming test (FST), respectively. Ambulation time and center arena time in the OFT did not change among groups. In the EPM paradigm, SWNTs (800 mg kg-1) and MWNTs (80 and 800 mg kg-1) showed an anxiogenic effect. In ORT, MWNTs (80 mg kg-1) increased the discrimination ratio while in FST, MWNTs showed a depressant effect as compared to vehicle. The BDNF gene expression in mice treated with 80 and 800 mg kg-1 SWNTs or 80 mg kg-1 MWNTs decreased as compared to NC mice although BDNF gene expression increased in mice that were treated with 800 mg kg-1 MWNTs. The whole brain BDNF protein content did not change among groups. Our study showed that i.p. exposure to carbon nanotubes (CNTs) may result in behavioral toxicity linked with expression of depression or anxiety that depends on the type of CNTs. In addition, exposure to CNTs changed BDNF gene expression.

  13. Quantification of alcohol drinking patterns in mice.

    Science.gov (United States)

    Eisenhardt, Manuela; Leixner, Sarah; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-01

    The use of mice in alcohol research provides an excellent model system for a better understanding of the genetics and neurobiology of alcohol addiction. Almost 60 years ago, alcohol researchers began to test strains of mice for alcohol preference and intake. In particular, various voluntary alcohol drinking paradigms in the home cage were developed. In mouse models of voluntary oral alcohol consumption, animals have concurrent access to water and either one or several concentrated alcohol solutions in their home cages. Although these models have high face validity, many experimental conditions require a more precise monitoring of alcohol consumption in mice in order to capture the role of specific strains or genes, or any other manipulation on alcohol drinking behavior. Therefore, we have developed a fully automated, highly precise monitoring system for alcohol drinking in mice in the home cage. This system is now commercially available. We show that this drinkometer system allows for detecting differences in drinking behavior (i) in transgenic mice, (ii) following alcohol deprivation, and (iii) following stress applications that are usually not detected by classical home-cage drinking paradigms. In conclusion, our drinkometer system allows disturbance-free and high resolution monitoring of alcohol drinking behavior. In particular, micro-drinking and circadian drinking patterns can be monitored in genetically modified and inbred strains of mice after environmental and pharmacological manipulation, and therefore this system represents an improvement in measuring behavioral features that are of relevance for the development of alcohol use disorders. © 2015 Society for the Study of Addiction.

  14. MICE Spectrometer Solenoid Magnetic Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leonova, M. [Fermilab

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  15. Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice.

    Science.gov (United States)

    Lapatto, Risto; Pallais, J Carl; Zhang, Dongsheng; Chan, Yee-Ming; Mahan, Amy; Cerrato, Felecia; Le, Wei Wei; Hoffman, Gloria E; Seminara, Stephanie B

    2007-10-01

    The G protein-coupled receptor Gpr54 and its ligand metastin (derived from the Kiss1 gene product kisspeptin) are key gatekeepers of sexual maturation. Gpr54 knockout mice demonstrate hypogonadotropic hypogonadism, but until recently, the phenotype of Kiss1 knockout mice was unknown. This report describes the reproductive phenotypes of mice carrying targeted deletions of Kiss1 or Gpr54 on the same genetic background. Both Kiss1 and Gpr54 knockout mice are viable but infertile and have abnormal sexual maturation; the majority of males lack preputial separation, and females have delayed vaginal opening and absence of estrous cycling. Kiss1 and Gpr54 knockout males have significantly smaller testes compared with controls. Gpr54 knockout females have smaller ovaries and uteri than wild-type females. However, Kiss1 knockout females demonstrate two distinct phenotypes: half have markedly reduced gonadal weights similar to those of Gpr54 knockout mice, whereas half exhibit persistent vaginal cornification and have gonadal weights comparable with those of wild-type females. FSH levels in both Kiss1 and Gpr54 knockout males and females are significantly lower than in controls. When injected with mouse metastin 43-52, a Gpr54 agonist, Gpr54 knockout mice fail to increase gonadotropins, whereas Kiss1 knockout mice respond with increased gonadotropin levels. In summary, both Kiss1 and Gpr54 knockout mice have abnormal sexual maturation consistent with hypogonadotropic hypogonadism, although Kiss1 knockout mice appear to be less severely affected than their receptor counterparts. Kiss1 knockout females demonstrate a bimodal phenotypic variability, with some animals having higher gonadal weight, larger vaginal opening, and persistent vaginal cornification.

  16. The tumor spectrum in FHIT-deficient mice

    Science.gov (United States)

    Zanesi, Nicola; Fidanza, Vincenzo; Fong, Louise Y.; Mancini, Rita; Druck, Teresa; Valtieri, Mauro; Rüdiger, Thomas; McCue, Peter A.; Croce, Carlo M.; Huebner, Kay

    2001-01-01

    Mice carrying one inactivated Fhit allele (Fhit +/− mice) are highly susceptible to tumor induction by N-nitrosomethylbenzylamine, with 100% of Fhit +/− mice exhibiting tumors of the forestomach/squamocolumnar junction vs. 25% of Fhit +/+ controls. In the current study a single N-nitrosomethylbenzylamine dose was administered to Fhit +/+, +/−, and −/− mice to compare carcinogen susceptibility in +/- and −/− Fhit-deficient mice. At 29 weeks after treatment, 7.7% of wild-type mice had tumors. Of the Fhit −/− mice 89.5% exhibited tumors (average 3.3 tumors/mouse) of the forestomach and squamocolumnar junction; half of the −/− mice had medium (2 mm diameter) to large (>2 mm) tumors. Of the Fhit +/− mice 78% exhibited tumors (average 2.4 tumors/mouse) and 22% showed medium to large tumors. Untreated Fhit-deficient mice have been observed for up to 2 years for spontaneous tumors. Fhit +/− mice (average age 21 mo) exhibit an average of 0.94 tumors of different types; Fhit −/− mice (average age 16 mo) also showed an array of tumors (average 0.76 tumor/mouse). The similar spontaneous and induced tumor spectra observed in mice with one or both Fhit alleles inactivated suggests that Fhit may be a one-hit tumor suppressor gene in some tissues. PMID:11517343

  17. Social and Sexual Behaivours of Mice in Partial Gravity

    Science.gov (United States)

    Aou, Shuji; Hasegawa, Katsuya; Kumei, Yasuhiro; Inoue, Katarzyna; Zeredo, Jorge; Narikiyo, Kimiya; Watanabe, Yuuki

    2012-07-01

    We examined social and sexual behaviours in normal ICR mice, C57BL mice and obese db/db mice lacking leptin receptors in low gravity conditions using parabolic-flight to generate graded levels of partial gravity. Although both normal and obese mice floated with vigorous limb and tail movements when a floor is smooth in microgravity but they were rather stable if a floor is cover by carpet. Obese mice were more stable and socially contacted longer with a partner in low-gravity conditions. When they returned to the home cage after parabolic flights, obese mice started to eat sooner without restless behaviour, while control mice showed restless behaviour without eating. Face grooming, an indicator of stress response, was found more often in the control mice than the obese mice. Obese mice returned to resting condition faster than the control. We also analysed sexual behaviour of ICR mice and C57BL mice but not db/db mice since they are sexually inactive. Social and sexual behaviour could be evaluated in partial gravity conditions to get basic data concerning whether rodents can communicate and reproduce in Moon, Mars and space or not. Supported by Grant-in-Aid for Exploratory Research (JSPS) to S Aou and FY2010 grants from JAXA and Japan Society for Promotion of Science to Y. Kumei.

  18. [Anatomy and histology characteristics of lymph node in nude mice].

    Science.gov (United States)

    Sun, R; Gao, B; Guo, C B

    2017-10-18

    To compare the differences of anatomical and histological characteristics of lymph nodes between BALB/c nude mice and BALB/c mice. Firstly, twenty BALB/c nude mice and twenty BALB/c mice were dissected by using a surgical microscope. Secondly, the differences of T cells and B cells at the lymph node were compared by the expressions of CD 3 and CD 20 immunohistochemistry dyes. There were, on average, 23 nodes per mouse contained within the large lymph node assembly in the BALB/c nude mouse. The anatomical features of the lymph node distribution in the nude mice were mainly found in the neck with relatively higher density. There were two lymph nodes both in the submandible lymph nodes group and in the superficial cervical lymph nodes group (the constituent ratios were 95% and 90%, respectively) in the BALB/c nude mice, but there were four lymph nodes (the constituent ratios were 95% and 90%, respectively) in the BALB/c mice. There were significant difference between the BALB/c nude mice and the BALB/c mice. Mostly there were two lymph nodes of deep cervical lymph nodes both in the BALB/c nude mice and the BALB/c mice (the constituent ratios were 95% and 100%, respectively). There were no significant difference between the BALB/c nude mice and the BALB/c mice. We confirmed that the number of CD 3 -positive T lymphocytes in lymph nodes of the nude mice decreased greatly as compared with the BALB/c mice. Expressions of CD3 in T cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There were significant differences between the BALB/c nude mice and the BALB/c mice. Expressions of CD20 in B cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There was no significant difference between the BALB/c nude mice and BALB/c mice. The anatomical pictures of lymph node distribution in the nude mouse will be benefit to those who are interested. The anatomical features of the lymph node local higher density in neck of

  19. Calpain-Dependent Proteolysis of the Androgen Receptor

    Science.gov (United States)

    2009-11-01

    for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses...Giovannucci, M.J. Stampfer, K. Krithivas, M. Brown, D. Dahl, A. Brufsky, J. Talcott , C.H. Hennekens, P.W. Kantoff, The CAG repeat within the androgen...Amorino, S.J. Parsons , Neuroendocrine cells in prostate cancer, Critical Reviews in Eukaryotic Gene Expression 14 (2004) 287–300. [43] J.C. Reubi, S

  20. A novel and simple method for endotracheal intubation of mice

    NARCIS (Netherlands)

    Spoelstra, E. N.; Ince, C.; Koeman, A.; Emons, V. M.; Brouwer, L. A.; van Luyn, M. J. A.; Westerink, B. H. C.; Remie, R.

    Endotracheal intubation in mice is necessary for experiments involving intratracheal instillation of various substances, repeated pulmonary function assessments and mechanical ventilation. Previously described methods for endotracheal intubation in mice require the use of injection anaesthesia to

  1. Effect of cadmium chloride on hepatic lipid peroxidation in mice

    DEFF Research Database (Denmark)

    Andersen, H R; Andersen, O

    1988-01-01

    Intraperitoneal administration of cadmium chloride to 8-12 weeks old CBA-mice enhanced hepatic lipid peroxidation. A positive correlation between cadmium chloride dose and level of peroxidation was observed in both male and female mice. A sex-related difference in mortality was not observed...... but at a dose of 25 mumol CdCl2/kg the level of hepatic lipid peroxidation was higher in male mice than in female mice. The hepatic lipid peroxidation was not increased above the control level in 3 weeks old mice, while 6 weeks old mice responded with increased peroxidation as did 8-12 weeks old mice....... The mortality after an acute toxic dose of cadmium chloride was the same in the three age groups. Pretreatment of mice with several low intraperitoneal doses of cadmium chloride alleviated cadmium induced mortality and lipid peroxidation. The results demonstrate both age dependency and a protective effect...

  2. Pica behavior induced by body rotation in mice.

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Xiaodong; Zheng, Jiemin; Huang, Mao

    2008-01-01

    To study whether rotational stimulus induced pica and whether the vestibular apparatus was necessary for obtaining rotation-induced pica in mice. Pica behavior in mice was investigated following 60 min of rotation once daily at 70 rpm (15 s on with 5 s off) for 3 consecutive days. After evaluating vestibular function and histology of vestibular epithelia, we examined rotation-induced kaolin intake, so-called pica, in sham-lesioned and chemically labyrinthectomized mice. The labyrinthectomized mice exhibited loss of the contact righting and swimming capability while the destruction of hair cells of vestibular epithelia was observed. Moreover, mice subjected to rotation, but not labyrinthectomized mice, showed a significant increase in kaolin intake at the last 2 rotation sessions and the first postrotation session. The findings indicated that a functioning vestibular system is necessary for rotation-evoking pica in mice and thus pica can be a behavioral index of motion sickness in mice. 2008 S. Karger AG, Basel

  3. Vertical transmission of Brucella abortus causes sterility in pregnant mice.

    Science.gov (United States)

    Hashino, Masanori; Kim, Suk; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa

    2012-08-01

    The mechanisms of abortion and sterility induced by bacterial infection are largely unknown. In the present study, we found that Brucella abortus, a causative agent of brucellosis and facultative intracellular pathogen, caused sterility in pregnant mice. We have recently established a mouse model for abortion induced by B. abortus infection and high rates of abortion are observed for bacterial infection on day 4.5 of gestation, but not for other days. Infected newborn (first generation) mice showed poor growth compared with uninfected newborn mice and bacterial replication in the spleen of the former was observed over a long period. When infected first generation female mice were mated to infected first generation male mice, the number of fetuses was significantly less than that in uninfected first generation mice. These infected second generation mice also showed poor growth. These results suggest that vertical transmission of B. abostus causes sterility in pregnant mice and our mouse model would be useful for the investigating of brucellosis.

  4. Vascular Adaptations to Transverse Aortic Banding in Mice

    National Research Council Canada - National Science Library

    Hartley, Craig

    2001-01-01

    .... Results showed that mean aortic, mitral, and carotid velocities were similar in sham and banded mice, but peak RCA/LCA velocities were much higher in banded mice and were highly correlated to HW...

  5. Dentin Dysplasia in Notum Knockout Mice.

    Science.gov (United States)

    Vogel, P; Read, R W; Hansen, G M; Powell, D R; Kantaputra, P N; Zambrowicz, B; Brommage, R

    2016-07-01

    Secreted WNT proteins control cell differentiation and proliferation in many tissues, and NOTUM is a secreted enzyme that modulates WNT morphogens by removing a palmitoleoylate moiety that is essential for their activity. To better understand the role this enzyme in development, the authors produced NOTUM-deficient mice by targeted insertional disruption of the Notum gene. The authors discovered a critical role for NOTUM in dentin morphogenesis suggesting that increased WNT activity can disrupt odontoblast differentiation and orientation in both incisor and molar teeth. Although molars in Notum(-/-) mice had normal-shaped crowns and normal mantle dentin, the defective crown dentin resulted in enamel prone to fracture during mastication and made teeth more susceptible to endodontal inflammation and necrosis. The dentin dysplasia and short roots contributed to tooth hypermobility and to the spread of periodontal inflammation, which often progressed to periapical abscess formation. The additional incidental finding of renal agenesis in some Notum (-/-) mice indicated that NOTUM also has a role in kidney development, with undiagnosed bilateral renal agenesis most likely responsible for the observed decreased perinatal viability of Notum(-/-) mice. The findings support a significant role for NOTUM in modulating WNT signaling pathways that have pleiotropic effects on tooth and kidney development. © The Author(s) 2016.

