WorldWideScience

Sample records for calorimeters particle

  1. Calorimeters in Astro and Particle physics

    OpenAIRE

    Pretzl, Klaus

    2005-01-01

    In this article an attempt is made to review some of the original works leading to new developments of calorimeters which are so widely and successfully used in astro and particle physics experiments. This report is far from being complete and the author apologizes for omissions and misquotations.

  2. Object Oriented Reconstruction and Particle Identification in the ATLAS Calorimeter

    Institute of Scientific and Technical Information of China (English)

    B.Caron; J.Collot; 等

    2001-01-01

    The reconstruction and subsequent particle identification is a challenge in a complex and a high luminosity environment such as those expected in the ATLAS detector at the LHC.The ATLAS software has chosen the object oriented paradigm and has recently migrated much of its software components developed earlier using procedural programming languages.The new software,which emphasizes on the separation between algorthms and data objects,has been successfully integrated in the broader ATLAS framework.We will present a status report of the reconstruction software summarizing the experiences gained in the migration of several software components.We will examine some of the components of the calorimeter software design,which include simulation of real-time detector effects and online environment,and strategies deployed for identification of particles.

  3. Object oriented reconstruction and particle identification in the ATLAS calorimeter

    International Nuclear Information System (INIS)

    The reconstruction and subsequent particle identification is a challenge in a complex and a high luminosity environment such as those expected in the ATLAS detector at the LHC. The ATLAS software has chosen the object oriented paradigm and has recently migrated much of its software components developed earlier using procedural programming languages. The new software, which emphasizes on the separation between algorithms and data objects, has been successfully integrated in the broader ATLAS framework. The authors will present a status report of the reconstruction software summarizing the experiences gained in the migration of several software components. The authors will examine some of the components of the calorimeter software design, which include simulation of real-time detector effects and online environment, and strategies deployed for identification of particles

  4. Calorimeter insertion

    CERN Multimedia

    2006-01-01

    Calorimeter insertion between toroids in the ATLAS experiment detector Calorimeters are surrounding the inner detector. Calorimeters will absorb and measure the energies of the most charged and neutral particles after the collisions. The saved energy in the calorimeter is detected and converted to signals that are taken out with data taking electronics.

  5. Low temperature metallic magnetic calorimeters for atomic and particle physics

    International Nuclear Information System (INIS)

    Low temperature Metallic Magnetic Calorimeters (MMCs) are energy dispersive detectors working at temperature below 100 mK. The energy released by the interaction of a particle in a suitable absorber induces an increase of temperature in the detector. The change of temperature is measured as a change of magnetization of a paramagnetic sensor positioned in a weak magnetic field and is tightly connected to the absorber and weakly to the thermal bath. The signal is read out by a low noise high bandwidth two stage SQUID system. The knowledge of the thermodynamical properties, which allows for numerical optimization, and the possibility of fully micro-fabricate these detectors offer a large flexibility for the detector design. Presently MMCs are developed for a wide range of applications including X-ray spectroscopy of highly charged ions, direct neutrino mass measurements by beta spectroscopy, X-ray cameras for astronomy, calibration of radiation standards in metrology and spatially resolved detection of molecular fragments. We present an introduction to the physics of MMCs and discuss design considerations and micro-fabrication processes of current devices and their experimental performance.

  6. Response of a sampling calorimeter to low energy particles

    International Nuclear Information System (INIS)

    A Pb/scintillator sampling calorimeter has been built for use in relativistic heavy ion experiments. The calorimeter is constructed from 59 layers of 3 mm scintillator separated by 1.0 cm layers of Pb, with every 6th Pb layer replaced with a 1.6 cm plate of Fe. The read-out is done via wave-length shifting optical fibers which are connected to photomultipliers in groups. (orig./HSI)

  7. An online calorimeter trigger for removing outsiders from particle beam calibration tests

    CERN Document Server

    Damazio, D O

    2003-01-01

    An online neural triggering system for particle identification is presented. It is developed for calibration tests with Tilecal, the hadronic calorimeter of the ATLAS experiment. The proposed neural system proves to cope with the required data input rate and achieves more than 99.7% in particle classification efficiency, even when significant particle contamination is observed in the data samples.

  8. New Physics requirements and technological challenges to be confronted by calorimeters in particle physics

    International Nuclear Information System (INIS)

    The seminar presents an introduction to calorimetry in particle physics. Initially the purpose of electromagnetic and hadronic calorimeters in particle physics is shown. Then the paper focusses on electromagnetic calorimeters and it describes the microscopic phenomena that drive the formation of electromagnetic showers. Homogeneous and sampling calorimeters are presented and the energy resolution of both is analyzed. A few examples of past and present electromagnetic calorimeters at particle colliders are presented, with particular attention to the ones employed in the Atlas and CMS experiments at the LHC, their design constraints, challenges and adopted choices. Both these calorimeters were designed to operate for a minimum of ten years at the LHC, with an instantaneous luminosity of 1· 1034/cm2/s and for an integrated luminosity of 500/fb. From 2023 a new program will start: the high luminosity LHC (HL-LHC), which is expected to provide an instantaneous luminosity of around 5· 1034/cm2/s and integrate a total luminosity of around 3000/fb in ten years of data taking. The evolution of the CMS and Atlas calorimeters is assessed and needed upgrades are presented

  9. Particle Showers in a Highly Granular Hadron Calorimeter

    CERN Document Server

    Seidel, Katja

    2010-01-01

    The CALICE collaboration has constructed highly granular electromagnetic and hadronic calorimeter prototypes to evaluate technologies for the use in detector systems at a future Linear Collider. The hadron calorimeter uses small scintillator cells individually read out with silicon photomultipliers. The system with 7608 channels has been successfully operated in beam tests at DESY, CERN and Fermilab since 2006, and represents the first large scale tests of these devices in high energy physics experiments. The unprecedented granularity of the detector provides detailed information of the properties of hadronic showers, which helps to constrain hadronic shower models through comparisons with model calculations. Results on longitudinal and lateral shower profiles, compared to a variety of hadronic shower models, first results with a software compensation technique for the energy resolution and an outlook on the next generation detector prototype are presented.

  10. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    Science.gov (United States)

    Kocak, F.

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO4 and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal-photodiode assemblies.

  11. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, F., E-mail: fkocak@uludag.edu.tr

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO{sub 4} and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal–photodiode assemblies.

  12. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    International Nuclear Information System (INIS)

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO4 and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal–photodiode assemblies

  13. Neural network based neutral particles reconstruction with the E687 hadron calorimeter

    Science.gov (United States)

    Arena, V.; Boca, G.; Bonomi, G.; Gérard, G.; Gianini, G.; Marchesotti, M.; Merlo, M.; Ratti, S. P.; Riccardi, C.; Viola, L.; Vitulo, P.; Buchholz, D.; Claes, D.; O'Reilly, B.

    1996-02-01

    We present a neutral particle reconstruction algorithm based on a neural network approach applied to the E687 hadron calorimeter. A measurement of the invariant mass of the Σ± → nπ± is presented to verify the reliability of the reconstruction. The reconstructed invariant mass of the charmed meson D + → K L0π+π+π- is also presented to show the possible application of this technique to charmed particles decaying into a neutral hadron. An example of this would be Λc+ → nK -π+π+.

  14. Measurement of the time development of particle showers in a uranium scintillator calorimeter

    International Nuclear Information System (INIS)

    We report on the time evolution of particle showers, as measured in modules of the uranium-scintillator barrel calorimeter of the ZEUS detector. The time development of hadronic showers differs significantly from that of electromagnetic showers, with about 40% of the response to hadronic showers arising from energy depositions which occur late in the shower development. The degree of compensation and the hadronic energy resolution were measured as a function of integration time, giving a value of e/π=1.02±0.01 for a gate width of 100 ns. The possibilities for electron-hadron separation based on the time structure of the shower were studied, with pion rejection factors in excess of 100 being achieved for electron efficiencies greater than 60%. The custom electronics used to perform these measurements samples the calorimeter signal at close to 60 MHz, stores all samples for a period of over 4 μs using analog switched capacitor pipelines, and digitizes the samples for triggered events with 12-bit ADC's. (orig.)

  15. ATLAS - End-Cap calorimeter

    CERN Multimedia

    2006-01-01

    The End-cap calorimeter was moved with the help of the rails and this calorimeter will measure the energy of particles close to the beam axis when protons collide. Cooling is important for maximum detector efficiency.

  16. Testing a liquid Argon calorimeter

    CERN Multimedia

    1976-01-01

    Physicists from Karlsruhe test a liquid argon calorimeter in the neutral beam b16 at the PS. The calorimeter was meant to supply some neutral particles identification at the Split-Field Magnet Facility for R416.

  17. Construction and commissioning of a hadronic test-beam calorimeter to validate the particle-flow concept at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Groll, M.

    2007-06-15

    This thesis discusses research and development studies performed for a hadronic calorimeter concept for the International Linear Collider (ILC). The requirements for a detector for the ILC are de ned by the particle-ow concept in which the overall detector performance for jet reconstruction is optimised by reconstructing each particle individually. The calorimeter system has to have unprecedented granularity to ful l the task of shower separation. The validation of the shower models used to simulate the detector performance is mandatory for the design and optimisation of the ILC detector. The construction and operation of a highly granular test-beam system will serve as a tool for this validation. This motivates the urgent need of research and development on calorimeter prototypes. One possible realisation of the hadronic calorimeter is based on a sampling structure of steel and plastic scintillator with analogue readout, where the sensitive scintillator layers are divided into tiles. A newly developed silicon based photo-detector (SiPM) o ers the possibilities to design such a system. The SiPM is a multi-pixel avalanche photo-diode operated in Geiger mode. Due to its small dimensions it is possible to convert the light produced in the calorimeter to an electronic signal already inside the calorimeter volume. The basic developments on scintillator, tile and photo-detector studies provide the basis for prototype construction. The main part of this thesis will discuss the construction and rst commissioning of an analogue hadronic calorimeter prototype consisting of 8000 channels read out with SiPMs. The smallest calorimeter unit is the tile system including the SiPM. The production and characterisation chain of this unit is an essential step in the construction of a large scale prototype. These basic units are arranged on readout layers, which are already a multi-channel system of 200 channels. In addition, the new photo-detector requires dedicated readout

  18. Construction and commissioning of a hadronic test-beam calorimeter to validate the particle-flow concept at the ILC

    International Nuclear Information System (INIS)

    This thesis discusses research and development studies performed for a hadronic calorimeter concept for the International Linear Collider (ILC). The requirements for a detector for the ILC are de ned by the particle-ow concept in which the overall detector performance for jet reconstruction is optimised by reconstructing each particle individually. The calorimeter system has to have unprecedented granularity to ful l the task of shower separation. The validation of the shower models used to simulate the detector performance is mandatory for the design and optimisation of the ILC detector. The construction and operation of a highly granular test-beam system will serve as a tool for this validation. This motivates the urgent need of research and development on calorimeter prototypes. One possible realisation of the hadronic calorimeter is based on a sampling structure of steel and plastic scintillator with analogue readout, where the sensitive scintillator layers are divided into tiles. A newly developed silicon based photo-detector (SiPM) o ers the possibilities to design such a system. The SiPM is a multi-pixel avalanche photo-diode operated in Geiger mode. Due to its small dimensions it is possible to convert the light produced in the calorimeter to an electronic signal already inside the calorimeter volume. The basic developments on scintillator, tile and photo-detector studies provide the basis for prototype construction. The main part of this thesis will discuss the construction and rst commissioning of an analogue hadronic calorimeter prototype consisting of 8000 channels read out with SiPMs. The smallest calorimeter unit is the tile system including the SiPM. The production and characterisation chain of this unit is an essential step in the construction of a large scale prototype. These basic units are arranged on readout layers, which are already a multi-channel system of 200 channels. In addition, the new photo-detector requires dedicated readout

  19. Sampling calorimeter for high energy heavy particles filled with allene-doped liquid argon

    International Nuclear Information System (INIS)

    A hadron calorimeter for investigating relativistic heavy ion reactions, filled with liquid argon doped with allene, has been tested for 1 GeV/n neon and iron ions, and 1.7 GeV/n helium, neon and iron ions. The electrode system of the calorimeter consists of G-10 plates placed in the first, second and third parts, 2 mm thick iron plates in the second part and 6 mm thick iron plates in the third part with a liquid argon gap of 3.5 mm. Some of the ions were stopped inside the calorimeter without fragmentation, which were treated separately. The calorimeter shows a good linear response to the total incident energy of ions for fragmented and stopped ions. The absolute yields of collected charge are consistent with the calculated values. An energy resolution in FWHM of 2-.5% is obtained for stopped ions. For fragmented ions, the energy resolution in FWHM is given by [0.9+81.1/√E(GeV)]% for all relativistic ions and if the datum of helium ions is excluded, the resolution can be expressed by [4.8+53.2/√E(GeV)]%. The present energy resolution is better than those recently obtained with scintillation calorimeters at BNL and CERN. (orig.)

  20. The ATLAS Forward Calorimeter

    Science.gov (United States)

    Artamonov, A.; Bailey, D.; Belanger, G.; Cadabeschi, M.; Chen, T.-Y.; Epshteyn, V.; Gorbounov, P.; Joo, K. K.; Khakzad, M.; Khovanskiy, V.; Krieger, P.; Loch, P.; Mayer, J.; Neuheimer, E.; Oakham, F. G.; O'Neill, M.; Orr, R. S.; Qi, M.; Rutherfoord, J.; Savine, A.; Schram, M.; Shatalov, P.; Shaver, L.; Shupe, M.; Stairs, G.; Strickland, V.; Tompkins, D.; Tsukerman, I.; Vincent, K.

    2008-02-01

    Forward calorimeters, located near the incident beams, complete the nearly 4π coverage for high pT particles resulting from proton-proton collisions in the ATLAS detector at the Large Hadron Collider at CERN. Both the technology and the deployment of the forward calorimeters in ATLAS are novel. The liquid argon rod/tube electrode structure for the forward calorimeters was invented specifically for applications in high rate environments. The placement of the forward calorimeters adjacent to the other calorimeters relatively close to the interaction point provides several advantages including nearly seamless calorimetry and natural shielding for the muon system. The forward calorimeter performance requirements are driven by events with missing ET and tagging jets.

  1. The CMS Barrel Calorimeter Response to Particle Beams from 2 to 350 GeV/c

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Adzic, Petar; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Alemany-Fernandez, Reyes; Almeida, Nuno; Anagnostou, Georgios; Andelin, Daniel; Anderson, E Walter; Anfreville, Marc; Anicin, Ivan; Antchev, Georgy; Antunovic, Zeljko; Arcidiacono, Roberta; Arenton, Michael Wayne; Auffray, Etiennette; Argiro, Stefano; Askew, Andrew; Atramentov, Oleksiy; Ayan, S; Arcidy, M; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baccaro, Stefania; Baden, Drew; Baffioni, Stephanie; Bakirci, Mustafa Numan; Balazs, Michael; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barge, Derek; Barnes, Virgil E; Barney, David; Barone, Luciano; Bartoloni, Alessandro; Baty, Clement; Bawa, Harinder Singh; Baiatian, G; Bandurin, Dmitry; Beauceron, Stephanie; Bell, Ken W; Bencze, Gyorgy; Benetta, Robert; Bercher, Michel; Beri, Suman Bala; Bernet, Colin; Berntzon, Lisa; Berthon, Ursula; Besançon, Marc; Betev, Botjo; Beuselinck, Raymond; Bhatnagar, Vipin; Bhatti, Anwar; Biino, Cristina; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bodek, Arie; Bornheim, Adolf; Bose, Suvadeep; Bose, Tulika; Bourotte, Jean; Brett, Angela Mary; Brown, Robert M; Britton, David; Budd, Howard; Bühler, M; Burchesky, Kyle; Busson, Philippe; Camanzi, Barbara; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Carrera, E; Cartiglia, Nicolo; Cavallari, Francesca; Cerci, Salim; Cerutti, cM; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chen, E Augustine; Chen, Wan-Ting; Chen, Zheng-Yu; Chendvankar, Sanjay; Chipaux, Rémi; Choudhary, Brajesh C; Choudhury, Rajani Kant; Chung, Yeon Sei; Clarida, Warren; Cockerill, David J A; Combaret, Christophe; Conetti, Sergio; Cossutti, Fabio; Cox, Bradley; Cremaldi, Lucien Marcus; Cushman, Priscilla; Cussans, David; Dafinei, Ioan; Damgov, Jordan; Da Silva Di Calafiori, Diogo Raphael; Daskalakis, Georgios; Davatz, Giovanna; David, A; De Barbaro, Pawel; Debbins, Paul; Deiters, Konrad; Dejardin, Marc; Djordjevic, Milos; Deliomeroglu, Mehmet; Della Negra, Rodolphe; Della Ricca, Giuseppe; Del Re, Daniele; Demianov, A; De Min, Alberto; Denegri, Daniel; Depasse, Pierre; de Visser, Theo; Descamps, Julien; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Diemoz, Marcella; Di Marco, Emanuele; Dimitrov, Lubomir; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Duboscq, Jean Etienne; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Dutta, Dipanwita; Dzelalija, Mile; Efthymiopoulos, I; Elias, John E; Peisert, A; El-Mamouni, H; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Evangelou, Ioannis; Evans, David; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Fenyvesi, Andras; Ferri, Federico; Fisher, Wade Cameron; Flower, Paul S; Franci, Daniele; Franzoni, Giovanni; Freeman, Jim; Freudenreich, Klaus; Funk, Wolfgang; Ganjour, Serguei; Gargiulo, Corrado; Gascon, Susan; Gataullin, Marat; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Geerebaert, Yannick; Genchev, Vladimir; Gentit, François-Xavier; Gerbaudo, Davide; Gershtein, Yuri; Ghezzi, Alessio; Ghodgaonkar, Manohar; Gilly, Jean; Givernaud, Alain; Gleyzer, Sergei V; Gninenko, Sergei; Go, Apollo; Gobbo, Benigno; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Goncharov, Petr; Gong, Datao; Govoni, Pietro; Grant, Nicholas; Gras, Philippe; Grassi, Tullio; Green, Dan; Greenhalgh, R J S; Gribushin, Andrey; Grinev, B; Guevara Riveros, Luz; Guillaud, Jean-Paul; Gurtu, Atul; Murat Guler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Haguenauer, Maurice; Halyo, Valerie; Hamel de Monchenault, Gautier; Hansen, Sten; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heath, Helen F; Heering, Arjan Hendrix; Heister, Arno; Heltsley, Brian; Hill, Jack; Hintz, Wieland; Hirosky, Robert; Hobson, Peter R; Honma, Alan; Hou, George Wei-Shu; Hsiung, Yee; Hunt, Adam; Husejko, Michal; Ille, Bernard; Ilyina, N; Imlay, Richard; Ingram, D; Ingram, Quentin; Isiksal, Engin; Jarry, Patrick; Jarvis, Chad; Jeong, Chiyoung; Jessop, Colin; Johnson, Kurtis F; Jones, John; Jovanovic, Dragoslav; Kaadze, Ketino; Kachanov, Vassili; Kaftanova, V; Kailas, Swaminathan; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kataria, Sushil Kumar; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Kennedy, Bruce W; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kloukinas, Kostas; Kodolova, Olga; Kohli, Jatinder Mohan; Kokkas, Panagiotis; Kolberg, Ted; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krasnikov, Nikolai; Krinitsyn, Alexander; Krokhotin, Andrey; Krpic, Dragomir; Kryshkin, V; Kubota, Yuichi; Kubrik, A; Kuleshov, Sergey; Kumar, Arun; Kumar, P; Kunori, Shuichi; Kuo, Chen-Cheng; Kurt, Pelin; Kyberd, Paul; Kyriakis, Aristotelis; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Ledovskoy, Alexander; Lee, Sang Joon; Leshev, Georgi; Lethuillier, Morgan; Levchuk, Leonid; Lin, Sheng-Wen; Lin, Willis; Linn, Stephan; Lintern, A L; Litvine, Vladimir; Litvintsev, Dmitri; Litov, Leander; Lobolo, L; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Los, Serguei; Lubinsky, V; Luckey, Paul David; Lukanin, Vladimir; Lustermann, Werner; Lynch, Clare; Ma, Yousi; Machado, Emanuel; Mahlke-Krüger, H; Maity, Manas; Majumder, Gobinda; Malberti, Martina; Malclès, Julie; Maletic, Dimitrije; Mandjavidze, Irakli; Mans, Jeremy; Manthos, Nikolaos; Maravin, Yurii; Marchica, Carmelo; Marinelli, Nancy; Markou, Athanasios; Markou, Christos; Marlow, Daniel; Markowitz, Pete; Marone, Matteo; Martínez, German; Mathez, Hervé; Matveev, Viktor; Mavrommatis, Charalampos; Maurelli, Georges; Mazumdar, Kajari; Meridiani, Paolo; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Mikhailin, V; Milenovic, Predrag; Miller, Michael; Milleret, Gérard; Miné, Philippe; Möller, A; Mohammadi-Najafabadi, M; Mohanty, Ajit Kumar; Moissenz, P; Mondal, Naba Kumar; Moortgat, Filip; Mossolov, Vladimir; Mur, Michel; Musella, Pasquale; Musienko, Yuri; Nagaraj, P; Nardulli, Alessandro; Nash, Jordan; Nédélec, Patrick; Negri, Pietro; Newman, Harvey B; Nikitenko, Alexander; Norbeck, Edwin; Nessi-Tedaldi, Francesca; Obertino, Maria Margherita; Olson, Jonathan; Onel, Yasar; Onengüt, G; Organtini, Giovanni; Orimoto, Toyoko; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paganoni, Marco; Paganini, Pascal; Paktinat, S; Pal, Andras; Palma, Alessandro; Panev, Bozhidar; Pant, Lalit Mohan; Papadakis, Antonakis; Papadakis, Ioannis; Papadopoulos, Ioannis; Paramatti, Riccardo; Parracho, P; Pastrone, Nadia; Patil, Mandakini Ravindra; Patterson, Juliet Ritchie; Pauss, Felicitas; Penzo, Aldo; Petrakou, Eleni; Petrushanko, Sergey; Petrosian, A; Phillips II, David; Pikalov, Vladimir; Piperov, Stefan; Piroué, Pierre; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Ptochos, Fotios; Puljak, Ivica; Pullia, Antonino; Punz, Thomas; Puzovic, Jovan; Qian, Weiming; Ragazzi, Stefano; Rahatlou, Shahram; Ralich, Robert; Rande, J; Razis, Panos A; Redaelli, Nicola; Reddy, L; Reidy, Jim; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Ribeiro, Pedro Quinaz; Röser, Ulf; Rogalev, Evgueni; Rogan, Christopher; Roh, Youn; Rohlf, James; Romanteau, Thierry; Rondeaux, Françoise; Ronquest, Michael; Ronzhin, Anatoly; Rosowsky, André; Rovelli, Chiara; Ruchti, Randy; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Ryazanov, Anton; Safronov, Grigory; Sala, Leonardo; Salerno, Roberto; Sanders, David A; Santanastasio, Francesco; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schinzel, Dietrich; Schmidt, Ianos; Seez, Christopher; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Sharp, Peter; Shepherd-Themistocleous, Claire; Siamitros, Christos; Sillou, Daniel; Singh, Jas Bir; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Silva, J; Silva, Pedro; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shiu, Jing-Ge; Shivpuri, Ram Krishen; Shukla, Prashant; Shumeiko, Nikolai; Smirnov, Vitaly; Smith, Brian; Smith, Vincent J; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Sproston, Martin; Stefanovich, R; Stockli, F; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suter, Henry; Suzuki, Ichiro; Swain, John; Tabarellide Fatis, T; Talov, Vladimir; Takahashi, Maiko; Tcheremoukhine, Alexandre; Teller, Olivier; Teplov, Konstantin; Theofilatos, Konstantinos; Thiebaux, Christophe; Thomas, Ray; Timciuc, Vladlen; Timlin, Claire; Titov, Maksym; Tobias, A; Tonwar, Suresh C; Topakli, Huseyin; Topkar, Anita; Triantis, Frixos A; Troshin, Sergey; Tully, Christopher; Turchanovich, L; Tyurin, Nikolay; Ueno, Koji; Ulyanov, A; Uzunian, Andrey; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Varela, Joao; Vasil ev, A; Velasco, Mayda; Vergili, Mehmet; Verma, Piyush; Verrecchia, Patrice; Vesztergombi, Gyorgy; Veverka, Jan; Vichoudis, Paschalis; Vidal, Richard; Virdee, Tejinder; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Von Gunten, Hans Peter; Wang, Lei; Wang, Minzu; Wardrope, David; Weber, Markus; Weng, Joanna; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Williams, Jennifer C; Whitmore, Juliana; Won, Steven; Wu, Shouxiang; Yang, Yong; Yaselli, Ignacio; Yazgan, Efe; Yetkin, Taylan; Yohay, Rachel; Zabi, Alexandre; Zálán, Peter; Zamiatin, Nikolai; Zarubin, Anatoli; Zelepoukine, Serguei; Zeyrek, Mehmet; Zhang, Jia-Wen; Zhang, Lin; Zhu, Kejun; Zhu, Ren-Yuan

    2008-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7$\\pm$1.6$\\%$ and the constant term is 7.4$\\pm$0.8$\\%$. The corrected mean response remains constant within 1.3$\\%$ rms.

  2. Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Czech Academy of Sciences Publication Activity Database

    Chefdeville, M.; Karyotakis, Y.; Repond, J.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Richard; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2015-01-01

    Roč. 10, Dec (2015), P12006. ISSN 1748-0221 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 Keywords : calorimeter methods * detector modelling and simulations I * particle identification methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.399, year: 2014

  3. Sensitivity of alkali halide scintillating calorimeters with particle identification to investigate the DAMA dark matter detection claim

    CERN Document Server

    Nadeau, Patrick; Di Stefano, P C F; Lanfranchi, J -C; Roth, S; von Sivers, M; Yavin, Itay

    2014-01-01

    Scintillating calorimeters are cryogenic detectors combining a measurement of scintillation with one of phonons to provide particle identification. In view of developing alkali halide devices of this type able to check the DAMA/LIBRA claim for the observation of dark matter, we have simulated detector performances to determine their sensitivity by two methods with little model-dependence. We conclude that if performance of the phonon channel can be brought in line with those of other materials, an exposure of 10 kg-days would suffice to check the DAMA/LIBRA claim in standard astrophysical scenarios. Additionally, a fairly modest array of 5 kg with background rejection would be able to directly check the DAMA/LIBRA modulation result in 2 years.

  4. Behaviour of the ZEUS uranium-scintillator calorimeter for low-energetic particles with energies of 0.2 - 10.0 GeV

    International Nuclear Information System (INIS)

    A prototype for the high-resolution calorimeter (FCAL) of the ZEUS detector was tested at a test beam of the CERN PS for beam momenta between 0.5 GeV/c and 10.0 GeV/c. The response of the calorimeter to low-energetic electrons, positrons, pions of both polarities, and protons should be studied. Additionally the effect of dead matter in front of the calorimeter was experimentally studied. Following results could be determined: Electrons and Positrons of equal energy produce comparable signals in the detector. Their response is in the considered momentum range with an accuracy of below 1% linear. The energy resolution of the calorimeter for electrons and positrons in the studied energy interval amounts to 17.5%√E. The response of the calorimeter to π+ and π- is similar down to momenta of 0.5 GeV/c. The e/π ratio reaches the value 1.0 for energies above 2 GeV. For small incident energies e/mip=0.62 result. The energy resolution for pions amounts for energies above 2 GeV about 34%/√E. For smaller particle energies improvements can be observed. Protons show an identical behaviour as the pions, if the interesting quantities are considered in dependence on their kinetic energy. Dead matter in the front of the calorimeter influences the particle signals of low-energetic positrons and pions. The pulse-height spectra of electrons remain symmetric, but shift to small values. This behaviour could be confirmed by Monte-Carlo calculations. Pions show a distribution becoming with increasing matter density more asymmetric. At energies up to 2 GeV a significant effect mean values, energy resolution, and e/h ratio can be recognized. Above 2 GeV no important nuisance of the response to positrons and pions can yet be observed. (orig.)

  5. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  6. Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    International Nuclear Information System (INIS)

    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010

  7. Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    CERN Document Server

    Chefdeville, M; Repond, J.; Schlereth, J.; Xia, L.; Eigen, G.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Alipour Tehrani, N.; Apostolakis, J.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Brianne, E.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Karstensen, S.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Tran, H.L.; Vargas-Trevino, A.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Onel, Y.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Calvo Alamillo, E.; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Cornebise, P.; Richard, F.; Pöschl, R.; Rouëné, J.; Thiebault, A.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C.; Cizel, J-B.; Cornat, R.; Frotin, M.; Gastaldi, F.; Haddad, Y.; Magniette, F.; Nanni, J.; Pavy, S.; Rubio-Roy, M.; Shpak, K.; Tran, T.H.; Videau, H.; Yu, D.; Callier, S.; Conforti di Lorenzo, S.; Dulucq, F.; Fleury, J.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Chen, S.; Jeans, D.; Komamiya, S.; Kozakai, C.; Nakanishi, H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2015-01-01

    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.

  8. MAC calorimeters and applications

    International Nuclear Information System (INIS)

    The MAC detector at PEP features a large solid-angle electromagnetic/hadronic calorimeter system, augmented by magnetic charged-particle tracking, muon analysis and scintillator triggering. Its implementation in the context of electron-positron annihilation physics is described, with emphasis on the utilization of calorimetry

  9. Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in pp collisions at s=8 TeV

    Directory of Open Access Journals (Sweden)

    G. Aad

    2015-04-01

    Full Text Available The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb−1 of data collected in proton–proton collisions at s=8 TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.

  10. The ATLAS Tile Calorimeter

    CERN Document Server

    Henriques Correia, Ana Maria

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics.

  11. UA2 central calorimeter

    CERN Multimedia

    The UA2 central calorimeter measured the energy of individual particles created in proton-antiproton collisions. Accurate calibration allowed the W and Z masses to be measured with a precision of about 1%. The calorimeter had 24 slices like this one, each weighing 4 tons. The slices were arranged like orange segments around the collision point. Incoming particles produced showers of secondary particles in the layers of heavy material. These showers passed through the layers of plastic scintillator, generating light which was taken by light guides (green) to the data collection electronics. The amount of light was proportional to the energy of the original particle. The inner 23 cm of lead and plastic sandwiches measured electrons and photons; the outer 80 cm of iron and plastic sandwiches measured strongly interacting hadrons. The detector was calibrated by injecting light through optical fibres or by placing a radioactive source in the tube on the bottom edge.

  12. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The performance of the calorimeter has been studied employing cosmic ray muons and the large sample of proton-proton collisions acquired during the Run 1 of LHC (2010-2012). Results on the calorimeter performance on absolute energy scale, timing, noise and associated stabilities are presented. The results show that the Tile Calorimeter performance is within the design requirements of the detector.

  13. Search for new physics in the Compact Muon Solenoid (CMS) experiment and the response of the CMS calorimeters to particles and jets

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, Kazim Ziya; /Texas Tech.

    2008-08-01

    A Monte Carlo study of a generic search for new resonances beyond the Standard Model (SM) in the CMS experiment is presented. The resonances are axigluon, coloron, E{sub 6} diquark, excited quark, W{prime}, Z{prime}, and the Randall-Sundrum graviton which decay to dijets. The dijet resonance cross section that the CMS can expect to discover at a 5{sigma} significance or to exclude at 95% confidence level for integrated luminosities of 100 pb{sup -1}, 1 fb{sup -1}, and 10 fb{sup -1} is evaluated. It is shown that a 5{sigma} discovery of a multi-TeV dijet resonance is possible for an axigluon, excited quark, and E{sub 6} diquark. However, a 5{sigma} discovery can not be projected with confidence for a W{prime}, Z{prime} and the Randall-Sundrum graviton. On the other hand, 95% CL exclusion mass regions can be measured for all resonances at high luminosities. In the second part of this dissertation, the analyses of the 2006 test beam data from the combined electromagnetic and hadronic barrel calorimeters are presented. The CMS barrel calorimeters response to a variety of beam particles in a wide momenta range (1 to 350 GeV/c) is measured. Furthermore, using these beam data, the expected performance of the barrel calorimeters to jets is predicted.

  14. NA48 prototype calorimeter

    CERN Multimedia

    1990-01-01

    This is a calorimeter, a detector which measures the energy of particles. When in use, it is filled with liquid krypton at -152°C. Electrons and photons passing through interact with the krypton, creating a shower of charged particles which are collected on the copper ribbons. The ribbons are aligned to an accuracy of a tenth of a millimetre. The folding at each end allows them to be kept absolutely flat. Each shower of particles also creates a signal in scintillating material embedded in the support disks. These flashes of light are transmitted to electronics by the optical fibres along the side of the detector. They give the time at which the interaction occurred. The photo shows the calorimeter at NA48, a CERN experiment which is trying to understand the lack of anti-matter in the Universe today.

  15. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  16. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S.; /Moscow, ITEP; Abramov, V.; /Serpukhov, IHEP; Acharya, B.; /Tata Inst.; Adam, N.; /Princeton U.; Adams, M.; /Illinois U., Chicago; Adzic, P.; /Belgrade U.; Akchurin, N.; /Texas Tech.; Akgun, U.; Albayrak, E.; /Iowa U.; Alemany-Fernandez, R.; Almeida, N.; /Lisbon, LIFEP /Democritos Nucl. Res. Ctr. /Virginia U. /Iowa State U.

    2009-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7 {+-} 1.6% and the constant term is 7.4 {+-} 0.8%. The corrected mean response remains constant within 1.3% rms.

  17. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    CERN Document Server

    Abdullin, S

    2009-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7±1.6% and the constant term is 7.4±0.8%. The corrected mean response remains constant within 1.3% rms.

  18. Track calorimeter (TCAL) of alpha magnetic spectrometer (AMS) (a particle physics experiment on the international space station alpha)

    International Nuclear Information System (INIS)

    Based on the simulation and R and D results the JINR project - to supplement AMS with a finely granulated scintillator calorimeter (TCAL) - is discussed. The project cost is about 1 million USD. TCAL would essentially increase the AMS potential in the studies of antimatter, matter and missing matter in the experiments in outer space

  19. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Francis, K.; Repond, J.; Marčišovský, Michal; Šícho, Petr; Vrba, Václav; Zálešák, Jaroslav

    2011-01-01

    Roč. 654, č. 1 (2011), s. 97-109. ISSN 0168-9002 R&D Projects: GA MŠk LA09042; GA MŠk LA08032 Grant ostatní: EC(XE) RII3-CT-2006-026126 Institutional research plan: CEZ:AV0Z10100502 Keywords : lepton collider * electromagnetic calorimeter * embedded electronics * fake hits Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011 http://arxiv.org/pdf/arXiv:1102.3454v2

  20. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Wilkens, H G S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, time resolution, and associated stabilities. In addition to the measurement of the energy and direction of hadronic showers and particles, the calorimeter determines the arriv...

  1. Gas calorimeter workshop: proceedings

    International Nuclear Information System (INIS)

    Gas calorimeters combining functions of energy measurement and fine tracking have become more and more popular in the past few years. They help identify muons, gammas, electrons, and hadrons within dense tracks from transverse and longitudinal shower development. Fine segmentation capability using pads and strips on the cathodes have made gas-sampling calorimeters very attractive for colliding-beam detectors where a large multiplicity of particles are detected in a projected geometry. Linearity, energy resolution, shower position resolution, multishower resolution, and calibration questions were discussed in detail at the workshop. Ease of energy calibration by monitoring radioactive sources, good gain uniformity, and gain stability obtained were among the topics of the speakers. There was a discussion session on the operation mode of wire chambers. Gas calorimeters have been used successfully at CERN, Cornell, Fermilab, and SLAC for experiments. Some of the results from those large-scale devices were reported. Future usage of gas-sampling calorimeters for colliding-beam experiments at Fermilab and CERN were discussed. Wire chambers using extruded conductive plastic tubes have made construction easy of pads and strips which can conveniently read out induced signals from the cathode. The results of extensive studies on such devices were discussed. Separate entries were prepared for the data base for the 17 papers presented

  2. ATLAS - End-Cap calorimeter lowered in to the cavern

    CERN Multimedia

    IT-UDS Audiovisual Services

    2006-01-01

    The End-cap calorimeter was lowered into the ATLAS cavern at POINT1. This calorimeter will measure the energy of particles close to the beam axis when protons collide. Cooling is important for maximum detector efficiency.

  3. Challenges of Particle Flow reconstruction in the CMS High-Granularity Calorimeter at the High-Luminosity LHC

    CERN Document Server

    Chlebana, Frank

    2016-01-01

    The challenges of the High-Luminosity LHC (HL-LHC) are driven by the large number of overlapping proton-proton collisions (pileup) in each bunch-crossing and the extreme radiation dose to detectors positioned at high pseudorapidity. To overcome this challenge CMS is designing and implementing an endcap electromagnetic+hadronic sampling calorimeter employing silicon pad devices in the electromagnetic and front hadronic sections, comprising over 6 million channels, and highly-segmented plastic scintillators in the rear part of the hadronic section. This High-Granularity Calorimeter (HGCAL) will be the first of its kind used in a colliding beam experiment. Clustering deposits of energy over many cells and layers is a complex and challenging computational task, particularly in the high-pileup and high-event-rate environment of HL-LHC. These challenges and their solutions will be discussed in detail, as well as their implementation in the HGCAL offline reconstruction. Baseline detector performance results will be ...

  4. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  5. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  6. Assembly of the CMS hadronic calorimeter

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  7. ATLAS-Hadronic Calorimeter

    CERN Multimedia

    2003-01-01

    Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)

  8. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  9. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of muons and single hadrons from proton-proton collisions acquired in 2011 and 2012. The results demonstrate that the Tile Calorimeter has performed well within the design requirements and it has given essential contribution to reconstructed objects and physics results.

  10. Study of a novel electromagnetic liquid argon calorimeter TGT

    International Nuclear Information System (INIS)

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a test beam exposure. 15 refs., 16 figs., 2 tabs

  11. High granularity Semi-Digital Hadronic Calorimeter using GRPCs

    Energy Technology Data Exchange (ETDEWEB)

    Mannai, S., E-mail: sameh.mannai@uclouvain.be [Université Catholique de Louvain (Belgium); Manai, K. [Université Tunis El-Manar, Faculté des Sciences de Tunis (Tunisia); Haddad, Y. [Laboratoire Leprince Ringuet, Ecole Polytechnique, Paris (France); Laktineh, I. [Institut de Physique Nucléaire de Lyon, Université Claude Bernard, Lyon (France); Cortina, E. [Université Catholique de Louvain (Belgium)

    2013-08-01

    A Semi-Digital Hadronic Calorimeter using Glass Resistive Plate Chambers (GRPCs) is one of the calorimeters candidates proposed for particle physics experiments at the future electrons collider. It is a high granular calorimeter which is required for application of the particle flow algorithm in order to improve the jet energy resolution to achieve 30%/√(E) as one of the goals of these experiments.

