WorldWideScience

Sample records for calorimetry software calibration

  1. Simulating SiD Calorimetry: Software Calibration Procedures and Jet Energy Resolution

    International Nuclear Information System (INIS)

    Cassell, R.

    2009-01-01

    Simulated calorimeter performance in the SiD detector is examined. The software calibration procedures are described, as well as the perfect pattern recognition PFA reconstruction. Performance of the SiD calorimeters is summarized with jet energy resolutions from calorimetry only, perfect pattern recognition and the SiD PFA algorithm. Presented at LCWS08(1). Our objective is to simulate the calorimeter performance of the SiD detector, with and without a Particle Flow Algorithm (PFA). Full Geant4 simulations using SLIC(2) and the SiD simplified detector geometry (SiD02) are used. In this geometry, the calorimeters are represented as layered cylinders. The EM calorimeter is Si/W, with 20 layers of 2.5mm W and 10 layers of 5mm W, segmented in 3.5 x 3.5mm 2 cells. The HAD calorimeter is RPC/Fe, with 40 layers of 20mm Fe and a digital readout, segmented in 10 x 10mm 2 cells. The barrel detectors are layered in radius, while the endcap detectors are layered in z(along the beam axis)

  2. ATLAS calorimetry. Trigger, simulation and jet calibration

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.

    2007-02-06

    The Pre-Processor system of the ATLAS Level-1 Calorimeter Trigger performs complex processing of analog trigger tower signals from electromagnetic and hadronic calorimeters. The main processing block of the Pre-Processor System is the Multi-Chip Module (MCM). The first part of this thesis describes MCM quality assurance tests that have been developed, their use in the MCM large scale production and the results that have been obtained. In the second part of the thesis a validation of a shower parametrisation model for the ATLAS fast simulation package ATLFAST based on QCD dijet events is performed. A detailed comparison of jet response and jet energy resolution between the fast and the full simulation is presented. The uniformity of the calorimeter response has a significant impact on the accuracy of the jet energy measurement. A study of the calorimeter intercalibration using QCD dijet events is presented in the last part of the thesis. The intercalibration study is performed in azimuth angle {phi} and in pseudorapidity {eta}. The performance of the calibration methods including possible systematic and statistical effects is described. (orig.)

  3. An investigation of calibration methods for solution calorimetry.

    Science.gov (United States)

    Yff, Barbara T S; Royall, Paul G; Brown, Marc B; Martin, Gary P

    2004-01-28

    Solution calorimetry has been used in a number of varying applications within pharmaceutical research as a technique for the physical characterisation of pharmaceutical materials, such as quantifying small degrees of amorphous content, identifying polymorphs and investigating interactions between drugs and carbohydrates or proteins and carbohydrates. A calibration test procedure is necessary to validate the instrumentation; a few of the suggested calibration reactions are the enthalpies of solution associated with dissolving Tris in 0.1 M HCl or NaCl, KCl or propan-1-ol in water. In addition, there are a number of different methods available to determine enthalpies of solution from the experimental data provided by the calorimeter, for example, the Regnault-Pfaundler's method, a graphical extrapolation based on the Dickinson method, or a manual integration-based method. Thus, the aim of the study was to investigate how each of these methods influences the values for the enthalpy of solution. Experiments were performed according to the method outlined by Hogan and Buckton [Int. J. Pharm. 207 (2000) 57] using KCl (samples of 50, 100 and 200 mg), Tris and sucrose as calibrants. For all three materials the manual integration method was found to be the most consistent with the KCl in water (sample mass of 200 mg) being the most precise. Thus, this method is recommended for the validation of solution calorimeters.

  4. Calorimetry

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    We have divided this study of calorimetry at the SLC into five topics: physics with calorimeters, readout geometries, performance of existing detectors, calorimeter technologies, and new calorimeter designs. The first topic is a review of the Z 0 physics in which calorimetry would be important. We discuss the Monte Carlo model and the general features of the events which it generates. We consider how the physics affects the design of the electromagnetic and hadron calorimeters in energy resolution, segmentation, solid angle coverage, and general performance. The two ways of reading out a calorimeter, strips and towers, are the basis of the second topic. We discuss a model which makes quantitative comparisons of these two schemes, with particular reference to electromagnetic calorimeters. These programs should be useful in other studies of calorimeter performance as well. There are six detectors at PEP and SPEAR with calorimetric elements. The third topic is a review of their performance at present energies and an evaluation of the problems which would arise at SLC energies. The new technologies which may be mature enough for use in an SLC detector are considered as the fourth topic. Some are now being built into anti pp detectors, others are in test beam stages, and others are still bright ideas. We review ten techniques and include references for further pursuit. The last section combines the physics goals, readout schemes, and present and future techniques into sensible calorimeter designs which sharpen the issues. Six models resulted. We discuss their strengths, weaknesses, feasibility, and rough costs

  5. High-heat-flux sensor calibration using calorimetry

    Science.gov (United States)

    Ballestrín, J.; Estrada, C. A.; Rodríguez-Alonso, M.; Pérez-Rábago, C.; Langley, L. W.; Barnes, A.

    2004-08-01

    This paper demonstrates a calorimetric procedure for calibrating high-heat-flux sensors. The results are in agreement with calibrations obtained using black-body radiation. However, the proposed method has the potential of being more accurate than traditional approaches. This new procedure calibrates sensors to measure correctly under conditions of concentrated solar radiation. At present, the thermal balance calibration technique in the laboratory is limited to solar irradiances of approximately 100 kW m-2. The next step is to demonstrate this methodology to higher irradiances under non-laboratory conditions in the CIEMAT solar furnace at Plataforma Solar de Almería.

  6. An integrated calibration system for liquid argon calorimetry

    CERN Document Server

    Marschalkowski, E; Mense, T; Nürnberger, H A; Schäfer, U

    1999-01-01

    A novel technical solution for an integrated version of the pulse generator of a calibration system for liquid argon calorimeters is presented. It consists of a differential amplifier with automatic offset compensation, a current mirror and a switching logic. These components are integrated on an ASIC chip in CMOS technology. The technical realisation as well as results on the performance are presented. (author)

  7. Improvement of gamma calibration procedures with commercial management software

    International Nuclear Information System (INIS)

    Lucena, Rodrigo F.; Potiens, Maria da Penha A.; Santos, Gelson P.; Vivolo, Vitor

    2007-01-01

    In this work, the gamma calibration procedure of the Instruments Calibration Laboratory (LCI) of the IPEN-CNEN-SP was improved with the use of the commercial management software Autolab TM from Automa Company. That software was adapted for our specific use in the calibration procedures. The evaluation of the uncertainties in gamma calibration protocol was improved by the LCI staff and yet the all worksheets and final calibration report lay-out was developed in commercial software like Excell TM and Word TM from Microsft TM . (author)

  8. Improvement of gamma calibration procedures with commercial management software

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, Rodrigo F.; Potiens, Maria da Penha A.; Santos, Gelson P.; Vivolo, Vitor [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: rodrigoifusp@yahoo.com.br; mppalbu@ipen.br; gpsantos@ipen.br; vivolo@ipen.br

    2007-07-01

    In this work, the gamma calibration procedure of the Instruments Calibration Laboratory (LCI) of the IPEN-CNEN-SP was improved with the use of the commercial management software Autolab{sup TM} from Automa Company. That software was adapted for our specific use in the calibration procedures. The evaluation of the uncertainties in gamma calibration protocol was improved by the LCI staff and yet the all worksheets and final calibration report lay-out was developed in commercial software like Excell{sup TM} and Word{sup TM} from Microsft{sup TM}. (author)

  9. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372086; The ATLAS collaboration

    2016-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  10. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  11. A Layer Correlation Technique for ATLAS Calorimetry Calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Carli, T; Spanò, F; Speckmayer, P

    2008-01-01

    A method for calibrating the response of a segmented calorimeter to hadrons is developed. The ansatz is that information on longitudinal shower fluctuations gained from a principal component analysis of the layer energy depositions can improve energy resolution by correcting for hadronic invisible energy and dead material losses: projections along the eigenvectors of the correlation matrix are used as input for the calibration. The technique is used to reconstruct the energy of pions impinging on the ATLAS calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. Simulated Monte Carlo events are used to derive corrections for invisible energy lost in nuclear reactions and in dead material in front and in between the calorimeters. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the resolution is improved by about 20%.

  12. Calorimetry at a Future Linear Collider

    CERN Document Server

    AUTHOR|(CDS)2090195; Marshall, John

    This thesis describes the optimisation of the calorimeter design for collider experiments at the future Compact LInear Collider (CLIC) and the International Linear Collider (ILC). The detector design of these experiments is built around high-granularity Particle Flow Calorimetry that, in contrast to traditional calorimetry, uses the energy measurements for charged particles from the tracking detectors. This can only be realised if calorimetric energy deposits from charged particles can be separated from those of neutral particles. This is made possible with fine granularity calorimeters and sophisticated pattern recognition software, which is provided by the PandoraPFA algorithm. This thesis presents results on Particle Flow calorimetry performance for a number of detector configurations. To obtain these results a new calibration procedure was developed and applied to the detector simulation and reconstruction to ensure optimal performance was achieved for each detector configuration considered. This thesis a...

  13. Software System for the Calibration of X-Ray Measuring Instruments

    International Nuclear Information System (INIS)

    Gaytan-Gallardo, E.; Tovar-Munoz, V. M.; Cruz-Estrada, P.; Vergara-Martinez, F. J.; Rivero-Gutierrez, T.

    2006-01-01

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in Mexico (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed

  14. RORASC: Software for the rotated-random-scan calibration procedure

    NARCIS (Netherlands)

    Janssen PHM; CWM

    1995-01-01

    De release-versie 1.0 van het programma RORASC wordt gepresenteerd, tezamen met instructies en richtlijnen voor installatie en gebruik van de software. RORASC speelt een essentiele rol bij de 'rotated-random-scan' methode voor modelkalibratie. De software is geschreven in standaard

  15. Software Note: Using BILOG for Fixed-Anchor Item Calibration

    Science.gov (United States)

    DeMars, Christine E.; Jurich, Daniel P.

    2012-01-01

    The nonequivalent groups anchor test (NEAT) design is often used to scale item parameters from two different test forms. A subset of items, called the anchor items or common items, are administered as part of both test forms. These items are used to adjust the item calibrations for any differences in the ability distributions of the groups taking…

  16. Calibration of a dedicated software for 3D rendering

    International Nuclear Information System (INIS)

    Abrantes, Marcos E.S.; Felix, Warley F.; Veloso, Maria Auxiliadora F.; Universidade Federal de Minas Gerais

    2017-01-01

    With the increasing use of 3D reconstruction techniques, to assist in diagnosis, dedicated programs are being widely used. For this they must be calibrated in order to encounter the values of the real volumes of the human tissues. The purpose of this work is to indicate correction and calibration values for true volumes, read in a 3D reconstruction system dedicated, using DICOM images of Computed Tomography. This work utilized a PMMA thorax phantom associated with the DICOM image and the volume found by a program of a tomograph. The physical volume of the PMMA phantom found was 10359.0 cm³. For the volumes found according to the structures of interest, the values are 11005.5 cm³, 10249.3 cm³ and 10205.1 cm³ and the correction values are -6.2%, +1.1% e +1.5% respectively for tissues: pulmonary, bony and soft tissues. The procedure performed can be used for calibration in other 3D reconstruction programs, observing the necessary corrections and the methodology used. (author)

  17. Calibration of a dedicated software for 3D rendering

    Energy Technology Data Exchange (ETDEWEB)

    Abrantes, Marcos E.S.; Felix, Warley F.; Veloso, Maria Auxiliadora F., E-mail: marcos.nuclear@yahoo.com.br, E-mail: warleyferreirafelix@gmail.com, E-mail: mdora@nuclear.ufmg.br [Faculdade Ciencias Medicas de Minas Gerais (FCMMG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    With the increasing use of 3D reconstruction techniques, to assist in diagnosis, dedicated programs are being widely used. For this they must be calibrated in order to encounter the values of the real volumes of the human tissues. The purpose of this work is to indicate correction and calibration values for true volumes, read in a 3D reconstruction system dedicated, using DICOM images of Computed Tomography. This work utilized a PMMA thorax phantom associated with the DICOM image and the volume found by a program of a tomograph. The physical volume of the PMMA phantom found was 10359.0 cm³. For the volumes found according to the structures of interest, the values are 11005.5 cm³, 10249.3 cm³ and 10205.1 cm³ and the correction values are -6.2%, +1.1% e +1.5% respectively for tissues: pulmonary, bony and soft tissues. The procedure performed can be used for calibration in other 3D reconstruction programs, observing the necessary corrections and the methodology used. (author)

  18. Indirect calorimetry

    NARCIS (Netherlands)

    Gerrits, W.J.J.; Labussière, E.

    2015-01-01

    The use of indirect calorimetry to measure the heat production of men and animals has increased rapidly since the pioneering work of Lavoisier. Measurement of the consumption of oxygen and production of carbon dioxide are the basis for the measurement of heat production. Today, applications of

  19. Designing a Signal Conditioning System with Software Calibration for Resistor-feedback Patch Clamp Amplifier.

    Science.gov (United States)

    Hu, Gang; Zhu, Quanhui; Qu, Anlian

    2005-01-01

    In this paper, a programmable signal conditioning system based on software calibration for resistor-feedback patch clamp amplifier (PCA) has been described, this system is mainly composed of frequency correction, programmable gain and filter whose parameters are configured by software automatically to minimize the errors, A lab-designed data acquisition system (DAQ) is used to implement data collections and communications with PC. The laboratory test results show good agreement with design specifications.

  20. A Software module for pointwise calibration of free form objevts and for uncertainty representation

    DEFF Research Database (Denmark)

    Savio, Enrico; Farmer, A.F.; De Chiffre, Leonardo

    . The Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy. The present report describes a software module, MULTICAL, to be used for the calibration of free form objects. The purpose...... of the software is to calculate the uncertainty of free form measurements according to the method described in the draft standard ISO/WD 15530-6....

  1. Conceptual study of calibration software for large scale input accountancy tank

    International Nuclear Information System (INIS)

    Uchikoshi, Seiji; Yasu, Kan-ichi; Watanabe, Yuichi; Matsuda, Yuji; Kawai, Akio; Tamura, Toshiyuki; Shimizu, Hidehiko.

    1996-01-01

    Demonstration experiments for large scale input accountancy tank are going to be under way by Nuclear Material Control Center. Development of calibration software for accountancy system with dip-tube manometer is an important task in the experiments. A conceptual study of the software has been carried out to construct high precision accountancy system. And, the study was based on ANSI N15.19-1989. Items of the study are overall configuration, correction method for influence of bubble formation, function model of calibration, and fitting method for calibration curve. Following remarks are the results of this study. 1) Overall configuration of the software was constructed. 2) It was shown by numerical solution, that the influence of bubble formation can be corrected using period of pressure wave. 3) Two function models of calibration for well capacity and for inner structure volume were prepared from tank design, and good fitness of the model for net capacity (balance of both models) was confirmed by fitting to designed shape of the tank. 4) The necessity of further consideration about both-variables-in-error-model and cumulative-error-model was recognized. We are going to develop a practical software on the basis of the results, and to verify it by the demonstration experiments. (author)

  2. Enhancing Seismic Calibration Research Through Software Automation and Scientific Information Management

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, S D; Dodge, D A; Ganzberger, M D; Harris, D B; Hauk, T F

    2009-07-07

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) Program at LLNL continues to make significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. In contrast to previous years, software development work this past year has emphasized development of automation at the data ingestion level. This change reflects a gradually-changing emphasis in our program from processing a few large data sets that result in a single integrated delivery, to processing many different data sets from a variety of sources. The increase in the number of sources had resulted in a large increase in the amount of metadata relative to the final volume of research products. Software developed this year addresses the problems of: (1) Efficient metadata ingestion and conflict resolution; (2) Automated ingestion of bulletin information; (3) Automated ingestion of waveform information from global data centers; and (4) Site Metadata and Response transformation required for certain products. This year, we also made a significant step forward in meeting a long-standing goal of developing and using a waveform correlation framework. Our objective for such a framework is to extract additional calibration data (e.g. mining blasts) and to study the extent to which correlated seismicity can be found in global and regional scale environments.

  3. TreeTime: an extensible C++ software package for Bayesian phylogeny reconstruction with time-calibration.

    Science.gov (United States)

    Himmelmann, Lin; Metzler, Dirk

    2009-09-15

    For the estimation of phylogenetic trees from molecular data, it is worthwhile to take prior paleontologic knowledge into account, if available. To calibrate the branch lengths of the tree with times assigned to geo-historical events or fossils, it is necessary to select a relaxed molecular clock model to specify how mutation rates can change along the phylogeny. We present the software TreeTime for Bayesian phylogeny estimation. It can take prior information about the topology of the tree and about branching times into account. Several relaxed molecular clock models are implemented in TreeTime. TreeTime is written in C++ and designed to be efficient and extensible. TreeTime is freely available from http://evol.bio.lmu.de/statgen/software/treetime under the terms of the GNU General Public Licence (GPL, version 3 or later).

  4. ENHANCING SEISMIC CALIBRATION RESEARCH THROUGH SOFTWARE AUTOMATION AND SCIENTIFIC INFORMATION MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, S; Dodge, D A; Ganzberger, M D; Hauk, T F; Matzel, E M

    2008-07-03

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) Program at LLNL continues to make significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. The foundation of a robust, efficient data development and processing environment is comprised of many components built upon engineered versatile libraries. We incorporate proven industry 'best practices' throughout our code and apply source code and bug tracking management as well as automatic generation and execution of unit tests for our experimental, development and production lines. Significant software engineering and development efforts have produced an object-oriented framework that provides database centric coordination between scientific tools, users, and data. Over a half billion parameters, signals, measurements, and metadata entries are all stored in a relational database accessed by an extensive object-oriented multi-technology software framework that includes stored procedures, real-time transactional database triggers and constraints, as well as coupled Java and C++ software libraries to handle the information interchange and validation requirements. Significant resources were applied to schema design to enable management of processing methods and station parameters, responses and metadata. This allowed for the development of merged ground-truth (GT) data sets compiled by the NNSA labs and AFTAC that include hundreds of thousands of events and tens of millions of arrivals. The

  5. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  6. A hardware-software system for the automation of verification and calibration of oil metering units secondary equipment

    Science.gov (United States)

    Boyarnikov, A. V.; Boyarnikova, L. V.; Kozhushko, A. A.; Sekachev, A. F.

    2017-08-01

    In the article the process of verification (calibration) of oil metering units secondary equipment is considered. The purpose of the work is to increase the reliability and reduce the complexity of this process by developing a software and hardware system that provides automated verification and calibration. The hardware part of this complex carries out the commutation of the measuring channels of the verified controller and the reference channels of the calibrator in accordance with the introduced algorithm. The developed software allows controlling the commutation of channels, setting values on the calibrator, reading the measured data from the controller, calculating errors and compiling protocols. This system can be used for checking the controllers of the secondary equipment of the oil metering units in the automatic verification mode (with the open communication protocol) or in the semi-automatic verification mode (without it). The peculiar feature of the approach used is the development of a universal signal switch operating under software control, which can be configured for various verification methods (calibration), which allows to cover the entire range of controllers of metering units secondary equipment. The use of automatic verification with the help of a hardware and software system allows to shorten the verification time by 5-10 times and to increase the reliability of measurements, excluding the influence of the human factor.

  7. Aplicaciones de Software Libre para automatizar servicios en una biblioteca: uso de software Calibre para la creación de un repositorio digital

    Directory of Open Access Journals (Sweden)

    Rolando Herrera Burgos

    2015-01-01

    Full Text Available Este artículo propone el uso de herramientas informáticas desarrolladas bajo el modelo de Software Libre para poder automatizar de forma sencilla distintos servicios que pueden brindar las bibliotecas. Se explora el uso de la aplicación Calibre para crear un repositorio digital que permita a los usuarios acceder a materiales en línea y a texto completo mediante el uso de Internet.

  8. Calibration system of the software for treatment in conformational radiotherapy with a phantom for cases of cervical cancer prostate

    International Nuclear Information System (INIS)

    Yaya Castaneda, G.; Rodriguez Pantigoso, W.; Castaneda Aphan, B.

    2008-01-01

    Full text: The main objective of this work is to design a calibration method for two planning software systems for treatment with conformational radiotherapy to be used for prostate and cervix cancer. For this purpose, a phantom is designed to simulate the prostate and cervix anatomical regions. The phantom is made of acrylic and nylon. These materials have densities similar to soft tissue and bone and they are readily available in Peru at a low cost. The phantom is imaged using a calibrated CT scanner (Siemens - Somatom). The CT images are used for the calculation of the absorbed dose using two software planning systems (WINPLT-3D and KENOS-2D) at the isocenter and at critical points during the process of simulation of the treatment. This calculation is compared to the experimentally measured data in the phantom. Radiation is applied by means of the linear accelerator clinical Varian 2100 C/D, and dosimetry measured using an ionization chamber and thermoluminescent dosimeters (TLD). Preliminary results show that the planned dose and the measured dose differ in less than ± 5.6% with WINPLT-3D and ± 3.3% with KENOS-2D. The measured relative doses at the critical organs to protect originally measured with TLDs at the isocenter point, having results from ± 2.5% to ± 3.5%. These results indicate that the planning software systems are calibrated within the range required by international standards for patients with cancer (ICRU - Report 50). (author)

  9. Texas flexible pavements and overlays : calibration plans for M-E models and related software.

    Science.gov (United States)

    2013-06-01

    This five-year project was initiated to collect materials and pavement performance data on a minimum of 100 highway test sections around the State of Texas, incorporating flexible pavements and overlays. Besides being used to calibrate and validate m...

  10. ATLAS calorimetry: Trigger, simulation and jet calibration

    CERN Document Server

    Weber, Pavel

    2008-01-01

    The Pre-Processor system of the ATLAS Level-1 Calorimeter Trigger performs complex processing of analog trigger tower signals from electromagnetic and hadronic calorimeters. The main processing block of the Pre-Processor System is the Multi-Chip Module (MCM). The first part of this thesis describes MCM quality assurance tests that have been developed, their use in the MCM large scale production and the results that have been obtained. In the second part of the thesis a validation of a shower parametrisation model for the ATLAS fast simulation package ATLFAST based on QCD dijet events is performed. A detailed comparison of jet response and jet energy resolution between the fast and the full simulation is presented. The uniformity of the calorimeter response has a significant impact on the accuracy of the jet energy measurement. A study of the calorimeter intercalibration using QCD dijet events is presented in the last part of the thesis. The intercalibration study is performed in azimuth angle phi and in pseud...

  11. Theory of calorimetry

    CERN Document Server

    Zielenkiewicz, Wojciech

    2004-01-01

    The purpose of this book is to give a comprehensive description of the theoretical fundamentals of calorimetry. The considerations are based on the relations deduced from the laws and general equations of heat exchange theory and steering theory.

  12. The MeqTrees software system and its use for third-generation calibration of radio interferometers

    Science.gov (United States)

    Noordam, J. E.; Smirnov, O. M.

    2010-12-01

    Context. The formulation of the radio interferometer measurement equation (RIME) for a generic radio telescope by Hamaker et al. has provided us with an elegant mathematical apparatus for better understanding, simulation and calibration of existing and future instruments. The calibration of the new radio telescopes (LOFAR, SKA) would be unthinkable without the RIME formalism, and new software to exploit it. Aims: The MeqTrees software system is designed to implement numerical models, and to solve for arbitrary subsets of their parameters. It may be applied to many problems, but was originally geared towards implementing Measurement Equations in radio astronomy for the purposes of simulation and calibration. The technical goal of MeqTrees is to provide a tool for rapid implementation of such models, while offering performance comparable to hand-written code. We are also pursuing the wider goal of increasing the rate of evolution of radio astronomical software, by offering a tool that facilitates rapid experimentation, and exchange of ideas (and scripts). Methods: MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time (hours rather than weeks or months) for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code. Results: MeqTrees is already widely used as the simulation tool for new instruments (LOFAR, SKA) and technologies (focal plane arrays). It has demonstrated that it can achieve a noise-limited dynamic range in excess of a million, on

  13. Software for calibration and control of the RISK spectrometer operation by means of the INTEL-8080 microprocessor

    International Nuclear Information System (INIS)

    Glasnek, K.P.; Pishka, K.

    1979-01-01

    A software system designed for the calibration and control of the operation of the RISK facility with the help of a microcomputer based on the INTEL-8080 microprocessor is described. The program for the INTEL-8080 is written in the ASSEMBLER language. Translation is performed by a cross-assembler using the ES-1040 computer. The system is used for tuning the equipment connected through the CAMAC, and to check all the equipment units during experiments. The program provides continuous data storage, processing, recording, and visual presentation. Due to the dialog through an alphanumeric display, a fast control of the program and high efficiency of operation of experiments are achieved

  14. Apero, AN Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of Set of Images

    Science.gov (United States)

    Pierrot Deseilligny, M.; Clery, I.

    2011-09-01

    IGN has developed a set of photogrammetric tools, APERO and MICMAC, for computing 3D models from set of images. This software, developed initially for its internal needs are now delivered as open source code. This paper focuses on the presentation of APERO the orientation software. Compared to some other free software initiatives, it is probably more complex but also more complete, its targeted user is rather professionals (architects, archaeologist, geomophologist) than people. APERO uses both computer vision approach for estimation of initial solution and photogrammetry for a rigorous compensation of the total error; it has a large library of parametric model of distortion allowing a precise modelization of all the kind of pinhole camera we know, including several model of fish-eye; there is also several tools for geo-referencing the result. The results are illustrated on various application, including the data-set of 3D-Arch workshop.

  15. APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES

    Directory of Open Access Journals (Sweden)

    M. Pierrot Deseilligny

    2012-09-01

    Full Text Available IGN has developed a set of photogrammetric tools, APERO and MICMAC, for computing 3D models from set of images. This software, developed initially for its internal needs are now delivered as open source code. This paper focuses on the presentation of APERO the orientation software. Compared to some other free software initiatives, it is probably more complex but also more complete, its targeted user is rather professionals (architects, archaeologist, geomophologist than people. APERO uses both computer vision approach for estimation of initial solution and photogrammetry for a rigorous compensation of the total error; it has a large library of parametric model of distortion allowing a precise modelization of all the kind of pinhole camera we know, including several model of fish-eye; there is also several tools for geo-referencing the result. The results are illustrated on various application, including the data-set of 3D-Arch workshop.

  16. Calorimetry for the SSC

    International Nuclear Information System (INIS)

    Gordon, H.A.; Grannis, P.D.

    1984-01-01

    The activities related to calorimetry at Snowmass took place in three main areas. These were: (1) The performance criteria for SSC calorimetry, including the requirements on hermeticity, shower containment, segmentation and time resolution. The use of calorimetric means of particle identification was studied. (2) The study of triggering methods using calorimeter energy, angle and timing information. (3) A review of a wide variety of calorimeter materials for absorber and sampling, as well as several means of obtaining the readout of the energy deposits. 48 references, 10 figures, 1 table

  17. Calorimetry for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, H.A.; Grannis, P.D.

    1984-01-01

    The activities related to calorimetry at Snowmass took place in three main areas. These were: (1) The performance criteria for SSC calorimetry, including the requirements on hermeticity, shower containment, segmentation and time resolution. The use of calorimetric means of particle identification was studied. (2) The study of triggering methods using calorimeter energy, angle and timing information. (3) A review of a wide variety of calorimeter materials for absorber and sampling, as well as several means of obtaining the readout of the energy deposits. 48 references, 10 figures, 1 table.

  18. Tests of methods and software for set-valued model calibration and sensitivity analyses

    NARCIS (Netherlands)

    Janssen PHM; Sanders R; CWM

    1995-01-01

    Testen worden besproken die zijn uitgevoerd op methoden en software voor calibratie middels 'rotated-random-scanning', en voor gevoeligheidsanalyse op basis van de 'dominant direction analysis' en de 'generalized sensitivity analysis'. Deze technieken werden

  19. Calorimetry at the SSC

    International Nuclear Information System (INIS)

    Wigmans, R.

    1988-01-01

    The state of the art, and the present understanding of the basic limitations in hadron calorimetry, are briefly described. The various options for SSC calorimeters are discussed, and the R ampersand D needed for the ones that look most promising is outlined. The most promising candidates are (1) lead/scintillating fibers and (2) lead (or uranium)/TMS (or other warm liquids)

  20. Calorimetry at the SSC

    International Nuclear Information System (INIS)

    Wigmans, R.

    1987-09-01

    The state of the art, and our present understanding of the basic limitations in hadron calorimetry, are briefly described. The various options for SSC calorimeters are discussed, and the R and D needed for the ones that look most promising is outlined. 13 refs.; 8 figs

  1. Seventy Years of Calorimetry

    Science.gov (United States)

    Wigmans, Richard

    2017-11-01

    In this opening talk of the CALOR 2016 conference, I briefly review some milestones in the history of calorimetry as a detection technique in particle physics. I also discuss common misconceptions, which are unfortunately widespread, and give you my personal outlook on the future.

  2. Scintillating-fibre calorimetry

    International Nuclear Information System (INIS)

    Livan, M.; Vercesi, V.; Wigmans, R.

    1995-01-01

    In the past decade, calorimetry based on scintillating plastic fibres as active elements was developed from a conceptual idea to a mature detector technology, which is nowadays widely applied in particle physics experiments. This development and the performance characteristics of representative calorimeters, both for the detection of electromagnetic and hadronic showers, are reviewed. We also discuss new information on shower development processes in dense matter and its application to calorimetric principles that has emerged from some very thorough studies that were performed in the framework of this development. (orig.)

  3. Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities

    Science.gov (United States)

    Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.

    2016-01-01

    College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…

  4. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, Eric Lewis [Univ. of Tennessee, Knoxville, TN (United States)

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  5. Experience with uranium-scintillator calorimetry

    International Nuclear Information System (INIS)

    Hasell, D.K.; Frisken, W.R.

    1990-01-01

    The ZEUS experiment on HERA will employ depleted uranium-scintillator calorimetry. Extensive studies have been made to optimize the calorimeter design. Test results and design aspects are discussed with a view to energy resolution, uniformity of response, mechanical assembly and calibration and monitoring. The energy resolution of four prototype calorimeter modules has been measured as 18%/v√E for electrons from 1 to 75 GeV and 35%/√E for pions from 1 to 100 GeV with an e/h ratio equal to one

  6. Scintillating Fibre Calorimetry at the LHC

    CERN Multimedia

    2002-01-01

    Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. The lead/scintillating fibre calorimeter technique provides a fast signal response well matched to the LHC rate requirements. It can be made to give equal response for electrons and hadrons (compensation) with good electromagnetic and hadronic energy resolutions.\\\\ \\\\ The aim of this R&D proposal is to study in detail the aspects that are relevant for application of this type of calorimeter in an LHC environment, including its integration in a larger system of detectors, e.g.~projective geometry, radiation hardness, light detection, calibration and stability monitoring, electron/hadron separation.....

  7. Calorimetry at the international linear collider. From simulation to reality

    International Nuclear Information System (INIS)

    Wattimena, Nanda

    2010-02-01

    Calorimetry plays a crucial role in ongoing and upcoming high-energy physics experiments. To build a powerful calorimetric system with a performance tailored to the expected physics signatures, demands dedicated research and development of new readout technologies as well as dedicated reconstruction algorithms. The presented design of a calorimetric system which meets the high demands of precision physics at the future linear collider ILC, follows the paradigm of particle ow. Particle ow is a reconstruction principle that relies on a calorimetric system with high spatial granularity. In the detector optimisation process, the development of hardware and software are interlinked and cannot be judged independently. This thesis addresses two different aspects of detector optimisation, a test of the detector design against one example physics scenario and the development of a stable calibration procedure. In the rst part, a gauge-mediated Supersymmetry breaking scenario is used to test the design of the electromagnetic calorimeter in a full detector simulation study. The reconstruction of the neutralino properties, each decaying into a photon and a gravitino, requires a good energy resolution, as well as excellent position and angular resolution. The error bounds on the neutralino mass is strongly linked to the energy resolution, while the position and angular reconstruction of neutral particles is essential for the determination of the neutralino lifetime. The second part of this thesis focuses on the calibration procedure for a prototype of the hadron calorimeter. 7608 novel photodetectors are operated and tested in this prototype. They are exposed to beams of well de ned particle type and energy. The calibration is tested with a detailed study of electromagnetic showers inside the cubic-metre-sized prototype, with special attention paid towards the non-linearity correction. (orig.)

  8. Calorimetry at the international linear collider. From simulation to reality

    Energy Technology Data Exchange (ETDEWEB)

    Wattimena, Nanda

    2010-02-15

    Calorimetry plays a crucial role in ongoing and upcoming high-energy physics experiments. To build a powerful calorimetric system with a performance tailored to the expected physics signatures, demands dedicated research and development of new readout technologies as well as dedicated reconstruction algorithms. The presented design of a calorimetric system which meets the high demands of precision physics at the future linear collider ILC, follows the paradigm of particle ow. Particle ow is a reconstruction principle that relies on a calorimetric system with high spatial granularity. In the detector optimisation process, the development of hardware and software are interlinked and cannot be judged independently. This thesis addresses two different aspects of detector optimisation, a test of the detector design against one example physics scenario and the development of a stable calibration procedure. In the rst part, a gauge-mediated Supersymmetry breaking scenario is used to test the design of the electromagnetic calorimeter in a full detector simulation study. The reconstruction of the neutralino properties, each decaying into a photon and a gravitino, requires a good energy resolution, as well as excellent position and angular resolution. The error bounds on the neutralino mass is strongly linked to the energy resolution, while the position and angular reconstruction of neutral particles is essential for the determination of the neutralino lifetime. The second part of this thesis focuses on the calibration procedure for a prototype of the hadron calorimeter. 7608 novel photodetectors are operated and tested in this prototype. They are exposed to beams of well de ned particle type and energy. The calibration is tested with a detailed study of electromagnetic showers inside the cubic-metre-sized prototype, with special attention paid towards the non-linearity correction. (orig.)

  9. The use of calorimetry for plutonium assay

    International Nuclear Information System (INIS)

    Mason, J.A.

    1982-12-01

    Calorimetry is a technique for measuring the thermal power of heat-producing substances. The technique may be applied to the measurement of plutonium-bearing materials which evolve heat as a result of alpha and beta decay. A calorimetric measurement of the thermal power of a plutonium sample, combined with a knowledge or measurement of the plutonium isotopic mass ratios of the sample provides a convenient and accurate, non-destructive measure of the total plutonium mass of the sample. The present report provides a description, and an assessment of the calorimetry technique applied to the assay of plutonium-bearing materials. Types and characteristics of plutonium calorimeters are considered, as well as calibration and operating procedures. The instrumentation used with plutonium calorimeters is described and the use of computer control for calorimeter automation is discussed. A critical review and assessment of plutonium calorimetry literature since 1970 is presented. Both fuel element and plutonium-bearing material calorimeters are considered. The different types of plutonium calorimeters are evaluated and their relative merits are discussed. A combined calorimeter and gamma-ray measurement assay system is considered. The design principles of plutonium assay calorimeters are considered. An automatic, computer-based calorimeter control system is proposed in conjunction with a general plutonium assay calorimeter design. (author)

  10. A Software Module for High-Accuracy Calibration of Rings and Cylinders on CMM using Multi-Orientation Techniques (Multi-Step and Reversal methods)

    DEFF Research Database (Denmark)

    Tosello, Guido; De Chiffre, Leonardo

    . The Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy. The present report describes a software module, ROUNDCAL, to be used for high-accuracy calibration of rings and cylinders....... The purpose of the software is to calculate the form error and the least square circle of rings and cylinders by mean of average of pontwise measuring results becoming from so-called multi-orientation techniques (both reversal and multi-step methods) in order to eliminate systematic errors of CMM ....

  11. Hadronic Imaging Calorimetry

    CERN Document Server

    Kaplan, Alexander; Schultz-Coulon, Hans-Christian; Dubbers, Dirk

    This thesis focuses on a prototype of a highly granular hadronic calorimeter at the planned International Linear Collider optimized for the Particle Flow Approach. The 5.3 nuclear interaction lengths deep sandwich calorimeter was built by the CALICE collaboration and consists of 38 active plastic scintillator layers. Steel is used as absorber material and the active layers are subdivided into small tiles. In total 7608 tiles are read out individually via embedded Silicon Photomultipliers (SiPM). The prototype is one of the first large scale applications of these novel and very promising miniature photodetectors. The work described in this thesis comprises the commissioning of the detector and the data acquisition with test beam particles over several months at CERN and Fermilab. The calibration of the calorimeter and the analysis of the recorded data is presented. A method to correct for the temperature dependent response of the SiPM has been developed and implemented. Its successful application shows that it...

  12. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  13. Calorimetry end-point predictions

    International Nuclear Information System (INIS)

    Fox, M.A.

    1981-01-01

    This paper describes a portion of the work presently in progress at Rocky Flats in the field of calorimetry. In particular, calorimetry end-point predictions are outlined. The problems associated with end-point predictions and the progress made in overcoming these obstacles are discussed. The two major problems, noise and an accurate description of the heat function, are dealt with to obtain the most accurate results. Data are taken from an actual calorimeter and are processed by means of three different noise reduction techniques. The processed data are then utilized by one to four algorithms, depending on the accuracy desired to determined the end-point

  14. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...

  15. Improved water δ2H and δ18O calibration and calculation of measurement uncertainty using a simple software tool.

    Science.gov (United States)

    Gröning, Manfred

    2011-10-15

    The calibration of all δ(2)H and δ(18)O measurements on the VSMOW/SLAP scale should be performed consistently, based on similar principles, independent of the instrumentation used. The basic principles of a comprehensive calibration strategy are discussed taking water as example. The most common raw data corrections for memory and drift effects are described. Those corrections result in a considerable improvement in data consistency, especially in laboratories analyzing samples of quite variable isotopic composition (e.g. doubly labelled water). The need for a reliable uncertainty assessment for all measurements is discussed and an easy implementation method proposed. A versatile evaluation method based on Excel macros and spreadsheets is presented. It corrects measured raw data for memory and drift effects, performs the calibration and calculates the combined standard uncertainty for each measurement. It allows the easy implementation of the discussed principles in any user laboratory. Following these principles will improve the comparability of data among laboratories. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Efficient multi-objective calibration of a computationally intensive hydrologic model with parallel computing software in Python

    Science.gov (United States)

    With enhanced data availability, distributed watershed models for large areas with high spatial and temporal resolution are increasingly used to understand water budgets and examine effects of human activities and climate change/variability on water resources. Developing parallel computing software...

  17. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...... such as graphite and aluminium have been used. These materials offer advantages of simpler construction and higher sensitivity. Dose estimates using these different types of calorimeters differ by ~5%, and the possible reasons for these discrepancies are discussed...

  18. Calorimetry of non-reacting systems

    CERN Document Server

    McCullough, John P

    2013-01-01

    Experimental Thermodynamics, Volume 1: Calorimetry of Non-Reacting Systems covers the heat capacity determinations for chemical substances in the solid, liquid, solution, and vapor states, at temperatures ranging from near the absolute zero to the highest at which calorimetry is feasible.This book is divided into 14 chapters. The first four chapters provide background information and general principles applicable to all types of calorimetry of non-reacting systems. The remaining 10 chapters deal with specific types of calorimetry. Most of the types of calorimetry treated are developed over a c

  19. Water calorimetry: The heat defect

    International Nuclear Information System (INIS)

    Klassen, N.V.; Ross, C.K.

    1997-01-01

    Domen developed a sealed water calorimeter at NIST to measure absorbed dose to water from ionizing radiation. This calorimeter exhibited anomalous behavior using water saturated with gas mixtures of H 2 O 2 . Using computer simulations of the radiolysis of water, the authors show that the observed behavior can be explained if, in the gas mixtures, the amount-of-substance of H 2 and of O 2 differed significantly from 50%. The authors also report the results of simulations for other dilute aqueous solutions that are used for water calorimetry--pure water, air-saturated water, and H 2 -saturated water. The production of H 2 O 2 was measured for these aqueous solutions and compared to simulations. The results indicate that water saturated with a gas mixture containing an amount-of-substance of H 2 of 50% and of O 2 of 50% is suitable for water calorimetry if the water is stirred and is in contact with a gas space of similar volume. H 2 -saturated water does not require a gas space but O 2 contamination must be guarded against. The lack of a scavenger for OH radicals in pure water means that, depending on the water purity, some pure water might require a large priming dose to remove reactive impurities. The experimental and theoretical problems associated with air-saturated water and O 2 -saturated water in water calorimeters are discussed

  20. Calibration of 4π NaI(Tl) detectors with coincidence summing correction using new numerical procedure and ANGLE4 software

    Science.gov (United States)

    Badawi, Mohamed S.; Jovanovic, Slobodan I.; Thabet, Abouzeid A.; El-Khatib, Ahmed M.; Dlabac, Aleksandar D.; Salem, Bohaysa A.; Gouda, Mona M.; Mihaljevic, Nikola N.; Almugren, Kholud S.; Abbas, Mahmoud I.