  6. Hyperalgesic activity of kisspeptin in mice

    Science.gov (United States)

    2011-01-01

    Background Kisspeptin is a neuropeptide known for its role in the hypothalamic regulation of the reproductive axis. Following the recent description of kisspeptin and its 7-TM receptor, GPR54, in the dorsal root ganglia and dorsal horns of the spinal cord, we examined the role of kisspeptin in the regulation of pain sensitivity in mice. Results Immunofluorescent staining in the mouse skin showed the presence of GPR54 receptors in PGP9.5-positive sensory fibers. Intraplantar injection of kisspeptin (1 or 3 nmol/5 μl) induced a small nocifensive response in naive mice, and lowered thermal pain threshold in the hot plate test. Both intraplantar and intrathecal (0.5 or 1 nmol/3 μl) injection of kisspeptin caused hyperalgesia in the first and second phases of the formalin test, whereas the GPR54 antagonist, p234 (0.1 or 1 nmol), caused a robust analgesia. Intraplantar injection of kisspeptin combined with formalin enhanced TRPV1 phosphorylation at Ser800 at the injection site, and increased ERK1/2 phosphorylation in the ipsilateral dorsal horn as compared to naive mice and mice treated with formalin alone. Conclusion These data demonstrate for the first time that kisspeptin regulates pain sensitivity in rodents and suggest that peripheral GPR54 receptors could be targeted by novel drugs in the treatment of inflammatory pain. PMID:22112588

  7. Hyperalgesic activity of kisspeptin in mice

    Directory of Open Access Journals (Sweden)

    Spampinato Simona

    2011-11-01

    Full Text Available Abstract Background Kisspeptin is a neuropeptide known for its role in the hypothalamic regulation of the reproductive axis. Following the recent description of kisspeptin and its 7-TM receptor, GPR54, in the dorsal root ganglia and dorsal horns of the spinal cord, we examined the role of kisspeptin in the regulation of pain sensitivity in mice. Results Immunofluorescent staining in the mouse skin showed the presence of GPR54 receptors in PGP9.5-positive sensory fibers. Intraplantar injection of kisspeptin (1 or 3 nmol/5 μl induced a small nocifensive response in naive mice, and lowered thermal pain threshold in the hot plate test. Both intraplantar and intrathecal (0.5 or 1 nmol/3 μl injection of kisspeptin caused hyperalgesia in the first and second phases of the formalin test, whereas the GPR54 antagonist, p234 (0.1 or 1 nmol, caused a robust analgesia. Intraplantar injection of kisspeptin combined with formalin enhanced TRPV1 phosphorylation at Ser800 at the injection site, and increased ERK1/2 phosphorylation in the ipsilateral dorsal horn as compared to naive mice and mice treated with formalin alone. Conclusion These data demonstrate for the first time that kisspeptin regulates pain sensitivity in rodents and suggest that peripheral GPR54 receptors could be targeted by novel drugs in the treatment of inflammatory pain.

  8. Hemopoietic stem cell mobilization in mice

    NARCIS (Netherlands)

    W.J. Molendijk

    1987-01-01

    textabstractIn mice hemopoietic stem cells and progenitor cells are almost totally confined to the bone marrow and spleen. Only small numbers can be detected in the peripheral blood. Relatively little is known about the mechanism(s) modulating the circulation and mobilization of stem cells. At

  9. Salsalate activates brown adipose tissue in mice

    NARCIS (Netherlands)

    Dam, A.D. van; Nahon, K.J.; Kooijman, S.; Berg, S.M. van den; Kanhai, A.A.; Kikuchi, T.; Heemskerk, M.M.; Harmelen,V. van; Lombès, M.; Hoek,A.M. van den; Winther, M.P. de; Lutgens, E.; Guigas, B.; Rensen, P.C.; Boon, M.R.

    2015-01-01

    Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after

  10. Aged mice have increased inflammatory monocyte concentration ...

    Indian Academy of Sciences (India)

    [Strohacker K, Breslin WL, Carpenter KC and McFarlin BK 2012 Aged mice have increased inflammatory monocyte concentration and altered expression of ... 2007). Conversely, when little to no inflammation is present, classic monocytes ..... Strohacker) received from the Texas Obesity Research Center. (Houston, Texas).

  11. Hod mice and the mouse set conjecture

    CERN Document Server

    Sargsyan, Grigor

    2015-01-01

    The author develops the theory of Hod mice below AD_{\\mathbb{R}}+ "\\Theta is regular". He uses this theory to show that HOD of the minimal model of AD_{\\mathbb{R}}+ "\\Theta is regular" satisfies GCH. Moreover, he shows that the Mouse Set Conjecture is true in the minimal model of AD_{\\mathbb{R}}+ "\\Theta is regular".

  12. Sleep deprivation impairs object recognition in mice

    NARCIS (Netherlands)

    Palchykova, S; Winsky-Sommerer, R; Meerlo, P; Durr, R; Tobler, Irene

    2006-01-01

    Many studies in animals and humans suggest that sleep facilitates learning, memory consolidation, and retrieval. Moreover, sleep deprivation (SD) incurred after learning, impaired memory in humans, mice, rats, and hamsters. We investigated the importance of sleep and its timing in in object

  13. Inherent and antigen-induced airway hyperreactivity in NC mice

    Directory of Open Access Journals (Sweden)

    Tetsuto Kobayashi

    1999-01-01

    Full Text Available In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those strains in vivo. NC mice again showed comparable airway reactivity to that seen in A/J mice and a significantly greater reactivity than that seen in BALB/c and C57BL/6 mice. To investigate the effects of airway inflammation on airway reactivity to acetylcholine in vivo, NC and BALB/c mice were sensitized to and challenged with antigen. Sensitization to and challenge with antigen induced accumulation of inflammatory cells, especially eosinophils, in lung and increased airway reactivity in NC and BALB/c mice. These results indicate that NC mice exhibit inherent and antigen-induced airway hyperreactivity. Therefore, NC mice are a suitable strain to use in investigating the mechanisms underlying airway hyperreactivity and such studies will provide beneficial information for understanding the pathophysiology of asthma.

  14. Propofol causes neuronal degeneration in neonatal mice and long ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of propofol on brain development in neonatal mice and long-term neurocognitive impact in adult mice. Method: The offspring of female C57Bl/6 and male CD-1 mice were administered propofol at concentrations of 2.5 and 5.0 mg/kg (treatment group) or normal saline (control) on postnatal ...

  15. Are mice eating up all the pine seeds?

    Science.gov (United States)

    Rafal Zwolak; Kerry Foresman; Elizabeth Crone; Dean Pearson; Yvette Ortega

    2008-01-01

    Wildlife, even miniscule mice, can play an important role in forest regeneration and composition by consuming seeds, seedlings, and saplings. Mice can, through sheer numbers, consume a tremendous number of seeds. We wanted to learn if deer mice could affect how ponderosa pine forests regenerate after fire.

  16. induced pulmonary fibrosis in mice via regulation of IL

    African Journals Online (AJOL)

    Purpose: To investigate the therapeutic effects of saikosapoin D (SSD) on bleomycin (BLM)-induced pulmonary fibrosis (PF) in mice and its probable mechanisms. Methods: PF mice were prepared by intraperitoneal (i.p.) injection of BLM (5 mg/kg). Twenty-four hours later, 72 mice in SSD group were administered SSD (1.8 ...

  17. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice.

    Science.gov (United States)

    Murphy, Andrew J; Macdonald, Lynn E; Stevens, Sean; Karow, Margaret; Dore, Anthony T; Pobursky, Kevin; Huang, Tammy T; Poueymirou, William T; Esau, Lakeisha; Meola, Melissa; Mikulka, Warren; Krueger, Pamela; Fairhurst, Jeanette; Valenzuela, David M; Papadopoulos, Nicholas; Yancopoulos, George D

    2014-04-08

    Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.

  18. The Mice Drawer System (MDS experiment and the space endurance record-breaking mice.

    Directory of Open Access Journals (Sweden)

    Ranieri Cancedda

    Full Text Available The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS, contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS. The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th, 2009. MDS returned to Earth on November 27(th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  19. The Mice Drawer System (MDS) Experiment and the Space Endurance Record-Breaking Mice

    Science.gov (United States)

    Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore

    2012-01-01

    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28th, 2009. MDS returned to Earth on November 27th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages. PMID:22666312

  20. Motor unit abnormalities in Dystonia musculorum mice.

    Directory of Open Access Journals (Sweden)

    Yves De Repentigny

    Full Text Available Dystonia musculorum (dt is a mouse inherited sensory neuropathy caused by mutations in the dystonin gene. While the primary pathology lies in the sensory neurons of dt mice, the overt movement disorder suggests motor neurons may also be affected. Here, we report on the contribution of motor neurons to the pathology in dt(27J mice. Phenotypic dt(27J mice display reduced alpha motor neuron cell number and eccentric alpha motor nuclei in the ventral horn of the lumbar L1 spinal cord region. A dramatic reduction in the total number of motor axons in the ventral root of postnatal day 15 dt(27J mice was also evident. Moreover, analysis of the trigeminal nerve of the brainstem showed a 2.4 fold increase in number of degenerating neurons coupled with a decrease in motor neuron number relative to wild type. Aberrant phosphorylation of neurofilaments in the perikaryon region and axonal swellings within the pre-synaptic terminal region of motor neurons were observed. Furthermore, neuromuscular junction staining of dt(27J mouse extensor digitorum longus and tibialis anterior muscle fibers showed immature endplates and a significant decrease in axon branching compared to wild type littermates. Muscle atrophy was also observed in dt(27J muscle. Ultrastructure analysis revealed amyelinated motor axons in the ventral root of the spinal nerve, suggesting a possible defect in Schwann cells. Finally, behavioral analysis identified defective motor function in dt(27J mice. This study reveals neuromuscular defects that likely contribute to the dt(27J pathology and identifies a critical role for dystonin outside of sensory neurons.

  1. THE SUSCEPTIBILITY OF MICE TO BACTERIAL ENDOTOXINS

    Science.gov (United States)

    Schaedler, Russell W.; Dubos, Rene J.

    1961-01-01

    Albino mice (Rockefeller NCS strain) raised and maintained free of ordinary bacterial pathogens, as well as of intestinal Escherichia coli and of Proteus bacilli, were found to be highly resistant to the lethal effect of bacterial endotoxins. When newborn mice of this NCS colony were nursed by foster mothers from another colony raised under ordinary conditions (SS colony from which the NCS colony was derived), they acquired the intestinal flora of the latter animals and became susceptible to the lethal effects of endotoxins. NCS adult mice could be rendered susceptible to the lethal effect of endotoxins by vaccination with heat killed Gram-negative bacilli. The susceptibility thus induced exhibited a certain degree of specificity for the bacterial strain used in vaccination. Although untreated NCS mice were resistant to the lethal effect of endotoxins, they proved exquisitively susceptible to the infection-enhancing effect of these materials. For example, 1 µg. or less of endotoxin was found sufficient to help establish a rapidly fatal septicemia with Staphylococcus aureus. Small amounts of endotoxin (1 µg. or less), administered alone, caused a marked but transient loss of weight. Vaccination with heat-killed Gram-negative bacilli or with killed BCG increased the resistance of NCS mice to the infection-enhancing effect of small amounts of endotoxin. This protective effect exhibited a certain degree of specificity for the bacterial strain from which the toxin used in the infection-enhancing test was derived. These various findings can be explained by assuming that the pathological effects of endotoxins involve at least two unrelated mechanisms; (a) a primary toxicity illustrated in this study by the loss of weight and enhancement of infection resulting from the injection of small doses of toxin; (b) an immunological reaction with lethal consequences which became manifest only in animals sensitized to the endotoxin by prior exposure to Gram-negative bacilli. PMID

  2. Aging Kit mutant mice develop cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Lei Ye

    Full Text Available Both bone marrow (BM and myocardium contain progenitor cells expressing the c-Kit tyrosine kinase. The aims of this study were to determine the effects of c-Kit mutations on: i. myocardial c-Kit(+ cells counts and ii. the stability of left ventricular (LV contractile function and structure during aging. LV structure and contractile function were evaluated (echocardiography in two groups of Kit mutant (W/Wv and W41/W42 and in wild type (WT mice at 4 and 12 months of age and the effects of the mutations on LV mass, vascular density and the numbers of proliferating cells were also determined. In 4 month old Kit mutant and WT mice, LV ejection fractions (EF and LV fractional shortening rates (FS were comparable. At 12 months of age EF and FS were significantly decreased and LV mass was significantly increased only in W41/W42 mice. Myocardial vascular densities and c-Kit(+ cell numbers were significantly reduced in both mutant groups when compared to WT hearts. Replacement of mutant BM with WT BM at 4 months of age did not prevent these abnormalities in either mutant group although they were somewhat attenuated in the W/Wv group. Notably BM transplantation did not prevent the development of cardiomyopathy in 12 month W41/W42 mice. The data suggest that decreased numbers and functional capacities of c-Kit(+ cardiac resident progenitor cells may be the basis of the cardiomyopathy in W41/W42 mice and although defects in mutant BM progenitor cells may prove to be contributory, they are not causal.

  3. Griffonia simplicifolia I-A4 staining of mice glomerular tufts and its alteration in diabetic mice.

    Science.gov (United States)

    Yonezawa, S; Shibata, M; Shimizu, T; Nakamura, T; Sato, E

    1986-11-01

    An isolectin from Griffonia simplicifolia (GS) seed--GSI-A4--stained the outer aspect of glomerular tuft (GT) intensely in the kidneys of ICR, C57BL/6J, BALB/c and NSY mice. Loss of the GSI-A4 staining was observed in the sclerotic areas of glomeruli in diabetic mice (NSY mice). This interesting staining will be useful for the analysis of the constitutions of GT in various experimental models of renal glomerular diseases in mice.