  12. ALICE Zero Degree Calorimeter (ZDC), General Pictures.

    CERN Multimedia

    2003-01-01

    The ZDC Calorimeter for spectator neutrons is made by 44 slabs of W-alloy; each slab has 44 grooves where quartz fibres are placed. The charged particles of the hadronic shower generated by the neutrons make Cerenkov light in the fibres and the light is collected by photomultipliers. Photos from 1 to 9 show the front-face of the calorimeter. Photo n. 10 shows the rear of the calorimeter where the fibres are divided in several groups to go to the different PMs.

  13. Mitigation of calorimeter noise.

    Energy Technology Data Exchange (ETDEWEB)

    Santi, P. A. (Peter A.); Bracken, D. S. (David S.); Smith, M. K. (Morag K.)

    2004-01-01

    One of the main factors that limit the sensitivity of calorimeters is the noise in the calorimeter response. A previous study into the sources of noise in a Wheatstone bridge calorimeter used by Department of Energy (DOE) facilities has shown that the control system for maintaining the water bath at a constant temperature was an important contributor to the noise in the system. In order to minimize the contribution that the control system makes to the noise in the calorimeter response, a new control system for the calorimeter has been developed. An experimental and analytical study has been performed to determine the effectiveness of this new control system in reducing the response noise in a Wheatstone bridge calorimeter. The results of this study are presented along with their implications for future work in minimizing the equilibrium noise of calorimeters.

  14. The CDF miniplug calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Lami, Stefano

    2002-06-28

    Two MiniPlug calorimeters, designed to measure the energy and lateral position of particles in the (forward) pseudorapidity region of 3.6 < |{nu}| < 5.2 of the CDF detector, have been recently installed as part of the Run II CDF upgrade at the Tevatron {bar p}p collider. They consist of lead/liquid scintillator read out by wavelength shifting fibers arranged in a pixel-type towerless geometry suitable for ''calorimetric tracking''. The design concept, the prototype performance and the final design of the MiniPlugs are here described. A recent cosmic ray test resulted in a light yield of approximately 100 pe/MIP, which exceeds our design requirements.

  15. Electromagnetic calorimeter for HADES experiment

    Czech Academy of Sciences Publication Activity Database

    Kugler, Andrej; Blume, C.; Czyzycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowicz, M.; Kardan, B.; Koenig, W.; Lapidus, K.; Lisowski, E.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Yuri, G.; Svoboda, Ondřej; Tlustý, Pavel; Traxler, M.

    Vol. 8. Montreal: World Scientific Publishing Co. Pte. Ltd, 2014, s. 578-582. ISBN 978-981-4603-15-7. [14th International Conference on Advanced Technology and Particle Physics. Como (IT), 23.09.2013-27.09.2013] R&D Projects: GA MŠk LG12007; GA ČR GA13-06759S Institutional support: RVO:61389005 Keywords : HADES collaboration * calorimeter * HADES@FAIR Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  16. Design, Construction and Commissioning of the Digital Hadron Calorimeter - DHCAL

    CERN Document Server

    Adams, C; Bilki, B; Butler, J; Corriveau, F; Cundiff, T; Drake, G; Francis, K; Furst, B; Guarino, V; Haberichter, B; Hazen, E; Hoff, J; Holm, S; Kreps, A; DeLurgio, P; Matijas, Z; Monte, L Dal; Mucia, N; Norbeck, E; Northacker, D; Onel, Y; Pollack, B; Repond, J; Schlereth, J; Skrzecz, F; Smith, J R; Trojand, D; Underwood, D; Velasco, M; Walendziak, J; Wood, K; Wu, S; Xia, L; Zhang, Q; Zhao, A

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.

  17. Realtime calibration of the A4 electromagnetic lead fluoride calorimeter

    OpenAIRE

    Baunack, S.; Ríos, D. Balaguer; Capozza, L.; Diefenbach, J.; Frascaria, R.; Gläser, B.; Harrach, D. v.; Imai, Y.; Kothe, R.; Kunne, R.; Lee, J.H.; Maas, F. E.; Espí, M. C. Mora; Morlet, M.; Ong, S.

    2011-01-01

    Sufficient energy resolution is the key issue for the calorimetry in particle and nuclear physics. The calorimeter of the A4 parity violation experiment at MAMI is a segmented calorimeter where the energy of an event is determined by summing the signals of neighbouring channels. In this case the precise matching of the individual modules is crucial to obtain a good energy resolution. We have developped a calibration procedure for our total absorbing electromagnetic calorimeter which consists ...

  18. Upgrading the ATLAS fast calorimeter simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis, and a neural network parametrization to optimise the amount of information to store in the ATL...

  19. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  20. The spaghetti calorimeter. Research, development, application

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, C.V.

    1994-12-22

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from {Sigma} decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at {sigma}/E=12.9%/{radical}E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/{radical}E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam {Sigma}{sup -}particles via its decay {Sigma}{sup -}{yields}n{pi}{sup -}. Details of the calibration of SPACAL with electrons and protons are presented. (orig.).

  1. The spaghetti calorimeter. Research, development, application

    International Nuclear Information System (INIS)

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from Σ decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at σ/E=12.9%/√E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/√E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam Σ-particles via its decay Σ-→nπ-. Details of the calibration of SPACAL with electrons and protons are presented. (orig.)

  2. Study of hadrons energy resolution in a liquid argon calorimeter for the H1 experiment and study of supersymmetric particles detection at Hera

    International Nuclear Information System (INIS)

    Tests of liquid Argon calorimeters have been carried out at CERN in 1986 and 1987 in order to study the properties of the forthcoming H1 detector calorimeter installed at the HERA collider. In the first part of this work, from data analysis, several weighting methods of the measured charge for hadronic showers are proposed and discussed. These weighting methods allow to correct the non compensation of liquid Argon calorimeters and so to optimize the hadrons energy resolution. The problem of electrons and pions identification is also met. In the second part, selectron and squark production is considered in the electrons protons collisions of HERA. Signal extraction from standard background is studied with the help of a simulation of supersymmetric and deep inelastic scattering processes as well as a rough simulation of the H1 detector

  3. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    International Nuclear Information System (INIS)

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the pre-shower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure this tolerance are also given. The second part of this document concerns both the identification of the photons with LHCb and the calibration of the calorimeters. The photon identification method is presented and the performances given. Finally, the absolute energy calibration of the PRS and ECAL, based on the data stored in 2010 is explained. (author)

  4. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  5. The optical instrumentation of the ATLAS Tile Calorimeter

    Czech Academy of Sciences Publication Activity Database

    Abdallah, J.; Adragna, P.; Alexa, C.; Lokajíček, Miloš; Němeček, Stanislav; Přibyl, Lukáš

    2013-01-01

    Roč. 8, Jan (2013), P01005. ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : calorimeters * calorimeter methods * scintillators * scintillation and light emission processes * solid, gas and liquid scintillators Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.526, year: 2013

  6. ATLAS End Cap end cap calorimeter transport to POINT1

    CERN Multimedia

    CERN Video Productions

    2005-01-01

    Calorimeters surround the inner detector. They will absorb and measure the energies of most of the charged and neutral particles after the collisions. The saved energy in the calorimeter is detected and converted to signals that are resolved with data taking electronics.

  7. First experimental tests of a lead glass drift calorimeter

    International Nuclear Information System (INIS)

    We are building a drift collection calorimeter, which has a combined radiator and electric field shaping structure made of fused lead glass tubing, treated in a H2 reducing atmosphere. We describe the construction detail of the calorimeter and the experimental measurements on several prototypes with radioative sources and minimum ionizing particles. 9 refs., 11 figs

  8. AIDA: concerted calorimeter development

    CERN Multimedia

    Felix Sefkow

    2013-01-01

    AIDA – the EU-funded project bringing together more than 80 institutes worldwide – aims at developing new detector solutions for future accelerators. Among the highlights reported at AIDA’s recent annual meeting in Frascati was the completion of an impressive calorimeter test beam programme, conducted by the CALICE collaboration over the past two years at CERN’s PS and SPS beam lines.   The CALICE tungsten calorimeter prototype under test at CERN. This cubic-metre hadron calorimeter prototype has almost 500,000 individually read-out electronics channels – more than all the calorimeters of ATLAS and CMS put together. Calorimeter development in AIDA is mainly motivated by experiments at possible future electron-positron colliders, namely ILC or CLIC. The physics requirements of such future machines demand extremely high-performance calorimetry. This is best achieved using a finely segmented system that reconstructs events using the so-called pa...

  9. International workshop on calorimeter simulation

    International Nuclear Information System (INIS)

    The aim of the Juelich workshop was to provide an overview of the state of calorimeter simulation and the methods used. This resulted in 29 contributions to the following topics: Code systems relevant to calorimeter simulation, vectorization and code speed-up, simulation of calorimeter experiments, special applications of calorimeter simulation. This report presents the viewgraphs of the given talks. (orig./HSI)

  10. Software studies of GLD calorimeter

    Indian Academy of Sciences (India)

    H Matsunaga

    2007-12-01

    The baseline design of the GLD calorimeter is scintillator-strip arrays interleaved with absorber plates. We present preliminary performance studies of the hit clustering with this calorimeter using a simulator. Also, simulation results of a `digital' calorimeter, which is an option of the GLD calorimeter, are presented.

  11. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    CERN Document Server

    Machefert, F

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the preshower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure th...

  12. Hadron showers in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Benjamin

    2010-11-15

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  13. Hadron showers in a highly granular calorimeter

    International Nuclear Information System (INIS)

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  14. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    All the HCAL calorimeters are ready for data-taking in 2011 and participated fully in the cosmic running and initial beam operations in the last few weeks. Several improvements were made during the winter technical stop, including replacement of the light-guide sleeves in HF, improvements to the low voltage power connections, and separation of HF from HB and HE in the DAQ partitions. During the 2010 running a form of anomalous noise in the HF was identified as being caused by scintillation when charged particles pass through a portion of the air light-guide sleeve. This portion was constructed from a non-conductive mirror-like material called “HEM”. To suppress these anomalous signals, during the recent winter technical stop all sleeves in the detector were replaced with sleeves made of Tyvek. The detector has been recommissioned with all channels fully operational. Recalibration of the detector will be required due to the differing reflectivity of the new sleeves compared with the HEM sl...

  15. Tungsen electromagnetic calorimeter of spaghetti type

    International Nuclear Information System (INIS)

    Energy and spatial characteristics of the electromagnetic spaghetti-calorimeter based on the tungsten punched modules and scintillating fibers are studied. The resolution dependence on the angle between the detected particle and the fibers has experimentally been obtained. The Monte-Carlo calculated values are in a good agreement with the results obtained. 9 refs.; 4 figs

  16. Photodetectors in calorimeters for the linear collider

    Czech Academy of Sciences Publication Activity Database

    Cvach, Jaroslav

    Rijeka : InTech, 2012 - (Gateva, S.), s. 441-460 ISBN 978-953-51-0358-5. - ( Electrical and Electronic Engineering ) R&D Projects: GA MŠk LA09042 Institutional research plan: CEZ:AV0Z10100502 Keywords : photodetectors * calorimeters * international linear collider Subject RIV: BF - Elementary Particles and High Energy Physics http://www.intechopen.com/ books /photodetectors

  17. The ZEUS uranium calorimeter

    International Nuclear Information System (INIS)

    The uranium-scintillator calorimeter of the ZEUS experiment in the HERA electron proton collider at DESY in Hamburg, Germany, is described. It covers 99.8% of the solid angle, has an energy resolution 35%/√E for single hadrons and jets, and 17.5%/√E for electrons. e/h is 1 within 2% in energy range of 2 to 100 GeV. Test beam results show that inter calibration at the 1% level is achievable using uranium radioactivity. The calorimeter was commissioned in April 1992, and has been taken data since May 1992. Main characteristics of the calorimeter construction, readout, and trigger were reviewed. Experience from the first data taking period, including results on noise, stability of calibration, background from HERA accelerator, and performance of the calorimeter trigger is discussed. (author). 28 refs., 21 figs., 1 tab

  18. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer components The Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  19. Calorimeters for biotechnology

    International Nuclear Information System (INIS)

    The isothermal and temperature scanning calorimeters manufactured by Calorimetry Sciences Corporation are briefly described. Applications of calorimetry to determine thermodynamics and kinetics of reactions of interest in biotechnology are described with illustrative examples

  20. Silicon pad detectors for ALICE forward calorimeter

    International Nuclear Information System (INIS)

    A newly designed Electromagnetic Calorimeter (EMC) is being proposed as a possible upgrade in the Forward rapidity region, to enhance the physics capabilities of the ALICE experiment at CERN. Each LHC experiment uses a unique approach, in which preference of the designers and the physics requirements has played a decisive role. The requirement of the design of the calorimeter is to have highly granular layers of detectors consisting of 1 mm2 as well as 1 cm2 silicon pad detectors. The high granular layers (1 mm2) yield good position resolution and tracking of incoming particles. Other active layers, composed of pads of 1 cm2 are used for energy measurement

  1. Calibration of the CREAM-I calorimeter

    CERN Document Server

    Yoon, Y S; Bagliesi, M G; Bigongiari, G; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, M H; Lutz, L; Maestro, P; Malinin, A; Marrocchesi, P S; Nam, S; Park, I H; Park, N H; Seo, E S; Sina, R; Wu, J; Yang, J; Zei, R; Zinn, S Y

    2010-01-01

    The Cosmic Ray Energetics And Mass (CREAM) calorimeter is designed to measure the spectra of cosmic-ray particles over the energy range from ~10^11 eV to ~10^15 eV. Its first flight as part of the CREAM-I balloon-borne payload in Antarctica during the 2004/05 season resulted in a recordbreaking 42 days of exposure. Calorimeter calibration using various beam test data will be discussed in an attempt to assess the uncertainties of the energy measurements.

  2. Rad Hard Active Media For Calorimeters

    CERN Document Server

    Norbeck, E; Möller, A; Onel, Y

    2006-01-01

    Zero-degree calorimeters have limited space and extreme levels of radiation. A simple, low cost, radiation hard design uses tungstenmetal as the absorber and a suitable liquid as the ˇCerenkov radiator. In other applications a PPAC (Parallel Plate Avalanche Counter) operatingwith a suitable atmosphericpressure gas is an attractive active material for a calorimeter. It can be made radiation hard and has sufficient gain in the gas that no electronic components are needed near the detector. It works well even with the highest concentration of shower particles. For this pressure range, R134A (used in auto air conditioners) has many desirable features.

  3. Results from ATLAS Calorimeter Combined Test Beam

    CERN Document Server

    Tarrade, F

    2007-01-01

    Beam tests of combinations of ATLAS calorimeters have been performed both for the barrel and end cap parts. During a combined test beam in summer 2004 a slice of the ATLAS barrel detector - including all detector sub systems from the inner tracker, the calorimetry to the muon system - was exposed to particle beams (electrons, pions, photons, muons) with different energies (1GeV to 350GeV). The aim was to study the combined performance of the different detector sub systems in ATLAS-like conditions. We will present the electronics calibration scheme of the electromagnetic calorimeter and its implementation. The following studies on the combined testbeam data have been performed and will be presented: performance of the electromagnetic calorimetry down to very low energies (> GeV), photon reconstruction including converted photons and position measurements using the very precise ATLAS tracker and the electromagnetic calorimeter. These measurements have been compared to Monte Carlo simulations showing the good de...

  4. LHCb Calorimeter modules arrive at CERN

    CERN Multimedia

    2002-01-01

    Two of the three components of the LHCb Calorimeter system have started to arrive from Russia. Members of the LHCb Calorimeter group with the ECAL and HCAL modules that have just arrived at CERN. The first two of the 56 Hadron Calorimeter (HCAL) modules and 1200 of the 3300 modules of the Electromagnetic Calorimeter (ECAL) have reached CERN from Russia. The third part of the system, the Preshower detector, is still being prepared in Russia. The calorimeter system identifies and triggers on high-energy particles, namely electrons, hadrons and photons by measuring their positions and energies. The HCAL is going to be a pure trigger device. The ECAL will also be used in the triggering, but in addition it will reconstruct neutral pions and photons from B meson decays. One of the major aims of the LHCb experiment is to study CP violation through B meson decays including Bs mesons with high statistics in different decay modes. CP violation (violation of charge and parity) is necessary to explain why the Universe...

  5. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  6. Electron identification in and performance of the ND280 Calorimeter

    CERN Document Server

    Carver, Antony

    T2K is an o axis neutrino beam experiment with a baseline of 295 km to the far detector, Super-Kamiokande. The near detector, ND280, measures the ux and energy spectra of electron and muon neutrinos in the direction of Super-Kamiokande. An electromagnetic calorimeter constructed from lead and scintillator surrounds the inner detector. Three time projection chambers and two ne grained scintillator detectors sit inside the calorimeter. This thesis describes the development of a particle identification algorithm for the calorimeter and studies how it can enhance a simple electron neutrino analysis. A particle identification algorithm was written for the electromagnetic calorimeter to separate minimally ionising particles, electromagnetic and hadronic showers. A Monte Carlo study suggested that the algorithm produced an electron sample with a relative muon contamination of 10+-2 whilst maintaining an electron efficiency of 80%. Data collected at CERN was then used to make comparisons between the Monte Carlo simul...

  7. First Half Of CMS Hadron Calorimeter Completed

    CERN Multimedia

    2001-01-01

    CMS HCAL electronics coordinator John Elias from Fermilab inspecting the assembled first half of the calorimeter. The first half barrel of the CMS hadron calorimeter was completed last month and assembly work on the elements of the second half commenced just last week. This is not a simple task considering the fact that the constructed half-barrel consists of eighteen 30 tonne segments each made with 0.15 mm tolerance. But through the work of everyone on the CMS hadron calorimeter team it is all moving forward. In the LHC, detection of particles produced in collisions of two proton beams requires measurement of their energy. To do this, the particle energy has to be changed into a form that can be easily measured. This is achieved by stopping the initial particles in a dense medium, where they create a shower of secondary particles. While particles that interact through electromagnetic forces (electrons and positrons) create relatively small showers, the size of showers created by hadrons, particles that i...

  8. ALICE Zero Degree Calorimeter

    CERN Multimedia

    De Marco, N

    2013-01-01

    Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.

  9. The SDC central calorimeter

    International Nuclear Information System (INIS)

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R ampersand D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design

  10. Performance of CREAM Calorimeter: Results of Beam Tests

    International Nuclear Information System (INIS)

    The Cosmic Ray Energetics And Mass (CREAM), a balloon-borne experiment, is under preparation for a flight in Antarctica at the end of 2004. CREAM is planned to measure the energy spectrum and composition of cosmic rays directly at energies between 1 TeV and 1000 TeV. Incident particle energies will be measured by a transition radiation detector and a sampling calorimeter. The calorimeter was constructed at the University of Maryland and tested at CERN in 2003. Performance of the calorimeter during the beam tests is reported

  11. Radioactively induced noise in gas-sampling uranium calorimeters

    International Nuclear Information System (INIS)

    The signal induced by radioactivity of a U238 absorber in a cell of a gas-sampling uranium calorimeter was studied. By means of Campbell's theorem, the levels of the radioactively induced noise in uranium gas-sampling calorimeters was calculated. It was shown that in order to obtain similar radioactive noise performance as U-liquid argon or U-scintillator combinations, the α-particles from the uranium must be stopped before entering the sensing volume of gas-uranium calorimeters

  12. Simulation and validation of the ATLAS Tile Calorimeter response

    CERN Document Server

    Karpov, S N; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data acquisition systems. This contribution describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. The improved description of the optical and electronic signal propagation is highlighted and the validation with the real particle data is presented.

  13. Forward hadron calorimeter of European hybrid spectrometer monitoring system

    International Nuclear Information System (INIS)

    The light-monitoring system of the forward neutral-hadron calorimeter of the European hybrid spectrometer is described. A general block diagram of the system, the functional relationships of the modules, and the ideology of the mathematical support are presented. The calorimeter records neutral particles in momentum range of 10-400 MeV/c. The calorimeter consists of 200 identical counters in modules of four each in a 10 X 20 matrix. The counters are made from plastic scintillators interlayed by steel plates. Light is collected by means of a rod reemitter admitted along the counter axis

  14. Slides for a talk entitled "Performance of the ATLAS Tile Calorimeter" at the CHEF2013 conference.

    CERN Document Server

    WILKENS, H; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, time resolution, and associated stabilities. In addition to the measurement of the energy and direction of hadronic showers and particles, the calorimeter determines the arriv...

  15. A 3000 element lead-glass electromagnetic calorimeter

    International Nuclear Information System (INIS)

    A 3045 element lead glass calorimeter and an associated fast trigger processor have been constructed, tested and implemented in BNL experiment E852 in conjunction with the multi-particle spectrometer (MPS). Approximately, 109 all-neutral and neutral plus charged triggers were recorded with this apparatus during data runs in 1994 and 1995. This paper reports on the construction, testing and performance of this lead glass calorimeter and the associated trigger processor. (orig.)

  16. Geiger projection calorimeter

    International Nuclear Information System (INIS)

    In view of a second generation p-decay experiment in the Gran Sasso Laboratory, a digital tracking calorimeter is being developed, based on the use of plastic tubes of the Mont Blanc detector type, which are operated in limited Geiser mode

  17. The ATLAS tile calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Louis Rose-Dulcina, a technician from the ATLAS collaboration, works on the ATLAS tile calorimeter. Special manufacturing techniques were developed to mass produce the thousands of elements in this detector. Tile detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  18. Automatic low-temperature calorimeter

    International Nuclear Information System (INIS)

    This paper describes a low-temperature adiabatic calorimeter with a range of 1.5-500K. The system for maintaining adiabatic conditions is implemented by two resitance thermometers, whose sensitivity at low temperatures is several orders higher than that of thermocouples. The calorimeter cryostat is installed in an STG-40 portable Dewar flask. The calorimeter is controlled by an Elektronika-60 microcomputer. Standard platinum and germanium thermometers were placed inside of the calorimeter to calibrate the thermometers of the calorimeter and the shield, and the specific heats of specimens of OSCh 11-4 copper and KTP-8 paste were measured to demonstrate the possibilities of the described calorimeter. Experience with the calorimeter has shown that a thorough study of the dependence of heat capacity on temperature (over 100 points for one specimen) can be performed in one or two dats

  19. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Dias, Flavia; The ATLAS collaboration

    2016-01-01

    A very large number of simulated events is required for physics and performance studies with the ATLAS detector at the Large Hadron Collider. Producing these with the full GEANT4 detector simulation is highly CPU intensive. As a very detailed detector simulation is not always required, fast simulation tools have been developed to reduce the calorimeter simulation time by a few orders of magnitude. The fast simulation of ATLAS for the calorimeter systems used in Run 1, called Fast Calorimeter Simulation (FastCaloSim), provides a parameterized simulation of the particle energy response at the calorimeter read-out cell level. It is then interfaced to the ATLAS digitization and reconstruction software. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: It incorporates developments in geometry and physics lists of the last five years and benefits from knowledge acquire...

  20. Upgrading the ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The original version of FastCaloSim has been very important in the LHC Run-1, with several billion events simulated. An improved parametrisation is being developed, to eventually address shortcomings of the original version. It incorporates developme...

  1. Design, Construction and Testing of the Digital Hadron Calorimeter (DHCAL) Electronics

    CERN Document Server

    Adams, C; Bilki, B; Butler, J; Corriveau, F; Cundiff, T; Drake, G; Francis, K; Guarino, V; Haberichter, B; Hazen, E; Hoff, J; Holm, S; Kreps, A; DeLurgio, P; Monte, L Dal; Mucia, N; Norbeck, E; Northacker, D; Onel, Y; Pollack, B; Repond, J; Schlereth, J; Smith, J R; Trojand, D; Underwood, D; Velasco, M; Walendziak, J; Wood, K; Wu, S; Xia, L; Zhang, Q; Zhao, A

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of the electronic readout system of this prototype calorimeter. The system is based on the DCAL front-end chip and a VME-based back-end.

  2. Fractal dimension analysis in a highly granular calorimeter

    CERN Document Server

    Ruan, M; Brient, J.C; Jeans, D; Videau, H

    2015-01-01

    The concept of “particle flow” has been developed to optimise the jet energy resolution by distinguishing the different jet components. A highly granular calorimeter designed for the particle flow algorithm provides an unprecedented level of detail for the reconstruction of calorimeter showers and enables new approaches to shower analysis. In this paper the measurement and use of the fractal dimension of showers is described. The fractal dimension is a characteristic number that measures the global compactness of the shower. It is highly dependent on the primary particle type and energy. Its application in identifying particles and estimating their energy is described in the context of a calorimeter designed for the International Linear Collider.

  3. Development of microstructured large area magnetic calorimeters with Au:Er- and Ag:Er-sensors for the detection of x-ray quanta and high energetic particles

    International Nuclear Information System (INIS)

    This thesis describes the development of large-area magnetic calorimeters which could for example be used for the investigation of the dissociative recombination or the measurement of the Lamb-shift for hydrogenlike heavy ions. The detectors consist of two meandershaped niobium thin film pickup coils and a paramagnetic sensor. The deposition of energy in the sensor results in a temperature change and therefore in a change of magnetisation of the sensor, which can be measured by a SQUID-magnetometer with high precision. As sensormaterials a dilute alloy of gold-erbium (Au:Er) as well as silver-erbium (Ag:Er) were used. Whereas the Ag:Er-sensor was glued on the pickup coil the Au:Er-sensor was for the first time microstructured by a novel microstructuring process established in this thesis. For the characterisation of the detectors and the sensormaterials a fluorescence source and a 55Fe source were used. The thermodynamic properties of the Au:Er-sensors thereby show promising results, as the magnetisation shows bulk properties down to 20 mK. The measurements of the signalize and the magnetisation with the detector which was equipped with a Ag:Er-sensor showed that the thermodynamic properties of the Ag:Eralloy could be fully described. Furthermore the shape of the pulses, the noise and the energy resolution of both detectors will be discussed. (orig.)

  4. Determination of shower central position in laterally segmented lead-fluoride electromagnetic calorimeters

    CERN Document Server

    Mazouz, M; Voutier, E

    2015-01-01

    The spatial resolution of laterally segmented electromagnetic calorimeters is studied on the basis of Monte-Carlo simulations worked-out for lead fluoride material. Parametrization of the relative resolution is proposed and optimized in terms of the energy of incoming particles and the elementary size of the calorimeter blocks. A new fit algorithm method is proposed that improves spatial resolution at high energies, and provides guidance for the design optimization of electromagnetic calorimeters.

  5. Calorimeter/absorber optimization for a RHIC dimuon experiment (RD-10 Project)

    International Nuclear Information System (INIS)

    The RD-10 R ampersand D effort on calorimeter/absorber optimization for a RHIC experiment has an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  6. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Roger Rusack

    Occupancy of the trigger primitives during a global run: the observed pattern is consistent with the polar angle dependence of the transverse energy equivalent of the electronic noise in the endcaps.   Progress on ECAL since the last CMS week has been mostly on three major fronts: we have continued with the installation and commissioning of the preshower detectors; the endcap calorimeter trigger has been installed and tested; and there have been many changes to the calorimeter detector control and safety systems. Both Preshower (ES) endcaps were installed in CMS on schedule, just before Easter. There followed a campaign of "first commissioning" to ensure that all services were correctly connected (electrical, optical, cooling, etc.). Apart from some optical ribbons that had to be replaced the process went rather smoothly, finishing on 23rd April. All power supplies are installed and operational. The cooling system (two branches of the joint Tracker-Preshower system) is fully fun...

  7. Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnager, V; Kaur, Manjit; Kumar, Arun; Kohli, Jatinder Mohan; Singh, Jas Bir; Acharya, Bannaje Sripathi; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Babich, Kanstantsin; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Ladygin, Vladimir; Meshcheryakov, Gleb; Moissenz, P; Petrosian, A; Rogalev, Evgueni; Sergeyev, S; Smirnov, Vitaly; Vishnevski, A V; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N P; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Oulyanov, A; Safronov, S; Semenov, Sergey; Stolin, Viatcheslav; Gribushin, Andrey; Demianov, A; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, Konstantin; Vardanyan, Irina; Yershov, A A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Korablev, Andrey; Khmelnikov, V A; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L K; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Kuzucu, A; Onengüt, G; Ozdes-Koca, N; Ozkurt, Halil; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankocak, Kerem; Gamsizkan, Halil; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Dindar, Kamile; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchyshyn, Vitaliy; Anderson, E Walter; Hauptman, John M; Elias, John E; Freeman, Jim; Green, Dan; Heering, Arjan Hendrix; Lazic, Dragoslav; Los, Serguei; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Arcidy, M; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Sulak, Lawrence; Varela, F; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Wang, Lei; Wetstein, Matthew; Ayan, S; Akgun, Ugur; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumus, Kazim; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Wigmans, Richard; Baarmand, Marc M; Mermerkaya, Hamit; Vodopyanov, I; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Martínez, German; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Fisher, Wade Cameron; Tully, Christopher; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2008-01-01

    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\\l |\\eta| \\le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \\approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed...

  8. Search for pair-produced long-lived neutral particles decaying in the ATLAS hadronic calorimeter in pp collisions at √s = 8 TeV

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2015-01-01

    Roč. 743, Apr (2015), s. 15-34. ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : high-energy collider experiment * Long-lived neutral particle * New physics * ATLAS * CERN * LHC Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.131, year: 2014

  9. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  10. LYSO crystal calorimeter readout with silicon photomultipliers

    Science.gov (United States)

    Berra, A.; Bonvicini, V.; Cecchi, C.; Germani, S.; Guffanti, D.; Lietti, D.; Lubrano, P.; Manoni, E.; Prest, M.; Rossi, A.; Vallazza, E.

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger-Muller avalanche mode, and thus working as independent photon counters with a very high gain (~106). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9 ~ 18X0 LYSO crystals. The crystals were readout by 36 4×4 mm2 SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100-500 MeV energy range.

  11. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  12. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    Czech Academy of Sciences Publication Activity Database

    Bilki, B.; Repond, J.; Xia, L.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Richard; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2014-01-01

    Roč. 10, Apr (2014), P04014. ISSN 1748-0221 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 Keywords : calorimeters * detector modelling and simulations I * calorimeter methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.399, year: 2014

  13. Photomultipliers on an LHCb calorimeter

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    An engineer attaches photomultiplier tubes to the electromagnetic calorimeter on the LHCb experiment. These large wall detectors will be used to study the bottom quark, a heavy, short-lived version of quarks found in protons and neutrons. The electromagnetic calorimeter will be used to detect photons, electrons and positrons produced by the decay of these short-lived quarks.

  14. Scintillating fiber ribbon --- tungsten calorimeter

    International Nuclear Information System (INIS)

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs

  15. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Central Calorimeter (HB/HE/HO) Photodetectors The main activity of the HCAL group during the present shutdown is the replacement of a small fraction of the Central Calorimeter (HB/HE/HO) photodetectors -- the Hybrid Photo-Detectors (HPDs). During the MTCC of 2006 it was established that all HPDs exhibit a low rate of discharge generating large random pulses. This behaviour persists at the full CMS field. However, at relatively low fields (0.5 Tesla) this discharge rate increases dramatically and becomes very large for a fraction of the HPDs. The HO HPDs which sit in the gap of the return yoke are thus adversly affected. These discharge pulses have been labelled "HPD noise" (which must be distinguished from low level electronic noise which manifests itself as pedestal noise for all HPD readout channels). Additional intermediate level noise can be generated by ion-feedback arising from thermal and field emission electrons. Ion feedback noise never exceeds the equivalent of few 10s of GeV, the...

  16. Electromagnetic Calorimeter for HADES

    CERN Document Server

    Czyzycki, W; Fabbietti, L; Golubeva, M; Guber, F; Ivashkin, A; Kajetanowicz, M; Krasa, A; Krizek, F; Kugler, A; Lapidus, K; Lisowski, E; Pietraszko, J; Reshetin, A; Salabura, P; Sobolev, Y; Stanislav, J; Tlusty, P; Torrieri, T; Traxler, M

    2011-01-01

    We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV....

  17. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL crystal calorimeter (EB + EE) The Barrel and Endcaps ECAL calorimeters have been used routinely in global runs. The CRAFT data have confirmed that ECAL performance is the same with or without magnetic field. The CRUZET and CRAFT runs have allowed experience to be gained with ECAL operation in many areas, in particular for the trigger and the calibration sequence using gap events (laser events and LED pulsing). More details can be found in the Commissioning/DPG report in this bulletin.   The last components remaining to be installed and commissioned are the specific Endcap Trigger modules (TCC-48). Most of the modules have been delivered to LLR and half of them are already at CERN. In parallel, large progress has been made on the validation of the TCC-48 firmware. Preshower (ES) The Preshower project has also made impressive progress during Autumn. All the elements required to complete the detector assembly are at hand. Ladder assembly, test and calibration with cosmic rays at the operating ...

  18. ELECTROMAGNET CALORIMETER (ECAL)

    CERN Multimedia

    R. Rusack

    Installation is under way of the last piece of the electromagnetic calorimeter. This is the preshower (ES) that sits in front of the two endcap calorimeters. The construction of the ES was completed in December and went through a detailed set of tests in December and January. The two preshower detectors have a total of 4300 silicon sensors with 137,000 strips. After final assembly and system testing in January, only two of the strips were found to be defective. Once CMS was fully opened a new support structure (‘Gazprom’) was put into place underneath the beam pipe, to support the Surkov platform, on which the preshower installation takes place. In the early hours of 26th February the first two Dees, which form the ‘ES+’ endcap,  were transported to P5 , a journey that took two and a half hours. The Dees, still inside environmental protection boxes, were then lowered  underground and moved to the ‘+’ end of CMS. Installation start...

  19. Precision timing calorimeter for high energy physics

    Science.gov (United States)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  20. Performance of the ATLAS Tile calorimeter

    CERN Document Server

    Bertoli, Gabriele; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau­particles and missing transverse energy. TileCal is a scintillator­steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front­end electronics read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read­out system is responsible for reconstructing the data in real­time. The digitized signals are reconstructed with the Optimal Filtering algorithm, which computes for each channel the signal amplitude, time and quality factor at the required high rate. Each stage of the signal production from scintillation light to the signal reconstruc...

  1. OPAL Forward Calorimeter (half cylinder with lead scintillator)

    CERN Multimedia

    1 half cylinder piece is available for loan. The OPAL forward Detector Calorimeter was made in 4 half cylindrical pieces. Two full cylinders were placed round the LEP beam pipe about 3m downstream of the interaction point. The detector was used primarily to measure the luminosity of LEP (rate of interactions) and also to trigger on 2-photon events. In addition it formed an essential part of the detector coverage which OPAL needed to carry out searches for new particles such as the Higgs boson. The detector is made of scintillators sandwiched between lead sheets. The light from the scintillators passes via bars of wavelength shifter and light guides on its way to be measured by photomultipliers. There is a layer of gas filled tube chambers within the calorimeter. These provide a measure of the position of the particles interacting in the calorimeter.

  2. Highly granular hadron calorimeter: software compensation and shower decomposition

    Science.gov (United States)

    Chadeeva, M.; CALICE Collaboration

    2016-02-01

    The highly granular analogue hadron calorimeter was developed and constructed by the CALICE collaboration. The active layers of the calorimeter are assembled from scintillator tiles with individual readout by silicon photomultipliers and are interleaved with absorber plates. The response and resolution of the calorimeter equipped with steel absorber was intensively tested in single particle beams. The application of software compensation techniques developed for the scintillator-steel prototype allows for reduction of the stochastic term of the single particle resolution from 58%/ √E/GeV to 45%/ √E/GeV. The detailed study and decomposition of the longitudinal and radial profiles of hadron-induced showers in the energy range from 10 to 80 GeV are presented and compared to GEANT4 simulations.

  3. The KLOE electromagnetic calorimeter

    International Nuclear Information System (INIS)

    A general purpose detector, KLOE, is under construction for operations at the Frascati φ factory, DAΦNE. Its central mission is the study of direct CP violation in K0 decays, which places very stringent requirements on electromagnetic shower measurements in the 20-280 MeV/c region. We have chosen to use a lead-scintillator sampling calorimeter, EmC, consisting of very thin (0.5 mm) lead layers in which are embedded 1 mm diameter scintillating fibers. Much prototyping and testing has been done during its design, yielding, for the final EmC, an expected energy resolution of σ(E)/E similar 4.4%/√(E(GeV)) and a time resolution of similar 46 ps/√(E(GeV)), with excellent linearity in the region of interest and with little dependence on incidence angle and entry position. (orig.)

  4. Performance characteristics of an electromagnetic streamer tube calorimeter

    International Nuclear Information System (INIS)

    We have tested an electromagnetic streamer tube calorimeter in an electron beam in the energy range 1-70 GeV. Also the dependence of the response and energy resolution on the particle rate and magnetic field were investigated. A magnetic field transverse to the streamer tubes has no effect, while a field parallel to the wires deteriorates the energy resolution. (orig.)

  5. Performance characteristics of an electromagnetic streamer tube calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, R.; Grupen, C.; Meyer, H.J.; Schaefer, U.

    1987-05-01

    We have tested an electromagnetic streamer tube calorimeter in an electron beam in the energy range 1-70 GeV. Also the dependence of the response and energy resolution on the particle rate and magnetic field were investigated. A magnetic field transverse to the streamer tubes has no effect, while a field parallel to the wires deteriorates the energy resolution.

  6. Electromagnetic shower detector-calorimeters

    International Nuclear Information System (INIS)

    A brief review of the state-of-the-art of electromagnetic calorimeters is presented. The choice of detector based on the experimental requirements in cost, spatial resolution, energy resolution, and hadron rejection is discussed

  7. Electromagnetic Calorimeter for Hades Experiment

    Science.gov (United States)

    Kugler, A.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Lapidus, K.; Lisowski, E.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Svoboda, O.; Tlusty, P.; Traxler, M.

    2014-06-01

    Electromagnetic calorimeter (ECAL) is being developed to complement the dilepton spectrometer HADES currently operating at GSI Darmstadt, Germany. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeV on the beam of future accelerator SIS100@FAIR. The calorimeter will also improve the electron-hadron separation and will as well be used for the detection of photons from strange resonances in elementary and heavy ion reactions. Calorimeter modules constructed of lead glass Cherenkov counter, photomultiplier, HV divider and optical fiber are described in the detail. Two prototypes of novel front-end electronics based on TRB3 are presented. A dedicated LED based system being developed to monitor the stability of the calorimeter during beamtime is introduced as well.

  8. The AMS-02 electromagnetic calorimeter

    CERN Document Server

    Cadoux, F; Chambert-Hermel, V; Chen, G; Chen, H; Coignet, G; Di Falco, S; Dubois, J M; Falchini, E; Franzoso, A; Fougeron, D; Fouque, N; Galeotti, S; Girard, L; Goy, C; Hermel, R; Incagli, M; Kossakowski, R; Lieunard, B; Liu, Y; Liu, Z; Lomtadze, T A; Maestro, P; Marrocchesi, P S; Paoletti, R; Pilo, F; Rosier-Lees, S; Spinella, F; Turini, N; Valle, G D; Venanzoni, G; Vialle, J P; Yu, Z; Zhuang, H

    2002-01-01

    The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a lead-scintillating fibers sampling calorimeter characterized by high granularity that allows to image the longitudinal and lateral showers development, a key issue to provide high electron/hadron discrimination. The light collection system and the FE electronics are designed to let the calorimeter operate over a wide energy range from few GeV up to 1 TeV. A full-scale prototype of the e.m. calorimeter was tested at CERN in October 2001 using electrons and pions beams with energy ranging from 3 to 100 GeV. Effective sampling thickness, linearity and energy resolution were measured. (8 refs).