    2017-03-01

    The 4π NaI(Tl) γ-ray detectors are consisted of the well cavity with cylindrical cross section, and the enclosing geometry of measurements with large detection angle. This leads to exceptionally high efficiency level and a significant coincidence summing effect, much more than a single cylindrical or coaxial detector especially in very low activity measurements. In the present work, the detection effective solid angle in addition to both full-energy peak and total efficiencies of well-type detectors, were mainly calculated by the new numerical simulation method (NSM) and ANGLE4 software. To obtain the coincidence summing correction factors through the previously mentioned methods, the simulation of the coincident emission of photons was modeled mathematically, based on the analytical equations and complex integrations over the radioactive volumetric sources including the self-attenuation factor. The measured full-energy peak efficiencies and correction factors were done by using 152Eu, where an exact adjustment is required for the detector efficiency curve, because neglecting the coincidence summing effect can make the results inconsistent with the whole. These phenomena, in general due to the efficiency calibration process and the coincidence summing corrections, appear jointly. The full-energy peak and the total efficiencies from the two methods typically agree with discrepancy 10%. The discrepancy between the simulation, ANGLE4 and measured full-energy peak after corrections for the coincidence summing effect was on the average, while not exceeding 14%. Therefore, this technique can be easily applied in establishing the efficiency calibration curves of well-type detectors.

  1. Calibration of 4π NaI(Tl detectors with coincidence summing correction using new numerical procedure and ANGLE4 software

    Directory of Open Access Journals (Sweden)

    Mohamed S. Badawi

    2017-03-01

    Full Text Available The 4π NaI(Tl γ-ray detectors are consisted of the well cavity with cylindrical cross section, and the enclosing geometry of measurements with large detection angle. This leads to exceptionally high efficiency level and a significant coincidence summing effect, much more than a single cylindrical or coaxial detector especially in very low activity measurements. In the present work, the detection effective solid angle in addition to both full-energy peak and total efficiencies of well-type detectors, were mainly calculated by the new numerical simulation method (NSM and ANGLE4 software. To obtain the coincidence summing correction factors through the previously mentioned methods, the simulation of the coincident emission of photons was modeled mathematically, based on the analytical equations and complex integrations over the radioactive volumetric sources including the self-attenuation factor. The measured full-energy peak efficiencies and correction factors were done by using 152Eu, where an exact adjustment is required for the detector efficiency curve, because neglecting the coincidence summing effect can make the results inconsistent with the whole. These phenomena, in general due to the efficiency calibration process and the coincidence summing corrections, appear jointly. The full-energy peak and the total efficiencies from the two methods typically agree with discrepancy 10%. The discrepancy between the simulation, ANGLE4 and measured full-energy peak after corrections for the coincidence summing effect was on the average, while not exceeding 14%. Therefore, this technique can be easily applied in establishing the efficiency calibration curves of well-type detectors.

  2. Development of Quartz Fiber Calorimetry

    CERN Multimedia

    2002-01-01

    % RD40 \\\\ \\\\ Very Forward Calorimeters (VFCs) in LHC detectors should cover the pseudorapidity range from $\\eta$~=~2.5 to at least $\\eta$~=~5 in order to compute missing transverse energy and for jet tagging. Operation at such high rapidity requires the use of a calorimetry technique that is very radiation resistant, fast and insensitive to radioactivity (especially to neutrons). This can be accomplished through the Quartz-Calorimeter~(Q-Cal) concept of embedding silica core fibers, that resist to the Gigarad radiation level, into an absorber. In this calorimeter the shower particles produce light through the Cherenkov effect generating a signal less than 10~ns in duration. Unique to this new technology the visible energy of hadronic showers has a transverse dimension nearly an order of magnitude smaller than that in conventional calorimeters, enabling precise spatial resolution, sharper isolation cuts and better jet recognition against the minimum bias events background. Last but not least, most radioactive ...

  3. Current status of tritium calorimetry at TLK

    International Nuclear Information System (INIS)

    Buekki-Deme, A.; Alecu, C.G.; Kloppe, B.; Bornschein, B.

    2015-01-01

    Inside a tritium facility, calorimetry is an important analytical method as it is the only reference method for accountancy (it is based on the measurement of the heat generated by the radioactive decay). Presently, at Tritium Laboratory Karlsruhe (TLK), 4 calorimeters are in operation, one of isothermal type and three of inertial guidance control type (IGC). The volume of the calorimeters varies between 0.5 and 20.6 liters. About two years ago we started an extensive work to improve our calorimeters with regard to reliability and precision. We were forced to upgrade 3 of our 4 calorimeters due to the outdated interfaces and software. This work involved creating new LabView programs driving the devices, re-tuning control loops and replacing obsolete hardware components. In this paper we give a review on the current performance of our calorimeters, comparing it to recently available devices from the market and in the literature. We also show some ideas for a next generation calorimeter based on experiences with our IGC calorimeters and other devices reported in the literature. (authors)

  4. Study of asphaltene precipitation by Calorimetry

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Plantier, Frédéric; Bessières, David

    2007-01-01

    Can calorimetry bring new input to the Current understanding of asphaltene precipitation? In this work, two types of precipitation were studied by means of calorimetry: addition of n-heptane into asphaltene solutions and temperature/pressure variations on a recombined live oil. The first series...

  5. WA80 BGO calorimetry electronics

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Britton, C.L. Jr.; Ericson, M.N.; Maples, R.A.; Young, G.R.; Awes, T.C.

    1991-01-01

    This paper describes instrumentation designed for BGO scintillator-based calorimetry of particles covering a very wide range of energies (from less than 50 MeV to 50 GeV). The instrumentation was designed to have a measurement accuracy of 0.1% over as much of the energy range as possible so the energy resolution of BGO would be the limiting factor. Two 1.5-cm 2 photodiodes were used per 2.5 cm x 2.5 cm x 25 cm BGO crystal. Both a charge-sensitive preamplifier and a pulse processor were developed specifically for the needs of the WA80 experiment. The preamplifier was designed for high detector capacitance (100 to 700 pF), low integral and differential non-linearity and low power consumption (200 mW). The pulse processor is a time-invariant shaping amplifier with integral peak-detect-and-hold and automatic gain selection circuits. The amplifier use quasi-triangular shaping with 4 μs peaking time, and the hold circuit is gated with a fast first level trigger. The system has more than 20 bits of effective resolution when used with an external 12-bit ADC. Results from beam tests at CERN are presented. 6 refs., 5 figs., 1 tab

  6. Ultra-Fast Hadronic Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab; Lukić, Strahinja [VINCA Inst. Nucl. Sci., Belgrade; Mokhov, Nikolai [Fermilab; Striganov, Sergei [Fermilab; Ujić, Predrag [VINCA Inst. Nucl. Sci., Belgrade

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.

  7. Differential scanning calorimetry of bacteria.

    Science.gov (United States)

    Miles, C A; Mackey, B M; Parsons, S E

    1986-04-01

    Thermograms obtained by differential scanning calorimetry of a range of bacteria of different heat resistances were compared. Equations were derived to calculate the rate at which the numbers of viable organisms in a calorimeter decline as the temperature is raised at a constant rate. Vegetative bacteria scanned at 10 degrees C min-1 showed multi-peaked thermograms with four major peaks (denoted m, n, p and q) occurring in the regions 68-73, 77-84, 89-99 and 105-110 degrees C respectively. Exceptions were that peak m (the largest peak) occurred at 79-82 degrees C in Bacillus stearothermophilus and an additional peak, r, was detected in Escherichia coli at 119 degrees C. At temperatures below the main peak m there were major differences in thermograms between species. There was a direct relationship between the onset of thermal denaturation and the thermoresistance of different organisms. Heat-sensitive organisms displayed thermogram features which were absent in the more heat-resistant types. When samples were cooled to 5 degrees C and re-heated, a small endothermic peak, pr, was observed at the same temperature as p. Peaks p and pr were identified as the melting endotherms of DNA. In all vegetative organisms examined, maximum death rates, computed from published D and z values, occurred at temperatures above the onset of thermal denaturation, i.e. cell death and irreversible denaturation of cell components occurred within the same temperature range.

  8. Recent Work on Calorimetry at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hauck, Danielle K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-09

    This report is a briefing to collaborators at the Swedish Nuclear Fuel and Waste Management Company, Oskarshamn, Sweden, January 14, 2014. It describes the way in which calorimetry supports the safegurard mission.

  9. Calorimetry of ion beam damage in silicon

    International Nuclear Information System (INIS)

    Roorda, S.; Kajrys, G.; Graham, J.

    1994-01-01

    Annealing of ion-beam damage in crystalline Si has been characterized by differential scanning calorimetry and infrared absorption spectroscopy. Si discs of 100 μm thickness have been bombarded with 3.4 MeV protons. Scanning calorimetry reveals a sharp peak riding on a broad background signal. From infrared absorption, this peak is tentatively identified as heat release associated with divacancy annihilation. (orig.)

  10. Software framework and jet energy scale calibration in the ATLAS experiment; Environnement logiciel et etalonnage de l'echelle en energie des jets dans l'experience ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Binet, Sebastien [Laboratoire de Physique Corpusculaire, Universite Blaise Pascal - CNRS/IN2P3, 63000 Aubiere Cedex (France)

    2006-07-01

    This thesis presents the work achieved to instrument the ATLAS software framework, ATHENA, with a library of tools and utensils for the physics analysis as well as the extraction of the jet energy scale using physics events (in-situ calibration). The software part presents the various components of the ATHENA framework which handles the simulated and reconstructed data flow as well as the different stages of this process, before and during the data taking. The building of a library of tools easing the reconstruction of physics objects, their association with Monte-Carlo particles and their API is then explained. The need for common language and collaboration-wide utensils is emphasised as it allows to share the workload of validating these tools and to get reproducible physics results. The analysis part deals with the implementation of a light jet energy scale calibration algorithm within the C++ framework. This calibration algorithm makes use of W bosons decaying into light jets within semileptonic t t-bar events. From the processing of fast and full simulation data with this algorithm, it seems possible to reach a percent level knowledge of the light jet energy scale. Finally, the feasibility study of the b-jet energy scale calibration using {gamma}Z{sup 0} {yields} {gamma}b b-bar events is presented. It is shown that a purely sequential approach is not sufficient to extract the signal nor to collect a sufficient amount of Z{sup 0} to calibrate the b-jet energy scale. (author)

  11. Calorimetry exchange program. Quarterly data report, 2nd quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, T.M.

    1996-07-01

    The goals of the Calorimetry Sample Exchange Program are: (1) Discuss measurement differences, (2) Review and improve analytical measurements and methods, (3) Discuss new measurement capabilities, (4) Provide data to DOE on measurement capabilities to evaluate shipper-receiver differences, (5) Provide characterized or standard materials as necessary for exchange participants, (6) Provide a measurement control program for plutonium analysis. A sample of PuO{sub 2} powder is available at each participating site for NDA measurement, including either or both calorimetry and high-resolution gamma-ray spectroscopy, the elements which are typically combined to provide a calorimetric assay of plutonium. The facilities measure the sample as frequently and to the level of precision which they desire, and then submit the data to the Exchange for analysis. Statistical tests are used to evaluate the data and to determine if there are significant differences from accepted values for the exchange sample or from data previously reported by that facility. This information is presented, in the form of a quarterly report, intended for use by Exchange participants in measurement control programs, or to indicate when bias corrections may be appropriate. No, attempt, however, has been made to standardize methods or frequency of data collection, calibration, or operating procedures. Direct comparisons between laboratories may, therefore, be misleading since data have not been collected to the same precision or for the same time periods. A meeting of the participants of the Calorimetry Exchange is held annually at EG&G Mound Applied Technologies. The purposes of this meeting are to discuss measurement differences, problems, and new measurement capabilities, and to determine the additional activities needed to fulfill the goals of the Exchange.

  12. Calorimetry exchange program annual data report for 1992

    International Nuclear Information System (INIS)

    Barnett, T.M.

    1992-01-01

    The goals of the Calorimetry Sample Exchange Program are: discuss measurement differences; review and improve analytical measurements and methods; discuss new measurement capabilities; provide data to DOE on measurement capabilities to evaluate shipper-receiver differences; provide characterized or standard materials as necessary for exchange participants; and provide a measurement control program for plutonium analysis. A sample of PuO 2 powder is available at each participating site for NDA measurement, including either or both calorimetry and high-resolution gamma-ray spectroscopy, the elements which are typically combined to provide a calorimetric assay of plutonium. The facilities measure the sample as frequently and to the level of precision which they desire, and then submit the data to the Exchange for analysis. The data report includes summary tables for each measurement and charts showing the performance of each laboratory. Comparisons are made to the accepted values for the exchange sample and to data previously reported by that laboratory. This information is presented, in the form of quarterly and annual reports, intended for use by Exchange participants in measurement control programs, or to indicate when bias corrections may be appropriate. No attempt, however, has been made to standardize methods or frequency of data collection, calibration, or operating procedures. Direct comparisons between laboratories may, therefore, be misleading since data have not been collected to the same precision or for the same time periods. A meeting of the participants of the Calorimetry Exchange is held annually at EG ampersand G Mound Applied Technologies. The purposes of this meeting are to discuss measurement differences, problems, and new measurement capabilities, and to determine the additional activities needed to fulfill the goals of the Exchange. This document provides data for 1992

  13. Calorimetry energy measurement in particle physics

    CERN Document Server

    Wigmans, Richard

    2017-01-01

    Particle physics is the science that pursues the age-old quest for the innermost structure of matter and the fundamental interactions between its constituents. Modern experiments in this field rely increasingly on calorimetry, a detection technique in which the particles of interest are absorbed in the detector. Calorimeters are very intricate instruments. Their performance characteristics depend on subtle, sometimes counter-intuitive design details. This book, written by one of the world's foremost experts, is the first comprehensive text on this topic. It provides a fundamental and systematic introduction to calorimetry. It describes the state of the art in terms of both the fundamental understanding of calorimetric particle detection, and the actual detectors that have been or are being built and operated in experiments. The last chapter discusses landmark scientific discoveries in which calorimetry has played an important role. This book summarizes and puts into perspective the work described in some 900...

  14. Calorimetry and thermal methods in catalysis

    CERN Document Server

    Auroux, Aline

    2013-01-01

    The book is about calorimetry and thermal analysis methods, alone or linked to other techniques, as applied to the characterization of catalysts, supports and adsorbents, and to the study of catalytic reactions in various domains: air and wastewater treatment, clean and renewable energies, refining of hydrocarbons, green chemistry, hydrogen production and storage. The book is intended to fill the gap between the basic thermodynamic and kinetics concepts acquired by students during their academic formation, and the use of experimental techniques such as thermal analysis and calorimetry to answ

  15. Isothermal Titration Calorimetry in the Student Laboratory

    Science.gov (United States)

    Wadso, Lars; Li, Yujing; Li, Xi

    2011-01-01

    Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…

  16. New crystals for dual-readout calorimetry

    Czech Academy of Sciences Publication Activity Database

    Akchurin, N.; Bedeschi, F.; Cardini, A.; Carosi, R.; Ciapetti, G.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Hauptman, J.; Incagli, M.; Korzhik, M.; Lacava, F.; La Rotonda, L.; Livan, M.; Meoni, E.; Nikl, Martin; Pinci, D.; Policicchio, A.; Popescu, S.; Scuri, F.; Sill, A.; Vandelli, W.; Vedda, A.; Venturelli, T.; Voena, C.; Volobouev, I.; Wigmans, R.

    2009-01-01

    Roč. 604, č. 3 (2009), s. 512-526 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10100521 Keywords : calorimetry * Cherenkov light * high-Z scintillating crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.317, year: 2009

  17. Monte Carlo studies of uranium calorimetry

    International Nuclear Information System (INIS)

    Brau, J.; Hargis, H.J.; Gabriel, T.A.; Bishop, B.L.

    1985-01-01

    Detailed Monte Carlo calculations of uranium calorimetry are presented which reveal a significant difference in the responses of liquid argon and plastic scintillator in uranium calorimeters. Due to saturation effects, neutrons from the uranium are found to contribute only weakly to the liquid argon signal. Electromagnetic sampling inefficiencies are significant and contribute substantially to compensation in both systems. 17 references

  18. Calibration strategies for the Cherenkov Telescope Array

    NARCIS (Netherlands)

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.

    2014-01-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  19. Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity

    DEFF Research Database (Denmark)

    Brage, Søren; Ekelund, Ulf; Brage, Niels

    2007-01-01

    calibrated with treadmill tests without calorimetry. Step-test calibration captured 62-64% (accelerometry) and 68% (HR) of the variance between individuals. Corresponding values were 63-76% and 59-61% for walk-test calibration. There was only little benefit of including calorimetry during step and walk...... calibration limits feasibility of these techniques in population studies, and less burdensome, yet valid, methods of calibration are required. We aimed to evaluate the precision of different individual calibration procedures against a reference calibration procedure: a ramped treadmill walking-running test......, submaximal step and walk tests with and without calorimetry, and nonexercise calibration using sleeping HR and gender. Reference accelerometry and HR models explained >95% of the between-individual variance in PAI (P

  20. Calorimetry and thermodynamics of living systems

    Energy Technology Data Exchange (ETDEWEB)

    Lamprecht, Ingolf

    2003-10-14

    Calorimetry of living systems and classical thermodynamics developed in parallel, from Lavoisier's early ice calorimeter experiments on guinea pigs, followed by Dubrunfaut's macrocalorimetric research of fermentation processes and Atwater-Rosa's whole-body calorimetry on humans and domestic animals, to the introduction of the famous Tian-Calvet instrument that found entrance into so many different fields of biology. In this work, six examples of living-system calorimetry and thermodynamics are presented. These are: (i) glycolytic oscillations far off the thermodynamic equilibrium; (ii) growth and energy balances in fermenting and respiring yeast cultures; (iii) direct and indirect calorimetric monitoring of electrically stimulated reptile metabolism; (iv) biologic and climatic factors influencing the temperature constancy and distribution in the mound of a wood ant colony as an example of a complex ecological system; (v) energetic considerations on the clustering of European honeybees in winter as a means to save energy and stored food as well as for their Japanese counterparts in defending against hornet predators; and (vi) energetic and evolutionary aspects of the mass specific entropy production rate, the so-called bound dissipation or psiu-function. The examples presented here are just a very personal selection of living systems from a broad spectrum at all levels of complexity. Common for all of them is that they were investigated calorimetrically on the background of classical and irreversible thermodynamics.

  1. Calorimetry and thermodynamics of living systems

    International Nuclear Information System (INIS)

    Lamprecht, Ingolf

    2003-01-01

    Calorimetry of living systems and classical thermodynamics developed in parallel, from Lavoisier's early ice calorimeter experiments on guinea pigs, followed by Dubrunfaut's macrocalorimetric research of fermentation processes and Atwater-Rosa's whole-body calorimetry on humans and domestic animals, to the introduction of the famous Tian-Calvet instrument that found entrance into so many different fields of biology. In this work, six examples of living-system calorimetry and thermodynamics are presented. These are: (i) glycolytic oscillations far off the thermodynamic equilibrium; (ii) growth and energy balances in fermenting and respiring yeast cultures; (iii) direct and indirect calorimetric monitoring of electrically stimulated reptile metabolism; (iv) biologic and climatic factors influencing the temperature constancy and distribution in the mound of a wood ant colony as an example of a complex ecological system; (v) energetic considerations on the clustering of European honeybees in winter as a means to save energy and stored food as well as for their Japanese counterparts in defending against hornet predators; and (vi) energetic and evolutionary aspects of the mass specific entropy production rate, the so-called bound dissipation or psiu-function. The examples presented here are just a very personal selection of living systems from a broad spectrum at all levels of complexity. Common for all of them is that they were investigated calorimetrically on the background of classical and irreversible thermodynamics

  2. The importance of calorimetry for highly-boosted jet substructure

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Evan [Brown U.; Freytsis, Marat [Oregon U.; Hinzmann, Andreas [Hamburg U.; Narain, Meenakshi [Brown U.; Thaler, Jesse [MIT, Cambridge, CTP; Tran, Nhan [Fermilab; Vernieri, Caterina [Fermilab

    2017-09-25

    Jet substructure techniques are playing an essential role in exploring the TeV scale at the Large Hadron Collider (LHC), since they facilitate the efficient reconstruction and identification of highly-boosted objects. Both for the LHC and for future colliders, there is a growing interest in using jet substructure methods based only on charged-particle information. The reason is that silicon-based tracking detectors offer excellent granularity and precise vertexing, which can improve the angular resolution on highly-collimated jets and mitigate the impact of pileup. In this paper, we assess how much jet substructure performance degrades by using track-only information, and we demonstrate physics contexts in which calorimetry is most beneficial. Specifically, we consider five different hadronic final states - W bosons, Z bosons, top quarks, light quarks, gluons - and test the pairwise discrimination power with a multi-variate combination of substructure observables. In the idealized case of perfect reconstruction, we quantify the loss in discrimination performance when using just charged particles compared to using all detected particles. We also consider the intermediate case of using charged particles plus photons, which provides valuable information about neutral pions. In the more realistic case of a segmented calorimeter, we assess the potential performance gains from improving calorimeter granularity and resolution, comparing a CMS-like detector to more ambitious future detector concepts. Broadly speaking, we find large performance gains from neutral-particle information and from improved calorimetry in cases where jet mass resolution drives the discrimination power, whereas the gains are more modest if an absolute mass scale calibration is not required.

  3. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  4. Isothermal calorimetry of enzymatic biodiesel reaction

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Westh, Peter; Christensen, Knud Villy

    2010-01-01

      Isothermal calorimetry ITC has been used to investigate enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by the immobilized lipase Novozym 435 at 40°C. The ITC-experiments clearly demonstrate the possibilities of investigating complex...... and composition change in the system, the heat of reaction at 40°C for the two systems has been determined to -9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and - 9.3 ± 0.7 kJ/mole when rapeseed oil and ethanol is used....

  5. Applying fast calorimetry on a spent nuclear fuel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liljenfeldt, Henrik [Swedish Nuclear Fuel and Waste Management (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Uppsala Univ. (Sweden)

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  6. Bipolar monolithic preamplifiers for SSC silicon calorimetry

    International Nuclear Information System (INIS)

    Britton, C.L. Jr.; Todd, R.A.; Bauer, M.L.; Kennedy, E.J.; Bugg, W.M.

    1990-01-01

    This paper describes preamplifiers designed specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). Eight different preamplifiers designed for detector capacitances ranging from 20 pF to 500 pF and operating temperatures from 25 degree C to -20 degree C are discussed. The preamplifiers were fabricated with two different high-frequency processes (one with the VTC, Inc. VJ900 process, seven with the Harris Semiconductor VHF Process). The different topologies and their features are discussed in addition to the design methodologies employed. The results for noise, power consumption, speed, and radiation damage effects as well as data for post-damage annealing are presented for the VTC process preamplifier. Simulations for the VHF Process circuits are presented. This work was funded through SSC Generic Detector funding, SSC Detector Subsystem funding, and the Oak Ridge National Laboratory (ORNL) Detector Center

  7. Imaging hadron calorimetry for future Lepton Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Repond, José, E-mail: repond@hep.anl.gov

    2013-12-21

    To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R and D efforts beyond the present prototypes are being discussed.

  8. Silicon calorimetry for the SSC[ Superconducting Supercollider

    International Nuclear Information System (INIS)

    Bertrand, C.; Borchi, E.; Brau, J.E.

    1989-01-01

    SSC experiments will rely heavily on their calorimeters. Silicon calorimetry, which has been introduced in recent years as a useful technology, has many attractive characteristics which may make it a viable option for consideration. The many attractive properties of silicon detectors are reviewed. The relevant present day applications of large areas of silicon detectors are summarize to illustrate the emerging use. The troublesome issue of radiation damage in a high luminosity environment like the SSC is considered with a summary of much of the recent new measurements which help clarify this situation. A discussion of the electronics and a possible mechanical configuration is presented, followed by a summary of the outstanding R and D issues. 31 refs., 11 figs., 3 tabs

  9. Calorimetry for Fast Authentication of Edible Oils

    Science.gov (United States)

    Angiuli, Marco; Bussolino, Gian Carlo; Ferrari, Carlo; Matteoli, Enrico; Righetti, Maria Cristina; Salvetti, Giuseppe; Tombari, Elpidio

    2009-06-01

    There are little data in the literature on how to authenticate edible oils through calorimetry techniques. However, oil melting curves can be used to represent correlations between calorimetric results and oil quality. A calorimetric method has been developed for studying the solid-liquid phase transitions of olive oil and seed oils, in which melting peak behavior is correlated to the type, quality, and composition of the oil. Good reproducible thermograms were obtained by defining precise protocols for use in testing, which take into account the specific characteristics of a particular oil. This approach does not replace classical analytical methods; nevertheless, it is believed that calorimetric tests could be a useful preliminary stage for quality testing. The calorimetric technique allows the detection of the adulterant (seed oils or refined olive oil), oil origin, and possible photo-oxidation degradation processes, before more complex and expensive procedures and analyses are applied.

  10. Isothermal calorimetry on enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2008-01-01

    information about effects taking place when using lipases immobilized on an inert carrier for transesterification of a triglyceride and an alcohol as for biodiesel production. The biodiesel is produced by rapeseed oil and methanol as well as ethanol and a commercial biocatalyst Novozym 435 from Novozymes...... containing a Candida Antarctica B lipase immobilized on an acrylic resin. The reaction investigated is characterized by immiscible liquids (oil, methanol, glycerol and biodiesel) and enzymes imm. on an inert carrier during reaction, which allows several effects to take place that during normal reaction...... conditions can not be elucidated. These effects have been observed with isothermal calorimetry bringing forth new information about the reaction of enzymes catalyzing transesterification. Enzymatic biodiesel production has until now not been investigated with isothermal microcalorimetry, but the results...

  11. CMS Forward Calorimetry R&D

    Energy Technology Data Exchange (ETDEWEB)

    Bilki, Burak [Univ. of Iowa, Iowa City, IA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-11

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of the CMS Forward Calorimetry Taskforce (FCAL group) who have committed to participate in beam tests to be carried out during the 2013-2016 Fermilab Test Beam Facility program. The TSW is intended primarily for the purpose of recording expectations for budget estimates and work allocations for Fermilab, the funding agencies and the participating institutions. It reflects an arrangement that currently is satisfactory to the parties; however, it is recognized and anticipated that changing circumstances of the evolving research program will necessitate revisions. The parties agree to modify this scope of work to reflect such required adjustments. Actual contractual obligations will be set forth in separate documents.

  12. Electromagnetic Calorimeter Calibration with $\\pi^{0}$

    CERN Multimedia

    Puig Navarro, A

    2009-01-01

    Several methods can be used in order to achieve precise calibration of the LHCb Electromagnetic Calorimeter (ECAL) once reasonable cell equalization has been reached. At low transverse energy, the standard calibration procedure is an iterative method based on the fit of the $\\gamma\\gamma$ invariant mass distribution for each cell of the decay $\\pi^{0}\\to\\gamma\\gamma$ with resolved photons. A new technique for generating the combinatorial background of such decays directly from data has been developed. Knowledge of the background could allow an alternative calibration method based on a event by event fit of the same $\\gamma\\gamma$ invariant mass distribution where contributions from groups of cells are considered in a single fit. The background generation procedure and this possible new calibration method are presented in this poster, in addition to an overview of the LHCb Calorimetry system and ECAL calibration techniques.

  13. Front-End Electronics in calorimetry: from LHC to ILC

    International Nuclear Information System (INIS)

    De La Taille, Ch.

    2009-09-01

    This report summarizes the electronics developments for liquid argon calorimeter read-out at LHC and the development carried out in the framework of the CALICE collaboration for those of the future linear collider (ILC). It also includes chips designed for multi-anode photomultipliers (MaPMT) used in the OPERA experiment or on ATLAS luminometer, which also find applications in medical imaging. Started in the early 90's, the development for ATLAS calorimetry was extremely challenging in terms of readout speed, radiation tolerance and measurement accuracy. The high speed has required a new approach using current-sensitive preamplifiers instead of charge sensitive ones and the redefinition of noise performance in terms of ENI. The preamplifiers developed at Orsay and the monolithic shapers are described in Chapter 1, including considerations of digital filtering, which was a new technique in our field. Chapter 2 is dedicated to the calibration system, designed and built by Orsay, for which the high performance and accuracy necessitated in-depth studies. The 3. chapter closes the studies for ATLAS with a summary of the detector measurements which had to be carried out on the 200 000 channels in order to understand and model the detector and achieve everywhere the accuracy and uniformity at per-cent level. These developments for ATLAS ended in 2004, although parallel work was also carried out for the NA48 and DO calorimeters which are not detailed here. The next generation of collider will require a new generation of calorimeters, much more granular, referred to as 'imaging calorimetry' with embedded read-out electronics. The ASICs developed for this purpose in the framework of the CALICE collaboration are described in Chapter 4. They integrate all the functionalities of amplification, digitization and read-out making them complex 'System-On-Chip' circuits extremely efficient that find many other applications. A family of 3 chips reads out the Si-W electromagnetic

  14. Calibrating the Athena telescope

    Science.gov (United States)

    de Bruijne, J.; Guainazzi, M.; den Herder, J.; Bavdaz, M.; Burwitz, V.; Ferrando, P.; Lumb, D.; Natalucci, L.; Pajot, F.; Pareschi, G.

    2017-10-01

    Athena is ESA's upcoming X-ray mission, currently set for launch in 2028. With two nationally-funded, state-of-the-art instruments (a high-resolution spectrograph named X-IFU and a wide-field imager named WFI), and a telescope collecting area of 1.4-2 m^2 at 1 keV, the calibration of the spacecraft is a challenge in itself. This poster presents the current (spring 2017) plan of how to calibrate the Athena telescope. It is based on a hybrid approach, using bulk manufacturing and integration data as well as dedicated calibration measurements combined with a refined software model to simulate the full response of the optics.

  15. Electron beam water calorimetry measurements to obtain beam quality conversion factors.

    Science.gov (United States)

    Muir, Bryan R; Cojocaru, Claudiu D; McEwen, Malcolm R; Ross, Carl K

    2017-10-01

    To provide results of water calorimetry and ion chamber measurements in high-energy electron beams carried out at the National Research Council Canada (NRC). There are three main aspects to this work: (a) investigation of the behavior of ionization chambers in electron beams of different energies with focus on long-term stability, (b) water calorimetry measurements to determine absorbed dose to water in high-energy beams for direct calibration of ion chambers, and (c) using measurements of chamber response relative to reference ion chambers, determination of beam quality conversion factors, k Q , for several ion chamber types. Measurements are made in electron beams with energies between 8 MeV and 22 MeV from the NRC Elekta Precise clinical linear accelerator. Ion chamber measurements are made as a function of depth for cylindrical and plane-parallel ion chambers over a period of five years to investigate the stability of ion chamber response and for indirect calibration. Water calorimetry measurements are made in 18 MeV and 22 MeV beams. An insulated enclosure with fine temperature control is used to maintain a constant temperature (drifts less than 0.1 mK/min) of the calorimeter phantom at 4°C to minimize effects from convection. Two vessels of different designs are used with calibrated thermistor probes to measure radiation induced temperature rise. The vessels are filled with high-purity water and saturated with H 2 or N 2 gas to minimize the effect of radiochemical reactions on the measured temperature rise. A set of secondary standard ion chambers are calibrated directly against the calorimeter. Finally, several other ion chambers are calibrated in the NRC 60 Co reference field and then cross-calibrated against the secondary standard chambers in electron beams to realize k Q factors. The long-term stability of the cylindrical ion chambers in electron beams is better (always <0.15%) than plane-parallel chambers (0.2% to 0.4%). Calorimetry measurements

  16. Considerations for Calorimetry at a Super B Factory

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, William

    2003-09-18

    The study of B physics at e{sup +}e{sup -} colliders running the {Upsilon} region imposes significant performance requirements on calorimetry. The environment of a very high luminosity B factor further restricts calorimetry choices. Calorimeter design is discussed in light of these constraints. A solution using scintillating crystals is explored.

  17. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  18. Site Calibration

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Site Calibration report is describing the results of a measured site calibration for a site in Denmark. The calibration is carried out by DTU Wind Energy in accordance with Ref.[3] and Ref.[4]. The measurement period is given. The site calibration is carried out before a power performance...... measurement on a given turbine to clarify the influence from the terrain on the ratio between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment...... is detailed described in [1] and [2]. All parts of the sensors and the measurement system have been installed by DTU Wind Energy....

  19. Pressures Detector Calibration and Measurement

    CERN Document Server

    AUTHOR|(CDS)2156315

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  20. CEBAF beam viewer imaging software

    International Nuclear Information System (INIS)

    Bowling, B.A.; McDowell, C.

    1993-01-01

    This paper discusses the various software used in the analysis of beam viewer images at CEBAF. This software, developed at CEBAF, includes a three-dimensional viewscreen calibration code which takes into account such factors as multiple camera/viewscreen rotations and perspective imaging, and maintaining a calibration database for each unit. Additional software allows single-button beam spot detection, with determination of beam location, width, and quality, in less than three seconds. Software has also been implemented to assist in the determination of proper chopper RF control parameters from digitized chopper circles, providing excellent results

  1. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  2. Calorimetry at the CMD-3 Detector

    CERN Document Server

    Razuvaev, G P; Anisenkov, A V; Aulchenko, V M; Bashtavoy, N S; Epifanov, D A; Epshteyn, L B; Erofeev, A L; Grebenuk, A A; Grigoriev, D N; Kazanin, V F; Kovalenko, O A; Kozyrev, A N; Kuzmenko, A E; Kuzmin, A S; Logashenko, I B; Mikhailov, K Yu; Okhapkin, V S; Ruban, A A; Shebalin, V E; Shwartz, B A; Talyshev, A A; Titov, V M; Yudin, Yu V

    2017-01-01

    The general purpose detector CMD-3 has been collecting data since 2010 in an energy range 0.32–2 GeV at the e+e- collider VEPP-2000 at the Budeker Institute of Nuclear Physics. The detector physics program includes the study of the e+e- annihilation into hadrons. To supply high registration efficiency for neutral particles the CMD-3 has an electromagnetic calorimeter consisted of three subsystems: BGO endcap calorimeter and barrel one with an inner part based on LXe and outer on CsI crystals. The main parameters of calorimeters, cluster reconstruction and calibration procedures with performance results are described.

  3. The CLEO-III Trigger: Calorimetry and tracking

    International Nuclear Information System (INIS)

    Bergfeld, T.J.; Gollin, G.D.; Haney, M.J.

    1996-01-01

    The CLEO-III Trigger provides a trigger decision every 42ns, with a latency of approximately 2.5μs. This paper describes the pipelined signal processing and pattern recognition schemes used by the calorimeter, and the axial and stereo portions of the drift chamber, to provide the information necessary to make these decisions. Field programmable gate arrays are used extensively to provide cluster filtering and location sorting for calorimetry, and path finding for tracking. Analog processing is also employed in the calorimetry to provide additional leverage on the problem. Timing information is extracted from both calorimetry and tracking

  4. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2015-01-01

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  5. PREFACE: XIV International Conference on Calorimetry in High Energy Physics

    Science.gov (United States)

    Wang, Yifang

    2011-03-01

    (Texas Tech University), Weidong Li (IHEP) 3) Readout techniques - Gerald Eigen (University of Bergen), Zheng Wang (IHEP) 4) Operating calorimeters and calibration - Marat Gataullin (CERN), Francesco Lanni (BNL) 5) Future calorimetry - Tohru Takeshita (Shinshu University), Lei Xia (Argonne National Laboratory) 6) Astrophysics and neutrino calorimetry - Giuliana Fiorillo (INFN), Hiro Tajima (SLAC) List of Participants AKCHURIN, NuralTexas Tech University AN, ZhenghuaIHEP AUFFRAY, EtiennetteCERN BANFI, DaniloUniversità degli Studi di Milano, INFN BASHARINA-FRESHVILLE, AnastasiaUniversity College London BEAUCHEMIN, Pierre-HuguesUniversity of Oxford BENAGLIA, Andrea DavideUniversity of Milano - Bicocca and INFN BIAN, JianminIHEP BIINO, CristinaINFN BILKI, BurakUniversity of Iowa BLAHA, JanLAPP BOUDRY, VincentLLR / CNRS-IN2P3 CAI, XiaoIHEP CAPONE, AntonioPhysics Department University "La Sapienza" and INFN CAVALLARI, FrancescaCERN and INFN Rome CECCHI, ClaudiaUniversity di Perugia e INFN CHANG, JinfanIHEP CHEN, HuchengBrookhaven National Laboratory CHILDERS, TaylorUniversität Heidelberg - Kirchhoff-Institut für Physik DAO, ValerioGeneva University - DPNC DE LA TAILLE, ChristopheIN2P3/OMEGA-LAL DIEMOZ, MarcellaINFN Roma DOTTI, AndreaCERN EIGEN, GeraldUniversity of Bergen EPIFANOV, DenisBudker Institute of Nuclear Physics FAIVRE, JulienLPSC Grenoble France FANG, JianIHEP FANG, ShuangshiIHEP FANTONI, AlessandraINFN - LNF FERRI, FedericoCEA/Saclay Irfu/SPP FERRONI, FernandoSapienza University & INFN Roma FISK, Henry EugeneFermilab GABALDON, CarolinaCERN GARUTTI, ErikaDESY GAUDIO, GabriellaIstituto Nazionale di Fisica Nucleare - Sezione di Pavia GILLBERG, DagCarleton University GIOVANNINI, PaolaMax-Planck-Institut für Physik GLAZOV, AlexanderDESY GRACHOV, OlegUniversity of Kansas HAPPACHER, FabioINFN HE, MiaoIHEP HORI, YasutoUniversity of Tokyo, CNS HU, TaoIHEP HULTH, Per-OlofStockholm University JUN, Soon YungCarnegie Mellon University JURK, StefanISEG Spezialelektronik gmb

  6. Topics in calorimetry for high energy physics

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1992-01-01

    These lectures focus on a series of topics now of interest or which have been of interest to designes of calorimeters in the past few years. The examples concentrate on calorimeters from DESY because its focus this year is on e-P physics, and on CDF and SDC because they are best known to the author. Calorimeters are, broadly speaking, devices to measure the total energy of particles. In general, no one device will be optimal for all types of particles. The two broadest classes of calorimeters in high energy physics are the electromagnetic calorimeters used primarily for photons and electrons, and the hadronic calorimeters used for most charged mesons and baryons. Most operate by absorbing and thereby measuring a significant amount of the incoming particles energy directly. Some particles may require special devices for their interactions and observation. Modern calorimeters are characterized by energy and position resolution, and cost and size. Calorimeter cost is often a trade-off between performance desired and money available. The optimum cost will require a careful choice of materials, reduction of the overall size of the detector, elimination of labor intensive construction techniques, and careful consideration of the cost of calibration systems. Since at least some of these requirements which optimize cost and resolution are contradictory, the ideal calorimeter in seldom what one ends up building

  7. A water flow calorimeter calibration system

    International Nuclear Information System (INIS)

    Ullrich, F.T.

    1983-01-01

    Neutral beam systems are instrumented by several water flow calorimeter systems, and some means is needed to verify the accuracy of such systems and diagnose their failures. This report describes a calibration system for these calorimeters. The calibrator consists of two 24 kilowatt circulation water heaters, with associated controls and instrumentation. The unit can supply power from 0 to 48 kW in five coarse steps and one fine range. Energy is controlled by varying the power and the time of operation of the heaters. The power is measured by means of precision power transducers, and the energy is measured by integrating the power with respect to time. The accuracy of the energy measurement is better than 0.5% when the power supplied is near full scale, and the energy resolution is better than 1 kilojoule. The maximum energy delivered is approximately 50 megajoules. The calorimetry loop to be calibrated is opened, and the calibrator is put in series with the calorimeter heat source. The calorimeter is then operated in its normal fashion, with the calibrator used as the heat source. The calibrator can also be used in a stand alone mode to calibrate calorimeter sensors removed from systems

  8. Thin-film calorimetry. In-situ characterization of materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Omelcenko, Alexander; Wulfmeier, Hendrik; Albrecht, Daniel; Fritze, Holger [Clausthal Univ. of Technology, Goslar (Germany). Inst. of Energy Research and Physical Technologies; El Mofid, Wassima; Ivanov, Svetlozar; Bund, Andreas [Ilmenau Univ. of Technology (Germany). Dept. of Electrochemistry

    2017-11-15

    Thin-film calorimetry allows for qualitative and quantitative in-situ analysis of thermodynamic properties of thin films and thin-film systems from room temperature up to 1000 C. It is based on highly sensitive piezoelectric langasite resonators which serve simultaneously as planar temperature sensors and substrates for the films of interest. Generation or consumption of heat during phase transformations of the films cause deviations from the regular course of the resonance frequency. Thermodynamic data such as phase transformation temperatures and enthalpies are extracted from these deviations. Thin-film calorimetry on Sn and Al thin films is performed to prove the concept. The results demonstrate high reproducibility of the measurement approach and are in agreement with literature data obtained by established calorimetric techniques. The calibration of the system is done in different atmospheres by application of defined heat pulses via heating structures. The latter replace the films of interest and simulate phase transformations to provide detailed analysis of the heat transfer mechanisms occurring in the measurement system. Based on this analysis, a data evaluation concept is developed. Application-relevant studies are performed on thin films of the lithium-ion battery materials NMC(A), NCA, LMO, and MoS{sub 2}. Their phase transformation temperatures and enthalpies are evaluated in oxidizing and reducing atmospheres. Furthermore, their thermodynamic stability ranges are presented. Finally, measurements on all-solid-state thin-film batteries during electrochemical cycling are performed. They demonstrate the suitability of the system for in-situ investigations.