  4. Oral lactoferrin protects against experimental candidiasis in mice.

    Science.gov (United States)

    Velliyagounder, K; Alsaedi, W; Alabdulmohsen, W; Markowitz, K; Fine, D H

    2015-01-01

    To determine the role of human lactoferrin (hLF) in protecting the oral cavities of mice against Candida albicans infection in lactoferrin knockout (LFKO(-/-)) mice was compared to wild-type (WT) mice. We also aim to determine the protective role of hLF in LFKO(-/-) mice. Antibiotic-treated immunosuppressed mice were inoculated with C. albicans (or sham infection) by oral swab and evaluated for the severity of infection after 7 days of infection. To determine the protective role of hLF, we added 0·3% solution of hLF to the drinking water given to some of the mice. CFU count, scoring of lesions and microscopic observations were carried out to determine the severity of infection. LFKO(-/-) I mice showed a 2 log (P = 0·001) higher CFUs of C. albicans in the oral cavity compared to the WT mice infected with C. albicans (WTI). LFKO(-/-) I mice given hLF had a 3 log (P = 0·001) reduction in CFUs in the oral cavity compared to untreated LFKO(-/-) I mice. The severity of infection, observed by light microscopy, revealed that the tongue of the LFKO(-/-) I mice showed more white patches compared to WTI and LFKO(-/-) I + hLF mice. Scanning electron microscopic observations revealed that more filiform papillae were destroyed in LFKO(-/-) I mice when compared to WTI or LFKO(-/-) I + hLF mice. Human LF is important in protecting mice from oral C. albicans infection. Administered hLF may be used to prevent C. albicans infection. Human LF, a multifunctional iron-binding glycoprotein can be used as a therapeutic active ingredient in oral healthcare products against C. albicans. © 2014 The Society for Applied Microbiology.

  5. Thiocyanate supplementation decreases atherosclerotic plaque in mice expressing human myeloperoxidase

    DEFF Research Database (Denmark)

    Morgan, P E; Laura, R P; Maki, R A

    2015-01-01

    the curve (AUC). Mean serum SCN(-) concentrations were elevated in the supplemented mice (200-320 μM) relative to controls (plaque areas at sacrifice were 26% lower in the SCN(-)-supplemented mice compared with controls (P = 0.0417), but plaque morphology...... was not appreciably altered. Serum MPO levels steadily increased in mice on the high-fat diet, however, comparison of SCN(-)-supplemented versus control mice showed no significant changes in MPO protein, cholesterol, or triglyceride levels; thiol levels were decreased in supplemented mice at one time-point. Plaque...

  6. Replication of respiratory syncytial virus in lungs of immunodeficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Wyde, P.R.; Sun, C.S.; Knight, V.

    1983-08-01

    Respiratory syncytial virus was frequently isolated during a 10-day test period from the lungs of 4- to 6-week-old immunodeficient nude (nu/nu) mice and from gamma-irradiated C3H mice inoculated intranasally with this virus, but not from similar aged and comparably inoculated normal littermates of these mice. Virus isolation rates and levels of virus in lungs in both groups of immunodeficient mice were similar. No extrapulmonary dissemination of virus was observed in any test group of mice.

  7. Voluntary running enhances glymphatic influx in awake behaving, young mice

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Stephanie; Petersen, Nicolas Caesar; Nedergaard, Maiken

    2018-01-01

    that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We...... of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas...

  8. Endometriosis induces gut microbiota alterations in mice.

    Science.gov (United States)

    Yuan, Ming; Li, Dong; Zhang, Zhe; Sun, Huihui; An, Min; Wang, Guoyun

    2018-02-15

    What happens to the gut microbiota during development of murine endometriosis? Mice with the persistence of endometrial lesions for 42 days develop a distinct composition of gut microbiota. Disorders in the immune system play fundamental roles in changing the intestinal microbiota. No study has used high-throughput DNA sequencing to show how endometriosis changes the gut microbiota, although endometriosis is accompanied by abnormal cytokine expression and immune cell dysfunction. This study includes a prospective and randomized experiment on an animal endometriosis model induced via the intraperitoneal injection of endometrial tissues. The mice were divided into endometriosis and mock groups and were sacrificed at four different time points for model confirmation and fecal sample collection. To detect gut microbiota, 16S ribosomal-RNA gene sequencing was performed. Alpha diversity was used to analyze the complexity and species diversity of the samples through six indices. Beta diversity analysis was utilized to evaluate the differences in species complexity. Principal coordinate analysis and unweighted pair-group method with arithmetic means clustering were performed to determine the clustering features. The microbial features differentiating the fecal microbiota were characterized by linear discriminant analysis effect size method. The endometriosis and mock mice shared similar diversity and richness of gut microbiota. However, different compositions of gut microbiota were detected 42 days after the modeling. Among the discriminative concrete features, the Firmicutes/Bacteroidetes ratio was elevated in mice with endometriosis, indicating that endometriosis may induce dysbiosis. Bifidobacterium, which is known as a commonly used probiotic, was also increased in mice with endometriosis. N/A. More control groups should be further studied to clarify the specificity of the dysbiosis induced by endometriosis. This study was performed only on mice. Thus, additional data

  9. True Niacin Deficiency in Quinolinic Acid Phosphoribosyltransferase (QPRT) Knockout Mice.

    Science.gov (United States)

    Shibata, Katsumi

    2015-01-01

    Pyridine nucleotide coenzymes (PNCs) are involved in over 500 enzyme reactions. PNCs are biosynthesized from the amino acid L-tryptophan (L-Trp), as well as the vitamin niacin. Hence, "true" niacin-deficient animals cannot be "created" using nutritional techniques. We wanted to establish a truly niacin-deficient model animal using a protocol that did not involve manipulating dietary L-Trp. We generated mice that are missing the quinolinic acid phosphoribosyltransferase (QPRT) gene. QPRT activity was not detected in qprt(-/-)mice. The qprt(+/+), qprt(+/-) or qprt(-/-) mice (8 wk old) were fed a complete diet containing 30 mg nicotinic acid (NiA) and 2.3 g L-Trp/kg diet or an NiA-free diet containing 2.3 g L-Trp/kg diet for 23 d. When qprt(-/-)mice were fed a complete diet, food intake and body weight gain did not differ from those of the qprt(+/+) and the qprt(+/-) mice. On the other hand, in the qprt(-/-) mice fed the NiA-free diet, food intake and body weight were reduced to 60% (pniacin such as blood and liver NAD concentrations were also lower in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice. Urinary excretion of quinolinic acid was greater in the qprt(-/-) mice than in the qprt(+/+) and the qprt(+/-) mice (pniacin-deficient mice.

  10. The pathology of facial vein blood sampling in mice

    DEFF Research Database (Denmark)

    Hansen, Ket; Harslund, Jakob le Fèvre; Bollen, Peter

    2014-01-01

    vein blood sampling. Therefore, we investigated if this technique was associated with pathological changes of the jaw region. Methods: 43 NMRI mice were subjected to facial vein blood sampling by using the lancet method during 12 months, starting at the age of 8 weeks. The mice were restrained manually......, and the tissue of the jaw was evaluated. Results: In the 23 mice, from which blood samples had been taken 2 days previously, 5 mice had no signs of gross pathological changes, whereas 12 mice had signs of minimal local subcutaneous bleeding and 6 mice had moderate local subcutaneous bleeding. No additional gross...... pathological changes were observed. In the 23 mice, from which blood samples had been taken 4 weeks earlier, no hemorrhage or signs of scar tissue formation could be observed. Histological slides are currently being processed (HE staining) and will be evaluated and discussed....

  11. Bone phenotypes of P2 receptor knockout mice

    DEFF Research Database (Denmark)

    Orriss, Isabel; Syberg, Susanne; Wang, Ning

    2011-01-01

    been observed in an impressive number of these mice: distinct abnormalities in P2X7-/- mice, depending on the gene targeting construct and the genetic background, decreased bone mass in P2Y1-/- mice, increased bone mass in P2Y2-/- mice, decreased bone resorption in P2Y6-/- mice, decreased bone......The action of extracellular nucleotides is mediated by ionotropic P2X receptors and G-protein coupled P2Y receptors. The human genome contains 7 P2X and 8 P2Y receptor genes. Knockout mice strains are available for most of them. As their phenotypic analysis is progressing, bone abnormalities have...... formation and bone resorption in P2Y13-/- mice. These findings demonstrate the unexpected importance of extracellular nucleotide signalling in the regulation of bone metabolism via multiple P2 receptors and distinct mechanisms involving both osteoblasts and osteoclasts....

  12. Use of Wedge Absorbers in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Mohayai, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Snopok, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Rogers, C. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.

  13. Comprehensive Energy Balance Measurements in Mice.

    Science.gov (United States)

    Moir, Lee; Bentley, Liz; Cox, Roger D

    2016-09-01

    In mice with altered body composition, establishing whether it is food intake or energy expenditure, or both, that is the major determinant resulting in changed energy balance is important. In order to ascertain where the imbalance is, the acquisition of reproducible data is critical. Therefore, here we provide detailed descriptions of how to determine energy balance in mice. This encompasses protocols for establishing energy intake from home cage measurement of food intake, determining energy lost in feces using bomb calorimetry, and using equations to calculate parameters such as energy intake (EI), digested energy intake (DEI), and metabolisable energy intake (MEI) to determine overall energy balance. We also discuss considerations that should be taken into account when planning these experiments, including diet and sample sizes. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. STUDIES ON TRANSMISSIBLE LYMPHOID LEUCEMIA OF MICE.

    Science.gov (United States)

    Furth, J; Strumia, M

    1931-04-30

    Lymphoid leucemia of the mouse is readily transmitted by intravenous inoculations. The majority of the mice inoculated successfully develop leucemic, a smaller number of them, aleucemic lymphadenosis. The data presented favor the view that leucemic and aleucemic lymphadenosis are essentially the same condition. Leucemia produced by transmission is preceded by an aleucemic stage, in which the lymph nodes and the spleen are uniformly enlarged, and the white blood count and the percentage of lymphocytes are within the normal range but immature lymphocytes are numerous in the circulating blood. Young as well as old mice may develop leucemia if leucotic material enters their circulation. Studies of transmissible leucemia favor the view that leucemia of mammals is a neoplastic disease. The basic problem of leucemia would seem to be determination of the factors that bring about a malignant transformation of lymphoid cells.

  15. MISS- Mice on International Space Station

    Science.gov (United States)

    Falcetti, G. C.; Schiller, P.

    2005-08-01

    The use of rodents for scientific research to bridge the gap between cellular biology and human physiology is a new challenge within the history of successful developments of biological facilities. The ESA funded MISS Phase A/B study is aimed at developing a design concept for an animal holding facility able to support experimentation with mice on board the International Space Station (ISS).The MISS facility is composed of two main parts:1. The MISS Rack to perform scientific experiments onboard the ISS.2. The MISS Animals Transport Container (ATC) totransport animals from ground to orbit and vice- versa.The MISS facility design takes into account guidelines and recommendations used for mice well-being in ground laboratories. A summary of the MISS Rack and MISS ATC design concept is hereafter provided.

  16. Methods to measure olfactory behavior in mice.

    Science.gov (United States)

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-02-02

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice, including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors, especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, with respect to both social and nonsocial odors. Copyright © 2015 John Wiley & Sons, Inc.

  17. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light...... stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light......-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night....

  18. Antidepressant effects of Mentha pulegium in mice

    Directory of Open Access Journals (Sweden)

    Zahra Rabiei

    2016-09-01

    Full Text Available The aim of this study is to investigate the antidepressant effects of Mentha pulegium essential oil in BALB/c mice. Six experimental groups (7 mice each were used. Forced swim test was performed 30 min after essential oil injection. In the groups receiving M. pulegium essential oil (50, 75 and 100 mg/kg, immobility duration significantly decreased compared to the control group. M. pulegium (50 and 75 mg/kg resulted in significant decrease in nitrate/nitrite content in serum compared to the control group. M. pulegium essential oil antidepressant effect that may be due to the inhibition of oxidative stress. The results showed that decrease in nitrate/nitrite content in serum and high anti-oxidant effects of M. pulegium essential oil.

  19. Detection of social approach in inbred mice.

    Science.gov (United States)

    Pratte, Michel; Jamon, Marc

    2009-10-12

    An experiment was designed to automatically assess the relative level of social interaction during encounters involving trios of inbred mice consisting of two familiar cage mate males plus an unfamiliar third male. The automation of the spatial positioning was obtained by using a video-tracking program. In addition social behaviours were manually scored. To evaluate the influence of basic motor properties on the evaluation of the level of social interaction, we analysed two strains (C57BL/6J and 129S2/Sv) that are frequently employed in transgenic research, and show very different levels of motor activity. Correlations between manual and automated parameters showed that spatial parameters correctly fitted the level of social interaction between mice. In both strains C57BL/6J and 129S2/Sv, a proximity parameter (duration of bouts during which two individuals were close to each other) defined the social approach and correctly assessed the discrimination of social novelty.

  20. Construction Noise Decreases Reproductive Efficiency in Mice

    Science.gov (United States)

    Rasmussen, Skye; Glickman, Gary; Norinsky, Rada; Quimby, Fred W; Tolwani, Ravi J

    2009-01-01

    Excessive noise is well known to impair rodent health. To better understand the effect of construction noise and to establish effective noise limits during a planned expansion of our vivarium, we analyzed the effects of construction noise on mouse gestation and neonatal growth. Our hypothesis was that high levels of construction noise would reduce the number of live births and retard neonatal growth. Female Swiss Webster mice were individually implanted with 15 B6CBAF1/J embryos and then exposed to 70- and 90-dBA concrete saw cutting noise samples at defined time points during gestation. In addition, groups of mice with litters were exposed to noise at 70, 80, or 90 dBA for 1 h daily during the first week after parturition. Litter size, birth weight, incidence of stillborn pups, and rate of neonatal weight gain were analyzed. Noise decreased reproductive efficiency by decreasing live birth rates and increasing the number of stillborn pups. PMID:19653943

  1. Hyperoxia Inhibits T Cell Activation in Mice

    Science.gov (United States)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    Background: The immune response is blunted in mice and humans in spaceflight. The effects of hyperoxia in mice alter expression of some of the same immune response genes. If these two conditions are additive, there could be an increased risk of infection in long duration missions. Immunosuppression is seen in healthy astronauts who have flown in space; however little is known about the mechanisms that cause the reduced immunity in spaceflight. Here we examine the role of oxidative stress on mice exposed to periods of high O2 levels mimicking pre-breathing protocols and extravehicular activity (EVA). To prevent decompression sickness, astronauts are exposed to elevated oxygen (hyperoxia) before and during EVA activities. Spaceflight missions may entail up to 24 hours of EVA per crewmember per week to perform construction and maintenance tasks. The effectiveness and success of these missions depends on designing EVA systems and protocols that maximize human performance and efficiency while minimizing health and safety risks for crewmembers. To our knowledge, no studies have been conducted on the immune system under 100% oxygen exposures to determine the potential for immune compromise due to prolonged and repeated EVAs. Methods: Animals were exposed to hyperoxic or control conditions for 8 hours per day over a period of 3 days, initiated 4 hours into the dark cycle (12h dark/12h light), using animal environmental control cabinets and oxygen controller (Biospherix, Lacona, NY). Experimental mice were exposed to 98-100% oxygen as a model for pre-breathing and EVA conditions, while control mice were maintained in chambers supplied with compressed air. These are ground control studies where we use real-time RTPCR (qRTPCR) to measure gene expression of the early immune gene expression during bead activation of splenocytes of normoxic and hyperoxic mice. All procedures were reviewed and approved by the IACUC at Ames Research Center. After the last 8h of hyperoxic exposure

  2. Cardiac hypertrophy in mice expressing unphosphorylatable phospholemman.

    Science.gov (United States)

    Boguslavskyi, Andrii; Pavlovic, Davor; Aughton, Karen; Clark, James E; Howie, Jacqueline; Fuller, William; Shattock, Michael J

    2014-10-01

    Elevation of intracellular Na in the failing myocardium contributes to contractile dysfunction, the negative force-frequency relationship, and arrhythmias. Although phospholemman (PLM) is recognized to form the link between signalling pathways and Na/K pump activity, the possibility that defects in its regulation contribute to elevation of intracellular Na has not been investigated. Our aim was to test the hypothesis that the prevention of PLM phosphorylation in a PLM(3SA) knock-in mouse (in which PLM has been rendered unphosphorylatable) will exacerbate cardiac hypertrophy and cellular Na overload. Testing this hypothesis should determine whether changes in PLM phosphorylation are simply bystander effects or are causally involved in disease progression. In wild-type (WT) mice, aortic constriction resulted in hypophosphorylation of PLM with no change in Na/K pump expression. This under-phosphorylation of PLM occurred at 3 days post-banding and was associated with a progressive decline in Na/K pump current and elevation of [Na]i. Echocardiography, morphometry, and pressure-volume (PV) catheterization confirmed remodelling, dilation, and contractile dysfunction, respectively. In PLM(3SA) mice, expression of Na/K ATPase was increased and PLM decreased such that net Na/K pump current under quiescent conditions was unchanged (cf. WT myocytes); [Na(+)]i was increased and forward-mode Na/Ca exchanger was reduced in paced PLM(3SA) myocytes. Cardiac hypertrophy and Na/K pump inhibition were significantly exacerbated in banded PLM(3SA) mice compared with banded WT. Decreased phosphorylation of PLM reduces Na/K pump activity and exacerbates Na overload, contractile dysfunction, and adverse remodelling following aortic constriction in mice. This suggests a novel therapeutic target for the treatment of heart failure. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Cardiology.