  9. Performance of the TGT liquid argon calorimeter and trigger system

    International Nuclear Information System (INIS)

    A novel concept of a liquid argon calorimeter, the 'Thin Gap Turbine' (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a 'circular data store' and standalone readout and playback capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given. 12 refs., 21 figs., 6 tabs

  10. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  11. ATLAS Tile Calorimeter: simulation and validation of the response

    Science.gov (United States)

    Faltova, Jana; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is readout by wavelength shifting fibers and transmitted to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being further transferred to off-detector data-acquisition systems. Detailed simulations are described in this contribution, ranging from the implementation of the geometrical elements to the realistic description of the electronics readout pulses, including specific noise treatment and the signal reconstruction. Special attention is given to the improved optical signal propagation and the validation with the real particle data.

  12. ATLAS Tile Calorimeter: simulation and validation of the response

    CERN Document Server

    Faltova, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is readout by wavelength shifting fibers and transmitted to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being further transferred to off-detector data-acquisition systems. Detailed simulations are described in this contribution, ranging from the implementation of the geometrical elements to the realistic description of the electronics readout pulses, including specific noise treatment and the signal reconstruction. Special attention is given to the improved optical signal propagation and the validation with the real particle data.

  13. The liquid argon calorimeter subsystem

    International Nuclear Information System (INIS)

    During the past several months, Tennessee, Mississippi, and the Oak Ridge National Laboratory have been coordinating efforts to benchmark the CALOR89 code system against the DO and HELIOS prototype calorimeter data, and to use the CALOR89 system to generate currently needed data for radiation damage studies, signal collection time, and compensation characteristics of various calorimeter designs. This report describes these results and gives our plans and projected budgets for the following year. 8 refs., 5 figs

  14. A compact light readout system for longitudinally segmented shashlik calorimeters

    CERN Document Server

    Berra, A; Cecchini, S; Cindolo, F; Jollet, C; Longhin, A; Ludovici, L; Mandrioli, G; Mauri, N; Meregaglia, A; Paoloni, A; Pasqualini, L; Patrizii, L; Pozzato, M; Pupilli, F; Prest, M; Sirri, G; Terranova, F; Vallazza, E; Votano, L

    2016-01-01

    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5~GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the $e/\\pi$ separation capability and the response of the photosensors to direct ionization.

  15. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    CERN Document Server

    Boumediene, D

    2015-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated to the calorimeter, there is a composite device that allows to monitor and/or equalize the signals at various stages of their formation. This device is based on signal generation from different sources: radioactive, Laser, charge injection and minimum bias events produced in proton-proton collisions. Recent performances of these systems as well TileCal calibration stability are presented.

  16. "Finger" structure of tiles in CMS Endcap Hadron Calorimeters

    CERN Document Server

    Afanasiev, Sergey; Danilov, Mikhail; Emeliantchik, Igor; Ershov, Yuri; Golutvin, Igor; Grinyov, B.V; Ibragimova, Elvira; Levchuk, Leonid; Litomin, Aliaksandr; Makankin, Alexander; Malakhov, Alexander; Moisenz, Petr; Nuritdinov, I; Popov, V.F; Rusinov, Vladimir; Shumeiko, Nikolai; Smirnov, Vitaly; Sorokin, Pavlo; Tarkovskiy, Evgueni; Tashmetov, A; Vasiliev, S.E; Yuldashev, Bekhzod; Zamyatin, Nikolay; Zhmurin, Petro

    2015-01-01

    Two CMS Endcap hadron calorimeters (HE) have been in operation for several years and contributed substantially to the success of the CMS Physics Program. The HE calorimeter suffered more from the radiation than it had been anticipated because of rapid degradation of scintillator segments (tiles) which have a high radiation flux of secondary particles. Some investigations of scintillators have shown that the degradation of plastic scintillator increases significantly at low dose rates. A proposal to upgrade up-grade the HE calorimeter has been prepared to provide a solution for survivability of the future LHC at higher luminosity and higher energy. A finger-strip plastic scintillator option has many advantages and is a lower cost alternative to keep the excellent HE performance at high luminosity. Measurements have been performed and this method has proved to be a good upgrade strategy.

  17. Simulation and validation of the ATLAS Tile Calorimeter response

    Science.gov (United States)

    Karpov, S. N.

    2014-09-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are amplified, shaped and digitized before being transferred to off-detector data acquisition systems. This paper describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. Recently improved description of the optical and electronic signal propagation is highlighted and the validation with the real particle data is presented.

  18. A compact light readout system for longitudinally segmented shashlik calorimeters

    Science.gov (United States)

    Berra, A.; Brizzolari, C.; Cecchini, S.; Cindolo, F.; Jollet, C.; Longhin, A.; Ludovici, L.; Mandrioli, G.; Mauri, N.; Meregaglia, A.; Paoloni, A.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Prest, M.; Sirri, G.; Terranova, F.; Vallazza, E.; Votano, L.

    2016-09-01

    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5 GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the e / π separation capability and the response of the photosensors to direct ionization.

  19. The E864 lead-scintillating fiber hadronic calorimeter

    International Nuclear Information System (INIS)

    A large hadronic lead scintillating fiber calorimeter has been built and integrated into the AGS experiment E864 [C. Pruneau et al. (1996); F. Rotondo et al. (1996)] spectrometer to provide an independent measurement of the mass of particles produced in heavy ion collisions. The ''''spaghetti-type'''' calorimeter design and construction techniques are described in detail. Results from a prototype and the full implementation of the calorimeter are reported. The hadronic energy resolution of the calorimeter is found to be δE/E=0.035(±0.005)+0.344(±0.008)/√(E/GeV), in very good agreement with a FLUKA calculation. The hadronic time resolution is measured to be better than 400 ps. The combined calorimeter energy and time signals provide for a mass determination with good resolution. The mass resolution scales as δm/m=0.026+0.347/√(E(GeV)) for velocities v/c<0.98. (orig.)

  20. Engineering prototype of the CALICE analog hadron calorimeter

    International Nuclear Information System (INIS)

    A new prototype of a tile hadron calorimeter (AHCAL) for the International Linear Collider detector is currently developed within the CALICE collaboration. The aim is to improve the energy resolution by measuring details of the shower development and combining them with the data of the tracking chamber (particle flow). The prototype is based on scintillating tiles that are read out by novel Silicon-Photomultiplier (SiPM). This new prototype will take into account all design aspects that are demanded by the intended operation at the ILC It will contain about 2500 detector channels. This is the first calorimeter design which makes full use of the high integration potential of the novel photo-sensor technology. Main focus of this contribution is the mechanical and electrical integration of the front-end electronics into the calorimeter absorber structure, with the aim of maintaining high-density calorimeter. Integration aspects and scalability to an ILC detector are discussed. For the analog calorimeter the proposal of an integrated light-calibration system for calibration and gain monitoring are presented, addressing temperature and bias dependence of the SiPM gain. First results from the measurements with one prototype module at the DESY test beam are presented, which demonstrate the quality of the readout system, and of the light-calibration system.

  1. New development in high resolving power W-Si calorimeters

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider (BNL) collides heavy nuclei and creates a strongly coupled medium at unprecedented density and temperature. Characteristic event structures may be efficiently selected with calorimeters, which can provide triggers on high-pT particles, 'jets' of particles, or large transverse energy, along with precision measurements of the structures. The importance of calorimeters in studies of ultrarelativistic heavy-ion collisions was first recognized by W.Willis. The key requirements are photon identification and measurements, and high resolving power to handle extreme occupancies common to this kind of interactions. We present a fully developed and beam tested concept of the W-Si sampling calorimeter built to this specifications. Novel features of this design are concepts of silicon micromodules, use of microconnectors for the silicon alignment purposes and passive signal summation to form readout towers. A prototype calorimeter was built in collaboration between BNL and a number of University groups from USA, Russia, Korea, Finland and Czech Republic and exposed to particle beams at CERN PS and SPS.

  2. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    HCAL installation and commissioning is approaching completion. Work continues on commissioning of HE-, HF- and the minus wheels of HO. We expect that all commissioning will be completed by mid-March. HCAL commissioning is interleaved with integration of HCAL and the Global Calorimeter Trigger (GCT). HCAL is attempting to take data using the HPD self-trigger as part of the GCT trigger path. Initial attempts in mid-February have not succeeded. Work continues on HCAL and the GCT. HPD lifetimes at 4 Tesla are being measured in Princeton. After more than a month of testing in a 4 Tesla field there are no sur¬prises. As the lifetime measurements proceed, the HPD response at intermediate fields of 1 Tesla will be verified and analyzed. Work also continues on HCAL calibration and DCS/DSS at Point 5. More details for some of the subsystems are presented in what follows. HE HE plus The cooling system of HE+ is functional now. The HE+ final connections to the LV system are complete. LV and HV tests to ev...

  3. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    Throughout the entire proton-proton run of 2011, all HCAL calorimeters operated very efficiently. Over 99% of HCAL readout and trigger channels were alive. However, during the year we did face two hardware problems. One major operation problem was the occasional loss of data from a single RBX caused by single event upsets (SEUs). The rate of RBX data loss was on average one incident per 10 pb–1 of integrated luminosity. This led to approximately 1% of CMS data loss. In order to mitigate this problem, HCAL has introduced an automatic reset of the RBX. With this reset, full operation was restored within about one minute. The final hardware correction of the problem will be possible only during a long shutdown (LS1) in 2013-’14. Another hardware problem that developed in 2011 was the failure of QPLL (quartz phase lock loops) chips. This led to the loss of phase of the readout clock with respect to the LHC clock. As a consequence, in two sections in HCAL (10 degree in φ on HB and 1...

  4. Calorimeter Process Variable Archiving

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, David; /Fermilab

    2002-01-14

    These steps were taken to maintain weekly archives: (1) Friday morning you stop the archiver and wait for it to finish writing data (the lock file will be removed from the directory); (2) move the current archive information to a PC via FTP; (3) remove all previous archive information in the previous directory; (4) move the current archive into the previous directory; (5) start a new archive; (6) burn a CDROM of the archive; and (7) copy the current archive to a specific directory. There are 2 ways to check if the Calorimeter Archiver is running, either through the WEB based front end or directly from a command line. Once the archiver is running it can be monitored from a WEB page. This only works with a browser launched from the online machine running the archiver. Each time the browser is reloaded there should be an update reported in the last write check field. You might have to wait a few minutes to see the update. Calorimetry currently takes readings every (300 sec.) 5 minutes. The second method to verify the archiver is running is to issue a command from a Linux cluster machine.

  5. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    D. Green

    The organization of CMS HCAL contains four “geographic” efforts, HB, HO, HE and HF. In addition there are presently five “common” HCAL activities. These ef¬forts are concentrated on electronics, on controls (DCS), on physics objects (JetMet), on Installation and Commissioning (I&C), and on Test Beam (TB) and Cosmic Challenge (MTCC) data taking. HCAL has begun planning to re-organize to be synchronized with the overall CMS management structure. HF The full production of the wedges is completed for some time. The 2004 test beam work has established the radioactive source calibration system for HF works at the 5 % level or better and a note is completed. The calibration of the complete HF is complete. HF is now in the UX cavern and will be hooked up and read out as soon as the services are available. HE The two HE calorimeters are installed and an initial calibration has been established. In the MTCC the HE was read out and muon data was observed. Event b...

  6. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel (EB) The cabling of the ECAL Barrel services on YB0 was completed early December 2007. The team has now commissioned the complete Barrel. To run all the supermodules in parallel, it is necessary to remove the heat from the service cables on YB0. The corresponding thermal screens are being installed and, for the time being, a max¬imum of 25 supermodules has been run concurrently. EB is read out regularly with a local DAQ as well as with the central DAQ and trigger. The calorimeter trigger has also been commissioned, allowing us to trigger on cosmic muons. ECAL Endcaps (EE) The Endcaps crystal production will be completed before the end of March 2008, as planned. The gluing of the VPTs (Vacuum Photo Triodes) on the crystals and the assembly of Supercrystals (sets of 25 crystals) are proceeding at the pace of 16 Supercrystals (400 channels) per week. Two thirds of the Supercrystals needed for the complete EE have been produced. Their mounting on the Dee backplates (including the connectio...

  7. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...

  8. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding and A. Skuja

    2010-01-01

    Splash and Collision Data HCAL recorded the beam-on-collimator (splash) and the first collision data in November and December 2009, and provided triggers to CMS with the forward calorimeter, HF. Splash events were used to improve the energy inter-calibration of the HB and HE channels, with the basic assumption that the energy deposited in the detector by the large flux of muons that passed through in splash events was a smooth function in eta and phi. The new HB and HE calibration coefficients were applied prior to the collision data taking. For HO, a similar analysis is being finalized. Splash events were also used to determine the relative timing between channels in HB and HE, and new delay settings were calculated based on splashes from one beam, applied and verified with the splash events from the other beam. During Fall 2009, the HF technical trigger was improved in order to be effectively used as one of the main CMS triggers during the collision data taking. Collisions were successfully recorded by all...

  9. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    During the last 3 months commissioning of HCAL has continued for HO and HE+. We have also started the commissioning of the first wedge of HB+. Progress continues to be made by our Trigger/DAQ, DCS and DPG colleagues. HF will be used to obtain a Luminosity measurement for CMS. A first test of the modifications to the HF electronics was made in the August CMS global run. In addition to installation and commissioning of various parts of HCAL, we also completed a very successful summer Test Beam period which saw measurements of the combined HE/EE/ES calorimeter system in the H2 test beam. Installation and Commissioning a. HB commissioning This week, part of the final water-cooling system for HB was commissioned. Eighteen HB- wedges and two pilot wedges on HB+ have been connected to the water circuit on YB0. On Sept 6, 2007 cabling and commissioning was started for the first HB readout box (RBX) using temporary set of cables. We have connected RBX-17 to the Low Voltage PS and the HCAL Detector Control Sy...

  10. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    by J. Spalding and A. Skuja

    2010-01-01

    Operations and Maintenance All HCAL sub-detectors participated throughout the recent data taking with 7 TeV collisions. A timing scan of HF was performed to optimize the timing across the detectors and to set the overall time position of the ~10-ns wide signals within the 25-ns integration time slice. This position was chosen to ensure that the trigger primitives in physics events are generated synchronously at the desired bunch crossing, while also providing discrimination between the calorimeter signals and anomalous signals due to interactions within the photomultiplier tubes. This timing discrimination is now used in the standard filter algorithms for anomalous signals. For HB and HE, once the statistics needed to assess the timing of a sufficient number of channels was accumulated, it was verified that the time settings determined with cosmic, splash events and initial collision data were appropriate for the 7 TeV collision data taking. A further fine-tuning of the HB and HE time settings will be perfo...

  11. Design studies and sensor tests for the beam calorimeter of the ILC detector

    International Nuclear Information System (INIS)

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  12. Design studies and sensor tests for the beam calorimeter of the ILC detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, E.

    2007-03-15

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  13. Thermal dynamics of bomb calorimeters.

    Science.gov (United States)

    Lyon, Richard E

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter. PMID:26724069

  14. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  15. Shower fractal dimension analysis in a highly-granular calorimeter

    CERN Document Server

    Ruan, M

    2015-01-01

    We report on an investigation of the self-similar structure of particle showers recorded at a highly-granular calorimeter. On both simulated and experimental data, a strong correlation between the number of hits and the spatial scale of the readout channels is observed, from which we define the shower fractal dimension. The measured fractal dimension turns out to be strongly dependent on particle type, which enables new approaches for particle identification. A logarithmic dependence of the particle energy on the fractal dimension is also observed.

  16. Shower fractal dimension analysis in a highly-granular calorimeter

    International Nuclear Information System (INIS)

    We report on an investigation of the self-similar structure of particle showers recorded at a highly-granular calorimeter. On both simulated and experimental data, a strong correlation between the number of hits and the spatial scale of the readout channels is observed, from which we define the shower fractal dimension. The measured fractal dimension turns out to be strongly dependent on particle type, which enables new approaches for particle identification. A logarithmic dependence of the particle energy on the fractal dimension is also observed

  17. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  18. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  19. The NA48 LKr calorimeter readout electronics

    CERN Document Server

    Gianoli, A; Barr, C; Brodier-Yourstone, P; Buchholz, P; Ceccucci, Augusto; Cerri, C; Chlopik, A; Constantini, F; Fantechi, R; Formenti, F; Funk, W; Giudici, Sergio; Gorini, B; Guzik, J A; Hallgren, Björn I; Kozhevnikov, Yu; Iwansky, W; de La Taille, C; Lacourt, A; Laverrière, G C; Ljuslin, C; Mannelli, I; Martin-Chassard, G; Martini, M; Papi, A; Seguin-Moreau, N; Sozzi, M; Tarlé, J C; Velasco, M; Vossnack, O; Wahl, H; Ziolkowski, M

    2000-01-01

    The NA48 experiment at the CERN SPS accelerator is making a measurement of the direct CP violation parameter epsilon '/ epsilon by comparing the four rates of decay of K/sub S/ and K/sub L/ into 2 pi /sup 0/ and pi /sup +/ pi /sup -/. To reconstruct the decays into 2 pi /sup 0/ the information from the almost 13500 channels of a quasi-homogeneous liquid krypton electromagnetic calorimeter is used. The readout electronics of the calorimeter has been designed to provide a dynamic range from a few MeV to about 50 GeV energy deposition per cell, and to sustain a high rate of incident particles. The system is made by cold charge preamplifiers (working at 120 degrees K), low-noise fast shapers followed by digitizer electronics at 40 MHz sampling rate that employs a gain switching technique to expand the dynamic range, where the gain can be selected for each sample individually (i.e. every 25 ns). To reduce the amount of data collected the system contains a zero suppression circuit based on halo expansion. (12 refs)...

  20. The LHCb electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    This huge 6X7 square metre wall consists of 3300 blocks containing scintillator, fibre optics and lead, which took engineers on the LHCb experiment at CERN only one month to construct. It will measure the energy of particles produced in proton-proton collisions at the LHC when it is started in 2008. Photons, electrons and positrons will pass through the layers of material in these modules and deposit their energy in the detector through a shower of particles.

  1. Time alignment of the front end electronics of the LHCb calorimeters.

    CERN Document Server

    Abellan Beteta, C; Ajaltouni, Z; Amhis, Y; Barsuk, S; Beigbeder-Beau, C; Belyaev, I; Bohner, G; Bonnefoy, R; Breton, D; Calvo Gómez, M; Camilleri, L; Callot, O; Camboni, A; Chanal, H; Charlet, D; Comerma-Montells, A; Cornat, R; Crouau, M; Dalmagne, B; Deschamps, O; Domingo Bonal, F; Drancourt, C; Duarte, O; Dzhelyadin, R; Egorychev, V; Filippov, S; Fulda Quenzer, F; Garra Ticó, J; Garrido, L; Gascon, D; Gaspar de Valenzuela, A; Gioi, L L; Golubkov, D; Golutvin, A; González Bano, C; Grabalosa Gàndara, M; Graciani Díaz, R; Graugés, E; Gushchin, E; Guz, Yu; Jean-Marie, B; Konoplyannikov, A; Kristic, R; Kvaratskheliya, T; Ky, B; Lecoq, J; Lefèvre, R; Lefrançois, J; López Asamar, E; Machefert, F; Machikhiliyan, I; Martens, A; Minard, M N; Monteil, S; Niess, V; Perret, P; Picatoste Olloqui, E; Puig Navarro, A; Reinmuth, G; Riera-Baburés, J; Robbe, P; Roselló, M; Ruiz, H; Savrina, D; Schopper, A; Schune, M H; Shatalov, P; Sobczak, K; T’Jampens, S; Tocut, V; Vàzquez Gómez, R; Viaud, B; Videau, I; Vilasís-Cardona, X; Zhokhov, A

    2012-01-01

    LHCb is the experiment at the Large Hadron Collider at CERN designed for performing studies of CP-symmetry violation and rare decays of B-hadrons. Its calorimeter system allows to trigger on photons and electrons by associating the information from a scintillating pad signing charged particle (SPD), a pre-shower tagging electromagnetic particle (PS), an electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL). We present the principles and procedures for its fine time-alignment through the commissioning and the first collision phases. We give a particular emphasis to the choices made in the electronic design of the calorimeters to deal with the signal shape and spill over. Also we summarise the achieved levels of synchronisation.

  2. Application of the image calorimeter in the high energy gamma astronomy

    International Nuclear Information System (INIS)

    The capability of registration of the primary high energy cosmic ray gamma emission by a gamma-telescope made of an image calorimeter is shown in this paper. The problem of triggering and off-line identification of primary particles by the analysis of the electromagnetic showers induced in the calorimeter is under consideration. The estimations of the background flux of delayed secondaries induced by nuclear interactions are presented too

  3. Application of the image calorimeter in the high energy gamma astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata`, Rome (Italy); Carlson, P. [Royal Institute of Technology, Stockholm (Sweden); Fuglesang, C. [ESA-EAC, Cologne (Germany); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation)

    1995-09-01

    The capability of registration of the primary high energy cosmic ray gamma emission by a gamma-telescope made of an image calorimeter is shown in this paper. The problem of triggering and off-line identification of primary particles by the analysis of the electromagnetic showers induced in the calorimeter is under consideration. The estimations of the background flux of delayed secondaries induced by nuclear interactions are presented too.

  4. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    CERN Document Server

    Bilki, B; Xia, L.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Lima, J.G.R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A. -I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J. -Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H.L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; van Doren, B.; Wilson, G.W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Antequera, J. Berenguer; Alamillo, E. Calvo; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; di Lorenzo, S. Conforti; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Poschl, R.; Raux, L.; Richard, F.; Pöschl, R.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; de Freitas, P. Mora; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.

    2015-01-01

    Showers produced by positive hadrons in the highly granular CALICE scintillatorsteel analogue hadronic calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.

  5. ELECTRONICS FOR CALORIMETERS AT LHC.

    Energy Technology Data Exchange (ETDEWEB)

    RADEKA,V.

    2001-09-11

    Some principal design features of front-end electronics for calorimeters in experiments at the LHC will be highlighted. Some concerns arising in the transition from the research and development and design phase to the construction will be discussed. Future challenges will be indicated.

  6. COE1 Calorimeter Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    The purpose of this manual is to describe the operations of the COE1 calorimeter which is used to measure the thermal power generated by the radioactive decay of plutonium-bearing materials for the purposes of assaying the amount of plutonium within the material.

  7. The CMS central hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; E892 Collaboration

    1996-12-31

    The CMS central hadron calorimeter is a copper absorber/ scintillator sampling structure. We describe design choices that led us to this concept, details of the mechanical and optical structure, and test beam results. We discuss calibration techniques, and finally the anticipated construction schedule.

  8. ELECTRONICS FOR CALORIMETERS AT LHC

    International Nuclear Information System (INIS)

    Some principal design features of front-end electronics for calorimeters in experiments at the LHC will be highlighted. Some concerns arising in the transition from the research and development and design phase to the construction will be discussed. Future challenges will be indicated

  9. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Cole, S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter is the central section ($0 < |eta| < 1.7$) of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons decaying hadronically, and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired during 2011 and 2012. Results on the calorimeter performance will be presented, including the absolute energy scale, time resolution, and associated stabilities. These results demonstrate that the Tile Calorimeter is performing...

  10. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Shimizu, S; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired in 2011 and 2012. Results on the calorimeter performance will be presented, including the absolute energy scale, time resolution, and associated stabilities. These results demonstrate that the Tile Calorimeter is performing well within the design requirements and is giving essential ...

  11. CMS Forward Calorimeters Phase II Upgrade

    CERN Document Server

    Bilki, Burak

    2014-01-01

    The Phase II Upgrade of the CMS forward calorimeters (electromagnetic and hadronic) originates from the fact that these calorimeters will not be sufficiently performant with the expected High Luminosity LHC conditions, planned to be started in 2025. The major challenge is to preserve/improve the high performance of the current forward detectors with new devices that can withstand the unprecedented radiation levels and disentangle the very large event pileup. CMS elected two design concepts to be presented in the Phase II Upgrade Technical Proposal Shashlik electromagnetic calorimeter + Hadronic Endcap Rebuild, and High Granularity Calorimeter. The former concept is based on reconstructing the endcap electromagnetic calorimeter with a shashlik design and replacing the active media of the endcap hadron calorimeter with radiation tolerant active media with a possibility to extend the coverage. The latter concept is concentrating on constructing a high granularity (both longitudinally and laterally) calorimeter ...

  12. Design and status of the Mu2e electromagnetic calorimeter

    CERN Document Server

    Atanov, N; Budagov, J; Carosi, R; Cervelli, F; Colao, F; Cordelli, M; Corradi, G; Dane', E; Davydov, Yu I; Di Falco, S; Donati, S; Donghia, R; Echenard, B; Flood, K; Giovannella, S; Glagolev, V; Grancagnolo, F; Happacher, F; Hitlin, D G; Martini, M; Miscetti, S; Miyashita, T; Morescalchi, L; Murat, P; Pasciuto, D; Pezzullo, G; Porter, F; Saputi, A; Sarra, I; Soleti, S R; Spinella, F; Tassielli, G; Tereshchenko, V; Usubov, Z; Zhu, R Y

    2016-01-01

    The Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5x10^{-17} after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorim...

  13. Progress Status for the Mu2e Calorimeter System

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, Gianantonio; et al.

    2015-02-13

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerful $\\mu/e$ particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~<1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal $BaF_2$ crystals of 20 cm length. Each crystal is readout by two large area APD's. In this paper, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.

  14. The pulsed light calibration system of the ZEUS calorimeter

    International Nuclear Information System (INIS)

    The ZEUS calorimeter is a compensating calorimeter consisting of uranium and scintillator plates. Light is transported via light guides to photomultiplier tubes (PMTs). The design goal is an energy calibration good to within 1%. Stability is measured and PMT gains are set using the signal from uranium radioactivity. Another important component of the calibration is the pulsed light system, which distributes light from a central laser or from distributed LEDs to the photomultiplier tubes via optical fibers. The light pulse gives a similar PMT response as a signal generated by a particle in the calorimeter. This has allowed the monitoring of the following properties of the readout chain: . Number of photoelectrons/GeV/PMT. This enables us to differentiate between changes in the photomultiplier tubes and changes in the calorimeter (such as radiation damage). . Linearity of the PMT readout chain between 0 and 400 GeV. . Time delays from the PMTs and from the electronics are known to within 1 nsec. It is necessary to know these delays in order to precisely calculate the reconstructed charge and to eliminate background to e-p interactions from beam gas events. . Short-term monitoring of PMT gain. This has been used to measure PMT gain changes under varying magnetic fields to better than 1% and will be used to measure the PMT gain under varying HERA background conditions. (orig.)

  15. Radiation resistant multicomponent inorganic materials for homogeneous EM-calorimeters

    International Nuclear Information System (INIS)

    With the development of a new generation of particle accelerators the interest for radiation resistant materials using for EM-calorimeters capable of withstanding a high radiation environment (107 rad/yr) has been increasing. The radiation resistance of fluoride solid solutions and heavy crystal oxides is investigated. A series of multicomponent crystals, solid solutions on the base of CeF2 and CdF2 with the radiation resistance above 109 rad is presented. 24 refs.; 4 figs

  16. Electromagnetic calorimeter for the HADES@FAIR experiment

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Ondřej; Blume, C.; Czyzycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowicz, M.; Kardan, B.; Koenig, W.; Kugler, Andrej; Lapidus, K.; Lisowski, E.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Yuri, G.; Tlustý, Pavel; Traxler, M.

    2014-01-01

    Roč. 9, MAY (2014), C05002. ISSN 1748-0221. [13th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD 2013). Siena, 7.10.2013-10.10.2013] R&D Projects: GA ČR GA13-06759S; GA MŠk LG12007 Institutional support: RVO:61389005 Keywords : Cherenkov detectors * calorimeters * front-end electronics for detector readout Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.399, year: 2014

  17. Performance characteristics of an electromagnetic streamer tube calorimeter

    International Nuclear Information System (INIS)

    We have tested an electromagnetic streamer tube calorimeter in an electron beam in the energy range 1-70 GeV. Also the dependence of the response and energy resolution on the particle rate and magnetic field were investigated. A magnetic field transverse to the streamer tubes has no effect, while a field parallel to the wires deteriorates the energy resolution. (orig.) With 14 figs

  18. Test beam studies of prototype sensor planes of very forward calorimeters

    International Nuclear Information System (INIS)

    Special calorimeters are currently under development for the forward region of the future electron-positron collider. In the current detector concepts, two calorimeters are foreseen - the Luminosity Calorimeter (LumiCal) for precise luminosity measurement, and the Beam Calorimeter (BeamCal) for luminosity optimization. Both are designed as sensor-tungsten sandwich calorimeters. For each calorimeter prototypes of a sensor plane were prepared with silicon sensors for LumiCal and GaAs sensors for BeamCal. For each calorimeter, the first prototypes of sensor sectors have been prepared and assembled, with the sensor pad bonded to a fan-out on one side and to FE-ASICs developed by UST Cracow on the other. The fully assembled system was then tested in a 4 GeV electron beam at DESY II accelerator. The trajectory of beam particles was measured using a silicon strip detector telescope. The track reconstruction algorithm was adopted from telescope software and the impact points of electrons on the sensor were predicted. Results of the test beam data analysis on the performance of the system are reported.

  19. Construction of the Zeus forward/rear calorimeter modules at NIKHEF

    International Nuclear Information System (INIS)

    ZEUS is one of the two experiments in preparation for studying electron-proton interactions at the HERA e-p collider at DESY in Hamburg. The design value for the energy of the electron beam is 30 GeV and for the proton beam 820 GeV. The asymmetry in the beam particle masses and their energies causes in general a strongly asymmetric energy distribution for the reaction products, in particular most of the energy flow will be in the proton direction. The layout of the ZEUS detector accomodates for this asymmetry. In the proton direction for instance, several wirechambers assure together with the central tracking detector good track reconstruction, in an area where high density of tracks is expected. The tracking detector is placed inside a magnetic field of 1.8 Tesla, provided by a superconducting coil. The interaction point is completely surrounded by a high resolution calorimeter, which in turn is surrounded by a backing calorimeter; this backing calorimeter has to detect late showering particles, has to serve as a muon filter and is also the return yoke for the magnetic field. The ZEUS collaboration has chosen for a type of hadron calorimeter with the best possible energy resolution known to date, a depleted uranium-scintillator sampling calorimeter. The calorimeter has an equal response to electrons and hadrons of the same energy (e/h=1). The sampling thickness is one radiation length. The calorimeter is subdivided in three components, the forward- (in proton direction), the rear- (in electron direction) and the barrel calorimeter, FCAL, RCAL and BCAL. In this report the design and assembly procedure of the FCAL/RCAL is described in detail. Furthermore the transport problems are discussed and the first calibration results obtained with beam particles are shown. (author). 5 refs.; 29 figs.; 1 tab

  20. The backward end-cap for the PANDA electromagnetic calorimeter

    Science.gov (United States)

    Capozza, L.; Maas, F. E.; Noll, O.; Rodriguez Pineiro, D.; Valente, R.

    2015-02-01

    The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ⊕ 2%/√E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yield. With the exception of the very forward section, the light will be detected by large area avalanche photodiodes (APDs). The current pulses from the APDs will be integrated, amplified and shaped by ASIC chips which were developed for this purpose. The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). In this contribution, a status report on the development of the BWEC is presented.

  1. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.

    2013-03-01

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt{s} = 900 {GeV} and 7 TeV collected during 2009 and 2010. Then, using the decay of K s and Λ particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5 % for central isolated hadrons and 1-3 % for the final calorimeter jet energy scale.

  2. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Å sman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert

    2013-01-01

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.

  3. Design, construction and beam tests of the high resolution uranium scintillator calorimeter for ZEUS

    International Nuclear Information System (INIS)

    HERA will collide protons and electrons with energies up to 820 GeV and 30 GeV respectively. Therefore it allows measurements at momentum transfers (Q) which greatly surpass the investigations carried out so far. This extended range in Q will allow investigation of the interactions between the quarks and leptons at a distance scale of the order of 10-18 cm. Two detectors are foreseen at HERA H1 and ZEUS. The design of the ZEUS detector is optimized for the study of neutral and charged current interactions. A calorimeter is a detector which absorbs the total incident energy of a particle while generating a signal proportional to this energy. The ZEUS calorimeter is built of alternating layers of dense absorber plates (238U) and active layers of scintillator material with a fast readout system via wavelength shifters, light guides and photomultiplyers. The main subject of this thesis is the description of this calorimeter and its performance. After a short introduction to HERA and the physics topics, the importance of the quality of a calorimeter is pointed out and a brief overview of the ZEUS detector is given. In ch. 3 the principles of high resolution hadron calorimetry and the studies which led to the design of the ZEUS-calorimeter are discussed. Ch. 4 describes the mechanical design of the ZEUS forward calorimeter, the mechanical finite element calculations, and the production of the calorimeter modules at NIKHEF. Finally ch. 6 and 5 show the results of beam tests of the ZEUS forward calorimeter prototypes and the final full size forward calorimeter modules. (author). 59 refs.; 115 figs.; 29 tabs

  4. Thermal Equilibrium Calorimeters -- An Introduction

    CERN Document Server

    McCammon, D

    2005-01-01

    Near-equilibrium thermal detectors operate as classical calorimeters, with energy deposition and internal equilibration times short compared to the thermal time constant of the device. Advances in fabrication techniques, cryogenics, and electronics have made it practical to measure deposited energy with unprecedented sensitivity and precision. In this chapter we discuss performance considerations for these devices, including optimal filtering and energy resolution calculations. We begin with the basic theory of simple equilibrium calorimeters with ideal resistive thermometers. This provides a starting point for a brief discussion of electrothermal feedback, other noise sources, various non-ideal effects, and nonlinearity. We then describe other types of thermometers and show how they fit into this theoretical framework and why they may require different optimizations and figures of merit. Most of this discussion is applicable also to power detectors, or bolometers, where the detector time constants may be sho...

  5. Electromagnetic Calorimeter for HADES Experiment

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ramos P.

    2014-01-01

    Full Text Available Electromagnetic calorimeter (ECAL is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.

  6. A calorimeter with array detectors

    International Nuclear Information System (INIS)

    A 5 x 25 = 125 detector array has been designed for a calorimeter. Each element is consisted of a graphite block and a chromel-alumel. A new '0'-point set up was designed by using the critical temperature of the liquid nitrogen as the '0'-point of the temperature. A FY-1 data acquisition system was used for the detector array. The energy distribution of the electron beam has been measured on large-area diode with the system

  7. Calorimeter based on resistance thermometer

    International Nuclear Information System (INIS)

    The calorimeter on the aluminium alloy basis is developed for the Bremsstrahlung dosimetry. The registration of the absorbed dose is accomplished through the bridge-mounted resistance wire thermometer. It is shown that application of the modern measuring technique makes it possible to register the doses average values from 0.1 Gy, which corresponds to the temperature change in the 10-4 K transducer

  8. Performance of the ATLAS Calorimeters and Commissioning for LHC Run-2

    CERN Document Server

    Rossetti, Valerio; The ATLAS collaboration

    2015-01-01

    The ATLAS general-purpose experiment at the Large Hadron Collider (LHC) is equipped with electromagnetic and hadronic liquid-argon (LAr) calorimeters and a hadronic scintillator-steel sampling calorimeter (TileCal) for measuring energy and direction of final state particles in the pseudorapidity range $|\\eta| < 4.9$. The calibration and performance of the calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb$^{-1}$ of data have been collected at the center-of-mass energies of 7 and 8~TeV. Results on the calorimeter operation, monitoring and data quality, as well as their performance will be presented, including the calibration and stability of the electromagnetic scale, response uniformity and time resolution. These results demonstrate that the LAr and Tile calorimeters perform excellently within their design requirements. The calorimetry system thu...

  9. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5182 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1\\% using radioactive source, laser and charge injection systems. The performance of the calorimeter has been measured and monitored using calibration data, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. The results demonstrate a very good understanding of the performance of the Tile Calorimeter that is well within the design expectations.

  10. Performance of the first prototype of the CALICE scintillator strip calorimeter

    Czech Academy of Sciences Publication Activity Database

    Francis, K.; Repond, J.; Schlereth, J.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Denis; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2014-01-01

    Roč. 763, Nov (2014), 278-289. ISSN 0168-9002 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 Keywords : particle flow * electromagnetic calorimeter * scintillator * MPPC Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.216, year: 2014

  11. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (author)

  12. Rugged calorimeter with a fast rise time

    International Nuclear Information System (INIS)

    An intrinsic 1-mil-thick gold foil calorimeter has been developed which rises to 95% of the energy deposited in less than 2 microseconds. This calorimeter is very rugged, and can withstand rough handling without damage. The time constant is long, in the millisecond range, because of its unique construction. Use of this calorimeter has produced 100% data recovery, and agreement with true deposition to less than 10%

  13. Performance of the ATLAS Tile Calorimeter

    Directory of Open Access Journals (Sweden)

    Shimizu Shima

    2013-05-01

    Full Text Available The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions. Results on the calorimeter performance are presented, including the absolute energy scale, time resolution, and associated stabilities.

  14. ATLAS calorimeters energy calibration for jets

    International Nuclear Information System (INIS)

    The calibration of ATLAS barrel calorimeters (including pre shower system, electromagnetic Liquid Argon calorimeter and scintillating hadron tile calorimeter) was done by standard calibration and weighting technique approaches. The standard calibration gives the bad linearity for hadron non compensated calorimeter. The calibration with weighting technique, in comparison with standard calibration, restores linearity and improves energy resolution up to (σ/E)2 = (38.6%/√E)2 + (1.5%)2 for η 0.6. 6 refs., 4 figs., 1 tab

  15. Family reunion for the UA2 calorimeter

    CERN Multimedia

    Abha Eli Phoboo

    2015-01-01

    After many years in CERN’s Microcosm exhibition, the last surviving UA2 central calorimeter module has been moved to Hall 175, the technical development laboratory of the ATLAS Tile Hadronic Calorimeter (Tilecal). The UA2 and ATLAS calorimeters are cousins, as both were designed by Otto Gildemeister. Now side by side, the calorimeters illustrate the progress made in sampling organic scintillator calorimeters over the past 35 years.   The ATLAS Tile Calorimeter prototypes (left) and the UA2 central calorimeter (right) in Hall 175. (Image: Mario Campanelli/ATLAS.) From 1981 to 1990, the UA2 experiment was one of the two detectors on CERN’s flagship accelerator, the SPS. At the heart of the UA2 detector was the central calorimeter. It was made up of 24 slices – each weighing four tonnes – arranged like orange segments around the collision point. These calorimeter slices played a central role in the research carried out by UA2 for the discovery of W bosons...