  9. Absolute determination of small samples of Pu and Am by calorimetry

    International Nuclear Information System (INIS)

    Tagziria, H.; Bagi, J.; Pedersen, B.; Schillebeeckx, P.

    2012-01-01

    An extensive measurement campaign has been carried in order to recalibrate and assess the performance of the small sample calorimeter (SSCAL) that was recently upgraded. The measurements have been performed in the Performance Laboratory of the Joint Research Centre's (JRC) Nuclear Security Unit in Ispra (Italy) using calibrated electric heat sources and standard reference nuclear materials. The SSCAL is a heat flow calorimeter which works by measuring the voltage generated by a heat-emitting sample across a thermal gap based on a thermopile cup technology. Results of calorimetry measurements carried out, both inside and outside a well-controlled environment of a climatic chamber, on reference Pu–Ga samples and well-characterised 241 Am samples are presented and discussed. The latter samples were produced at the JRC-ITU to be used by the JRC-IRMM for various cross-section measurements (total, neutron capture and 241 Am(n,2n) 240 Am).

  10. Automation of dosimeters calibration for radiotherapy in secondary dosimetric calibration laboratory of the CPHR

    International Nuclear Information System (INIS)

    Acosta, Andy L. Romero; Lores, Stefan Gutierrez

    2013-01-01

    This paper presents the design and implementation of an automated system for measurements in the calibration of reference radiation dosimeters. It was made a software application that performs the acquisition of the measured values of electric charge, calculated calibration coefficient and automates the calibration certificate issuance. These values are stored in a log file on a PC. The use of the application improves control over the calibration process, helps to humanize the work and reduces personnel exposure. The tool developed has been applied to the calibration of dosimeters radiation patterns in the LSCD of the Centro de Proteccion e Higiene de las Radiaciones, Cuba

  11. The Simulation of the ATLAS Liquid Argon Calorimetry

    International Nuclear Information System (INIS)

    Niess, V.

    2006-01-01

    The liquid argon calorimeter of the ATLAS detector is aimed at measuring electromagnetic energy deposit from pp collision produced at the Large Hadron Collider. It was designed to allow rare electromagnetic final states detection and jet spectroscopy in a high-background environment. The simulation of the calorimeter has a long history and is now a component of an integrated GEANT 4 based simulation of ATLAS. Its sophistication has increased during its development. At present it models many effects which significantly affect shower development and response. Step by step, the accuracy of the simulation is tested and tuned to beam test data accumulated in dedicated runs from 2001 to present. The framework in which it runs allows users to switch simulation configuration between pp collisions, cosmic rays and single particle data taking, with the full ATLAS detector or with the various beam test setups. For the purpose of hadronic and electromagnetic calibration, a detailed accounting scheme of energy flow, allowing energy deposits tracking in upstream dead material for example, is implemented. Fast parameterization of electromagnetic shower development has also recently become available. The software is developed by many experts around the world and works at a very high level of reliability because of the constant scrutiny it receives from a large community of developers and users, as well as a dedicated validation team

  12. Warm-up calorimetry of Dewar-Detector Assemblies

    Science.gov (United States)

    Veprik, A.; Shlomovich, B.; Tuito, A.

    2015-12-01

    Boil-off isothermal calorimetry of Dewar-Detector Assemblies (DDA) is a routine part of their Acceptance Testing Procedure. In this approach, the cryogenic liquid coolant (typically LN2) is allowed to naturally boil-off from the Dewar well to the atmosphere through a mass flow meter; the parasitic heat load is then evaluated as the product of the latent heat of vaporization and the "last drop" boil-off rate. An inherent major limitation of this technique is that it may be performed only at the fixed boiling temperature of the chosen liquid coolant. A further drawback is related to the explosive nature of "last drop" boiling, manifesting itself as an uneven flow rate. This especially holds true for advanced High Operational Temperature Dewar-Detector Assemblies, typically featuring short cold fingers and working at 150 K and above. In this work, we adapt the well-known technique of dual-slope calorimetry and show how accurate heat load evaluation may be performed by comparing the slopes of the warm-up thermal transients under different trial added heat loads. Because of the simplicity, accuracy and ability to perform calorimetry literally at any temperature of interest, this technique shows good potential for replacing traditional boil-off calorimetry.

  13. Particle flow calorimetry at the international linear collider

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About IASc · History · Memorandum of ... Home; Journals; Pramana – Journal of Physics; Volume 69; Issue 6. Particle flow calorimetry at the international linear collider. Mark A Thomson. Simulation and Reconstruction Volume 69 Issue 6 ...

  14. Particle flow calorimetry at the international linear collider

    Indian Academy of Sciences (India)

    jet energy resolution. It is widely believed that the particle flow approach to calorimetry is the key to achieving the goal of 0.3/. √. E(GeV). This paper describes the current performance of the PandoraPFA particle flow algorithm. For 45GeV jets in the Tesla. TDR detector concept, the ILC jet energy resolution goal is reached.

  15. Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.

    Science.gov (United States)

    Herrera, Isaac; Winnik, Mitchell A

    2016-03-10

    Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.

  16. Hadronic shower development in iron-scintillator tile calorimetry

    Czech Academy of Sciences Publication Activity Database

    Amaral, P.; Amorim, A.; Anderson, K.; Lokajíček, Miloš; Němeček, Stanislav

    2000-01-01

    Roč. 443, - (2000), s. 51-70 ISSN 0168-9002 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : ATLAS Iron-Scintillator * hadron calorimeter * shower parametrisation * calorimetry * computer data analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.964, year: 2000

  17. Fast sampling calorimetry with solid argon ionization chambers

    International Nuclear Information System (INIS)

    Clark, E.; Linn, S.; Piekarz, H.; Wahl, H.; Womersley, J.; Hansen, S.; Hurh, P.; Rivetta, C.; Sanders, R.; Schmitt, R.; Stanek, R.; Stefanik, A.

    1992-01-01

    A proposal for the fast sampling calorimetry with solid argon as active medium and the preliminary results from the solid argon test cell are presented. The proposed test calorimeter module structure, the signal routing and the mechanical and cryogenic arrangements are also discussed

  18. Indirect calorimetry: assessing animal response to heat and cold stress

    NARCIS (Netherlands)

    Gaughan, J.B.; Heetkamp, M.J.W.; Hendriks, P.

    2015-01-01

    Calorimetric thermal stress studies where indirect calorimetry is used as a tool to estimate energy expenditure have been undertaken since this technique was developed. Some examples of these studies are presented in this chapter. The measurement of gas exchange by means of an open-circuit

  19. Optimization of crystals for applications in dual-readout calorimetry

    Czech Academy of Sciences Publication Activity Database

    Akchurin, N.; Bedeschi, F.; Cardini, A.; Carosi, R.; Ciapetti, G.; Fasoli, M.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Hauptman, J.; Incagli, M.; Lacava, F.; La Rotonda, L.; Lee, S.; Livan, M.; Meoni, E.; Nikl, Martin; Pinci, D.; Policicchio, A.; Popescu, S.; Scuri, F.; Sill, A.; Susinno, G.; Vandelli, W.; Vedda, A.; Venturelli, T.; Voena, C.; Volobouev, I.; Wigmans, R.

    2010-01-01

    Roč. 621, 1-3 (2010), 212-221 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10100521 Keywords : calorimetry * Cherenkov light * High-Z scintillating crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.142, year: 2010

  20. The KLOE online calibration system

    International Nuclear Information System (INIS)

    Pasqualucci, E.; Alexander, G.; Aloisio, A.

    2001-01-01

    Based on all the features of the KLOE online software, the online calibration system performs current calibration quality checking in real time and starts automatically new calibration procedures when needed. A calibration manager process controls the system, implementing the interface to the online system, receiving information from the run control and translating its state transitions to a separate state machine. It acts as a 'calibration run controller' and performs failure recovery when requested by a set of process checkers. The core of the system is a multi-threaded OO histogram server that receives histogramming commands by remote processes and operates on local ROOT histograms. A client library and C, fortran and C++ application interface libraries allow the user to connect and define his own histogram or read histograms owned by others using an book-like interface. Several calibration processes running in parallel in a distributed, multiplatform environment can fill the same histograms, allowing fast external information check. A monitor thread allow remote browsing for visual inspection. Pre-filtered data are read in non-privileged spy mode from the data acquisition system via the Kloe Integrated Dataflow. The main characteristics of the system are presented

  1. The physical principles of XRF calibrations

    International Nuclear Information System (INIS)

    Fazey, P.

    1999-01-01

    Full text: XRF Control and calibration software has come a long way in recent years. Advances in the multiple regression software sophistication and speed of computers have provided an essential resource to the XRF analyst. Over recent years there has been a trend amongst some analysts to develop XRF calibrations based exclusively on the statistical information given by calibration software. Multiple regression statistics are designed for non-correlated data sets but give unpredictable results if there are significant correlations in the standards used. This is typical for calibrations weighted towards certified reference materials (CRM's) which, being natural materials, contain correlated concentrations. Purely statistical methods in calibration development have applicability only over very short concentration ranges and for materials whose composition varies little. Beyond these ranges, the calibration has the potential to be unstable and has been known to produce significant deviations in analysis of unknown samples. The statistical information generated during XRF calibrations can be a very useful tool when used in conjunction with knowledge of the physics behind the correction factors applied. The matrix coefficients represent physical absorption/enhancement effects within the sample and are not arbitrary numbers used to get a good fit to the calibration line. Inappropriate use of matrix factors and overlap factors can produce low RMS values but erroneous results in unknown samples. This talk will contain examples to demonstrate hazards with different calibration strategies and will include coverage of the following topics: physical effects occurring within the sample as a result of X-ray irradiation; use of multiple regression statistics and what role it plays in the calibration; calibration strategies using synthetic and CRM standards; determining appropriate theoretical and semi-empirical matrix corrections and line overlap factors. Copyright (1999

  2. What does calorimetry and thermodynamics of living cells tell us?

    Science.gov (United States)

    Maskow, Thomas; Paufler, Sven

    2015-04-01

    This article presents and compares several thermodynamic methods for the quantitative interpretation of data from calorimetric measurements. Heat generation and absorption are universal features of microbial growth and product formation as well as of cell cultures from animals, plants and insects. The heat production rate reflects metabolic changes in real time and is measurable on-line. The detection limit of commercially available calorimetric instruments can be low enough to measure the heat of 100,000 aerobically growing bacteria or of 100 myocardial cells. Heat can be monitored in reaction vessels ranging from a few nanoliters up to many cubic meters. Most important the heat flux measurement does not interfere with the biological process under investigation. The practical advantages of calorimetry include the waiver of labeling and reactants. It is further possible to assemble the thermal transducer in a protected way that reduces aging and thereby signal drifts. Calorimetry works with optically opaque solutions. All of these advantages make calorimetry an interesting method for many applications in medicine, environmental sciences, ecology, biochemistry and biotechnology, just to mention a few. However, in many cases the heat signal is merely used to monitor biological processes but only rarely to quantitatively interpret the data. Therefore, a significant proportion of the information potential of calorimetry remains unutilized. To fill this information gap and to motivate the reader using the full information potential of calorimetry, various methods for quantitative data interpretations are presented, evaluated and compared with each other. Possible errors of interpretation and limitations of quantitative data analysis are also discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Software engineering

    CERN Document Server

    Sommerville, Ian

    2010-01-01

    The ninth edition of Software Engineering presents a broad perspective of software engineering, focusing on the processes and techniques fundamental to the creation of reliable, software systems. Increased coverage of agile methods and software reuse, along with coverage of 'traditional' plan-driven software engineering, gives readers the most up-to-date view of the field currently available. Practical case studies, a full set of easy-to-access supplements, and extensive web resources make teaching the course easier than ever.

  4. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.

    Science.gov (United States)

    Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter

    2016-05-01

    Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.

  5. Isothermal calorimetry: Impact of measurements error on heat of reaction and kinetic calculations

    International Nuclear Information System (INIS)

    Papadaki, Maria; Nawada, Hosadu P.; Gao, Jun; Fergusson-Rees, Andrew; Smith, Michael

    2007-01-01

    Heat flow and power compensation calorimetry measures the power generation of a reaction via an energy balance over an appropriately designed isothermal reactor. However, the measurement of the power generated by a reaction is a relative measurement, and calibrations are used to eliminate the contribution of a number of unknown factors. In this work the effect of the error in the measurement of temperature of electric power used in the calibrations and the heat transfer coefficient and baseline is assessed. It has been shown that the error in all aforementioned quantities reflects on the baseline and it can have a very serious impact on the accuracy of the measurement. The influence of the fluctuation of ambient temperature has been evaluated and a means of a correction that reduces its impact has been implemented. The temperature of dosed material is affected by the heat loses if reaction is performed at high temperature and low dosing rate. An experimental methodology is presented that can provide means of assessment of the actual temperature of the dosed material. Depending on the reacting system, the heat of evaporation could be included in the baseline, especially if non-condensable gases are produced during the course of the reaction

  6. Calibration of the ZEUS forward calorimeter

    International Nuclear Information System (INIS)

    Kraemer, M.

    1990-10-01

    The physics at the ep-collider HERA requires high resolution calorimetry calibrated with an accuracy of better than 2%. The ZEUS detector meets these conditions by means of a compensating uranium scintillator sandwich calorimeter with an energy resolution of σ/E = 35%/√E + σ cal , where σ cal is the calibration error. One of the tools to minimize σ cal is the calibration with the signals of the radioactivity of the Uranium plates (UNO). Taking UNO data every 8 hours keeps the calibration stable within ≅ 1%. The muon calibration is done employing an algorithm, that determines the most probable energy loss with a precision of ≅ 1%. The channel-to-channel fluctuations of the ratio μ/UNO for a forward calorimeter (FCAL) prototype show a spread of 5.2% for the electromagnetic calorimeter and ≅ 2.5% for the hadronic sections. Improvements in the construction of the FCAL modules decreased these fluctuations to 2.0% and ≅ 1.8% respectively. The influence of the cracks between the calorimeter modules amounts to ≅ 1.7% on average for the ZEUS geometry, if a 2 mm thick Pb-sheet is introduced between the modules. We conclude that we are able to keep σ cal below 2%. (orig.)

  7. SOFTWARE OPEN SOURCE, SOFTWARE GRATIS?

    Directory of Open Access Journals (Sweden)

    Nur Aini Rakhmawati

    2006-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Berlakunya Undang – undang Hak Atas Kekayaan Intelektual (HAKI, memunculkan suatu alternatif baru untuk menggunakan software open source. Penggunaan software open source menyebar seiring dengan isu global pada Information Communication Technology (ICT saat ini. Beberapa organisasi dan perusahaan mulai menjadikan software open source sebagai pertimbangan. Banyak konsep mengenai software open source ini. Mulai dari software yang gratis sampai software tidak berlisensi. Tidak sepenuhnya isu software open source benar, untuk itu perlu dikenalkan konsep software open source mulai dari sejarah, lisensi dan bagaimana cara memilih lisensi, serta pertimbangan dalam memilih software open source yang ada. Kata kunci :Lisensi, Open Source, HAKI

  8. Glass transition of anhydrous starch by fast scanning calorimetry.

    Science.gov (United States)

    Monnier, Xavier; Maigret, Jean-Eudes; Lourdin, Denis; Saiter, Allisson

    2017-10-01

    By means of fast scanning calorimetry, the glass transition of anhydrous amorphous starch has been measured. With a scanning rate of 2000Ks -1 , thermal degradation of starch prior to the glass transition has been inhibited. To certify the glass transition measurement, structural relaxation of the glassy state has been investigated through physical aging as well as the concept of limiting fictive temperature. In both cases, characteristic enthalpy recovery peaks related to the structural relaxation of the glass have been observed. Thermal lag corrections based on the comparison of glass transition temperatures measured by means of differential and fast scanning calorimetry have been proposed. The complementary investigations give an anhydrous amorphous starch glass transition temperature of 312±7°C. This estimation correlates with previous extrapolation performed on hydrated starches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Scintillating glasses for total absorption dual readout calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonvicini, V. [INFN, Trieste; Driutti, A. [Udine U.; Cauz, D. [Udine U.; Pauletta, G. [Udine U.; Rubinov, P. [Fermilab; Santi, L. [Udine U.; Wenzel, H. [Fermilab

    2012-01-01

    Scintillating glasses are a potentially cheaper alternative to crystal - based calorimetry with common problems related to light collection, detection and processing. As such, their use and development are part of more extensive R&D aimed at investigating the potential of total absorption, combined with the readout (DR) technique, for hadron calorimetry. A recent series of measurements, using cosmic and particle beams from the Fermilab test beam facility and scintillating glass with the characteristics required for application of the DR technique, serve to illustrate the problems addressed and the progress achieved by this R&D. Alternative solutions for light collection (conventional and silicon photomultipliers) and signal processing are compared, the separate contributions of scintillation and Cherenkov processes to the signal are evaluated and results are compared to simulation.

  10. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  11. Software Metrics and Software Metrology

    CERN Document Server

    Abran, Alain

    2010-01-01

    Most of the software measures currently proposed to the industry bring few real benefits to either software managers or developers. This book looks at the classical metrology concepts from science and engineering, using them as criteria to propose an approach to analyze the design of current software measures and then design new software measures (illustrated with the design of a software measure that has been adopted as an ISO measurement standard). The book includes several case studies analyzing strengths and weaknesses of some of the software measures most often quoted. It is meant for sof

  12. Particle flow calorimetry at the international linear collider

    Indian Academy of Sciences (India)

    For 45GeV jets in the Tesla. TDR detector concept, the ILC jet energy resolution goal is reached. At higher energies the jet energy resolution becomes worse and can be described by the empirical expression: σE /E ≈ 0.265/. √. E(GeV) + 1.2 × 10−4E(GeV). Keywords. Calorimetry; particle flow. PACS Nos 07.05.Kf; 29.40.

  13. The Philosophy and Feasibility of Dual Readout Calorimetry

    International Nuclear Information System (INIS)

    Hauptman, John

    2006-01-01

    I will discuss the general physical ideas behind dual-readout calorimetry, their implementation in DREAM (Dual REAdout Module) with exact separation of scintillation and Cerenkov light, implementation with mixed light in DREAM fibers, anticipated implementation in PbWO4 crystals with applications to the 4th Concept detector and to CMS, use in high energy gamma-ray and cosmic ray astrophysics with Cerenkov and N2 fluorescent light, and implementation in the 4th Concept detector for muon identification

  14. Forever software

    NARCIS (Netherlands)

    Rensink, Arend; Margaria, Tiziana; Steffen, Bernhard

    2014-01-01

    Any attempt to explain software engineering to a lay audience soon falls back on analogy: building software is like building a bridge, a car, a television set. A large part of the established practice within software engineering is also based on this premise. However, the analogy is false in some

  15. TWSTFT Link Calibration Report

    Science.gov (United States)

    2015-09-01

    traveling calibration station (calibrator) consisting of N (≥2) GNSS receivers+antennas+cables and PPS/frequency-distributors. It is a pre-cabled black...the PTB is taken as the reference of the calibration, a GNSS time link correction is equal to the classic GNSS equipment calibration correction [8...TWSTFT link calibration. If we replace the TWSTFT link by a GNSS link or a optical fiber (OF), it becomes a GNSS or an OF time link calibration. This

  16. Software reliability

    CERN Document Server

    Bendell, A

    1986-01-01

    Software Reliability reviews some fundamental issues of software reliability as well as the techniques, models, and metrics used to predict the reliability of software. Topics covered include fault avoidance, fault removal, and fault tolerance, along with statistical methods for the objective assessment of predictive accuracy. Development cost models and life-cycle cost models are also discussed. This book is divided into eight sections and begins with a chapter on adaptive modeling used to predict software reliability, followed by a discussion on failure rate in software reliability growth mo

  17. Computational integration of the phases and procedures of calibration processes for radioprotection

    International Nuclear Information System (INIS)

    Santos, Gleice R. dos; Thiago, Bibiana dos S.; Rocha, Felicia D.G.; Santos, Gelson P. dos; Potiens, Maria da Penha A.; Vivolo, Vitor

    2011-01-01

    This work proceed the computational integration of the processes phases by using only a single computational software, from the entrance of the instrument at the Instrument Calibration Laboratory (LCI-IPEN) to the conclusion of calibration procedures. So, the initial information such as trade mark, model, manufacturer, owner, and the calibration records are digitized once until the calibration certificate emission

  18. Software Licensing

    OpenAIRE

    Nygrýnová, Dominika

    2014-01-01

    Summary: Software Licensing The thesis deals with different practical aspects of commercial software licensing from the perspective of the Czech legal system. The focus is put on software license agreement as the most important legal instrument granting rights of use for computer programs. The thesis opens with a summary of Czech legislation in force in this area in the context of European community law and international law. The legislation in effect is largely governed by the Copyright Act....

  19. Fast differential scanning calorimetry of liquid samples with chips

    DEFF Research Database (Denmark)

    Splinter, R.; van Herwaarden, A. W.; van Wetten, I. A.

    2015-01-01

    Based on a modified version of standard chips for fast differential scanning calorimetry, DSC of liquid samples has been performed at temperature scan rates of up to 1000 °C/s. This paper describes experimental results with the protein lysozyme, bovine serum, and olive oil. The heating and cooling....... The bovine serum measurements show two main peaks, in good agreement with standard DSC measurements. Olive oil has been measured, with good agreement for the cooling curve and qualitative agreement for the heater curve, compared to DSC measurements....

  20. A custom floating point format ADC for LHC calorimetry

    International Nuclear Information System (INIS)

    Hermel, V.; Lecoq, J.; Bohner, G.

    1996-01-01

    Due to their large dynamic range (in excess of 16 bits) signals from LHC calorimetry poses severe problems to the shaping and digitizing circuits. We are investigating a solution for an ADC based on a custom floating point format. Since the calorimeter precision is limited, the full dynamic range can be split into 8 positive sub-ranges and 5 negative ones, each with an 8 bits dynamic. The reduced number of bits (8 for the mantissa, 4 for the exponent and 1 for the sign) translates itself into a reduction of the power consumption both of the ADC and of the following digital filtering stages. (authors)

  1. Applications of modulated differential scanning calorimetry in preformulation studies.

    Science.gov (United States)

    Rabel, S R; Jona, J A; Maurin, M B

    1999-11-01

    Characterization of the thermal properties of active pharmaceutical ingredients is critical in the selection of appropriate physical forms for development and defining proper manufacturing, handling and storage conditions of those chemical entities. Modulated differential scanning calorimetry (MDSC) has proven to be an effective tool in the thorough characterization of thermal behavior of compounds in preformulation studies. Selected applications of MDSC for various preclinical compounds are presented, thereby demonstrating the utility of this analytical method in the determination of glass transitions, characterization of desolvation and degradation processes as well as in the study of polymorphic transformations and crystallizations.

  2. Software-based acoustical measurements

    CERN Document Server

    Miyara, Federico

    2017-01-01

    This textbook provides a detailed introduction to the use of software in combination with simple and economical hardware (a sound level meter with calibrated AC output and a digital recording system) to obtain sophisticated measurements usually requiring expensive equipment. It emphasizes the use of free, open source, and multiplatform software. Many commercial acoustical measurement systems use software algorithms as an integral component; however the methods are not disclosed. This book enables the reader to develop useful algorithms and provides insight into the use of digital audio editing tools to document features in the signal. Topics covered include acoustical measurement principles, in-depth critical study of uncertainty applied to acoustical measurements, digital signal processing from the basics, and metrologically-oriented spectral and statistical analysis of signals. The student will gain a deep understanding of the use of software for measurement purposes; the ability to implement software-based...

  3. Software engineering

    CERN Document Server

    Sommerville, Ian

    2016-01-01

    For courses in computer science and software engineering The Fundamental Practice of Software Engineering Software Engineering introduces readers to the overwhelmingly important subject of software programming and development. In the past few years, computer systems have come to dominate not just our technological growth, but the foundations of our world's major industries. This text seeks to lay out the fundamental concepts of this huge and continually growing subject area in a clear and comprehensive manner. The Tenth Edition contains new information that highlights various technological updates of recent years, providing readers with highly relevant and current information. Sommerville's experience in system dependability and systems engineering guides the text through a traditional plan-based approach that incorporates some novel agile methods. The text strives to teach the innovators of tomorrow how to create software that will make our world a better, safer, and more advanced place to live.

  4. Evaluation of aluminosilicate glass sintering during differential scanning calorimetry

    International Nuclear Information System (INIS)

    Souza, Juliana Pereira de

    2015-01-01

    In this work a difference in the baseline in differential scanning calorimetry analyses, observed in a work where aluminosilicate glasses microspheres containing Ho were studied for application in selective internal radiotherapy as hepatocellular carcinoma treatment, was studied. The glasses with nominal composition 53,7 SiO 2 .10,5 Al 2 O 3 . 35,8 MgO in %mol were produced from traditional melting. The first obtained were milled and sieved in the range of 45 a 63 μm. The material was used to produce glass microspheres by the gravitational fall method. The glass powder and the microspheres were characterized by X ray fluorescence spectrometry, laser diffraction, X ray diffraction, differential scanning calorimetry, differential thermal analysis, thermogravimetry, mass spectrometry, and scanning electron microscopy. After the thermal analyses, pellets were formed in the crucibles and were analyzed by scanning electron microscopy, X ray diffraction, and He pycnometry. The difference in the baseline was associated to the viscous flow sintering process and happens because of the decrease in the detected heat flow due to the sample shrinkage. Other events as concurrent crystallization with the sintering process were also studied. (author)

  5. Accurate heat capacity data at phase transitions from relaxation calorimetry

    Science.gov (United States)

    Suzuki, Hal; Inaba, Akira; Meingast, Christoph

    2010-10-01

    Extracting accurate heat capacities by conventional relaxation calorimetry at first-order or very sharp second-order phase transitions is extremely difficult. The so-called "scanning method" provides a key to overcome this challenge. Here, we introduce new corrections in the data analysis of this method. Critical examinations of the improvements are made experimentally by investigating the well-studied first-order ferroelectric phase transitions of KH 2PO 4 and BaTiO 3 using a commercial relaxation calorimeter Physical Property Measurement System (PPMS) supplied by Quantum Design. The results for KH 2PO 4 are shown to be excellent; a very sharp peak in heat capacity is obtained and the absolute values are shown to agree well with the previous results obtained by adiabatic calorimetry on much larger samples. The critical behavior of the heat capacity in the vicinity of the transition temperature, as well as the thermodynamic quantities such as the transition enthalpy and entropy, also agrees very well with the previous results. For BaTiO 3, clear hysteretic behavior of the transition is observed for heating and cooling curves.

  6. A New Automated Instrument Calibration Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Polz, E.; Rushton, R.O.; Wilkie, W.H.; Hancock, R.C.

    1998-01-01

    The Health Physics Instrument Calibration Facility at the Savannah River Site in Aiken, SC was expressly designed and built to calibrate portable radiation survey instruments. The facility incorporates recent advances in automation technology, building layout and construction, and computer software to improve the calibration process. Nine new calibration systems automate instrument calibration and data collection. The building is laid out so that instruments are moved from one area to another in a logical, efficient manner. New software and hardware integrate all functions such as shipping/receiving, work flow, calibration, testing, and report generation. Benefits include a streamlined and integrated program, improved efficiency, reduced errors, and better accuracy

  7. Automation is an Effective Way to Improve Quality of Verification (Calibration) of Measuring Instruments

    Science.gov (United States)

    Golobokov, M.; Danilevich, S.

    2018-04-01

    In order to assess calibration reliability and automate such assessment, procedures for data collection and simulation study of thermal imager calibration procedure have been elaborated. The existing calibration techniques do not always provide high reliability. A new method for analyzing the existing calibration techniques and developing new efficient ones has been suggested and tested. A type of software has been studied that allows generating instrument calibration reports automatically, monitoring their proper configuration, processing measurement results and assessing instrument validity. The use of such software allows reducing man-hours spent on finalization of calibration data 2 to 5 times and eliminating a whole set of typical operator errors.

  8. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Blaha, J.; Blaising, J.J.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Denis; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2012-01-01

    Roč. 7, SEP (2012), 1-23 ISSN 1748-0221 R&D Projects: GA MŠk LA09042; GA MŠk LC527; GA ČR GA202/05/0653 Institutional research plan: CEZ:AV0Z10100502 Keywords : hadronic calorimetry * imaging calorimetry * software compensation Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.869, year: 2011

  9. Software requirements

    CERN Document Server

    Wiegers, Karl E

    2003-01-01

    Without formal, verifiable software requirements-and an effective system for managing them-the programs that developers think they've agreed to build often will not be the same products their customers are expecting. In SOFTWARE REQUIREMENTS, Second Edition, requirements engineering authority Karl Wiegers amplifies the best practices presented in his original award-winning text?now a mainstay for anyone participating in the software development process. In this book, you'll discover effective techniques for managing the requirements engineering process all the way through the development cy

  10. Analysis of rotator phase transitions in the linear alkanes hexacosane to triacontane by adiabatic scanning calorimetry and by photopyroelectric calorimetry

    Science.gov (United States)

    Paoloni, S.; Mercuri, F.; Zammit, U.; Leys, J.; Glorieux, C.; Thoen, J.

    2018-03-01

    The study of the nature of various phase transitions between rotator phases in several linear alkanes was performed by analyzing the hysteretic behavior of the specific heat between heating and cooling measurements. The investigations have been carried out by both adiabatic scanning calorimetry and photopyroelectric calorimetry techniques, whose combined use has provided complementary information concerning the changes occurring in the samples' structure during their temperature change. The study enabled to establish that, unlike what previously reported, the Riii-Riv and the Rii-Riv transitions are of first order, despite them not showing any sharp peak profile in the temperature dependence of the specific heat. The first order of the Rv-Rii transition was confirmed also in the present study and, finally the Rv-Riii transition could be observed by calorimetric detection for the first time and shown to be of second order. The obtained results were discussed in terms of order parameters power terms in the Landau free energy expansion.

  11. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  12. Software Reviews.

    Science.gov (United States)

    McGrath, Diane

    1990-01-01

    Reviews two programs: (1) "The Weather Machine" on understanding weather and weather forecasting and (2) "The Mystery of the Hotel Victoria" on problem solving in mathematics. Presents the descriptions, advantages, and weaknesses of the software. (YP)

  13. Software Reviews.

    Science.gov (United States)

    Miller, Anne, Ed.; Radziemski, Cathy, Ed.

    1988-01-01

    Three pieces of computer software are described and reviewed: HyperCard, to build and use varied applications; Iggy's Gnees, for problem solving with shapes in grades kindergarten-two; and Algebra Shop, for practicing skills and problem solving. (MNS)

  14. Software Reviews.

    Science.gov (United States)

    Slatta, Richard W. And Others

    1987-01-01

    Describes a variety of computer software. Subjects reviewed include history simulations and wordprocessing programs. Some of the eleven packages reviewed are Thog, North Utilities, HBJ Writer, Textra, Pro-cite, and Simulation Construction Kit. (BSR)

  15. Software Reviews.

    Science.gov (United States)

    Wulfson, Stephen, Ed.

    1990-01-01

    Reviewed are six computer software packages including "Lunar Greenhouse,""Dyno-Quest,""How Weather Works,""Animal Trackers,""Personal Science Laboratory," and "The Skeletal and Muscular Systems." Availability, functional, and hardware requirements are discussed. (CW)

  16. Software Reviews.

    Science.gov (United States)

    Dwyer, Donna; And Others

    1989-01-01

    Reviewed are seven software packages for Apple and IBM computers. Included are: "Toxicology"; "Science Corner: Space Probe"; "Alcohol and Pregnancy"; "Science Tool Kit Plus"; Computer Investigations: Plant Growth"; "Climatrolls"; and "Animal Watch: Whales." (CW)

  17. Software Innovation

    DEFF Research Database (Denmark)

    Rose, Jeremy

      Innovation is the forgotten key to modern systems development - the element that defines the enterprising engineer, the thriving software firm and the cutting edge software application.  Traditional forms of technical education pay little attention to creativity - often encouraging overly ratio...... out the new field of software innovation. It organizes the existing scientific research into eight simple heuristics - guiding principles for organizing a system developer's work-life so that it focuses on innovation.......  Innovation is the forgotten key to modern systems development - the element that defines the enterprising engineer, the thriving software firm and the cutting edge software application.  Traditional forms of technical education pay little attention to creativity - often encouraging overly...... rationalistic ways of thinking which stifle the ability to innovate. Professional software developers are often drowned in commercial drudgery and overwhelmed by work pressure and deadlines. The topic that will both ensure success in the market and revitalize their work lives is never addressed. This book sets...

  18. The 2007 ESO Instrument Calibration Workshop

    CERN Document Server

    Kaufer, Andreas; ESO Workshop

    2008-01-01

    The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop’s contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long l...

  19. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  20. Calibration Techniques and Strategies for the Present and Future LHC Electromagnetic Calorimeters

    CERN Document Server

    Aleksa, Martin; The ATLAS collaboration

    2018-01-01

    This document summarizes an invited talk on ``Calibration Techniques and Strategies for the Present and Future LHC Electromagnetic Calorimeters'' at the Calorimetry for the High Energy Frontier (CHEF) Conference in Lyon, France in October 2017. It describes the different calibration strategies and techniques applied by the two big experiments at the LHC, ATLAS and CMS and discusses them underlining their respective strengths and weaknesses from the view of the author. The resulting performances of both calorimeters are described and compared on the basis of selected physics results. Future upgrade plans for High Luminosity (HL) LHC are briefly introduced and planned calibration strategies for those new detectors are shown.

  1. Biophysical characterization of antibodies with isothermal titration calorimetry

    Directory of Open Access Journals (Sweden)

    Verna Frasca

    2016-07-01

    Full Text Available Antibodies play a key role in the immune response. Since antibodies bind antigens with high specificity and tight affinity, antibodies are an important reagent in experimental biology, assay development, biomedical research and diagnostics. Monoclonal antibodies are therapeutic drugs and used for vaccine development. Antibody engineering, biophysical characterization, and structural data have provided a deeper understanding of how antibodies function, and how to make better drugs. Isothermal titration calorimetry (ITC is a label-free binding assay, which measures affinity, stoichiometry, and binding thermodynamics for biomolecular interactions. When thermodynamic data are used together with structural and kinetic data from other assays, a complete structure-activity-thermodynamics profile can be constructed. This review article describes ITC, and discusses several applications on how data from ITC provides insights into how antibodies function, guide antibody engineering, and aid design of new therapeutic drugs.

  2. Hadronic shower development in Iron-Scintillator Tile Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, P.; Amorim, A.; Anderson, K.; Barreira, G.; Benetta, R.; Berglund, S.; Biscarat, C.; Blanchot, G.; Blucher, E.; Bogush, A.; Bohm, C.; Boldea, V.; Borisov, O.; Bosman, M.; Bromberg, C.; Budagov, J.; Burdin, S.; Caloba, L.; Carvalho, J.; Casado, P.; Castillo, M.V.; Cavalli-Sforza, M.; Cavasinni, V.; Chadelas, R.; Chirikov-Zorin, I.; Chlachidze, G.; Cobal, M.; Cogswell, F.; Colaco, F.; Cologna, S.; Constantinescu, S.; Costanzo, D.; Crouau, M.; Daudon, F.; David, J.; David, M.; Davidek, T.; Dawson, J.; De, K.; Del Prete, T.; De Santo, A.; Di Girolamo, B.; Dita, S.; Dolejsi, J.; Dolezal, Z.; Downing, R.; Efthymiopoulos, I.; Engstroem, M.; Errede, D.; Errede, S.; Evans, H.; Fenyuk, A.; Ferrer, A.; Flaminio, V.; Gallas, E.; Gaspar, M.; Gil, I.; Gildemeister, O.; Glagolev, V.; Gomes, A.; Gonzalez, V.; Gonzalez De La Hoz, S.; Grabski, V.; Grauges, E.; Grenier, P.; Hakopian, H.; Haney, M.; Hansen, M.; Hellman, S.; Henriques, A.; Hebrard, C.; Higon, E.; Holmgren, S.; Huston, J.; Ivanyushenkov, Yu.; Jon-And, K.; Juste, A.; Kakurin, S.; Karapetian, G.; Karyukhin, A.; Kopikov, S.; Kukhtin, V.; Kulchitsky, Y.; Kurzbauer, W.; Kuzmin, M.; Lami, S.; Lapin, V.; Lazzeroni, C.; Lebedev, A.; Leitner, R.; Li, J.; Lomakin, Yu.; Lomakina, O.; Lokajicek, M.; Lopez Amengual, J.M.; Maio, A.; Malyukov, S.; Marroquin, F.; Martins, J.P.; Mazzoni, E.; Merritt, F.; Miller, R.; Minashvili, I.; Miralles, Ll.; Montarou, G.; Munar, A.; Nemecek, S.; Nessi, M. E-mail: marzio.nessi@cern.ch; Onofre, A.; Orteu, S.; Park, I.C.; Pallin, D.; Pantea, D.; Paoletti, R.; Patriarca, J.; Pereira, A.; Perlas, J.A.; Petit, P.; Pilcher, J.; Pinhao, J.; Poggioli, L.; Price, L.; Proudfoot, J.; Pukhov, O.; Reinmuth, G.; Renzoni, G.; Richards, R.; Roda, C.; Romance, J.B.; Romanov, V.; Ronceux, B.; Rosnet, P.; Rumyantsev, V.; Russakovich, N.; Sanchis, E.; Sanders, H.; Santoni, C.; Santos, J.; Sawyer, L.; Says, L.-P.; Seixas, J.M.; Sellden, B.; Semenov, A.; Shchelchkov, A.; Shochet, M.; Simaitis, V. [and others

    2000-03-21

    The lateral and longitudinal profiles of hadronic showers detected by a prototype of the ATLAS Iron-Scintillator Tile Hadron Calorimeter have been investigated. This calorimeter presents a unique longitudinal configuration of scintillator tiles. Using a fine-grained pion beam scan at 100 GeV, a detailed picture of transverse shower behaviour is obtained. The underlying radial energy densities for the four depth segments and for the entire calorimeter have been reconstructed. A three-dimensional hadronic shower parametrisation has been developed. The results presented here are useful for understanding the performance of iron-scintillator calorimeters, for developing fast simulations of hadronic showers, for many calorimetry problems requiring the integration of a shower energy deposition in a volume and for future calorimeters design.

  3. On the Interpretation of Low Temperature Calorimetry Data

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette; Geiker, Mette Rica

    2008-01-01

    The effect of selected factors and phenomena on Low Temperature Calorimetry (LTC) results has been investigated, in order to determine the possibilities and limitations of using LTC for characterisation of the porosity of cement-based materials. LTC was carried out on a model material with mono......-sized pores of approximately 14 nm saturated with either distilled water or a sodium chloride solution, as well as on water, the salt solution, and an artificial pore solution, alone. It was found that supercooling is unavoidable during the liquid-solid phase transition, and that even at low temperature...... to limit transport of liquid, whereas heating should be undertaken at a low rate to limit the effect of non-equilibrium....

  4. Present status of CMS HF quartz fiber calorimetry

    CERN Document Server

    Önel, Y M

    2002-01-01

    The experiments at the Large Hadron Collider will have to deal with unprecedented radiation levels. The design of the CMS forward calorimetry detector (HF) is now finalized. The present design of CMS calls for the HF calorimeter to be based on quartz fiber technology. It consists of two modules, located symmetrically at about 11 meters from either side of interaction point. They cover the pseudorapidity range 3-5. The length along the beam is 1.65 m or 10 nuclear interaction lengths. Each calorimeter consists of a large steel block that serves as the absorber. Embedded quartz fibers in the steel absorber run parallel to the beam and constitute the active component of the detector. In order to optimize energy resolution for E and E /sup T/ flows and forward jets, the calorimeter is effectively segmented longitudinally by using two different fiber lengths. The present status will be discussed. (6 refs).

  5. Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry

    International Nuclear Information System (INIS)

    Liu Lijun; Wei Chunyang; Guo Yuyan; Rogers, William J.; Sam Mannan, M.

    2009-01-01

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified

  6. Novel investigation of enzymatic biodiesel reaction by isothermal calorimetry

    DEFF Research Database (Denmark)

    Søtoft, Lene Fjerbaek; Westh, Peter; Christensen, Knud V.

    2010-01-01

    Isothermal calorimetry (ITC) was used to investigate solvent-free enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by immobilized lipase Novozym 435 at 40 °C. The aim of the study was to determine reaction enthalpy for the enzymatic...... transesterification and to elucidate the mass transfer and energetic processes taking place. Based on the measured enthalpy and composition change in the system, the heat of reaction at 40 °C for the two systems was determined as −9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and −9.3 ± 0.7 k...