  3. Tetrabenazine is neuroprotective in Huntington's disease mice

    Directory of Open Access Journals (Sweden)

    Tang Tie-Shan

    2010-04-01

    Full Text Available Abstract Background Huntington's disease (HD is a neurodegenerative disorder caused by a polyglutamine (polyQ expansion in Huntingtin protein (Htt. PolyQ expansion in Httexp causes selective degeneration of striatal medium spiny neurons (MSN in HD patients. A number of previous studies suggested that dopamine signaling plays an important role in HD pathogenesis. A specific inhibitor of vesicular monoamine transporter (VMAT2 tetrabenazine (TBZ has been recently approved by Food and Drug Administration for treatment of HD patients in the USA. TBZ acts by reducing dopaminergic input to the striatum. Results In previous studies we demonstrated that long-term feeding with TBZ (combined with L-Dopa alleviated the motor deficits and reduced the striatal neuronal loss in the yeast artificial chromosome transgenic mouse model of HD (YAC128 mice. To further investigate a potential beneficial effects of TBZ for HD treatment, we here repeated TBZ evaluation in YAC128 mice starting TBZ treatment at 2 months of age ("early" TBZ group and at 6 months of age ("late" TBZ group. In agreement with our previous studies, we found that both "early" and "late" TBZ treatments alleviated motor deficits and reduced striatal cell loss in YAC128 mice. In addition, we have been able to recapitulate and quantify depression-like symptoms in TBZ-treated mice, reminiscent of common side effects observed in HD patients taking TBZ. Conclusions Our results further support therapeutic value of TBZ for treatment of HD but also highlight the need to develop more specific dopamine antagonists which are less prone to side-effects.

  4. Radioprotectors and Tumors: Molecular Studies in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Gayle Woloschak, David Grdina

    2010-03-10

    This proposal investigated effects of radiation using a set of archival tissues. Main interests of this proposal were to investigate effects of irradiation alone or in the presence or radioprotectors; to investigate these effects on different tissues; and to use/develop molecular biology techniques that would be suitable for work with archived tissues. This work resulted in several manuscripts published or in preparation. Approach for evaluation of gene copy numbers by quantitative real time PCR has been developed and we are striving to establish methods to utilize Q-RT-PCR data to evaluate genomic instability caused by irradiation(s) and accompanying treatments. References: 1. Paunesku D, Paunesku T, Wahl A, Kataoka Y, Murley J, Grdina DJ, Woloschak GE. Incidence of tissue toxicities in gamma ray and fission neutron-exposed mice treated with Amifostine. Int J Radiat Biol. 2008, 84(8):623-34. PMID: 18661379, http://informahealthcare.com/doi/full/10.1080/09553000802241762?cookieSet=1 2. Wang Q, Paunesku T and Woloschak GE. Tissue and data archives from irradiation experiments conducted at Argonne National Laboratory over a period of four decades, in press in Radiation and Environmental Biophysics. 3. Alcantara M, Paunesku D, Rademaker A, Paunesku T and Woloschak GE. A RETROSPECTIVE ANALYSIS OF TISSUE TOXICITIES IN B6CF1 MICE IRRADIATED WITH FISSION NEUTRONS OR COBALT 60 GAMMA RAYS: Gender modulates accumulation of tissue toxicities caused by low dose rate fractionated irradiation; in preparation; this document has been uploaded as STI product 4. Wang Q, Paunesku T Wanzer B and Woloschak GE. Mitochondrial gene copy number differences in different tissues of irradiated and control mice with lymphoid cancers; in preparation 5. Wang Q, Raha, S, Paunesku T and Woloschak GE. Evaluation of gene copy number differences in different tissues of irradiated and control mice; in preparation

  5. A Wedge Absorber Experiment at MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2017-05-01

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  6. Anaphylactic reactions in mice with Fenugreek allergy.

    Science.gov (United States)

    Vinje, N E; Namork, E; Løvik, M

    2011-10-01

    Fenugreek is a legume mostly used as a spice in Indian-style cooking. Although it has been used since ancient times, its allergenicity has only been reported in the last two decades. It poses special problems as an emerging and often hidden allergen. Fenugreek exposure may have serious implications also for individuals with peanut allergy because of cross-reactivity. Because a new food requires a model specially designed for that particular food, the aim of our study was to develop a food allergy model of fenugreek in mice with anaphylaxis as the endpoint. Mice were immunized perorally using cholera toxin as adjuvant. A two-compartment response surface design with immunoglobulin (Ig)E as the main variable was used to estimate the optimal sensitizing dose of fenugreek, which was further used to evaluate the model. The mice were challenged perorally with a high dose of fenugreek, and signs of anaphylactic reactions were observed. Challenged mice showed high levels of mouse mast cell protease-1, developed specific IgE against several proteins in the fenugreek extract, had elevated levels of IgG1 and IgG2a and showed a general shift towards a Th2 response as determined by ex vivo production of cytokines. Total IgE levels were substantially decreased after challenge. In conclusion, we have established a mouse model of IgE-mediated fenugreek allergy demonstrating anaphylactic reactions upon challenge. There is little information on fenugreek cross-allergy to other legumes like peanut, soy and lupin, and we expect that this model will be a valuable tool in further research on legume allergy. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  7. Minocycline affects cocaine sensitization in mice

    Science.gov (United States)

    Chen, Hu; Uz, Tolga; Manev, Hari

    2009-01-01

    Growing evidence has pointed to an interaction between the tetracycline antibiotic minocycline and drugs with abuse liability such as opioids and amphetamines. In this work, we tested the hypothesis that similar to its effects on methamphetamine-induced locomotor sensitization, minocycline may influence the behavioral effects of cocaine. Experiments were performed in male C57BL/6J mice using an automated system to measure locomotor activity. We found that 80 mg/kg minocycline significantly reduced locomotor activity when administered either alone or injected 30 min prior to cocaine, which increased locomotor activity. To investigate whether minocycline selectively affects the development of locomotor sensitization induced by four daily injections of 10 mg/kg cocaine, we sought a schedule of minocycline administration that does not per se affect locomotor activity. Thus, we selected 40 mg/kg minocycline administered 3 hours prior to cocaine; minocycline did not affect cocaine-stimulated locomotor activity on the first day of administration but prevented the development of cocaine sensitization. We also tested whether minocycline would affect an already established cocaine sensitization. After establishing the sensitization effect by four daily injections, cocaine treatment was discontinued and mice were treated with minocycline daily (days 5–11) or on day 11 only. There was no effect of minocycline treatment on the response of cocaine-sensitized mice to the challenge dose of cocaine on day 11. The mechanisms by which minocycline interferes with the development of cocaine sensitization needs to be characterized. PMID:19348734

  8. Circadian behaviour in neuroglobin deficient mice.

    Directory of Open Access Journals (Sweden)

    Christian A Hundahl

    Full Text Available Neuroglobin (Ngb, a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN. The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1 and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  9. Zoopharmacognosy in diseased laboratory mice: conflicting evidence.

    Directory of Open Access Journals (Sweden)

    Minesh Kapadia

    Full Text Available Zoopharmacognosy denotes a constellation of learned ingestive responses that promote healing and survival of infected or poisoned animals. A similar self-medication phenomenon was reported in diseased laboratory rodents. In particular, a series of studies revealed that autoimmune MRL/lpr mice readily consume solutions paired or laced with cyclophosphamide (CY, an immunosuppressive drug that prevents inflammatory damage to internal organs. However, due to design limitations, it could not be elucidated whether such a response reflects the learned therapeutic effect of CY, or a deficit in sensory input. We presently assess the behavioural effects of prolonged consumption of CY-laced, 16% sucrose solution in a continuous choice paradigm, with tap water available ad lib. Contrary to overall expectation, MRL/lpr mice did not increase their intake of CY with disease progression. Moreover, they ingested lower doses of CY and preferred less CY-laced sucrose solution than age-matched controls. The results obtained could not confirm zoopharmacognosy in diseased MRL/lpr mice, likely due to impaired responsiveness to palatable stimulation, or attenuated survival mechanisms after prolonged inbreeding in captivity. However, by revealing the effectiveness of unrestricted drinking of drug-laced sucrose solution on behavior and immunity, the current study supports broader use of such an administration route in behavioural studies sensitive to external stressors.

  10. Critical period for acoustic preference in mice.

    Science.gov (United States)

    Yang, Eun-Jin; Lin, Eric W; Hensch, Takao K

    2012-10-16

    Preference behaviors are often established during early life, but the underlying neural circuit mechanisms remain unknown. Adapting a unique nesting behavior assay, we confirmed a "critical period" for developing music preference in C57BL/6 mice. Early music exposure between postnatal days 15 and 24 reversed their innate bias for silent shelter, which typically could not be altered in adulthood. Instead, exposing adult mice treated acutely with valproic acid or carrying a targeted deletion of the Nogo receptor (NgR(-/-)) unmasked a strong plasticity of preference consistent with a reopening of the critical period as seen in other systems. Imaging of cFos expression revealed a prominent neuronal activation in response to the exposed music in the prelimbic and infralimbic medial prefrontal cortex only under conditions of open plasticity. Neither behavioral changes nor selective medial prefrontal cortex activation was observed in response to pure tone exposure, indicating a music-specific effect. Open-field center crossings were increased concomitant with shifts in music preference, suggesting a potential anxiolytic effect. Thus, music may offer both a unique window into the emotional state of mice and a potentially efficient assay for molecular "brakes" on critical period plasticity common to sensory and higher order brain areas.

  11. High tidal volume ventilation in infant mice.

    Science.gov (United States)

    Cannizzaro, Vincenzo; Zosky, Graeme R; Hantos, Zoltán; Turner, Debra J; Sly, Peter D

    2008-06-30

    Infant mice were ventilated with either high tidal volume (V(T)) with zero end-expiratory pressure (HVZ), high V(T) with positive end-expiratory pressure (PEEP) (HVP), or low V(T) with PEEP. Thoracic gas volume (TGV) was determined plethysmographically and low-frequency forced oscillations were used to measure the input impedance of the respiratory system. Inflammatory cells, total protein, and cytokines in bronchoalveolar lavage fluid (BALF) and interleukin-6 (IL-6) in serum were measured as markers of pulmonary and systemic inflammatory response, respectively. Coefficients of tissue damping and tissue elastance increased in all ventilated mice, with the largest rise seen in the HVZ group where TGV rapidly decreased. BALF protein levels increased in the HVP group, whereas serum IL-6 rose in the HVZ group. PEEP keeps the lungs open, but provides high volumes to the entire lungs and induces lung injury. Compared to studies in adult and non-neonatal rodents, infant mice demonstrate a different response to similar ventilation strategies underscoring the need for age-specific animal models.

  12. Heart regeneration in adult MRL mice

    Science.gov (United States)

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-08-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.

  13. Novel transcranial magnetic stimulation coil for mice

    Science.gov (United States)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  14. Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks.

    Science.gov (United States)

    Hsieh, Lawrence S; Wen, John H; Miyares, Laura; Lombroso, Paul J; Bordey, Angélique

    2017-01-10

    Inbred mouse strains have been used preferentially for behavioral testing over outbred counterparts, even though outbred mice reflect the genetic diversity in the human population better. Here, we compare the sociability of widely available outbred CD1 mice with the commonly used inbred C57BL/6J (C57) mice in the one-chamber social interaction test and the three-chamber sociability test. In the one-chamber task, intra-strain pairs of juvenile, non-littermate, male CD1 or C57 mice display a series of social and aggressive behaviors. While CD1 and C57 pairs spend equal amount of time socializing, CD1 pairs spend significantly more time engaged in aggressive behaviors than C57 mice. In the three-chamber task, sociability of C57 mice was less dependent on acclimation paradigms than CD1 mice. Following acclimation to all three chambers, both groups of age-matched male mice spent more time in the chamber containing a stranger mouse than in the empty chamber, suggesting that CD1 mice are sociable like C57 mice. However, the observed power suggests that it is easier to achieve statistical significance with C57 than CD1 mice. Because the stranger mouse could be considered as a novel object, we assessed for a novelty effect by adding an object. CD1 mice spend more time in the chamber with a stranger mouse than that a novel object, suggesting that their preference is social in nature. Thus, outbred CD1 mice are as appropriate as inbred C57 mice for studying social behavior using either the single or the three-chamber test using a specific acclimation paradigm. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Association studies of lung function in mice.