  16. Dynamic range compression in a liquid argon calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, W.E. [Univ. of Pittsburgh, PA (United States); Lissauer, D.; Radeka, V.; Rescia, S.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Wingerter-Seez, I. [LAPP, Annecy-le-Vieux (France)

    1996-12-31

    The anticipated range of particle energies at the LHC, coupled with the need for precision, low noise calorimetry makes severe demands on the dynamic range of the calorimeter readout. A common approach to this problem is to use shapers with two or more gain scales. In this paper, the authors describe their experience with a new approach in which a preamplifier with dynamic gain compression is used. An unavoidable consequence of dynamic gain adjustment is that the peaking time of the shaper output signal becomes amplitude dependent. The authors have carried out a test of such a readout system in the RD3 calorimeter, a liquid argon device with accordion geometry. The calibration system is used to determine both the gain of the individual channels as well as to map the shape of the waveform as a function of signal amplitude. A new procedure for waveform analysis, in which the fitted parameters describe the impulse response of the system, permits a straightforward translation of the calibration waveform to the waveform generated by a particle crossing the ionization gap. They find that the linearity and resolution of the calorimeter is equivalent to that obtained with linear preamplifiers, up to an energy of 200 GeV.

  17. The CDF calorimeter upgrade for RunIIb

    CERN Document Server

    Huston, J; Kuhlmann, S; Lami, S; Miller, R; Paoletti, R; Turini, N; Ukegawa, F

    2004-01-01

    The physics program at the Fermilab Tevatron Collider will continue to explore the high energy elementary particle physics until the LHC commissioning. The upgrade of the CDF calorimeter opens a new window for improving the jet energy resolution, important in finding various signals such as Higgs by correcting the energy loss in the dead material and adding information in the jet algorithms using charged particles. It plays an important role in soft electron tagging of b- jets and photon identification in SUSY. The upgrade of the CDF calorimeter includes: a) the replacement of slow gas detector on the front face of the Central Calorimeter with Preshower (CPR) based on 2cm thick scintillator tiles segmented in eta and Phi and read out by WLS fibers running into a groove on the surface of each tiles. The WLS fibers are placed to clear fibers after leaving the tiles; b) the replacement of the Central Crack Chamber (CCR) with 5mm thick scintillator tiles read with the same technique: To finalize the design parame...

  18. Performance and Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Starovoitov, P; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. This detector is instrumental for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale is transferred to the rest of the detector via the response to radioactive sources. The calibrated scale is validated in situ with muons and single hadrons whereas the timing performance is checked with muons and jets. A brief description of the individual calibration systems (Cs radioactive source, laser, charge injection, minimum bias) is provided. Their combination allows to calibr...

  19. ATLAS Tile Calorimeter time calibration, monitoring and performance

    CERN Document Server

    Davidek, Tomas; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons particles is presented.

  20. ANL four-meter calorimeter design and operation manual

    International Nuclear Information System (INIS)

    The four-meter fuel rod calorimetric system measures the thermal power produced by radioactive decay of fuel rods containing Pu. The Pu mass is related to the measured power through the weighted average of the product of the isotopic decay energies and the decay constants of the Pu isotopes present. U content has no effect since the thermal power produced by the U nuclides is insignificant when compared to Pu. Radiations from Pu are alpha particles and low-energy photons. This calorimeter will measure samples producing power up to 1.5 watts at a rate of one sample every 120 min. The instrument consists of a data-acquisition module made up of a microprocessor, with an 8K-byte nonvolatile memory, a control cabinet and the calorimeter chamber

  1. ANL four-meter calorimeter design and operation manual

    Energy Technology Data Exchange (ETDEWEB)

    Perry, R.B.; Lewis, R.N.; Youngdahl, G.A.; Jung, E.A.; Roche, C.T.

    1980-02-01

    The four-meter fuel rod calorimetric system measures the thermal power produced by radioactive decay of fuel rods containing Pu. The Pu mass is related to the measured power through the weighted average of the product of the isotopic decay energies and the decay constants of the Pu isotopes present. U content has no effect since the thermal power produced by the U nuclides is insignificant when compared to Pu. Radiations from Pu are alpha particles and low-energy photons. This calorimeter will measure samples producing power up to 1.5 watts at a rate of one sample every 120 min. The instrument consists of a data-acquisition module made up of a microprocessor, with an 8K-byte nonvolatile memory, a control cabinet and the calorimeter chamber. (FS)

  2. Geometric calibration of the SND detector electromagnetic calorimeter

    CERN Document Server

    Korol, A A

    2016-01-01

    This paper presents the design, implementation and validation of the software alignment procedure used to perform geometric calibration of the electromagnetic calorimeter with respect to the tracking system of the Spherical Neutral Detector (SND) which is used for HEP experiments at the VEPP-2000 $e^{+}e^{-}$ collider (BINP, Novosibirsk). This procedure is based on the mathematical model describing the relative calorimeter position. The parameter values are determined by minimizing a $\\chi^{2}$ function using the difference between directions reconstructed in these two subdetectors for the $e^{+}e^{-}\\rightarrow e^{+}e^{-}$ scattering data events. The results of the calibration and its application to the data and MC simulation fit the model and give an improvement of the reconstructed particle parameters. They are used already in the actual experimental data analysis and more realistic MC simulation. We think that the ideas implemented in the calibration procedure can be useful for other experiments with hete...

  3. ATLAS Tile Calorimeter: simulation and validation of the response

    CERN Document Server

    Davidek, T; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central secti1 on of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is readout by wavelength shifting fibers and transmitted to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being further transferred to off-detector data-acquisition systems. Detailed simulations are described in this contribution, ranging from the implementation of the geometrical elements to the realistic description of the electronics readout pulses, including specific noise treatment and the signal reconstruction. Special attention is given to the improved optical signal propagation and the validation with the real particle data.

  4. Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter

    International Nuclear Information System (INIS)

    We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters

  5. Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter

    CERN Document Server

    Adloff, C; Amjad, M S; Anduze, M; Apostolakis, J; Balagura, V; Baldolemar, E; Bartsch, V; Baulieu, G; Belhorma, B; Benchekroun, D; Bilki, B; Blaising, J J; Blazey, G C; Bobchenko, B; Bonis, J; Boudry, V; Brient, J-C; Briggl, K; Bulanek, B; Buzhan, P; Calabria, P; Callier, S; Caponetto, L; Cârloganu, C; Chadeeva, M; Chefdeville, M; Combaret, C; Cornat, R; Cornebise, P; Cornett, U; Corriveau, F; Cvach, J; Danilov, M; Dannheim, D; Dauncey, P D; David, D; Dotti, A; Doublet, Ph; Drancourt, C; Dulucq, F; Dyshkant, A; Eckert, P; Eigen, G; Epifantsev, A; Falley, G; Feege, N; Fleury, J; Folger, G; Fouz, M.-C; Francis, K; Frisson, T; Frotin, M; Gadow, K; Gaglione, R; Gallus, P; Garutti, E; Gastaldi, F; Gay, P; Geffroy, N; Ghazlane, H; Gil, E.Cortina; Göttlicher, P; Götze, M; Grenier, G; Guliyev, E; Günter, C; Haddad, Y; Han, R; Harion, T; Hartbrich, O; Havranek, M; Hermberg, B; Hostachy, J.-Y; Hoummada, A; Ianigro, J-C; Ilyin, A; Ivantchenko, V; Janata, M; Jeans, D; Kantserov, V; Kaplin, V; Karakash, A; Karstensen, S; Karyotakis, Y; Kawagoe, K; Khoulaki, Y; Kieffer, R; Kiesling, C; Kirikova, N; Klempt, W; Koletsou, I; Kolk, N.van der; Kotera, K; Kozlov, V; Krivan, F; Krüger, K; Kvasnicka, J; Laktineh, I; Laurien, S; Lednicky, D; Li, H; Li, J; Lima, J G G R; Lorenzo, S.Conforti di; Lucaci-Timoce, A.-I; Lumb, N; Lu, S; Magnan, A.-M; Magniette, F; Manen, S; Mannai, S; Marchesini, I; Marcisovsky, M; Markin, O; Martin-Chassard, G; Mathez, H; Matysek, M; Mavromanolakis, G; Mikami, Y; Mirabito, L; Mizuk, R; Morgunov, V; Morin, L; Morozov, S; Musat, G; Negra, R.Della; Norbeck, E; Novikov, E; Onel, Y; Park, S T; Petrukhin, A; Polak, I; Popova, E; Popov, V; Popule, J; Pöschl, R; Prast, J; Puerta-Pelayo, J; Ramilli, M; Raux, L; Reinecke, M; Repond, J; Ribon, A; Richard, F; Rouëné, J; Royer, L; Ruan, M; Rusinov, V; Ruzicka, P; Salvatore, F; Sauer, J; Schlatter, D; Schlereth, J; Schultz-Coulon, H-Ch; Sefkow, F; Seguin-Moreau, N; Seidel, K; Shen, W; Sicho, P; Simon, F; Smirnov, P; Smirnov, P; Smith, J; Smolik, J; Soldner, C; Soloviev, Y; Sosebee, M; Stamen, R; Steen, A; Sudo, Y; Szalay, M; Taille, Ch de la; Takeshita, T; Tarkovsky, E; Terwort, M; Tesar, M; Thomson, M A; Tikhomirov, V; Tomasek, L; Tomasek, M; Tran, T H; Tromeur, W; Tytgat, M; Uozumi, S; Uzhinskiy, V; Vander Donckt, M; van der Kraaij, E; Videau, H; Vouters, G; Vrba, V; Ward, D R; Watson, N K; Weber, S; Weuste, L; White, A P; Wilson, G G W; Wing, M; Xia, L; Yan, W; Yoshioka, T; Yu, J; Zacek, J; Zaganidis, N; Zalesak, J; Zeitnitz, C; Zoccarato, Y; Zutshi, V

    2013-01-01

    We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.

  6. Tuning of the Shower Library for the LHCb calorimeter fast simulation

    CERN Document Server

    Rabemananjara, Tanjona Radonirina

    2016-01-01

    The standard simulation of the LHCb detector uses the Geant4 simulation toolkit, which provides very accurate results but is CPU-expensive. A number of faster simulation options are available or under development. Among the latter, the replacement of the electromagnetic and hadronic showers simulation in the calorimeter with pre-simulated hit libraries is ongoing. My work has focused on the characterization of the particles reaching the calorimeter in simulated minimum bias events and on the study of how the cell hit distributions change as a function of some particle parameters. The results will contribute to understanding how to optimize the information stored in the shower library under development.

  7. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat.The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent (visible here) was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team...

  8. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat. The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team had to fine-t...

  9. Mechanical design and finite element analysis of the SDC central calorimeter

    International Nuclear Information System (INIS)

    When designing scintillating calorimeters for the study of particle interactions resulting from colliding beams, a primary goal is to instrument 100% of the available solid angle. In pursuit of this goal the challenge for mechanical designers is to minimize the amount of structural mass and sill maintain acceptable engineering standards in the design. Argonne National Laboratory, High Energy Physics involvement in the design of a central calorimeter for the SSC started in 1989. Our first proposal was to design a depleted uranium scintillator calorimeter similar to the ZEUS detector presently installed at the HERA electron-proton collider in Hamburg, Germany. Argonne was involved at the time in final assembly of modules for ZEUS that had been designed and constructed at ANL. Due to the cost of using depleted uranium, lead was chosen as the absorber material. In collaboration with Westinghouse Science and Technology Center in Pittsburgh, Pennsylvania we embarked on a program to optimize the use of lead or lead alloys in the construction of the calorimeter. A cast lead design for the calorimeter evolved from this effort. Subsequent to this design, further pressure to reduce costs have now dictated a design which contains lead only in the electromagnetic sections of the calorimeter

  10. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    Directory of Open Access Journals (Sweden)

    Amharrak H.

    2016-01-01

    Full Text Available The nuclear heating measurements in Material Testing Reactors (MTRs are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  11. Calorimeter for detection of hadrons in the energy range 10-100 GeV

    International Nuclear Information System (INIS)

    The calorimeter for hadron detection in the energy range 10-100 GeV is described. It is used at CERN in the experiment NA58 (COMPASS) designed to study the nucleon structure and charmed particle spectroscopy. The calorimeter consists of 480 modules (15 x 15 cm in cross section, interaction length 4.8) assembled in matrix 4.2 x 3 m with a central hole of 1.2 x 0.6 m. The energy resolutions of the calorimeter for hadrons (σπ) and electrons (σe) as well as coordinate resolution (σx,y) have been determined in the test beams to be (σπ(E))/E = (59.4 ± 2.9)/√E O+(7.6 ± 0.4), (σe(E))/E = (24.6 ± 0.7)/√E O+ (0.7 ± 0.4), σx,y = (14 ± 2) mm, respectively. The average ratio, characterizing the amplitude responses of the calorimeter to electrons and pions, has been measured to be e/π = 1.2 ± 0.1. The calorimeter is used to measure hadron energy and as an element of the COMPASS trigger system. The calorimeter has been working stably during the long COMPASS runs with characteristics close to those determined in the test beams. (author)

  12. LHCb: Physics with the LHCb calorimeter

    CERN Multimedia

    Barsuk, S

    2007-01-01

    The LHCb calorimeter comprises the scintillator pad detector (SPD), preshower (PS), electromagnetic Shashlyk type (ECAL) and hadronichadronic Tile (HCAL) calorimeters, arranged in pseudo-projective geometry. All the four detectors follow the general principle of reading the light from scintillator tiles with wave length shifting fibers, and transporting the light towards photomultipliers (25 ns R/O).

  13. Status of the ATLAS hadronic tile calorimeter

    International Nuclear Information System (INIS)

    Short status of the Tile Calorimeter project is given. Major achievements in the mechanical construction of the detector modules, their instrumentation, cylinders assembly, as well as the principles of the detector front-end electronics, are described. The ideas of Tile Calorimeter module calibration are presented

  14. Purity control system of the liquid argon calorimeter of the ATLAS experiment

    International Nuclear Information System (INIS)

    At the ATLAS detector (LHC at CERN) a Liquid Argon calorimeter is used to precisely measure the energy of the electromagnetic interacting particles. Particles deposit their energy in the calorimeter by creating a particle shower. The ionization of the Liquid-Argon due to the shower particles can be used to determine the energy of the initial particle. Possible electronegative impurities in the calorimeter could reduce the ionization which would lead to a worse energy resolution. In order to monitor the purity of the Liquid-Argon several purity monitors are distributed over the calorimeter. Each monitor consists of a ionization chamber with two radioactive sources (241Am and 207Bi). The decay particles of the probes create a certain, known amount of charge carrier that are collected by applying an electromagnetic field. The measurement of the signal amplitude from these charge carriers can be used to measure the purity of the Liquid Argon. This talk gives an overview of the system with a focus of a new implementation of a OPC-UA server that reads out the monitors and determines the purity values. In addition results on the long term stability of the purity are shown.

  15. Commissioning of the ATLAS liquid argon calorimeters

    CERN Document Server

    Rezaie, Erfan

    ATLAS, a multi-purpose detector built at the LHC at CERN, requires an extensive commissioning campaign to be ready for proton-proton collisions. In this work, we focus on the commissioning of the liquid Argon (LAr) calorimeters, with emphasis on commissioning with cosmic rays. First we outline one phase of the commissioning work, which involves testing of the front-end electronics of the two endcap calorimeters. We then describe two cosmic ray generators as input to a Monte-Carlo simulation of cosmic rays in ATLAS, and compare their results. Finally, we explain a technique developed for this work which uses information from the Tile calorimeters to predict the timing of cosmic rays within the LAr calorimeters, because cosmic rays occur randomly in time whereas the electronics are clocked at [Special characters omitted.] . The results from this analysis tool are compared to default tools, using both simulated and real cosmic ray data in the calorimeters.

  16. The ATLAS Tile Calorimeter Calibration and Performance

    CERN Document Server

    Meyer, C; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter response is monitored to better than 1% using radioactive source, laser, and charge injection systems. This multi-faceted calibration system allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitization. The performance of the calorimeter has also been established through test beam measurements, cosmic ray muons and t...

  17. 5.8 X-ray Calorimeters

    Science.gov (United States)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  18. Calibration of the CALICE analog hadronic calorimeter (AHCAL)

    International Nuclear Information System (INIS)

    The CALICE AHCAL technological prototype is a hadronic calorimeter prototype for a future e+e- - collider (ILC and CLIC). It is designed as a sampling calorimeter alternating tungsten or steel absorber plates and active readout layers, segmented in single plastic scintillator tiles of 3 x 3 x 0.3 cm3 volume. Each tile is individually coupled to a silicon photomultiplier, read out by a dedicated ASIC with energy measurement and time stamping capability. The high granularity is meant to enable imaging and separation of single showers, for a Particle Flow approach to the jet energy measurement. The prototype aims to establish this technology as a scalable solution for an ILC detector. The first 14 layers of this prototype have been assembled and commissioned. The first 10 layers in the stack are used as tracker to determine the position of the first hard interaction of a pion shower in the first interaction length (λ) of the calorimeter. Four full size layers (72 x 72 cm2) are distributed between 1 and 3λ depth in the steel absorber. Data has been collected with muon, electron and pion beams at the CERN PS (2014). The first results on energy calibration with muons are presented, together with a comparison to the bench calibration obtained during tile production.

  19. ALEPH electromagnetic calorimeter performances. Detection feasibilility of Higgs boson

    International Nuclear Information System (INIS)

    In the first part of the thesis, the performance of the ALEPH electromagnetic calorimeter is discussed. The linearity of the response and the energy resolution are studied using data taken with a calorimeter module exposed to electron beams of 10, 25 and 50 GeV. A small non-linearity dominated by saturation effects is observed. The calorimeter responses to electrons and non-showering particles are compared using pions and muon data. Parametrisations of the longitudinal shape of the electron showers, and of fluctuation of their shape are established in the energy range 20 MeV to 50 GeV, from the experimental data and detailed EGS simulations. In the second part, the feasibility of the Higgs boson detection by ALEPH is investigated. The reaction considered is e+e- → e+e- Ho at the Zo pole assuming a Higgs mass between 12 and 50 GeV. The background is mainly due to hadronic Zo decays. The signal can be discriminated from the background by a series of kinematic cuts established by studying simulated events. Applied together with the electron identification criteria, the cuts allow to identify the e+e- pair and to reconstruct the Higgs mass

  20. Design and characterisation of a YAG(Ce) calorimeter for proton Computed Tomography application

    International Nuclear Information System (INIS)

    The design and the characterization of a calorimeter system, aimed at measuring the residual energy in a proton Computed Tomography (pCT) apparatus, is described. The calorimeter has a 6 × 6 cm2 active area to fully cover the tracker area of the pCT system, being 10 cm thick it is able to stop up to 200 MeV protons and sustain 1 MHz particle rate (average rate on the whole area). The YAG(Ce) scintillator is promising for charged particle detection applications where high-count rate, good energy resolution and compact photodiode readout, not influenced by magnetic fields, are of importance. The aim of this work is to show data acquired with proton beam energy up to 175 MeV and to discuss the performances of this calorimeter

  1. The Development of a 3D Imaging Calorimeter of DAMPE for Cosmic Ray Physics

    Science.gov (United States)

    Zhang, Yunlong; Hu, Yiming; Feng, Changqing; Liu, Shubin; Wang, Chi; Zhang, Zhiyong; Wei, Yifeng; Huang, Guangshun

    2016-07-01

    The DArk Matter Particle Explorer (DAMPE) experiment began its on-orbit operations on December 17, 2015. The BGO Electromagnetic Calorimeter (BGO ECAL) of the DAMPE is a total absorption calorimeter that allows for a precise three-dimensional imaging of the shower shape. It provides a good energy resolution (10^5). The calorimeter also provides a trigger capability to DAMPE. The BGO ECAL light collection system and electronics are designed to measure electromagnetic particles over a wide energy range, from 5 GeV to 10 TeV. An Engineering qualified model was built and tested using high energy electron and proton beams with energy ranging from 1 GeV to 250GeV. Some pre results will be introduced in this talk.

  2. Structure design and enviromental test of BGO calorimeter for satellite DAMPE

    Science.gov (United States)

    Hu, Yiming; Feng, Changqing; Zhang, Yunlong; Chen, Dengyi; Chang, Jin

    2016-07-01

    The Dark Matter Particle Explorer, DAMPE, is a new designed satellite developed for the new Innovation 2020 program of Chinese Academy of Sciences. As the most important payload of China's first scientific satellite for detecting dark matter, the primary purposes of BGO calorimeter is to measure the energy of incident high energy electrons and gamma rays (5GeV-10TeV) and to identify hadron and electronics. BGO calorimeter also provides an important background discriminator by measuring the energy deposition due to the particle shower that produced by the e^{±}, γ and imaging their shower development profile. Structure design of BGO calorimeter is described in this paper. The new designed BGO calorimeter consists of 308 BGO crystals coupled with photomultiplier tubes on its two ends. The envelop size of the BGO calorimeter is 907.5mm×907.5mm×494.5mm,and the weight of which is 1051.4Kg. The most important purpose of mechanical design is how to package so heavy crystals into a detector as required arrangement and to make sure reliability and safety. This paper describes the results of vibration tests using the Flight Module of the BGO Calorimeter for the DAMPE satellite. During the vibration tests, no degradation of the mechanical assembly was observed. After random or sinusoidal vibrations, there was no significant changes of the frequency signatures observed during the modal surveys. The comparison of results of cosmic ray tests before and after the vibration shows no change in the performance of the BGO calorimeter.

  3. SUITABILITY OF A NEW CALORIMETER FOR EXOTIC MESON SEARCHES

    Energy Technology Data Exchange (ETDEWEB)

    Bookwalter, C.; Ostrovidov, A.; Eugenio, P.

    2007-01-01

    Exotic mesons, particles that have quantum numbers that are inaccessible to conventional quark-model mesons, are predicted by quantum chromodynamics (QCD), but past experiments seeking to identify exotic candidates have produced controversial results. The HyCLAS experiment (E04005) at Thomas Jefferson National Accelerator Facility (TJNAF) proposes the use of the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) in Hall B to study the photoproduction of exotic mesons. However, the base detector package at CLAS is not ideal for observing and measuring neutral particles, particularly at forward angles. The Deeply Virtual Compton Scattering (DVCS) experiment at TJNAF has commissioned a new calorimeter for detecting small-angle photons, but studies must be performed to determine its suitability for a meson spectroscopy experiment. The ηπ system has been under especial scrutiny in the community as a source for potential exotics, so the new calorimeter’s ability at reconstructing these resonances must be evaluated. To achieve this, the invariant mass of showers in the calorimeter are reconstructed. Also, two electroproduction reaction channels analogous to photoproduction channels of interest to HyCLAS are examined in DVCS data. It is found that, while not ideal, the new calorimeter will allow access to additional reaction channels, and its inclusion in HyCLAS is warranted. Results in basic shower reconstruction show that the calorimeter has good effi ciency in resolving π° decays, but its η reconstruction is not as strong. When examining ep → epπ°η, preliminary reconstruction of the ηπ° system shows faint signals in the a0(980) region. In the ep → e n π+ η channel, preliminary reconstruction of the ηπ+ system gave good signals in the a0(980) and a2(1320) regions, but statistics were poor. While more analyses are necessary to improve statistics and remove background, these preliminary results support the claim

  4. Large capacity water and air bath calorimeters

    International Nuclear Information System (INIS)

    EG and G Mound Applied Technologies has developed an 11 in. x 17 in. sample size water bath and an 11 in. x 17 in. sample size air bath calorimeter which both function under servo control mode of operation. The water bath calorimeter has four air bath preconditioners to increase sample throughput and the air bath calorimeter has two air bath preconditioners. The large capacity calorimeters and preconditioners were unique to Mound design which brought about unique design challenges. Both large capacity systems calculate the optimum set temperature for each preconditioner which is available to the operator. Each system is controlled by a personal computer under DOS which allows the operator to download data to commercial software packages when the calorimeter is idle. Qualification testing yielded a one standard deviation of 0.6% for 0.2W to 3.0W Pu-238 heat standard range in the water bath calorimeter and a one standard deviation of 0.3% for the 6.0W to 20.0W Pu-238 heat standard range in the air bath calorimeter

  5. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    Aldo Penzo; on behalf of 4th Concept and DREAM

    2007-12-01

    Measuring the energy of hadronic jets with high precision is essential at present and future colliders, in particular at ILC. The 4th concept design is built upon calorimetry criteria that result in the DREAM prototype, read-out via two different types of longitudinal fibers, scintillator and quartz respectively, and therefore capable of determining for each shower the corresponding electromagnetic fraction, thus eliminating the strong effect of fluctuations in this fraction on the overall energy resolution. In this respect, 4th is orthogonal to the other three concepts, which rely on particle flow analysis (PFA). The DREAM test-beam results hold promises for excellent performances, coupled with relatively simple construction and moderate costs, making such a solution an interesting alternative to the PFA paradigm. The next foreseen steps are to extend the dual-readout principle to homogeneous calorimeters (with the potential of achieving even better performances) and to tackle another source of fluctuation in hadronic showers, originating from binding energy losses in nuclear break-up (measuring neutrons of few MeV energy).

  6. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...... material are the radiation stability of this material and the fact that identical phantoms can be made for irradiation of other dosimeters for calibration. This provides a precise tool for establishing traceability of dose measurements at industrial electron electron accelerators....

  7. Calorimeter prediction based on multiple exponentials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.K. E-mail: mks@lanl.gov; Bracken, D.S

    2002-05-21

    Calorimetry allows very precise measurements of nuclear material to be carried out, but it also requires relatively long measurement times to do so. The ability to accurately predict the equilibrium response of a calorimeter would significantly reduce the amount of time required for calorimetric assays. An algorithm has been developed that is effective at predicting the equilibrium response. This multi-exponential prediction algorithm is based on an iterative technique using commercial fitting routines that fit a constant plus a variable number of exponential terms to calorimeter data. Details of the implementation and the results of trials on a large number of calorimeter data sets will be presented.

  8. Calorimeter prediction based on multiple exponentials

    International Nuclear Information System (INIS)

    Calorimetry allows very precise measurements of nuclear material to be carried out, but it also requires relatively long measurement times to do so. The ability to accurately predict the equilibrium response of a calorimeter would significantly reduce the amount of time required for calorimetric assays. An algorithm has been developed that is effective at predicting the equilibrium response. This multi-exponential prediction algorithm is based on an iterative technique using commercial fitting routines that fit a constant plus a variable number of exponential terms to calorimeter data. Details of the implementation and the results of trials on a large number of calorimeter data sets will be presented

  9. Calorimeter prediction based on multiple exponentials

    CERN Document Server

    Smith, M K

    2002-01-01

    Calorimetry allows very precise measurements of nuclear material to be carried out, but it also requires relatively long measurement times to do so. The ability to accurately predict the equilibrium response of a calorimeter would significantly reduce the amount of time required for calorimetric assays. An algorithm has been developed that is effective at predicting the equilibrium response. This multi-exponential prediction algorithm is based on an iterative technique using commercial fitting routines that fit a constant plus a variable number of exponential terms to calorimeter data. Details of the implementation and the results of trials on a large number of calorimeter data sets will be presented.

  10. Liquid Krypton Calorimeter Calibration Software

    CERN Document Server

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  11. The LHCb hadron calorimeter prototype

    International Nuclear Information System (INIS)

    LHCb is a Large Hadron Collider Beauty experiment dedicated for precision measurements of CP violation and rare phenomena. The experiment is built as a single arm detector covering a forward angle between ∼ 15 mrad and ∼ 300 mrad. It consists in a vertex detector, a tracking system, two RICH detectors, a calorimeter system comprising a preshower, electromagnetic and hadron sections, and a muon system. The role of the calorimeters is to provide identification of the electrons and hadrons for trigger and offline analysis with measurements of position and energy. The hadron calorimeter (HCAL) has to provide data for the trigger and to assist in background suppression when B decays are reconstructed. In 1997 an HCAL prototype stack of 3 modules, each having the dimensions 96 x 16 x 153 cm3, has been constructed and exposed to the X7 test beams of the SPS at CERN. Each module is constructed from scintillator tiles embedded in an iron structure, which are parallel to the beam direction in a staggered arrangement. The cell segmentation of the 1997 prototype was 16 x 16 cm2 and had a 2-fold in depth readout. Around 3760 spacer plates and weld straps necessary for all 6 modules were supplied by Romanian group of IFIN-HH in 1997, as well as about 200 master plates for two modules in 1998. The assembling of the modules was performed at CERN by people of our group, IHEP Serpukhov and CERN. During November 1997 test beam data were taken with pion and electron beams of 5 up to 50 GeV/c momenta. The energy spectra for pions were obtained. A shift of about 1.3 GeV of the energy mean value with respect to the beam energy was observed for all studied energies. This could be due to different effects. The energy resolution as a function of the beam energy fitted by the dependence σ/E = a/√E + b gives parameters in agreement with the values expected from Monte Carlo. Uniformity response for pions at 20 GeV oscillates within 2.5 % around the mean value. Data taken with ECAL

  12. Tritium calorimeter setup and operation

    CERN Document Server

    Rodgers, D E

    2002-01-01

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (...

  13. Design and development of the SDC barrel electromagnetic calorimeter

    International Nuclear Information System (INIS)

    In fulfillment of contract SSC92-W-17743, Argonne National Laboratory is required to closeout and document all work performed in the design and development of the central calorimeter for the Solenoidal Detector Collaboration (SDC) Detector at the Superconducting Super Collider Laboratory (SSCL). This report will summarize the work performed, and identify all documents (technical reports, memo's, drawings, etc.) that resulted from that effort. The work under this contract was shared in collaboration with the Westinghouse Science and Technology Center (WSTC) of Pittsburgh, Pennsylvania. It is the intent of this report to provide information that can be useful in the development of future detectors for high energy physics particle research

  14. Testbeam studies of production modules of the ATLAS tile calorimeter

    Czech Academy of Sciences Publication Activity Database

    Adragna, P.; Alexa, C.; Anderson, K.; Lokajíček, Miloš; Němeček, Stanislav

    2009-01-01

    Roč. 606, č. 3 (2009), s. 362-394. ISSN 0168-9002 R&D Projects: GA MŠk LC527; GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : hadron calorimeter * performance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.317, year: 2009 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJM-4W3HX20-6&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C0000502

  15. Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Blaha, J.; Blaising, J.J.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Denis; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2013-01-01

    Roč. 8, Jul (2013), s. 1-33. ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : interaction of radiation with matter * calorimeter methods * detector modelling and simulations Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.526, year: 2013

  16. The time structure of hadronic showers in highly granular calorimeters with tungsten and steel absorbers

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Blaising, J.J.; Chefdeville, M.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Denis; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2014-01-01

    Roč. 9, Jul (2014), s. 1-24. ISSN 1748-0221 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 Keywords : hadronic calorimeters * hadronic showers * hadronic physics models * hilicon photomultiplier Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.399, year: 2014

  17. Testing hadronic interaction models using a highly granular silicon-tungsten calorimeter

    Czech Academy of Sciences Publication Activity Database

    Bilki, B.; Repond, J.; Schlereth, J.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Richard; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2015-01-01

    Roč. 794, Sep (2015), s. 240-254. ISSN 0168-9002 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 Keywords : electromagnetic silicon tungsten calorimeter * highly granular detectors * hadronic showers * data and simulation s Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.216, year: 2014

  18. Temperature Dependence Calibration and Correction of the DAMPE BGO Electromagnetic Calorimeter

    CERN Document Server

    Wei, Yifeng; Zhang, Yunlong; Wen, Sicheng; Wang, Chi; Li, Zhiying; Feng, Changqing; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Liu, Shubin

    2016-01-01

    A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter Particle Explorer (DAMPE) mission. The effect of temperature on the BGO ECAL was investigated with a thermal vacuum experiment. The light output of a BGO crystal depends on temperature significantly. The temperature coefficient of each BGO crystal bar has been calibrated, and a correction method is also presented in this paper.

  19. On possibility to make a new type of calorimeter: radiation resistant and fast

    International Nuclear Information System (INIS)

    It is proposed to use electron multipliers, which directly detect low energy shower particles as an active element in sandwich calorimeters. The approach pffers fast and radiation resistant calorimetry. Test of the method is presented with the use of a microchannel plate. 4 refs.; 4 figs

  20. The development of mini gamma calorimeter. Analysis of the calorimeter characteristic using analytical method

    International Nuclear Information System (INIS)

    The development of mini gamma calorimeter. Analysis of the calorimeter characteristic using analytical method. To increase the gamma calorimeter capability, especially to obtain the new type of calorimeter that can be used at high power reactor, it is necessary to find out an innovation of the existing calorimeter model. The basic idea of the innovation is to eliminate the absorber material which restricts the performance of the old calorimeter. As the first step of innovation, characteristics of this mini calorimeter without absorber will be analyzed by analytical method in the static condition. The analysis was performed for several combinations of geometries and dimensions of active parts as well as those of gas isolations. The calculation results showed that the sensitivity (as a principal characteristic) of the calorimeter of 30oC per W/g is acceptable value, and the active length of 2 cm with the diameter of 1 mm of thermocouples (active part) is the optimum geometry. According to the results, it can be concluded that the mini gamma calorimeter proposed is reasonable to be made

  1. Measurements Made by Vinca-Calorimeters

    International Nuclear Information System (INIS)

    A cross section of the Vinca-Heat-Flow calorimeter is shown. The sample container (10 mm diameter, 50 mm high, 0.25 mm. wall thickness) is centred in the jacket (48 mm diameter, 100 mm high, 2 mm wall thickness) by styrofoam which acts as the homogeneous heat transfer medium. The calibration heater, a coil wound on a thin hollow paper cylinder is placed inside the sample container. The temperature difference between the sample container and the jacket was measured with a copper-constantan thermocouple. The lid served also as a support to which the cable was fastened. Two calorimeters were constructed. Particular attention was paid to counterbalance the mass of aluminium capsules (better than 1% of the weight). In one calorimeter the sample container was empty (the ''empty'' calorimeter) in the other one a known mass of graphite was placed

  2. Magnetic micro-calorimeters for neutrino physics

    International Nuclear Information System (INIS)

    Metallic magnetic micro-calorimeters are energy dispersive detectors operated at temperatures below 0.1 Kelvin. Their resolving power E/ ΔE approaching 5000, the intrinsic response time well below 1 μs and the excellent linearity make magnetic micro-calorimeters very attractive for numerous experiments. With such detectors we have performed the first high resolution calorimetric measurements of the 163Ho electron capture spectrum. The achieved performance motivated the formation of the international collaboration ECHo (Electron Capture in 163Ho) to investigate the electron neutrino mass in the sub-eV range using the 163Ho. For the search of neutrinoless double beta decay in 100Mo with scintillating crystals, we have developed photon and phonon detectors based on metallic magnetic calorimeters to be used in the experiments AMoRE and LUMINEU. In this talk, the ECHo experiment as well as the other applications of metallic magnetic calorimeters for neutrino physics will be discussed.

  3. The CMS central hadron calorimeter: Update

    International Nuclear Information System (INIS)

    The CMS central hadron calorimeter is a brass absorber/ scintillator sampling structure. We describe details of the mechanical and optical structure. We also discuss calibration techniques, and finally the anticipated construction schedule

  4. CDF End Plug calorimeter Upgrade Project

    International Nuclear Information System (INIS)

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R ampersand D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R ampersand D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, γ and π0 has been designed. Its performance requirements, R ampersand D results and mechanical design are discussed

  5. Overview of the LHCb Calorimeter Detectors

    CERN Document Server

    Perret, P

    2013-01-01

    The LHCb calorimeter system is composed of four subdetectors: an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter (HCAL). In addition the system includes in front of them the Scintillating Pad Detector (SPD) and Pre-Shower (PS). It is used to select transverse energy hadron, electron and photon candidates for the first trigger level and it provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The design and construction characteristics of the LHCb calorimeter will be recalled. Strategies for monitoring and calibration during data taking will be detailed in all aspects. Scintillating fibres, plastics and photomultipliers suffer from ageing due to radiation damage or high currents. Different methods which are used to calibrate the detectors and to recover the initial performances will be presented. The performances achieved will be illustrated in selected channels of interest for B physics.

  6. Status and perspecitves of liquid argon calorimeters

    International Nuclear Information System (INIS)

    The status of liquid argon calorimeters is reviewed, and experience obtained with these devices is described. Future perspectives of the liquid ionization chamber technique in calorimetry are also discussed. (orig.)

  7. Uranium scintillator calorimeter at the CERN ISR

    International Nuclear Information System (INIS)

    The design, Monte Carlo studies and test beam results of a uranium/scintillator calorimeter to be installed in the Intersecting Storage Ring (ISR) at CERN are described. In its final stage the calorimeter will cover the full azimuth over a polar region of 450 0. The full calorimeter is built in a modular way from 128 stacks, with each stack internally subdivided into six cells of 20 x 20 cm2 cross section. The readout is by wavelength shifting (WLS) plates with a separate readout of the front part of the calorimeter (first ten plates) to allow electromagnetic/hadronic separation. Since the readout plates are on both sides of the cells, position information is obtained from the left/right ratio

  8. The SOUDAN 2 detector. The operation and performance of the tracking calorimeter modules

    International Nuclear Information System (INIS)

    SOUDAN 2 is a 960-ton tracking calorimeter which has been constructed to search for nucleon decay and other phenomena. The full detector consists of 224 calorimeter modules each weighing 4.3 tons. The modules consist of finely segmented iron instrumented with 1 m long drift tubes of 15 mm internal diameter. The tubes enable three spatial coordinates and d E/d x to be recorded for charged particles traversing the tubes. The spatial resolution is 0.38 cm in the x-y plane and 0.65 cm in the z, or drift, direction. The operation and performance of the modules are discussed. (orig.)