  7. Review of MEMS differential scanning calorimetry for biomolecular study

    Science.gov (United States)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; Zuo, Lei

    2017-12-01

    Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermodynamics information of the biomolecules which consists of Gibbs free energy, enthalpy and entropy in a straightforward manner that enables deep understanding of the structure function relationship in biomolecules such as the folding/unfolding of protein and DNA, and ligand bindings. This review provides an up to date overview of the applications of DSC in biomolecular study such as the bovine serum albumin denaturation study, the relationship between the melting point of lysozyme and the scanning rate. We also introduce the recent advances of the development of micro-electro-mechanic-system (MEMS) based DSCs.

  8. Hadronic Shower Development in Iron-Scintillator Tile Calorimetry

    CERN Document Server

    Amaral, P; Anderson, K; Barreira, G; Benetta, R; Berglund, S; Biscarat, C; Blanchot, G; Blucher, E; Bogush, A A; Bohm, C; Boldea, V; Borisov, O; Bosman, M; Bromberg, C; Budagov, Yu A; Burdin, S; Caloba, L; Carvalho, J; Casado, M P; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chirikov-Zorin, I E; Chlachidze, G; Cobal, M; Cogswell, F; Colaço, F; Cologna, S; Constantinescu, S; Costanzo, D; Crouau, M; Daudon, F; David, J; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; De Santo, A; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Efthymiopoulos, I; Engström, M; Errede, D; Errede, S; Evans, H; Fenyuk, A; Ferrer, A; Flaminio, V; Gallas, E; Gaspar, M; Gil, I; Gildemeister, O; Glagolev, V; Gomes, A; González, V; González de la Hoz, S; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hansen, M; Hellman, S; Henriques, A; Hébrard, C; Higón, E; Holmgren, S O; Huston, J; Ivanyushenkov, Yu M; Jon-And, K; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Kopikov, S; Kukhtin, V; Kulchitskii, Yu A; Kurzbauer, W; Kuzmin, M; Lami, S; Lapin, V; Lazzeroni, C; Lebedev, A; Leitner, R; Li, J; Lomakin, Yu F; Lomakina, O V; Lokajícek, M; López-Amengual, J M; Maio, A; Malyukov, S; Marroquin, F; Martins, J P; Mazzoni, E; Merritt, F S; Miller, R; Minashvili, I A; Miralles, L; Montarou, G; Munar, A; Némécek, S; Nessi, Marzio; Onofre, A; Orteu, S; Park, I C; Pallin, D; Pantea, D; Paoletti, R; Patriarca, J; Pereira, A; Perlas, J A; Petit, P; Pilcher, J E; Pinhão, J; Poggioli, L; Price, L; Proudfoot, J; Pukhov, O; Reinmuth, G; Renzoni, G; Richards, R; Roda, C; Romance, J B; Romanov, V; Ronceux, B; Rosnet, P; Rumyantsev, V; Rusakovich, N; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sawyer, L; Says, L P; Seixas, J M; Selldén, B; Semenov, A; Shchelchkov, A S; Shochet, M; Simaitis, V; Sissakian, A N; Solodkov, A; Solovyanov, O; Sonderegger, P; Sosebee, M; Soustruznik, K; Spanó, F; Stanek, R; Starchenko, E A; Stephens, R; Suk, M; Tang, F; Tas, P; Thaler, J; Tokar, S; Topilin, N; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Varandas, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; Wagner, D; White, A; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zdrazil, M; Zúñiga, J

    2000-01-01

    The lateral and longitudinal profiles of hadronic showers detected by a prototype of the ATLAS Iron-Scintillator Tile Hadron Calorimeter have been investigated. This calorimeter uses a unique longitudinal configuration of scintillator tiles. Using a fine-grained pion beam scan at 100 GeV, a detailed picture of transverse shower behavior is obtained. The underlying radial energy densities for four depth segments and for the entire calorimeter have been reconstructed. A three-dimensional hadronic shower parametrization has been developed. The results presented here are useful for understanding the performance of iron-scintillator calorimeters, for developing fast simulations of hadronic showers, for many calorimetry problems requiring the integration of a shower energy deposition in a volume and for future calorimeter design.

  9. COMPARISON OF METHODS FOR GEOMETRIC CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    J. Hieronymus

    2012-09-01

    Full Text Available Methods for geometric calibration of cameras in close-range photogrammetry are established and well investigated. The most common one is based on test-fields with well-known pattern, which are observed from different directions. The parameters of a distortion model are calculated using bundle-block-adjustment-algorithms. This methods works well for short focal lengths, but is essentially more problematic to use with large focal lengths. Those would require very large test-fields and surrounding space. To overcome this problem, there is another common method for calibration used in remote sensing. It employs measurements using collimator and a goniometer. A third calibration method uses diffractive optical elements (DOE to project holograms of well known pattern. In this paper these three calibration methods are compared empirically, especially in terms of accuracy. A camera has been calibrated with those methods mentioned above. All methods provide a set of distortion correction parameters as used by the photogrammetric software Australis. The resulting parameter values are very similar for all investigated methods. The three sets of distortion parameters are crosscompared against all three calibration methods. This is achieved by inserting the gained distortion parameters as fixed input into the calibration algorithms and only adjusting the exterior orientation. The RMS (root mean square of the remaining image coordinate residuals are taken as a measure of distortion correction quality. There are differences resulting from the different calibration methods. Nevertheless the measure is small for every comparison, which means that all three calibration methods can be used for accurate geometric calibration.

  10. Software reengineering

    Science.gov (United States)

    Fridge, Ernest M., III

    1991-01-01

    Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. JSC created a significant set of tools to develop and maintain FORTRAN and C code during development of the Space Shuttle. This tool set forms the basis for an integrated environment to re-engineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. A beta vision of the environment was released in Mar. 1991. The commercial potential for such re-engineering tools is very great. CASE TRENDS magazine reported it to be the primary concern of over four hundred of the top MIS executives.

  11. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  12. MIAWARE Software

    DEFF Research Database (Denmark)

    Wilkowski, Bartlomiej; Pereira, Oscar N. M.; Dias, Paulo

    2008-01-01

    This article presents MIAWARE, a software for Medical Image Analysis With Automated Reporting Engine, which was designed and developed for doctor/radiologist assistance. It allows to analyze an image stack from computed axial tomography scan of lungs (thorax) and, at the same time, to mark all...... is automatically generated. Furthermore, MIAWARE software is accompanied with an intelligent search engine for medical reports, based on the relations between parts of the lungs. A logical structure of the lungs is introduced to the search algorithm through the specially developed ontology. As a result...... pathologies on images and report their characteristics. The reporting process is normalized - radiologists cannot describe pathological changes with their own words, but can only use some terms from a specific vocabulary set provided by the software. Consequently, a normalized radiological report...

  13. Software engineering

    CERN Document Server

    Thorin, Marc

    1985-01-01

    Software Engineering describes the conceptual bases as well as the main methods and rules on computer programming. This book presents software engineering as a coherent and logically built synthesis and makes it possible to properly carry out an application of small or medium difficulty that can later be developed and adapted to more complex cases. This text is comprised of six chapters and begins by introducing the reader to the fundamental notions of entities, actions, and programming. The next two chapters elaborate on the concepts of information and consistency domains and show that a proc

  14. Software compensation in Particle Flow reconstruction

    CERN Document Server

    Lan Tran, Huong; Sefkow, Felix; Green, Steven; Marshall, John; Thomson, Mark; Simon, Frank

    2017-01-01

    The Particle Flow approach to calorimetry requires highly granular calorimeters and sophisticated software algorithms in order to reconstruct and identify individual particles in complex event topologies. The high spatial granularity, together with analog energy information, can be further exploited in software compensation. In this approach, the local energy density is used to discriminate electromagnetic and purely hadronic sub-showers within hadron showers in the detector to improve the energy resolution for single particles by correcting for the intrinsic non-compensation of the calorimeter system. This improvement in the single particle energy resolution also results in a better overall jet energy resolution by improving the energy measurement of identified neutral hadrons and improvements in the pattern recognition stage by a more accurate matching of calorimeter energies to tracker measurements. This paper describes the software compensation technique and its implementation in Particle Flow reconstruct...

  15. Thermodynamics of biphasic lanthanide extraction by tripodal diglycolamide: a solution calorimetry study

    NARCIS (Netherlands)

    Ansari, S.A.; Mohapatra, P.K.; Verboom, Willem; Rao, L.

    2016-01-01

    Isothermal titration calorimetry was employed for the direct measurement of the enthalpy of extraction (ΔHextr) of Eu(NO3)3 by using a tripodal diglycolamide (T-DGA) ligand dissolved in n-dodecane containing 5% (v/v) 2-decanol. The enthalpy of extraction obtained by titration calorimetry was in good

  16. Software Reviews.

    Science.gov (United States)

    Science Software Quarterly, 1984

    1984-01-01

    Provides extensive reviews of computer software, examining documentation, ease of use, performance, error handling, special features, and system requirements. Includes statistics, problem-solving (TK Solver), label printing, database management, experimental psychology, Encyclopedia Britannica biology, and DNA-sequencing programs. A program for…

  17. Educational Software.

    Science.gov (United States)

    Northwest Regional Educational Lab., Portland, OR.

    The third session of IT@EDU98 consisted of five papers on educational software and was chaired by Tran Van Hao (University of Education, Ho Chi Minh City, Vietnam). "Courseware Engineering" (Nguyen Thanh Son, Ngo Ngoc Bao Tran, Quan Thanh Tho, Nguyen Hong Lam) briefly describes the use of courseware. "Machine Discovery Theorems in Geometry: A…

  18. Section Selection Software Design for Submarine Cables

    Science.gov (United States)

    Li, Meng; Niu, Sheng-suo; Song, Yan; Jia, Xu-ce; Liu, Yu-qin; Zhao, Ke-wei

    2017-08-01

    In order to improve the efficiency and accuracy of ampacity calculation and submarine cable’s section selection, this article improved the shortage of IEC(International Electrotechnical Commission) norms when calculating the ampacity of submarine cables, developed hierarchical principles and established accurate thermal circuit model of the various types of cables. This article realized accurate calculation of ampacity and achieved the ampacity calculation software module’s design. Finally this article firstly developed a section selection software for submarine cables combined with the heat-stable calibration module. After verified the accuracy and effectiveness of software in the typical layout conditions, this software can provide good guidance for practical engineering.

  19. Development of a software for the curimeter model cdn102

    International Nuclear Information System (INIS)

    Dotres Llera, Armando

    2001-01-01

    The characteristics of the software for the Curimeter Model CD-N102 developed at CEADEN are presented. The software consists of two main parts: a basic software for the electrometer block and an application software for a P C. The basic software is totally independent of the Pc and performs all the basic functions of the process of measurement. The application software is optional and offers a friendlier interface and additional options to the user. Among these is the possibility to keep a statistical record of the measurements in a database, to create labels and to introduce new isotopes and calibrate them. A more detailed explanation of both software is given

  20. Calibration platforms for gravimeters

    Science.gov (United States)

    Vanruymbeke, M.

    Several methods investigated in order to calibrate gravimeters by the inertial acceleration produced by a vertical motion are described. The VRR 8601 calibrating platform is especially designed to calibrate La Coste and Romberg gravimeters. For heavier gravimeters such as tidal La Coste or superconducting instruments, two other principles are possible to lift up sinusoidally the platform: a mercury crapaudine or the rotation on an inclined plane.

  1. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated...... by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain...

  2. ATLAS Muon Calibration Frameowrk

    CERN Document Server

    Carlino, Dr; The ATLAS collaboration; Jha, Dr; Kortner, Dr; Mazzaferro, Dr; Petrucci, Dr; Salvo, Dr; Simone, Dr; WALKER, Dr

    2010-01-01

    Automated calibration of the ATLAS detector subsystems ( like MDT and RPC chambers) are being performed at remote sites, called Remote Calibration Centers. The calibration data for the assigned part of the detector are being processed at these centers and send the result back to CERN for general use in reconstruction and analysis. In this work, we present the recent developments in data discovery mechanism and integration of Ganga as a backend which allows for the specification, submission, bookkeeping and post processing of calibration tasks on a wide set of available heterogeneous resources at remote centers.

  3. ATLAS Muon Calibration Framework

    CERN Document Server

    CARLINO, G; The ATLAS collaboration; Di Simone, A; Doria, A; Jha, MK; Mazzaferro, L; Walker, R

    2011-01-01

    Automated calibration of the ATLAS detector subsystems ( like MDT and RPC chambers) are being performed at remote sites, called Remote Calibration Centers. The calibration data for the assigned part of the detector are being processed at these centers and send the result back to CERN for general use in reconstruction and analysis. In this work, we present the recent developments in data discovery mechanism and integration of Ganga as a backend which allows for the specification, submission, bookkeeping and post processing of calibration tasks on a wide set of available heterogeneous resources at remote centers.

  4. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  5. Novel investigation of enzymatic biodiesel reaction by isothermal calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sotoft, Lene Fjerbaek, E-mail: lfj@kbm.sdu.dk [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Westh, Peter [Department of Life Science and Chemistry, Roskilde University, PO Box 260, DK-4000 Roskilde (Denmark); Christensen, Knud V.; Norddahl, Birgir [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)

    2010-03-30

    Isothermal calorimetry (ITC) was used to investigate solvent-free enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by immobilized lipase Novozym 435 at 40 {sup o}C. The aim of the study was to determine reaction enthalpy for the enzymatic transesterification and to elucidate the mass transfer and energetic processes taking place. Based on the measured enthalpy and composition change in the system, the heat of reaction at 40 {sup o}C for the two systems was determined as -9.8 {+-} 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and -9.3 {+-} 0.7 kJ/mole when rapeseed oil and ethanol was used. Simple Michaelis-Menten kinetics was not an appropriate choice for describing the kinetics of this heterogeneous system. The experiments demonstrated the possibility of investigating complex reaction mixtures using ITC. Although it is possible to determine thermodynamic properties such as reaction enthalpy and reaction rate, the difficulty in actually measuring the true non-mass-transfer-limited reaction kinetics is exposed by the high time resolution of ITC.

  6. Test of calorimetry for high burn-up plutonium

    International Nuclear Information System (INIS)

    Beets, C.; Carchon, R.; Fettweis, P.

    1984-01-01

    In recent times, the interest of applying calorimetry for safeguards purpose is steadily increasing. Calorimetric measurements have been performed on a set of high burn-up (25000 MWd/t) Pu samples, ranging in mass between 60 g and 2.5 kg Pu, distributed as PuO 2 powder embedded in stainless steel containers. The powers produced by these containers ranged between 0.8 W and 36 W. The calorimeter used was the Mound 150 type, and the isotopics and the Am content have been determined earlier by mass spectroscopy, completed with α and γ counting, and were later verified by the same methods. Watts/gram measurements were made on twelve 60 g samples of the same plutonium lot to demonstrate the Pu elemental and isotopic homogeneity, and hence, its suitability for subsequent NDA experiments. These samples were also measured in a stacked way to fill up the mass and wattage gaps between 60 g (0.8W) and 1 kg (14W). Calorimetric assay values, obtained with both isotopic measurements are discussed

  7. Pyrolysis Combustion Flow Calorimetry Studies on Some Reactively Modified Polymers

    Directory of Open Access Journals (Sweden)

    Svetlana Tretsiakova-McNally

    2015-03-01

    Full Text Available As a part of our continuing work to improve the flame retardance of some chain-growth polymers, by employing a reactive route, we have synthesized several unsaturated compounds containing either phosphorus (P, or both phosphorus (P and nitrogen (N, bearing groups in different chemical environments. They included: diethyl(acryloyloxymethylphosphonate (DEAMP; diethyl(1-acryloyloxyethylphosphonate (DE1AEP; diethyl-2-(acryloyloxyethyl phosphate (DEAEP; diethyl-2-(metharyloyloxyethyl phosphate (DEMEP; acrylic acid-2-(diethoxyphosphorylaminoethyl ester (ADEPAE; acrylic acid-2-[(diethoxyphosphorylmethyl amino]ethyl ester (ADEPMAE. Acrylonitrile (AN, methyl methacrylate (MMA and styrene (S were free radically copolymerised with the above mentioned comonomers. The recovered polymers were subjected to routine spectroscopic and thermo-gravimetric analyses. In addition, the combustion behaviours of homopolymers as well as the copolymers containing nominal loadings of P-, or P/N-, groups were, primarily, evaluated using pyrolysis combustion flow calorimetry (PCFC. PCFC has been found to be a very useful screening technique, especially, in establishing the efficacies of the different modifying groups towards flame retarding some base polymeric materials. Values of the heat release capacity (HRC values normalised to the P contents (wt% can be considered as useful tool in ranking the various P-containing modifying groups in terms of their efficacies to flame-retard non-halogenated chain-growth polymers considered in the present work.

  8. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  9. The Calibration of Hadron Calorimeter Tilecal for the ATLAS Experiment at the LHC Accelerator

    CERN Document Server

    Pribyl, L

    2003-01-01

    This diploma thesis describes calibration of hadron calorimeter Tilecal by muon and electron beams. In the first chapter, some calorimetry concepts and basic variables are mentioned or defined. In the second chapter, a detailed Tilecal description is given, special attention was given to provide an up-to-date information (written in April 2003). In this chapter, Tilecal calibration systems and data-taking during testbeams at CERN laboratory in summer 2002 are described. In the third chapter, results of data analyses of muon theta=90 deg and eta-projective runs taken during June, July and August 2002 testbeam periods are given. Results of analyses of calibration by electron beams measured in August 2002 are shown as well. It is also shown, that results of analyses mentioned above are important for the calorimeter calibration for ATLAS detector and also for checking the status of calibrated calorimeter modules.

  10. Software preservation

    Directory of Open Access Journals (Sweden)

    Tadej Vodopivec

    2011-01-01

    Full Text Available Comtrade Ltd. covers a wide range of activities related to information and communication technologies; its deliverables include web applications, locally installed programs,system software, drivers, embedded software (used e.g. in medical devices, auto parts,communication switchboards. Also the extensive knowledge and practical experience about digital long-term preservation technologies have been acquired. This wide spectrum of activities puts us in the position to discuss the often overlooked aspect of the digital preservation - preservation of software programs. There are many resources dedicated to digital preservation of digital data, documents and multimedia records,but not so many about how to preserve the functionalities and features of computer programs. Exactly these functionalities - dynamic response to inputs - render the computer programs rich compared to documents or linear multimedia. The article opens the questions on the beginning of the way to the permanent digital preservation. The purpose is to find a way in the right direction, where all relevant aspects will be covered in proper balance. The following questions are asked: why at all to preserve computer programs permanently, who should do this and for whom, when we should think about permanent program preservation, what should be persevered (such as source code, screenshots, documentation, and social context of the program - e.g. media response to it ..., where and how? To illustrate the theoretic concepts given the idea of virtual national museum of electronic banking is also presented.

  11. Establishing software quality assurance

    International Nuclear Information System (INIS)

    Malsbury, J.

    1983-01-01

    This paper is concerned with four questions about establishing software QA: What is software QA. Why have software QA. What is the role of software QA. What is necessary to ensure the success of software QA

  12. Site Calibration report

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Vesth, Allan

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...

  13. Proceedings of the Eleventh International Conference on Calorimetry in Particle Physics

    Science.gov (United States)

    Cecchi, Claudia

    The Pamela silicon tungsten calorimeter / G. Zampa -- Design and development of a dense, fine grained silicon tungsten calorimeter with integrated electronics / D. Strom -- High resolution silicon detector for 1.2-3.1 eV (400-1000 nm) photons / D. Groom -- The KLEM high energy cosmic rays collector for the NUCLEON satellite mission / M. Merkin (contribution not received) -- The electromagnetic calorimeter of the Hera-b experiment / I. Matchikhilian -- The status of the ATLAS tile calorimeter / J. Mendes Saraiva -- Design and mass production of Scintillator Pad Detector (SPD) / Preshower (PS) detector for LHC-b experiment / E. Gushchin -- Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC / O. Grachov -- The CMS hadron calorimeter / D. Karmgard (contribution not received) -- Test beam study of the KOPIO Shashlyk calorimeter prototype / A. Poblaguev -- The Shashlik electro-magnetic calorimeter for the LHCb experiment / S. Barsuk -- Quality of mass produced lead-tungstate crystals / R. Zhu -- Status of the CMS electromagnetic calorimeter / J. Fay -- Scintillation detectors for radiation-hard electromagnetic calorimeters / H. Loehner -- Energy, timing and two-photon invariant mass resolution of a 256-channel PBWO[symbol] calorimeter / M. Ippolitov -- A high performance hybrid electromagnetic calorimeter at Jefferson Lab / A. Gasparian -- CsI(Tl) calorimetry on BESHI / T. Hu (contribution not received) -- The crystal ball and TAPS detectors at the MAMI electron beam facility / D. Watts -- Front-end electronics of the ATLAS tile calorimeter / R. Teuscher -- The ATLAS tilecal detector control system / A. Gomes -- Performance of the liquid argon final calibration board / C. de la Taille -- Overview of the LHCb calorimeter electronics / F. Machefert -- LHCb preshower photodetector and electronics / S. Monteil -- The CMS ECAL readout architecture and the clock and control system / K. Kloukinas -- Test of the CMS-ECAL trigger

  14. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  15. Silk I and Silk II studied by fast scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cebe, Peggy; Partlow, Benjamin P.; Kaplan, David L.; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    2017-06-01

    Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000 K/s using the Mettler Flash DSC1 on fibroin films with masses around 130–270 ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealing at different temperatures, exposure to 50% MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25 °C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50% MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37 °C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature Tm(II) = 351 ± 2.6 °C, compared to Silk I crystals which melt at Tm(I) = 292 ± 3.8 °C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065 s between onset and end of melting) of the FSC experiment.

  16. Laser-Driven Calorimetry Measurements of Petroleum and Biodiesel Fuels.

    Science.gov (United States)

    Presser, Cary; Nazarian, Ashot; Millo, Amit

    2018-02-01

    Thermochemical characteristics were determined for several National Institute of Standards and Technology standard-reference-material petroleum and biodiesel fuels, using a novel laser-heating calorimetry technique. Measurements focused on the sample thermal behavior, specific heat release rate, and total specific heat release. The experimental apparatus consists of a copper sphere-shaped reactor mounted within a chamber, along with laser-beam-steering optical components, gas-supply manifold, and a computer-controlled data-acquisition system. At the center of the reactor, liquid sample is injected onto a copper pan substrate that rests and is in contact with a fine-wire thermocouple. A second thermocouple is in contact with the inner reactor sphere surface. The reactor is heated from opposing sides by a continuous-wave, near-infrared laser to achieve nearly uniform sample temperature. The change in temperature with time (thermogram) is recorded for both thermocouples, and compared to a baseline thermogram (without liquid in the pan). The thermograms are then processed (using an equation for thermal energy conservation) for the thermochemical information of interest. The results indicated that the energy reaching the pan is dominated by radiative heat transfer processes, while the dominant thermal process for the reactor sphere is the stored (internal) thermal energy within the sphere material. Sufficient laser power is necessary to detect the fuel thermal-related characteristics, and the required power can differ from one fuel to another. With sufficient laser power, one can detect the preferential vaporization of the lighter and heavier fuel fractions. The total specific heat release obtained for the different conventional and biodiesel fuels used in this investigation were similar to the expected values available in the literature.

  17. Application of prediction of equilibrium to servo-controlled calorimetry measurements

    International Nuclear Information System (INIS)

    Mayer, R.L. II

    1987-01-01

    Research was performed to develop an endpoint prediction algorithm for use with calorimeters operating in the digital servo-controlled mode. The purpose of this work was to reduce calorimetry measurement times while maintaining the high degree of precision and low bias expected from calorimetry measurements. Data from routine operation of two calorimeters were used to test predictive models at each stage of development against time savings, precision, and robustness criteria. The results of the study indicated that calorimetry measurement times can be significantly reduced using this technique. The time savings is, however, dependent on parameters in the digital servo-control algorithm and on packaging characteristics of measured items

  18. Jagiellonian University Development of the LHCb VELO monitoring software platform

    CERN Document Server

    Majewski, Maciej

    2017-01-01

    One of the most important parts of the LHCb spectrometer is the VErtex LOcator (VELO), dedicated to the precise tracking close to the proton–proton interaction point. The quality of data produced by the VELO depends on the calibration process, which must be monitored to ensure its correctness. This work presents details on how the calibration monitoring is conducted and how it could be improved. It also includes information on monitoring software and data flow in the LHCb software framework.

  19. Software system safety

    Science.gov (United States)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  20. Energy calibration of the barrel calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Anisenkov, A.V.; Aulchenko, V.M.; Bashtovoy, N.S.; Bondar, A.E.; Grebenuk, A.A.; Epifanov, D.A.; Epshteyn, L.B.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Mikhailov, K.Yu.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.

    2017-01-01

    The VEPP-2000 e + e − collider has been operated in the Budker Institute of Nuclear Physics since 2010. Experiments are carried out with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon calorimeter and crystal CsI calorimeter, and end cap calorimeter with BGO crystals. This paper describes the procedures of the energy calibration of the combined barrel calorimeter of the CMD-3 detector.

  1. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  2. Search for the scalar partner of the top quark and contribution to the improvement of the calorimetry of the experiment D zero for the phase 2 of Tevatron; Recherche du partenaire supersymetrique du quark top et contribution a l'amelioration de la calorimetrie de l'experience D zero pour la phase 2 du tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, B

    2001-04-01

    thus also describe in this thesis our contribution to the calorimeter upgrade, both on the on-line calibration system, and on the calorimeter reconstruction software. (authors)

  3. Calibration Fixture For Anemometer Probes

    Science.gov (United States)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  4. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  5. Calibration of areal surface topography measuring instruments

    Science.gov (United States)

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  6. Study of Calorimeter Calibration with Tau's in CMS.

    CERN Document Server

    Denegri, Daniel; Nikitenko, Alexander

    1997-01-01

    We propose to calibrate in situ the CMS calorimetry using the single, isolated pions from tau-> pi nu in W -> tau nu and Z, gamma^* -> tau tau processes applying the p/E method. In case of pions non-interacting in the ECAL the method is straightforward, but for pions interacting in the ECAL care is needed to suppress and keep under control pi+- pi0's from tau's or QCS jets, which could vitiate the method. This can be achieved exploiting the ECAL granularity and tracker-calorimetry special matching. The momentum of the isolated high pt pion can be directly compared to the calorimeter measurement. Triggering of the W -> tau nu events is envisaged with a special tau-jet trigger combined with a missing transverse energy trigger. The Z gamma^* -> tau tau events could be triggered by lepton + tau-jet and double tau-jet trigger. The event rate for pt of pion > 15 GeV is e nough to calibrate each HCAL cell at a 1% precision after collection of 10^4 pb-1 of data.

  7. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  8. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  9. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    C.F. Ahlers, H.H. Liu

    2001-12-18

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M&O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  10. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2016-05-02

    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  11. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  12. Site Calibration, FGW

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Site Calibration report is describing the results of a measured site calibration for a site in Denmark. The calibration is carried out by DTU Wind Energy in accordance with Ref.[3] and Ref.[4]. The measurement period is given. The site calibration is carried out before a power performance...... measurement on a given turbine to clarify the influence from the terrain on the ratio between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment...... is detailed described in [1] and [2]. All parts of the sensors and the measurement system have been installed by DTU Wind Energy....

  13. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  14. Determination of Differential Enthalpy and Isotherm by Adsorption Calorimetry

    Directory of Open Access Journals (Sweden)

    V. Garcia-Cuello

    2008-01-01

    Full Text Available An adsorption microcalorimeter for the simultaneous determination of the differential heat of adsorption and the adsorption isotherm for gas-solid systems are designed, built, and tested. For this purpose, a Calvet heat-conducting microcalorimeter is developed and is connected to a gas volumetric unit built in stainless steel to record adsorption isotherms. The microcalorimeter is electrically calibrated to establish its sensitivity and reproducibility, obtaining K=154.34±0.23 WV−1. The adsorption microcalorimeter is used to obtain adsorption isotherms and the corresponding differential heats for the adsorption of CO2 on a reference solid, such as a NaZSM-5 type zeolite. Results for the behavior of this system are compared with those obtained with commercial equipment and with other studies in the literature.

  15. Dual-Readout Calorimetry for High-Quality Energy Measurements

    CERN Document Server

    Wigmans, R

    2010-01-01

    During the past seven years, the DREAM Collaboration has systematically investigated all factors that determine and limit the precision with which the properties of hadrons and jets can be measured in calorimeters. Using simultaneous detection of the deposited energy and the Cerenkov light produced in hadronic shower development (dual readout), the fluctuations in the electromagnetic shower fraction could be measured event by event and their effects on signal linearity, response function and energy resolution eliminated. Detailed measurement of the time structure of the signals made it possible to measure the contributions of nuclear evaporation to the signals and thus reduce the effects of fluctuations in “invisible energy”. We are now embarking on the construction of a full-scale calorimeter which incorporates all these elements and which should make it possible to measure the four-vectors of both electrons, hadrons and jets with very high precision, in an instrument that can be simply calibrated with e...

  16. Characterization of indoor and outdoor pool fires with active calorimetry

    International Nuclear Information System (INIS)

    Koski, J.A.; Gill, W.; Gritzo, L.A.; Kent, L.A.; Wix, S.D.

    1994-01-01

    A water cooled, 1 m x 1 m, vertical calorimeter panel has been used in conjunction with other fire diagnostics to characterize a 6 m x 6 m outdoor and three 3 m x 3 m indoor JP-4 pool fires. Measurements reported include calorimeter surface heat flux and surface temperatures, flame temperatures, and gas flow velocities in the fire. From the data, effective radiative absorption coefficients for various zones in the fires have been estimated. The outdoor test was conducted at Sandia's Coyote Canyon test facility, while indoor tests were conducted at the indoor SMokE Reduction Facility (SMERF) at the same location. The measurements provide data useful in calibrating simple analytic fire models intended for the analysis of packages containing hazardous materials

  17. The contribution to the the calibration of LAr calorimeters at the ATLAS Experiment

    CERN Document Server

    Pecsy, Martin; Strizenec, Pavol

    The presented thesis brings various contributions to the testing and validation of the ATLAS detector calorimeter calibration. Since the ATLAS calorimeter is non-compensating, the sophisticated software calibration of the calorimeter response is needed. One of the ATLAS official calibration methods is the local hadron calibration. This method is based on detailed simulations providing information about the true deposited energy in calorimeter. Such calibration consists of several independent steps, starting with the basic electromagnetic scale signal calibration and proceeding to the particle energy calibration. Calibration starts from the topological clusters reconstruction and calibration at EM scale. These clusters are classified as EM or hadronic and the hadronic ones receive weights to correct for the invisible energy deposits of hadrons. To get the final reconstructed energy the out-of-cluster and dead material corrections are applied in next steps. The tests of calorimeter response with the first real ...

  18. Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry.

    Science.gov (United States)

    Hansen, Lee D; Transtrum, Mark K; Quinn, Colette; Demarse, Neil

    2016-05-01

    Isothermal calorimetry allows monitoring of reaction rates via direct measurement of the rate of heat produced by the reaction. Calorimetry is one of very few techniques that can be used to measure rates without taking a derivative of the primary data. Because heat is a universal indicator of chemical reactions, calorimetry can be used to measure kinetics in opaque solutions, suspensions, and multiple phase systems and does not require chemical labeling. The only significant limitation of calorimetry for kinetic measurements is that the time constant of the reaction must be greater than the time constant of the calorimeter which can range from a few seconds to a few minutes. Calorimetry has the unique ability to provide both kinetic and thermodynamic data. This article describes the calorimetric methodology for determining reaction kinetics and reviews examples from recent literature that demonstrate applications of titration calorimetry to determine kinetics of enzyme-catalyzed and ligand binding reactions. A complete model for the temperature dependence of enzyme activity is presented. A previous method commonly used for blank corrections in determinations of equilibrium constants and enthalpy changes for binding reactions is shown to be subject to significant systematic error. Methods for determination of the kinetics of enzyme-catalyzed reactions and for simultaneous determination of thermodynamics and kinetics of ligand binding reactions are reviewed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Calibration of thermoluminiscent materials

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1989-07-01

    In this report the relation between exposure and absorbed radiation dose in various materials is represented, on the base of recent data. With the help of this a calibration procedure for thermoluminescent materials, adapted to the IRI radiation standard is still the exposure in rontgen. In switching to the air kerma standard the calibration procedure will have to be adapted. (author). 6 refs.; 4 tabs

  20. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  1. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  2. THEMIS Data and Software Systems

    Science.gov (United States)

    Goethel, C.; Angelopoulos, V.

    2009-12-01

    THEMIS consists of five spacecraft and 31 ground observatories, including 10 education and public outreach sites. The spacecraft carry a comprehensive suite of particle and field instruments providing measurements with different sampling rates and modes, including survey and burst collection. The distributed array of ground based observatories equipped with 21 all-sky imagers and 31 ground magnetometers provide continuous monitoring of aurora and magnetic field variations from Alaska to Greenland. Data are automatically processed within hours of receipt, stored in daily Common Data Format (CDF) files, plotted and distributed along with corresponding calibration files via a central site at SSL/UCB and several mirror sites worldwide. THEMIS software is an open source, platform independent, IDL-based library of utilities. The system enables downloads of calibrated (L2) or raw (L1) data, data analysis, ingestion of data from other missions and ground stations, and production of publication quality plots. The combination of a user-friendly graphical user interface and a command line interface support a wide range of users. In addition, IDL scripts (crib sheets) are provided for manipulation of THEMIS and ancillary data sets. The system design philosophy will be described along with examples to demonstrate the software capabilities in streamlining data/software distribution and exchange, thereby further enhancing science productivity.

  3. Jet Calibration at ATLAS

    CERN Document Server

    Camacho, R; The ATLAS collaboration

    2011-01-01

    The accurate measurement of jets at high transverse momentum produced in proton proton collision at a centre of mass energy at \\sqrt(s)=7 TeV is important in many physics analysis at LHC. Due to the non-compensating nature of the ATLAS calorimeter, signal losses due to noise thresholds and in dead material the jet energy needs to be calibrated. Presently, the ATLAS experiment derives the jet calibration from Monte Carlo simulation using a simple correction that relates the true and the reconstructed jet energy. The jet energy scale and its uncertainty are derived from in-situ measurements and variation in the Monte Carlo simulation. Other calibration schemes have been also developed, they use hadronic cell calibrations or the topology of the jet constituents to reduce hadronic fluctuations in the jet response, improving in that way the jet resolution. The performances of the various calibration schemes using data and simulation, the evaluation of the modelling of the properties used to derive each calibration...

  4. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  5. Computational integration of the phases and procedures of calibration processes for radioprotection; Integracao computacional das etapas e procedimentos de processos de calibracao para radioprotecao

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gleice R. dos; Thiago, Bibiana dos S.; Rocha, Felicia D.G.; Santos, Gelson P. dos; Potiens, Maria da Penha A.; Vivolo, Vitor, E-mail: brtiago@ipen.br, E-mail: fgrocha@ipen.br, E-mail: gpsantos@ipen.br, E-mail: mppalbu@ipen.br, E-mail: vivolo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work proceed the computational integration of the processes phases by using only a single computational software, from the entrance of the instrument at the Instrument Calibration Laboratory (LCI-IPEN) to the conclusion of calibration procedures. So, the initial information such as trade mark, model, manufacturer, owner, and the calibration records are digitized once until the calibration certificate emission

  6. Silk I and Silk II studied by fast scanning calorimetry.

    Science.gov (United States)

    Cebe, Peggy; Partlow, Benjamin P; Kaplan, David L; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    2017-06-01

    Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000K/s using the Mettler Flash DSC1 on fibroin films with masses around 130-270ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealing at different temperatures, exposure to 50%MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25°C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50%MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37°C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature T m (II)=351±2.6°C, compared to Silk I crystals which melt at T m (I)=292±3.8°C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065s between onset and end of melting) of the FSC experiment. Silkworm silk is a naturally occurring biomaterial. The fibroin component of silk forms two types of crystals. Silk properties depend upon the

  7. Beowulf - Beta-Gamma Detector Calibration Graphical User Interface

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.

    2009-09-21

    Pacific Northwest National Laboratory (PNNL) has demonstrated significant advancement in using beta-gamma coincidence detectors to detect a wide range of radioxenon isotopes. To obtain accurate activities with the detector it must be properly calibrated by measuring a series of calibration gas samples. The data is analyzed to create the calibration block used in the International Monitoring System file format. Doing the calibration manually has proven to be tedious and prone to errors, requiring a high degree of expertise. The Beowulf graphical user interface (GUI) is a software application that encompasses several components of the calibration task and generates a calibration block, as well as, a detailed report describing the specific calibration process used. This additional document can be used as a Quality assurance certificate to assist in auditing the calibration. This paper consists of two sections. Section 1 will describe the capabilities of Beowulf and section 2 will be a representative report generated or the 137Cs calibration and quality assurance source.

  8. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Afshin M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilcox, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  9. Enhanced thermal property measurement of a silver zinc battery cell using isothermal calorimetry

    International Nuclear Information System (INIS)

    Ubelhor, Ryan; Ellison, Daniel; Pierce, Cecilia

    2015-01-01

    Highlights: • Design and construction of novel heat flow calorimeter for large battery cell. • Heat flow characterization of silver zinc battery under load. • Thermal efficiency determination of silver zinc battery under load. • Surface map of heat flow of silver zinc battery under load. - Abstract: The push for increased energy density of electrochemical cells highlights the need for novel electrochemical techniques as well as additional characterization methods for these cells in order to meet user needs and safety requirements. To achieve ever increasing energy densities and faster controlled release of that energy, all materials of construction must be constantly evaluated from electrode to casing and everything in-between. Increasing the energy density of the cell improves its utility, but it also increases the waste heat and maximum potential uncontrolled energy release. Design agents and system developers need new ways to monitor and classify the probability and severity of the catastrophic failures as well as the system characteristics during intended operation. To support optimization of these battery cells it is necessary to understand their thermal characteristics at rest as well as under prescribed charge and discharge cycles. One of the many calorimetric tools available to observe and record these characteristics is heat flow calorimetry. Typically, a heat flow calorimeter is operated isothermally and measures the sum heat released or consumed by a sample material inside of a calorimetric measuring cell. For this study an improved calorimetric measuring cell for a modified Hart 6209 precision temperature bath was designed and constructed to measure the heat flow of larger electrochemical cells (18 × 8 × 16 cm). This new calorimetric measuring cell is constructed to allow independent measurements of heat flow among each of the sample’s six sides in contrast to the typical one measurement of the average heat flow. Heat flows from 0.01 to 7

  10. MO-AB-BRA-03: Calorimetry-Based Absorbed Dose to Water Measurements Using Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Martinez, E; Malin, M; DeWerd, L [University of WI-Madison/ADCL, Madison, WI (United States)

    2015-06-15

    Purpose: Interferometry-based calorimetry is a novel technique to measure radiation-induced temperature changes allowing the measurement of absorbed dose to water (ADW). There are no mechanical components in the field. This technique also has the possibility of obtaining 2D dose distributions. The goal of this investigation is to calorimetrically-measure doses between 2.5 and 5 Gy over a single projection in a photon beam using interferometry and compare the results with doses calculated using the TG-51 linac calibration. Methods: ADW was determined by measuring radiation-induced phase shifts (PSs) of light passing through water irradiated with a 6 MV photon beam. A 9×9×9 cm{sup 3} glass phantom filled with water and placed in an arm of a Michelson interferometer was irradiated with 300, 400, 500 and 600 monitor units. The whole system was thermally insulated to achieve sufficient passive temperature control. The depth of measurement was 4.5 cm with a field size of 7×7 cm{sup 2}. The intensity of the fringe pattern was monitored with a photodiode and used to calculate the time-dependent PS curve. Data was acquired 60 s before and after the irradiation. The radiation-induced PS was calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. Results were compared to computed doses. Results: Average comparison of calculated ADW values with interferometry-measured values showed an agreement to within 9.5%. k=1 uncertainties were 4.3% for calculations and 14.7% for measurements. The dominant source of uncertainty for the measurements was a temperature drift of about 30 µK/s caused by heat conduction from the interferometer’s surroundings. Conclusion: This work presented the first absolute ADW measurements using interferometry in the dose range of linac-based radiotherapy. Future work to improve measurements’ reproducibility includes the implementation of active thermal control techniques.

  11. Software engineering architecture-driven software development

    CERN Document Server

    Schmidt, Richard F

    2013-01-01

    Software Engineering: Architecture-driven Software Development is the first comprehensive guide to the underlying skills embodied in the IEEE's Software Engineering Body of Knowledge (SWEBOK) standard. Standards expert Richard Schmidt explains the traditional software engineering practices recognized for developing projects for government or corporate systems. Software engineering education often lacks standardization, with many institutions focusing on implementation rather than design as it impacts product architecture. Many graduates join the workforce with incomplete skil

  12. CALIBRATION OF LOW COST RGB AND NIR UAV CAMERAS

    Directory of Open Access Journals (Sweden)

    A. Fryskowska

    2016-06-01

    Full Text Available Non-metric digital cameras are being widely used for photogrammetric studies. The increase in resolution and quality of images obtained by non-metric cameras, allows to use it in low-cost UAV and terrestrial photogrammetry. Imagery acquired with non-metric cameras can be used in 3D modeling of objects or landscapes, reconstructing of historical sites, generating digital elevation models (DTM, orthophotos, or in the assessment of accidents. Non-metric digital camcorders are characterized by instability and ignorance of the interior orientation parameters. Therefore, the use of these devices requires prior calibration. Calibration research was conducted using non-metric camera, different calibration tests and various software. The first part of the paper contains a brief theoretical introduction including the basic definitions, like the construction of non-metric cameras or description of different optical distortions. The second part of the paper contains cameras calibration process, details of the calibration methods and models that have been used. Sony Nex 5 camera calibration has been done using software: Image Master Calib, Matlab - Camera Calibrator application and Agisoft Lens. For the study 2D test fields has been used. As a part of the research a comparative analysis of the results have been done.