    Science.gov (United States)

    Ganguly, K; Schulz, H

    2008-07-01

    Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and an accelerating decline of lung function is the earliest and a major indicator of the onset of COPD. Therefore it has become necessary to understand the genetic basis of this complex physiological trait in order to determine the potential susceptibility factors of this disease. REINHARD et al (2005) performed the genome wide linkage analysis study with inbred mice having extremely divergent lung function (C3H/HeJ versus JF1/Msf) and identified multiple Quantitative Trait Loci (QTLs) on mouse chromosomes (mCh) 5, 15, 17, and 19 with Logarithm of odd (LOD) scores > or = 4. Significant linkages to total lung capacity (TLC) were detected on mCh 15 and 17, to dead space volume (VD) and lung compliance (C(L)) on mCh 5 and 15, to C(L) on mCh 19, and to diffusing capacity for CO (D(co)) on mCh 15 and 17. Several of the mouse chromosomal regions identified were syntenic to human chromosomal regions identified with linkage to FEV1 (forced expiratory volume-1 second), FVC (forced vital capacity), or FEV1/FVC in separate studies. Using a systematic approach of expression QTL (e-QTL) strategy and exon-wise sequencing of suggested candidate genes followed by predicted protein structure and property, GANGULY et al (2007) recently proposed four candidate genes for lung function in mice. They are superoxide dismutase 3, extracellular [SOD3; mCh 5: V(D)], trefoil factor 2 (TFF2; mCh 17: TLC and D(co)), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; mCh 15:TLC and C(L)), and relaxin 1 (RLN1; mCh 19; CL and CL/TLC). As a part of functional validation, gene-targeted Sod3-/- mice were detected with increased conducting airway volume (V(D)/TLC) compared with strain-matched control Sod3+/+ mice, consistent with the QTL on mCh 5. Findings with gene-targeted mice suggested that SOD3 is a contributing factor defining the complex trait of conducting airway volume. The human variation in

  16. Estrous Cyclicity in Mice During Simulated Weightlessness

    Science.gov (United States)

    Moyer, E. L.; Talyansky, Y.; Scott, R. T.; Tash, J. S.; Christenson, L. K.; Alwood, J. S.; Ronca, A. E.

    2017-01-01

    Hindlimb unloading (HU) is a rodent model system used to simulate weightlessness experienced in space. However, some effects of this approach on rodent physiology are under-studied, specifically the effects on ovarian estrogen production which drives the estrous cycle. To resolve this deficiency, we conducted a ground-based validation study using the HU model, while monitoring estrous cycles in 16-weeks-old female C57BL6 mice. Animals were exposed to HU for 12 days following a 3 day HU cage acclimation period, and estrous cycling was analyzed in HU animals (n=22), normally loaded HU Cage Pair-Fed controls (CPF; n=22), and Vivarium controls fed ad libitum (VIV; n=10). Pair feeding was used to control for potential nutritional deficits on ovarian function. Vaginal cells were sampled daily in all mice via saline lavage. Cells were dried and stained with crystal violet, and the smears evaluated using established vaginal cytology techniques by two individuals blinded to the animal treatment group. Estrous cyclicity was disrupted in nearly all HU and CPF mice, while those maintained in VIV had an average normal cycle length of 4.8+/- 0.5 days, with all stages in the cycle visibly observed. CPF and HU animals arrested in the diestrous phase, which precedes the pre-ovulatory estrogen surge. Additionally, infection-like symptoms characterized by vaginal discharge and swelling arose in several HU animals, which we suspect was due to an inability of these mice to properly groom themselves, and/or due to the change in the gravity vector relative to the vaginal opening, which prevented drainage of the lavage solution. Pair-feeding resulted in similar weight gains of HU and CPF (1.5% vs 3.0%, respectively). The current results indicate that pair-feeding controlled weight gain and that the HU cage alone influenced estrous cyclicity. Thus, longer acclimation needs to be tested to determine if and when normal estrous cycling resumes in non-loaded mice in HU cages prior to HU

  17. Estrous Cyclicity of Mice During Simulated Weightlessness

    Science.gov (United States)

    Moyer, Eric; Talyansky, Yuli; Scott, Ryan; Tash, Joseph; Christenson, Lane; Alwood, Joshua; Ronca, April

    2017-01-01

    Hindlimb unloading (HU) is a rodent model system used to simulate weightlessness experienced in space. However, some effects of this approach on rodent physiology are under-studied, specifically the effects on ovarian estrogen production which drives the estrous cycle. To resolve this deficiency, we conducted a ground-based validation study using the HU model, while monitoring estrous cycles in 16-weeks-old female C57BL6 mice. Animals were exposed to HU for 12 days following a 3 day HU cage acclimation period, and estrous cycling was analyzed in HU animals (n22), normally loaded HU Cage Pair-Fed controls (CPF; n22), and Vivarium controls fed ad libitum (VIV; n10). Pair feeding was used to control for potential nutritional deficits on ovarian function. Vaginal cells were sampled daily in all mice via saline lavage. Cells were dried and stained with crystal violet, and the smears evaluated using established vaginal cytology techniques by two individuals blinded to the animal treatment group. Estrous cyclicity was disrupted in nearly all HU and CPF mice, while those maintained in VIV had an average normal cycle length of 4.8 0.5 days, with all stages in the cycle visibly observed. CPF and HU animals arrested in the diestrous phase, which precedes the pre-ovulatory estrogen surge. Additionally, infection-like symptoms characterized by vaginal discharge and swelling arose in several HU animals, which we suspect was due to an inability of these mice to properly groom themselves, andor due to the change in the gravity vector relative to the vaginal opening, which prevented drainage of the lavage solution. Pair-feeding resulted in similar weight gains of HU and CPF (1.5 vs 3.0, respectively). The current results indicate that pair-feeding controlled weight gain and that the HU cage alone influenced estrous cyclicity. Thus, longer acclimation needs to be tested to determine if and when normal estrous cycling resumes in non-loaded mice in HU cages prior to HU testing. Future

  18. Helicobacter infection decreases reproductive performance of IL10-deficient mice.

    Science.gov (United States)

    Sharp, Julie M; Vanderford, Deborah A; Chichlowski, Maciej; Myles, Matthew H; Hale, Laura P

    2008-10-01

    Infections with a variety of Helicobacter species have been documented in rodent research facilities, with variable effects on rodent health. Helicobacter typhlonius has been reported to cause enteric disease in immunodeficient and IL10(-/-) mice, whereas H. rodentium has only been reported to cause disease in immunodeficient mice coinfected with other Helicobacter species. The effect of Helicobacter infections on murine reproduction has not been well studied. The reproductive performance of C57BL/6 IL10(-/-) female mice intentionally infected with H. typhlonius, H. rodentium, or both was compared with that of age-matched uninfected controls or similarly infected mice that received antihelicobacter therapy. The presence of Helicobacter organisms in stool and relevant tissues was detected by PCR assays. Helicobacter infection of IL10(-/-) female mice markedly decreased pregnancy rates and pup survival. The number of pups surviving to weaning was greatest in noninfected mice and decreased for H. rodentium > H. typhlonius > H. rodentium and H. typhlonius coinfected mice. Helicobacter organisms were detected by semiquantitative real-time PCR in the reproductive organs of a subset of infected mice. Treatment of infected mice with a 4-drug regimen consisting of amoxicillin, clarithromycin, metronidazole, and omeprazole increased pregnancy rates, and pup survival and dam fecundity improved. We conclude that infection with H. typhlonius, H. rodentium, or both decreased the reproductive performance of IL10(-/-) mice. In addition, antihelicobacter therapy improved fecundity and enhanced pup survival.

  19. Pelvic axis-based gait analysis for ataxic mice.

    Science.gov (United States)

    Takayanagi, Naoki; Beppu, Hidehiko; Mizutani, Kenmei; Tomita, Yutaka; Nagao, Shizuko; Suzuki, Shoichi; Orand, Abbas; Takahashi, Hisahide; Sonoda, Shigeru

    2013-09-30

    Although different gait analysis methods such as Walking Track Analysis exist, they cannot be used to demonstrate the physical condition of mice with specific gait disorder characteristic. Therefore, we developed a new method for the gait analysis of such mice to accurately assess hind limb angle based on the pelvic axis. We established and verified a gait analysis method capable of pelvic axis-based limb angle measurement by video-recording the gait of a control mice group (C57BL/6J(B6)) and three ataxic mice (ataxic B6-wob/t, Parkinson's disease model (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated (MPTP)), and cerebellum hypoplasia (cytosine-β-d-arabinofuranoside treated)) from the ventral side. The assessed hind limb angles of B6-wob/t and MPTP-treated mice were significantly wider than B6 mice (panalysis of the hind limb angles of B6 and B6-wob/t mice. In the nose-tail method, since the whole body axis of the trunk varies while the trunk of the mouse is laterally bent changing the hind limb angle, B6 and B6-wob/t mice could not be differentiated. However, the two mice groups could be differentiated by the pelvic axis-based gait analysis method. The pelvic axis-based gait analysis method is promising and valid for mice with gait disorder. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Lipid metabolism and body composition in Gclm(-/-) mice

    Energy Technology Data Exchange (ETDEWEB)

    Kendig, Eric L. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Chen, Ying [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045 (United States); Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Genter, Mary Beth; Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Shertzer, Howard G., E-mail: shertzhg@ucmail.uc.edu [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States)

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  1. Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Selfjord, Ellika; Larsen, Christian S.

    2014-01-01

    of the donor phenotype were partly transmissible from obese to lean mice, in particularly beta cell hyperactivity in the obese recipients. Thus, a successful inoculation of gut microbiota was not age dependent in order for the microbes to colonize, and transferring different microbial compositions......Transferring gut microbiota from one individual to another may enable researchers to "humanize'' the gut of animal models and transfer phenotypes between species. To date, most studies of gut microbiota transfer are performed in germ-free mice. In the studies presented, it was tested whether...... an antibiotic treatment approach could be used instead. C57BL/6 mice were treated with ampicillin prior to inoculation at weaning or eight weeks of age with gut microbiota from lean or obese donors. The gut microbiota and clinical parameters of the recipients was characterized one and six weeks after...

  2. Synaptic vesicle morphology and recycling are altered in myenteric neurons of mice lacking dystrophin (mdx mice).

    Science.gov (United States)

    Vannucchi, Maria Giuliana; Corsani, Letizia; Faussone-Pellegrini, Maria-Simonetta

    2003-11-01

    Several dystrophin isoforms are known. The full-length isoform is present in striated and smooth muscles and neurons and its lack causes Duchenne Muscular Dystrophy, a progressive myopathy accompanied by mild cognitive deficits and gastrointestinal dismotility. An ultrastructural study was undertaken in the colon of mice lacking full-length dystrophin and maintaining shorter isoforms (mdx mice) to ascertain whether myenteric neurons have an altered morphology. Results showed a significant increase in the size of synaptic vesicle and in the number of recycling vesicles. An enlargement of endoplasmic reticulum cisternae in a subpopulation of neurons was also seen. Immunohistochemistry confirmed that the shorter isoforms were expressed in mdx mice myenteric neurons. These findings indicate the presence of a neuropathy at the myenteric plexus which might justify the defective neuronal control of gastrointestinal motility reported for these animals and which might be correlated with full-length dystrophin loss, since the shorter isoforms are present. Copyright 2003 Wiley-Liss, Inc.

  3. Knockout of Foxp2 disrupts vocal development in mice.

    Science.gov (United States)

    Castellucci, Gregg A; McGinley, Matthew J; McCormick, David A

    2016-03-16

    The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/-) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/- mice. In comparison to their WT littermates, Foxp2+/- mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/- song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene's role in general vocal motor control.

  4. Impaired cutaneous wound healing in mice lacking tetranectin

    DEFF Research Database (Denmark)

    Iba, Kousuke; Hatakeyama, Naoko; Kojima, Takashi

    2009-01-01

    . However, those of tetranectin-null mice never showed complete reepithelialization at 14 days. At 21 days after the injury, the wound healed and was covered with an epidermis. These results supported the fact that tetranectin may play a role in the wound healing process....... disruption of the tetranectin gene to elucidate the biological function of tetranectin. In this study, we showed that wound healing was markedly delayed in tetranectin-null mice compared with wild-type mice. A single full-thickness incision was made in the dorsal skin. By 14 days after the incision......, the wounds fully healed in all wild-type mice based on the macroscopic closure; in contrast, the progress of wound healing in the tetranectin null mice appeared to be impaired. In histological analysis, wounds of wild-type mice showed complete reepithelialization and healed by 14 days after the incision...

  5. Fecal Corticosterone Levels in RCAN1 Mutant Mice

    OpenAIRE

    Rakowski-Anderson, Tammy; Wong, Helen; Rothermel, Beverly; Cain, Peter; Lavilla, Carmencita; Pullium, Jennifer K; Hoeffer, Charles

    2012-01-01

    Regulator of calcineurin 1 (RCAN1) is related to the expression of human neurologic disorders such as Down syndrome, Alzheimer disease, and chromosome 21q deletion syndrome. We showed here that RCAN1-knockout mice exhibit reduced innate anxiety as indicated by the elevated-plus maze. To examine whether glucocorticoids contribute to this phenotype, we measured fecal corticosterone in male wildtype and RCAN1-knockout mice and in male and female transgenic mice with neuronal overexpression of RC...

  6. Overexpression of agouti protein and stress responsiveness in mice.

    Science.gov (United States)

    Harris, R B; Zhou, J; Shi, M; Redmann, S; Mynatt, R L; Ryan, D H

    2001-07-01

    Ectopic overexpression of agouti protein, an endogenous antagonist of melanocortin receptors' linked to the beta-actin promoter (BAPa) in mice, produces a phenotype of yellow coat color, Type II diabetes, obesity and increased somatic growth. Spontaneous overexpression of agouti increases stress-induced weight loss. In these experiments, other aspects of stress responsiveness were tested in 12-week-old male wild-type mice and BAPa mice. Two hours of restraint on three consecutive days produced greater increases in corticosterone and post-stress weight loss in BAPa than wild-type mice. In Experiment 2, anxiety-type behavior was measured immediately after 12 min of restraint. This mild stress did not produce many changes indicative of anxiety, but BAPa mice spent more time in the dark side of a light-dark box and less time in the open arms of an elevated plus maze than restrained wild-type mice. In a defensive withdrawal test, grooming was increased by restraint in all mice, but the duration of each event was substantially shorter in BAPa mice, possibly due to direct antagonism of the MC4-R by agouti protein. Thus, BAPa mice showed exaggerated endocrine and energetic responses to restraint stress with small differences in anxiety-type behavior compared with wild-type mice. These results are consistent with observations in other transgenic mice in which the melanocortin system is disrupted, but contrast with reports that acute blockade of central melanocortin receptors inhibits stress-induced hypophagia. Thus, the increased stress responsiveness in BAPa mice may be a developmental compensation for chronic inhibition of melanocortin receptors.