  9. Characteristics of cast polystyrene scintillators for the electromagnetic calorimeter of the installation PHENIX

    International Nuclear Information System (INIS)

    Parameters of a polystyrene scintillator for the electromagnetic calorimeter of the PHENIX installation are studied. The scintillator was manufactured through casting under pressure by different compositions and concentration values of the scintillating additives. The data on the light yield and attenuation length for the scintillator plates, absorption and fluorescence spectra of the scintillation additives are presented. Effect of the plates on the light yield due to metallization of their lateral faces by the Al layer is studied. The value of the light yield from relativistic particle is measured for the electromagnetic calorimeter modules prototype. 2 refs., 8 figs

  10. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    CERN Document Server

    Francis, K; Schlereth, J; Smith, J; Xia, L; Baldolemar, E; Li, J; Park, S T; Sosebee, M; White, A P; Yu, J; Eigen, G; Mikami, Y; Watson, N K; Thomson, M A; Ward, D R; Benchekroun, D; Hoummada, A; Khoulaki, Y; Apostolakis, J; Dotti, A; Folger, G; Ivantchenko, V; Ribon, A; Uzhinskiy, V; Carloganu, C; Gay, P; Manen, S; Royer, L; Tytgat, M; Zaganidis, N; Blazey, G C; Dyshkant, A; Lima, J G R; Zutshi, V; Hostachy, J -Y; Morin, L; Cornett, U; David, D; Ebrahimi, A; Falley, G; Gadow, K; Goettlicher, P; Guenter, C; Hartbrich, O; Hermberg, B; Karstensen, S; Krivan, F; Krueger, K; Lutz, B; Morozov, S; Morgunov, V; Neubueser, C; Reinecke, M; Sefkow, F; Smirnov, P; Terwort, M; Garutti, E; Laurien, S; Lu, S; Marchesini, I; Matysek, M; Ramilli, M; Briggl, K; Eckert, P; Harion, T; Schultz-Coulon, H -Ch; Shen, W; Stamen, R; Bilki, B; Norbeck, E; Northacker, D; Onel, Y; Wilson, G W; Kawagoe, K; Sudo, Y; Yoshioka, T; Dauncey, P D; Wing, M; Salvatore, F; Gil, E Cortina; Mannai, S; Baulieu, G; Calabria, P; Caponetto, L; Combaret, C; Della Negra, R; Grenier, G; Han, R; Ianigro, J-C; Kieffer, R; Laktineh, I; Lumb, N; Mathez, H; Mirabito, L; Petrukhin, A; Steen, A; Tromeur, W; Donckt, M Vander; Zoccarato, Y; Alamillo, E Calvo; Fouz, M -C; Puerta-Pelayo, J; Corriveau, F; Bobchenko, B; Chadeeva, M; Danilov, M; Epifantsev, A; Markin, O; Mizuk, R; Novikov, E; Popov, V; Rusinov, V; Tarkovsky, E; Besson, D; Buzhan, P; Ilyin, A; Kantserov, V; Kaplin, V; Karakash, A; Popova, E; Tikhomirov, V; Kiesling, C; Seidel, K; Simon, F; Soldner, C; Weuste, L; Amjad, M S; Bonis, J; Callier, S; di Lorenzo, S Conforti; Cornebise, P; Doublet, Ph; Dulucq, F; Fleury, J; Frisson, T; van der Kolk, N; Li, H; Martin-Chassard, G; Richard, F; de la Taille, Ch; Poeschl, R; Raux, L; Rouene, J; Seguin-Moreau, N; Anduze, M; Balagura, V; Boudry, V; Brient, J-C; Cornat, R; Frotin, M; Gastaldi, F; Guliyev, E; Haddad, Y; Magniette, F; Musat, G; Ruan, M; Tran, T H; Videau, H; Bulanek, B; Zacek, J; Cvach, J; Gallus, P; Havranek, M; Janata, M; Kvasnicka, J; Lednicky, D; Marcisovsky, M; Polak, I; Popule, J; Tomasek, L; Tomasek, M; Ruzicka, P; Sicho, P; Smolik, J; Vrba, V; Zalesak, J; Belhorma, B; Ghazlane, H; Kotera, K; Ono, H; Takeshita, T; Uozumi, S; Jeans, D; Chang, S; Khan, A; Kim, D H; Kong, D J; Oh, Y D; Goetze, M; Sauer, J; Weber, S; Zeitnitz, C

    2014-01-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  11. The NA48 liquid krypton calorimeter

    CERN Document Server

    Gorini, B

    1997-01-01

    The NA48 collaboration goal is to measure the CP violation parameter Re(ɛl/ɛ) at the level of 2 × 10−4. The neutral Kaon decays will be reconstructed by an electromagnetic liquid Krypton calorimeter with fine granularity and a volume almost totally sensible, to obtain excellent position and energy resolution, as well as time resolution. A description of the detector, results from tests of a prototype and the status of the final calorimeter are reported.

  12. Time resolution of the SND electromagnetic calorimeter

    International Nuclear Information System (INIS)

    A new spectrometric channel of the SND electromagnetic calorimeter is described. It has a time resolution of about 1.3 ns at an energy deposition in the calorimeter crystal of 100 MeV and an amplitude resolution of about 250 keV. The new channel is designed, in particular, for the study of the e+e−→ n n-bar process at the VEPP-2000 e+e− collider

  13. Heavy ion studies with CMS HF calorimeter

    International Nuclear Information System (INIS)

    The capability of the very forward (HF) calorimeter of the CMS detector at LHC to be applied to specific studies with heavy ion beams is discussed. The simulated responses of the HF calorimeter to nucleus-nucleus collisions are used for the analysis of different problems: reconstruction of the total energy flow in the forward rapidity region, accuracy of determination of the impact parameter of collision, study of fluctuations of the hadronic-to-electromagnetic energy ratio, fast inelastic event selection

  14. Proportional model calorimeters of the TPC facility

    International Nuclear Information System (INIS)

    Two wire proportional mode gas calorimeter modules have been tested as prototypes for the Pole Tip calorimeters of the TPC Facility at PEP. The results of the tests at several electron energies (0.25 to 12. GeV) and several pressures (1.0 to 30. atms) are presented, comparisons with a detailed simulation program are made, and results from the Pole Tip modules now operating at PEP are given

  15. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  16. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  17. Status of the Atlas Calorimeters: their performance during three years of LHC operation and plans for future upgrades.

    CERN Document Server

    Majewski, S; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Its calorimeter system measures the energy and direction of final state particles over the pseudorapidity range $|\\eta| < 4.9$. Accurate identification and measurement of the characteristics of electromagnetic objects (electrons/photons) are performed by liquid argon (LAr)-lead sampling calorimeters in the region $|\\eta| < 3.2$, using an innovative accordion geometry that provides a fast, uniform response without azimuthal gaps. This system played a critical role in the ATLAS analyses contributing to the Higgs boson discovery announced in 2012. The hadronic calorimeters measure the properties of hadrons, jets, and tau leptons, and also contribute to the measurement of the missing transverse energy and the identification of muons. A scintillator-steel sampling calorimeter (TileCal) is employed in the region $|\\eta| < 1.7$, while the region $1.5 < |\\eta| < 3.2$ is covered wi...

  18. Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Vesztergombi, Gyorgy; Zálán, Peter; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sudhakar, Katta; Verma, Piyush; Paktinat, S; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Mescheryakov, G; Sergeyev, S; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Stolin, Viatcheslav; Ulyanov, A; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Kuzucu-Polatoz, A; Onengüt, G; Ozdes-Koca, N; Cankocak, Kerem; Ozok, Ferhat; Serin-Zeyrek, M; Sever, Ramazan; Zeyrek, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchishin, V; Anderson, E Walter; Hauptman, John M; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Lazic, Dragoslav; Los, Serguei; O'Dell, Vivian; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumu, K; Thomas, Ray; Baarmand, Marc M; Ralich, Robert; Vodopiyanov, Igor; Cushman, Priscilla; Heering, Arjan Hendrix; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Mans, Jeremy; Tully, Christopher; De Barbaro, Pawel; Bodek, Arie; Budd, Howard; Chung, Yeon Sei; Haelen, T; Imboden, Matthias; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2007-01-01

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%.

  19. Design, status and test of the Mu2e crystal calorimeter

    CERN Document Server

    Atanov, N; Budagov, J; Carosi, R; Cervelli, F; Colao, F; Cordelli, M; Corradi, G; Danè, E; Davydov, Y I; Di Falco, S; Donati, S; Donghia, R; Echenard, B; Flood, K; Giovannella, S; Glagolev, V; Grancagnolo, F; Happacher, F; Hitlin, D G; Martini, M; Miscetti, S; Miyashita, T; Morescalchi, L; Murat, P; Piacentino, G M; Pezzullo, G; Raffaelli, F; Saputi, A; Sarra, I; Spinella, F; Tassielli, G; Tereshchenko, V; Usubov, Z; Zhu, R Y

    2016-01-01

    The Mu2e experiment at Fermilab searches for the charged-lepton flavor violating neutrino-less conversion of a negative muon into an electron in the field of a aluminum nucleus. The dynamic of such a process is well modeled by a two-body decay, resulting in a monoenergetic electron with an energy slightly below the muon rest mass (104.967 MeV). The calorimeter of this experiment plays an important role to provide excellent particle identification capabilities and an online trigger filter while aiding the track reconstruction capabilities. The baseline calorimeter configuration consists of two disks each made with about 700 undoped CsI crystals read out by two large area UV-extended Silicon Photomultipliers. These crystals match the requirements for stability of response, high resolution and radiation hardness. In this paper we present the final calorimeter design.

  20. Concepts and design of the CMS High Granularity Calorimeter Level 1 Trigger

    CERN Document Server

    Sauvan, Jean-baptiste

    2016-01-01

    The CMS experiment has chosen a novel high granularity calorimeter for the forward region as part of its planned upgrade for the high luminosity LHC. The calorimeter will have a fine segmentation in both the transverse and longitudinal directions and will be the first such calorimeter specifically optimised for particle flow reconstruction to operate at a colliding beam experiment. The high granularity results in around six million readout channels in total and so presents a significant challenge in terms of data manipulation and processing for the trigger; the trigger data volumes will be an order of magnitude above those currently handled at CMS. In addition, the high luminosity will result in an average of 140 to 200 interactions per bunch crossing, giving a huge background rate in the forward region that needs to be efficiently reduced by the trigger algorithms. Efficient data reduction and reconstruction algorithms making use of the fine segmentation of the detector have been simulated and evaluated. The...

  1. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    CERN Document Server

    Jivan, Harshna; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter of the ATLAS detector, is a hadronic calorimeter responsible for detecting hadrons as well as accommodating for the missing transverse energy that result from the p-p collisions within the LHC. Plastic scintillators form an integral component of this calorimeter due to their ability to undergo prompt fluorescence when exposed to ionising particles. The scintillators employed are specifically chosen for their properties of high optical transmission and fast rise and decay time which enables efficient data capture since fast signal pulses can be generated. The main draw-back of plastic scintillators however is their susceptibility to radiation damage. The damage caused by radiation exposure reduces the scintillation light yield and introduces an error into the time-of flight data acquired. During Run 1 of the LHC data taking period, plastic scintillators employed within the GAP region between the Tile Calorimeter’s central and extended barrels sustained a significant amount of damage. Wit...

  2. Validation of GEANT4 Monte Carlo Models with a Highly Granular Scintillator-Steel Hadron Calorimeter

    CERN Document Server

    Adloff, C; Blaising, J J; Drancourt, C; Espargiliere, A; Gaglione, R; Geffroy, N; Karyotakis, Y; Prast, J; Vouters, G; Francis, K; Repond, J; Schlereth, J; Smith, J; Xia, L; Baldolemar, E; Li, J; Park, S T; Sosebee, M; White, A P; Yu, J; Buanes, T; Eigen, G; Mikami, Y; Watson, N K; Mavromanolakis, G; Thomson, M A; Ward, D R; Yan, W; Benchekroun, D; Hoummada, A; Khoulaki, Y; Apostolakis, J; Dotti, A; Folger, G; Ivantchenko, V; Uzhinskiy, V; Benyamna, M; Cârloganu, C; Fehr, F; Gay, P; Manen, S; Royer, L; Blazey, G C; Dyshkant, A; Lima, J G R; Zutshi, V; Hostachy, J Y; Morin, L; Cornett, U; David, D; Falley, G; Gadow, K; Gottlicher, P; Gunter, C; Hermberg, B; Karstensen, S; Krivan, F; Lucaci-Timoce, A I; Lu, S; Lutz, B; Morozov, S; Morgunov, V; Reinecke, M; Sefkow, F; Smirnov, P; Terwort, M; Vargas-Trevino, A; Feege, N; Garutti, E; Marchesini, I; Ramilli, M; Eckert, P; Harion, T; Kaplan, A; Schultz-Coulon, H Ch; Shen, W; Stamen, R; Bilki, B; Norbeck, E; Onel, Y; Wilson, G W; Kawagoe, K; Dauncey, P D; Magnan, A M; Bartsch, V; Wing, M; Salvatore, F; Alamillo, E Calvo; Fouz, M C; Puerta-Pelayo, J; Bobchenko, B; Chadeeva, M; Danilov, M; Epifantsev, A; Markin, O; Mizuk, R; Novikov, E; Popov, V; Rusinov, V; Tarkovsky, E; Kirikova, N; Kozlov, V; Smirnov, P; Soloviev, Y; Buzhan, P; Ilyin, A; Kantserov, V; Kaplin, V; Karakash, A; Popova, E; Tikhomirov, V; Kiesling, C; Seidel, K; Simon, F; Soldner, C; Szalay, M; Tesar, M; Weuste, L; Amjad, M S; Bonis, J; Callier, S; Conforti di Lorenzo, S; Cornebise, P; Doublet, Ph; Dulucq, F; Fleury, J; Frisson, T; van der Kolk, N; Li, H; Martin-Chassard, G; Richard, F; de la Taille, Ch; Poschl, R; Raux, L; Rouene, J; Seguin-Moreau, N; Anduze, M; Boudry, V; Brient, J-C; Jeans, D; Mora de Freitas, P; Musat, G; Reinhard, M; Ruan, M; Videau, H; Bulanek, B; Zacek, J; Cvach, J; Gallus, P; Havranek, M; Janata, M; Kvasnicka, J; Lednicky, D; Marcisovsky, M; Polak, I; Popule, J; Tomasek, L; Tomasek, M; Ruzicka, P; Sicho, P; Smolik, J; Vrba, V; Zalesak, J; Belhorma, B; Ghazlane, H; Takeshita, T; Uozumi, S; Gotze, M; Hartbrich, O; Sauer, J; Weber, S; Zeitnitz, C

    2013-01-01

    Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8GeV to 100GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.

  3. The Time Structure of Hadronic Showers in Highly Granular Calorimeters with Tungsten and Steel Absorbers

    CERN Document Server

    Adloff, C; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Repond, J.; Schlereth, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Arfaoui, A.; Benoit, M.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Carloganu, C.; Gay, P.; Manen, S.; Royer, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Feege, N.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Fagot, A.; Tytgat, M.; Zaganidis, N.; Hostachy, J.-Y.; Morin, L.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Ueno, H.; Yoshioka, T.; Dauncey, P.D.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Ete, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kozlov, V.; Soloviev, Y.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Popova, E.; Tikhomirov, V.; Gabriel, M.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Conforti di Lorenzo, S.; Cornebise, P.; Fleury, J.; Frisson, T.; van der Kolk, N.; Richard, F.; Pöschl, R.; Rouene, J.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Ruan, M.; Tran, T.H.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Chai, J.S.; Song, H.S.; Lee, S.H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-01-01

    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.

  4. The ATLAS Tile Calorimeter, its performance with pp collisions and its upgrades for high luminosity LHC

    CERN Document Server

    Davidek, Tomas; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with the other calorimeters it is designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. It also assists in the muon identification.  A summary of the upgrades and performance results for TileCal using pp collisions from the initial LHC Run II at 13 TeV will be presented. For the high luminosity era a major upgrade of the TileCal electronics is planned, and the ongoing developments for on- and off-detector systems, together with expected performance characteristics and recent beam tests of prototypes, will be described.

  5. Performance of the AMS-02 Electromagnetic Calorimeter in Space

    International Nuclear Information System (INIS)

    AMS-02(Alpha Magnetic Spectrometer) is an high energy particle detector developed to operate on the International Space Station. AMS-02 was installed on ISS on May 2011 and is expected to operate for 10-20 years collecting about 160-320 billions of events. The main goals of the experiment are the detection of primordial antimatter and dark matter by studying spectra and flux of different cosmic ray components (protons, electrons, nuclei, positrons, antiprotons, gamma rays, etc) in the high energy range (1-2000 GeV). Identification of electrons, positrons and photons is provided by the Electromagnetic Calorimeter (ECAL), a fine grained lead-scintillating fibers sampling calorimeter that allows for a precise three-dimensional imaging of the longitudinal and lateral shower development. It provides an excellent reconstruction of electromagnetic shower energy and a highly efficient rejection of the hadronic background. Thanks to the 3D shower reconstruction capability, ECAL allows a stand-alone determination of the incoming particle direction, with unprecedented angular resolution. As a result, ECAL is able to identify high energy photons coming from galactic or extragalactic sources

  6. Design of the Readout Electronics for the Qualification Model of DAMPE BGO Calorimeter

    OpenAIRE

    Feng, Changqing; Zhang, Deliang; Zhang, Junbin; Gao, Shanshan; Yang, Di; Zhang, Yunlong; Liu, Shubin; An, Qi

    2014-01-01

    The DAMPE (DArk Matter Particle Explorer) is a scientific satellite being developed in China, aimed at cosmic ray study, gamma ray astronomy, and searching for the clue of dark matter particles, with a planned mission period of more than 3 years and an orbit altitude of about 500 km. The BGO Calorimeter, which consists of 308 BGO (Bismuth Germanate Oxid) crystal bars, 616 PMTs (photomultiplier tubes) and 1848 dynode signals, has approximately 32 radiation lengths. It is a crucial sub-detector...

  7. Fast Simulation of Showers in the HI SpaCal Calorimeter

    International Nuclear Information System (INIS)

    A method for the fast simulation of particle showers in the HI lead/scintillating-fiber calorimeter is presented. The method uses a shower library technique in which the detector response is simulated based on a collection of stored showers for different particle types. The library is created using the GEANT programme. The fast simulation is compared to the data collected by the HI experiment.

  8. Visualizing and Understanding Atlas Calorimeters with Atlantis

    International Nuclear Information System (INIS)

    We describe tools that have been developed for the visualization and understanding of the hadronic and electromagnetic calorimeters of the Atlas experiment with the event visualization program Atlantis. The event data is extracted into XML format by dedicated algorithms running within the Atlas Software framework Athena, and read into Atlantis directly from physical data files or via a server/client-setup. For the Atlas Calorimeters commissioning, code was developed to create XML-data with detailed calorimeter information, like the electronic pulse shapes, calibration factors and cell identifiers. All this information is displayed in Atlantis through tools developed for this purpose. With these new features, the user has access to the reconstructed and raw data in the same place, and can check for example the consistency of the reconstruction. It allows easy identification of problematic calorimeter cells, e.g. high noise or dead cells, and also allows one to compare digital data from calorimeter and trigger channels, and was used during the Atlas detector commissioning in 2008 and 2009.

  9. A concept for a hadron calorimeter with photodiode readout

    International Nuclear Information System (INIS)

    A concept for a hadron calorimeter will be described. The calorimeter is a scintillator sandwich type with WLS-bars and photodiode readout. Emphasis is put on compactness, high stability, easy fabrication, and safety. (orig.)

  10. Detailed GEANT description of the SDC central calorimeters

    International Nuclear Information System (INIS)

    This article represents the very detailed simulation model of the SDC central calorimeters and some results which were obtained using that model. The central calorimeters structure was coded on the GEANT 3.15 base in the frame of the SDCSIM environment. The SDCSIM is the general shell for simulation of the SDC set-up. The calorimeters geometry has been coded according to the FNAL and ANL engineering drawings and engineering data file. SDC central calorimeters detailed description is extremely useful for different simulation tasks, for fast simulation program parameters tuning, for different geometry especially studying (local response nonuniformity from bulkheads in the e.m. calorimeter and from coil supports and many others) and for the interpretation of the experimental data from the calorimeters. This simulation model is very useful for tasks of the test beam modules calorimeter calibration and for calorimeter in situ calibration. 3 refs., 8 figs

  11. Energy Measurement with the ATLAS Electromagnetic Calorimeter at the Per Mill Accuracy Level

    CERN Document Server

    Teischinger, Florian; Fabjan, Christian

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. It is made up of various sub-detectors to measure the properties of all the particles produced at the proton-proton collision. Over the last three years of running around 20 x 10^14 collisions of proton data have been recorded. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry and for hadronic calorimetry in the end-caps. The Inner Detector, on the other hand, measures the transverse momentum of charged particles down to a momentum of 0.5 GeV. This thesis deals with the absolute measurement of the energy in the electromagnetic calorimeter and the improvement of the systematic uncertainties. A method using the ratio of the energy E in the calorimeter and the momentum measurement p in the Inner Detector (E/p) was used to extract the energy scale of the electromagnetic LAr calorimeter for electrons and positrons. To investigate and further reduce the syst...

  12. The CALICE digital hadron calorimeter: calibration and response to pions and positrons

    International Nuclear Information System (INIS)

    In order to measure the jet products of the hadronic decays of electroweak bosons in a future lepton collider with 3-4% resolution, a novel approach named Particle Flow Algorithms is proposed. The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. The role of the hadronic calorimeters is to measure the neutral component of the hadronic jets. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter, which uses Resistive Plate Chambers as active media. The 1-bit resolution (digital) readout of 1 × 1 cm2 pads achieves a world record in the number of readout channels already at the prototyping stage. Here we report on the results from the analysis of pion events of momenta between 2 to 60 GeV/c collected in the Fermilab test beam with an emphasis on the intricate calibration procedures

  13. Development of a high resolution alpha spectrometer using a magnetic calorimeter

    International Nuclear Information System (INIS)

    We have developed a high resolution alpha spectrometer with a magnetic calorimeter. The operating principle of the detector is the calorimetric measurement of the temperature increase from particle absorption in a gold foil absorber at milli-Kelvin temperatures. A magnetic calorimeter made of gold doped with erbium on a superconducting meander pickup coil was used to accurately measure the temperature change, thereby acting as an ultra-sensitive thermometer. The detector demonstrated 1.2 keV FWHM equivalent resolution in alpha particle detection with an 241Am source. Many peaks were observed in the low-energy region from the absorption of low-energy X-rays, gamma rays, and conversion electrons. An energy resolution of 400 eV FWHM was achieved for 60 keV gamma rays that were measured with the alpha particles. Possible applications of such high resolution detectors are discussed

  14. Development of a high resolution alpha spectrometer using a magnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kang, C.S. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Kim, S.R., E-mail: yhkim@kriss.re.kr [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Kim, G.B. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Lee, H.J. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Lee, M.K.; Lee, J.H. [Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); So, J.H. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Kim, Y.H. [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 305-811 (Korea, Republic of); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-06-01

    We have developed a high resolution alpha spectrometer with a magnetic calorimeter. The operating principle of the detector is the calorimetric measurement of the temperature increase from particle absorption in a gold foil absorber at milli-Kelvin temperatures. A magnetic calorimeter made of gold doped with erbium on a superconducting meander pickup coil was used to accurately measure the temperature change, thereby acting as an ultra-sensitive thermometer. The detector demonstrated 1.2 keV FWHM equivalent resolution in alpha particle detection with an {sup 241}Am source. Many peaks were observed in the low-energy region from the absorption of low-energy X-rays, gamma rays, and conversion electrons. An energy resolution of 400 eV FWHM was achieved for 60 keV gamma rays that were measured with the alpha particles. Possible applications of such high resolution detectors are discussed.

  15. Development of a high resolution alpha spectrometer using a magnetic calorimeter

    Science.gov (United States)

    Yoon, W. S.; Kang, C. S.; Kim, S. R.; Kim, G. B.; Lee, H. J.; Lee, M. K.; Lee, J. H.; So, J. H.; Kim, Y. H.

    2015-06-01

    We have developed a high resolution alpha spectrometer with a magnetic calorimeter. The operating principle of the detector is the calorimetric measurement of the temperature increase from particle absorption in a gold foil absorber at milli-Kelvin temperatures. A magnetic calorimeter made of gold doped with erbium on a superconducting meander pickup coil was used to accurately measure the temperature change, thereby acting as an ultra-sensitive thermometer. The detector demonstrated 1.2 keV FWHM equivalent resolution in alpha particle detection with an 241Am source. Many peaks were observed in the low-energy region from the absorption of low-energy X-rays, gamma rays, and conversion electrons. An energy resolution of 400 eV FWHM was achieved for 60 keV gamma rays that were measured with the alpha particles. Possible applications of such high resolution detectors are discussed.

  16. Hollow micro string based calorimeter device

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a micron-scale calorimeter and a calorimetry method utilizing the micron-scale calorimeter. In accordance with the invention, there is provided a micron-scale calorimeter comprising a micro-channel string, being restrained at at least two longitudinally distanced...... positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted to...... oscillate the string at different frequencies by emitting sound waves towards the string, optical means adapted to detect oscillating frequencies of the string, and controlling means controlling the strength and frequency of the sound wave emitted by the acoustical means and receiving a signal from the...

  17. Experimental study of uranium plastic scintillator calorimeters

    International Nuclear Information System (INIS)

    As a preparation for the ZEUS high resolution calorimeter, sampling calorimeters made from 3.2 mm plates of depleted uranium read out by plastic scintillator of 3 mm and 5 mm thickness have been built. The response of hadrons, electrons and muons has been measured in the energy range between 3 and 100 GeV. In agreement with predictions, the relative response of electrons and hadrons as well as the hadronic energy resolution depend strongly on the thickness of the plastic scintillator. For 3.2 mm depleted uranium and 3 mm thick scintillator we observe over the full energy range equal response for electrons and hadrons; a hadronic energy resolution of 34.5%/√(E[GeV]) is obtained. Results are given for the spatial resolution for electrons and hadrons. Finally, results from a lead scintillator calorimeter built as a prestudy before uranium plates were available are reported. (orig.)

  18. Reactor Gamma Heat Measurements with Calorimeters and Thermoluminescence Dosimeters

    DEFF Research Database (Denmark)

    Haack, Karsten; Majborn, Benny

    1973-01-01

    Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than calorimet...... calorimeters, but possess advantages such as a small probe size and the possibility of making simultaneous measurements at many different positions. Hence, thermoluminescence dosimeters may constitute a valuable supplement to calorimeters for reactor γ-ray heating measurements....

  19. STATUS OF THE ATLAS LIQUID ARGON CALORIMETER AND ITS PERFORMANCE

    CERN Document Server

    Berillari, T; The ATLAS collaboration

    2011-01-01

    The liquid argon (LAr) calorimeters are used in ATLAS for all electromagnetic and for hadron calorimetry. The LAr calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic, hadronic and forward calorimeters. The latest status of the detector as well as problems and solutions addressed during the last years will be presented. Aspects of operation of a large detector over a long time period will be summarized and selected topics showing the performance of the detector will be shown.

  20. Construction of a forward electro-magnetic calorimeter SCISSORS III

    International Nuclear Information System (INIS)

    A new electro-magnetic calorimeter complex FOREST with a solid angle of about 4π in total is under construction. It consists of three calorimeters: a forward one with CsI crystals, a middle one with lead scintillating fiber modules, and a backward one with lead glass Cerenkov counters. Recently, the forward calorimeter SCISSORS III takes shape. (author)

  1. CMS Forward Calorimeters Phase II Upgrade

    International Nuclear Information System (INIS)

    The Phase II Upgrade of the CMS forward calorimeters (electromagnetic and hadronic) originates from the fact that these calorimeters will not be sufficiently performant with the expected HL-LHC (High Luminosity LHC) conditions. The major challenge is to preserve/improve the high performance of the current forward detectors with new devices that can withstand the unprecedented radiation levels and disentangle the very large event pileup. Here, we present an overview of the various upgrade options being considered by CMS, explaining the detector concepts and current/future beam test activities

  2. HARP: high pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx.200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  3. Comparison between calorimeter and HLNC errors

    International Nuclear Information System (INIS)

    This paper summarizes an error analysis that compares systematic and random errors of total plutonium mass estimated for high-level neutron coincidence counter (HLNC) and calorimeter measurements. This task was part of an International Atomic Energy Agency (IAEA) study on the comparison of the two instruments to determine if HLNC measurement errors met IAEA standards and if the calorimeter gave ''significantly'' better precision. Our analysis was based on propagation of error models that contained all known sources of errors including uncertainties associated with plutonium isotopic measurements. 5 refs., 2 tabs

  4. Understanding the performance of CMS calorimeter

    Indian Academy of Sciences (India)

    Seema Sharma; on behalf of the CMS Collaboration

    2007-12-01

    The performance of the CMS hadron calorimeter is studied using test beam facilities at CERN. Two wedges of brass-scintillator calorimeter are exposed to negative and positive beams with momenta between 3 and 300 GeV/c. Light produced in the scintillators are collected using wavelength shifting fibres and read out using hybrid photo-diodes. Each of the wedges has 17 layers of scintillators. In one of these wedges signal from all 17 layers are grouped together while in the other each layer is read out separately. The response, energy resolution, longitudinal and lateral shower profiles are measured.

  5. Energy loss of particles in dense matter - calorimetry

    International Nuclear Information System (INIS)

    In the last decade, a class of detectors gradually have become more and more important in experimental particle physics. They are called calorimeters, or total absorption detectors. Basically a calorimeter is a block of matter, in which the particle to be measured interacts, and deposits all its energy in the form of a shower of decreasingly lower-energy particles. The block is made such that certain (usually small and hopefully constant) fraction of the initial particle energy is transformed in a measurable signal (light, electrical charge). This lecture mainly deals with sampling calorimeters but in section 2 also fully sensitive devices are briefly treated. In this section calorimeters for detecting electromagnetic showers are discussed. The physics processes relevant to em shower development are examined, and the factors that limit the performance of em calorimeters. Section 3 is devoted to readout techniques for sampling calorimeters. In sections 4-7 hadron calorimeters are discussed. The physics processes relevant to hadron shower development, their consequences for the calorimeter signals and the possibility for optimizing the performance of hadron calorimeters are examined. In section 8 an outlook for future development is given. 31 refs.; 48 figs

  6. Phase1 upgrade of the CMS-HF Calorimeter

    CERN Document Server

    Gulmez, Erhan

    2016-01-01

    In this presentation, results of the Phase I upgrade of the CMS Hadron Forward Calorimeter (HF) are discussed. The CMS-HF Calorimeter was using regular PMTs. Cherenkov light produced in the quartz fibers embedded in the iron absorber was read out with the PMTs. However, occasionally, stray muons hitting the PMT windows cause Cherenkov radiation in the PMT itself and produce large signals. These large signals mimic a very high-energy particle and are tagged as important by the trigger. To reduce this problem, PMTs had to be replaced. The four-anode PMTs that were chosen have thinner windows; thereby reducing the Cherenkov radiation in the PMT window. As part of the upgrade, the read-out electronics is to be replaced so that the PMTs are read out in two channels by connecting each pair of anodes to a single channel. Information provided by these two channels will help us reject the false signals due to the stray muons since the Cherenkov radiation in the PMT window is more likely to produce a signal only in one...

  7. New calorimeters for space experiments: physics requirements and technological challenges

    International Nuclear Information System (INIS)

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described

  8. Unix version of CALOR89 for calorimeter applications

    International Nuclear Information System (INIS)

    CALOR89 is a system of coupled Monte Carlo particle transport computer codes which has been successfully employed for the estimation of calorimeter parameters in High Energy Physics. In the past CALOR89 has been running on various IBM machines and on CRAY X-MP at Lawrence Livermore Lab. These machines had non-unix operating systems. In this report we present a UNIX version of CALOR89, which is especially suited for the UNIX work stations. Moreover CALOR89 is also been supplemented with two new program packages which makes it more user friendly. CALPREP is a program for the preparation of the input files for CALOR89 in general geometry and ANALYZ is an analysis package to extract the final results from CALOR89 relevant to calorimeters. This report also provides two script files LCALOR and PCALOR. LCALOR runs CALOR89 sequences of programs and EGS4 for a given configuration sequentially on a single processor and PCALOR concurrently on a multiprocessor unix workstation

  9. New calorimeters for space experiments: physics requirements and technological challenges

    Science.gov (United States)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  10. Construction and operation of a drift-collection calorimeter

    International Nuclear Information System (INIS)

    Large areas planar drift chambers with long drift distance (up to 50 cm) have been developed for possible use in the new Soudan 2 nucleon decay detector. Design goals included fine sampling to determine the topology of complex events with several low-energy tracks. The large scale of the experiment (> 1000 metric tons) required large area inexpensive chambers, which also had good position resolution and multi-track separation. The chambers were to be installed between thin sheets of steel to form a finegrained detector. A second goal was the sampling of dE/dx with each position measurement, in order to determine the direction and particle identity of each track. In this paper we report on the construction and operation of a prototype dectector consisting of 50 chambers, separated by 3 mm-thick steel plates. Readout of drift time and pulse height from anode wires and an orthogonal grid of bussed cathode pads utilized 6-bit flash ADC's. This application of the drift-collection calorimeter technique to a nucleon decay detector follows the investigation by a number of groups of calorimeters for high energy detectors based on long drifting

  11. Timing information and pileup rejection for the High Granularity Calorimeter

    CERN Document Server

    MONET, Geoffrey

    2015-01-01

    The Large Hadron Collider (LHC) at CERN is the world’s largest and most energetic hadron collider. The first run of the LHC (March 2010 - December 2012) has led to several measurements and discoveries, amongst which the Higgs boson candidate. In order to further increase its discovery potential beyond 2020 a leap in luminosity, by a factor of 10, is needed. It is what we call High Luminosity LHC (HL-LHC). Increase the total number of collision would provide more accurate measurements of new particles and enable observation of rare processes that occur below the current sensitivity level. The increase in luminosity will be achieved at the cost of an increase in pileup, i.e. the number of simultaneous collisions. Not only the LHC machine will be upgraded but also the detectors, namely CMS . To cope with this high pileup environment and reconstruct physics objects such as electrons, photons, jets and taus, High Granularity Calorimeter is being proposed as a substitute of the current endcap calorimeters of CMS...

  12. Response of a highly segmented extruded lead glass calorimeter to electrons and pions between 15 and 45 GeV/c

    International Nuclear Information System (INIS)

    We have studied the energy resolution, hadron rejection and ability to distinguish overlapped events for a highly segmented electromagnetic calorimeter using unpolished extruded lead glass bars. Energy resolution is in agreement with previous measurements of more conventional calorimeters. Hadron rejections of 10-3 are achieved, without the use of particle momentum information. Overlapped events of π+--γ are shown to be rejected at the level of 10-2. A powerful method for predicting shower leakage energy is also presented

  13. ATLAS: First rehearsal for the tile calorimeter

    CERN Multimedia

    2003-01-01

    The dry run assembly of the first barrel of the ATLAS tile hadron calorimeter has been successfully completed. It is now being dismantled again so that it can be lowered into the ATLAS cavern where it will be reassembled in October 2004.

  14. Monte Carlo Simulation of HERD Calorimeter

    CERN Document Server

    Xu, M; Dong, Y W; Lu, J G; Quan, Z; Wang, L; Wang, Z G; Wu, B B; Zhang, S N

    2014-01-01

    The High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measure...

  15. ATLAS Tile Calorimeter HL-LHC Upgrade

    CERN Document Server

    Dandoy, Jeffrey Rogers; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles.Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes.An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger.Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity program of the LHC in 2024. All signals are digitized and then transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and...

  16. PEP-4 geiger-mode hexagonal calorimeter

    International Nuclear Information System (INIS)

    The design and performance of the calorimeter are briefly described. Design aspects include illustrations of the active volume of the detector, edge connections, module assembly and analog electronics. Performance data for cosmic rays and radiation sources, including efficiency and channel sensitivity are discussed

  17. The ATLAS Tile Calorimeter gets into shape!

    CERN Multimedia

    2002-01-01

    The last of the 64 modules for one of the ATLAS Hadron tile calorimeter barrels has just arrived at CERN. This arrival puts an end to two and a half years work assembling and testing all the modules in the Institut de Física d'Altes Energies (IFAE), in Barcelona.

  18. Performance test of a TMS calorimeter

    International Nuclear Information System (INIS)

    Performance tests of a first calorimeter module using the room temperature liquid tetramethylsilane (TMS) as active element are described. Normal carbon steel has been used as absorber. The charge yield is 70% of that in a very pure sample of the liquid. A long term stability of the signal with a lifetime of half a year has been realized. (orig.)

  19. Performance of the GEM electromagnetic calorimeter

    International Nuclear Information System (INIS)

    The GEM EM calorimeter is optimized for the best energy, position, angular resolution and jet rejection. The detailed simulation results are presented. In the barrel with LKr, an energy resolution of about 6%/√ direct-sum 0.4%, pointing resolution of 40mrad/√E + 0.5mrad, and jet rejection of a factor of 5 are expected

  20. Calibration of the ZEUS forward calorimeter

    International Nuclear Information System (INIS)

    The physics at the ep-collider HERA requires high resolution calorimetry calibrated with an accuracy of better than 2%. The ZEUS detector meets these conditions by means of a compensating uranium scintillator sandwich calorimeter with an energy resolution of σ/E = 35%/√E + σcal, where σcal is the calibration error. One of the tools to minimize σcal is the calibration with the signals of the radioactivity of the Uranium plates (UNO). Taking UNO data every 8 hours keeps the calibration stable within ≅ 1%. The muon calibration is done employing an algorithm, that determines the most probable energy loss with a precision of ≅ 1%. The channel-to-channel fluctuations of the ratio μ/UNO for a forward calorimeter (FCAL) prototype show a spread of 5.2% for the electromagnetic calorimeter and ≅ 2.5% for the hadronic sections. Improvements in the construction of the FCAL modules decreased these fluctuations to 2.0% and ≅ 1.8% respectively. The influence of the cracks between the calorimeter modules amounts to ≅ 1.7% on average for the ZEUS geometry, if a 2 mm thick Pb-sheet is introduced between the modules. We conclude that we are able to keep σcal below 2%. (orig.)

  1. Steel specification for the Atlas calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, V.

    1998-02-10

    As part of a collaborative experimental High Energy Physics experiment at the LHC Facility, CERN Laboratory, Geneva Switzerland, a group of US institutions has accepted the responsibility for constructing a large portion of the calorimeter for this experiment. This device is referred to as the Tile Calorimeter. The Tile Calorimeter has three major elements, a large center section (Barrel), and two end sections (Extended Barrel). The US group will be responsible for the construction of one of these extended barrel sections. All of the components that are required to construct this device will be fabricated in the US over a period of three years commencing in 1998. Another similar element and the barrel element will be constructed in both eastern and western Europe by parallel groups. The extended barrel is a cylindrical device approximately 8.5 meters (28 ft.) OD x 4.5 meters (14 ft.) ID, made up of 64 wedges. Each of these wedges (see Attachment 1) is constructed by bolting submodules to a strongback girder. Each submodule is constructed of a series of sheets that are welded and glued together. This document summarizes the characteristics and specifications of these steel sheets. The Tile Calorimeter is the return path for the magnet flux of the ATLAS internal superconducting 2T solenoid, therefore its steel magnetic properties are important.