  13. Calibration of Low Cost RGB and NIR Uav Cameras

    Science.gov (United States)

    Fryskowska, A.; Kedzierski, M.; Grochala, A.; Braula, A.

    2016-06-01

    Non-metric digital cameras are being widely used for photogrammetric studies. The increase in resolution and quality of images obtained by non-metric cameras, allows to use it in low-cost UAV and terrestrial photogrammetry. Imagery acquired with non-metric cameras can be used in 3D modeling of objects or landscapes, reconstructing of historical sites, generating digital elevation models (DTM), orthophotos, or in the assessment of accidents. Non-metric digital camcorders are characterized by instability and ignorance of the interior orientation parameters. Therefore, the use of these devices requires prior calibration. Calibration research was conducted using non-metric camera, different calibration tests and various software. The first part of the paper contains a brief theoretical introduction including the basic definitions, like the construction of non-metric cameras or description of different optical distortions. The second part of the paper contains cameras calibration process, details of the calibration methods and models that have been used. Sony Nex 5 camera calibration has been done using software: Image Master Calib, Matlab - Camera Calibrator application and Agisoft Lens. For the study 2D test fields has been used. As a part of the research a comparative analysis of the results have been done.

  14. Calorimetry of the JET ITER-Like Wall components

    Energy Technology Data Exchange (ETDEWEB)

    Devaux, S., E-mail: stephane.devaux@ccfe.ac.uk [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Arnoux, G. [EURATOM/CCFE Association, Culham Science Center, Abingdon, Oxon OX14 3DB (United Kingdom); Corre, Y. [Association EURTATOM-CEA, CEA/DSM/IRFM, Cadarache, 13108 Saint Paul lez Durance (France); Gardarein, J-L.; Gaspar, J. [IUSTI UMR CNRS 7343, Aix-Marseille University Marseille (France); Jacquet, P. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Marcotte, F. [EURATOM/CCFE Association, Culham Science Center, Abingdon, Oxon OX14 3DB (United Kingdom); Matthews, G.; Beaumont, P.; Cramp, S.; Dalley, S.; Kinna, D.; Horton, A.; Lomas, P. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Mertens, Ph. [Institute of Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, D-52425 Jülich (Germany); Riccardo, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Valcàrcel, D. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal)

    2013-07-15

    As part of the ILW project, new diagnostics have been installed in order to protect the plasma-facing components (PFCs). Here we present the diagnostics used to monitor the PFC temperature, thermocouples and cameras, and assess the consistency of their measurements. In dedicated limited L-mode plasmas, the surface of the limiter tiles are heated up to 900 °C. The comparison of surface temperature measurements from IR and near IR cameras, which have been calibrated against a black-body source, leads to a Be emissivity of 0.18, comparable with the theoretical one. Energy calculation derived from thermocouples, which are embedded in both limiters and divertor target plates (W-coated CFC), is compared to a 1D model based on thermal quadrupole approach (benchmarked with an ANSYS model) associated to an inversion computation. The analysis of 20 pulses shows that a good energy balance is achieved within the error bar of the model, assessed to be of 30%.

  15. Calorimetry of the JET ITER-Like Wall components

    International Nuclear Information System (INIS)

    Devaux, S.; Arnoux, G.; Corre, Y.; Gardarein, J-L.; Gaspar, J.; Jacquet, P.; Marcotte, F.; Matthews, G.; Beaumont, P.; Cramp, S.; Dalley, S.; Kinna, D.; Horton, A.; Lomas, P.; Mertens, Ph.; Riccardo, V.; Valcàrcel, D.

    2013-01-01

    As part of the ILW project, new diagnostics have been installed in order to protect the plasma-facing components (PFCs). Here we present the diagnostics used to monitor the PFC temperature, thermocouples and cameras, and assess the consistency of their measurements. In dedicated limited L-mode plasmas, the surface of the limiter tiles are heated up to 900 °C. The comparison of surface temperature measurements from IR and near IR cameras, which have been calibrated against a black-body source, leads to a Be emissivity of 0.18, comparable with the theoretical one. Energy calculation derived from thermocouples, which are embedded in both limiters and divertor target plates (W-coated CFC), is compared to a 1D model based on thermal quadrupole approach (benchmarked with an ANSYS model) associated to an inversion computation. The analysis of 20 pulses shows that a good energy balance is achieved within the error bar of the model, assessed to be of 30%

  16. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  17. The software life cycle

    CERN Document Server

    Ince, Darrel

    1990-01-01

    The Software Life Cycle deals with the software lifecycle, that is, what exactly happens when software is developed. Topics covered include aspects of software engineering, structured techniques of software development, and software project management. The use of mathematics to design and develop computer systems is also discussed. This book is comprised of 20 chapters divided into four sections and begins with an overview of software engineering and software development, paying particular attention to the birth of software engineering and the introduction of formal methods of software develop

  18. Studies Concerning the ATLAS IBL Calibration Architecture

    CERN Document Server

    Kretz, Moritz; Kugel, Andreas

    With the commissioning of the Insertable B-Layer (IBL) in 2013 at the ATLAS experiment 12~million additional pixels will be added to the current Pixel Detector. While the idea of employing pairs of VME based Read-Out Driver (ROD) and Back of Crate (BOC) cards in the read-out chain remains unchanged, modifications regarding the IBL calibration procedure were introduced to overcome current hardware limitations. The analysis of calibration histograms will no longer be performed on the RODs, but on an external computing farm that is connected to the RODs via Ethernet. This thesis contributes to the new IBL calibration procedure and presents a concept for a scalable software and hardware architecture. An embedded system targeted to the ROD FPGAs is realized for sending data from the RODs to the fit farm servers and benchmarks are carried out with a Linux based networking stack, as well as a standalone software stack. Furthermore, the histogram fitting algorithm currently being employed on the Pixel Detector RODs i...

  19. Liquid Scintillation Counting - Packard Triple-Label Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Torretto, P. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-23

    The Radiological Measurements Laboratory (RML) maintains and operates nine Packard Liquid Scintillation Counters (LSCs). These counters were obtained through various sources and were generally purchased as 2500, 2700 or 3100 series counters. In 2004/2005 the software and firmware on the counters were upgraded. The counters are now designated as 3100 series counters running the Quantasmart software package. Thus, a single procedure can be used to calibrate and operate the Packard LSCs.

  20. BATSE spectroscopy detector calibration

    Science.gov (United States)

    Band, D.; Ford, L.; Matteson, J.; Lestrade, J. P.; Teegarden, B.; Schaefer, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.

    1992-01-01

    We describe the channel-to-energy calibration of the Spectroscopy Detectors of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO). These detectors consist of NaI(TI) crystals viewed by photomultiplier tubes whose output in turn is measured by a pulse height analyzer. The calibration of these detectors has been complicated by frequent gain changes and by nonlinearities specific to the BATSE detectors. Nonlinearities in the light output from the NaI crystal and in the pulse height analyzer are shifted relative to each other by changes in the gain of the photomultiplier tube. We present the analytical model which is the basis of our calibration methodology, and outline how the empirical coefficients in this approach were determined. We also describe the complications peculiar to the Spectroscopy Detectors, and how our understanding of the detectors' operation led us to a solution to these problems.

  1. Mathematical Model for Localised and Surface Heat Flux of the Human Body Obtained from Measurements Performed with a Calorimetry Minisensor

    Science.gov (United States)

    Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Miriam

    2017-01-01

    The accuracy of the direct and local measurements of the heat power dissipated by the surface of the human body, using a calorimetry minisensor, is directly related to the calibration rigor of the sensor and the correct interpretation of the experimental results. For this, it is necessary to know the characteristics of the body’s local heat dissipation. When the sensor is placed on the surface of the human body, the body reacts until a steady state is reached. We propose a mathematical model that represents the rate of heat flow at a given location on the surface of a human body by the sum of a series of exponentials: W(t) = A0 + ∑Aiexp(−t/τi). In this way, transient and steady states of heat dissipation can be interpreted. This hypothesis has been tested by simulating the operation of the sensor. At the steady state, the power detected in the measurement area (4 cm2) varies depending on the sensor’s thermostat temperature, as well as the physical state of the subject. For instance, for a thermostat temperature of 24 °C, this power can vary between 100–250 mW in a healthy adult. In the transient state, two exponentials are sufficient to represent this dissipation, with 3 and 70 s being the mean values of its time constants. PMID:29182567

  2. Mathematical Model for Localised and Surface Heat Flux of the Human Body Obtained from Measurements Performed with a Calorimetry Minisensor.

    Science.gov (United States)

    Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Miriam; Rodríguez de Rivera, Manuel

    2017-11-28

    The accuracy of the direct and local measurements of the heat power dissipated by the surface of the human body, using a calorimetry minisensor, is directly related to the calibration rigor of the sensor and the correct interpretation of the experimental results. For this, it is necessary to know the characteristics of the body's local heat dissipation. When the sensor is placed on the surface of the human body, the body reacts until a steady state is reached. We propose a mathematical model that represents the rate of heat flow at a given location on the surface of a human body by the sum of a series of exponentials: W ( t ) = A ₀ + ∑A i exp( -t / τ i ). In this way, transient and steady states of heat dissipation can be interpreted. This hypothesis has been tested by simulating the operation of the sensor. At the steady state, the power detected in the measurement area (4 cm²) varies depending on the sensor's thermostat temperature, as well as the physical state of the subject. For instance, for a thermostat temperature of 24 °C, this power can vary between 100-250 mW in a healthy adult. In the transient state, two exponentials are sufficient to represent this dissipation, with 3 and 70 s being the mean values of its time constants.

  3. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Hoefert, M.; Nielsen, M.

    1996-01-01

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  4. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  5. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...... to the lasso. The lasso is applied both directly as a calibration method and as a method to select important variables/wave lengths. It is demonstrated that the lasso algorithm, in general, leads to parameter estimates of which some are zero while others are quite large (compared to e.g. the traditional PLS...

  6. Radiation Calibration Measurements

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  7. Calibrating Legal Judgments

    Directory of Open Access Journals (Sweden)

    Frederick Schauer

    2017-09-01

    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  8. INDIRECT CALORIMETRY DURING ULTRADISTANCE RUNNING: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Charles L. Dumke

    2006-12-01

    Full Text Available The purpose was to determine the energy expenditure during ultradistance trail running. A portable metabolic unit was carried by a male subject for the first 64.5 km portion of the Western States 100 running race. Calibrations were done with known gases and volumes at ambient temperature, humidity and pressure (23-40.5 °C and 16-40% respectively. Altitude averaged 1692.8 ± 210 m during data collection. The male subject (36 yrs, 75 kg, VO2max of 67.0 ml·kg-1·min-1 had an average (mean ± SD heart rate of 132 ± 9 bpm, oxygen consumption of 34.0 ± 6.8 ml·kg-1·min-1, RER of 0.91 ± 0.04, and VE of 86.0 ± 14.3 L·min-1 during the 21.7 km measuring period. This represented an average of 51% VO2max and 75% heart rate maximum. Energy expenditure was 12.6 ± 2.5 kcals·min-1, or 82.7 ± 16.6 kcals·km-1 (134 ± 27 kcals·mile-1 at 68.3 ± 12.5% carbohydrate. Extrapolation of this data would result in an energy expenditure of >13,000 kcals for the 160 km race, and an exogenous carbohydrate requirement of >250 kcal·hr-1. The energy cost of running for this subject on separate, noncompetitive occasions ranged from 64.9 ± 8.5 to 74.4 ± 5.5 kcals·km-1 (105 ± 14 to 120 ± 9 kcals·mile-1. Ultradistance trail running increases energy expenditure above that of running on nonundulating terrain, which may result in underestimating energy requirements during these events and subsequent undernourishment and suboptimal performance.

  9. Evaluation of the amorphous content of lactose by solution calorimetry and Raman spectroscopy.

    Science.gov (United States)

    Katainen, Erja; Niemelä, Pentti; Harjunen, Päivi; Suhonen, Janne; Järvinen, Kristiina

    2005-11-15

    Solution calorimetry can be used to determine the amorphous content of a compound when the solubility and dissolution rate of the compound in the chosen solvent are reasonably high. Sometimes, it can be difficult find a solvent in which a sample is freely soluble. The present study evaluated the use of solution calorimetry for the assessment of the amorphous content of a sample that is poorly soluble in a solvent. Physical mixtures of lactose and spray-dried lactose samples (the amorphous content varied from 0 to 100%) were analyzed by a solution calorimeter and the results were compared with Raman spectroscopy determinations. The heat of solvation of the samples was determined by solution calorimetry in organic solvents MeOH, EtOH, ACN, THF, acetone (400mg sample/100ml solvent). Lactose is virtually insoluble in ACN, THF and acetone and very slightly soluble in EtOH and MeOH. The amorphous content of the samples could not be determined by solution calorimetry in EtOH, ACN, THF or acetone. However, an excellent correlation was observed between the heat of solvation and the amorphous content of the samples in MeOH. Furthermore, the heat of solvation values of the samples in MeOH showed a linear correlation with the Raman quantifications. Therefore, our results demonstrate that solution calorimetry may represent a rapid and simple method for determining the amorphous content also in samples that are not freely soluble in the solvent.

  10. Savannah River Plant Californium-252 Shuffler software manual

    International Nuclear Information System (INIS)

    Johnson, S.S.; Crane, T.W.; Eccleston, G.W.

    1979-03-01

    A software manual for operating the Savannah River Plant Shuffler nondestructive assay instrument is presented. The procedures for starting up the instrument, making assays, calibrating, and checking the performance of the hardware units are described. A list of the error messages with an explanation of the circumstances prompting the message and possible corrective measures is given. A summary of the software package is included showing the names and contents of the files and subroutines. The procedure for modifying the software package is outlined

  11. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    Science.gov (United States)

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-07

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison.

  12. Direct calibration of PICKY-designed microarrays

    Directory of Open Access Journals (Sweden)

    Ronald Pamela C

    2009-10-01

    Full Text Available Abstract Background Few microarrays have been quantitatively calibrated to identify optimal hybridization conditions because it is difficult to precisely determine the hybridization characteristics of a microarray using biologically variable cDNA samples. Results Using synthesized samples with known concentrations of specific oligonucleotides, a series of microarray experiments was conducted to evaluate microarrays designed by PICKY, an oligo microarray design software tool, and to test a direct microarray calibration method based on the PICKY-predicted, thermodynamically closest nontarget information. The complete set of microarray experiment results is archived in the GEO database with series accession number GSE14717. Additional data files and Perl programs described in this paper can be obtained from the website http://www.complex.iastate.edu under the PICKY Download area. Conclusion PICKY-designed microarray probes are highly reliable over a wide range of hybridization temperatures and sample concentrations. The microarray calibration method reported here allows researchers to experimentally optimize their hybridization conditions. Because this method is straightforward, uses existing microarrays and relatively inexpensive synthesized samples, it can be used by any lab that uses microarrays designed by PICKY. In addition, other microarrays can be reanalyzed by PICKY to obtain the thermodynamically closest nontarget information for calibration.

  13. CAX a software for automated spectrum analysis

    International Nuclear Information System (INIS)

    Zahn, Guilherme S.; Genezini, Frederico A.

    2017-01-01

    In this work, the scripting capabilities of Genie-2000 were used to develop a software that automatically analyses all spectrum files in either Ortec's CHN or Canberra's MCA or CNF formats in a folder, generating two output files: a print-ready text le (.DAT) and a Comma-Separated Values (.CSV) le which can be easily imported in any major spreadsheet software. This software, named CAX ('Convert and Analyse for eXcel'), uses Genie-2000's functions to import spectrum files into Genie's native CNF format and analyze the converted spectra. The software can also, if requested, import energy and FWHM calibrations from a stored calibrated spectrum. The print-ready output le (.DAT) is generated by Genie-2000 using a customized script, and the CSV le is generated by a custom-built DAT2CSV software which generates a CSV le that complies to the Brazilian standards, with commas as a decimal indicator and semicolons as eld separators. This software is already used in the daily routines in IPEN's Neutron Activation Laboratory, greatly reducing the time required for sample analyses, as well as reducing the possibility of transcription errors. (author)

  14. CAX a software for automated spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, Guilherme S.; Genezini, Frederico A., E-mail: gzahn@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CRPq/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator de Pesquisas

    2017-11-01

    In this work, the scripting capabilities of Genie-2000 were used to develop a software that automatically analyses all spectrum files in either Ortec's CHN or Canberra's MCA or CNF formats in a folder, generating two output files: a print-ready text le (.DAT) and a Comma-Separated Values (.CSV) le which can be easily imported in any major spreadsheet software. This software, named CAX ('Convert and Analyse for eXcel'), uses Genie-2000's functions to import spectrum files into Genie's native CNF format and analyze the converted spectra. The software can also, if requested, import energy and FWHM calibrations from a stored calibrated spectrum. The print-ready output le (.DAT) is generated by Genie-2000 using a customized script, and the CSV le is generated by a custom-built DAT2CSV software which generates a CSV le that complies to the Brazilian standards, with commas as a decimal indicator and semicolons as eld separators. This software is already used in the daily routines in IPEN's Neutron Activation Laboratory, greatly reducing the time required for sample analyses, as well as reducing the possibility of transcription errors. (author)

  15. Cost effective robust rule calibration system

    Directory of Open Access Journals (Sweden)

    Greeff P.

    2014-01-01

    Full Text Available One of the main calibration services of African NMIs (National Metrology Institutes is the measurement of tapes and rules. This is mainly regulated by legal metrology and OIML (International Organisation of Legal Metrology specifications are therefore referenced. Specifically, OIML R-35 is the standard to which rules or line scales must conform. The accuracy of most African NMIs systems however, cannot prove conformance to this specification. This article will detail the development of a new, cost effective, line scale calibration system, which will have accuracy better than the specification prescribed. The system was locally developed and its design is based on off-the-shelf components and open source software. It is also ready-for-upgrade to an absolute system. The system and details of the line detection algorithm will be presented.

  16. Determination of the thermodynamic properties of complexation and extraction by micro-calorimetry

    International Nuclear Information System (INIS)

    Charbonnel, M.Ch.; Flandin, J.L.

    2000-01-01

    The CEA is currently developing the DIAMEX process, the first step in the strategy for the separation of minor actinides from high-level radioactive waste. The extractant belongs to the diamide family of molecules and is able to co-extract trivalent actinides and lanthanides. This study focuses on the thermodynamic properties (ΔH, ΔG, ΔS) of lanthanide extraction by malonamide in order to better understand the mechanisms involved and to account for differences in the behavior of various diamide extractants. The main technique used is microcalorimetric titration. The Thermal Activity Monitor (TAM) microcalorimeter is a modular system with a highly stable (± 0.1 mK) temperature-controlled bath containing up to four calorimetry vessel units. The sensor bulbs inserted in the reaction vessel can measure heat flows in static or dynamic conditions. Micro-calorimetry, and calorimetric titration in particular, is a fast growing field due to technical improvements in both hardware and software. In the case of an equilibrium reaction, titration allows both Δ r G and Δ r H (and thus Δ r S) to be determined simultaneously. It was decided to initiate this thermochemical investigation with a homogeneous phase reaction, and the first study concerned the aqueous phase complexation of a trivalent lanthanide ion by a water-soluble diamide, tetraethyl-malonamide (TEMA: (C 2 H 5 ) 2 NCO-CH 2 CON(C 2 H 5 ) 2 ). In the test system, the heat of dilution of the diamide in water is preponderant over the heat arising from the complexation reaction; the result is a positive value corresponding to an endothermic reaction. However, the equilibration constant K and Δ H are both very small, and cannot be calculated from the resulting Q v f(n TEMA ) curves. Moreover, in aqueous phase, the reactions involved are different from those observed when neodymium(III) is extracted into an organic phase, and the medium must be further characterized before the calorimetry data can be fully

  17. Direct measurement of electron beam quality conversion factors using water calorimetry.

    Science.gov (United States)

    Renaud, James; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl; Seuntjens, Jan

    2015-11-01

    In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative

  18. Software compensation in particle flow reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Huong Lan; Krueger, Katja; Sefkow, Felix [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Green, Steven; Marshall, John; Thomson, Mark [Cavendish Laboratory, Cambridge (United Kingdom); Simon, Frank [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-10-15

    The particle flow approach to calorimetry benefits from highly granular calorimeters and sophisticated software algorithms in order to reconstruct and identify individual particles in complex event topologies. The high spatial granularity, together with analogue energy information, can be further exploited in software compensation. In this approach, the local energy density is used to discriminate electromagnetic and purely hadronic sub-showers within hadron showers in the detector to improve the energy resolution for single particles by correcting for the intrinsic non-compensation of the calorimeter system. This improvement in the single particle energy resolution also results in a better overall jet energy resolution by improving the energy measurement of identified neutral hadrons and improvements in the pattern recognition stage by a more accurate matching of calorimeter energies to tracker measurements. This paper describes the software compensation technique and its implementation in particle flow reconstruction with the Pandora Particle Flow Algorithm (PandoraPFA). The impact of software compensation on the choice of optimal transverse granularity for the analogue hadronic calorimeter option of the International Large Detector (ILD) concept is also discussed. (orig.)

  19. Software compensation in particle flow reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Huong Lan; Krueger, Katja; Sefkow, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Green, Steven; Marshall, John; Thomson, Mark [Cavendish Laboratory, Cambridge (United Kingdom); Simon, Frank [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-10-15

    The particle flow approach to calorimetry benefits from highly granular calorimeters and sophisticated software algorithms in order to reconstruct and identify individual particles in complex event topologies. The high spatial granularity, together with analogue energy information, can be further exploited in software compensation. In this approach, the local energy density is used to discriminate electromagnetic and purely hadronic sub-showers within hadron showers in the detector to improve the energy resolution for single particles by correcting for the intrinsic non-compensation of the calorimeter system. This improvement in the single particle energy resolution also results in a better overall jet energy resolution by improving the energy measurement of identified neutral hadrons and improvements in the pattern recognition stage by a more accurate matching of calorimeter energies to tracker measurements. This paper describes the software compensation technique and its implementation in particle flow reconstruction with the Pandora Particle Flow Algorithm (PandoraPFA). The impact of software compensation on the choice of optimal transverse granularity for the analogue hadronic calorimeter option of the International Large Detector (ILD) concept is also discussed.

  20. Software compensation in particle flow reconstruction

    International Nuclear Information System (INIS)

    Tran, Huong Lan; Krueger, Katja; Sefkow, Felix; Green, Steven; Marshall, John; Thomson, Mark; Simon, Frank

    2017-10-01

    The particle flow approach to calorimetry benefits from highly granular calorimeters and sophisticated software algorithms in order to reconstruct and identify individual particles in complex event topologies. The high spatial granularity, together with analogue energy information, can be further exploited in software compensation. In this approach, the local energy density is used to discriminate electromagnetic and purely hadronic sub-showers within hadron showers in the detector to improve the energy resolution for single particles by correcting for the intrinsic non-compensation of the calorimeter system. This improvement in the single particle energy resolution also results in a better overall jet energy resolution by improving the energy measurement of identified neutral hadrons and improvements in the pattern recognition stage by a more accurate matching of calorimeter energies to tracker measurements. This paper describes the software compensation technique and its implementation in particle flow reconstruction with the Pandora Particle Flow Algorithm (PandoraPFA). The impact of software compensation on the choice of optimal transverse granularity for the analogue hadronic calorimeter option of the International Large Detector (ILD) concept is also discussed.

  1. Calibration bench of flowmeters

    International Nuclear Information System (INIS)

    Bremond, J.; Da Costa, D.; Calvet, A.; Vieuxmaire, C.

    1966-01-01

    This equipment is devoted to the comparison of signals from two turbines installed in the Cabri experimental loop. The signal is compared to the standard turbine. The characteristics and the performance of the calibration bench are presented. (A.L.B.)

  2. Commodity-Free Calibration

    Science.gov (United States)

    2008-01-01

    Commodity-free calibration is a reaction rate calibration technique that does not require the addition of any commodities. This technique is a specific form of the reaction rate technique, where all of the necessary reactants, other than the sample being analyzed, are either inherent in the analyzing system or specifically added or provided to the system for a reason other than calibration. After introduction, the component of interest is exposed to other reactants or flow paths already present in the system. The instrument detector records one of the following to determine the rate of reaction: the increase in the response of the reaction product, a decrease in the signal of the analyte response, or a decrease in the signal from the inherent reactant. With this data, the initial concentration of the analyte is calculated. This type of system can analyze and calibrate simultaneously, reduce the risk of false positives and exposure to toxic vapors, and improve accuracy. Moreover, having an excess of the reactant already present in the system eliminates the need to add commodities, which further reduces cost, logistic problems, and potential contamination. Also, the calculations involved can be simplified by comparison to those of the reaction rate technique. We conducted tests with hypergols as an initial investigation into the feasiblility of the technique.

  3. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  4. Calibrating Communication Competencies

    Science.gov (United States)

    Surges Tatum, Donna

    2016-11-01

    The Many-faceted Rasch measurement model is used in the creation of a diagnostic instrument by which communication competencies can be calibrated, the severity of observers/raters can be determined, the ability of speakers measured, and comparisons made between various groups.

  5. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  6. ECAL Energy Flow Calibration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    My talk will be covering my work as a whole over the course of the semester. The focus will be on using energy flow calibration in ECAL to check the precision of the corrections made by the light monitoring system used to account for transparency loss within ECAL crystals due to radiation damage over time.

  7. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  8. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Federici, Paolo

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A part of the sensors has been installed by others, the rest of the sensors have been installed by DTU. The results of the measurements, described in this report, are only valid...

  9. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A part of the sensors has been installed by others, the rest of the sensors have been installed by DTU. The results of the measurements, described in this report, are only val...

  10. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail: d.brody@imperial.ac.uk; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2005-04-11

    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.

  11. Physiotherapy ultrasound calibrations

    International Nuclear Information System (INIS)

    Gledhill, M.

    1996-01-01

    Calibration of physiotherapy ultrasound equipment has long been a problem. Numerous surveys around the world over the past 20 years have all found that only a low percentage of the units tested had an output within 30% of that indicatd. In New Zealand, a survey carried out by the NRL in 1985 found that only 24% had an output, at the maximum setting, within + or - 20% of that indicated. The present performance Standard for new equipment (NZS 3200.2.5:1992) requires that the measured output should not deviate from that indicated by more than + or - 30 %. This may be tightened to + or - 20% in the next few years. Any calibration is only as good as the calibration equipment. Some force balances can be tested with small weights to simulate the force exerted by an ultrasound beam, but with others this is not possible. For such balances, testing may only be feasible with a calibrated source which could be used like a transfer standard. (author). 4 refs., 3 figs

  12. Gamma ray calibration system

    International Nuclear Information System (INIS)

    Rosauer, P.J.; Flaherty, J.J.

    1981-01-01

    This invention is in the field of gamma ray inspection devices for tubular products and the like employing an improved calibrating block which prevents the sensing system from being overloaded when no tubular product is present, and also provides the operator with a means for visually detecting the presence of wall thicknesses which are less than a required minimum. (author)

  13. PLEIADES ABSOLUTE CALIBRATION : INFLIGHT CALIBRATION SITES AND METHODOLOGY

    Directory of Open Access Journals (Sweden)

    S. Lachérade

    2012-07-01

    Full Text Available In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station and Oceans (Calibration over molecular scattering or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  14. Software attribute visualization for high integrity software

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, G.M.

    1998-03-01

    This report documents a prototype tool developed to investigate the use of visualization and virtual reality technologies for improving software surety confidence. The tool is utilized within the execution phase of the software life cycle. It provides a capability to monitor an executing program against prespecified requirements constraints provided in a program written in the requirements specification language SAGE. The resulting Software Attribute Visual Analysis Tool (SAVAnT) also provides a technique to assess the completeness of a software specification.

  15. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    International Nuclear Information System (INIS)

    Carl Stern; Martin Lee

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models

  16. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  17. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    J. Wang

    2003-06-24

    The purpose of this Model Report is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Office of Repository Development (ORD). The UZ contains the unsaturated rock layers overlying the repository and host unit, which constitute a natural barrier to flow, and the unsaturated rock layers below the repository which constitute a natural barrier to flow and transport. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10.8 [under Work Package (WP) AUZM06, Climate Infiltration and Flow], and Section I-1-1 [in Attachment I, Model Validation Plans]). In Section 4.2, four acceptance criteria (ACs) are identified for acceptance of this Model Report; only one of these (Section 4.2.1.3.6.3, AC 3) was identified in the TWP (BSC 2002 [160819], Table 3-1). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, and drift-scale and mountain-scale coupled-process models from the UZ Flow, Transport and Coupled Processes Department in the Natural Systems Subproject of the Performance Assessment (PA) Project. The Calibrated Properties Model output will also be used by the Engineered Barrier System Department in the Engineering Systems Subproject. The Calibrated Properties Model provides input through the UZ Model and other process models of natural and engineered systems to the Total System Performance Assessment (TSPA) models, in accord with the PA Strategy and Scope in the PA Project of the Bechtel SAIC Company, LLC (BSC). The UZ process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions. UZ flow is a TSPA model component.

  18. Multi-slope warm-up calorimetry of Integrated Dewar-Detector Assemblies

    Science.gov (United States)

    Veprik, Alexander; Shlomovich, Baruch; Tuito, Avi

    2015-05-01

    Boil-off isothermal calorimetry of Integrated Dewar-Detector Assemblies (IDDA) is a routine part of acceptance testing. In this traditional approach, the cryogenic liquid coolant (typically LN2) is allowed to naturally boil off from the Dewar well to the atmosphere. The parasitic heat load is then evaluated as the product of the latent heat of vaporization and the "last drop" boil-off rate monitored usually by a mass flow meter. An inherent limitation of this technique is that it is applicable only at the fixed boiling temperature of the chosen liquid coolant, for example, 77K for LN2. There is a need, therefore, to use other (often exotic) cryogenic liquids when calorimetry is needed at temperatures other than 77K. A further drawback is related to the transitional nature of last drop boiling, which manifests itself in development of enlarged bubbles, explosions and geysering. This results in an uneven flow rate and also affects the natural temperature gradient along the cold finger. Additionally, mass flow meters are known to have limited measurement accuracy. The above considerations especially hold true for advanced High Operational Temperature IDDAs, typically featuring short cold fingers and working at 150K and above. In this work, we adapt the well-known technique of dual-slope calorimetry and show how accurate calorimetry may be performed by precooling the IDDA and comparing the warm-up slopes of the thermal transient processes under different trial added heat loads. Because of the simplicity, accuracy and ability to perform calorimetry literally at any temperature of interest, this technique shows good potential for replacing traditional boil-off calorimetry.

  19. A single model procedure for estimating tank calibration equations

    International Nuclear Information System (INIS)

    Liebetrau, A.M.

    1997-10-01

    A fundamental component of any accountability system for nuclear materials is a tank calibration equation that relates the height of liquid in a tank to its volume. Tank volume calibration equations are typically determined from pairs of height and volume measurements taken in a series of calibration runs. After raw calibration data are standardized to a fixed set of reference conditions, the calibration equation is typically fit by dividing the data into several segments--corresponding to regions in the tank--and independently fitting the data for each segment. The estimates obtained for individual segments must then be combined to obtain an estimate of the entire calibration function. This process is tedious and time-consuming. Moreover, uncertainty estimates may be misleading because it is difficult to properly model run-to-run variability and between-segment correlation. In this paper, the authors describe a model whose parameters can be estimated simultaneously for all segments of the calibration data, thereby eliminating the need for segment-by-segment estimation. The essence of the proposed model is to define a suitable polynomial to fit to each segment and then extend its definition to the domain of the entire calibration function, so that it (the entire calibration function) can be expressed as the sum of these extended polynomials. The model provides defensible estimates of between-run variability and yields a proper treatment of between-segment correlations. A portable software package, called TANCS, has been developed to facilitate the acquisition, standardization, and analysis of tank calibration data. The TANCS package was used for the calculations in an example presented to illustrate the unified modeling approach described in this paper. With TANCS, a trial calibration function can be estimated and evaluated in a matter of minutes

  20. Calibration and validation of rockfall models

    Science.gov (United States)

    Frattini, Paolo; Valagussa, Andrea; Zenoni, Stefania; Crosta, Giovanni B.

    2013-04-01

    actual blocks, (2) the percentage of trajectories passing through the buffer of the actual rockfall path, (3) the mean distance between the location of arrest of each simulated blocks and the location of the nearest actual blocks; (4) the mean distance between the location of detachment of each simulated block and the location of detachment of the actual block located closer to the arrest position. By applying the four measures to the case studies, we observed that all measures are able to represent the model performance for validation purposes. However, the third measure is more simple and reliable than the others, and seems to be optimal for model calibration, especially when using a parameter estimation and optimization modelling software for automated calibration.

  1. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve...... the statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited...

  2. Effect of Body Position on Energy Expenditure of Preterm Infants as Determined by Simultaneous Direct and Indirect Calorimetry.

    Science.gov (United States)

    Bell, Edward F; Johnson, Karen J; Dove, Edwin L

    2017-04-01

    Background  Indirect calorimetry is the standard method for estimating energy expenditure in clinical research. Few studies have evaluated indirect calorimetry in infants by comparing it with simultaneous direct calorimetry. Our purpose was (1) to compare the energy expenditure of preterm infants determined by these two methods, direct calorimetry and indirect calorimetry; and (2) to examine the effect of body position, supine or prone, on energy expenditure. Study Design  We measured energy expenditure by simultaneous direct (heat loss by gradient-layer calorimeter corrected for heat storage) and indirect calorimetry (whole-body oxygen consumption and carbon dioxide production) in 15 growing preterm infants during two consecutive interfeeding intervals, once in the supine position and once in the prone position. Results  The mean energy expenditure for all measurements in both positions did not differ significantly by the method used: 2.82 (standard deviation [SD] 0.42) kcal/kg/h by direct calorimetry and 2.78 (SD 0.48) kcal/kg/h by indirect calorimetry. The energy expenditure was significantly lower, by 10%, in the prone than in the supine position, whether examined by direct calorimetry (2.67 vs. 2.97 kcal/kg/h, p  position than in the supine position. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Optical fibre temperature sensor technology and potential application in absorbed dose calorimetry

    International Nuclear Information System (INIS)

    Allen, P.D.; Hargrave, N.J.

    1992-09-01

    Optical fibre based sensors are proposed as a potential alternative to the thermistors traditionally used as temperature sensors in absorbed dose calorimetry. The development of optical fibre temperature sensor technology over the last ten years is reviewed. The potential resolution of various optical techniques is assessed with particular reference to the requirements of absorbed dose calorimetry. Attention is drawn to other issues which would require investigation before the development of practical optical fibre sensors for this purpose could occur. 192 refs., 5 tabs., 4 figs

  4. On the Frequency Correction in Temperature-Modulated Differential Scanning Calorimetry of Glass Transition

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, J.C.; Allan, D.C.

    2012-01-01

    Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Simulations of TMDSC signals were performed for Corning EAGLE XG® glass over a wide range of modulation frequencies. Our results reveal that the frequen...... correction. The resulting glass transition temperature from the frequency corrected reversing heat flow is thereby shown to be independent of frequency.......Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Simulations of TMDSC signals were performed for Corning EAGLE XG® glass over a wide range of modulation frequencies. Our results reveal that the frequency...

  5. Thermodynamics of Surfactants, Block Copolymers and Their Mixtures in Water: The Role of the Isothermal Calorimetry

    Science.gov (United States)

    De Lisi, Rosario; Milioto, Stefania; Muratore, Nicola

    2009-01-01

    The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van’t Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van’t Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the bulk properties. PMID:19742173

  6. Reliability of software

    International Nuclear Information System (INIS)

    Kopetz, H.

    1980-01-01

    Common factors and differences in the reliability of hardware and software; reliability increase by means of methods of software redundancy. Maintenance of software for long term operating behavior. (HP) [de

  7. Controlling Software Piracy.

    Science.gov (United States)

    King, Albert S.

    1992-01-01

    Explains what software manufacturers are doing to combat software piracy, recommends how managers should deal with this problem, and provides a role-playing exercise to help students understand the issues in software piracy. (SR)

  8. Space Flight Software Development Software for Intelligent System Health Management

    Science.gov (United States)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  9. Software Metrics: Measuring Haskell

    OpenAIRE

    Ryder, Chris; Thompson, Simon

    2005-01-01

    Software metrics have been used in software engineering as a mechanism for assessing code quality and for targeting software development activities, such as testing or refactoring, at areas of a program that will most benefit from them. Haskell has many tools for software engineering, such as testing, debugging and refactoring tools, but software metrics have mostly been neglected. The work presented in this paper identifies a collection of software metrics for use with Haskell programs. Thes...

  10. Software systems as cities

    OpenAIRE

    Wettel, Richard; Lanza, Michele

    2010-01-01

    Software understanding takes up a large share of the total cost of a software system. The high costs attributed to software understanding activities are caused by the size and complexity of software systems, by the continuous evolution that these systems are subject to, and by the lack of physical presence which makes software intangible. Reverse engineering helps practitioners deal with the intrinsic complexity of software, by providing a broad range of patterns and techniques. One of...

  11. Software Engineering Guidebook

    Science.gov (United States)

    Connell, John; Wenneson, Greg

    1993-01-01

    The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.

  12. Software Intensive Systems

    National Research Council Canada - National Science Library

    Horvitz, E; Katz, D. J; Rumpf, R. L; Shrobe, H; Smith, T. B; Webber, G. E; Williamson, W. E; Winston, P. H; Wolbarsht, James L

    2006-01-01

    .... Recommend that DoN create a software acquisition specialty, mandate basic schooling for software acquisition specialists, close certain acquisition loopholes that permit poor development practices...

  13. Software Release Management

    National Research Council Canada - National Science Library

    Hoek, Andre van der; Hall, Richard S; Heimbigner, Dennis; Wolf, Alexander L

    1996-01-01

    .... Both developers and users of such software are affected by these complications. Developers need to accurately document complex and changing dependencies among the systems constituting the software...

  14. Calibration of high resolution digital camera based on different photogrammetric methods

    Science.gov (United States)

    Hamid, N. F. A.; Ahmad, A.

    2014-02-01

    This paper presents method of calibrating high-resolution digital camera based on different configuration which comprised of stereo and convergent. Both methods are performed in the laboratory and in the field calibration. Laboratory calibration is based on a 3D test field where a calibration plate of dimension 0.4 m × 0.4 m with grid of targets at different height is used. For field calibration, it uses the same concept of 3D test field which comprised of 81 target points located on a flat ground and the dimension is 9 m × 9 m. In this study, a non-metric high resolution digital camera called Canon Power Shot SX230 HS was calibrated in the laboratory and in the field using different configuration for data acquisition. The aim of the calibration is to investigate the behavior of the internal digital camera whether all the digital camera parameters such as focal length, principal point and other parameters remain the same or vice-versa. In the laboratory, a scale bar is placed in the test field for scaling the image and approximate coordinates were used for calibration process. Similar method is utilized in the field calibration. For both test fields, the digital images were acquired within short period using stereo and convergent configuration. For field calibration, aerial digital images were acquired using unmanned aerial vehicle (UAV) system. All the images were processed using photogrammetric calibration software. Different calibration results were obtained for both laboratory and field calibrations. The accuracy of the results is evaluated based on standard deviation. In general, for photogrammetric applications and other applications the digital camera must be calibrated for obtaining accurate measurement or results. The best method of calibration depends on the type of applications. Finally, for most applications the digital camera is calibrated on site, hence, field calibration is the best method of calibration and could be employed for obtaining accurate

  15. MAVEN SEP Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — The maven.sep.calibrated Level 2 Science Data Bundle contains fully calibrated SEP data, as well as the raw count data from which they are derived, and ancillary...

  16. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    A series of atmospheric aerosol diffusion experiments combined with lidar detection was conducted to evaluate and calibrate an existing retrieval algorithm for aerosol backscatter lidar systems. The calibration experiments made use of two (almost) identical mini-lidar systems for aerosol cloud...... detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  17. Travelling gradient thermocouple calibration

    International Nuclear Information System (INIS)

    Broomfield, G.H.

    1975-01-01

    A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed

  18. Ultrasonic calibration assembly

    International Nuclear Information System (INIS)

    1981-01-01

    Ultrasonic transducers for in-service inspection of nuclear reactor vessels have several problems associated with them which this invention seeks to overcome. The first is that of calibration or referencing a zero start point for the vertical axis of transducer movement to locate a weld defect. The second is that of verifying the positioning (vertically or at a predetermined angle). Thirdly there is the problem of ascertaining the speed per unit distance in the operating medium of the transducer beam prior to the actual inspection. The apparatus described is a calibration assembly which includes a fixed, generally spherical body having a surface for reflecting an ultrasonic beam from one of the transducers which can be moved until the reflection from the spherical body is the highest amplitude return signal indicating radial alignment from the body. (U.K.)