  7. Lung delayed-type hypersensitivity in stressed mice.

    OpenAIRE

    Blecha, F; Topliff, D

    1984-01-01

    The influence of an immobilization stressor on lung cellular immune responses was studied. Delayed-type hypersensitivity to sheep erythrocytes was used to evaluate in vivo lung cellular immunity. Mice were sensitized intravenously and challenged intratracheally with sheep erythrocytes. Three hours prior to challenge all mice were injected intravenously with chromium-51 labeled mononuclear cells from syngeneic mice. The delayed-type hypersensitivity response was measured by counting the radioa...

  8. Vocal ontogeny in neotropical singing mice (Scotinomys.

    Directory of Open Access Journals (Sweden)

    Polly Campbell

    Full Text Available Isolation calls produced by dependent young are a fundamental form of communication. For species in which vocal signals remain important to adult communication, the function and social context of vocal behavior changes dramatically with the onset of sexual maturity. The ontogenetic relationship between these distinct forms of acoustic communication is surprisingly under-studied. We conducted a detailed analysis of vocal development in sister species of Neotropical singing mice, Scotinomys teguina and S. xerampelinus. Adult singing mice are remarkable for their advertisement songs, rapidly articulated trills used in long-distance communication; the vocal behavior of pups was previously undescribed. We recorded 30 S. teguina and 15 S. xerampelinus pups daily, from birth to weaning; 23 S. teguina and 11 S. xerampelinus were recorded until sexual maturity. Like other rodent species with poikilothermic young, singing mice were highly vocal during the first weeks of life and stopped vocalizing before weaning. Production of first advertisement songs coincided with the onset of sexual maturity after a silent period of ≧2 weeks. Species differences in vocal behavior emerged early in ontogeny and notes that comprise adult song were produced from birth. However, the organization and relative abundance of distinct note types was very different between pups and adults. Notably, the structure, note repetition rate, and intra-individual repeatability of pup vocalizations did not become more adult-like with age; the highly stereotyped structure of adult song appeared de novo in the first songs of young adults. We conclude that, while the basic elements of adult song are available from birth, distinct selection pressures during maternal dependency, dispersal, and territorial establishment favor major shifts in the structure and prevalence of acoustic signals. This study provides insight into how an evolutionarily conserved form of acoustic signaling provides

  9. THC Prevents MDMA Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Clara Touriño

    2010-02-01

    Full Text Available The majority of MDMA (ecstasy recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4 were pretreated with THC (3 mg/kg x 4 at room (21 degrees C and at warm (26 degrees C temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1 receptor antagonist AM251 and the CB(2 receptor antagonist AM630, as well as in CB(1, CB(2 and CB(1/CB(2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1 receptor antagonist AM251, neither in CB(1 and CB(1/CB(2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2 cannabinoid antagonist and in CB(2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1 receptor, although CB(2 receptors may also contribute to

  10. Polydactyly in Mice Lacking HDAC9/HDRP

    Science.gov (United States)

    Morrison, Brad E.; D’Mello, Santosh R.

    2009-01-01

    Mice lacking histone deacetylase 9 (HDAC9) and its truncated variant, HDRP, exhibit post-axial polydactyly that manifests as an extra big toe on the right hind foot. Polydactyly in HDAC9/HDRP knockout mice occurs with incomplete penetrance and affects both genders similarly. Because polydactyly can result from overactivity of sonic hedgehog (Shh) signaling, we investigated whether HDRP acted as a negative regulator of the Shh pathway. We find that Gli1, a transcription factor and downstream mediator of Shh signaling, is expressed at substantially higher levels in the feet of perinatal HDAC9/HDRP-/- mice as compared with wild-type littermates. To more directly examine whether HDRP negatively-regulates Shh signaling we utilized cell lines that express components of the Shh pathway and that respond to the Shh agonist purmorphamine. We find that purmorphamine-mediated stimulation of Gli1 in the NIH 3T3 and HT22 cell lines is inhibited by the expression of HDRP. In HT22 cells, purmorphamine treatment leads to an increase in the rate of cell proliferation, which is also inhibited by HDRP. This inhibitory effect of HDRP on purmorphamine-mediated cell proliferation was also observed in primary cultures of glial cells. Although the mechanism by which it inhibits Gli1 induction and cell proliferation by purmorphamine is not clear, HDRP localizes to the nucleus suggesting it acts just upstream of Gli3 activation in the signaling cascade activated by Shh. Taken together our results suggest that HDRP acts as a negative regulator of the Shh pathway and that the absence of HDRP results in hyper-activation of this pathway resulting in polydactyly. PMID:18480421

  11. The MICE Demonstration of Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  12. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  13. Helminth parasites of conventionally mantained laboratory mice

    Directory of Open Access Journals (Sweden)

    Roberto Magalhães Pinto

    1994-03-01

    Full Text Available The spectrum of intestinal parasites present in the SwissWebster, C57B1/6 and DBA/2 mice strains from different animal houses was identified and prevalences compared. Three parasites were observed during the course ofthis study, namely the cestode. Vampirolepis nana (Siebold, 1852 Spasskii, 1954(=Hymenolepis nana and the nematodes Aspiculuris tetraptera (Nitzsch, 1821 Schulz, 1924 and Syphacia obvelata (Rudolphi, 1802 Seurat, 1916. The scope of thisinvestigation has been widened to also include morphometric data on the parasites, to further simplify their identification, since the presence of helminths in laboratory animals is regarded as a restricting factor for the proper attainment of experimental protocols.

  14. Behavioral characterization of mice lacking Trek channels

    Directory of Open Access Journals (Sweden)

    Kelsey eMirkovic

    2012-09-01

    Full Text Available Two-pore domain K+ (K2P channels are thought to underlie background K+ conductance in many cell types. The Trek subfamily of K2P channels consists of three members, Trek1/Kcnk2, Trek2/Kcnk10, and Traak/Kcnk4, all three of which are expressed in the rodent CNS. Constitutive ablation of the Trek1 gene in mice correlates with enhanced sensitivity to ischemia and epilepsy, decreased sensitivity to the effects of inhaled anesthetics, increased sensitivity to thermal and mechanical pain, and resistance to depression. While the distribution of Trek2 mRNA in the CNS is broad, little is known about the relevance of this Trek family member to neurobiology and behavior. Here, we probed the effect of constitutive Trek2 ablation, as well as the simultaneous constitutive ablation of all three Trek family genes, in paradigms that assess motor activity, coordination, anxiety-related behavior, learning and memory, and drug-induced reward-related behavior. No differences were observed between Trek2–/– and Trek1/2/Traak–/– mice in coordination or total distance traveled in an open-field. A gender-dependent impact of Trek ablation on open-field anxiety-related behavior was observed, as female but not male Trek2–/– and Trek1/2/Traak–/– mice spent more time in, and made a greater number of entries into, the center of the open-field than wild-type counterparts. Further evaluation of anxiety-related behavior in the elevated plus maze and light/dark box, however, did not reveal a significant influence of genotype on performance for either gender. Furthermore, Trek–/– mice behaved normally in tests of learning and memory, including contextual fear conditioning and novel object recognition, and with respect to opioid-induced motor stimulation and conditioned place preference. Collectively, these data argue that despite their broad distribution in the CNS, Trek channels exert a minimal influence on a wide-range of behaviors.

  15. Behavioral characterization of mice lacking Trek channels.

    Science.gov (United States)

    Mirkovic, Kelsey; Palmersheim, Jaime; Lesage, Florian; Wickman, Kevin

    2012-01-01

    Two-pore domain K(+) (K(2P)) channels are thought to underlie background K(+) conductance in many cell types. The Trek subfamily of K(2P) channels consists of three members, Trek1/Kcnk2, Trek2/Kcnk10, and Traak/Kcnk4, all three of which are expressed in the rodent CNS. Constitutive ablation of the Trek1 gene in mice correlates with enhanced sensitivity to ischemia and epilepsy, decreased sensitivity to the effects of inhaled anesthetics, increased sensitivity to thermal and mechanical pain, and resistance to depression. While the distribution of Trek2 mRNA in the CNS is broad, little is known about the relevance of this Trek family member to neurobiology and behavior. Here, we probed the effect of constitutive Trek2 ablation, as well as the simultaneous constitutive ablation of all three Trek family genes, in paradigms that assess motor activity, coordination, anxiety-related behavior, learning and memory, and drug-induced reward-related behavior. No differences were observed between Trek2(-/-) and Trek1/2/Traak(-/-) mice in coordination or total distance traveled in an open-field. A gender-dependent impact of Trek ablation on open-field anxiety-related behavior was observed, as female but not male Trek2(-/-) and Trek1/2/Traak(-/-) mice spent more time in, and made a greater number of entries into, the center of the open-field than wild-type counterparts. Further evaluation of anxiety-related behavior in the elevated plus maze and light/dark box, however, did not reveal a significant influence of genotype on performance for either gender. Furthermore, Trek(-/-) mice behaved normally in tests of learning and memory, including contextual fear conditioning and novel object recognition, and with respect to opioid-induced motor stimulation and conditioned place preference (CPP). Collectively, these data argue that despite their broad distribution in the CNS, Trek channels exert a minimal influence on a wide-range of behaviors.

  16. Enhanced Nociception in Angelman Syndrome Model Mice.

    Science.gov (United States)

    McCoy, Eric S; Taylor-Blake, Bonnie; Aita, Megumi; Simon, Jeremy M; Philpot, Benjamin D; Zylka, Mark J

    2017-10-18

    Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by mutation or deletion of the maternal UBE3A allele. The maternal UBE3A allele is expressed in nearly all neurons of the brain and spinal cord, whereas the paternal UBE3A allele is repressed by an extremely long antisense transcript ( UBE3A-ATS ). Little is known about expression of UBE3A in the peripheral nervous system, where loss of maternal UBE3A might contribute to AS phenotypes. Here we sought to examine maternal and paternal Ube3a expression in DRGs neurons and to evaluate whether nociceptive responses were affected in AS model mice (global deletion of maternal Ube3a allele; Ube3a m -/ p + ). We found that most large-diameter proprioceptive and mechanosensitive DRG neurons expressed maternal Ube3a and paternal Ube3a-ATS In contrast, most small-diameter neurons expressed Ube3a biallelically and had low to undetectable levels of Ube3a-ATS Analysis of single-cell DRG transcriptomes further suggested that Ube3a is expressed monoallelically in myelinated large-diameter neurons and biallelically in unmyelinated small-diameter neurons. Behavioral responses to some noxious thermal and mechanical stimuli were enhanced in male and female AS model mice; however, nociceptive responses were not altered by the conditional deletion of maternal Ube3a in the DRG. These data suggest that the enhanced nociceptive responses in AS model mice are due to loss of maternal Ube3a in the central, but not peripheral, nervous system. Our study provides new insights into sensory processing deficits associated with AS. SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss or mutation of the maternal UBE3A allele. While sensory processing deficits are frequently associated with AS, it is currently unknown whether Ube3a is expressed in peripheral sensory neurons or whether maternal deletion of Ube3a affects somatosensory responses. Here, we found that Ube3a is primarily expressed

  17. Experimental chemotherapy of Schistosoma curassoni in mice.

    Science.gov (United States)

    Vercruysse, J; Southgate, V R; Rollinson, D; Hilderson, H

    1989-01-01

    Mice experimentally infected with Schistosoma curassoni were treated with different dose regimens of praziquantel, metrifonate, oxamniquine and hycanthone. Praziquantel was the most effective drug; a dose of 100 mg/kg given orally for 5 days resulted in a 95% reduction in worm burdens. The drug produced oogram changes in all animals. Metrifonate did not result in a reduced worm burden but caused oogram changes even on a low-dose (150 mg/kg during 2 consecutive days) schedule. Oxamniquine proved to be ineffective; no reduction in worm burdens or alterations in oograms were observed. Hycanthone (80 mg/kg for 1 day) resulted in a significant reduction in worm burdens.

  18. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    other studies have demonstrated that the treatment of wounds with M2 macrophages does not benefit wound healing. 15 Given the importance of... Wound healing in Mac-1 deficient mice Lin Chen, MD, PhD 1 ; Sridevi Nagaraja, PhD 2 ; Jian Zhou, BS 1 ; Yan Zhao, BS 1 ; David Fine, BS 1...Alexander Y. Mitrophanov, PhD 2 ; Jaques Reifman, PhD 2 ; Luisa A. DiPietro, DDS, PhD 1 1 Center for Wound Healing and Tissue Regeneration, College of

  19. Modeling cognitive endophenotypes of schizophrenia in mice

    Science.gov (United States)

    Kellendonk, Christoph; Simpson, Eleanor H.; Kandel, Eric R.

    2016-01-01

    Schizophrenia is a complex mental disorder that is still characterized by its symptoms rather than by biological markers because we have only a limited knowledge of its underlying molecular basis. In the past two decades, however, technical advances in genetics and brain imaging have provided new insights into the biology of the disease. Based on these advances we are now in a position to develop animal models that can be used to test specific hypotheses of the disease and explore mechanisms of pathogenesis. Here, we consider some of the insights that have emerged from studying in mice the relationship between defined genetic and molecular alterations and the cognitive endophenotypes of schizophrenia. PMID:19409625

  20. MDMA reinstates cocaine-seeking behaviour in mice.

    Science.gov (United States)

    Trigo, José Manuel; Orejarena, Maria Juliana; Maldonado, Rafael; Robledo, Patricia

    2009-06-01

    MDMA effects are mediated by monoaminergic systems, which seem to play a central role in cocaine craving and relapse. CD1 mice trained to self-administer cocaine (1 mg/kg/infusion) underwent an extinction procedure in which the cues contingent with drug self-administration remained present. Mice achieving extinction were injected with MDMA (10 mg/kg), d-amphetamine (1 and 2 mg/kg) or saline and tested for reinstatement. Acute MDMA, but not d-amphetamine or saline reinstated cocaine-seeking behaviour in mice in which cocaine self-administration and contingent cues were previously extinguished. Acute MDMA can reinstate cocaine-seeking behaviour in mice.

  1. Lung development is not necessary for diaphragm development in mice.

    Science.gov (United States)

    Arkovitz, Marc S; Hyatt, Brian A; Shannon, John M

    2005-09-01

    Congenital diaphragmatic hernia affects approximately 1 in every 2000 live births. The etiology of these diaphragmatic defects is unknown. Using mice with a targeted deletion of fibroblast growth factor 10 (FGF10), which display a complete lack of lung tissue, we have examined the relationship between lung hypoplasia and diaphragmatic development. The diaphragms of FGF10 null mice were examined at 2 embryonic time-points and compared with their heterozygous and wild-type littermates. FGF10 null mice had phenotypically normal diaphragms when compared with wild-type littermates at both time-points studied. Normal diaphragm development appears to occur independent of lung development in mice.