  2. Low-energetic hadron interactions in a highly granular calorimeter

    International Nuclear Information System (INIS)

    The CALICE collaboration develops imaging calorimeters for precision measurements at a future electron-positron linear collider. These calorimeters feature a fine granularity in both longitudinal and transverse direction, which is needed to fulfill the shower separation requirement of Particle Flow reconstruction algorithms. CALICE has constructed prototypes for several design options for electromagnetic and hadron calorimeters and has successfully operated these detectors during combined test-beam programs at DESY, CERN, and Fermilab since 2005. The focus of this dissertation is on the prototype for a hadron calorimeter with analog readout (AHCAL), which is a 1m3 scintillator-steel sampling calorimeter with 38 sensitive layers and a depth of 5.3 nuclear interaction lengths. Each scintillator layer is pieced together from separate tiles with embedded silicon photomultipliers (SiPMs) for measuring the scintillation light. With a total of 7608 readout channels, the AHCAL prototype represents the first large-scale application of SiPMs. This thesis covers the commissioning and operation of the AHCAL and other detectors for several months at the Fermilab Test-beam Facility in 2008 and 2009 and the analysis of electron and pion data collected during these measurements. The analysis covers energies from 1 GeV to 30 GeV and is the first analysis of AHCAL data at energies below 8 GeV. Because the purity of the recorded data is not sufficient for analysis, event selection procedures for electrons and pions at these energies and a method to estimate the purities of these data samples are developed. The calibration of detectors employing SiPMs requires parameters that change with operating voltage and temperature. The correction of these parameters for the effects of temperature variations during data collection and their portability to different operating conditions are evaluated using the AHCAL as an example. This is important for the use of this technology in a collider

  3. Low-energetic hadron interactions in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Feege, Nils

    2011-12-15

    The CALICE collaboration develops imaging calorimeters for precision measurements at a future electron-positron linear collider. These calorimeters feature a fine granularity in both longitudinal and transverse direction, which is needed to fulfill the shower separation requirement of Particle Flow reconstruction algorithms. CALICE has constructed prototypes for several design options for electromagnetic and hadron calorimeters and has successfully operated these detectors during combined test-beam programs at DESY, CERN, and Fermilab since 2005. The focus of this dissertation is on the prototype for a hadron calorimeter with analog readout (AHCAL), which is a 1m{sup 3} scintillator-steel sampling calorimeter with 38 sensitive layers and a depth of 5.3 nuclear interaction lengths. Each scintillator layer is pieced together from separate tiles with embedded silicon photomultipliers (SiPMs) for measuring the scintillation light. With a total of 7608 readout channels, the AHCAL prototype represents the first large-scale application of SiPMs. This thesis covers the commissioning and operation of the AHCAL and other detectors for several months at the Fermilab Test-beam Facility in 2008 and 2009 and the analysis of electron and pion data collected during these measurements. The analysis covers energies from 1 GeV to 30 GeV and is the first analysis of AHCAL data at energies below 8 GeV. Because the purity of the recorded data is not sufficient for analysis, event selection procedures for electrons and pions at these energies and a method to estimate the purities of these data samples are developed. The calibration of detectors employing SiPMs requires parameters that change with operating voltage and temperature. The correction of these parameters for the effects of temperature variations during data collection and their portability to different operating conditions are evaluated using the AHCAL as an example. This is important for the use of this technology in a

  4. Exploitation of jet properties for energy scale corrections for the CMS calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Kirschenmann, Henning

    2011-02-15

    Jets form important event signatures in proton-proton collisions at the Large Hadron Collider (LHC) and the precise measurement of their energy is a crucial premise for a manifold of physics studies. Jets, which are reconstructed exclusively from calorimeter information, have been widely used within the CMS collaboration. However, the response of the calorimeters to incident particles depends heavily on their energy. In addition, it has been observed at previous experiments that the charged particle multiplicity and the radial distribution of constituents differ for jets induced by light quarks or by gluons. In conjunction with the non-linearity of the CMS calorimeters, this contributes to a mean energy response deviating from unity for calorimeter jets, depending on the jet-flavour. This thesis describes a jet-energy correction to be applied in addition to the default corrections within the CMS collaboration. This correction aims at decreasing the flavour dependence of the jet-energy response and improving the energy resolution. As many different effects contribute to the observed jet-energy response, a set of observables are introduced and corrections based on these observables are tested with respect to the above aims. A jet-width variable, which is defined from energy measured in the calorimeter, shows the best performance: A correction based on this observable improves the energy resolution by up to 20% at high transverse momenta in the central detector region and decreases the flavour dependence of the jet-energy response by a factor of two. A parametrisation of the correction is both derived from and validated on simulated data. First results from experimental data, to which the correction has been applied, are presented. The proposed jet-width correction shows a promising level of performance. (orig.)

  5. Exploitation of jet properties for energy scale corrections for the CMS calorimeters

    International Nuclear Information System (INIS)

    Jets form important event signatures in proton-proton collisions at the Large Hadron Collider (LHC) and the precise measurement of their energy is a crucial premise for a manifold of physics studies. Jets, which are reconstructed exclusively from calorimeter information, have been widely used within the CMS collaboration. However, the response of the calorimeters to incident particles depends heavily on their energy. In addition, it has been observed at previous experiments that the charged particle multiplicity and the radial distribution of constituents differ for jets induced by light quarks or by gluons. In conjunction with the non-linearity of the CMS calorimeters, this contributes to a mean energy response deviating from unity for calorimeter jets, depending on the jet-flavour. This thesis describes a jet-energy correction to be applied in addition to the default corrections within the CMS collaboration. This correction aims at decreasing the flavour dependence of the jet-energy response and improving the energy resolution. As many different effects contribute to the observed jet-energy response, a set of observables are introduced and corrections based on these observables are tested with respect to the above aims. A jet-width variable, which is defined from energy measured in the calorimeter, shows the best performance: A correction based on this observable improves the energy resolution by up to 20% at high transverse momenta in the central detector region and decreases the flavour dependence of the jet-energy response by a factor of two. A parametrisation of the correction is both derived from and validated on simulated data. First results from experimental data, to which the correction has been applied, are presented. The proposed jet-width correction shows a promising level of performance. (orig.)

  6. Current technology of particle physics detectors

    International Nuclear Information System (INIS)

    A brief discussion is given of the characteristics required of new accelerator facilities, leading into a discussion of the required detectors, including position sensitive detectors, particle identification, and calorimeters

  7. The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning

    CERN Document Server

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps. The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read...

  8. The pipelined readout for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    The electron-proton storage ring complex HERA under construction at DESY in Hamburg is the first machine of a new generation of colliders. Since physics to be studied at HERA (covered in chapter 2) base on the precise measurement of kinematic variables over a very large range of energies, a foremost emphasis is set in calorimetry. After long studies and an ambitious test program, the ZEUS collaboration has built a high resolution depleted uranium-scintillator calorimeter with photomultiplier readout, the state of the art in detectors of this type. In chapter 3 the principles of calorimetry are reviewed and the construction of the ZEUS calorimeter is described. Mainly due to the large dynamic range and the short bunch crossing times a novel concept for the readout in an analog pipelined fashion had to be designed. This concept is explained in chapter 4. The solid state implementation of the pipeline required two integrated circuits which were developed specially for the ZEUS calorimeter in collaboration with an electronics research institute and produced by industry. The design and construction of these devices and the detailed testing which has been performed for properties critical in the readout is covered in chapters 5 and 6. The whole pipelined readout is a complicated setup with many steps and collaborating systems. Its implementation and the information to operate it are covered in chapter 7. Finally the concepts presented and the applications discussed have been installed and tested on a test beam calibration experiment. There, the modules of the calorimeter have been calibrated. Chapter 8 presents results from these measurements which show excellent performance of the electronics as well as optimal properties of the calorimeter modules. (orig./HSI)

  9. Shower library technique for fast simulation of showers in calorimeters of the H1 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Raičević, N., E-mail: raicevic@mail.desy.de [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Glazov, A., E-mail: glazov@mail.desy.de [Deutches Electronen-Synchrotron, DESY, Hamburg (Germany); Zhokin, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2013-08-01

    Fast simulation of showers in calorimeters is very important for particle physics analysis since shower simulation typically takes significant amount of the simulation time. At the same time, a simulation must reproduce experimental data in the best possible way. In this paper, a fast simulation of showers in two calorimeters of the H1 experiment is presented. High speed and good quality of shower simulation is achieved by using a shower library technique in which the detector response is simulated using a collection of stored showers for different particle types and topologies. The library is created using the GEANT programme. The fast simulation based on shower library is compared to the data collected by the H1 experiment.

  10. Estimation of radiation effects in the front-end electronics of an ILC electromagnetic calorimeter

    International Nuclear Information System (INIS)

    The front-end electronics of the electromagnetic calorimeter of an International Linear Collider detector are situated in a radiation environment. This requires the effect of the radiation on the performance of the electronics, specifically FPGAs, to be examined. In this paper we study the flux, particle spectra and deposited doses at the front-end electronics of the electromagnetic calorimeter of a detector at the ILC. We also study the occupancy of the electromagnetic calorimeter. These estimates are compared with measurements, e.g. of the radiation damage of FPGAs, done elsewhere. The outcome of the study shows that the radiation doses and the annual flux is low enough to allow today's FPGAs to operate. The Single Event Upset rate, however, lies between 14 min and 12 h depending on the FPGA used and therefore needs to be considered in the design of the data acquisition system of the electromagnetic calorimeter. The occupancy is about 0.002 per bunch train not taking into account the effect of noise which depends on the choice of the detector

  11. Upgrade for the ATLAS Tile Calorimeter Readout Electronics at the High Luminosity LHC

    CERN Document Server

    Cerqueira, A; The ATLAS collaboration

    2012-01-01

    The Tile Calalorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The TileCal readout consists of about 10000 channels. The main upgrade will occur for the High Luminosity LHC phase (phase 2) which is scheduled around 2022. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. This will be done with minimum latency and maximum robustness. It will provide maximum TileCal information to the first level of the calorimeter trigger (probably called level 0) to improve the trigger efficiency as required to cope with the increased luminosity. An ambitious u...

  12. The ATLAS liquid argon calorimeter: upgrade plans for the HL-LHC

    International Nuclear Information System (INIS)

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm−2s−1. Liquid argon (LAr) sampling calorimeters are employed for electromagnetic and hadronic calorimetry. The luminosity for the proposed High Luminosity LHC phase (HL-LHC) will increase up to 5×1034 cm−2s−1 with the goal of accumulating an integrated luminosity of 3000 fb−1. This is well beyond the values for which the detectors were designed. The electromagnetic and hadronic calorimeters will be able to tolerate the increased particle flux, but the performance of the forward calorimeter (FCal) will be affected. Two possible solutions for keeping the current performance are being discussed. The readout electronics will also need to withstand larger radiation environment. In the hadronic endcap calorimeter (HEC) cold GaAs preamplifiers are located inside the endcap cryostats. The properties of these devices have been investigated in recent proton and neutron irradiation tests to determine whether they must be replaced. In addition, the entire front-end readout system is not expected to survive the integrated luminosity at the HL-LHC and will be replaced. The description of the new readout system is presented

  13. A LYSO calorimeter for the SuperB factory

    Energy Technology Data Exchange (ETDEWEB)

    Eigen, G.; Zhou, Z. [University of Bergen, Institute of Physics (Norway); Chao, D.; Cheng, C.H.; Echenard, B.; Flood, K.T.; Hitlin, D.G.; Porter, F.C.; Zhu, R.Y. [California Institute of Technology (United States); De Nardo, G.; Sciacca, C. [Università di Napoli Federico II (Italy); INFN Sezione di Napoli (Italy); Bizzarri, M.; Cecchi, C. [Università degli Studi di Perugia (Italy); INFN Sezione di Perugia (Italy); Germani, S.; Lubrano, P.; Manoni, E.; Papi, A.; Scolieri, G. [INFN Sezione di Perugia (Italy); Rossi, A., E-mail: alessandro.rossi@pg.infn.it [Università degli Studi di Perugia (Italy); INFN Sezione di Perugia (Italy); Bocci, V. [INFN Sezione di Roma (Italy); and others

    2013-08-01

    The SuperB project is an asymmetric e{sup +}e{sup −} accelerator of 10{sup 36}cm{sup −2}s{sup −1} design luminosity, capable of collecting a data sample of 50–75ab{sup −1} in five years running. The SuperB electromagnetic calorimeter (EMC) provides energy and direction measurement of photons and electrons, and is used for identification of electrons versus other charged particles. In particular we present its design, geometry study and related simulations, as well as R and D on LYSO crystals and developments on readout electronics. A matrix of 25 crystals has been tested at the Beam Test Facility of Frascati (BTF) in May 2011 at energies between 200 MeV and 500 MeV. Results from this test are presented.

  14. Improving the Robustness of the ATLAS Calorimeter Software Trigger

    CERN Document Server

    Baker, Mark Alexander

    2009-01-01

    The ATLAS experiment pushes the leading edge of experimental particle physics. Increasingly complex hardware, however, brings increasingly complex problems which manifest themselves not only in the detector, but also within the software which drives the detector. The magnitude of the expected interaction rate, too, adds enormous stress to the detector system and the software trigger. In order to prepare the software for these challenges, various detector quantities are considered which may provide debugging handles and robustness against detector problems arising in the ATLAS calorimeter trigger. The effect of electronics noise suppression on these quantities is studied and a brief study of the software trigger performance is followed by recommendations for the implementation of robustness checks.

  15. CALET: a calorimeter for cosmic-ray measurements in space

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Nicola, E-mail: mori@fi.infn.it

    2013-06-15

    The CALorimetric Electron Telescope (CALET) instrument is scheduled for a launch in 2014 and attached to the Exposed Facility of the Japanese Experimental Module (JEM-EF) on the International Space Station. Its main objective is to perform precise measurements of the electron+positron spectrum in cosmic rays at energies up to some TeV, searching for signals from dark matter and/or contributions from nearby astrophysical sources like pulsars. Other scientific goals include the investigation of heavy ions spectra up to Fe, elemental abundance of trans-iron nuclei and a measurement of the diffuse γ ray emission with high energy resolution. The instrument is now under construction, and consists of a charge detection device (CHD) composed of two layers of plastic scintillators, a finely-segmented sampling calorimeter (IMC) and a deep, homogeneous calorimeter (TASC) made of PbWO scintillating bars. The good containment of electromagnetic showers (total depth ∼3X{sub 0}(IMC)+27X{sub 0}(TASC)=30X{sub 0}) together with the homogeneity of TASC give an energy resolution for electrons and γ rays about 2%. CHD can discriminate the charge of primary particles with a resolution between 15% and 30% up to Fe. The finely-segmented IMC, made by tungsten layers and 1mm-wide scintillating fibers, can provide detailed information about the start and early development of particle showers. Lateral and longitudinal shower-development information from TASC, together with informations from IMC, can be used to achieve an electron/proton rejection power about 10{sup 5}. High-statistics for collected data will be achieved by means of the planned 5-years exposure time together with a geometrical factor of 0.12 m{sup 2} sr. Furthermore, a Gamma-Ray Burst monitor will complement the main detector. In this paper the status of the mission, the design and expected performance of the instrument will be detailed.

  16. CALET: a calorimeter for cosmic-ray measurements in space

    Science.gov (United States)

    Mori, Nicola

    2013-06-01

    The CALorimetric Electron Telescope (CALET) instrument is scheduled for a launch in 2014 and attached to the Exposed Facility of the Japanese Experimental Module (JEM-EF) on the International Space Station. Its main objective is to perform precise measurements of the electron+positron spectrum in cosmic rays at energies up to some TeV, searching for signals from dark matter and/or contributions from nearby astrophysical sources like pulsars. Other scientific goals include the investigation of heavy ions spectra up to Fe, elemental abundance of trans-iron nuclei and a measurement of the diffuse γ ray emission with high energy resolution. The instrument is now under construction, and consists of a charge detection device (CHD) composed of two layers of plastic scintillators, a finely-segmented sampling calorimeter (IMC) and a deep, homogeneous calorimeter (TASC) made of PbWO scintillating bars. The good containment of electromagnetic showers (total depth ˜3X0(IMC)+27X0(TASC)=30X0) together with the homogeneity of TASC give an energy resolution for electrons and γ rays about 2%. CHD can discriminate the charge of primary particles with a resolution between 15% and 30% up to Fe. The finely-segmented IMC, made by tungsten layers and 1mm-wide scintillating fibers, can provide detailed information about the start and early development of particle showers. Lateral and longitudinal shower-development information from TASC, together with informations from IMC, can be used to achieve an electron/proton rejection power about 105. High-statistics for collected data will be achieved by means of the planned 5-years exposure time together with a geometrical factor of 0.12 m sr. Furthermore, a Gamma-Ray Burst monitor will complement the main detector. In this paper the status of the mission, the design and expected performance of the instrument will be detailed.

  17. A high granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Cvach, Jaroslav; Danilov, M.; Devitsin, E.; Dodonov, V.; Eigen, G.; Garutti, E.; Gilitzky, Yu.; Groll, M.; Heuer, R.D.; Janata, Milan; Kacl, Ivan; Korbel, V.; Kozlov, V. Yu; Meyer, H.; Morgunov, V.; Němeček, Stanislav; Pöschl, R.; Polák, Ivo; Raspereza, A.; Reiche, S.; Rusinov, V.; Sefkow, F.; Smirnov, P.; Terkulov, A.; Valkár, Š.; Weichert, Jan; Zálešák, Jaroslav

    2006-01-01

    Roč. 564, - (2006), s. 144-154. ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259; GA ČR(CZ) GA202/05/0653 Institutional research plan: CEZ:AV0Z10100502 Keywords : hadronic calorimeter * plastic scintillator tile * APD readout * linear collider detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.185, year: 2006

  18. Temperature dependence calibration and correction of the DAMPE BGO electromagnetic calorimeter

    Science.gov (United States)

    Wei, Y. F.; Zhang, Z. Y.; Zhang, Y. L.; Wen, S. C.; Wang, C.; Li, Z. Y.; Feng, C. Q.; Wang, X. L.; Xu, Z. Z.; Huang, G. S.; Liu, S. B.

    2016-07-01

    A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter Particle Explorer (DAMPE) mission. The temperature effect on the BGO ECAL was investigated with a thermal vacuum experiment. The light output of a BGO crystal depends on temperature significantly, and the readout system is also affected by temperature. The temperature coefficient of each BGO detection unit has been calibrated, and a correction method is also presented in this paper.

  19. Monte Carlo simulation of the properties of an electromagnetic streamer tube calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, R.; Grupen, C.; Meyer, H.J.; Schaefer, U.

    1988-06-20

    Saturation effects in an electromagnetic calorimeter with streamer tube readout have been studied by Monte Carlo simulations. Streamers produce temporary dead zones which remain insensitive to other particles within one event. The observed longitudinal shower profiles can be fitted by the results of simulations yielding a value for the width of the dead zone of delta = 1 mm. We attribute this relatively low value to the use of small sampling cells and a pure isobutane gas filling.

  20. Monte Carlo simulation of the properties of an electromagnetic streamer tube calorimeter

    International Nuclear Information System (INIS)

    Saturation effects in an electromagnetic calorimeter with streamer tube readout have been studied by Monte Carlo simulations. Streamers produce temporary dead zones which remain insensitive to other particles within one event. The observed longitudinal shower profiles can be fitted by the results of simulations yielding a value for the width of the dead zone of δ = 1 mm. We attribute this relatively low value to the use of small sampling cells and a pure isobutane gas filling. (orig.)

  1. A high granularity scintillator hadronic — calorimeter with SiPM readout for a linear collider detector

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Balagura, V.; Bobchenko, B.; Cvach, Jaroslav; Janata, Milan; Kacl, Ivan; Němeček, Stanislav; Polák, Ivo; Valkár, Š.; Weichert, Jan; Zálešák, Jaroslav

    2005-01-01

    Roč. 540, - (2005), s. 368-380. ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LN00A006 Institutional research plan: CEZ:AV0Z10100502 Keywords : linear collider detector * analog calorimeter * semiconductor detectors * scintillator * high granularity Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  2. Electron-pion discrimination in an iron/streamer tube calorimeter up to 100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, R.; Grupen, C.; Meyer, H.J.; Schaefer, U.

    1988-11-01

    An electron/hadron calorimeter consisting of 2 cm/4 cm iron sampling planes and streamer tube readout modules was exposed to particle beams of electrons and pions in the energy range from 1 to 100 GeV. At the highest energies the observed pion misidentification amounted to 0.95%+-0.21% at an electron detection efficiency of 95%.

  3. Electron-pion discrimination in an iron/streamer tube calorimeter up to 100 GeV

    International Nuclear Information System (INIS)

    An electron/hadron calorimeter consisting of 2 cm/4 cm iron sampling planes and streamer tube readout modules was exposed to particle beams of electrons and pions in the energy range from 1 to 100 GeV. At the highest energies the observed pion misidentification amounted to 0.95%±0.21% at an electron detection efficiency of 95%. (orig.)

  4. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  5. The longitudinal development of showers induced by high-energy hadrons in an iron-sampling calorimeter

    CERN Document Server

    Milke, J; Apel, W D; Badea, F; Bekk, K; Bercuci, A; Bertaina, M; Blümer, H; Bozdog, H; Büttner, C; Chiavassa, A; Daumiller, K; Di Pierro, F; Dolla, P; Engel, R; Engler, J; Fessler, F; Ghia, P L; Gils, H J; Glasstetter, R; Haungs, A; Heck, D; Hörandel, J R; Kampert, K H; Klages, H O; Kolotaev, Yu; Maier, G; Mathes, H J; Mayer, H J; Mitrica, B; Morello, C; Müller, M; Navarra, G; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Scholz, J; Stümpert, M; Thouw, T; Toma, G; Trinchero, G C; Ulrich, H; Valchierotti, S; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zagromski, S; Zimmermann, D

    2005-01-01

    Occasionally cosmic-ray induced air showers result in single, unaccompanied hadrons at ground level. Such events are investigated with the 300 m2 hadron calorimeter of the KASCADE-Grande experiment. It is an iron sampling calorimeter with a depth of 11 hadronic interaction lengths read out by warm-liquid ionization chambers. The longitudinal shower development is discussed as function of energy up to 30 TeV and the results are compared with simulations using the GEANT/FLUKA code. In addition, results of test measurements at a secondary particle beam of the Super Proton Synchrotron at CERN up to 350 GeV are discussed.

  6. Low-noise current preamplifier for the electromagnetic calorimeter of ATLAS

    International Nuclear Information System (INIS)

    The ATLAS detector at CERN is an experiment on the future LHC collider, which seeks new particles, like the Higgs boson, to complete the standard model and develop the supersymmetry model. An important sub-detector in ATLAS is the Liquid Argon calorimeter which measures the energy of electrons and photons. The calorimeter precision is partially limited by the electronic noise of the input preamplifiers, which is then particularly a point of attention. The main study of this thesis is a 'warm' current preamplifier ('0T') placed outside the cryostat, the signal being driven on cables. First, the main characteristics of another type of preamplifier placed in the calorimeter are studied. Then the 0T is modelled, particularly the effects of a cable on the electronic noise and the signal. Different versions are studied, whose measurements are in good agreement with expected values. In the ATLAS Liquid Argon calorimeter conditions the 0T performance are very competitive with a 'cold' preamp, and has the advantage of reliability. Also their location outside the cryostat allows maintenance. But the cable impedance is higher than the input impedance of a cold preamplifier, which is a drawback according to capacitive crosstalk between neighbouring channels. The signal crosstalk is higher, but acceptable. As well, the noise correlation between two channels as a function of cable length is shown as negligible for cable lengths used. The noise autocorrelation function is also studied to optimize a multi-sampling filtering. The model and measurements are in excellent agreement. The 0T has been chosen to equip 200,000 channels of the ATLAS Liquid Argon calorimeter. (author)

  7. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  8. Upgrading the ATLAS Tile Calorimeter Electronics

    Directory of Open Access Journals (Sweden)

    Carrió Fernando

    2013-11-01

    Full Text Available This work summarizes the status of the on-detector and off-detector electronics developments for the Phase 2 Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in the middle of 2014 during the first Long Shutdown. For the on-detector readout, three different front-end boards (FEB alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The Main Board will provide communication and control to the FEBs and the Daughter Board will transmit the digitized data to the off-detector electronics in the counting room, where the super Read-Out Driver (sROD will perform processing tasks on them and will be the interface to the trigger levels 0, 1 and 2.

  9. Work on a ATLAS tile calorimeter Barrel

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The Tile Calorimeter is designed as one barrel and two extended barrel hadron parts. The calorimeter consists of a cylindrical structure with inner and outer radius of 2280 and 4230 mm respectively. The barrel part is 5640 mm in length along the beam axis, while each of the extended barrel cylinders is 2910 mm long. Each detector cylinder is built of 64 independent wedges along the azimuthal direction. Between the barrel and the extended barrels there is a gap of about 600 mm, which is needed for the Inner Detector and the Liquid Argon cables, electronics and services. The barrel covers the region -1.0

  10. ATLAS liquid argon calorimeter back end electronics

    CERN Document Server

    Bán, J; Bellachia, F; Blondel, A; Böttcher, S; Clark, A; Colas, Jacques; Díaz-Gómez, M; Dinkespiler, B; Efthymiopoulos, I; Escalier, M; Fayard, Lo; Gara, A; He, Y; Henry-Coüannier, F; Hubaut, F; Ionescu, G; Karev, A; Kurchaninov, L; Lafaye, R; Laforge, B; La Marra, D; Laplace, S; Le Dortz, O; Léger, A; Liu, T; Martin, D; Matricon, P; Moneta, L; Monnier, E; Oberlack, H; Parsons, J A; Pernecker, S; Perrot, G; Poggioli, L; Prast, J; Przysiezniak, H; Repetti, B; Rosselet, L; Riu, I; Schwemling, P; Simion, S; Sippach, W; Strässner, A; Stroynowski, R; Tisserant, S; Unal, G; Wilkens, H; Wingerter-Seez, I; Xiang, A; Yang, J; Ye, J

    2007-01-01

    The Liquid Argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25ns and digitize it at a trigger rate of up to 75~kHz. Off-detector Read Out Driver (ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized.

  11. LHCb: Upgrade of the LHCb calorimeter electronics

    CERN Multimedia

    Mauricio Ferre, J

    2013-01-01

    The LHCb collaboration foresees a major upgrade of the detector for the high luminosity run that should take place after 2018. Apart from the increase of the instantaneous luminosity at the interaction point of the experiment, one of the major ingredients of this upgrade is a full readout at 40MHz of the sub-detectors and the acquisition of the data by a large farm of PC. The trigger will be done by this farm and should increase the overall trigger efficiency with respect to the current detector, especially in hadronic B meson decays. A general overview of the modifications foreseen to the calorimeter system and the integration of the electromagnetic and hadronic calorimeters in this new scheme will be described.

  12. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  13. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    This paper reports on a radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium which has been developed for use with nuclear material. The dry heat exchanger calorimeter is 42 in. high by 18 in. in diameter and the preconditioner is a 22 in. cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptable data with an accuracy comparable to those of Mound water bath systems now in use

  14. Calorimeter measurements of low wattage items

    International Nuclear Information System (INIS)

    The transition of DOE facilities from production to decontamination and decommissioning has led to more measurements of waste, scrap, and other less attractive materials. The difficulty that these materials pose for segmented gamma scanning and neutron counting has increased the use of calorimetric assay for very low wattage items (238Pu oxide ranging in wattage from 25 to 500 milliwatts in the calorimeters at the Los Alamos Plutonium Facility and report the error and the precision of the measurements

  15. The ZEUS second level calorimeter trigger

    International Nuclear Information System (INIS)

    ZEUS is a detector for the HERA ep collider, consisting of several large components. The most important being the inner tracking detectors, which are positioned nearest to the interaction point, the calorimeter surrounding the inner tracking detectors and the muon detectors on the outside of the experimental setup. Each component will deliver a vast amount of information. In order to keep this information manageable, data is preprocessed and condensed per component and then combined to obtain the final global trigger result. The main subject of this thesis is the second level calorimeter trigger processor of the ZEUS detector. In order to be able to reject the unwanted events passing the first level, the topological event signature will have to be used at the second level. The most demanding task of the second level is the recognition of local energy depositions corresponding to isolated electrons and hadron jets. Also part of the work performed by the first level will be repeated with a higher level of accuracy. Additional information not available to the first level trigger will be processed and will be made available to the global second level trigger decision module. For the second level calorimeter trigger processor a special VME module, containing two transputers, has been developed. The second level calorimeter trigger algorithm described in this thesis was tested with simulated events, that were tracked through a computer simulation of the ZEUS detector. A part of this thesis is therefore devoted to the description of the various Monte Carlo models and the justification of the way in which they were used. (author). 132 refs.; 76 figs.; 18 tabs

  16. Performance testing of a large volume calorimeter

    International Nuclear Information System (INIS)

    Calorimetry is used as a nondestructive assay technique for determining the power output of heat-producing nuclear materials. Calorimetric assay of plutonium-bearing and tritium items routinely obtains the highest precision and accuracy of all nondestructive assay (NDA) techniques, and the power calibration can be traceable to National Institute of Standards and Technology through certified electrical standards. Because the heat-measurement result is completely independent of material and matrix type, it can be reliably used on any material form or item matrix. The calorimetry measurement is combined with isotopic composition information to determine the correct plutonium content of an item. When an item is unsuitable for neutron or gamma-ray NDA, calorimetric assay is used. Currently, the largest calorimeter capable of measuring plutonium-bearing or tritium items is 36 cm in diameter and 61 cm long. Fabrication of a high-sensitivity large volume calorimeter (LVC) capable of measuring tritium and plutonium-bearing items in 208-1 (55-gal) shipping or storage containers has provided a reliable NDA method to measure many difficult to measure forms of plutonium and tritium more accurately. This large calo rimeter can also be used to make secondary working standards from process material for the calibration of faster NDA assay techniques. The footprint of the calorimeter is 104 cm wide by 157 cm deep and 196 cm high in the closed position. The space for a standard electronics rack is also necessary for the operation of the calo rimeter. The maximum item size that can be measured in the LVC is 62 cm in diameter and 100 cm long. The extensive use of heat-flow calorimeters for safeguards-related measurements at DOE facilities makes it important to extend the capability of calorimetric assay of plutonium and tritium items to larger container sizes. Measurement times, precision, measurement threshold, and position sensitivity of the instrument will be discussed.

  17. Performance testing of a large volume calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, D. S. (David S.)

    2004-01-01

    Calorimetry is used as a nondestructive assay technique for determining the power output of heat-producing nuclear materials. Calorimetric assay of plutonium-bearing and tritium items routinely obtains the highest precision and accuracy of all nondestructive assay (NDA) techniques, and the power calibration can be traceable to National Institute of Standards and Technology through certified electrical standards. Because the heat-measurement result is completely independent of material and matrix type, it can be reliably used on any material form or item matrix. The calorimetry measurement is combined with isotopic composition information to determine the correct plutonium content of an item. When an item is unsuitable for neutron or gamma-ray NDA, calorimetric assay is used. Currently, the largest calorimeter capable of measuring plutonium-bearing or tritium items is 36 cm in diameter and 61 cm long. Fabrication of a high-sensitivity large volume calorimeter (LVC) capable of measuring tritium and plutonium-bearing items in 208-1 (55-gal) shipping or storage containers has provided a reliable NDA method to measure many difficult to measure forms of plutonium and tritium more accurately. This large calo rimeter can also be used to make secondary working standards from process material for the calibration of faster NDA assay techniques. The footprint of the calorimeter is 104 cm wide by 157 cm deep and 196 cm high in the closed position. The space for a standard electronics rack is also necessary for the operation of the calo rimeter. The maximum item size that can be measured in the LVC is 62 cm in diameter and 100 cm long. The extensive use of heat-flow calorimeters for safeguards-related measurements at DOE facilities makes it important to extend the capability of calorimetric assay of plutonium and tritium items to larger container sizes. Measurement times, precision, measurement threshold, and position sensitivity of the instrument will be discussed.

  18. Prototype calorimeters for the NA3 experiment

    CERN Multimedia

    1975-01-01

    The NA3 Experiment was set-up on the North Area of the SPS by the CERN/ Ecole Polytechnique/College de France/ Orsay/Saclay Collaboration, to study high transverse momentum leptons and hadrons from hadron collisions. The calorimeters measured the energy of hadrons (prototype on the right) and leptons (prototype on the left). They used a new type of plastic scintillator (plexipop). (see CERN Courier of November 1975) energy (prototype on the right)

  19. Study of a multiwire electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Electromagnetic calorimeter performance with sampling, piling up of lead foils and wire chambers. It shows a non-linearity in partially saturated mode; this one grows up with chamber gain and will be about 1 TeV-1; 16%/√E resolution is obtained with mixing containing xenon, which limits degradation by magnetic field. Electron are identified by longitudinal profile of their shower with π contamination of 10-3

  20. Isothermal calorimeter for reactor radiation dosimetry

    International Nuclear Information System (INIS)

    An isothermal calorimeter with thermistors for measuring absorbed dose rates from 104-5-6.105 rad/h in reactor experimental holes has been designed. A kinetics method for determining the equilibrium temperature difference has been developed, and its application in isothermal calorimetry proved. The expected accuracy in measurements within ± 2-5% has been proved by measurements carried out in the reactor. Some data obtained by measurements in the reactor RA are presented (author)

  1. Calorimeter tests with liquid ionization chambers

    International Nuclear Information System (INIS)

    Configurations of sampling calorimeters with iron, lead and uranium as absorbers have been investigated using liquid ionization chambers as active elements. As liquid tetramethylsilane has been used. Results of beam tests with electrons, pions and muons in the energy range of 2 to 6 GeV are presented and compared with Monte Carlo simulations. In particular the questions regarding which configuration can compensate and the separation of sampling from intrinsic fluctuations have been studied. (orig.)

  2. The CMS Electromagnetic Calorimeter Detector Control System

    International Nuclear Information System (INIS)

    This paper presents the Detector Control System (DCS) designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at CERN. The focus is on its distributed controls software architecture, the deployment of the application into production and its integration into the overall CMS DCS. The knowledge acquired from operational issues during the detector commissioning and the first phase of the Large Hadron Collider (LHC) physics runs is discussed and future improvements are presented.

  3. Performance test of a TMS calorimeter

    International Nuclear Information System (INIS)

    Performance tests of a first calorimeter module using the room temperature liquid tetramethylsilane (TMS) as active element are described in detail. As absorber planed carbon steel slabs had been used. The charge yield is 70% of that in a very pure sample of the liquid. A long term stability of the signal with a lifetime of half a year has been realized. Experiences are described and the results explained in detail. (orig.)

  4. The effect of passive material on the detection of hadrons in calorimeter configurations for the SDC detector

    International Nuclear Information System (INIS)

    We have used a flexible geometry model of a calorimeter design for SDC to study the effect of passive material in front of the calorimeter and between the barrel and endcap modules on the apparent response to hadrons. The thicknesses of the passive materials have been chosen to closely resemble the currently projected wall thicknesses of the scintillating tile-fiber and liquid-argon calorimeter designs. The liquid-argon model contains about three times the amount of material in its shells compared to the tile-fiber model. The solenoid coil reduces the relative difference somewhat in the barrel region but constitutes only a minor correction in the transition region from barrel to endcap. Correspondingly, we find a significantly worse response for the liquid-argon case which we demonstrate using beams of single πminus particles of 10 GeV/c momentum. 13 refs., 6 figs

  5. Detailed studies of hadronic showers and comparison to GEANT4 simulations with data from highly granular calorimeters

    CERN Document Server

    van der Kolk, Naomi

    2015-01-01

    The highly granular calorimeter prototypes of the CALICE collaboration have provided large data samples with precise three-dimensional information on hadronic showers with steel and tungsten absorbers and silicon, scintillator and gas detector readout. From these data sets, detailed measurements of the spatial structure, including longitudinal and lateral shower profiles and of the shower substructure and time structure are extracted. Recent analyses have extended these studies to different particle species in calorimeters with scintillator readout and steel and tungsten absorbers, to energies below 10 GeV in a silicon tungsten calorimeter and have provided first studies of the shower substructure with gaseous readout and unprecedented granularity of $1\\times1$~cm$^{2}$ over a full cubic meter. These results are confronted with Geant4 simulations with different hadronic physics models. They present new challenges to the simulation codes and provide the possibility to validate and improve the simulation of had...

  6. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Reed, Robert; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter covering the central region of the ATLAS experiment at LHC. TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC operation (Phase 2 around 2023) where the peak luminosity will increase 5x compared to the design luminosity (10^{34} cm^{-2}s^{-1}) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims to replace the majority of the on- and off-detector electronics so that all calorimeter signals can be digitized and directly sent to the off-detector electronics in the counting room. This will reduce pile-up problems and allow more complex trigger algorithms. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to t...

  7. The Zeus calorimeter first level trigger

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.J. [Univ. of Wisconsin, Madison, WI (United States)

    1989-04-01

    The design of the Zeus Detector Calorimeter Level Trigger is presented. The Zeus detector is being built for operation at HERA, a new storage ring that will provide collisions between 820 GeV protons and 30 GeV electrons in 1990. The calorimeter is made of depleted uranium plates and plastic scintillator read out by wavelength shifter bars into 12,864 photomultiplier tubes. These signals are combined into 974 trigger towers with separate electromagnetic and hadronic sums. The calorimeter first level trigger is pipelined with a decision provided 5 {mu}sec after each beam crossing, occurring every 96 nsec. The trigger determines the total energy, the total transverse energy, the missing energy, and the energy and number of isolated electrons and muons. It also provides information on the number and energy of clusters. The trigger rate needs to be held to 1 kHz against a rate of proton-beam gas interactions of approximately 500 kHz. The summed trigger tower pulseheights are digitized by flash ADC`s. The digital values are linearized, stored and used for sums and pattern tests.

  8. Performance of the PrimEx Electromagnetic Calorimeter

    OpenAIRE

    Kubantsev, M.; Larin, I.; A. Gasparyan; Collaboration, for the PrimEx

    2006-01-01

    We report the design and performance of the hybrid electromagnetic calorimeter consisting of 1152 $PbWO_4$ crystals and 576 lead glass blocks for the PrimEx experiment at the Jefferson Laboratory. The detector was built for high precision measurement of the neutral pion lifetime via the Primakoff effect. Calorimeter installation and commissioning was completed with the first physics run in fall of 2004. We present the energy and position resolution of the calorimeter. Obtained $\\pi^0$ mass re...

  9. The LHCb EM calorimeter and π0 detection

    International Nuclear Information System (INIS)

    The LHCb calorimeter system comprises a preshower detector, an electromagnetic and a hadronic calorimeter. The purpose of the calorimeters is to identify and provide an energy and position measurement of photons, electrons and hadrons. The calorimeters are an essential part of the LHCb trigger, and are used in offline analysis. Good photon identification is important for the study of B decays with π0s in the final state, an example of which is the Bd0→ π+π-π0 decay. This provides an alternative channel to Bd0→ π+π- for the measurement of the angle α of the unitarity triangle

  10. Analytical model for a fast-response calorimeter: with applications

    International Nuclear Information System (INIS)

    This paper describes the development of an electrical analogue thermal-control model for the ANL-type fast-response calorimeter and its application to a new small sample, analytical-type fast-response calorimeter. This was done to obtain a better understanding of the sources of variations in experimentally measured sample power. Thermal quantities of temperature, heat flow and heat storage were reduced to electrical analogues so that the whole calorimeter could be modeled and analyzed as an electrical circuit with the thermal parts of the calorimeter treated as a series of lumped-circuit constants. Latest results of this work are discussed

  11. A calorimeter for neutron flux measurement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chupp, T.E. [Harvard Univ., Cambridge, MA (US). Physics Labs.