  19. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  20. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    H. H. Liu

    2003-02-14

    This report has documented the methodologies and the data used for developing rock property sets for three infiltration maps. Model calibration is necessary to obtain parameter values appropriate for the scale of the process being modeled. Although some hydrogeologic property data (prior information) are available, these data cannot be directly used to predict flow and transport processes because they were measured on scales smaller than those characterizing property distributions in models used for the prediction. Since model calibrations were done directly on the scales of interest, the upscaling issue was automatically considered. On the other hand, joint use of data and the prior information in inversions can further increase the reliability of the developed parameters compared with those for the prior information. Rock parameter sets were developed for both the mountain and drift scales because of the scale-dependent behavior of fracture permeability. Note that these parameter sets, except those for faults, were determined using the 1-D simulations. Therefore, they cannot be directly used for modeling lateral flow because of perched water in the unsaturated zone (UZ) of Yucca Mountain. Further calibration may be needed for two- and three-dimensional modeling studies. As discussed above in Section 6.4, uncertainties for these calibrated properties are difficult to accurately determine, because of the inaccuracy of simplified methods for this complex problem or the extremely large computational expense of more rigorous methods. One estimate of uncertainty that may be useful to investigators using these properties is the uncertainty used for the prior information. In most cases, the inversions did not change the properties very much with respect to the prior information. The Output DTNs (including the input and output files for all runs) from this study are given in Section 9.4.

  1. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  2. Calibrating Legal Judgments

    OpenAIRE

    Frederick Schauer; Barbara A. Spellman

    2017-01-01

    Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociolog...

  3. Trigger Algorithms for Alignment and Calibration at the CMS Experiment

    CERN Document Server

    Fernandez Perez Tomei, Thiago Rafael

    2017-01-01

    The data needs of the Alignment and Calibration group at the CMS experiment are reasonably different from those of the physics studies groups. Data are taken at CMS through the online event selection system, which is implemented in two steps. The Level-1 Trigger is implemented on custom-made electronics and dedicated to analyse the detector information at a coarse-grained scale, while the High Level Trigger (HLT) is implemented as a series of software algorithms, running in a computing farm, that have access to the full detector information. In this paper we describe the set of trigger algorithms that is deployed to address the needs of the Alignment and Calibration group, how it fits in the general infrastructure of the HLT, and how it feeds the Prompt Calibration Loop (PCL), allowing for a fast turnaround for the alignment and calibration constants.

  4. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Ghezzehej

    2004-10-04

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency.

  5. BCal: an on-line Bayesian radiocarbon calibration tool

    Directory of Open Access Journals (Sweden)

    Caitlin E. Buck

    1999-09-01

    Full Text Available In this paper we describe newly launched software for on-line Bayesian calibration of archaeological radiocarbon determinations. The software is known as BCal and we invite members of the world-wide archaeological research community to use it should they so wish. All that is required to gain access to the software is a computer connected to the Internet with a modern World-wide Web browser (of the sort you are probably using to read this. BCal does not require access to any additional 'Plug-ins' on your machine. Since the computations needed to obtain the calibrations are undertaken on the BCal server, if you have enough computer power to run your World-wide Web browser you have enough power to use BCal.

  6. Calibration of Underwater Sound Transducers

    OpenAIRE

    H.R.S. Sastry

    1983-01-01

    The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  7. BESIII online electronics calibration system

    International Nuclear Information System (INIS)

    Wang Liang; Lei Guangkun; Zhu Kejun; Zhao Jingwei; Li Fei

    2006-01-01

    This paper introduce the components of BESIII DAQ System. It describe the relationship of internal online electrionics calibration's components, the mechanism of dataflow and message flow and the implementation of system functions. When BESIII is running, the system will be used to online calibrate electronics channels and provide the calibration params to adjust electronics data. (authors)

  8. Monolithic front-end preamplifiers for a broad range of calorimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Rescia, S. [Brookhaven National Lab., Upton, NY (United States); Manfredi, P.F.; Speziali, V. [Pavia Univ. (Italy). Dipt. di Elettronica]|[INFN--Sezzione di Milano, Milano (Italy)

    1993-12-31

    The present paper summarizes the salient results of a research and development activity in the area of low noise preamplifiers for different applications in calorimetry. Design target for all circuits considered here are low noise, ability to cope with broad energy ranges and radiation hardness.

  9. Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry

    Science.gov (United States)

    Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle

    2012-01-01

    This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...

  10. National absorbed dose to water references for radiotherapy medium energy X-rays by water calorimetry

    International Nuclear Information System (INIS)

    Perichon, N.

    2012-01-01

    LNE-LNHB current references for medium energy X-rays are established in terms of air kerma. Absorbed dose to water, which is the quantity of interest for radiotherapy, is obtained by transfer dosimetric techniques following a methodology described in international protocols. The aim of the thesis is to establish standards in terms of absorbed dose to water in the reference protocol conditions by water calorimetry. The basic principle of water calorimetry is to measure the absorbed dose from the rise in temperature of water under irradiation. A calorimeter was developed to perform measurements at a 2 cm depth in water according to IAEA TRS-398 protocol for medium energy x-rays. Absorbed dose rates to water measured by calorimetry were compared to the values established using protocols based on references in terms of air kerma. A difference lower than 2.1% was reported. Standard uncertainty of water calorimetry being 0.8%, the one associated to the values from protocols being around 3.0%, results are consistent considering the uncertainties. Thanks to these new standards, it will be possible to use IAEA TRS-398 protocol to determine absorbed dose to water: a significant reduction of uncertainties is obtained (divided by 3 by comparison with the application of the IAEA TRS-277 protocol). Currently, none of the counterparts' laboratories own such an instrument allowing direct determination of standards in the reference conditions recommended by the international radiotherapy protocols. (author) [fr

  11. Phase behaviour of Maya crude oil based on calorimetry and rheometry

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Becerra, M.; Hasan, M.D.A.; Zhao, B.; Shaw, J.M.

    2008-01-01

    Roč. 272, č. 1-2 (2008), s. 32-41 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : phase behaviour * phase diagram * Maya crude oil * calorimetry * rheometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.699, year: 2008

  12. Insights into glass transition and relaxation behavior using temperature-modulated differential scanning calorimetry

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, J.C.; Allan, D.C.

    Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Our simulations of TMDSC signals prove that the frequency correction of non-reversing heat flow can give a master curve within a certain range of freque...... insights about the glass structural response to thermal treatments....

  13. Low-temperature transitions in cod and tuna determined by differential scanning calorimetry

    DEFF Research Database (Denmark)

    Jensen, Kristina Nedenskov; Jørgensen, Bo; Nielsen, Jette

    2003-01-01

    Differential scanning calorimetry measurements have revealed different thermal transitions in cod and tuna samples. Transition temperatures detected Lit -11degreesC, -15degreesC and -21degreesC were highly dependent on the annealing temperature. In tuna muscle an additional transition was observed...

  14. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  15. Detection of sunflower oil in extra virgin olive oil by fast differential scanning calorimetry

    NARCIS (Netherlands)

    Wetten, I.A.; Herwaarden, A.W.; Splinter, R.; Boerrigter-Eenling, R.; Ruth, van S.M.

    2015-01-01

    Extra virgin olive oil (EVOO) is an economically valuable product, due to its high quality and premium price. Therefore it is vulnerable for adulteration by means of the addition of cheaper vegetable oils. Differential scanning calorimetry (DSC) has been suggested as a fast technique for the

  16. Isothermal Titration Calorimetry and Macromolecular Visualization for the Interaction of Lysozyme and Its Inhibitors

    Science.gov (United States)

    Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J.

    2015-01-01

    To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…

  17. Thermodynamic profiling of Peptide membrane interactions by isothermal titration calorimetry: a search for pores and micelles

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2011-01-01

    in mixed peptide-lipid micelles. We have investigated the mode of action of the antimicrobial peptide mastoparan-X using isothermal titration calorimetry (ITC) and cryo-transmission electron microscopy (cryo-TEM). The results show that mastoparan-X induces a range of structural transitions of POPC/POPG (3...

  18. Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry

    Science.gov (United States)

    Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic proc...

  19. Thermodynamic investigations of protein's behaviour with ionic liquids in aqueous medium studied by isothermal titration calorimetry.

    Science.gov (United States)

    Bharmoria, Pankaj; Kumar, Arvind

    2016-05-01

    While a number of reports appear on ionic liquids-proteins interactions, their thermodynamic behaviour using suitable technique like isothermal titration calorimetry is not systematically presented. Isothermal titration calorimetry (ITC) is a key technique which can directly measure the thermodynamic contribution of IL binding to protein, particularly the enthalpy, heat capacities and binding stoichiometry. Ionic liquids (ILs), owing to their unique and tunable physicochemical properties have been the central area of scientific research besides graphene in the last decade, and growing unabated. Their encounter with proteins in the biological system is inevitable considering their environmental discharge though most of them are recyclable for a number of cycles. In this article we will cover the thermodynamics of proteins upon interaction with ILs as osmolyte and surfactant. The up to date literature survey of IL-protein interactions using isothermal titration calorimetry will be discussed and parallel comparison with the results obtained for such studies with other techniques will be highlighted to demonstrate the accuracy of ITC technique. Net stability of proteins can be obtained from the difference in the free energy (ΔG) of the native (folded) and denatured (unfolded) state using the Gibbs-Helmholtz equation (ΔG=ΔH-TΔS). Isothermal titration calorimetry can directly measure the heat changes upon IL-protein interactions. Calculation of other thermodynamic parameters such as entropy, binding constant and free energy depends upon the proper fitting of the binding isotherms using various fitting models. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Interaction between Humic Acid and Lysozyme, Studied by Dynamic Light Scattering and Isothermal Titration Calorimetry

    NARCIS (Netherlands)

    Tan, Wen Feng; Koopal, Luuk K.; Norde, Willem

    2009-01-01

    Interactions of purified Aldrich humic acid (PAHA) with the protein lysozyme (LSZ) are studied with dynamic light scattering and isothermal titration calorimetry by mixing LSZ and PAHA at various mass ratios. In solution LSZ is positive and PAHA is negative at the investigated pH values. Up to

  1. Study of phase transition in hard microcrystalline waxes and wax blends by differential scanning calorimetry

    Czech Academy of Sciences Publication Activity Database

    Kumar, S.; Agrawal, K. M.; Khan, H. U.; Sikora, Antonín

    2004-01-01

    Roč. 22, 3 & 4 (2004), s. 337-345 ISSN 1091-6466 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : phase transition * hard microscrystalline waxes * differential scanning calorimetry Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.312, year: 2004

  2. A compensating quartz fibre calorimeter for small angle calorimetry at the LHC

    International Nuclear Information System (INIS)

    Ferrando, A.; Josa, M.I.; Salicio, J.M.

    1997-01-01

    We present the design of a compensating quartz fibre calorimeter, made of a unique active section, for the specific physics requirements of the small angle calorimetry for the LHC experiments. The proposed calorimeter is exemplified for the case of the CMS experiment. (orig.)

  3. Coulometry and Calorimetry of Electric Double Layer Formation in Porous Electrodes

    NARCIS (Netherlands)

    Janssen, Mathijs; Griffioen, Elian; Biesheuvel, P. M.; Van Roij, René; Erné, Ben

    2017-01-01

    Coulometric measurements on salt-water-immersed nanoporous carbon electrodes reveal, at a fixed voltage, a charge decrease with increasing temperature. During far-out-of-equilibrium charging of these electrodes, calorimetry indicates the production of both irreversible Joule heat and reversible

  4. Self consistently calibrated photopyroelectric calorimeter for the high resolution simultaneous absolute measurement of the specific heat and of the thermal conductivity

    Directory of Open Access Journals (Sweden)

    U. Zammit

    2012-03-01

    Full Text Available High temperature resolution study of the specific heat and of the thermal conductivity over the smecticA-nematic and nematic-isotropic phase transitions in octylcynobephenyl liquid crystal using a new photopyroelectric calorimetry configuration are reported, where, unlike previously adopted ones, no calibration is required other than the procedure used during the actual measurement. This makes photopyroelectric calorimetry suitable for “absolute” measurements of the thermal parameters like most other existing conventional calorimetric techniques where, however, the thermal conductivity cannot be measured.

  5. Software Testing Techniques and Strategies

    OpenAIRE

    Isha,; Sunita Sangwan

    2014-01-01

    Software testing provides a means to reduce errors, cut maintenance and overall software costs. Numerous software development and testing methodologies, tools, and techniques have emerged over the last few decades promising to enhance software quality. This paper describes Software testing, need for software testing, Software testing goals and principles. Further it describe about different Software testing techniques and different software testing strategies.

  6. CALIBRATION PROCEDURES ON OBLIQUE CAMERA SETUPS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna –IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first

  7. Statistical Software Engineering

    Science.gov (United States)

    1998-04-13

    multiversion software subject to coincident errors. IEEE Trans. Software Eng. SE-11:1511-1517. Eckhardt, D.E., A.K Caglayan, J.C. Knight, L.D. Lee, D.F...J.C. and N.G. Leveson. 1986. Experimental evaluation of the assumption of independence in multiversion software. IEEE Trans. Software

  8. Agile Software Development

    Science.gov (United States)

    Biju, Soly Mathew

    2008-01-01

    Many software development firms are now adopting the agile software development method. This method involves the customer at every level of software development, thus reducing the impact of change in the requirement at a later stage. In this article, the principles of the agile method for software development are explored and there is a focus on…

  9. Ensuring Software IP Cleanliness

    Directory of Open Access Journals (Sweden)

    Mahshad Koohgoli

    2007-12-01

    Full Text Available At many points in the life of a software enterprise, determination of intellectual property (IP cleanliness becomes critical. The value of an enterprise that develops and sells software may depend on how clean the software is from the IP perspective. This article examines various methods of ensuring software IP cleanliness and discusses some of the benefits and shortcomings of current solutions.

  10. Improving Software Developer's Competence

    DEFF Research Database (Denmark)

    Abrahamsson, Pekka; Kautz, Karlheinz; Sieppi, Heikki

    2002-01-01

    Emerging agile software development methods are people oriented development approaches to be used by the software industry. The personal software process (PSP) is an accepted method for improving the capabilities of a single software engineer. Five original hypotheses regarding the impact...

  11. Chemical kinetics on thermal decompositions of cumene hydroperoxide in cumene studied by calorimetry: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Occupation Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 35664, Taiwan, ROC (China); Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, 36052, Taiwan, ROC (China)

    2016-08-10

    Highlights: • Chemical kinetics on thermal decompositions of CHP are conducted and summarized. • Kinetics agrees well between data from DSC and adiabatic calorimetry. • Ea is determined to be about 120 kJ mol{sup −1} by various calorimetry. • LogA (A in s{sup −1}) is determined to be about 11.8 by various calorimetry. - Abstract: Study on chemical kinetics related to the thermal decomposition of cumene hydoperoxide (CHP) in cumene is summarized in this work. It is of great importance to gather and compare the differences between these kinetic parameters for further substantial applications in the chemical industry and process safety. CHP has been verified to possess an autocatalytic behavior by using microcalorimetry (such as TAM and C-80) operated at isothermal mode in the temperature range from 70 °C to 120 °C. However, it exhibits a reaction of n-th order detected by non-isothermal DSC scanning and adiabatic calorimeter. By the isothermal aging tests, activation energy and frequency factor in logA(s{sup −1}) were averaged to be (117.3 ± 5.9) kJ mol{sup −1}and (11.4 ± 0.3), respectively. Kinetic parameters acquired from data of interlaboratories by using heat-flow calorimetry, the averaged activation energy and frequency factor in logA(s{sup −1}) were (119.3 ± 11.3) kJ mol{sup −1}and (12.0 ± 0.2), respectively. On the analogy of results from adiabatic calorimetry, the activation energy and frequency factor in logA(s{sup −1}) were respectively averaged to be (122.4 ± 9.2) kJ mol{sup −1}and (11.8 ± 0.8). Five sets of kinetic models in relation to autocatalytic reactions are collected and discussed as well.

  12. SOFTWARE Manual for VMM3 Slow Control

    CERN Document Server

    Guth, Manuel

    2017-01-01

    For the New Small Wheel upgrade of the ATLAS detector a new readout chip, called VMM3(a), was developed. In order to provide this new technology to a larger community, the RD51 collaboration is integrating the VMM3 in their scalable readout system (SRS). For this purpose, a new slow control and calibration tool is necessary. This new software was developed and improved within a CERN Summer Student project.

  13. Great software debates

    CERN Document Server

    Davis, A

    2004-01-01

    The industry’s most outspoken and insightful critic explains how the software industry REALLY works. In Great Software Debates, Al Davis, shares what he has learned about the difference between the theory and the realities of business and encourages you to question and think about software engineering in ways that will help you succeed where others fail. In short, provocative essays, Davis fearlessly reveals the truth about process improvement, productivity, software quality, metrics, agile development, requirements documentation, modeling, software marketing and sales, empiricism, start-up financing, software research, requirements triage, software estimation, and entrepreneurship.

  14. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  15. Calibration and performance testing of the IAEA Aquila Active Well Coincidence Counter (Unit 1)

    International Nuclear Information System (INIS)

    Menlove, H.O..; Siebelist, R.; Wenz, T.R.

    1996-01-01

    An Active Well Coincidence Counter (AWCC) and a portable shift register (PSR-B) produced by Aquila Technologies Group, Inc., have been tested and cross-calibrated with existing AWCCs used by the International Atomic Energy Agency (IAEA). This report summarizes the results of these tests and the cross-calibration of the detector. In addition, updated tables summarizing the cross-calibration of existing AWCCs and AmLi sources are also included. Using the Aquila PSR-B with existing IAEA software requires secondary software also supplied by Aquila to set up the PSR-B with the appropriate measurement parameters

  16. Software component quality evaluation

    Science.gov (United States)

    Clough, A. J.

    1991-01-01

    The paper describes a software inspection process that can be used to evaluate the quality of software components. Quality criteria, process application, independent testing of the process and proposed associated tool support are covered. Early results indicate that this technique is well suited for assessing software component quality in a standardized fashion. With automated machine assistance to facilitate both the evaluation and selection of software components, such a technique should promote effective reuse of software components.

  17. Views on Software Testability

    OpenAIRE

    Shimeall, Timothy; Friedman, Michael; Chilenski, John; Voas, Jeffrey

    1994-01-01

    The field of testability is an active, well-established part of engineering of modern computer systems. However, only recently have technologies for software testability began to be developed. These technologies focus on accessing the aspects of software that improve or depreciate the ease of testing. As both the size of implemented software and the amount of effort required to test that software increase, so will the important of software testability technologies in influencing the softwa...

  18. The CHEOPS calibration bench

    Science.gov (United States)

    Wildi, F.; Chazelas, B.; Deline, A.; Sarajlic, M.; Sordet, M.

    2017-09-01

    CHEOPS is an ESA Class S Mission aiming at the characterization of exoplanets through the precise measurement of their radius, using the transit method [1]. To achieve this goal, the payload is designed to be a high precision "absolute" photometer, looking at one star at a time. It will be able to cover la large fraction of the sky by repointing. Its launch is expected at the end of 2017 [2, this conference]. CHEOPS' main science is the measure of the transit of exoplanets of radius ranging from 1 to 6 Earth radii orbiting bright stars. The required photometric stability to reach this goal is of 20 ppm in 6 hours for a 9th magnitude star. The CHEOPS' only instrument is a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star on a single frame-transfer backside illuminated CCD detector cooled to -40°C and stabilized within 10 mK [2]. CHEOPS being in a LEO, it is equipped with a high performance baffle. The spacecraft platform provides a pointing stability of flat-fielding necessary In the rest of this article we will refer to the only CHEOPS instrument simply as "CHEOP" Its behavior will be calibrated thoroughly on the ground and only a small subset of the calibrations can be redone in flight. The main focuses of the calibrations are the photonic gain stability and sensibility to the environment variations and the Flat field that has to be known at a precision better than 0.1%.

  19. Self-calibrating interferometer

    International Nuclear Information System (INIS)

    Nussmeier, T.A.

    1982-01-01

    A self-calibrating interferometer is disclosed which forms therein a pair of Michelson interferometers with one beam length of each Michelson interferometer being controlled by a common phase shifter. The transfer function measured from the phase shifter to either of a pair of detectors is sinusoidal with a full cycle for each half wavelength of phase shifter travel. The phase difference between these two sinusoidal detector outputs represents the optical phase difference between a path of known distance and a path of unknown distance

  20. Software Quality Assurance Metrics

    Science.gov (United States)

    McRae, Kalindra A.

    2004-01-01

    Software Quality Assurance (SQA) is a planned and systematic set of activities that ensures conformance of software life cycle processes and products conform to requirements, standards and procedures. In software development, software quality means meeting requirements and a degree of excellence and refinement of a project or product. Software Quality is a set of attributes of a software product by which its quality is described and evaluated. The set of attributes includes functionality, reliability, usability, efficiency, maintainability, and portability. Software Metrics help us understand the technical process that is used to develop a product. The process is measured to improve it and the product is measured to increase quality throughout the life cycle of software. Software Metrics are measurements of the quality of software. Software is measured to indicate the quality of the product, to assess the productivity of the people who produce the product, to assess the benefits derived from new software engineering methods and tools, to form a baseline for estimation, and to help justify requests for new tools or additional training. Any part of the software development can be measured. If Software Metrics are implemented in software development, it can save time, money, and allow the organization to identify the caused of defects which have the greatest effect on software development. The summer of 2004, I worked with Cynthia Calhoun and Frank Robinson in the Software Assurance/Risk Management department. My task was to research and collect, compile, and analyze SQA Metrics that have been used in other projects that are not currently being used by the SA team and report them to the Software Assurance team to see if any metrics can be implemented in their software assurance life cycle process.

  1. Quantifying low amorphous or crystalline amounts of alpha-lactose-monohydrate using X-ray powder diffraction, near-infrared spectroscopy, and differential scanning calorimetry.

    Science.gov (United States)

    Fix, I; Steffens, K J

    2004-05-01

    Efficient and accurate quantification of low amorphous and crystalline contents within pharmaceutical materials still remains a challenging task in the pharmaceutical industry. Since X-ray powder diffraction (XRPD) equipment has improved in recent years, our aim was 1) to investigate the possibility of substantially lowering the detection limits of amorphous or crystalline material to about 1% or 0.5% w/w respectively by applying conventional Bragg Brentano optics, combined with a fast and simple evaluation technique; 2) to perform these measurements within a short time to make it suitable for routine analysis; and 3) to subject the same data sets to a partial least squares regression (PLSR) in order to investigate whether it is possible to improve accuracy and precision compared to the standard integration method. Near-infrared spectroscopy (NIRS) and differential scanning calorimetry (DSC) were chosen as reference method. As model substance, alpha lactose monohydrate was chosen to create calibration curves based on predetermined mixtures of highly crystalline and amorphous substance. In contrast to DSC, XRPD and NIRS revealed an excellent linearity, precision, and accuracy with the percent of crystalline amount and a detectability down to about 0.5% w/w. Chemometric evaluation (partial least squares regression) applied to the XRPD data further improved the quality of our calibration.

  2. Photometric Calibration of Consumer Video Cameras

    Science.gov (United States)

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    analyze. The light source used to generate the calibration images is an artificial variable star comprising a Newtonian collimator illuminated by a light source modulated by a rotating variable neutral- density filter. This source acts as a point source, the brightness of which varies at a known rate. A video camera to be calibrated is aimed at this source. Fixed neutral-density filters are inserted in or removed from the light path as needed to make the video image of the source appear to fluctuate between dark and saturated bright. The resulting video-image data are analyzed by use of custom software that determines the integrated signal in each video frame and determines the system response curve (measured output signal versus input brightness). These determinations constitute the calibration, which is thereafter used in automatic, frame-by-frame processing of the data from the video images to be analyzed.

  3. Software Engineering Program: Software Process Improvement Guidebook

    Science.gov (United States)

    1996-01-01

    The purpose of this document is to provide experience-based guidance in implementing a software process improvement program in any NASA software development or maintenance community. This guidebook details how to define, operate, and implement a working software process improvement program. It describes the concept of the software process improvement program and its basic organizational components. It then describes the structure, organization, and operation of the software process improvement program, illustrating all these concepts with specific NASA examples. The information presented in the document is derived from the experiences of several NASA software organizations, including the SEL, the SEAL, and the SORCE. Their experiences reflect many of the elements of software process improvement within NASA. This guidebook presents lessons learned in a form usable by anyone considering establishing a software process improvement program within his or her own environment. This guidebook attempts to balance general and detailed information. It provides material general enough to be usable by NASA organizations whose characteristics do not directly match those of the sources of the information and models presented herein. It also keeps the ideas sufficiently close to the sources of the practical experiences that have generated the models and information.

  4. Software Acquisition and Software Engineering Best Practices

    National Research Council Canada - National Science Library

    Eslinger, S

    1999-01-01

    ...) of Senate Report 106-50, is given for reference in Table 1-1 of the body of this report. This paper recommends a set of software acquisition and software engineering best practices that addresses the issues raised in the Senate Report...

  5. Amalgamation of Personal Software Process in Software ...

    African Journals Online (AJOL)

    Today, concern for quality has become an international movement. Even though most industrial organizations have now adopted modern quality principles, the software community has continued to rely on testing as the principal quality management method. Different decades have different trends in software engineering.

  6. From Software Development to Software Assembly

    NARCIS (Netherlands)

    Sneed, Harry M.; Verhoef, Chris

    2016-01-01

    The lack of skilled programming personnel and the growing burden of maintaining customized software are forcing organizations to quit producing their own software. It's high time they turned to ready-made, standard components to fulfill their business requirements. Cloud services might be one way to

  7. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  8. Temperature calibration procedure for thin film substrates for thermo-ellipsometric analysis using melting point standards

    Energy Technology Data Exchange (ETDEWEB)

    Kappert, Emiel J.; Raaijmakers, Michiel J.T.; Ogieglo, Wojciech; Nijmeijer, Arian; Huiskes, Cindy; Benes, Nieck E., E-mail: n.e.benes@utwente.nl

    2015-02-10

    Highlights: • Facile temperature calibration method for thermo-ellipsometric analysis. • The melting point of thin films of indium, lead, zinc, and water can be detected by ellipsometry. • In-situ calibration of ellipsometry hot stage, without using any external equipment. • High-accuracy temperature calibration (±1.3 °C). - Abstract: Precise and accurate temperature control is pertinent to studying thermally activated processes in thin films. Here, we present a calibration method for the substrate–film interface temperature using spectroscopic ellipsometry. The method is adapted from temperature calibration methods that are well developed for thermogravimetric analysis and differential scanning calorimetry instruments, and is based on probing a transition temperature. Indium, lead, and zinc could be spread on a substrate, and the phase transition of these metals could be detected by a change in the Ψ signal of the ellipsometer. For water, the phase transition could be detected by a loss of signal intensity as a result of light scattering by the ice crystals. The combined approach allowed for construction of a linear calibration curve with an accuracy of 1.3 °C or lower over the full temperature range.

  9. Using LabVIEW to facilitate calibration and verification for respiratory impedance plethysmography.

    Science.gov (United States)

    Ellis, W S; Jones, R T

    1991-12-01

    A system for calibrating the Respitrace impedance plethysmograph was developed with the capacity to quantitatively verify the accuracy of calibration. LabVIEW software was used on a Macintosh II computer to create a user-friendly environment, with the added benefit of reducing development time. The system developed enabled a research assistant to calibrate the Respitrace within 15 min while achieving an accuracy within the normally accepted 10% deviation when the Respitrace output is compared to a water spirometer standard. The system and methods described were successfully used in a study of 10 subjects smoking cigarettes containing marijuana or cocaine under four conditions, calibrating all subjects to 10% accuracy within 15 min.

  10. CALIBRATION PROCEDURES IN MID FORMAT CAMERA SETUPS

    Directory of Open Access Journals (Sweden)

    F. Pivnicka

    2012-07-01

    Full Text Available A growing number of mid-format cameras are used for aerial surveying projects. To achieve a reliable and geometrically precise result also in the photogrammetric workflow, awareness on the sensitive parts is important. The use of direct referencing systems (GPS/IMU, the mounting on a stabilizing camera platform and the specific values of the mid format camera make a professional setup with various calibration and misalignment operations necessary. An important part is to have a proper camera calibration. Using aerial images over a well designed test field with 3D structures and/or different flight altitudes enable the determination of calibration values in Bingo software. It will be demonstrated how such a calibration can be performed. The direct referencing device must be mounted in a solid and reliable way to the camera. Beside the mechanical work especially in mounting the camera beside the IMU, 2 lever arms have to be measured in mm accuracy. Important are the lever arms from the GPS Antenna to the IMU's calibrated centre and also the lever arm from the IMU centre to the Camera projection centre. In fact, the measurement with a total station is not a difficult task but the definition of the right centres and the need for using rotation matrices can cause serious accuracy problems. The benefit of small and medium format cameras is that also smaller aircrafts can be used. Like that, a gyro bases stabilized platform is recommended. This causes, that the IMU must be mounted beside the camera on the stabilizer. The advantage is, that the IMU can be used to control the platform, the problematic thing is, that the IMU to GPS antenna lever arm is floating. In fact we have to deal with an additional data stream, the values of the movement of the stabiliser to correct the floating lever arm distances. If the post-processing of the GPS-IMU data by taking the floating levers into account, delivers an expected result, the lever arms between IMU and

  11. Precision tracking and electromagnetic calorimetry towards a measurement of the pion polarisabilities at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Dinkelbach, Anna-Maria Elisabeth

    2010-07-20

    In 2004 the COMPASS experiment at CERN SPS measured soft reactions with a beam of negatively charged pions on various nuclear targets. For this measurement, a silicon micro-strip telescope was installed in the target region. For the first time 5 silicon detector stations were operated simultaneously in the COMPASS experiment. A novel method of time calibration, with a clustering algorithm accordingly adapted, and refined alignment corrections were implemented in the analysis software. The spatial resolution of a silicon detector was determined to be 5 - 14 {mu}m and the time resolution 2 - 3 ns. Combining the time information of all stations, a track time resolution of 530 ps from the silicon telescope could be reached. One of the key points of this experiment was the observation of Primakoff events, namely pions scattering off quasi-real photons in the Coulomb field of a heavy nucleus. The production of real photons corresponds to pion Compton scattering in inverse kinematics which is sensitive to the pion polarisabilities {alpha}{sub {pi}} and {beta}{sub {pi}}. Key ingredient for such measurements is a precise knowledge of the performance of the electromagnetic calorimeter. This includes a study of the instabilities of calorimeter cells and an improved reconstruction algorithm. A data-driven shower model was developed, which was used for a timedependent recalibration of the calorimeter. A new cluster refitting method was used to recover position and energy of clusters containing passive or saturated cells and detects double-hit clusters. The latter are important, as the main background to the Primakoff Compton events stems from neutral pions misinterpreted as single-photon hits. The physics analysis comprised the selection of Primakoff events and the necessary steps to obtain the pionic polarisabilities. The measurement was limited by systematic effects of the apparatus also determined within this thesis. (orig.)

  12. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described.

  13. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    International Nuclear Information System (INIS)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described

  14. Bias in segmented gamma scans arising from size differences between calibration standards and assay samples

    International Nuclear Information System (INIS)

    Sampson, T.E.

    1991-01-01

    Recent advances in segmented gamma scanning have emphasized software corrections for gamma-ray self-adsorption in particulates or lumps of special nuclear material in the sample. another feature of this software is an attenuation correction factor formalism that explicitly accounts for differences in sample container size and composition between the calibration standards and the individual items being measured. Software without this container-size correction produces biases when the unknowns are not packaged in the same containers as the calibration standards. This new software allows the use of different size and composition containers for standards and unknowns, as enormous savings considering the expense of multiple calibration standard sets otherwise needed. This paper presents calculations of the bias resulting from not using this new formalism. These calculations may be used to estimate bias corrections for segmented gamma scanners that do not incorporate these advanced concepts

  15. Modulated Temperature Differential Scanning Calorimetry Theoretical and Practical Applications in Polymer Characterisation

    CERN Document Server

    Reading, Mike

    2006-01-01

    MTDSC provides a step-change increase in the power of calorimetry to characterize virtually all polymer systems including curing systems, blends and semicrystalline polymers. It enables hidden transitions to be revealed, miscibility to be accurately assessed, and phases and interfaces in complex blends to be quantified. It also enables crystallinity in complex systems to be measured and provides new insights into melting behaviour. All of this is achieved by a simple modification of conventional DSC. In 1992 a new calorimetric technique was introduced that superimposed a small modulation on top of the conventional linear temperature program typically used in differential scanning calorimetry. This was combined with a method of data analysis that enabled the sample’s response to the linear component of the temperature program to be separated from its response to the periodic component. In this way, for the first time, a signal equivalent to that of conventional DSC was obtained simultaneously with a measure ...

  16. Application of isothermal calorimetry and uv spectroscopy for stability monitoring of pentaerythritol tetranitrate

    International Nuclear Information System (INIS)

    Dosser, L.R.; Pickard, J.M.

    1992-01-01

    Thermal stabilities for a series of pentaerythritol-tetranitrate (PETN) samples with variable surf ace areas were monitored by isothermal calorimetry and UV spectroscopy over the temperature range of 363 to 408 K. Isothermal induction times measured with constant volume calorimetry under an air atmosphere and No evolution rates monitored by UV absorbance at 213 nm under vacuum correlated with the PETN surface area at temperatures equal to or exceeding 383 K. Rate data measured at 383 K are in accord with predictions based on detailed kinetic modeling. Below 383 K, NO evolution data suggested that additional geometric factors may be significant in controlling PETN stability. Mechanisms for influencing surface area upon the rate-determining step are addressed

  17. Inherent limitations of fixed-time, servo-controlled radiometric calorimetry

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Lemming, J.F.; Duff, M.F.

    1987-01-01

    Interest has been shown in using fixed-time, servo-controlled calorimetry to shorten the measurement times for certain samples that require low precision values (3 to 5%). This type of calorimeter measurement could be particularly useful for screening scrap samples to determine whether there is a need for a more accurate measurement or for certain confirmatory measurements for which low precision numbers are sufficient. The equipment required for this type of measurement is a servo-controlled calorimeter and a preconditioning unit. Samples to be measured are placed in the preconditioning unit, which is maintained at the internal temperature of the calorimeter. The power value for the sample is determined at a fixed time after loading into the calorimeter, for example, 30 min. When a calorimeter is operated using a fixed cutoff time, there are additional sources of uncertainty that need to be considered. The major factors affecting the uncertainty of the calorimetry power values are discussed. 2 refs., 4 figs

  18. Risk Assessment Methodology for Software Supportability (RAMSS): Pilot Evaluation Results and Methodology Refinement.

    Science.gov (United States)

    1986-04-14

    Software Test Manager (STM) and I Deputy for Software Evaluation ( DSE ) provided appropriate calibration assistance. The software support resources...the life cycle to capture this history using the SLCP questions (see reference 1.4.7) as a checklist . (5) The use of the RAMSS tool will aid the...year. The RAMSS system manager would provide expertise to the STM/ DSE for each software OT&E effort, maintain the RAMSS and supporta- bility evaluation

  19. Calibration philosophy for reactor instrumentation

    International Nuclear Information System (INIS)

    Saroja, A.R.; Ilango Sambasivan, S.; Swaminathan, P.

    2004-01-01

    All electronic test and measuring systems and process control instruments constitute a critical and important area of instrumentation in the nuclear and conventional power plant, process plant and research laboratories. All these instruments need periodic calibration. Therefore standards laboratories is one of the essential tools in enforcing quality. Calibration of these instruments plays a vital role in the performance, reliability, and quality of the target to be achieved. Thus calibration is a must if need speed and quality. (author)

  20. PC Calibration of Measuring Instrument

    OpenAIRE

    Gold, Ayoola

    2015-01-01

    Calibration involves the adjustment of measuring instruments basically by comparing the values obtained from a measuring instrument with a standard instrument whose output value is known. This project is focused at developing an application used to calibrate measuring instruments (oscilloscope) in the laboratory. This application eases the traditional inputting of output value manually from the calibrator (Fluke 5500A in this case) to the oscilloscope (Agilent DSO5012A oscilloscope in this ca...

  1. Automation of dosimeters calibration for radiotherapy in secondary dosimetric calibration laboratory of the CPHR; Automatizacion de la calibracion de dosimetros de radioterapia en el laboratorio secundario de calibracion dosimetrica del CPHR

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, Andy L. Romero; Lores, Stefan Gutierrez, E-mail: c19btm@frcuba.co.cu [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba)

    2013-11-01

    This paper presents the design and implementation of an automated system for measurements in the calibration of reference radiation dosimeters. It was made a software application that performs the acquisition of the measured values of electric charge, calculated calibration coefficient and automates the calibration certificate issuance. These values are stored in a log file on a PC. The use of the application improves control over the calibration process, helps to humanize the work and reduces personnel exposure. The tool developed has been applied to the calibration of dosimeters radiation patterns in the LSCD of the Centro de Proteccion e Higiene de las Radiaciones, Cuba.

  2. Offline software for the DAMPE experiment

    Science.gov (United States)

    Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin

    2017-10-01

    A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science

  3. A bipolar monolithic preamplifier for high-capacitance SSC [Superconducting Super Collider] silicon calorimetry

    International Nuclear Information System (INIS)

    Britton, C.L. Jr.; Kennedy, E.J.; Bugg, W.M.

    1990-01-01

    This paper describes a preamplifier designed and fabricated specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). The topology and its features are discussed in addition to the design methodology employed. The simulated and measured results for noise, power consumption, and speed are presented. Simulated an measured data for radiation damage effects as well as data for post-damage annealing are also presented. 8 refs., 7 figs., 2 tabs

  4. Application of calorimetry in evaluation of phase transformations in the selected hypoeutectic silumins

    Directory of Open Access Journals (Sweden)

    J. Szymszal

    2009-04-01

    Full Text Available The investigations of phase transformations described in this study were carried out on hypoeutectic alloys from the Al-Si during heating and cooling. The determination and analysis of characteristic temperature values from the solidification range was made by the DSC method in calorimetric investigations carried out on a high-temperature multi HTC Setaram scanning calorimeter. Applying the lever rule, the phase composition of the examined slumins was calculated and compared with the results of DSC calorimetry.

  5. Immersion Calorimetry for the Characterization of PD Catalysts Supported on Activated Carbon

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2009-01-01

    Full Text Available Activated carbons obtained from coconut peel were oxidized using hydrogen peroxide. Superficial characteristics of these carbons were determined through N2 and CO2 isotherms and functional groups were characterized by TPD. Finally, the microcalorimetry technique was used in order to obtain the immersion enthalpies in diverse liquids and established the relation between them and the results obtained by the other characterization techniques. The results suggested that the immersion calorimetry allow establishing the difference between the supports and the catalysts.

  6. A survey of the year 2007 literature on applications of isothermal titration calorimetry

    OpenAIRE

    Bjelic, S; Jelesarov, I

    2008-01-01

    Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating ...

  7. Photothermal beam deflection calorimetry in solution photochemistry: recent progress and future prospects.

    Science.gov (United States)

    Falvey, D E

    1997-01-01

    Photothermal beam deflection (PBD) calorimetry is a technique that measures changes in the solvent's refractive index that accompanies photothermal heating. This method is capable of extracting both kinetic and thermodynamic information from photochemical reactions. A qualitative description of physical basis of time-resolved PBD is presented. Several recent examples of its application to photochemical and photobiological problems are discussed. Finally, the advantages and limitations of PBD are described.

  8. Determination of the aggregation number for micelles by isothermal titration calorimetry

    DEFF Research Database (Denmark)

    Olesen, Niels Erik; Holm, Rene; Westh, Peter

    2014-01-01

    Isothermal titration calorimetry (ITC) has previously been applied to estimate the aggregation number (n), Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of micellization. However, some difficulties of micelle characterization by ITC still remain; most micelles have aggregation numbers...... insight into optimal design of titration protocols for micelle characterization. By applying the new method, the aggregation number of sodium dodecyl sulphate and glycochenodeoxycholate was determined at concentrations around their critical micelle concentration (CMC)...

  9. Monitoring of an RNA Multistep Folding Pathway by Isothermal Titration Calorimetry

    OpenAIRE

    Reymond, Cédric; Bisaillon, Martin; Perreault, Jean-Pierre

    2009-01-01

    Isothermal titration calorimetry was used to monitor the energetic landscape of a catalytic RNA, specifically that of the hepatitis delta virus ribozyme. Using mutants that isolated various tertiary interactions, the thermodynamic parameters of several ribozyme-substrate intermediates were determined. The results shed light on the impact of several tertiary interactions on the global structure of the ribozyme. In addition, the data indicate that the formation of the P1.1 pseudoknot is the lim...

  10. SURF Model Calibration Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-D simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.

  11. Pragmatic Software Innovation

    DEFF Research Database (Denmark)

    Aaen, Ivan; Jensen, Rikke Hagensby

    2014-01-01

    We understand software innovation as concerned with introducing innovation into the development of software intensive systems, i.e. systems in which software development and/or integration are dominant considerations. Innovation is key in almost any strategy for competitiveness in existing markets......, for creating new markets, or for curbing rising public expenses, and software intensive systems are core elements in most such strategies. Software innovation therefore is vital for about every sector of the economy. Changes in software technologies over the last decades have opened up for experimentation......, learning, and flexibility in ongoing software projects, but how can this change be used to facilitate software innovation? How can a team systematically identify and pursue opportunities to create added value in ongoing projects? In this paper, we describe Deweyan pragmatism as the philosophical foundation...