  2. Chronic rapamycin treatment causes diabetes in male mice

    National Research Council Canada - National Science Library

    Schindler, Christine E; Partap, Uttara; Patchen, Bonnie K; Swoap, Steven J

    2014-01-01

    .... We observed that treatment with rapamycin for 52 wk induced diabetes in male mice, characterized by hyperglycemia, significant urine glucose levels, and severe glucose and pyruvate intolerance...

  3. Fibrotic Aortic Valve Stenosis in Hypercholesterolemic/Hypertensive Mice.

    Science.gov (United States)

    Chu, Yi; Lund, Donald D; Doshi, Hardik; Keen, Henry L; Knudtson, Kevin L; Funk, Nathan D; Shao, Jian Q; Cheng, Justine; Hajj, Georges P; Zimmerman, Kathy A; Davis, Melissa K; Brooks, Robert M; Chapleau, Mark W; Sigmund, Curt D; Weiss, Robert M; Heistad, Donald D

    2016-03-01

    Hypercholesterolemia and hypertension are associated with aortic valve stenosis (AVS) in humans. We have examined aortic valve function, structure, and gene expression in hypercholesterolemic/hypertensive mice. Control, hypertensive, hypercholesterolemic (Apoe(-/-)), and hypercholesterolemic/hypertensive mice were studied. Severe aortic stenosis (echocardiography) occurred only in hypercholesterolemic/hypertensive mice. There was minimal calcification of the aortic valve. Several structural changes were identified at the base of the valve. The intercusp raphe (or seam between leaflets) was longer in hypercholesterolemic/hypertensive mice than in other mice, and collagen fibers at the base of the leaflets were reoriented to form a mesh. In hypercholesterolemic/hypertensive mice, the cusps were asymmetrical, which may contribute to changes that produce AVS. RNA sequencing was used to identify molecular targets during the developmental phase of stenosis. Genes related to the structure of the valve were identified, which differentially expressed before fibrotic AVS developed. Both RNA and protein of a profibrotic molecule, plasminogen activator inhibitor 1, were increased greatly in hypercholesterolemic/hypertensive mice. Hypercholesterolemic/hypertensive mice are the first model of fibrotic AVS. Hypercholesterolemic/hypertensive mice develop severe AVS in the absence of significant calcification, a feature that resembles AVS in children and some adults. Structural changes at the base of the valve leaflets include lengthening of the raphe, remodeling of collagen, and asymmetry of the leaflets. Genes were identified that may contribute to the development of fibrotic AVS. © 2016 American Heart Association, Inc.

  4. Syphacia obvelata and Radfordia affinis infection in mice

    DEFF Research Database (Denmark)

    Harslund, Jakob le Fèvre; Mandrupsen, Karina; Bollen, Peter

    Short title: Pinworm and fur mite infection in mice; treatment and preventive strategies. Title: Syphacia obvelata and Radfordia affinis infection in mice; treatment strategy, implementation of a new health monitoring system and establishment of improved quarantine procedures. Authors: Jakob le...... health monitoring report only. Due to an increase in mouse population, with a growth from an average population density of 2.594 mice in 2008 to 4957 mice in 2012, the number of imports and staff movements has increased drastically, resulting in a higher risk for acquiring infections. The infections...

  5. Effect of montelukast on bacterial sinusitis in allergic mice.

    Science.gov (United States)

    Khoury, Paneez; Baroody, Fuad M; Klemens, James J; Thompson, Kenneth; Naclerio, Robert M

    2006-09-01

    In mice, allergic rhinitis augments the infectious and inflammatory response to Streptococcus pneumoniae-induced sinusitis. To investigate the effects of cysteinyl leukotriene antagonism on the severity of bacterial infection. We performed 3 parallel, placebo-controlled experiments. In the first, mice were ovalbumin sensitized and ovalbumin challenged to show the effects of montelukast on the allergic inflammation; in the second, we evaluated the effect of montelukast on S. pneumoniae infection; in the third, we used mice that were both allergic and infected. Montelukast was given starting 2 days after sensitization until the day before euthanasia. One day after drug treatment began, the mice were inoculated intranasally with S. pneumoniae in the infected groups. Nasal hypersensitivity was measured with histamine challenges before the first sensitization and on the day before euthanasia. On the fifth day after infection, mice were euthanized, nasal lavage was performed, bacteria were cultured, and inflammatory cells in the sinuses were quantified. Mice that were infected only tended toward having increased bacterial counts from nasal lavage in the montelukast-treated group. The mice that were allergic and infected experienced significantly higher bacterial counts (P < .05). All 3 montelukast treatment groups had significantly decreased eosinophil counts as well as T-lymphocyte counts. Montelukast reduces the manifestations of allergic rhinitis in mice. Surprisingly, montelukast led to an increase in bacterial growth in infected mice. This suggests an effect of the cysteinyl leukotrienes on the innate response to bacterial infection.

  6. Database of Physiological Parameters for Early Life Rats and Mice

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Database of Physiological Parameters for Early Life Rats and Mice provides information based on scientific literature about physiological parameters. Modelers...

  7. Pathogenic potential of Blastocystis hominis in laboratory mice.

    Science.gov (United States)

    Elwakil, Hala S; Hewedi, Iman H

    2010-08-01

    Blastocystis hominis is a ubiquitous enteric protozoan whose pathogenic potential is still controversial. This study was carried out to clarify the pathogenecity of B. hominis infection and to study the proper number of parasites for mice infection. A total of 15 albino mice were orally inoculated with B. hominis and divided according to the inoculums, 10(2), 10(5), and 4 x 10(7) B. hominis forms/100 microl saline, into three groups consisting of five mice each, GI, GII GIII, respectively. In addition with group IV (uninfected control) consisting of five mice. All mice were sacrificed 2 weeks post-infection. The results revealed that all mice of GIII and two mice of GII got the infection while all mice of GI showed a completely negative result. Histopathological examination of large intestine on highly infected group (GIII) showed that B. hominis infiltrated the lamina propria, the submucosa, and the muscle layers in the form of collection of vacuolar forms. This was accompanied by active colitis with infiltration of mixed inflammatory cells. In conclusion, this study revealed that large number of B. hominis is essential for oral infection of mice and that vacuolar forms of B. hominis can invade the lamina propria, the submucosa, and even the muscle layers.

  8. Iridal coloboma induces dyscoria during miosis in FLS mice.

    Science.gov (United States)

    Matsuura, Tetsuro; Tsuji, Naho; Kodama, Yasushi; Narama, Isao; Ozaki, Kiyokazu

    2013-05-01

    Fatty liver Shionogi (FLS) mice exhibit characteristic retinochoroidal coloboma because of a failure in fusion of the embryonic optic fissure. However, the same pathogenesis should result in iridal coloboma that has not been reported in this strain. The purpose of this study was to describe the physiologic and morphometric changes in iridal tissue involved in ocular coloboma in FLS mice. The miotic response after light exposure was evaluated in three strains of live mice, and the shape and location of the pupil were judged macroscopically. Subsequently, macroscopic abnormalities in the anterior segment and fundus were observed postmortem in all mice. During miotic and mydriatic responses in the eyes of live male FLS mice with dyscoric and normal pupils, each iris was measured in four radial directions. The enucleated eyes were examined morphometrically and histologically in both sexes of FLS mice. Inferior corectopia upon light-induced miosis was clearly detected in live FLS mice. The deviated pupils were not round but oval-shaped. Clinical and postmortem examination revealed that all dyscoric eyes had hypoplastic and dysfunctional irides inferiorly in FLS mice. Histopathological examination confirmed that both the dilator and sphincter muscles and iris stroma were quantitatively diminished in the affected inferior iris. Meanwhile, the rate of fundus (retinochoroidal) coloboma in eyes exhibiting dyscoria was remarkably high, although some dyscoric eyes had no fundus coloboma. Fatty liver Shionogi mice had iridal coloboma, resulting in inferior corectopia upon light-induced miosis as an indicator of ocular coloboma. © 2012 American College of Veterinary Ophthalmologists.

  9. Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Selfjord, Ellika; Larsen, Christian S.

    2014-01-01

    Transferring gut microbiota from one individual to another may enable researchers to "humanize'' the gut of animal models and transfer phenotypes between species. To date, most studies of gut microbiota transfer are performed in germ-free mice. In the studies presented, it was tested whether an a...

  10. The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood

    NARCIS (Netherlands)

    Jacquemin, E.; de Vree, J. M.; Cresteil, D.; Sokal, E. M.; Sturm, E.; Dumont, M.; Scheffer, G. L.; Paul, M.; Burdelski, M.; Bosma, P. J.; Bernard, O.; Hadchouel, M.; Elferink, R. P.

    2001-01-01

    BACKGROUND & AIMS: We have specified the features of progressive familial intrahepatic cholestasis type 3 and investigated in 31 patients whether a defect of the multidrug resistance 3 gene (MDR3) underlies this phenotype. METHODS: MDR3 sequencing, liver MDR3 immunohistochemistry, and biliary

  11. The wide spectrum of multidrug resistance 3 deficiency : From neonatal cholestasis to cirrhosis of adulthood

    NARCIS (Netherlands)

    Jacquemin, E; de Vree, JML; Cresteil, D; Sokal, EM; Sturm, E; Dumont, M; Scheffer, GL; Paul, M; Burdelski, M; Bernard, O; Hadchouel, M; Elferink, RPJO

    Background & Aims: We have specified the features of progressive familial intrahepatic cholestasis type 3 and investigated in 31 patients whether a defect of the multidrug resistance 3 gene (MDR3) underlies this phenotype. Methods: MDR3 sequencing liver MDR3 immunohistochemistry, and biliary

  12. 26 CFR 1.992-3 - Deficiency distributions to meet qualification requirements.

    Science.gov (United States)

    2010-04-01

    ... requirements to be a DISC. Such designation shall be in the form of a communication sent at the time of such... subparagraph is an amount equal to the sum of its taxable income (if any) from each transaction giving rise to...

  13. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    Science.gov (United States)

    Tang, Xuan; Zhuang, Jingjing; Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  14. Dedicated low-field MRI in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, P; Breton, E; Goetz, C; Constantinesco, A [Laboratoire de Biomecanique, IMFS, Service de Biophysique et Medecine Nucleaire, Hopitaux Universitaires de Strasbourg, CHU Hautepierre, 1 Avenue Moliere, 67098 Strasbourg (France); Marin, C [Service d' Anatomo-Pathologie, Hopitaux Universitaires de Strasbourg, CHU Hautepierre, 1 Avenue Moliere, 67098 Strasbourg (France)], E-mail: Andre.CONSTANTINESCO@chru-strasbourg.fr

    2009-09-07

    The rationale of this work is to point out the relevance of in vivo MR images of mice obtained using a dedicated low-field system. For this purpose a small 0.1 T water-cooled electro-magnet and solenoidal radio frequency (RF) transmit-receive coils were used. All MR images were acquired in three-dimensional (3D) mode. An isolation cell was designed allowing easy placement of the RF coils and simple delivery of gaseous anesthesia as well as warming of the animal. Images with and without contrast agent were obtained in total acquisition times on the order of half an hour to four hours on normal mice as well as on animals bearing tumors. Typical in plane pixel dimensions range from 200 x 200 to 500 x 500 {mu}m{sup 2} with slice thicknesses ranging between 0.65 and 1.50 mm. This work shows that, besides light installation and low cost, dedicated low-field MR systems are suitable for small rodents imaging, opening this technique even to small research units.

  15. Modeling Human Leukemia Immunotherapy in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Jinxing Xia

    2016-08-01

    Full Text Available The currently available human tumor xenograft models permit modeling of human cancers in vivo, but in immunocompromised hosts. Here we report a humanized mouse (hu-mouse model made by transplantation of human fetal thymic tissue plus hematopoietic stem cells transduced with a leukemia-associated fusion gene MLL-AF9. In addition to normal human lymphohematopoietic reconstitution as seen in non-leukemic hu-mice, these hu-mice showed spontaneous development of B-cell acute lymphoblastic leukemia (B-ALL, which was transplantable to secondary recipients with an autologous human immune system. Using this model, we show that lymphopenia markedly improves the antitumor efficacy of recipient leukocyte infusion (RLI, a GVHD-free immunotherapy that induces antitumor responses in association with rejection of donor chimerism in mixed allogeneic chimeras. Our data demonstrate the potential of this leukemic hu-mouse model in modeling leukemia immunotherapy, and suggest that RLI may offer a safe treatment option for leukemia patients with severe lymphopenia.

  16. Deletion of ultraconserved elements yields viable mice

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  17. Molecular Hydrogen Attenuates Neuropathic Pain in Mice

    Science.gov (United States)

    Kawaguchi, Masanori; Satoh, Yasushi; Otsubo, Yukiko; Kazama, Tomiei

    2014-01-01

    Neuropathic pain remains intractable and the development of new therapeutic strategies are urgently required. Accumulating evidence indicates that overproduction of oxidative stress is a key event in the pathogenesis of neuropathic pain. However, repeated intra-peritoneal or intrathecal injections of antioxidants are unsuitable for continuous use in therapy. Here we show a novel therapeutic method against neuropathic pain: drinking water containing molecular hydrogen (H2) as antioxidant. The effect of hydrogen on neuropathic pain was investigated using a partial sciatic nerve ligation model in mice. As indicators of neuropathic pain, temporal aspects of mechanical allodynia and thermal hyperalgesia were analysed for 3 weeks after ligation. Mechanical allodynia and thermal hyperalgesia were measured using the von Frey test and the plantar test, respectively. When mice were allowed to drink water containing hydrogen at a saturated level ad libitum after ligation, both allodynia and hyperalgesia were alleviated. These symptoms were also alleviated when hydrogen was administered only for the induction phase (from day 0 to 4 after ligation). When hydrogen was administered only for the maintenance phase (from day 4 to 21 after ligation), hyperalgesia but not allodynia was alleviated. Immunohistochemical staining for the oxidative stress marker, 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine, showed that hydrogen administration suppressed oxidative stress induced by ligation in the spinal cord and the dorsal root ganglion. In conclusion, oral administration of hydrogen water may be useful for alleviating neuropathic pain in a clinical setting. PMID:24941001

  18. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    Full Text Available Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK and serine/threonine kinase 11(LKB1-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  19. Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    Science.gov (United States)

    Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases. PMID:21887385

  20. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  1. Obesogenic diets alter metabolism in mice.