    1993-04-01

    A calorimeter for absolute neutron flux measurement has been built and tested. The calorimeter measures the heat produced in a 10{degrees}K thick LiPb target when neutrons are captured via the {sup 6}Li(n,{sup 3}H){sup 4}He reaction. The sensitivity achieved was 1.3x10{sup 6} n/s for a 1 hour measurement. Separate flux measurements with the calorimeter and a {sup 238}U fission chamber are in agreement and show that systematic errors are less than 3%. An improved calorimeter has been built which is sensitive to 10{sup 5} n/s for a 1 hour measurement.

  12. Monte Carlo studies on the hadronic calibration of the H1 calorimeter with HERA events

    International Nuclear Information System (INIS)

    Two different methods to calibrate the H1 calorimeter with hadrons from HERA events are investigated. For these studies the LEPTO/JETSET event generator and the fast H1 detector simulation program P.S.I. were used. Isolated particles, measured and reconstructed with the track chambers, may cause isolated showers within the calorimeter. The measured momenta of hadrons (up to about 20 GeV/c) can be compared with the measured energy in the calorimeter. The influence of neutral particles and of neighbouring showers on the energy deposition is discussed. It is shown that a calibration is possible by comparing the transverse momentum of the scattered electron and of secondary hadrons. Disturbing effects on this measurement (e.g. energy losses in the beamhole) are presented. In both cases the number of events with Q2>10 GeV2 corresponding to 1 pb-1 is found to be sufficient to apply the mentioned methods for a global calibration. (orig./HSI)

  13. The Time Structure of Hadronic Showers in Calorimeters with Scintillator and with Gas Readout

    Science.gov (United States)

    Szalay, Marco

    2014-06-01

    The time structure of hadronic showers is characterized by a prompt component from relativistic particles and by late components predominantly connected to neutrons in the cascade. The sensitivity to this late component thus depends on the choice of the active medium for hadronic calorimeters. The time structure and the differences originating from different readout technologies in a calorimeter with tungsten absorbers are studied with two dedicated setups using scintillator tiles read out with SiPMs and glass RPCs. In both cases, a radial strip of 15 cells with a size of 3 × 3 cm2 each is read out with fast digitizers with deep buffers, providing detailed information on the time structure of the recorded signals over a long sampling window. We will discuss the technical aspects of these systems, and present results on the time structure measurements, which demonstrate sizeable differences in the response of scintillator and gaseous detectors to the neutron components of the hadronic cascade.

  14. Design and test beam studies for the CASTOR calorimeter of the CMS experiment

    International Nuclear Information System (INIS)

    CASTOR is a calorimeter designed for the very forward region of the CMS experiment at the LHC: 5.2I deep calorimeter. The electronics has to deal with a high occupancy and a high dynamic range (104) to measure minimum ionizing particles and full beam energy (7 TeV) jets. The charge of the PMT's is digitized for every bunch crossing (25 ns) and sent as 1.6 Gbit/s streams via 78 optical links to the service cavern. There FGPA's calculate trigger bits, buffer the data and communicate with the CMS systems. A granularity of 224 channels allows to reconstruct shower profiles. Electrons, hadrons and muons have been measured in test beams. The optical response has been extracted to be ∼9-12 photoelectrons(ph.e.)/readout-unit for muons, ∼30ph.e./GeV for electrons and ∼13ph.e./GeV for high energetic pions.

  15. Performance of the ATLAS Tile Calorimeter in the proton-proton collisions at LHC

    CERN Document Server

    Fiascaris, M; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. This detector is instrumental for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale is transferred to the rest of the detector via the response to radioactive sources. The calibrated scale is validated in situ with muons and single hadrons whereas the timing performance is checked with muons and jets. The data quality procedures used during the LHC data‐taking and the evolution of the detector status are presented. The energy and the time reconstruction performance...

  16. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run I and planned upgrades

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale was transferred to the rest of the detector via the response to radioactive sources. The calibrated scale was validated in situ with muons and single hadrons and the timing performance with muons and jets as detailed in this contribution. The data quality procedures used during the LHC data-taking and the evolution of the detector status are exposed. The energy and the time reconstruction performance...

  17. Study on FPGA SEU Mitigation for Readout Electronics of DAMPE BGO Calorimeter

    CERN Document Server

    Shen, Zhongtao; Gao, Shanshan; Zhang, Deliang; Jiang, Di; Liu, Shubin; An, Qi

    2014-01-01

    The BGO calorimeter, which provides a wide measurement range of the primary cosmic ray spectrum, is a key sub-detector of Dark Matter Particle Explorer (DAMPE). The readout electronics of calorimeter consists of 16 pieces of Actel ProASIC Plus FLASH-based FPGA, of which the design-level flip-flops and embedded block RAMs are single event upset (SEU) sensitive in the harsh space environment. Therefore to comply with radiation hardness assurance (RHA), SEU mitigation methods, including partial triple modular redundancy (TMR), CRC checksum, and multi-domain reset are analyzed and tested by the heavy-ion beam test. Composed of multi-level redundancy, a FPGA design with the characteristics of SEU tolerance and low resource consumption is implemented for the readout electronics.

  18. Summary talk on fiber tower calorimeter for the scintillation calorimeter subgroups

    International Nuclear Information System (INIS)

    We present here a new calorimeter design based on small scintillator tiles, lead absorber and wavelength shifting fiber readout. We have addressed all the major issues in SSC calorimetry and have developed a design with many advantageous features. It has been well demonstrated that the best resolution is obtained for a 'compensated' calorimeter. It is also well known how such compensation may be achieved by a suitable choice of active and passive materials and their relative thickness. One such choice is that of lead and scintillator for which the best thickness ratio is 4:1. This selection has been used in the development of the so-called spaghetti calorimeter (SPACAL) discussed at this workshop. The relative merits of this and many other designs have been the subject of much discussion at SSC workshops from which a number of critical issues have emerged for each design. In the present paper, we have addressed the issues raised in the SPACAL design and proposed an alternative, improved design. The SPACAL represents a significant step forward in calorimeter design, but there are always areas which can be improved in any design when it is subjected to detailed study. Specifically we have considered the areas of energy resolution, channeling, projective towers/calibration, longitudinal segmentation, and radiation sensitivity. We will now discuss each of these areas in turn. 5 refs., 9 figs

  19. General programmable Level-1 trigger with 3D-Flow assembly system for calorimeters of different sizes and event rates

    International Nuclear Information System (INIS)

    Experience demonstrates that fine tuning on the trigger of an experiment is often achieved only after running the experiment and analyzing the first data acquired. It is desirable that identification and, consequently, selection of interesting events be made on a more refined identification of particles. Use of an innovative parallel-processing system architecture together with an instruction set allows identification of objects (particles) among the data coming from a calorimeter in a programmable manner, utilizing the information related to their shape in two- or three-dimensional form, rather than applying only a programmable threshold proportional to their energy. The architecture is flexible, allowing execution of simple algorithms as well as complex pattern recognition algorithms. It is scalable in the sense that the same hardware can be used for small or large calorimeters having a slow or fast event rate. The simple printed circuit board (accommodating 16 x 3D-Flow processors) on a 4 in. x 4 in. board described herein uses the same hardware to build a large Level-1 programmable trigger (by interconnecting many boards in a matrix array) and is capable of implementing simple or complex pattern recognition algorithms at different event input rates (by cascading boards one on top of another). With the same hardware one can build low-cost, programmable Level-1 triggers for a small and low-event-rate calorimeter, or high-performance, programmable Level-1 triggers for a large calorimeter capable of sustaining up to 60 million events per second

  20. CALICE silicon-tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    G Mavromanolakis

    2007-12-01

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 layers and depth of 7.2 0 at normal incidence, having in total 3024 channels of 1 cm2, was tested recently with - beam. We describe the prototype and discuss some preliminary testbeam results on its performance with respect to position resolution, response inhomogeneity and transverse containment.

  1. Large aperture calorimeter for fusion laser measurements

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.G.; Smith, P.A.

    The authors designed and constructed a large aperture calorimeter intended for laser fusion measurements on beams up to 20 cm diameter. The laser beam is absorbed in a glass disc backed by a disc carry a resistance wire. Although it performs essentially as expected with a noise equivalent energy of 20 mJ and a maximum energy of about 100 J, difficulties in construction give a 17% variation of sensitivity across the aperture. To overcome this problem it would probably be necessary to adopt an integral construction with the resistance bridge formed from an etched film on the back of the absorbing glass.

  2. Calibration boards for the ATLAS LAr calorimeters

    International Nuclear Information System (INIS)

    In order to calibrate the ATLAS Liquid Argon (LAr) calorimeters to an accuracy better than 1%, over 16 bit dynamic range, chips have been designed in DMILL technology. The design and performance of a 16 bit DAC, a static low offset operational amplifier and a digital chip to control the calibration boards are presented. A 8 channels board using these chips has also been realised and carefully measured as this module will be replicated 16 times to design the final 128 channels calibration board. (authors)

  3. Test of the ZEUS forward calorimeter prototype

    International Nuclear Information System (INIS)

    Four prototype modules following the same design as the ZEUS forward calorimeter (FCAL) modules have been constructed and tested with electrons, hadrons and muons in the momentum range of 1 to 100 GeV/c. The main topics under investigation were: calibration, uniformity of response, noise, light yield, energy resolution and the electron to hadron response (e/h ratio). The result of the measurements is presented and the expected performance of the FCAL is discussed in the light of these results. (orig.)

  4. Pion showers in highly granular calorimeters

    Indian Academy of Sciences (India)

    Jaroslav Cvach; on behalf of the CALICE Collaboration

    2012-10-01

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA algorithm based up to now on the simulated data only. Next, the properties of hadron showers were compared to different physics lists of GEANT4 version 9.3.

  5. Correlated noise unfolding on a Hadronic Calorimeter

    CERN Document Server

    Fiolhais, M C N; The ATLAS collaboration

    2011-01-01

    The correlated noise component of TileCal, the barrel hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider, is studied and an algorithm is used to parametrize and unfold it from the response of the photomultipliers. It is shown that the correlated noise component can be significantly reduced and mostly removed not only for pedestal runs, but also in the presence of physics signals like minimum bias events in 900 GeV collisions and 7 TeV simulated top quark pair production events.

  6. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    International Nuclear Information System (INIS)

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors

  7. ATLAS Tile Calorimeter central barrel assembly and installation.

    CERN Multimedia

    nikolai topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  8. Simulation and validation of the ATLAS Tile Calorimeter response

    CERN Document Server

    Karpov, S N; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems.

  9. Calorimeter energy calibration using the energy conservation law

    Indian Academy of Sciences (India)

    Vasily L Morgunov

    2007-12-01

    A new calorimeter energy calibration method was developed for the proposed ILC detectors. The method uses the center-of-mass energy of the accelerator as the reference. It has been shown that using the energy conservation law it is possible to make ECAL and HCAL cross calibration to reach a good energy resolution for the simple calorimeter energy sum.

  10. Parametric study of the energy deposition inside the calorimeter measuring the nuclear heating in Material Testing Reactors

    Science.gov (United States)

    Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.

    2015-11-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material and two calorimetric cells. Then these measurements are used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present simulations with MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) to evaluate the nuclear heating inside the calorimeter during irradiation campaigns of the CARMEN-1P mock-up inside OSIRIS reactor periphery (MTR based on Saclay, France). The whole complete geometry of the sensor has been considered. The calculation method corresponds to a calculation in two steps. Consequently, we used as an input source in the model, the neutron and photon spectra calculated in various experimental locations tested during the irradiation campaign (H9, H10, H11, D9). After a description of the differential calorimeter sensor, the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements is introduced by two quantities: KERMA and energy deposition rate per mass unit. The Charged Particle Equilibrium (CPE) inside the calorimeter elements is studied. The contribution of prompt gamma and neutron is determined. A comparison between this total nuclear heating calculation and the experimental results in a graphite sample will be made. Then parametric studies performed on the influence of the various calorimeter components on the nuclear heating are presented and discussed. The studies of the influence of the nature of materials, the sensor jacket, the source type and the comparison of the results obtained for the two calorimetric cells leads to some proposals for the sensor improvement.

  11. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; BarreiroGuimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal-Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans-Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  12. Development of a forward calorimeter system for the STAR experiment

    International Nuclear Information System (INIS)

    We present results of an R and D program to develop a forward calorimeter system (FCS) for the STAR experiment at the Relativistic Heavy Ion Collider at BNL. The FCS is a very compact, compensated, finely granulated, high resolution calorimeter system being developed for p+p and p+A program at RHIC. The FCS prototype consists of both electromagnetic and hadron calorimeters. The electromagnetic portion of the detector is constructed with W powder and scintillation fibers. The hadronic calorimeter is a traditional Pb/Sc-plate sandwich design. Both calorimeters were readout with Hamamatsu MPPCs. A full- scale prototype of the FCS was tested with a beam at FNAL in March 2014. We present details of the design, construction technique and performance of the FCS prototype during the test run at FNAL

  13. Study and optimization of the performances of the CMS electromagnetic calorimeter for the physics at LHC

    International Nuclear Information System (INIS)

    The CMS experiment (Compact Muon Solenoid) is one of the two multi-purpose experiments of the proton-proton collider LHC (Large Hadron Collider). One of the main goals of CMS is the search for the Higgs boson. The collaboration has chosen an electromagnetic calorimeter made of about 75000 scintillating lead tungstate crystals PbWO4, at the same time fast, radiation hard, and extremely precise, especially in the energy range for the Higgs boson search, in the channel where it decays in 2 photons. The five first chapters of this thesis present the LHC, the CMS detector and notably the electromagnetic calorimeter (ECAL). The sixth chapter presents a test beam analysis realized in 2004 at CERN with an electron beam of different energies (20-250 GeV) incident on a part (1/36) of the calorimeter barrel called super-module. A study of the energy measurement variation within 9 (3*3) and 25 (5*5) crystals matrices as function of the impact position of the initial electron was done to infer a correction method of the energy measured as function of different parameters. This method has improved very significantly the energy resolution of the calorimeter in the test beam configuration. The last chapter of this thesis presents an application of this correction method for the electrons and photons in the full simulation chain of CMS. The energy reconstruction of photons and electrons is more complicated compared to the test beam case, because of an important amount of matter in front of the calorimeter and of the strong magnetic field in the central part of the CMS detector. The photons have a non negligible probability to convert into an electron-positron pair before the calorimeter, while the electrons (and positrons), whose trajectory is bent in the transverse plan, lose energy in the matter and can emit a random number of Bremsstrahlung photons. A reconstruction algorithm of the electrons and photons energy has been developed to take into account this issue and to apply the

  14. Investigation of interactions of high energy muons using the electromagnetic calorimeter 'WILLI'

    International Nuclear Information System (INIS)

    Prompted by a number of recent large-scale experiments, approaching astrophysical questions, there is a current interest in the spectroscopy of high energy muons originating from the interactions of cosmic rays particles in the Earth atmosphere. They potentially provide signatures about some characteristics of Ultra High Energy interactions and of the nature of the primary particle. In order to study the feasibility and the actual problems of small and less expensive calorimeter type set-ups, a prototype of an electromagnetic calorimeter (WILLI) has been built up in NIPNE-HH Bucharest. The detector is made up by alternating 20 lead absorber plates with scintillators, the latter viewed by photomultipliers placed in opposite corners to maximize light collection and minimized the position dependence of the signal. High energy muons can be generated by electromagnetic interaction secondary particles, which initiate electromagnetic cascades. The longitudinal profile of such showers will be sampled by the number and energies of the secondary particles. With the Maximum Likelihood Method, one can estimate the energy of the muon. Moreover, the primary information can serve as input for non-parametric statistical methods (Bayes classification or Neural Networks). Using Monte-Carlo simulations the incoming muons can be classified. This study is related to the KASCADE experiment as possible extension of the detection capabilities. A more recent experimental study aimed at muons of lower energy, 1 GeV and less, which stop in the calorimeter and then decay. Because of the nuclear capture of stopped negative muons and the subsequent decrease in the mean life time, one can obtain for the ratio between positive and negative muons in the cosmic flux. This ratio shows an excess in positive muons. The muon charge ratio may serve as a test quantity of hadronic interaction models. At lower muon energies the muon charge ratio can be useful for the interpretation of neutrino detection

  15. Transportable calorimeter measurements of highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, C.; Bracken, D.S.; Staples, P.; Carrillo, L.

    1997-11-01

    A sensitive calorimeter has been combined with a small temperature-controlled water bath to compose a transportable system that is capable of measuring multikilogram quantities of highly enriched uranium (HEU). The sample chamber size, 5 in. in diameter by 10 in. high, is large enough to hold sufficient HEU metal or high-grade scrap to provide a measurable thermal signal. Calorimetric measurements performed on well-characterized material indicate that the thermal power generated by 93% {sup 235}U samples with 1.0% {sup 234}U can be measured with a precision of about 1% (1 sigma) for 4-kg samples. The transportable system consists of a twin-bridge calorimeter installed inside a 55-gal. stainless steel drum filled with water with heating and cooling supplied by a removable thermoelectric module attached to the side. Isotopic measurements using high-resolution gamma-ray measurements of the HEU samples and analysis with the FRAM code were used to determine the isotopic ratios and specific power of the samples. This information was used to transform the measured thermal power into grams of HEU. Because no physical standards are required, this system could be used for the verification of plutonium, {sup 238}Pu heat sources, or large quantities of metal or other high-grade matrix forms of HEU.

  16. Progress on the Level-1 Calorimeter Trigger

    CERN Multimedia

    Eric Eisenhandler

    The Level-1 Calorimeter Trigger (L1Calo) has recently passed a number of major hurdles. The various electronic modules that make up the trigger are either in full production or are about to be, and preparations in the ATLAS pit are well advanced. L1Calo has three main subsystems. The PreProcessor converts analogue calorimeter signals to digital, associates the rather broad trigger pulses with the correct proton-proton bunch crossing, and does a final calibration in transverse energy before sending digital data streams to the two algorithmic trigger processors. The Cluster Processor identifies and counts electrons, photons and taus, and the Jet/Energy-sum Processor looks for jets and also sums missing and total transverse energy. Readout drivers allow the performance of the trigger to be monitored online and offline, and also send region-of-interest information to the Level-2 Trigger. The PreProcessor (Heidelberg) is the L1Calo subsystem with the largest number of electronic modules (124), and most of its fu...

  17. The ZEUS calorimeter first level trigger

    International Nuclear Information System (INIS)

    The design of the ZEUS Calorimeter First Level Trigger (CFLT) is presented. The CFLT utilizes a pipelined architecture to provide trigger data for a global first leel trigger decision 5 μsec after each beam crossing, occurring every 96 nsec. The charges from 13K phototubes are summed into 1792 trigger tower pulseheights which are digitized by flash ADC's. The digital values are linearized, stored and used for sums and pattern tests. Summary data is forwarded to the Global First Level Trigger for each crossing 2 μsec after the crossing occurred. The CFLT determines the total energy, the total transverse energy, the missing energy, and the energy and number of isolated electrons and muons. It also provides information on the electromagnetic and hadronic energy deposited in various regions of the calorimeter. The CFLT has kept the experimental trigger rate below ∼200 Hz at the highest luminosity experienced at HERA. Performance studies suggest that the CFLT will keep the trigger rate below 1 kHZ against a rate of proton-beam gas interactions on the order of the 100 kHz expected at design luminosity. (orig.)

  18. The ALICE electromagnetic calorimeter high level triggers

    International Nuclear Information System (INIS)

    The ALICE (A Large Ion Collider Experiment) detector yields a huge sample of data from different sub-detectors. On-line data processing is applied to select and reduce the volume of the stored data. ALICE applies a multi-level hardware trigger scheme where fast detectors are used to feed a three-level (L0, L1, and L2) deep chain. The High-Level Trigger (HLT) is a fourth filtering stage sitting logically between the L2 trigger and the data acquisition event building. The EMCal detector comprises a large area electromagnetic calorimeter that extends the momentum measurement of photons and neutral mesons up to pT = 250 GeV/c, which improves the ALICE capability to perform jet reconstruction with measurement of the neutral energy component of jets. An online reconstruction and trigger chain has been developed within the HLT framework to sharpen the EMCal hardware triggers, by combining the central barrel tracking information with the shower reconstruction (clusters) in the calorimeter. In the present report the status and the functionality of the software components developed for the EMCal HLT online reconstruction and trigger chain will be discussed, as well as preliminary results from their commissioning performed during the 2011 LHC running period.

  19. Level-1 Calorimeter Trigger starts firing

    CERN Multimedia

    Stephen Hillier

    2007-01-01

    L1Calo is one of the major components of ATLAS First Level trigger, along with the Muon Trigger and Central Trigger Processor. It forms all of the first-level calorimeter-based triggers, including electron, jet, tau and missing ET. The final system consists of over 250 custom designed 9U VME boards, most containing a dense array of FPGAs or ASICs. It is subdivided into a PreProcessor, which digitises the incoming trigger signals from the Liquid Argon and Tile calorimeters, and two separate processor systems, which perform the physics algorithms. All of these are highly flexible, allowing the possibility to adapt to beam conditions and luminosity. All parts of the system are read out through Read-Out Drivers, which provide monitoring data and Region of Interest (RoI) information for the Level-2 trigger. Production of the modules is now essentially complete, and enough modules exist to populate the full scale system in USA15. Installation is proceeding rapidly - approximately 90% of the final modules are insta...

  20. COTS Analog Prototype for LHCb's Calorimeter Upgrade

    CERN Document Server

    Abellan Beteta, Carlos; Herms i Berenguer, Atilà

    The objective of this thesis is to present a proposal for the analogue signal processing chain needed for the LHCb calorimeter upgrade improving the design used originally. The design contains several novelties: the system was designed with low noise in mind from the beginning, it is made to have good immunity to interferences stressing the fact that the board will be shared with large digital circuits, differential operational amplifiers are used in a non-standard way as a mean to obtain opposite polarity signals for the signal treatment and a way to increase the available signal in the front end electronics is proposed. The thesis starts with a brief introduction to the detector and its environment. This is followed by an explanation of the use of shapers in high energy physics detectors and the constraints that the shaper must address in the LHCb calorimeter. This leads to a chapter where the circuit design is explained starting from the analysis of the original circuit and its flaws. Once the original cir...

  1. Conceptual design and performance simulations of super-compact electromagnetic calorimeter

    Directory of Open Access Journals (Sweden)

    Skoda Libor

    2013-11-01

    Full Text Available Measurements of particle production at forward rapidities in high energy p-p, p-A and A-A collisions provide access to physics processes at very low Bjorken x. These measurements will allow to study the gluon saturation scale and improve our knowledge of parton distribution in nuclei. Specific requirements must be fulfilled for a calorimeter to successfully operate in high-multiplicity forward region within often stringent space limits. Here we present a study of a conceptual design of super-compact electromagnetic calorimeter being developed at Czech Technical University in Prague. The design of the sampling calorimeter is based on a sandwich structure of thin tungsten and scintillator layers oriented in parallel to the beam. Used optical readout of individual scintillator pads guaranties the required high radiation hardness of the detector. We present simulation of the expected performance of the optical pad readout together with overall detector performance. It is aimed for the detector to allow measuring of high energy photons (1

  2. Status of the Atlas Liquid Argon Calorimeter and its Performance after two years of LHC operation

    CERN Document Server

    AperioBella, L; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo-rapidity region up to 3.2, as well as for hadronic calorimetry. The most forward part (pseudo-rapidity region 3.1-4.9) contains a electromagnetic section and two hadronic wheels. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response without any gap. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at 87 K. After installation in 2004-2006, the calorimeters were extensively commissioned over t...

  3. Performance of the ATLAS Tile Calorimeter in pp collisions at the LHC

    Science.gov (United States)

    Fiascaris, Maria; ATLAS Collaboration

    2015-02-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. This detector is instrumented for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off- detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale is transferred to the rest of the detector via the response to radioactive sources. The calibrated scale is validated in situ with muons and single hadrons whereas the timing performance is checked with muons and jets. The data quality procedures used during the LHC data-taking and the evolution of the detector status during the LHC Run 1 are presented. The energy and the time reconstruction performance of the digitized signals is summarized and the calorimeter response to hadrons is investigated with collision data.

  4. Performance of the ATLAS Calorimeters in LHC Run-1 and Run-2

    CERN Document Server

    Burghgrave, Blake; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at the Large Hadron Collider (LHC) is equipped with electromagnetic and hadronic liquid-argon (LAr) calorimeters and a hadronic scintillator-steel sampling calorimeter (TileCal) for measuring energy and direction of final state particles in the pseudorapidity range |η|<4.9. The calibration and performance of the calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb−1 of data have been collected at the center-of-mass energies of 7 and 8~TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately 3.9~fb−1 of data at a center-of-mass energy of 13~TeV recorded in this year. Results on the calorimeter operation, monitoring and data quality, as well as their performance will be presented, including the calibration and stability of the electromagnetic scale, response uniformit...

  5. Flash ADC readout of the GlueX forward electromagnetic calorimeter

    Science.gov (United States)

    Kornicer, Mihajlo

    2008-10-01

    The GlueX experiment at Jefferson Lab will use a 9 GeV high-rate (10^7 -10^8/s) photon beam, incident on a liquid hydrogen target, to search for hybrid-meson production in the mass range of 1.5-2.5 GeV/c^2. Abundant photon production from neutral meson decays is expected in the decay chains of hybrid mesons, which will result in several photons in the forward region. The forward electromagnetic calorimeter (FCAL) of the GlueX detector is designed to reconstruct final state photons using an array of 2800 lead-glass blocks. The FCAL will employ flash analog-to-digital converter (FADC) technology to measure both deposited energy and photon arrival time using pulses from FEU-84-3 photomultiplier tubes. A real-time sum of the total calorimeter energy will be used as an input to the trigger. Timing information from individual crystals will be used to suppress the expected high-level of electromagnetic background from the photon beam and forward-going charged particles. We present the performance characteristics of the calorimeter readout based on simulation and data taken with a prototype 12-bit, 250 MHz flash ADC.

  6. The ATLAS liquid argon calorimeter: upgrade plans for the HL-LHC

    CERN Document Server

    Novgorodova, O; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, plans for a High Luminosity LHC (HL-LHC) are already being developed for operation of the collider and associated detectors at luminosities of up to (5-7)×1034 cm-2s-1, with the goal of accumulating an integrated luminosity of 3000 fb-1. The proposed instantaneous and integrated luminosities are both well beyond the values for which the detectors were designed. The electromagnetic and hadronic calorimeters will be able to tolerate the increased particle flux, but the performance of the forward calorimeter (FCal) will be affected. Two solutions for this are un...

  7. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    International Nuclear Information System (INIS)

    The ATLAS experiment is designed to study the proton-proton (pp) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, as well as for hadronic calorimetry in the range 1.5 < |η| < 4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5 K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and timing boards. In the first three years of LHC operation, approximately 27 fb−1 of pp collision data were collected at centre-of-mass energies of 7-8 TeV. Throughout this period, the calorimeter consistently operated with performances very close to specifications, with high data-taking efficiency. This is in large part due to a sophisticated data monitoring procedure designed to quickly identify issues that would degrade the detector performance, to ensure that only the best quality data are used for physics analysis. After a description of the detector design, main characteristics and operation principles, this paper details the data quality assessment procedures developed during the 2011 and 2012 LHC data-taking periods, when more than 98% of the luminosity recorded by ATLAS had high quality LAr calorimeter data suitable for physics analysis

  8. Development of a low-energy calorimeter with superconducting phase-transition thermometer

    International Nuclear Information System (INIS)

    Recently a fundamentaly novel insight into the performance of cryogenic calorimeters with a dielectric absorber and a superconducting phase transition thermometer has been obtained. This has led to the development of a model capable of representing fairly well the experimental data thus providing a basis for further detector design studies. The model offers an interesting approach to detector design with larger absorber masses, which is regarded indispensable for the search of dark matter. Tests performed with detectors developed for this purpose achieved a high energy resolution and indicate that such detectors may be developed soon to a state suitable for experimenta l research into dark matter. Three calorimeters have been examined. Calorimeter 1 (18-g silicon crystal and an iridium thermometer) delivered the first, decisive information for understanding the pulse form also observed in the following two instruments. The slow pulse element could be identified to be a 'true' thermal component, while the fast component was interpreted to be an 'overshoot' of the thermometer temperature over the absorber temperature. Calorimeter 2 consisted of an 18-g silicon crystal and an irigium-gold thermometer. Its broad phase transition allowed it to be operated between 15 and 100 mK. The change of pulse form observed across this range revealed the role of the electron-phonon coupling in the thermometer and thus the decisive information indicating the goal of further development. The fast pulse element was found to be due to the absorption of high-frequency, non-thermal phonons in the thermometer film originating from particle interaction. A heating experiment confirmed this explanation

  9. METROLOGICAL PERFORMANCES OF BOMB CALORIMETERS AT REAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Yu. V. Maksimuk

    2016-01-01

    Full Text Available The high-usage measurement equipment for heat of combustion of organic fuels are bomb isoperibol calorimeters with a water thermostat. The stability of work of calorimeters at real conditions is important for maintenance of reliability of measurement results. The article purpose – the analysis of stability for parameters of calorimeters to environment changes. In this work influence room temperature (Тк and heat exchange conditions on metrological characteristics of two models of calorimeters is considered with different degree of thermal protection: V-08МА and BIC 100. For calorimeters V-08МА the increase in a effective heat capacity (W on 0,1 % by growth of Tк on everyone 5 °С is established. To use value W in all interval laboratory temperatures Tк = 14–28 °С it is necessary to correct W on 2,8 J/°C on everyone 1 °С changes of Tк. Updating W is required, if the correction exceeds error in determination W. For calorimeter BIC 100 it is not revealed dependences W from Tк. BIC 100 have constant-temperature cap, high stability a temperature in thermostat and stabilized heat exchange. It is established that an standard deviation of cooling constant for all calorimeters in direct proportional to standard deviation W. 

  10. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was ∼70pe/GeV, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of σ/E=52.9%/√(E)+5.7% was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter.

  11. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  12. Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Anderson, E Walter; Antchev, Georgy; Arcidy, M; Ayan, S; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baden, Drew; Bakirci, Mustafa Numan; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barnes, Virgil E; Bawa, Harinder Singh; Baiatian, G; Bencze, Gyorgy; Beri, Suman Bala; Berntzon, Lisa; Bhatnagar, Vipin; Bhatti, Anwar; Bodek, Arie; Bose, Suvadeep; Bose, Tulika; Budd, Howard; Burchesky, Kyle; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Cerci, Salim; Chendvankar, Sanjay; Chung, Yeon Sei; Clarida, Warren; Cremaldi, Lucien Marcus; Cushman, Priscilla; Damgov, Jordan; De Barbaro, Pawel; Debbins, Paul; Deliomeroglu, Mehmet; Demianov, A; de Visser, Theo; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Dimitrov, Lubomir; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Efthymiopoulos, I; Elias, John E; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Fenyvesi, Andras; Fisher, Wade Cameron; Freeman, Jim; Ganguli, Som N; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Genchev, Vladimir; Gleyzer, Sergei V; Golutvin, Igor; Goncharov, Petr; Grassi, Tullio; Green, Dan; Gribushin, Andrey; Grinev, B; Gurtu, Atul; Murat Güler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Halyo, Valerie; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heering, Arjan Hendrix; Heister, Arno; Hunt, Adam; Ilyina, N; Ingram, D; Isiksal, Engin; Jarvis, Chad; Jeong, Chiyoung; Johnson, Kurtis F; Jones, John; Kaftanov, Vitali; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kodolova, Olga; Kohli, Jatinder Mohan; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krinitsyn, Alexander; Krishnaswamy, Marthi Ramaswamy; Krokhotin, Andrey; Kryshkin, V; Kuleshov, Sergey; Kumar, Arun; Kunori, Shuichi; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lee, Sang Joon; Levchuk, Leonid; Linn, Stephan; Litvintsev, Dmitri; Lobolo, L; Los, Serguei; Lubinsky, V; Lukanin, Vladimir; Ma, Yousi; Machado, Emanuel; Maity, Manas; Majumder, Gobinda; Mans, Jeremy; Marlow, Daniel; Markowitz, Pete; Martínez, German; Mazumdar, Kajari; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Miller, Michael; Möller, A; Mohammadi-Najafabadi, M; Moissenz, P; Mondal, Naba Kumar; Mossolov, Vladimir; Nagaraj, P; Narasimham, Vemuri Syamala; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Onengüt, G; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paktinat, S; Pal, Andras; Patil, Mandakini Ravindra; Penzo, Aldo; Petrushanko, Sergey; Petrosian, A; Pikalov, Vladimir; Piperov, Stefan; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Qian, Weiming; Ralich, Robert; Reddy, L; Reidy, Jim; Rogalev, Evgueni; Roh, Youn; Rohlf, James; Ronzhin, Anatoly; Ruchti, Randy; Ryazanov, Anton; Safronov, Grigory; Sanders, David A; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schmidt, Ianos; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Singh, B; Singh, Jas Bir; Sirunyan, Albert M; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shumeiko, Nikolai; Smirnov, Vitaly; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Stefanovich, R; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suzuki, Ichiro; Talov, Vladimir; Teplov, Konstantin; Thomas, Ray; Tonwar, Suresh C; Topakli, Huseyin; Tully, Christopher; Turchanovich, L; Ulyanov, A; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Vergili, Mehmet; Verma, Piyush; Vesztergombi, Gyorgy; Vidal, Richard; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Wang, Lei; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Whitmore, Juliana; Wu, Shouxiang; Yazgan, Efe; Yetkin, Taylan; Zálán, Peter; Zarubin, Anatoli; Zeyrek, Mehmet

    2008-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS.

  13. Construction and Commissioning of the CALICE Analog Hadron Calorimeter Prototype

    CERN Document Server

    Adloff, C; Repond, J; Brandt, A; Brown, H; De, K; Medina, C; Smith, J; Li, J; Sosebee, M; White, A; Yu, J; Buanes, T; Eigen, G; Mikami, Y; Miller, O; Watson, N K; Wilson, J A; Goto, T; Mavromanolakis, G; Thomson, M A; Ward, D R; Yan, W; Benchekroun, D; Hoummada, A; Khoulaki, Y; Oreglia, M; Benyamna, M; Cârloganu, C; Gay, P; Ha, J; Blazey, G C; Chakraborty, D; Dyshkant, A; Francis, K; Hedin, D; Lima, G; Zutshi, V; Babkin, V A; Bazylev, S N; Fedotov, Yu I; Slepnev, V M; Tiapkin, I A; Volgin, S V; Hostachy, J Y; Morin, L; D'Ascenzo, N; Cornett, U; David, D; Fabbri, R; Falley, G; Feege, N; Gadow, K; Garutti, E; Göttlicher, P; Jung, T; Karstensen, S; Korbel, V; Lucaci-Timoce, A I; Lutz, B; Meyer, N; Morgunov, V; Reinecke, M; Schätzel, S; Schmidt, S; Sefkow, F; Smirnov, P; Vargas-Trevino, A; Wattimena, N; Wendt, O; Groll, M; Heuer, R D; Richter, S; Samson, J; Kaplan, A; Schultz-Coulon, H Ch; Shen, W; Tadday, A; Bilki, B; Norbeck, E; Onel, Y; Kim, E J; Kim, G; Kim, D W; Lee, K; Lee, S C; Kawagoe, K; Tamura, Y; Ballin, J A; Dauncey, P D; Magnan, A M; Yilmaz, H; Zorba, O; Bartsch, V; Postranecky, M; Warren, M; Wing, M; Faucci Giannelli, M; Green, M G; Salvatore, F; Kieffer, R; Laktineh, I; Fouz, M C; Bailey, D S; Barlow, R J; Thompson, R J; Batouritski, M; Dvornikov, O; Shulhevich, Yu; Shumeiko, N; Solin, A; Starovoitov, P; Tchekhovski, V; Terletski, A; Bobchenko, B; Chadeeva, M; Danilov, M; Markin, O; Mizuk, R; Morgunov, V; Novikov, E; Rusinov, V; Tarkovsky, E; Andreev, V; Kirikova, N; Komar, A; Kozlov, V; Smirnov, P; Soloviev, Y; Terkulov, A; Buzhan, P; Dolgoshein, B; Ilyin, A; Kantserov, V; Kaplin, V; Karakash, A; Popova, E; Smirnov, S; Baranova, N; Boos, E; Gladilin, L; Karmanov, D; Korolev, M; Merkin, M; Savin, A; Voronin, A; Topkar, A; Freyk, A; Kiesling, C; Lu, S; Prothmann, K; Seidel, K; Simon, F; Soldner, C; Weuste, L; Bouquet, B; Callier, S; Cornebise, P; Dulucq, F; Fleury, J; Li, H; Martin-Chassard, G; Richard, F; de la Taille, Ch; Poeschl, R; Raux, L; Ruan, M; Seguin-Moreau, N; Wicek, F; Anduze, M; Boudry, V; Brient, J C; Gaycken, G; Cornat, R; Jeans, D; Mora de Freitas, P; Musat, G; Reinhard, M; Rougé, A; Vanel, J Ch; Videau, H; Park, K H; Zacek, J; Cvach, J; Gallus, P; Havranek, M; Janata, M; Kvasnicka, J; Marcisovsky, M; Polak, I; Popule, J; Tomasek, L; Tomasek, M; Ruzicka, P; Sicho, P; Smolik, J; Vrba, V; Zalesak, J; Arestov, Yu; Ammosov, V; Chuiko, B; Gapienko, V; Gilitski, Y; Koreshev, V; Semak, A; Sviridov, Yu; Zaets, V; Belhorma, B; Belmir, M; Baird, A; Halsall, R N; Nam, S W; Park, I H; Yang, J; Chai, Jong-Seo; Kim, Jong-Tae; Kim, Geun-Bum; Kim, Y; Kang, J; Kwon, Y J; Kim, Ilgoo; Lee, Taeyun; Park, Jaehong; Sung, Jinho; Itoh, S; Kotera, K; Nishiyama, M; Takeshita, T; Weber, S; Zeitnitz, C

    2010-01-01

    An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab.

  14. A LYSO Calorimeter for the SuperB Factory

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi, Claudia; Germani, Stefano; Manoni, Elisa; Rossi, Alessandro; Bizzarri, Marco [Universita di Perugia e INFN Sezione di Perugia Via A. Pascoli, 06123 Perugia (Italy); Bocci, Valerio; Chiodi, Giacomo; Recchia, Luigi [Universita di Roma ' La Sapienza' e INFN Sezione di Roma1 P.zzle Aldo Moro 2, 00185 Roma (Italy); Lubrano, Pasquale; Lebeau, Michel; Papi, Andrea, E-mail: claudia.cecchi@pg.infn.it [Istituto Nazionale di Fisica Nucleare, INFN Sezione di Perugia, Via A. Pascoli, 06123 Perugia (Italy)

    2011-04-01

    The SuperB project is an asymmetric e{sup +}e{sup -} accelerator of 10{sup 36} cm{sup -2}s{sup -1} luminosity, capable of collecting a data sample of 50-75 ab{sup -1} in five years of running. The SuperB electromagnetic calorimeter (EMC), that will be described in this paper, provides energy and direction measurement of photons and electrons, and is used for identification of electrons versus other charged particles. In particular we will present its design, geometry study and related simulations, as well as R and D on LYSO crystals, a project for the mechanical structure and development on readout and electronics. A matrix of 6 crystals has been tested this year June 2010 at the Beam Test Facility of Frascati (BTF) at energies between 200 MeV and 500 MeV, and a beam test with the complete prototype of 25 crystals is foreseen at CERN in October 2010 to cover the energy range between 500 MeV and 7 GeV.