  12. Software Engineering Improvement Plan

    Science.gov (United States)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  13. Improving Software Reliability Forecasting

    NARCIS (Netherlands)

    Burtsy, Bernard; Albeanu, Grigore; Boros, Dragos N.; Popentiu, Florin; Nicola, V.F.

    1996-01-01

    This work investigates some methods for software reliability forecasting. A supermodel is presented as a suited tool for prediction of reliability in software project development. Also, times series forecasting for cumulative interfailure time is proposed and illustrated.

  14. Spotting software errors sooner

    International Nuclear Information System (INIS)

    Munro, D.

    1989-01-01

    Static analysis is helping to identify software errors at an earlier stage and more cheaply than conventional methods of testing. RTP Software's MALPAS system also has the ability to check that a code conforms to its original specification. (author)

  15. Avionics and Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Avionics and Software (A&S) project is to develop a reference avionics and software architecture that is based on standards and that can be...

  16. Paladin Software Support Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Paladin Software Support Environment (SSE) occupies 2,241 square-feet. It contains the hardware and software tools required to support the Paladin Automatic Fire...

  17. Software service history report

    Science.gov (United States)

    2002-01-01

    The safe and reliable operation of software within civil aviation systems and equipment has historically been assured through the application of rigorous design assurance applied during the software development process. Increasingly, manufacturers ar...

  18. Portable compact multifunction IR calibrator

    International Nuclear Information System (INIS)

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  19. Radiological Calibration and Standards Facility

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  20. MAVEN SWIA Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains fully calibrated MAVEN SWIA data, including ion velocity distributions, energy spectra, and density, temperature, and velocity moments from...

  1. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.; Hansen, A.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions....... It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometersmay take more than one month in order to have wind speeds covering a sufficiently large magnitude range...

  2. Calibration of Nanopositioning Stages

    Directory of Open Access Journals (Sweden)

    Ning Tan

    2015-12-01

    Full Text Available Accuracy is one of the most important criteria for the performance evaluation of micro- and nanorobots or systems. Nanopositioning stages are used to achieve the high positioning resolution and accuracy for a wide and growing scope of applications. However, their positioning accuracy and repeatability are not well known and difficult to guarantee, which induces many drawbacks for many applications. For example, in the mechanical characterisation of biological samples, it is difficult to perform several cycles in a repeatable way so as not to induce negative influences on the study. It also prevents one from controlling accurately a tool with respect to a sample without adding additional sensors for closed loop control. This paper aims at quantifying the positioning repeatability and accuracy based on the ISO 9283:1998 standard, and analyzing factors influencing positioning accuracy onto a case study of 1-DoF (Degree-of-Freedom nanopositioning stage. The influence of thermal drift is notably quantified. Performances improvement of the nanopositioning stage are then investigated through robot calibration (i.e., open-loop approach. Two models (static and adaptive models are proposed to compensate for both geometric errors and thermal drift. Validation experiments are conducted over a long period (several days showing that the accuracy of the stage is improved from typical micrometer range to 400 nm using the static model and even down to 100 nm using the adaptive model. In addition, we extend the 1-DoF calibration to multi-DoF with a case study of a 2-DoF nanopositioning robot. Results demonstrate that the model efficiently improved the 2D accuracy from 1400 nm to 200 nm.

  3. Efficient mass calibration of magnetic sector mass spectrometers

    International Nuclear Information System (INIS)

    Roddick, J.C.

    1996-01-01

    Magnetic sector mass spectrometers used for automatic acquisition of precise isotopic data are usually controlled with Hall probes and software that uses polynomial equations to define and calibrate the mass-field relations required for mass focusing. This procedure requires a number of reference masses and careful tuning to define and maintain an accurate mass calibration. A simplified equation is presented and applied to several different magnetically controlled mass spectrometers. The equation accounts for nonlinearity in typical Hall probe controlled mass-field relations, reduces calibration to a linear fitting procedure, and is sufficiently accurate to permit calibration over a mass range of 2 to 200 amu with only two defining masses. Procedures developed can quickly correct for normal drift in calibrations and compensate for drift during isotopic analysis over a limited mass range such as a single element. The equation is: Field A·Mass 1/2 + B·(Mass) p where A, B, and p are constants. The power value p has a characteristic value for a Hall probe/controller and is insensitive to changing conditions, thus reducing calibration to a linear regression to determine optimum A and B. (author). 1 ref., 1 tab., 6 figs

  4. CALOR2012 XVth International Conference on Calorimetry in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, Nural .

    2015-05-04

    The International Conferences on Calorimetry in High Energy Physics, or the CALOR series, have always been where the calorimeter experts come together to review the state of calorimetry and bring forth new ideas every two years. The fteenth conference, CALOR2012, in Santa Fe was no exception. Although they were built roughly a decade ago, we are now witnessing the exceptional power of the LHC calorimeters and the crucial role they have been playing in the discovery of the 125 GeV Higgs-like boson. As we ruminate on the coming generation of experiments at the next (linear) collider and on the upgrades at the LHC, we are heartened by the substantial advances we made in calorimetry in the last decade. These advances will certainly help uncover new physics in the years to come, not only at colliders but also in astroparticle experiments that take advantage of natural elements such as air, water, and ice. The proceedings were published by the IOP in Journal of Physics, Vol 404 2011. The conference web site is calor2012.ttu.edu.

  5. Mathematical model of cycad cones' thermogenic temperature responses: inverse calorimetry to estimate metabolic heating rates.

    Science.gov (United States)

    Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I

    2012-12-21

    A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group.

    Science.gov (United States)

    Oshima, Taku; Berger, Mette M; De Waele, Elisabeth; Guttormsen, Anne Berit; Heidegger, Claudia-Paula; Hiesmayr, Michael; Singer, Pierre; Wernerman, Jan; Pichard, Claude

    2017-06-01

    This review aims to clarify the use of indirect calorimetry (IC) in nutritional therapy for critically ill and other patient populations. It features a comprehensive overview of the technical concepts, the practical application and current developments of IC. Pubmed-referenced publications were analyzed to generate an overview about the basic knowledge of IC, to describe advantages and disadvantages of the current technology, to clarify technical issues and provide pragmatic solutions for clinical practice and metabolic research. The International Multicentric Study Group for Indirect Calorimetry (ICALIC) has generated this position paper. IC can be performed in in- and out-patients, including those in the intensive care unit, to measure energy expenditure (EE). Optimal nutritional therapy, defined as energy prescription based on measured EE by IC has been associated with better clinical outcome. Equations based on simple anthropometric measurements to predict EE are inaccurate when applied to individual patients. An ongoing international academic initiative to develop a new indirect calorimeter aims at providing innovative and affordable technical solutions for many of the current limitations of IC. Indirect calorimetry is a tool of paramount importance, necessary to optimize the nutrition therapy of patients with various pathologies and conditions. Recent technical developments allow broader use of IC for in- and out-patients. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. Interaction of diethyl aniline methylphosphonate with DNA: Spectroscopic and isothermal titration calorimetry

    International Nuclear Information System (INIS)

    Lu Yan; Xu Meihua; Wang Gongke; Zheng Yun

    2011-01-01

    In this study the diethyl aniline methylphosphonate (DAM) was synthesized, the interaction of DAM with ct-DNA has been investigated by fluorescence spectra, UV spectra, molecular modeling and isothermal titration calorimetry (ITC). The binding constant of DAM to ct-DNA calculated from both isothermal titration calorimetry and fluorescence spectra were found to be in the 10 4 M -1 range. According to the ethidium bromide displacement studies, UV spectra and isothermal titration calorimetry experimental results, it can be concluded that DAM is an intercalator that can slide into the G-C rich region of ct-DNA. Furthermore, the results obtained from molecular modeling corroborated the experimental results obtanied from spectroscopic and ITC investigations. At the same time, fluorescence spectra suggested that the mechanism of the interaction of DAM to ct-DNA was a static enhancing type. ITC data showed that ct-DNA/DAM binding is enthalpy controlled. - Research highlights: → The interaction of DAM with ct-DNA is a static enhancing type. → DAM can slide into the G-C rich region of ct-DNA. → The binding of DAM to ct-DNA is enthalpy controlled. → The hydrogen bonding forces play an essential role in the binding process.

  8. AC calorimetry of H2O at pressures up to 9 GPa in diamond anvil cells

    Science.gov (United States)

    Geballe, Zachary M.; Struzhkin, Viktor V.

    2017-06-01

    If successfully developed, calorimetry at tens of GPa of pressure could help characterize phase transitions in materials such as high-pressure minerals, metals, and molecular solids. Here, we extend alternating-current calorimetry to 9 GPa and 300 K in a diamond anvil cell and use it to study phase transitions in H2O. In particular, water is loaded into the sample chambers of diamond-cells, along with thin metal heaters (1 μm-thick platinum or 20 nm-thick gold on a glass substrate) that drive high-frequency temperature oscillations (20 Hz to 600 kHz; 1 to 10 K). The heaters also act as thermometers via the third-harmonic technique, yielding calorimetric data on (1) heat conduction to the diamonds and (2) heat transport into substrate and sample. Using this method during temperature cycles from 300 to 200 K, we document melting, freezing, and proton ordering and disordering transitions of H2O at 0 to 9 GPa, and characterize changes in thermal conductivity and heat capacity across these transitions. The technique and analysis pave the way for calorimetry experiments on any non-metal at pressures up to ˜100 GPa, provided a thin layer (several μm-thick) of thermal insulation supports a metallic thin-film (tens of nm thick) Joule-heater attached to low contact resistance leads inside the sample chamber of a diamond-cell.

  9. Proteolytic Scanning Calorimetry: A Novel Methodology that Probes the Fundamental Features of Protein Kinetic Stability

    Science.gov (United States)

    Tur-Arlandis, Gema; Rodriguez-Larrea, David; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2010-01-01

    We introduce proteolytic scanning calorimetry, a modification of the differential scanning calorimetry approach to the determination of protein stability in which a proteolytic enzyme (thermolysin) is used to mimic a harsh environment. This methodology allows the straightforward calculation of the rate of irreversible denaturation as a function of temperature and concentration of proteolytic enzyme and, as a result, has the potential to probe efficiently the fundamental biophysical features of protein kinetic stability. In the particular case of Escherichia coli thioredoxin (used as an illustrative example in this article), we find that the rate of irreversible denaturation is determined by 1), the global unfolding mechanism at low thermolysin concentrations, indicating that thermodynamic stability may contribute directly to the kinetic stability of thioredoxin under moderately harsh conditions and 2), the rate of unfolding at high thermolysin concentrations, indicating that the free-energy barrier for unfolding may act as a safety mechanism that ensures significant kinetic stability, even in very harsh environments. This thioredoxin picture, however, is by no means expected to be general and different proteins may show different patterns of kinetic stabilization. Proteolytic scanning calorimetry is particularly well-suited to probe this diversity at a fundamental biophysical level. PMID:20303845

  10. Software engineering measurement

    CERN Document Server

    Munson, PhD, John C

    2003-01-01

    By demonstrating how to develop simple experiments for the empirical validation of theoretical research and showing how to convert measurement data into meaningful and valuable information, this text fosters more precise use of software measurement in the computer science and software engineering literature. Software Engineering Measurement shows you how to convert your measurement data to valuable information that can be used immediately for software process improvement.

  11. Agent Building Software

    Science.gov (United States)

    2000-01-01

    AgentBuilder is a software component developed under an SBIR contract between Reticular Systems, Inc., and Goddard Space Flight Center. AgentBuilder allows software developers without experience in intelligent agent technologies to easily build software applications using intelligent agents. Agents are components of software that will perform tasks automatically, with no intervention or command from a user. AgentBuilder reduces the time and cost of developing agent systems and provides a simple mechanism for implementing high-performance agent systems.

  12. Software engineer's pocket book

    CERN Document Server

    Tooley, Michael

    2013-01-01

    Software Engineer's Pocket Book provides a concise discussion on various aspects of software engineering. The book is comprised of six chapters that tackle various areas of concerns in software engineering. Chapter 1 discusses software development, and Chapter 2 covers programming languages. Chapter 3 deals with operating systems. The book also tackles discrete mathematics and numerical computation. Data structures and algorithms are also explained. The text will be of great use to individuals involved in the specification, design, development, implementation, testing, maintenance, and qualit

  13. Software quality challenges.

    OpenAIRE

    Fitzpatrick, Ronan; Smith, Peter; O'Shea, Brendan

    2004-01-01

    This paper sets out a number of challenges facing the software quality community. These challenges relate to the broader view of quality and the consequences for software quality definitions. These definitions are related to eight perspectives of software quality in an end-to-end product life cycle. Research and study of software quality has traditionally focused on product quality for management information systems and this paper considers the challenge of defining additional quality factors...

  14. Software verification and testing

    Science.gov (United States)

    1985-01-01

    General procedures for software verification and validation are provided as a guide for managers, programmers, and analysts involved in software development. The verification and validation procedures described are based primarily on testing techniques. Testing refers to the execution of all or part of a software system for the purpose of detecting errors. Planning, execution, and analysis of tests are outlined in this document. Code reading and static analysis techniques for software verification are also described.

  15. Software Testing Requires Variability

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2003-01-01

    Software variability is the ability of a software system or artefact to be changed, customized or configured for use in a particular context. Variability in software systems is important from a number of perspectives. Some perspectives rightly receive much attention due to their direct economic...... impact in software production. As is also apparent from the call for papers these perspectives focus on qualities such as reuse, adaptability, and maintainability....

  16. Gammasphere software development

    International Nuclear Information System (INIS)

    Piercey, R.B.

    1994-01-01

    This report describes the activities of the nuclear physics group at Mississippi State University which were performed during 1993. Significant progress has been made in the focus areas: chairing the Gammasphere Software Working Group (SWG); assisting with the porting and enhancement of the ORNL UPAK histogramming software package; and developing standard formats for Gammasphere data products. In addition, they have established a new public ftp archive to distribute software and software development tools and information

  17. Software variability management

    NARCIS (Netherlands)

    Bosch, J; Nord, RL

    2004-01-01

    During recent years, the amount of variability that has to be supported by a software artefact is growing considerably and its management is evolving into a major challenge during development, usage, and evolution of software artefacts. Successful management of variability in software leads to

  18. Software Language Evolution

    NARCIS (Netherlands)

    Vermolen, S.D.

    2012-01-01

    Software plays a critical role in our daily life. Vast amounts of money are spent on more and more complex systems. All software, regardless if it controls a plane or the game on your phone is never finished. Software changes when it contains bugs or when new functionality is added. This process of

  19. Computer software quality assurance

    International Nuclear Information System (INIS)

    Ives, K.A.

    1986-06-01

    The author defines some criteria for the evaluation of software quality assurance elements for applicability to the regulation of the nuclear industry. The author then analyses a number of software quality assurance (SQA) standards. The major extracted SQA elements are then discussed, and finally specific software quality assurance recommendations are made for the nuclear industry

  20. Software Engineering for Portability.

    Science.gov (United States)

    Stanchev, Ivan

    1990-01-01

    Discussion of the portability of educational software focuses on the software design and development process. Topics discussed include levels of portability; the user-computer dialog; software engineering principles; design techniques for student performance records; techniques of courseware programing; and suggestions for further research and…

  1. Astronomical Software Directory Service

    Science.gov (United States)

    Hanisch, R. J.; Payne, H.; Hayes, J.

    1998-01-01

    This is the final report on the development of the Astronomical Software Directory Service (ASDS), a distributable, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URL's indexed for full-text searching.

  2. Software Architecture Evolution

    Science.gov (United States)

    Barnes, Jeffrey M.

    2013-01-01

    Many software systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute requirements, changing technology, or other reasons. Whatever the causes, architecture evolution is commonplace in real-world software projects. Today's software architects, however,…

  3. Software Quality Assurance in Software Projects: A Study of Pakistan

    OpenAIRE

    Faisal Shafique Butt; Sundus Shaukat; M. Wasif Nisar; Ehsan Ullah Munir; Muhammad Waseem; Kashif Ayyub

    2013-01-01

    Software quality is specific property which tells what kind of standard software should have. In a software project, quality is the key factor of success and decline of software related organization. Many researches have been done regarding software quality. Software related organization follows standards introduced by Capability Maturity Model Integration (CMMI) to achieve good quality software. Quality is divided into three main layers which are Software Quality Assurance (SQA), Software Qu...

  4. Global Software Development : - Software Architecture - Organization - Communication

    OpenAIRE

    Førde, Dan Sørensen

    2003-01-01

    Our globalized world has an impact on almost any area of our lives. The globalization affecting the business running around the globe, and forces employees and managers to think of new ways of doing their business. Globalization in the software development industry increased through the 1990s and is still increasing. The Internet makes the collaboration possible and the developers do not need to be co-located to work together on a common software development project. The ...

  5. Bench calibration of INDUS-2 beam position indicators

    International Nuclear Information System (INIS)

    Tyagi, Y.; Banerji, Anil; Kotaiah, S.

    2005-01-01

    A third generation synchrotron radiation source of energy 2.5 GeV named INDUS-2 at Centre for Advanced Technology (C.A.T), Indore (M.P) is in the advanced stage of construction. Accurate determination and correction of beam closed orbit in INDUS-2 machine within 100 of microns is a very desirable goal. Bench based calibration of Beam Position Indicators (BPI) play a very important and useful role during initial commissioning of electron machines. To precisely measure transverse position of electron beam in the Indus-2 storage ring, 56 Beam Position Indicators (BPI) will be installed in INDUS-2 machine. Out of 56 Beam Position Indicators 40 are of individual type whereas 16 are integrated with dipole vacuum chamber. The Beam Position Indicators are required to be calibrated before they can be installed. The calibration is done to determine electrical offset with respect to defined mechanical centre, to determine displacement sensitivities as well as non linearity's of BPI. Ideally when beam passes through the geometrical center of BPI's, all electrodes should have same signal strength. However due to different capacitance of electrodes and offset and drift in electronics, the electrical centre (mechanical x, y where all electrodes shows same signal strength) differs from mechanical centre of BPI. A fully automatic calibration system has been developed to carry out the calibration of Beam Position Indicators. A calibration software has been developed which has necessary utilities to process and display calibration data and results. This paper describes the calibration results of Indus-2 BPM. (author)

  6. LANL MTI calibration team experience

    Science.gov (United States)

    Bender, Steven C.; Atkins, William H.; Clodius, William B.; Little, Cynthia K.; Christensen, R. Wynn

    2004-01-01

    The Multispectral Thermal Imager (MTI) was designed as an imaging radiometer with absolute calibration requirements established by Department of Energy (DOE) mission goals. Particular emphasis was given to water surface temperature retrieval using two mid wave and three long wave infrared spectral bands, the fundamental requirement was a surface temperature determination of 1K at the 68% confidence level. For the ten solar reflective bands a one-sigma radiometric performance goal of 3% was established. In order to address these technical challenges a calibration facility was constructed containing newly designed sources that were calibrated at NIST. Additionally, the design of the payload and its onboard calibration system supported post launch maintenance and update of the ground calibration. The on-orbit calibration philosophy also included vicarious techniques using ocean buoys, playas and other instrumented sites; these became increasingly important subsequent to an electrical failure which disabled the onboard calibration system. This paper offers various relevant lessons learned in the eight-year process of reducing to practice the calibration capability required by the scientific mission. The discussion presented will include observations pertinent to operational and procedural issues as well as hardware experiences; the validity of some of the initial assumptions will also be explored.

  7. Essence: Facilitating Software Innovation

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2008-01-01

      This paper suggests ways to facilitate creativity and innovation in software development. The paper applies four perspectives – Product, Project, Process, and People –to identify an outlook for software innovation. The paper then describes a new facility–Software Innovation Research Lab (SIRL) ......) – and a new method concept for software innovation – Essence – based on views, modes, and team roles. Finally, the paper reports from an early experiment using SIRL and Essence and identifies further research.......  This paper suggests ways to facilitate creativity and innovation in software development. The paper applies four perspectives – Product, Project, Process, and People –to identify an outlook for software innovation. The paper then describes a new facility–Software Innovation Research Lab (SIRL...

  8. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    Science.gov (United States)

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  9. The Advanced LIGO photon calibrators.

    Science.gov (United States)

    Karki, S; Tuyenbayev, D; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Cahillane, C; Canete, L; Conley, C; Daveloza, H P; De Lillo, N; Gleason, J R; Goetz, E; Izumi, K; Kissel, J S; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-11-01

    The two interferometers of the Laser Interferometry Gravitational-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as photon calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO photon calibrators that are currently providing fiducial displacements on the order of 10 -18 m/Hz with accuracy and precision of better than 1%.

  10. The Advanced LIGO photon calibrators

    Science.gov (United States)

    Karki, S.; Tuyenbayev, D.; Kandhasamy, S.; Abbott, B. P.; Abbott, T. D.; Anders, E. H.; Berliner, J.; Betzwieser, J.; Cahillane, C.; Canete, L.; Conley, C.; Daveloza, H. P.; De Lillo, N.; Gleason, J. R.; Goetz, E.; Izumi, K.; Kissel, J. S.; Mendell, G.; Quetschke, V.; Rodruck, M.; Sachdev, S.; Sadecki, T.; Schwinberg, P. B.; Sottile, A.; Wade, M.; Weinstein, A. J.; West, M.; Savage, R. L.

    2016-11-01

    The two interferometers of the Laser Interferometry Gravitational-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as photon calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO photon calibrators that are currently providing fiducial displacements on the order of 1 0-18m /√{Hz } with accuracy and precision of better than 1%.

  11. Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene.

    Science.gov (United States)

    Vernimmen, Jarian; Guidotti, Matteo; Silvestre-Albero, Joaquin; Jardim, Erika O; Mertens, Myrjam; Lebedev, Oleg I; Van Tendeloo, Gustaaf; Psaro, Rinaldo; Rodríguez-Reinoso, Francisco; Meynen, Vera; Cool, Pegie

    2011-04-05

    Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.

  12. Software to Control and Monitor Gas Streams

    Science.gov (United States)

    Arkin, C.; Curley, Charles; Gore, Eric; Floyd, David; Lucas, Damion

    2012-01-01

    This software package interfaces with various gas stream devices such as pressure transducers, flow meters, flow controllers, valves, and analyzers such as a mass spectrometer. The software provides excellent user interfacing with various windows that provide time-domain graphs, valve state buttons, priority- colored messages, and warning icons. The user can configure the software to save as much or as little data as needed to a comma-delimited file. The software also includes an intuitive scripting language for automated processing. The configuration allows for the assignment of measured values or calibration so that raw signals can be viewed as usable pressures, flows, or concentrations in real time. The software is based on those used in two safety systems for shuttle processing and one volcanic gas analysis system. Mass analyzers typically have very unique applications and vary from job to job. As such, software available on the market is usually inadequate or targeted on a specific application (such as EPA methods). The goal was to develop powerful software that could be used with prototype systems. The key problem was to generalize the software to be easily and quickly reconfigurable. At Kennedy Space Center (KSC), the prior art consists of two primary methods. The first method was to utilize Lab- VIEW and a commercial data acquisition system. This method required rewriting code for each different application and only provided raw data. To obtain data in engineering units, manual calculations were required. The second method was to utilize one of the embedded computer systems developed for another system. This second method had the benefit of providing data in engineering units, but was limited in the number of control parameters.

  13. PROSPECT: Optical Calibration System

    Science.gov (United States)

    Trinh, Ken; Prospect Collaboration

    2016-09-01

    The Precision Reactor Oscillation and SPECTrum Experiment (PROSPECT), is a short baseline, reactor neutrino experiment which focuses on measurements of the flux and energy spectrum of antineutrinos emitted from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Using these measurements, PROSPECT will probe for eV-scale sterile neutrinos while making a high precision measurement of the U-235 antineutrino spectrum. PROSPECT contains two phases; the first phase consists of a mobile detector near the reactor core while the second phase adds a larger fixed detector further from the core. The PROSPECT Phase 1 detector consists of a 2ton optically segmented liquid scintillator with each segment read-out by two photomultiplier tubes (PMTs). The PMTs are calibrated with a photon source generated by a nanosecond pulsed laser. In this project, we developed a plan to determine the effectiveness of a 450nm fiber-pigtailed diode laser as it coupled with several modules including an optical fiber splitter, an optical diffuser, and an attenuator. The project tested for the system ability to deliver light uniformly to each of the cells in the detector. We will present the design and result of this project as well as discuss how it will be implemented in PROSPECT.

  14. NASA software documentation standard software engineering program

    Science.gov (United States)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  15. Science and Software

    Science.gov (United States)

    Zelt, C. A.

    2017-12-01

    Earth science attempts to understand how the earth works. This research often depends on software for modeling, processing, inverting or imaging. Freely sharing open-source software is essential to prevent reinventing the wheel and allows software to be improved and applied in ways the original author may never have envisioned. For young scientists, releasing software can increase their name ID when applying for jobs and funding, and create opportunities for collaborations when scientists who collect data want the software's creator to be involved in their project. However, we frequently hear scientists say software is a tool, it's not science. Creating software that implements a new or better way of earth modeling or geophysical processing, inverting or imaging should be viewed as earth science. Creating software for things like data visualization, format conversion, storage, or transmission, or programming to enhance computational performance, may be viewed as computer science. The former, ideally with an application to real data, can be published in earth science journals, the latter possibly in computer science journals. Citations in either case should accurately reflect the impact of the software on the community. Funding agencies need to support more software development and open-source releasing, and the community should give more high-profile awards for developing impactful open-source software. Funding support and community recognition for software development can have far reaching benefits when the software is used in foreseen and unforeseen ways, potentially for years after the original investment in the software development. For funding, an open-source release that is well documented should be required, with example input and output files. Appropriate funding will provide the incentive and time to release user-friendly software, and minimize the need for others to duplicate the effort. All funded software should be available through a single web site

  16. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  17. Control and analysis software for a laser scanning microdensitometer

    Indian Academy of Sciences (India)

    ... a user-friendly Graphical User Interface (GUI) to analyse the scanned data and also store the analysed data/image in popular formats like data in Excel and images in jpeg. It has also on-line calibration facility with standard optical density tablets. The control software and data acquisition system is simple, inexpensive and ...

  18. AN EVALUATION OF FIVE COMMERCIAL IMMUNOASSAY DATA ANALYSIS SOFTWARE SYSTEMS

    Science.gov (United States)

    An evaluation of five commercial software systems used for immunoassay data analysis revealed numerous deficiencies. Often, the utility of statistical output was compromised by poor documentation. Several data sets were run through each system using a four-parameter calibration f...

  19. Specific heat capacities of different clayey samples obtained by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2012-01-01

    Document available in extended abstract form only. The thermo-physical properties allow to calculate heat flows and to determine the thermal behaviour of the materials. Temperature influences the rates of the physical, chemical and biological reactions and processes in the soil or a material. Variations in temperature and water content in thermal, hydraulic, mechanical and geochemical processes affect the thermal properties such as density, specific heat, thermal conductivity and thermal diffusivity. Therefore, mathematical models that describe the dependence of the thermal properties on temperature and concentration are of interest to be used in computational programs applied to the modelling of coupled thermo-mechanical-hydraulic and chemical (THMC) processes. In this work, the specific heat capacity of different clayey international reference materials was determined. Differential Scanning Calorimetry (DSC) was used for such purpose. DSC is the main tool for determining the specific heat capacities of materials as a function of temperature. The specific heat capacity, c p (J/Kg.K), is a measurement of the amount of heat required to raise the temperature of a unit mass of a substance by one unit of temperature. A change in temperature, caused by a gain or a loss of heat from a material, depends on the specific heat capacity of the material. Thus, the specific heat capacity is a key and characteristic property of a material and/or substance, which should be determine accurately. The specific heat capacity is an intensive property and, unlike the thermal conductivity and thermal diffusivity, is independent of the dry density of the material. C p of the solid samples was determined by using a SETSYS Evolution 16 thermal analyser coupled to a differential scanning calorimeter (TG-DSC-DTA) from SETARAM Instrumentation. The thermal analyser system can use a heating rate from 0.01 to 100 C/min under a dynamic argon atmosphere and temperatures ranging from ambient to

  20. Kinect Fusion improvement using depth camera calibration

    Directory of Open Access Journals (Sweden)

    D. Pagliari

    2014-06-01

    Full Text Available Scene's 3D modelling, gesture recognition and motion tracking are fields in rapid and continuous development which have caused growing demand on interactivity in video-game and e-entertainment market. Starting from the idea of creating a sensor that allows users to play without having to hold any remote controller, the Microsoft Kinect device was created. The Kinect has always attract researchers in different fields, from robotics to Computer Vision (CV and biomedical engineering as well as third-party communities that have released several Software Development Kit (SDK versions for Kinect in order to use it not only as a game device but as measurement system. Microsoft Kinect Fusion control libraries (firstly released in March 2013 allow using the device as a 3D scanning and produce meshed polygonal of a static scene just moving the Kinect around. A drawback of this sensor is the geometric quality of the delivered data and the low repeatability. For this reason the authors carried out some investigation in order to evaluate the accuracy and repeatability of the depth measured delivered by the Kinect. The paper will present a throughout calibration analysis of the Kinect imaging sensor, with the aim of establishing the accuracy and precision of the delivered information: a straightforward calibration of the depth sensor in presented and then the 3D data are correct accordingly. Integrating the depth correction algorithm and correcting the IR camera interior and exterior orientation parameters, the Fusion Libraries are corrected and a new reconstruction software is created to produce more accurate models.

  1. Kinect Fusion improvement using depth camera calibration

    Science.gov (United States)

    Pagliari, D.; Menna, F.; Roncella, R.; Remondino, F.; Pinto, L.

    2014-06-01

    Scene's 3D modelling, gesture recognition and motion tracking are fields in rapid and continuous development which have caused growing demand on interactivity in video-game and e-entertainment market. Starting from the idea of creating a sensor that allows users to play without having to hold any remote controller, the Microsoft Kinect device was created. The Kinect has always attract researchers in different fields, from robotics to Computer Vision (CV) and biomedical engineering as well as third-party communities that have released several Software Development Kit (SDK) versions for Kinect in order to use it not only as a game device but as measurement system. Microsoft Kinect Fusion control libraries (firstly released in March 2013) allow using the device as a 3D scanning and produce meshed polygonal of a static scene just moving the Kinect around. A drawback of this sensor is the geometric quality of the delivered data and the low repeatability. For this reason the authors carried out some investigation in order to evaluate the accuracy and repeatability of the depth measured delivered by the Kinect. The paper will present a throughout calibration analysis of the Kinect imaging sensor, with the aim of establishing the accuracy and precision of the delivered information: a straightforward calibration of the depth sensor in presented and then the 3D data are correct accordingly. Integrating the depth correction algorithm and correcting the IR camera interior and exterior orientation parameters, the Fusion Libraries are corrected and a new reconstruction software is created to produce more accurate models.

  2. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    International Nuclear Information System (INIS)

    Machefert, F.

    2011-01-01

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the pre-shower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure this tolerance are also given. The second part of this document concerns both the identification of the photons with LHCb and the calibration of the calorimeters. The photon identification method is presented and the performances given. Finally, the absolute energy calibration of the PRS and ECAL, based on the data stored in 2010 is explained. (author)

  3. The ATLAS Inner Detector commissioning and calibration

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos, F.Santos Pedrosa; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Guimara, J.Barreiro; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Urban, S.Cabrera; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernadez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El, R.Moursli; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Muino, P.Conde; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro, P.E.Faria Salgado; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira, M.Branco; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Vale, M.A.B.do; Do Valle, A.Wemans; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Navarro, J.E.Garcia; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Plante, I.Jen-La; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook, A.Cheong; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Dit Latour, B.Martin; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llacer, M.Moreno; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.E.M.; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos, D.Santos; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M.A.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R.D.St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires, F.J.Viegas; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Pastor, E.Torro; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; della Porta, G.Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 {\\mu}m and a relative momentum resolution {\\sigma}p/p = (4.83+/-0.16)...

  4. Space environment simulation and sensor calibration facility

    Science.gov (United States)

    Engelhart, Daniel P.; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V.; McGarity, John; Holeman, Ernest

    2018-02-01

    The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.

  5. Calibrating Accelerometers Using an Electromagnetic Launcher

    Energy Technology Data Exchange (ETDEWEB)

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  6. Software Defined Networking Demands on Software Technologies

    DEFF Research Database (Denmark)

    Galinac Grbac, T.; Caba, Cosmin Marius; Soler, José

    2015-01-01

    Software Defined Networking (SDN) is a networking approach based on a centralized control plane architecture with standardised interfaces between control and data planes. SDN enables fast configuration and reconfiguration of the network to enhance resource utilization and service performances....... This new approach enables a more dynamic and flexible network, which may adapt to user needs and application requirements. To this end, systemized solutions must be implemented in network software, aiming to provide secure network services that meet the required service performance levels. In this paper......, we review this new approach to networking from an architectural point of view, and identify and discuss some critical quality issues that require new developments in software technologies. These issues we discuss along with use case scenarios. Here in this paper we aim to identify challenges...

  7. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  8. Comparing Single-Point and Multi-point Calibration Methods in Modulated DSC

    Energy Technology Data Exchange (ETDEWEB)

    Van Buskirk, Caleb Griffith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-14

    Heat capacity measurements for High Density Polyethylene (HDPE) and Ultra-high Molecular Weight Polyethylene (UHMWPE) were performed using Modulated Differential Scanning Calorimetry (mDSC) over a wide temperature range, -70 to 115 °C, with a TA Instruments Q2000 mDSC. The default calibration method for this instrument involves measuring the heat capacity of a sapphire standard at a single temperature near the middle of the temperature range of interest. However, this method often fails for temperature ranges that exceed a 50 °C interval, likely because of drift or non-linearity in the instrument's heat capacity readings over time or over the temperature range. Therefore, in this study a method was developed to calibrate the instrument using multiple temperatures and the same sapphire standard.

  9. IMPLEMENTATION OF ZOOM-DEPENDENT CAMERA CALIBRATION IN CLOSE-RANGE PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    C. S. Fraser

    2012-07-01

    Full Text Available The application of consumer-grade cameras for photogrammetric measurement has traditionally been subject to the requirement that imagery is recorded at fixed zoom and focus settings. The camera is then metrically calibrated, usually via self-calibration, for the lens setting employed. This requirement arises since camera parameters, and especially principal distance and lens distortion coefficients, vary significantly with zoom/focus setting. A recently developed process, titled zoom-dependent (Z-D calibration, removes the necessity for the zoom setting to be fixed during the image capture process. Implementation of Z-D calibration requires that the camera be pre-calibrated at four or more focal settings within the zoom range, nominally at shortest and longest focal lengths, and at two mid-zoom settings. This requirement, coupled with issues of data management in carrying different focal settings for potentially every image within a bundle adjustment, has largely accounted for the reason that Z-D calibration has not previously been implemented within COTS software for close-range photogrammetry. The objective of this paper is to describe the practical implementation of Z-D calibration within software, along with its associated workflow, and to discuss issues that impact upon the accuracy, reliability and appropriateness of the technique. Experimental testing is used to highlight the merits and shortcomings of ZD calibration.

  10. Social software in global software development

    DEFF Research Database (Denmark)

    Giuffrida, Rosalba; Dittrich, Yvonne

    2010-01-01

    Social software (SoSo) is defined by Farkas as tools that (1) allow people to communicate, collaborate, and build community online (2) can be syndicated, shared, reused or remixed and (3) let people learn easily from and capitalize on the behavior and knowledge of others. [1]. SoSo include a wide...... variety of tools such as: instant messaging, internet forums, mailing lists, blogs, wikis, social network sites, social bookmarking, social libraries, virtual worlds. Though normally rather belonging to the private realm, the use of social software in corporate context has been reported, e.g. as a way...

  11. Software architecture evolution

    DEFF Research Database (Denmark)

    Barais, Olivier; Le Meur, Anne-Francoise; Duchien, Laurence

    2008-01-01

    Software architectures must frequently evolve to cope with changing requirements, and this evolution often implies integrating new concerns. Unfortunately, when the new concerns are crosscutting, existing architecture description languages provide little or no support for this kind of evolution...... one particular framework named Tran SAT, which addresses the above problems of software architecture evolution. Tran SAT provides a new element in the software architecture descriptions language, called an architectural aspect, for describing new concerns and their integration into an existing...... architecture. Following the early aspect paradigm, Tran SAT allows the software architect to design a software architecture stepwise in terms of aspects at the design stage. It realises the evolution as the weaving of new architectural aspects into an existing software architecture....

  12. Software engineering in industry

    Science.gov (United States)

    Story, C. M.

    1989-12-01

    Can software be "engineered"? Can a few people with limited resources and a negligible budget produce high quality software solutions to complex software problems? It is possible to resolve the conflict between research activities and the necessity to view software development as a means to an end rather than as an end in itself? The aim of this paper is to encourage further thought and discussion on various topics which, in the author's experience, are becoming increasingly critical in large current software production and development projects, inside and outside high energy physics (HEP). This is done by briefly exploring some of the software engineering ideas and technologies now used in the information industry, using, as a case-study, a project with many similarities to those currently under way in HEP.

  13. DIGITAL CAMERA CALIBRATION USING IMAGES TAKEN FROM AN UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    M. Pérez

    2012-09-01

    Full Text Available For calibrating the camera, an accurate determination of the interior orientation parameters is needed. For more accurate results, the calibration images should be taken under conditions that are similar to the field samples. The aim of this work is the establishment of an efficient and accurate digital camera calibration method to be used in particular working conditions, as it can be found with our UAV (Unmanned Aerial Vehicle photogrammetric projects. The UAV used in this work was md4-200 modelled by Microdrones. The microdrone is also equipped with a standard digital non- metric camera, the Pentax Optio A40 camera. To find out the interior orientation parameters of the digital camera, two calibration methods were done. A lab calibration based on a flat pattern and a field calibration were fulfilled. To carry out the calibration, Photomodeler Scanner software was used in both cases. The lab calibration process was completely automatic using a calibration grid. The focal length was fixed at widest angle and the network included a total of twelve images with± 90º roll angles. In order to develop the field calibration, a flight plan was programmed including a total of twelve images. In the same way as in the lab calibration, the focal length was fixed at widest angle. The field test used in the study was a flat surface located on the University of Almería campus and a set of 67 target points were placed. The calibration field area was 25 × 25 m approximately and the altitude flight over ground was 50 m. After the software processing, the camera calibration parameter values were obtained. The paper presents the process, the results and the accuracy of these calibration methods. The field calibration method reduced the final total error obtained in the previous lab calibration. Furthermore the overall RMSs obtained from both methods are similar. Therefore we will apply the field calibration results to all our photogrammetric projects in which

  14. Software verification for nuclear industry

    International Nuclear Information System (INIS)

    Wilburn, N.P.

    1985-08-01

    Why verification of software products throughout the software life cycle is necessary is considered. Concepts of verification, software verification planning, and some verification methodologies for products generated throughout the software life cycle are then discussed

  15. Computer software configuration management

    International Nuclear Information System (INIS)

    Pelletier, G.

    1987-08-01

    This report reviews the basic elements of software configuration management (SCM) as defined by military and industry standards. Several software configuration management standards are evaluated given the requirements of the nuclear industry. A survey is included of available automated tools for supporting SCM activities. Some information is given on the experience of establishing and using SCM plans of other organizations that manage critical software. The report concludes with recommendations of practices that would be most appropriate for the nuclear power industry in Canada

  16. Software evolution and maintenance

    CERN Document Server

    Tripathy, Priyadarshi

    2014-01-01

    Software Evolution and Maintenance: A Practitioner's Approach is an accessible textbook for students and professionals, which collates the advances in software development and provides the most current models and techniques in maintenance.Explains two maintenance standards: IEEE/EIA 1219 and ISO/IEC14764Discusses several commercial reverse and domain engineering toolkitsSlides for instructors are available onlineInformation is based on the IEEE SWEBOK (Software Engineering Body of Knowledge)

  17. Software configuration management

    CERN Document Server

    Keyes, Jessica

    2004-01-01

    Software Configuration Management discusses the framework from a standards viewpoint, using the original DoD MIL-STD-973 and EIA-649 standards to describe the elements of configuration management within a software engineering perspective. Divided into two parts, the first section is composed of 14 chapters that explain every facet of configuration management related to software engineering. The second section consists of 25 appendices that contain many valuable real world CM templates.

  18. Software Process Improvement Defined

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2002-01-01

    This paper argues in favor of the development of explanatory theory on software process improvement. The last one or two decades commitment to prescriptive approaches in software process improvement theory may contribute to the emergence of a gulf dividing theorists and practitioners....... It is proposed that this divide be met by the development of theory evaluating prescriptive approaches and informing practice with a focus on the software process policymaking and process control aspects of improvement efforts...