    Science.gov (United States)

    Showalter, Megan R; Nonnecke, Eric B; Linderholm, A L; Cajka, Tomas; Sa, Michael R; Lönnerdal, Bo; Kenyon, Nicholas J; Fiehn, Oliver

    2018-01-01

    Obesity and accompanying metabolic disease is negatively correlated with lung health yet the exact mechanisms by which obesity affects the lung are not well characterized. Since obesity is associated with lung diseases as chronic bronchitis and asthma, we designed a series of experiments to measure changes in lung metabolism in mice fed obesogenic diets. Mice were fed either control or high fat/sugar diet (45%kcal fat/17%kcal sucrose), or very high fat diet (60%kcal fat/7% sucrose) for 150 days. We performed untargeted metabolomics by GC-TOFMS and HILIC-QTOFMS and lipidomics by RPLC-QTOFMS to reveal global changes in lung metabolism resulting from obesity and diet composition. From a total of 447 detected metabolites, we found 91 metabolite and lipid species significantly altered in mouse lung tissues upon dietary treatments. Significantly altered metabolites included complex lipids, free fatty acids, energy metabolites, amino acids and adenosine and NAD pathway members. While some metabolites were altered in both obese groups compared to control, others were different between obesogenic diet groups. Furthermore, a comparison of changes between lung, kidney and liver tissues indicated few metabolic changes were shared across organs, suggesting the lung is an independent metabolic organ. These results indicate obesity and diet composition have direct mechanistic effects on composition of the lung metabolome, which may contribute to disease progression by lung-specific pathways.

  2. Hyperbaric hyperoxia accelerates fracture healing in mice.

    Directory of Open Access Journals (Sweden)

    Shigeo Kawada

    Full Text Available Increased oxygen tension influences bone metabolism. This study comprised two main experiments: one aimed to determine the bone mineral apposition and bone formation rates in vivo under hyperbaric hyperoxia (HBO, and the other aimed to evaluate the effects of exposure to HBO on fracture healing. In experiment 1, male mice were exposed to HBO [90 min/day at 90% O₂ at 2 atmospheres absolute (ATA for 5 days]. In experiment 2, an open femur fracture model was created in mice, followed by exposure to HBO 5 times/week (90 min/day at 90% O₂ at 2 ATA for 6 weeks after surgery. In experiment 1, HBO treatment significantly increased the mineral apposition and bone formation rates in the lumbar vertebra and femur and type 1 collagen alpha 1 and alkaline phosphatase mRNA expression in the lumbar vertebra. In experiment 2, at 2 weeks after fracture, the fracture callus was significantly larger in the HBO group than in the non-HBO group. Furthermore, at 4 and 6 weeks after fracture, radiographic findings showed accelerated fracture healing in the HBO group. At 6 weeks after fracture, femur stiffness and maximum load were significantly higher in the HBO group than in the non-HBO group. Urinary 8-hydroxy-2'-deoxyguanosine and plasma calcium concentrations were not significantly different between groups. These results suggest that exposure to HBO enhances bone anabolism and accelerates fracture healing without causing oxidative DNA damage or disruption of plasma calcium homeostasis.

  3. Multiphasic growth curve analysis in mice.

    Science.gov (United States)

    Koops, W J; Grossman, M; Michalska, E

    1987-01-01

    Growth curves of mean body weights were compared to those of individual weights when fitted to data of male and female mice using monophasic (logistic) and triphasic growth functions. Goodness-of-fit was determined by residual variances and Durbin-Watson statistics. These criteria suggest that the triphasic function, with smaller and less correlated residuals, describes the data better than the monophasic function. For the triphasic function, residual variances were higher when fitting individual weights than mean weights. Males had higher residual variances than females. Auto-correlation was negligible when fitting individual weights for males and for females. Parameters of the triphasic function were higher when fitting curves of individual weights than curves of mean weights; differences between curves within sex were small. Parameters were similar for males and females, especially in the first phase of growth. Half asymptotic weights for the second and third phases were higher for males than for females. From these results, it should be clear that using a multiphasic function to describe growth curves in mice provides greater insight for understanding the biology of growth.

  4. The MICE Demonstration of Muon Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Imperial Coll., London; Hunt, Christopher [Imperial Coll., London; Palladino, Vittorio [INFN, Naples; Pasternak, Jaroslaw [Imperial Coll., London

    2016-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  5. Heart rate reduction and longevity in mice.

    Science.gov (United States)

    Gent, Sabine; Kleinbongard, Petra; Dammann, Philip; Neuhäuser, Markus; Heusch, Gerd

    2015-03-01

    Heart rate correlates inversely with life span across all species, including humans. In patients with cardiovascular disease, higher heart rate is associated with increased mortality, and such patients benefit from pharmacological heart rate reduction. However, cause-and-effect relationships between heart rate and longevity, notably in healthy individuals, are not established. We therefore prospectively studied the effects of a life-long pharmacological heart rate reduction on longevity in mice. We hypothesized, that the total number of cardiac cycles is constant, and that a 15% heart rate reduction might translate into a 15% increase in life span. C57BL6/J mice received either placebo or ivabradine at a dose of 50 mg/kg/day in drinking water from 12 weeks to death. Heart rate and body weight were monitored. Autopsy was performed on all non-autolytic cadavers, and parenchymal organs were evaluated macroscopically. Ivabradine reduced heart rate by 14% (median, interquartile range 12-15%) throughout life, and median life span was increased by 6.2% (p = 0.01). Body weight and macroscopic findings were not different between placebo and ivabradine. Life span was not increased to the same extent as heart rate was reduced, but nevertheless significantly prolonged by 6.2%.

  6. Vasomotor control in mice overexpressing human endothelial nitric oxide synthase.

    Science.gov (United States)

    van Deel, Elza D; Merkus, Daphne; van Haperen, Rien; de Waard, Monique C; de Crom, Rini; Duncker, Dirk J

    2007-08-01

    Nitric oxide (NO) plays a key role in regulating vascular tone. Mice overexpressing endothelial NO synthase [eNOS-transgenic (Tg)] have a 20% lower systemic vascular resistance (SVR) than wild-type (WT) mice. However, because eNOS enzyme activity is 10 times higher in tissue homogenates from eNOS-Tg mice, this in vivo effect is relatively small. We hypothesized that the effect of eNOS overexpression is attenuated by alterations in NO signaling and/or altered contribution of other vasoregulatory pathways. In isoflurane-anesthetized open-chest mice, eNOS inhibition produced a significantly greater increase in SVR in eNOS-Tg mice compared with WT mice, consistent with increased NO synthesis. Vasodilation to sodium nitroprusside (SNP) was reduced, whereas the vasodilator responses to phosphodiesterase-5 blockade and 8-bromo-cGMP (8-Br-cGMP) were maintained in eNOS-Tg compared with WT mice, indicating blunted responsiveness of guanylyl cyclase to NO, which was supported by reduced guanylyl cyclase activity. There was no evidence of eNOS uncoupling, because scavenging of reactive oxygen species (ROS) produced even less vasodilation in eNOS-Tg mice, whereas after eNOS inhibition the vasodilator response to ROS scavenging was similar in WT and eNOS-Tg mice. Interestingly, inhibition of other modulators of vascular tone [including cyclooxygenase, cytochrome P-450 2C9, endothelin, adenosine, and Ca-activated K(+) channels] did not significantly affect SVR in either eNOS-Tg or WT mice, whereas the marked vasoconstrictor responses to ATP-sensitive K(+) and voltage-dependent K(+) channel blockade were similar in WT and eNOS-Tg mice. In conclusion, the vasodilator effects of eNOS overexpression are attenuated by a blunted NO responsiveness, likely at the level of guanylyl cyclase, without evidence of eNOS uncoupling or adaptations in other vasoregulatory pathways.

  7. Fecal corticosterone levels in RCAN1 mutant mice.

    Science.gov (United States)

    Rakowski-Anderson, Tammy; Wong, Helen; Rothermel, Beverly; Cain, Peter; Lavilla, Carmencita; Pullium, Jennifer K; Hoeffer, Charles

    2012-04-01

    Regulator of calcineurin 1 (RCAN1) is related to the expression of human neurologic disorders such as Down syndrome, Alzheimer disease, and chromosome 21q deletion syndrome. We showed here that RCAN1-knockout mice exhibit reduced innate anxiety as indicated by the elevated-plus maze. To examine whether glucocorticoids contribute to this phenotype, we measured fecal corticosterone in male wildtype and RCAN1-knockout mice and in male and female transgenic mice with neuronal overexpression of RCAN1 (Tg-RCAN1(TG)). We found no difference in fecal corticosterone levels of RCAN1-knockout mice and their wildtype littermates. As expected, we found differences between sexes in fecal corticosterone levels. In addition, we found higher levels of excreted corticosterone in Tg-RCAN1(TG) female mice as compared with female wildtype mice. Our data indicate normal diurnal corticosterone production in RCAN1 mutant mice and do not suggest a causal role in either the cognitive or anxiety phenotypes exhibited by RCAN1-knockout mice.

  8. Interferon regulatory factor-7 modulates experimental autoimmune encephalomyelitis in mice

    DEFF Research Database (Denmark)

    Salem, Mohammad; Mony, Jyothi T; Lobner, Morten

    2011-01-01

    the spinal cord was altered. Analysis of cytokine and chemokine gene expression by quantitative real-time PCR showed significantly greater increases in CCL2, CXCL10, IL-1beta and IL17 gene expression in IRF7-deficient mice compared with WT mice. CONCLUSION: Together, our findings suggest that IRF7 signaling...

  9. Apolipoprotein E*3-Leiden transgenic mice mode for hypolipidaemic drugs

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Pearce, N.J.; Bergö, M.; Staels, B.; Yates, J.W.; Gribble, A.D.; Bond, B.C.; Hofker, M.H.; Havekes, L.M.; Groot, P.H.E.

    1998-01-01

    Apolipoprotein (APO) E*3-Leiden mice with impaired chylomicron and VLDL (very low density lipoprotein) remnant metabolism display hyperlipidaemia and atherosclerosis. In the present study, these mice were used for testing the hypolipidaemic effect of two marketed agents, lovastatin (CAS 75330-75-5)

  10. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  11. REVIEW - Thermal Physiology of Laboratory Mice: Defining Thermoneutrality

    Science.gov (United States)

    In terms of total number of publications, the laboratory mouse (Mus musculus) has emerged as the most popular test subject in biomedical research. Mice are used as models to study obesity, diabetes, eNS diseases and variety of other pathologies. Mice are classified as homeotherms...

  12. whole plant extract in alloxan-induced diabetic mice

    African Journals Online (AJOL)

    Purpose: To investigate Heliotropium strigosum whole plant extract for its potential to reduce the blood glucose level of alloxan-induced diabetic mice. Methods: Preliminary phytochemical analysis was carried out using standard procedures. Diabetes was induced in Balb/c mice by injecting alloxan (200 mg/kg i.p.).

  13. Selective reconstitution of T lymphocyte subsets in scid mice

    DEFF Research Database (Denmark)

    Reimann, J; Rudolphi, A; Claesson, Mogens Helweg

    1991-01-01

    The 'empty' splenic T-cell compartment of young scid mice was partially and selectively reconstituted by low numbers of adoptively transferred congenic (C.B-17, BALB/c) or semi-allogeneic (dm2), but not completely allogeneic (C57BL/6) CD4+ T cells from adult donor mice. Under the same experimenta...

  14. Characterization of urinary volatiles in Swiss male mice (Mus ...

    Indian Academy of Sciences (India)

    ... in male mice. Bioassay revealed that compounds (II), (III) and (IV) were responsible for attracting females and in inducing aggression towards males, as compared to the other compounds, i.e. (I) and (V). The results indicate that these three volatiles (II, III and IV) of male mice appear to act as attractants of the opposite sex.

  15. Preference for and discrimination of paintings by mice.

    Directory of Open Access Journals (Sweden)

    Shigeru Watanabe

    Full Text Available I measured preference for paintings (Renoir vs. Picasso or Kandinsky vs. Mondrian in mice. In general mice did not display a painting preference except for two mice: one preferred Renoir to Picasso, and the other preferred Kandinsky to Mondrian. Thereafter, I examined discrimination of paintings with new mice. When exposure to paintings of one artist was associated with an injection of morphine (3.0 mg/kg, mice displayed conditioned preference for those paintings, showing discrimination of paintings by Renoir from those by Picasso, and paintings by Kandinsky from those by Mondrian after the conditioning. They also exhibited generalization of the preference to novel paintings of the artists. After conditioning with morphine for a set of paintings consisting of two artists, mice showed discrimination between two sets of paintings also from the two artists but not in association with morphine. These results suggest that mice can discriminate not only between an artist's style but also among paintings of the same artist. When mice were trained to discriminate a pair of paintings by Kandinsky and Renoir in an operant chamber equipped with a touch screen, they showed transfer of the discrimination to new pairs of the artists, but did not show transfer of discrimination of paintings by other artists, suggesting generalization.

  16. Preference for and discrimination of paintings by mice.

    Science.gov (United States)

    Watanabe, Shigeru

    2013-01-01

    I measured preference for paintings (Renoir vs. Picasso or Kandinsky vs. Mondrian) in mice. In general mice did not display a painting preference except for two mice: one preferred Renoir to Picasso, and the other preferred Kandinsky to Mondrian. Thereafter, I examined discrimination of paintings with new mice. When exposure to paintings of one artist was associated with an injection of morphine (3.0 mg/kg), mice displayed conditioned preference for those paintings, showing discrimination of paintings by Renoir from those by Picasso, and paintings by Kandinsky from those by Mondrian after the conditioning. They also exhibited generalization of the preference to novel paintings of the artists. After conditioning with morphine for a set of paintings consisting of two artists, mice showed discrimination between two sets of paintings also from the two artists but not in association with morphine. These results suggest that mice can discriminate not only between an artist's style but also among paintings of the same artist. When mice were trained to discriminate a pair of paintings by Kandinsky and Renoir in an operant chamber equipped with a touch screen, they showed transfer of the discrimination to new pairs of the artists, but did not show transfer of discrimination of paintings by other artists, suggesting generalization.

  17. Effect of ketoprofen on immune cells in mice | Hamdani | Tropical ...

    African Journals Online (AJOL)

    Effect of ketoprofen on immune cells in mice. DA Hamdani, A Javeed, M Ashraf, J Nazir, A Ghafoor. Abstract. Purpose: To study the immunosuppressant and immunopotentiating effects of ketoprofen on antibody producing cells. Methods: Mice were given ketoprofen at doses of 1 mg/kg/day and 5 mg/kg/day for seven days.

  18. Protection from obesity in mice lacking the VLDL receptor

    NARCIS (Netherlands)

    Goudriaan, J.R.; Tacken, P.J.; Dahlmans, V.E.H.; Gijbels, M.J.J.; Dijk, K.W. van; Havekes, L.M.; Jong, M.C.

    2001-01-01

    It has previously been reported that mice lacking the VLDL receptor (VLDLR-/-) exhibit normal plasma lipid levels and a modest decrease in adipose tissue mass. In the present study, the effect of VLDLR deficiency on profound weight gain was studied in