  19. Software systems for astronomy

    CERN Document Server

    Conrad, Albert R

    2014-01-01

    This book covers the use and development of software for astronomy. It describes the control systems used to point the telescope and operate its cameras and spectrographs, as well as the web-based tools used to plan those observations. In addition, the book also covers the analysis and archiving of astronomical data once it has been acquired. Readers will learn about existing software tools and packages, develop their own software tools, and analyze real data sets.

  20. Software for microcircuit systems

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1978-10-01

    Modern Large Scale Integration (LSI) microcircuits are meant to be programed in order to control the function that they perform. The basics of microprograming and new microcircuits have already been discussed. In this course, the methods of developing software for these microcircuits are explored. This generally requires a package of support software in order to assemble the microprogram, and also some amount of support software to test the microprograms and to test the microprogramed circuit itself. 15 figures, 2 tables

  1. Essential software architecture

    CERN Document Server

    Gorton, Ian

    2011-01-01

    Job titles like ""Technical Architect"" and ""Chief Architect"" nowadays abound in software industry, yet many people suspect that ""architecture"" is one of the most overused and least understood terms in professional software development. Gorton's book tries to resolve this dilemma. It concisely describes the essential elements of knowledge and key skills required to be a software architect. The explanations encompass the essentials of architecture thinking, practices, and supporting technologies. They range from a general understanding of structure and quality attributes through technical i

  2. Solar Asset Management Software

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Aaron [Ra Power Management, Inc., Oakland, CA (United States); Zviagin, George [Ra Power Management, Inc., Oakland, CA (United States)

    2016-09-30

    Ra Power Management (RPM) has developed a cloud based software platform that manages the financial and operational functions of third party financed solar projects throughout their lifecycle. RPM’s software streamlines and automates the sales, financing, and management of a portfolio of solar assets. The software helps solar developers automate the most difficult aspects of asset management, leading to increased transparency, efficiency, and reduction in human error. More importantly, our platform will help developers save money by improving their operating margins.

  3. Software evolution in prototyping

    OpenAIRE

    Berzins, V.; Qi, Lu

    1996-01-01

    This paper proposes a model of software changes for supporting the evolution of software prototypes. The software evolution steps are decomposed into primitive substeps that correspond to monotonic specification changes. This structure is used to rearrange chronological derivation sequences into structures containing only meaning-preserving changes. The authors indicate how this structure can be used to automatically combine different changes to a specification. A set of examples illustrates ...

  4. Gammasphere software development

    International Nuclear Information System (INIS)

    Piercey, R.B.

    1993-01-01

    Activities of the nuclear physics group are described. Progress was made in organizing the Gammasphere Software Working Group, establishing a nuclear computing facility, participating in software development at Lawrence Berkeley, developing a common data file format, and adapting the ORNL UPAK software to run at Gammasphere. A universal histogram object was developed that defines a file format and provides for an objective-oriented programming model. An automated liquid nitrogen fill system was developed for Gammasphere (110 Ge detectors comprise the sphere)

  5. Jet energy calibration in ATLAS

    CERN Document Server

    Schouten, Doug

    A correct energy calibration for jets is essential to the success of the ATLAS experi- ment. In this thesis I study a method for deriving an in situ jet energy calibration for the ATLAS detector. In particular, I show the applicability of the missing transverse energy projection fraction method. This method is shown to set the correct mean energy for jets. Pileup effects due to the high luminosities at ATLAS are also stud- ied. I study the correlations in lateral distributions of pileup energy, as well as the luminosity dependence of the in situ calibration metho

  6. A simple accelerator calibration procedure

    Science.gov (United States)

    Lane, D. W.; Avery, A. J.; Partridge, G.; Healy, M.

    1993-04-01

    A calibration procedure for an accelerator is described which is based upon the principles of Rutherford backscattering spectrometry and uses existing experimental apparatus. The procedure enables calibration to be performed both rapidly and efficiently. Details of the calibration of a 2.5 MV Van de Graaff generator are given as an example, and the results are compared to the 19F( p,αγ) 16O resonant nuclear reactions at proton energies of 872 keV and 1373 keV.

  7. Novel indirect calorimetry technology to analyze metabolism in individual neonatal rodent pups.

    Directory of Open Access Journals (Sweden)

    Jesus F Dominguez

    Full Text Available BACKGROUND: The ability to characterize the development of metabolic function in neonatal rodents has been limited due to technological constraints. Low respiratory volumes and flows at rest pose unique problems, making it difficult to reliably measure O(2 consumption, CO(2 production, respiratory quotient (RQ, and energy expenditure (EE. Our aim was to develop and validate a commercial-grade indirect calorimetry system capable of characterizing the metabolic phenotype of individual neonatal rodents. METHODOLOGY/PRINCIPAL FINDINGS: To address this research need, we developed a novel, highly sensitive open-circuit indirect calorimetry system capable of analyzing respiratory gas exchange in a single neonatal rodent pup. Additionally, we derived an equation from known metabolic relationships to estimate inlet flow rates, improving the efficiency of data collection. To validate the neonatal rodent indirect calorimetry system and evaluate the applicability of the derived equation for predicting appropriate flow rates, we conducted a series of experiments evaluating the impact of sex, litter size, time of day (during the light phase, and ambient temperature on neonatal rat metabolic parameters. Data revealed that the only metabolic parameter influenced by litter size is a neonatal rat's RQ, with rat pups reared in a small litter (5 pups having lower RQ's than rat pups reared in either medium (8 pups or large (11 pups litters. Furthermore, data showed that ambient temperature affected all metabolic parameters measured, with colder temperatures being associated with higher CO(2 production, higher O(2 consumption, and higher energy expenditure. CONCLUSION/SIGNIFICANCE: The results of this study demonstrate that the modified Panlab Oxylet system reliably assesses early postnatal metabolism in individual neonatal rodents. This system will be of paramount importance to further our understanding of processes associated with the developmental origins of adult

  8. Percent relative cumulative frequency analysis in indirect calorimetry: application to studies of transgenic mice.

    Science.gov (United States)

    Riachi, Marc; Himms-Hagen, Jean; Harper, Mary-Ellen

    2004-12-01

    Indirect calorimetry is commonly used in research and clinical settings to assess characteristics of energy expenditure. Respiration chambers in indirect calorimetry allow measurements over long periods of time (e.g., hours to days) and thus the collection of large sets of data. Current methods of data analysis usually involve the extraction of only a selected small proportion of data, most commonly the data that reflects resting metabolic rate. Here, we describe a simple quantitative approach for the analysis of large data sets that is capable of detecting small differences in energy metabolism. We refer to it as the percent relative cumulative frequency (PRCF) approach and have applied it to the study of uncoupling protein-1 (UCP1) deficient and control mice. The approach involves sorting data in ascending order, calculating their cumulative frequency, and expressing the frequencies in the form of percentile curves. Results demonstrate the sensitivity of the PRCF approach for analyses of oxygen consumption (.VO2) as well as respiratory exchange ratio data. Statistical comparisons of PRCF curves are based on the 50th percentile values and curve slopes (H values). The application of the PRCF approach revealed that energy expenditure in UCP1-deficient mice housed and studied at room temperature (24 degrees C) is on average 10% lower (p lower environmental temperature, there were no differences in .VO2 between groups. The latter is likely due to augmented shivering thermogenesis in UCP1-deficient mice compared with controls. With the increased availability of murine models of metabolic disease, indirect calorimetry is increasingly used, and the PRCF approach provides a novel and powerful means for data analysis.

  9. Water calorimetry and ionization chamber dosimetry in an 85-MeV clinical proton beam.

    Science.gov (United States)

    Palmans, H; Seuntjens, J; Verhaegen, F; Denis, J M; Vynckier, S; Thierens, H

    1996-05-01

    In recent years, the increased use of proton beams for clinical purposes has enhanced the demand for accurate absolute dosimetry for protons. As calorimetry is the most direct way to establish the absorbed dose and because water has recently been accepted as standard material for this type of beam, the importance of water calorimetry is obvious. In this work we report water calorimeter operation in an 85-MeV proton beam and a comparison of the absorbed dose to water measured by ionometry with the dose resulting from water calorimetric measurements. To ensure a proper understanding of the heat defect for defined impurities in water for this type of radiation, a relative response study was first done in comparison with theoretical calculations of the heat defect. The results showed that pure hypoxic water and hydrogen-saturated water yielded the same response with practically zero heat defect, in agreement with the model calculations. The absorbed dose inferred from these measurements was then compared with the dose derived from ionometry by applying the European Charged Heavy Particle Dosimetry (ECHED) protocol. Restricting the comparison to chambers recommended in the protocol, the calorimeter dose was found to be 2.6% +/- 0.9% lower than the average ionometry dose. In order to estimate the significance of chamber-dependent effects in this deviation, measurements were performed using a set of ten ionization chambers of five different types. The maximum internal deviation in the ionometry results amounted to 1.1%. We detected no systematic chamber volume dependence, but observed a small but systematic effect of the chamber wall thickness. The observed deviation between calorimetry and ionometry can be attributed to a combination of the value of (Wair/e)p for protons, adopted in the ECHED protocol, the mass stopping power ratios of water to air for protons, and possibly small ionization chamber wall effects.

  10. Software engineering the current practice

    CERN Document Server

    Rajlich, Vaclav

    2011-01-01

    INTRODUCTION History of Software EngineeringSoftware PropertiesOrigins of SoftwareBirth of Software EngineeringThird Paradigm: Iterative ApproachSoftware Life Span ModelsStaged ModelVariants of Staged ModelSoftware Technologies Programming Languages and CompilersObject-Oriented TechnologyVersion Control SystemSoftware ModelsClass DiagramsUML Activity DiagramsClass Dependency Graphs and ContractsSOFTWARE CHANGEIntroduction to Software ChangeCharacteristics of Software ChangePhases of Software ChangeRequirements and Their ElicitationRequirements Analysis and Change InitiationConcepts and Concept

  11. Essence: Facilitating Software Innovation

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2008-01-01

      This paper suggests ways to facilitate creativity and innovation in software development. The paper applies four perspectives – Product, Project, Process, and People –to identify an outlook for software innovation. The paper then describes a new facility–Software Innovation Research Lab (SIRL......) – and a new method concept for software innovation – Essence – based on views, modes, and team roles. Finally, the paper reports from an early experiment using SIRL and Essence and identifies further research....

  12. Agile software development

    CERN Document Server

    Dingsoyr, Torgeir; Moe, Nils Brede

    2010-01-01

    Agile software development has become an umbrella term for a number of changes in how software developers plan and coordinate their work, how they communicate with customers and external stakeholders, and how software development is organized in small, medium, and large companies, from the telecom and healthcare sectors to games and interactive media. Still, after a decade of research, agile software development is the source of continued debate due to its multifaceted nature and insufficient synthesis of research results. Dingsoyr, Dyba, and Moe now present a comprehensive snapshot of the kno

  13. Software architecture 1

    CERN Document Server

    Oussalah , Mourad Chabane

    2014-01-01

    Over the past 20 years, software architectures have significantly contributed to the development of complex and distributed systems. Nowadays, it is recognized that one of the critical problems in the design and development of any complex software system is its architecture, i.e. the organization of its architectural elements. Software Architecture presents the software architecture paradigms based on objects, components, services and models, as well as the various architectural techniques and methods, the analysis of architectural qualities, models of representation of architectural template

  14. Software architecture 2

    CERN Document Server

    Oussalah, Mourad Chabanne

    2014-01-01

    Over the past 20 years, software architectures have significantly contributed to the development of complex and distributed systems. Nowadays, it is recognized that one of the critical problems in the design and development of any complex software system is its architecture, i.e. the organization of its architectural elements. Software Architecture presents the software architecture paradigms based on objects, components, services and models, as well as the various architectural techniques and methods, the analysis of architectural qualities, models of representation of architectural templa

  15. Dtest Testing Software

    Science.gov (United States)

    Jain, Abhinandan; Cameron, Jonathan M.; Myint, Steven

    2013-01-01

    This software runs a suite of arbitrary software tests spanning various software languages and types of tests (unit level, system level, or file comparison tests). The dtest utility can be set to automate periodic testing of large suites of software, as well as running individual tests. It supports distributing multiple tests over multiple CPU cores, if available. The dtest tool is a utility program (written in Python) that scans through a directory (and its subdirectories) and finds all directories that match a certain pattern and then executes any tests in that directory as described in simple configuration files.

  16. Contractor Software Charges

    National Research Council Canada - National Science Library

    Granetto, Paul

    1994-01-01

    .... Examples of computer software costs that contractors charge through indirect rates are material management systems, security systems, labor accounting systems, and computer-aided design and manufacturing...

  17. Optimization of Antivirus Software

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The paper describes the main techniques used in development of computer antivirus software applications. For this particular category of software, are identified and defined optimum criteria that helps determine which solution is better and what are the objectives of the optimization process. From the general viewpoint of software optimization are presented methods and techniques that are applied at code development level. Regarding the particularities of antivirus software, the paper analyzes some of the optimization concepts applied to this category of applications

  18. Software as quality product

    International Nuclear Information System (INIS)

    Enders, A.

    1975-01-01

    In many discussions on the reliability of computer systems, software is presented as the weak link in the chain. The contribution attempts to identify the reasons for this situation as seen from the software development. The concepts correctness and reliability of programmes are explained as they are understood in the specialist discussion of today. Measures and methods are discussed which are particularly relevant as far as the obtaining of fault-free and reliable programmes is concerned. Conclusions are drawn for the user of software so that he is in the position to judge himself what can be justly expected frm the product software compared to other products. (orig./LH) [de

  19. Software quality assurance

    CERN Document Server

    Laporte, Claude Y

    2018-01-01

    This book introduces Software Quality Assurance (SQA) and provides an overview of standards used to implement SQA. It defines ways to assess the effectiveness of how one approaches software quality across key industry sectors such as telecommunications, transport, defense, and aerospace. * Includes supplementary website with an instructor's guide and solutions * Applies IEEE software standards as well as the Capability Maturity Model Integration for Development (CMMI) * Illustrates the application of software quality assurance practices through the use of practical examples, quotes from experts, and tips from the authors

  20. Decentralized Software Architecture

    National Research Council Canada - National Science Library

    Khare, Rohit

    2002-01-01

    .... While the term "decentralization" is familiar from political and economic contexts, it has been applied extensively, if indiscriminately, to describe recent trends in software architecture towards...

  1. Test in a beam of large-area Micromegas chambers for sampling calorimetry

    CERN Document Server

    Adloff, C.; Dalmaz, A.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Koletsou, I.; Peltier, F.; Samarati, J.; Vouters, G.

    2014-06-11

    Application of Micromegas for sampling calorimetry puts specific constraints on the design and performance of this gaseous detector. In particular, uniform and linear response, low noise and stability against high ionisation density deposits are prerequisites to achieving good energy resolution. A Micromegas-based hadronic calorimeter was proposed for an application at a future linear collider experiment and three technologically advanced prototypes of 1$\\times$1 m$^{2}$ were constructed. Their merits relative to the above-mentioned criteria are discussed on the basis of measurements performed at the CERN SPS test-beam facility.

  2. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Löbmann, Korbinian; Elder, David P.

    2016-01-01

    Differential scanning calorimetry (DSC) is frequently the thermal analysis technique of choice within preformulation and formulation sciences because of its ability to provide detailed information about both the physical and energetic properties of a substance and/or formulation. However......, conventional DSC has shortcomings with respect to weak transitions and overlapping events, which could be solved by the use of the more sophisticated modulated DSC (mDSC). mDSC has multiple potential applications within the pharmaceutical field and the present review provides an up-to-date overview...

  3. Determination of magnetic characteristics of nanoparticles by low-temperature calorimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ugulava, A.; Toklikishvili, Z. [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Chkhaidze, S., E-mail: simon.chkhaidze@tsu.ge [Department of Physics, I.Javakhishvili Tbilisi State University,I.Chavchavadze av. 3, 0179 Tbilisi, Georgia (United States); Kekutia, Sh. [V. Chavchanidze Institute of Cybernetics, at the Technical State University, S. Euli str. 5, 0186 Tbilisi, Georgia (United States)

    2017-05-15

    At low temperatures, the heat capacity of a superparamagnetic “ideal gas” determined by magnetic degrees of freedom can greatly exceed the lattice heat capacity. It is shown that in the presence of an external magnetic field, the temperature dependence of the magnetic part of the heat capacity has two maxima. The relations between the temperature at which these maxima are achieved, the magnetic moment of the nanoparticles and the magnetic anisotropy constant have been obtained. Measuring the heat capacity maxima temperatures by low-temperature calorimetry methods and using the obtained relations, we can obtain the numerical values both of the magnetic moment of nanoparticles and the magnetic anisotropy constants.

  4. Conductivity, calorimetry and phase diagram of the NaHSO4–KHSO4 system

    DEFF Research Database (Denmark)

    Hind, Hamma-Cugny; Rasmussen, Søren Birk; Rogez, J.

    2006-01-01

    to polynomials of the form κ(X)=A(X)+B(X)(T-Tm)+C(X)(T-Tm)2, where Tm is the intermediate temperature of the measured temperature range and X, the mole fraction of KHSO4. The possible role of this binary system as a catalyst solvent is also discussed. (C) 2005 Elsevier B.V. All rights reserved.......Physico-chemical properties of the binary system NaHSO4-KHSO4 were studied by calorimetry and conductivity, The enthalpy of mixing has been measured at 505 K in the full composition range and the phase diagram calculated. The phase diagram has also been constructed from phase transition...

  5. Calorimetry of Pu in the context of fuel fabrication follow-up

    International Nuclear Information System (INIS)

    Sanson, C.; Arnal, Thierry

    1979-01-01

    Calorimetry appears to be a particularly attractive method for obtaining balances within the context of fuel fabrication follow-up. Under this method the heat released by any plutonium sample is determined with calorimeters fitted with thermocouples, thereby ensuring perfect stability in time response. The first results achieved with two inexpensive prototype calorimeters are as follows, so far: response time, six hours approximately; sensitivity greater than 4 mv.W -1 and repeatability in the order 1%. It will no doubt be possible to improve this performance to a notable extent in the near future [fr

  6. A novel calorimetry technique for monitoring electron beam curing of polymer resins

    International Nuclear Information System (INIS)

    Chen, J.H.; Johnston, A.; Petrescue, L.; Hojjati, M.

    2006-01-01

    This paper describes the development of a calorimetry-based technique for monitoring of the curing of electron beam (EB) curable resins, including design of the calorimeter hardware and the development of an analytical model for calculating resin cure rates and radiation dose. Factors affecting the performance of the calorimeter were investigated. Experimental trials monitoring the curing of epoxy resin were conducted under single pass and multiple passes of EB irradiation. Results show that the developed calorimeter is a simple, inexpensive and reasonably accurate technique for monitoring the EB curing of cationic epoxies

  7. Optimization of a data acquisition and control system for calibration of X rays detectors with usage of computational tools

    International Nuclear Information System (INIS)

    Rodrigues, Yklys Santos

    2013-01-01

    The Brazilian standard ABNT ISO/IEC 17025/2005 specifies general requirements for the competence of testing and calibration facilities. One of these requirements states that these facilities must always optimize their processes and thus, uncertainties must be estimated and lowered as much as possible. In order to achieve such goal, the Laboratorio de Calibracao de Instrumentos (LCI), a laboratory responsible for dosimeter calibration at the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN) have acquired some equipment for the LCI's X-Ray calibration system, such as a rotating filter holder, and it has also been developing software in order to provide the best calibration results with lowest external interferences (from the operator, for instance) to diminish the possibilities of error occurrences. A semi-automated LabVIEW-based calibration software has been developed at LCI and it has been subjected to constant testing and improvements so far. The software is divided in two basic modules: one is responsible for calibration of the monitor chamber with a reference standard dosimeter, while the other is used to perform instruments calibrations using the monitor chamber as reference. Several influence quantities have been analyzed and the proper corrections have been added to the software as multiplicative correction factors. The software is not only able to acquire data from all the equipment used in the laboratory, but also it is able to calculate calibration factors and its uncertainties. A later analysis shows how this system has optimized the whole calibration process, lowering the occupational dose, reducing the mean time of calibration, uncertainties and preventing errors caused by the system's users. (author)

  8. MAVEN SWEA Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains fully calibrated electron energy/angle (3D) distributions, pitch angle distributions, and omni-directional energy spectra. Tables of sensitivity...

  9. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  10. Spectrophotometric calibration system for DECam

    Science.gov (United States)

    Rheault, J.-P.; DePoy, D. L.; Marshall, J. L.; Prochaska, T.; Allen, R.; Wise, J.; Martin, E.; Williams, P.

    2012-09-01

    We describe a spectrophotometric calibration system that is being implemented as part of the DES DECam project at the Blanco 4 meter at CTIO. Our calibration system uses a 1nm wide tunable source to measure the instrumental response function of the telescope optics and detector from 300nm up to 1100nm. This calibration will be performed regularly to monitor any change in the transmission function of the telescope during the 5 year survey. The system consists of a monochromator based tunable light source that provides illumination on a dome flat that is monitored by calibrated photodiodes that allow us to measure the telescope throughput as a function of wavelength. Our system has a peak output power of 2 mW, equivalent to a flux of approximately 800 photons/s/pixel on DECam.

  11. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how...... the DLT can be extended with non-linear models of the common lens aberrations/errors some of them caused by manufacturing defects like decentering and thin prism distortion. The relation between a warping and the non-linear defects are shown. The issue of making a good resampling of an image by using...... we present the implementation of a complete calibration method for an accurate colour texture measurement device called VMX2000, the calibration for uneven laser sheet illumination in a flow measuring system and the use of automatic detection of calibration targets for a DLT/warping in a 3D PIV...

  12. MAVEN LPW Calibrated Data Bundle

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains fully calibrated, science quality data produced by the LPW instrument. The data include spacecraft potential, electric field waveforms and wave...

  13. Laboratory panel and radiometer calibration

    CSIR Research Space (South Africa)

    Deadman, AJ

    2011-07-01

    Full Text Available directly by Labsphere or are derived from comparison with other panels that have been calibrated by Labsphere. These 8?/hemispherical reflectance values are used when calculating the absolute reflectance of a test site. Two institutes South Dakota...

  14. Rotary mode system initial instrument calibration

    Energy Technology Data Exchange (ETDEWEB)

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  15. Rotary mode system initial instrument calibration

    International Nuclear Information System (INIS)

    Johns, B.R.

    1994-01-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files

  16. In Search of Easy-to-Use Methods for Calibrating ADCP's for Velocity and Discharge Measurements

    Science.gov (United States)

    Oberg, K.; ,

    2002-01-01

    A cost-effective procedure for calibrating acoustic Doppler current profilers (ADCP) in the field was presented. The advantages and disadvantages of various methods which are used for calibrating ADCP were discussed. The proposed method requires the use of differential global positioning system (DGPS) with sub-meter accuracy and standard software for collecting ADCP data. The method involves traversing a long (400-800 meter) course at a constant compass heading and speed, while collecting simultaneous DGPS and ADCP data.

  17. LLL calibration and standards facility

    International Nuclear Information System (INIS)

    Campbell, G.W.; Elliott, J.H.

    1980-01-01

    The capabilities of Lawrence Livermore Laboratory's Calibration and Standards Facility are delineated. The facility's ability to provide radiation fields and measurements for a variety of radiation safety applications and the available radiation measurement equipment are described. The need for national laboratory calibration labs to maintain traceability to a national standard are discussed as well as the areas where improved standards and standardization techniques are needed

  18. CERI: Ionizing Radiation Calibration Centre

    International Nuclear Information System (INIS)

    Bouteiller, E.

    1979-01-01

    The CERI has been granted by the National Bureau of Metrology (BNM) as an Ionizing Radiation Calibration Centre and as an Estimation and Qualification Centre for the ionizing radiation measurement devices. This article gives some information on the scope covered by the BNM's grant and on the various equipment on which the laboratory relies. It describes the calibration and estimation activities and mentions many kinds of services which are offered to the users mainly in the medical and industrial fields [fr

  19. Calibration interval technical basis document

    International Nuclear Information System (INIS)

    Chiaro, P.J. Jr.

    1998-09-01

    This document provides a method for the establishment and evaluation of calibration intervals for radiation protection instrumentation. This document is applicable to instrumentation used by personnel at US Department of Energy (DOE) facilities for the measurement of radioactive contamination and the measurement and monitoring of radiation fields for protection of personnel and the environment. Special calibrations are not addressed by this document and should be handled separately

  20. Development of neutron activation analysis software

    International Nuclear Information System (INIS)

    Wang Liyu

    1987-10-01

    The software for quantitative neutron activation analysis was developed to run under the MS/DOS operating system. The programmes of the IBM/SPAN include: spectra file transfer from and to a Canberra Series 35 multichannel analyzer, spectrum evaluation routines, calibration subprogrammes, and quantitative analysis. The programmes for spectrum analysis include fitting routine for separation of multiple lines by reproducing the peak shape with a combination of Gaussian and exponential terms. The programmes were tested on an IBM/AT-compatible computer. The programmes and the sources are available costfree for the IAEA projects of Technical Cooperation. 7 refs, 3 figs

  1. Methodology of hot nucleus calorimetry and thermometry produced by nuclear reactions around Fermi energies; Methodologie de la calorimetrie et de la thermometrie des noyaux chauds formes lors de collisions nucleaires aux energies de Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Vient, E

    2006-12-15

    This work deals with the calorimetry and thermometry of hot nuclei produced in collisions Xe + Sn between 25 and 100 MeV/u. The apparatus for hot nucleus physical characterization is the 4{pi} detector array Indra. This study was made by using the event generators Gemini, Simon and Hipse and a data-processing filter simulating the complete operation of the multi-detector. The first chapter presents the different ways of producing hot nuclei. In the second and third chapters, the author presents a critical methodological study of calorimetry and thermometry applied to hot nuclei, different methods are reviewed, their accuracy and application range are assessed. All the calorimetry methods rely on the assumption that we are able to discriminate decay products of the hot nucleus from evaporated particles. In the fourth chapter, the author gives some ways of improving calorimetry characterization of the hot nucleus. An alternative method of calorimetry is proposed in the fifth chapter, this method is based on the experimental determination of an evaporation probability that is deduced from the physical characteristics of the particles present in a restricted domain of the space of velocities.

  2. Software cost estimation

    NARCIS (Netherlands)

    Heemstra, F.J.; Heemstra, F.J.

    1993-01-01

    The paper gives an overview of the state of the art of software cost estimation (SCE). The main questions to be answered in the paper are: (1) What are the reasons for overruns of budgets and planned durations? (2) What are the prerequisites for estimating? (3) How can software development effort be

  3. UWB Tracking Software Development

    Science.gov (United States)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  4. Sustainability in Software Engineering

    NARCIS (Netherlands)

    Wolfram, N.J.E.; Lago, P.; Osborne, Francesco

    2017-01-01

    The intersection between software engineering research and issues related to sustainability and green IT has been the subject of increasing attention. In spite of that, we observe that sustainability is still not clearly defined, or understood, in the field of software engineering. This lack of

  5. Software evolution with XVCL

    DEFF Research Database (Denmark)

    Zhang, Weishan; Jarzabek, Stan; Zhang, Hongyu

    2004-01-01

    This chapter introduces software evolution with XVCL (XML-based Variant Configuration Language), which is an XML-based metaprogramming technique. As the software evolves, a large number of variants may arise, especially whtn such kinds of evolutions are related to multiple platforms as shown in our...

  6. Marketing Mix del Software.

    Directory of Open Access Journals (Sweden)

    Yudith del Carmen Rodríguez Pérez

    2006-03-01

    Por ello, en este trabajo se define el concepto de producto software, se caracteriza al mismo y se exponen sus atributos de calidad. Además, se aborda la mezcla de marketing del software necesaria y diferente a la de otros productos para que este triunfe en el mercado.

  7. ITOUGH2 software qualification

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Pruess, K.; Fraser, P.

    1996-10-01

    The purpose of this report is to provide all software baseline documents necessary for the software qualification of ITOUGH2. ITOUGH2 is a computer program providing inverse modeling capabilities for TOUGH2. TOUGH2 is a numerical simulation code for multi-dimensional coupled fluid and heat flow of multiphase, multicomponent fluid mixtures in porous and fractured media.

  8. Cactus: Software Priorities

    Science.gov (United States)

    Hyde, Hartley

    2009-01-01

    The early eighties saw a period of rapid change in computing and teachers lost control of how they used computers in their classrooms. Software companies produced computer tools that looked so good that teachers forgot about writing their own classroom materials and happily purchased software--that offered much more than teachers needed--from…

  9. Software engineering ethics

    Science.gov (United States)

    Bown, Rodney L.

    1991-01-01

    Software engineering ethics is reviewed. The following subject areas are covered: lack of a system viewpoint; arrogance of PC DOS software vendors; violation od upward compatibility; internet worm; internet worm revisited; student cheating and company hiring interviews; computing practitioners and the commodity market; new projects and old programming languages; schedule and budget; and recent public domain comments.

  10. Titration calorimetry of surfactant–drug interactions: Micelle formation and saturation studies

    International Nuclear Information System (INIS)

    Waters, Laura J.; Hussain, Talib; Parkes, Gareth M.B.

    2012-01-01

    Highlights: ► Isothermal titration calorimetry can be used to monitor the saturation of micelles with pharmaceutical compounds. ► The number of drug molecules per micelle varies depending on the drug used and the temperature of the calorimeter. ► The change in enthalpy for the saturation of micelles with drugs can be endothermic or exothermic. ► The critical micellar concentration of an anionic surfactant (SDS) does not appear to vary in the presence of drugs. - Abstract: Isothermal titration calorimetry (ITC) was employed to monitor the addition of five model drugs to anionic surfactant based micelles, composed of sodium dodecyl sulfate (SDS), through to the point at which they were saturated with drug. Analysis of the resultant data using this newly developed method has confirmed the suitability of the technique to acquire such data with saturation limits established in all cases. Values for the point at which saturation occurred ranged from 17 molecules of theophylline per micelle at T = 298 K up to 63 molecules of caffeine per micelle at 310 K. Micellar systems can be disrupted by the presence of additional chemicals, such as the drugs used in this study, therefore a separate investigation was undertaken to determine the critical micellar concentration (CMC) for SDS in the presence of each drug at T = 298 K and 310 K using ITC. In the majority of cases, there was no appreciable alteration to the CMC of SDS with drug present.

  11. Determination of Gel Content (C-C Crosslink in Polybutadiene Rubber by Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    Saeed Taghvaei Ganjali

    2014-08-01

    Full Text Available Due to the gel formation in polybutadiene and some of the problems raised in rubber industry such as groove cracking in products, quantification of the gel content and identification of the microstructure of butadiene elastomer is extremely important. In this paper, the gel content in polybutadiene rubber was identified by differential scanning calorimetry. The thermal decomposition of the polybutadiene rubber was studied by thermal analysis methods in 0-650°C. The thermal decomposition, in the same temperature range, of the polymer with different gel contents under the similar conditions showed that the oxidation and decomposition of the samples occur in three steps. The thermal analysis curves showed that the cis-trans isomerization occurs by increases in the gel content at lower temperatures of a wider thermal range with rising trans isomer and decreases in cis isomer contents, respectively. Also, with the increase in the gel content there is a tendency in lowering double bond density and there is higher energy release in oxidation and decomposition regions due to the breakage in crosslink density of polymer networks. According to the values resulting from enthalpy and heat flow rate, the thermal index was obtained for samples at two maximum temperatures related to two processes of cis-trans isomerization and the cyclization reaction. The gel content (C-C crosslink in polybutadiene rubber is determined by the interconnection between the ratio of heat flow index and gel content from the differential scanning calorimetry curves.

  12. Structural integrity of Synechocystis sp. PCC 6803 phycobilisomes evaluated by means of differential scanning calorimetry.

    Science.gov (United States)

    Petrova, Nia; Todinova, Svetla; Laczko-Dobos, Hajnalka; Zakar, Tomas; Vajravel, Sindhujaa; Taneva, Stefka; Gombos, Zoltan; Krumova, Sashka

    2018-01-10

    Phycobilisomes (PBSs) are supramolecular pigment-protein complexes that serve as light-harvesting antennae in cyanobacteria. They are built up by phycobiliproteins assembled into allophycocyanin core cylinders (ensuring the physical interaction with the photosystems) and phycocyanin rods (protruding from the cores and having light-harvesting function), the whole PBSs structure being maintained by linker proteins. PBSs play major role in light-harvesting optimization in cyanobacteria; therefore, the characterization of their structural integrity in intact cells is of great importance. The present study utilizes differential scanning calorimetry and spectroscopy techniques to explore for the first time, the thermodynamic stability of PBSs in intact Synechocystis sp. PCC 6803 cells and to probe its alteration as a result of mutations or under different growth conditions. As a first step, we characterize the thermodynamic behavior of intact and dismantled PBSs isolated from wild-type cells (having fully assembled PBSs) and from CK mutant cells (that lack phycocyanin rods and contain only allophycocyanin cores), and identified the thermal transitions of phycocyanin and allophycocyanin units in vitro. Next, we demonstrate that in intact cells PBSs exhibit sharp, high amplitude thermal transition at about 63 °C that strongly depends on the structural integrity of the PBSs supercomplex. Our findings implicate that calorimetry could offer a valuable approach for the assessment of the influence of variety of factors affecting the stability and structural organization of phycobilisomes in intact cyanobacterial cells.

  13. Application of heat compensation calorimetry to an E. coli fed-batch process.

    Science.gov (United States)

    Müller, Matthias; Meusel, Wolfram; Husemann, Ute; Greller, Gerhard; Kraume, Matthias

    2018-01-20

    The application of biocalorimetry to fermentation processes offers advantageous insights, while being less complex compared to other, sophisticated PAT solutions. Although the general concept is established, calorimetric methods vary in detail. In this work, a special approach, called heat compensation calorimetry, was applied to an E. coli fed-batch process. Much work has been done for batch processes, proving the validity and accuracy of this calorimetric mode. However, the adaption of this strategy to fed-batch processes has some implications. In the first section of this work, batch fermentations were performed, comparing heat capacity calorimetry to the compensation mode. Both processes showed very good agreement by means of growth behavior. The heat related differences, e.g. temperature profiles, were obvious. In addition, the impact of the chosen mode on the calculation of in-process heat transfer coefficients was shown. Finally, a fed-batch fermentation was performed. The compensation mode was kept sufficiently, up to the point where the metabolic heat production accelerated strongly. Controller tuning was a neuralgic point, which would have needed further optimization under these conditions. Nevertheless, in the present work it was possible to realize a working compensation process while demonstrating critical aspects that must be considered when establishing such approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Indirect Calorimetry Measurement of Energy Expenditure Related to Body Position Changes in Healthy Adults.

    Science.gov (United States)

    Obata, Kengo; Yumoto, Tetsuya; Fuke, Soichiro; Tsukahara, Kohei; Naito, Hiromichi; Iida, Atsuyoshi; Takahashi, Tetsuya; Ujike, Yoshihito; Nakao, Atsunori

    2017-12-01

    Early mobilization is advocated to prevent intensive care unit-acquired physical weakness, but the patient's workload and its changes in response to body position changes have not been established. We used indirect calorimetry to determine the energy expenditure (EE) in response to body position changes, and we assessed EE's correlation with respiratory parameters in healthy volunteers: 8 males and 8 females, mean age 23.4±1.3 years. The subjects started in the resting supine position followed by a 30° head-up position, a 60° head-up position, an upright sitting position, a standing position, and the resting supine position. EE was determined in real time by indirect calorimetry monitoring the subject's respiratory rate, tidal volume (VT), and minute volume (MV). The highest values were observed immediately after the subjects transitioned from standing to supine, and this was significantly higher compared to the original supine position (1,450±285 vs. 2,004±519 kcal/day, p<0.01). Moderate correlations were observed between VT and EE (r=0.609, p<0.001) and between MV and EE (r=0.576, p<0.001). Increasing VT or MV indicates an increasing patient workload during mobilization. Monitoring these parameters may contribute to safe rehabilitation. Further studies should assess EE in critically ill patients.

  15. Monitoring of butter and animal fat oxidation stability by differential scanning calorimetry (DSC

    Directory of Open Access Journals (Sweden)

    Jasminka Sadadinović

    2005-07-01

    Full Text Available Oxidation of fat is one of the basic reactions which causes the depletion of butter and animal fat quality as well as other products containing them. Since the most of reaction products of fat oxidation are harmful for consumers' health, inadequate and scarce monitoring of edible fats and fat containing products quality, presents increased health risk as well as financial loss for the producers. In fat oxidation stability estimation, standard chemical methods were used (iodine number, acid number, peroxide number, anisidine number etc., which require time and chemical usage. Differential scanning calorimetry (DSC analysis presents the simple and efficient way for butter and animal fats oxidation stability estimation. Laboratory investigations were performed to monitor oxidation stability of butter and animal fat in fresh state, as well as in spent phase, used in frying process. The results obtained were compared to the results of standard chemical analysis, and they confirmed the reproducibility and applicability of differential scanning calorimetry in oxidation stability of butter and animal fats monitoring.

  16. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    Science.gov (United States)

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.

  17. Thermal expansivities of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry.

    Science.gov (United States)

    Pandharipande, Pranav P; Makhatadze, George I

    2015-04-01

    The main goal of this work was to provide direct experimental evidence that the expansivity of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry (PPC), can serve as a proxy to characterize relative compactness of proteins, especially the denatured state ensemble. This is very important as currently only small angle X-ray scattering (SAXS), intrinsic viscosity and, to a lesser degree, fluorescence resonance transfer (FRET) experiments are capable of reporting on the compactness of denatured state ensembles. We combined the expansivity measurements with other biophysical methods (far-UV circular dichroism spectroscopy, differential scanning calorimetry, and small angle X-ray scattering). Three case studies of the effects of conformational changes on the expansivity of polypeptides in solution are presented. We have shown that expansivity appears to be insensitive to the helix-coil transition, and appears to reflect the changes in hydration of the side-chains. We also observed that the expansivity is sensitive to the global conformation of the polypeptide chain and thus can be potentially used to probe hydration of different collapsed states of denatured or even intrinsically disordered proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry.

    Science.gov (United States)

    Ikenoue, Tatsuya; Lee, Young-Ho; Kardos, József; Yagi, Hisashi; Ikegami, Takahisa; Naiki, Hironobu; Goto, Yuji

    2014-05-06

    Amyloid fibrils form in supersaturated solutions via a nucleation and growth mechanism. Although the structural features of amyloid fibrils have become increasingly clearer, knowledge on the thermodynamics of fibrillation is limited. Furthermore, protein aggregation is not a target of calorimetry, one of the most powerful approaches used to study proteins. Here, with β2-microglobulin, a protein responsible for dialysis-related amyloidosis, we show direct heat measurements of the formation of amyloid fibrils using isothermal titration calorimetry (ITC). The spontaneous fibrillation after a lag phase was accompanied by exothermic heat. The thermodynamic parameters of fibrillation obtained under various protein concentrations and temperatures were consistent with the main-chain dominated structural model of fibrils, in which overall packing was less than that of the native structures. We also characterized the thermodynamics of amorphous aggregation, enabling the comparison of protein folding, amyloid fibrillation, and amorphous aggregation. These results indicate that ITC will become a promising approach for clarifying comprehensively the thermodynamics of protein folding and misfolding.

  19. Resting energy expenditure and body composition in children with cancer: indirect calorimetry and bioimpedance analysis

    Directory of Open Access Journals (Sweden)

    M. V. Konovalova

    2014-07-01

    Full Text Available Resting energy expenditure (REE by indirect calorimetry and body composition by bioimpedance analysis are studied in three groups of children aged 5–18 years. Group 1 (n = 181 – patients in remission of cancer, group 2 (n = 55 – children with oncology diseases receiving chemotherapy or who are in the early period after hematopoietic stem cell transplantation, group 3 (n = 63 – children with non-malignant diseases of the gastrointestinal tract. To eliminate the influence of age and gender on the intergroup comparisons, body composition parameters were expressed as standardized values (z-scores relative to a reference group of healthy Russian children (n = 138,191. Group 1 was characterized by excess fat content with intact lean body mass, and groups 2 and 3 by protein depletion, more pronounced in Group 2 with a higher percentage of body fat. All used conventional formulas (WHO, Harris–Benedict and others in groups 1 and 3 underestimated REE as compared with indirect calorimetry. A new formula for REE, giving an unbiased estimate in the group 1 was proposed: REE (kcal/day = 28.7 × BCM (kg +10.5 × Height (cm – 38.6 × Age (years – 134, where BCM – body cell mass according to bioimpedance analysis (R2 = 0.67, the standard deviation of 196 kcal/day.

  20. Software architecture evolution

    DEFF Research Database (Denmark)

    Barais, Olivier; Le Meur, Anne-Francoise; Duchien, Laurence

    2008-01-01

    Software architectures must frequently evolve to cope with changing requirements, and this evolution often implies integrating new concerns. Unfortunately, when the new concerns are crosscutting, existing architecture description languages provide little or no support for this kind of evolution....... The software architect must modify multiple elements of the architecture manually, which risks introducing inconsistencies. This chapter provides an overview, comparison and detailed treatment of the various state-of-the-art approaches to describing and evolving software architectures. Furthermore, we discuss...... one particular framework named Tran SAT, which addresses the above problems of software architecture evolution. Tran SAT provides a new element in the software architecture descriptions language, called an architectural aspect, for describing new concerns and their integration into an existing...