  15. Construction and commissioning of the CALICE analog hadron calorimeter prototype

    International Nuclear Information System (INIS)

    An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highlysegmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/ monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab. (orig.)

  16. Qualification procedure of the electromagnetic calorimeter of the ATLAS detector

    International Nuclear Information System (INIS)

    LHC is the next collider based at CERN in Europe. The purpose of this machine is the Higgs boson and SUSY particles search. The detectors must have an excellent electromagnetic calorimetry to measure electron and photon energy. To maximize the signal to noise ratio for a low mass Higgs, it is fundamental to obtain a constant term as small as possible. LAPP is participating in the construction of the liquid argon electromagnetic calorimeter of the ATLAS collaboration. This technology is well adapted to the LHC experimental conditions. A systematic procedure to qualify the modules of this detector is an essential step to guarantee a 0,7% constant term, which is the collaboration objective. The procedure detailed in this thesis consists of quality monitoring during mechanical assembly and of a set of electrical tests such as electrical continuity, cell and cross-talk capacitance measurement, and high-voltage behaviour. For the whole test, it has been necessary to develop dedicated electronic cards, to develop measurement methods, and the whole operation software. Making the procedure automatic will guarantee the quality of each module during assembly, cabling, and test in liquid argon. (author)

  17. Digital signal processing in the PANDA Electromagnetic Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kavatsyuk, Myroslav; Guliyev, Elmaddin; Tambave, Ganesh; Loehner, Herbert [KVI, University of Groningen (Netherlands); Collaboration: PANDA-Collaboration

    2011-07-01

    The PANDA collaboration at FAIR will employ antiproton annihilations to investigate yet undiscovered charm-meson states and glueballs. The aim is to study QCD phenomena in the non-perturbative regime and to unravel the origin of hadronic masses. A multi-purpose detector for tracking, calorimetry and particle identification is presently being developed to run at high luminosities providing up to 2.10{sup 7} interactions/s. One of the crucial components of the PANDA spectrometer is the EMC, composed of cooled PbWO{sub 4} crystals coupled to the Large Area Avalanche Photodiodes or Vacuum Photo-Triodes/Tetrodes. The photo-sensor signals are continuously digitized by the Sampling ADC (SADC) and analyzed on-line in the FPGA of the digitizer module to detect hits and extract energy and time information. Measurements with a prototype calorimeter were performed at the tagged-photon facility at MAMI-C, Mainz. The results demonstrate the excellent performance of the SADC readout, with energy resolutions better than achieved by analogue electronics and a sub-nanosecond time resolution. A fast on-line pile-up recovery algorithm has been developed. The layout of the complete digital read-out chain is presented, and results from applications in test experiments with the PANDA-EMC prototypes are reported.

  18. Microfabricated magnetic calorimeter with meander shaped pickup coil

    International Nuclear Information System (INIS)

    Metallic magnetic calorimeters (MMC) combine the high spectral resolution of crystal spectrometer and the high quantum efficiency of solid state spectrometer. Recently we demonstrated an energy resolution of 2.7 eV for 6 keV photons. This makes MMCs a promising and powerful tool for many applications where photons or energetic massive particles have to be detected. However, in order to fulfill all requirements of these applications and to allow to reach the maximum resolving power a consequent microfabrication of the MMC detectors is needed. We present our first fully microfabricated MMC which consists of an absorber, a 3 μm thick sputter deposited paramagnetic AuEr temperature sensor and a meander shaped niobium thin film pickup coil. Deposition of energy in the absorber causes a rise in temperature and results in a change of magnetisation of the paramagnetic sensor which is measured by a low noise high bandwidth dc-SQUID. By using a new optimized persistent current switch a large field current can be frozen in the pickup coil which produces an inhomogeneous magnetic field within the volume of the sensor. The sputter deposited AuEr films we report on are working well and show the properties of bulk material. The performance of our MMCs with such films agree well with the numerically simulated behavior. (orig.)

  19. Construction and commissioning of the CALICA analog hadron calorimeter prototype

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Karyotakis, Y. [Universite de Savoie, Annecy-le-Vieux (France). Laboratoire d' Annecy-le-Vieux de Physique des Particules, CNRS/IN2P3; Repond, J. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2010-03-15

    An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highlysegmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/ monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab. (orig.)

  20. Digital signal processing in the PANDA Electromagnetic Calorimeter

    International Nuclear Information System (INIS)

    The PANDA collaboration at FAIR will employ antiproton annihilations to investigate yet undiscovered charm-meson states and glueballs. The aim is to study QCD phenomena in the non-perturbative regime and to unravel the origin of hadronic masses. A multi-purpose detector for tracking, calorimetry and particle identification is presently being developed to run at high luminosities providing up to 2.107 interactions/s. One of the crucial components of the PANDA spectrometer is the EMC, composed of cooled PbWO4 crystals coupled to the Large Area Avalanche Photodiodes or Vacuum Photo-Triodes/Tetrodes. The photo-sensor signals are continuously digitized by the Sampling ADC (SADC) and analyzed on-line in the FPGA of the digitizer module to detect hits and extract energy and time information. Measurements with a prototype calorimeter were performed at the tagged-photon facility at MAMI-C, Mainz. The results demonstrate the excellent performance of the SADC readout, with energy resolutions better than achieved by analogue electronics and a sub-nanosecond time resolution. A fast on-line pile-up recovery algorithm has been developed. The layout of the complete digital read-out chain is presented, and results from applications in test experiments with the PANDA-EMC prototypes are reported.

  1. Development of Particle Flow Calorimetry

    OpenAIRE

    Repond, Jose

    2011-01-01

    This talk reviews the development of imaging calorimeters for the purpose of applying Particle Flow Algorithms (PFAs) to the measurement of hadronic jets at a future lepton collider. After a short introduction, the current status of PFA developments is presented, followed by a review of the major developments in electromagnetic and hadronic calorimetry.

  2. Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton1, D; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Costantini, Silvia; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Debraine, Alain; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl1, J; Gras1, P; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel-de-Montechenault, G; Hansen, Magnus; Heath, Helen F; AHill, J; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, Akli; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman26, H B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Poilleux, Patrick; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; ATriantis, F; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2006-01-01

    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals.

  3. D0 Silicon Upgrade: End Calorimeter Transfer Bridge Modification

    International Nuclear Information System (INIS)

    During the assembly of major components into the D0 Detector, a transfer bridge was required to move the North-End Calorimeter from the clean room,over the cable bridge and onto the north sidewalk of the assembly hall. This experiment is now at the beginning stages of the next phase, namely the upgrade of this Detector for future physics research. A major piece of this upgrade is the installation of a solenoid magnet into the Central Calorimeter. In order to accomplish this, the South End Calorimeter has to be removed from the detector and the North End Calorimeter must be moved an additional 20-inch from its nominal open position (total 60-inch movement). The South End Calorimeter will be removed from the detector using the equipment designed for its installation. The calorimeter will be staged on the south sidewalk during the installation of the solenoid magnet and the central tracking systems. The North End Calorimeter is moved 60-inch to give more space between calorimeters during magnet, tracker and cable installation work. This movement will allow the calorimeter to remain coupled to the cryo system. However, this movement requires an extension be added to the center beam. This extension will support the rear wheels of the calorimeter and in the case of the end calorimeters, carry the majority of the weight. The extension is to be a modification of the transfer bridge. This modification, basically has T1 steel blocks added to one end and legs to the sidewalk supports at the other. The T1 steel blocks are notched to fit into the center beam porches and are welded to bridge rails. This design is the same as that for the installation bridge (3740.312-ME-273456), including the welds and weld procedures which are identical in both cases. Since load testing is impractical, the critical welds will be non-destructive tested by ultrasonic means. The laboratory, through the FESS Department, has a contract with M.Q.S. Inspection Inc. The results of this testing will be

  4. EURECA - A European-Japanese micro-calorimeter array

    OpenAIRE

    Korte, Piet A. de; Anguita, José Virgilio; Barcons, Xavier; Briones Fernández-Pola, Fernando; Camón, Agustín; Carrera, Francisco J.; Ceballos, María Teresa; Fàbrega, Lourdes; González-Arrabal, Raquel; Parra-Borderías, María; Sesé Monclús, Javier

    2008-01-01

    The EURECA (EURopean-JapanEse Calorimeter Array) project aims to demonstrate the science performance and technological readiness of an imaging X-ray spectrometer based on a micro-calorimeter array for application in future X-ray astronomy missions, like Constellation-X and XEUS. The prototype instrument consists of a 5 x 5 pixel array of TES-based micro-calorimeters read out by by two SQUID-amplifier channels using frequency-domain-multiplexing (FDM). The SQUID-amplifiers are linearized by di...

  5. The Electromagnetic Barrel Calorimeter for the GlueX Experiment

    International Nuclear Information System (INIS)

    The electromagnetic barrel calorimeter is one of the main components of the planned GlueX experiment. It will consist of 48 modules made of consecutive layers of 4 m long lead sheet and fast green scintillator fibers for an overall number of approximately 3000 readout channels with silicon-photomultiplier-based photo-sensors for light collection. The calorimeter is expected to achieve energy and time resolution better than 5% bigsl √(E)+ 2% and 200 ps, respectively. In this contribution we present an overview of the calorimeter design and some preliminary studies of its performance using Monte Carlo simulations and beam test measurements

  6. The Electromagentic Barrel Calorimeter for the GlueX Experiment

    CERN Document Server

    Barbi, M

    2006-01-01

    The electromagnetic barrel calorimeter is one of the main components of the planned GlueX experiment. It will consist of 48 modules made of consecutive layers of 4 m long lead sheet and fast green scintillator fibers for an overall number of approximately 3000 readout channels with silicon photomultiplier-based photo-sensors for light collection. The calorimeter is expected to achieve energy and time resolution better than 5%/sqrt(E)+2% and 200 ps, respectively. In this contribution we present an overview of the calorimeter design and some preliminary studies of its performance using Monte Carlo simulations and beam test measurements.

  7. The ATLAS liquid argon electromagnetic calorimeter construction status

    CERN Document Server

    Jérémie, A

    2004-01-01

    The construction and assembly of the ATLAS liquid argon electromagnetic calorimeter was described. The calorimeter was built with accordion geometry composed of lead absorbers, liquid argon as ionizing medium and highly granular readout electrodes. The calorimeter was composed of the Barrel and the End-cap, both preceded by presampler sectors to ensure complete recovery of the energy resolution. The detection of cabling errors and testing of the whole calibration chain was done by sending a pulse through the calibration circuit with single readout. (Edited abstract) 3 Refs.

  8. Hadron calorimeter module prototype for baryonic matter studies at Nuclotron

    OpenAIRE

    Gavrishchuk, O. P.; Ladygin, V. P.; Petukhov, Yu. P.; Sychkov, S. Ya

    2014-01-01

    The prototype of the hadron calorimeter module consisting of 66 scintillator/lead layers with the 15x15 cm^2 cross section and 5 nuclear interaction lengths has been designed and produced for the zero degree calorimeter of the BM@N experiment. The prototype has been tested with high energy muon beam of the U-70 accelerator at IHEP. The results of the beam test for different types of photo multipliers and light guides are presented. The results of the Monte-Carlo simulation of the calorimeter ...

  9. Development of real-time low energy electron calorimeter

    International Nuclear Information System (INIS)

    A low energy electron beam calorimeter with a thin film window has been fabricated to facilitate a reliable method of dose assessment for electron beam energies down to 200 keV. The system was designed to incorporate a data-logger in order that it could be used on the self-shielded 200 keV facility at MINT. In use, the calorimeter started logging temperature a short time before it passed under the beam and it continued taking data until well after the end of the irradiation. Data could be retrieved at any time after the calorimeter had emerged from the irradiator

  10. Analytical Heat Transfer Modeling of a New Radiation Calorimeter

    CERN Document Server

    Ndong, Elysée Obame; Aitken, Frédéric

    2016-01-01

    This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from -50 {\\deg}C to 150 {\\deg}C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ~1 mW. From these results the calorimeter has been successfully implemented and patented.

  11. The UA1 upgrade calorimeter trigger processor

    International Nuclear Information System (INIS)

    The increased luminosity of the improved CERN Collider and the more subtle signals of second-generation collider physics demand increasingly sophisticated triggering. We have built a new first-level trigger processor designed to use the excellent granularity of the UA1 upgrade calorimeter. This device is entirely digital and handles events in 1.5 μs, thus introducing no deadtime. Its most novel feature is fast two-dimensional electromagnetic cluster-finding with the possibility of demanding an isolated shower of limited penetration. The processor allows multiple combinations of triggers on electromagnetic showers, hadronic jets and energy sums, including a total-energy veto of multiple interactions and a full vector sum of missing transverse energy. This hard-wired processor is about five times more powerful than its predecessor, and makes extensive use of pipelining techniques. It was used extensively in the 1988 and 1989 runs of the CERN Collider. (author)

  12. High resolution X-ray micro calorimeters

    International Nuclear Information System (INIS)

    Recently we have produced X-ray micro calorimeters with resolving powers approaching 2000 at 5.9keV using a spare XRS microcalorimeter array. In these experiments, we attached 400μm square, 8μm thick HgTe absorbers using a variety of attachment methods to an XRS array and tested the detector array at temperatures between 40 and 60mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU-8 polymer tubes. In this scenario we achieved a resolution of 3.2eV FWHM at 5.9keV. Substituting a silicon spacer for the SU-8 tubes also yielded sub-5eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. We discuss these new high resolution results, the various absorber attachment schemes, and planned future improvements

  13. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, Thiago; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner, P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The TileCal hadronic calorimeter provides a muon signal which can be used to assist in muon tagging at the ATLAS level-one trigger. Originally, the muon signal was conceived to be combined with the RPC trigger in order to reduce unforeseen high trigger rates due to cavern background. Nevertheless, the combined trigger cannot significantly deteriorate the muon detection performance at the barrel region. This paper presents preliminary studies concerning the impact in muon identification at the ATLAS level-one trigger, through the use of Monte Carlo simulations with single muons with 40 GeV/c momentum. Further, different trigger scenarios were proposed, together with an approach for matching both TileCal and RPC geometries.

  14. Liquid xenon/krypton scintillation calorimeter

    International Nuclear Information System (INIS)

    A scintillating LXe/LKr electromagnetic calorimeter has been built at the ITEP and tested at the BATES (MIT) accelerator. The detector consists of PMT matrix and 45 light collecting cells made of aluminized 50 microns Mylar partially covered with p-terphenyl as a wavelength-shifter. Each pyramidal cell has (2.1 x 2.1) x 40 x (4.15 x 4.15) cm dimensions and is viewed by FEU-85 glass-window photomultiplier. The detector has been exposed at 106-348 MeV electron beam. The energy resolution σE/E ≅ 5% √ E at 100 - 350 MeV range in LXe, the coordinate resolution τx ≅ 0.7 cm, the time resolution for single cell ≅ 0.6 ns have been obtained. Possible ways to improve energy resolution are discussed. 8 refs., 15 figs

  15. Electromagnetic Calorimeter Calibration with $\\pi^{0}$

    CERN Multimedia

    Puig Navarro, A

    2009-01-01

    Several methods can be used in order to achieve precise calibration of the LHCb Electromagnetic Calorimeter (ECAL) once reasonable cell equalization has been reached. At low transverse energy, the standard calibration procedure is an iterative method based on the fit of the $\\gamma\\gamma$ invariant mass distribution for each cell of the decay $\\pi^{0}\\to\\gamma\\gamma$ with resolved photons. A new technique for generating the combinatorial background of such decays directly from data has been developed. Knowledge of the background could allow an alternative calibration method based on a event by event fit of the same $\\gamma\\gamma$ invariant mass distribution where contributions from groups of cells are considered in a single fit. The background generation procedure and this possible new calibration method are presented in this poster, in addition to an overview of the LHCb Calorimetry system and ECAL calibration techniques.

  16. Calorimeter Simulation with Hadrons in CMS

    Energy Technology Data Exchange (ETDEWEB)

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-11-01

    CMS is using Geant4 to simulate the detector setup for the forthcoming data from the LHC. Validation of physics processes inside Geant4 is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions using the same framework that is used for the entire CMS detector. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c. The tuned Monte Carlo predictions match many of these measurements within systematic uncertainties.

  17. Development of Shashlyk Calorimeter for KOPIO

    CERN Document Server

    Atoian, G S; Karavichev, O V; Karavitcheva, T L; Poblaguev, A A; Zeller, M E

    2003-01-01

    A Shashlyk calorimeter prototype for the KOPIO experiment has been constructed and experimentally tested. The energy resolution of about 4%/sqrt(E(GeV)) for 0.5-2.0 GeV/c positrons was obtained. Based on this results as well as on the results of special measurements, a Monte-Carlo model of the Shashlyk module response was developed. This model, including the effects of shower evolution, light collection in scintillator plates, light attenuation in fibers, quantum efficiency of the photodetector, thresholds and noises in the readout system is consistent with experimental results. Possible improvment of the Shashlyk energy resolution up to 3%/sqrt(E(GeV)), the level required by KOPIO experiment, are discussed.

  18. Scintillating LXe/LKr electromagnetic calorimeter

    International Nuclear Information System (INIS)

    A scintillating LXe/LKr electromagnetic calorimeter has been built at the ITEP and tested at the BATES (MIT) accelerator. The detector consists of a PMT matrix and 45 light collecting cells made of aluminized Mylar partially covered with p-terphenyl as a wavelength-shifter (WLS). Each pyramidal cell has (2.1 x 2.1) x 40 x (4.15 x 4.15) cm dimensions and is viewed by an FEU-85 glass-window photomultiplier. The detector has been exposed to the 106--348 MeV electron beam. The energy resolution is σE/E ≅ 5%/√E at 100--350 MeV range in LXe; the coordinate resolution is σX ≅ 0.7 cm; the time resolution is στ ≅ 0.6 ns for a single cell. Possible ways to improve energy resolution are discussed

  19. Trigger circuits for the PHENIX electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Monolithic and discrete circuits have been developed to provide trigger signals for the PHENIX electromagnetic calorimeter detector. These trigger circuits are deadtimeless and create overlapping 4 by 4 energy sums, a cosmic muon trigger, and a 144 channel energy sum. The front end electronics of the PHENIX system sample the energy and timing channels at each bunch crossing (BC) but it is not known immediately if this data is of interest. The information from the trigger circuits is used to determine if the data collected is of interest and should be digitized and stored or discarded. This paper presents details of the design, issues affecting circuit performance, characterization of prototypes fabricated in 1.2 microm Orbit CMOS, and integration of the circuits into the EMCal electronics system

  20. Development of 300 g scintillating calorimeters

    International Nuclear Information System (INIS)

    The sensitivity for WIMP detection can be improved by an ability to efficiently discriminate the γ and β backgrounds from the nuclear recoil signals. The CRESST phase II detectors will achieve this discrimination by means of simultaneous measurement of phonons and scintillation light. We report on the development of a 300 g detector module consisting of two separate calorimeters fitted with tungsten phase transition thermometers. A 300 g CaWO4 crystal serves as the target material in which a recoiling WIMP creates both phonons and scintillation light. Phonons are detected by a thermometer on the CaWO4 crystal. A second smaller detector in close proximity detects the scintillation light. Measurements with this setup will be presented

  1. Design, status and test of the Mu2e crystal calorimeter

    OpenAIRE

    Atanov, N.; Baranov, V; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Danè, E.; Davydov, Y. I.; Di Falco, S; S. Donati; Donghia, R.; Echenard, B.; Flood, K

    2016-01-01

    The Mu2e experiment at Fermilab searches for the charged-lepton flavor violating neutrino-less conversion of a negative muon into an electron in the field of a aluminum nucleus. The dynamic of such a process is well modeled by a two-body decay, resulting in a monoenergetic electron with an energy slightly below the muon rest mass (104.967 MeV). The calorimeter of this experiment plays an important role to provide excellent particle identification capabilities and an online trigger filter whil...

  2. The Front End Electronics of the Scintillator Pad Detector of LHCb Calorimeter

    CERN Document Server

    Gascon, David; Bota, S; Comerma, A; Diéguez, A; Garrido, L; Gaspar, A; Graciani, R; Graciani, E; Herms, A; Llorens, M; Luengo, S; Picatoste, E; Riera, J; Rosselló, M; Ruiz, H; Tortella, S; Vilasís, X

    2007-01-01

    In this paper the Front End electronics of the Scintillator Pad Detector (SPD) is outlined. The SPD is a sub-system of the Calorimeter of the LHCb experiment designed to discriminate between charged and neutral particles for the first level trigger. The system design is presented, describing its different functionalities implemented through three different cards and several ASICs. These functionalities are signal processing and digitization, data transmission, interface with control and timing systems of the experiment, low voltage power supply distribution and monitoring. Special emphasis is placed on installation and commissioning subjects such as cabling, grounding, shielding and power distribution.

  3. Design and R&D of very forward calorimeters for detectors at future e+ e- collider

    CERN Document Server

    Bozovic-Jelisavcic, I

    2015-01-01

    Detectors at future e+ e-collider need special calorimeters in the very forward region for a fast estimate and precise measurement of the luminosity, to improve the hermeticity and mask the central tracking detectors from backscattered particles. Design optimized for the ILC collider using Monte Carlo simulations is presented. Sensor prototypes have been produced and dedicated FE ASICs have been developed and tested. For the first time, sensors have been connected to the front-end and ADC ASICs and tested in an electron beam. Results on the performance are discussed.

  4. A design of scintillator tiles read out by surface-mounted SiPMs for a future hadron calorimeter

    International Nuclear Information System (INIS)

    Precision calorimetry using highly granular sampling calorimeters is being developed based on the particle flow concept within the CALICE collaboration. One design option of a hadron calorimeter is based on silicon photomultipliers (SiPMs) to detect photons generated in plastic scintillator tiles. Driven by the need of automated mass assembly of around ten millions of channels stringently required by the high granularity, we developed a design of scintillator tiles directly coupled with surface-mounted SiPMs. A cavity is created in the center of the bottom surface of each tile to provide enough room for the whole SiPM package and to improve collection of the light produced by incident particles penetrating the tile at different positions. The cavity design has been optimized using a GEANT4-based full simulation model to achieve high response to Minimum Ionizing Particles (MIPs) and also good areal uniformity. Cosmic-ray measurements confirms high 1-MIP response for scintillator tiles with an optimized cavity design. Uniformity measurements by scanning the tile area using focused electrons from a beta source show excellent response uniformity. This optimized design is well beyond the requirements for a precision hadron calorimeter.

  5. Measurements in large pool fires with an actively cooled calorimeter

    International Nuclear Information System (INIS)

    The pool fire thermal test described in Safety Series 6 published by the International Atomic Energy Agency (IAEA) or Title 10, Code of Federal Regulations, Part 71 (10CFR71) in the United States is one of the most difficult tests that a container for larger ''Type B'' quantities of nuclear materials must pass. If retests of a container are required, costly redesign and project delays can result. Accurate measurements and modeling of the pool fire environment will ultimately lower container costs by assuring that containers past the pool fire test on the first attempt. Experiments indicate that the object size or surface temperature of the container can play a role in determining local heat fluxes that are beyond the effects predicted from the simple radiative heat transfer laws. An analytical model described by Nicolette and Larson 1990 can be used to understand many of these effects. In this model a gray gas represents soot particles present in the flame structure. Close to the container surface, these soot particles are convectively and radiatively cooled and interact with incident energy from the surrounding fire. This cooler soot cloud effectively prevents some thermal radiation from reaching the container surface, reducing the surface heat flux below the value predicted by a transparent medium model. With some empirical constants, the model suggested by Nicolette and Larson can be used to more accurately simulate the pool fire environment. Properly formulated, the gray gas approaches also fast enough to be used with standard commercial computer codes to analyze shipping containers. To calibrate this type of model, accurate experimental measurements of radiative absorption coefficients, flame temperatures, and other parameters are necessary. A goal of the calorimeter measurements described here is to obtain such parameters so that a fast, useful design tool for large pool fires can be constructed

  6. Measurements in large pool fires with an actively cooled calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Koski, J.A. [Sandia National Labs., Albuquerque, NM (United States); Wix, S.D. [GRAM, Inc., Albuquerque, NM (United States)

    1995-12-31

    The pool fire thermal test described in Safety Series 6 published by the International Atomic Energy Agency (IAEA) or Title 10, Code of Federal Regulations, Part 71 (10CFR71) in the United States is one of the most difficult tests that a container for larger ``Type B`` quantities of nuclear materials must pass. If retests of a container are required, costly redesign and project delays can result. Accurate measurements and modeling of the pool fire environment will ultimately lower container costs by assuring that containers past the pool fire test on the first attempt. Experiments indicate that the object size or surface temperature of the container can play a role in determining local heat fluxes that are beyond the effects predicted from the simple radiative heat transfer laws. An analytical model described by Nicolette and Larson 1990 can be used to understand many of these effects. In this model a gray gas represents soot particles present in the flame structure. Close to the container surface, these soot particles are convectively and radiatively cooled and interact with incident energy from the surrounding fire. This cooler soot cloud effectively prevents some thermal radiation from reaching the container surface, reducing the surface heat flux below the value predicted by a transparent medium model. With some empirical constants, the model suggested by Nicolette and Larson can be used to more accurately simulate the pool fire environment. Properly formulated, the gray gas approaches also fast enough to be used with standard commercial computer codes to analyze shipping containers. To calibrate this type of model, accurate experimental measurements of radiative absorption coefficients, flame temperatures, and other parameters are necessary. A goal of the calorimeter measurements described here is to obtain such parameters so that a fast, useful design tool for large pool fires can be constructed.

  7. Electromagnetic response of a highly granular hadronic calorimeter

    International Nuclear Information System (INIS)

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  8. Electromagnetic response of a highly granular hadronic calorimeter

    CERN Document Server

    Adloff, C; Blaising, J-J; Drancourt, C; Espargilière, A; Gaglione, R; Geffroy, N; Karyotakis, Y; Prast, J; Vouters, G; Francis, K; Repond, J; Smith, J; Xia, L; Baldolemar, E; Li, J; Park, S T; Sosebee, M; White, A P; Yu, J; Mikami, Y; Goto, N K Watson T; Mavromanolakis, G; Thomson, M A; Yan, D R Ward W; Benyamna, M; Cârloganu, C; Fehr, F; Gay, P; Manen, S; Royer, L; Blazey, G C; Dyshkant, A; Lima, J G R; Zutshi, V; Hostachy, J-Y; Morin, L; Cornett, U; David, D; Fabbri, R; Falley, G; Gadow, K; Garutti, E; Göttlicher, P; Günter, C; Karstensen, S; Krivan, F; Lucaci-Timoce, A-I; Lu, S; Lutz, B; Marchesini, I; Meyer, N; Morozov, S; Morgunov, V; Reinecke, M; Sefkow, F; Smirnov, P; Terwort, M; Vargas-Trevino, A; Wattimena, N; Wendt, O; Feege, N; Haller, J; Richter, S; Eckert, J Samson P; Kaplan, A; Schultz-Coulon, H-Ch; Shen, W; Stamen, R; Tadday, A; Bilki, B; Norbeck, E; Onel, Y; Wilson, G W; Kawagoe, K; Uozumi, S; Ballin, J A; Dauncey, P D; Magnan, A -M; Yilmaz, H S; Zorba, O; Bartsch, V; Postranecky, M; Warren, M; Wing, M; Salvatore, F; Alamillo, E Calvo; Fouz, M -C; Puerta-Pelayo, J; Balagura, V; Bobchenko, B; Chadeeva, M; Danilov, M; Epifantsev, A; Markin, O; Mizuk, R; Novikov, E; Rusinov, V; Tarkovsky, E; Soloviev, Y; Kozlov, V; Buzhan, P; Dolgoshein, B; Ilyin, A; Kantserov, V; Kaplin, V; Karakash, A; Popova, E; Smirnov, S; Frey, A; Kiesling, C; Seidel, K; Simon, F; Soldner, C; Weuste, L; Bonis, J; Bouquet, B; Callier, S; Cornebise, P; Doublet, Ph; Dulucq, F; Faucci Giannelli, M; Fleury, J; Guilhem, G; Li, H; Martin-Chassard, G; Richard, F; de la Taille, Ch; Pöschl, R; Raux, L; Seguin-Moreau, N; Wicek, F; Anduze, M; Boudry, V; Brient, J-C; Jeans, D; Mora de Freitas, P; Musat, G; Reinhard, M; Ruan, M; Videau, H; Bulanek, B; Zacek, J; Cvach, J; Gallus, P; Havranek, M; Janata, M; Kvasnicka, J; Lednicky, D; Marcisovsky, M; Polak, I; Popule, J; Tomasek, L; Tomasek, M; Ruzicka, P; Sicho, P; Smolik, J; Vrba, V; Zalesak, J; Belhorma, B; Ghazlane, H; Kotera, K; Nishiyama, M; Takeshita, T; Tozuka, S

    2010-01-01

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described.

  9. LHCb: First year of running for the LHCb calorimeter system

    CERN Multimedia

    Guz, Y

    2011-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva) [1, 2]. LHCb is a single-arm spectrometer with a forward angular coverage from approximately 10 mrad to 300 mrad. It comprises a calorimeter system composed of four subdetectors [3]. It selects transverse energy hadron, electron and photon candidates for the first trigger level (L0), which makes a decision 4µs after the interaction. It provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The set of constraints resulting from these functionalities defines the general structure and the main characteristics of the calorimeter system and its associated electronics. A classical structure of an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter (HCAL) has been adopted. In addition the system includes in front of them the Scintillating Pad Detector (SPD) and Pre-Showe...

  10. The electromagnetic calorimeter for the solenoidal tracker at RHIC

    International Nuclear Information System (INIS)

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding

  11. Calibration and Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Peralva, B S; The ATLAS collaboration

    2013-01-01

    TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. The calorimeter response is monitored to better than 1% using radioactive source, laser, and charge injection systems. This multi-faceted calibration system allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitization. This contribution presents a brief description of the different TileCal calibration systems as well as the latest results on their performance in terms of calibration factors, linearity and stability. The performance of the Tile Calorimeter with...

  12. Use of the calorimeter in the dosimetry for electron accelerators

    International Nuclear Information System (INIS)

    The measure of different radiation types, with specific dosemeters, requires that the absorbed dose should be measured with accuracy by some common standard. The existent problem around the dosimetry of accelerated electrons has forced to the development of diverse detector types that after having analyzed the characteristics; dependability and reproducibility are used as dosemeters. Recently the calorimeters have been developed, with the purpose of carrying out dosimetry for electron accelerators. The RISO laboratory in Denmark, in it 10 MeV accelerator had been used for the dosimetry those water calorimeters, later on, using the principle of the water calorimeter, it was designing one similar, for the accelerator of 400 keV. Recently manufactured simple calorimeters of graphite have been used, which can be used in both accelerators of 10 MeV and 400 keV. (Author)

  13. The optical instrumentation of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of ±1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.

  14. ATLAS LAr calorimeter degradation studies for HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Novgorodova, Olga [Institut fuer Kern- und Teilchenphysik, Dresden (Germany)

    2015-07-01

    The future High Luminosity LHC upgrade (HL-LHC) will increase the luminosity by a factor of ten, which implies radiation hardness requirements for the LHC detectors. This requires to test the ATLAS Liquid Argon (LAr) calorimeters for higher intensities. In several test beam campaigns at IHEP/Protvino, the HiLum collaboration investigated small-size modules of the electromagnetic, hadronic, and forward calorimeters. The intensity of beam varied over a wide range (10{sup 6} to 10{sup 12} p/s) and beyond the maximum expected at HL-LHC for these calorimeters. The correlation between beam intensity and the electromagnetic calorimeter HV current signal is used to quantify the possible signal degradation. The results of the detector performance before and after operation in highest beam intensities are presented.

  15. The Forward Calorimeter of the GlueX Experiment

    Science.gov (United States)

    Bennett, Daniel; GlueX Collaboration

    2013-10-01

    The Forward Calorimeter (FCAL) of the GlueX experiment is a lead glass electromagnetic calorimeter currently being built in Hall D of Jefferson Lab. The GlueX experiment is a photoproduction experiment that will utilize coherent bremsstrahlung radiation to map out the light meson spectrum, including a search for hybrid mesons with exotic quantum numbers (JPC). The FCAL will detect photons between 1° and 10 .8° downstream from the target. The calorimeter is built out of 2800 elements, each of which consists of a lead glass block, an FEU 84-3 PMT, and a custom Cockcroft-Walton electronic base. In the Fall of 2011, a 25 element prototype detector was installed in Hall B of Jefferson Lab to measure the energy and timing resolution of the calorimeter using electrons between 100 and 250 MeV. The design and construction of FCAL and the results from the prototype test will be discussed.

  16. Simulation and validation of the ATLAS Tile Calorimeter at LHC

    CERN Document Server

    Artamonov, A; The ATLAS collaboration

    2013-01-01

    --Simulation and validation of the ATLAS Tile Calorimeter at LHC TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. This sampling calorimeter uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitized every 25 ns before being transferred to off-detector data-acquisition systems. This contribution describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. Detector non-uniformities and imperfections are also represented. Detailed validation has shown that the simulated detector response characteristics have been successfully integrated and...

  17. Electromagnetic response of a highly granular hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Blaha, J.; Blaising, J.J. [Savoie Univ., CNRS/IN2P3, Annecy-le-Vieux (FR). Lab. d' Annecy-le-Vieux de Physique des Particules] (and others)

    2010-12-15

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  18. Investigations of the characteristics of the DELPHI hadron calorimeter prototype

    International Nuclear Information System (INIS)

    The characteristics of the DELHI hadron calorimeter prototype in various modes of operation of its detectors are presented in this paper. It is shown that the transition to a saturated proportional mode and use of more sensitive electronics do not make worse the hadron calorimeter operation. The possibility to select muon tracks in the hadron calorimeter and to use them for detector triggering has been investigated. The results of nuclear shower simulation in the detector are presented. The form of the dependence between signals from the electromagnetic and hadron calorimeters has been found out. The supposition to improve the procedure of the hadron energy reconstruction with the help of the discovered function has been made

  19. Quantum Calorimeters Based on HgCdTe Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's next generation of x-ray observation missions require x-ray calorimeters with superior energy resolution. Semimetallic HgTe has already proven itself as an...

  20. Closing LHCb's calorimeter around the beam-pipe

    CERN Multimedia

    Kristic, R

    2008-01-01

    Photos 1 and 2 show the pre-shower, lead absorber and the scintillating pad detector layers moving in towards the beam-pipe. Photos 3,4 and 5 show the hadron calorimeter with both halves closed around the beam-pipe, to the left of the picture and, in the centre, half of the electromagnetic calorimeter closed in towards the beam-pipe.

  1. The BaBar Electromagnetic Calorimeter: Status and Performance Improvements

    OpenAIRE

    Bauer, Johannes M.; Group, for the BaBar Collaboration EMC

    2006-01-01

    The electromagnetic calorimeter at the BaBar detector, part of the asymmetric B Factory at SLAC, measures photons in the energy range from 20 MeV to 8 GeV with high resolution. The current status of the calorimeter, now in its seventh year of operation, is being presented, as well as details on improvements made to the analysis code during the last years.

  2. A purity monitoring system for liquid argon calorimeters

    International Nuclear Information System (INIS)

    For liquid argon calorimeters electronegative impurities dissolved in the medium degrade the detector response and deteriorate the energy resolution, especially at high energies. A concept for a purity monitoring system for liquid argon calorimeters has been developed and is presented here. Special combined monitors of 241Am- and 207Bi-cells are used to monitor the concentration of impurities. The working principle as well as results from test measurements are discussed

  3. Measurement of the Contribution of Neutrons to Hadron Calorimeter Signals

    OpenAIRE

    Akchurin, N.

    2007-01-01

    The contributions of neutrons to hadronic signals from the DREAM calorimeter are measured by analyzing the time structure of these signals. The neutrons, which mainly originate from the evaporation stage of nuclear breakup in the hadronic shower development process, contribute through elastic scattering off protons in the plastic scintillating fibers which provide the $dE/dx$ information in this calorimeter. This contribution is characterized by an exponential tail in the pulse shape, with a ...

  4. The electromagnetic calorimeter in JLab Real Compton Scattering Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Albert Shahinyan; Eugene Chudakov; A. Danagoulian; P. Degtyarenko; K. Egiyan; V. Gorbenko; J. Hines; E. Hovhannisyan; Ch. Hyde; C.W. de Jager; A. Ketikyan; V. Mamyan; R. Michaels; A.M. Nathan; V. Nelyubin; I. Rachek; M. Roedelbrom; A. Petrosyan; R. Pomatsalyuk; V. Popov; J. Segal; Yu. Shestakov; J. Templon; H. Voskanyan; B. Wojtsekhowski

    2007-04-16

    A hodoscope calorimeter comprising of 704 lead-glass blocks is described. The calorimeter was constructed for use in the JLab Real Compton Scattering experiment. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6\\%/$\\sqrt{E_\\gamma \\, [GeV]}$, respectively. Design features and performance parameters during the experiment are presented.

  5. Performance and Operation of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented.

  6. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    A Very-Front-End (VFE) card is an important part of the on-detector read-out electronics of the CMS (Compact Muon Solenoid) electromagnetic calorimeter that is made of ∼ 76.000 radiation hard scintillating crystals PbWO4 and operates on the Large Hadron Collider (LHC) at CERN. Almost 16.000 VFE cards that shape, amplify and digitize incoming signals from photodetectors generated by interacting particles. Since any maintenance of any part of the calorimeter is not possible during the 10-year lifetime of the experiment, the extensive screening program was employed throughout the whole manufacture process. As a part of readout electronics quality assurance program, the systems for burn-in and precise calibration of the VFE boards were developed and successfully used at IPN Lyon. In addition to functionality tests, all relevant electrical properties of each card were measured and analyzed in detail to obtain their full characterization and to build a database with all required parameters which will serve for the initial calibration of the whole calorimeter. In order to evaluate the calorimeter performance and also to deliver the most precise calibration constants, several fully equipped super-modules were extensively studied and calibrated during the test beam campaigns at CERN. As an important part of these tests, accurate studies of the electronics noise and relative gains, which are needed for measurement in high energy range, were carried out to optimize amplitude reconstruction procedure and thus improve the precision of the calorimeter energy determination. The heart of the thesis consists of the calibration of all VFE boards, including optimization of the laboratory calibration system and precise analysis of measured values to delivered desired calibration constants. The second half of the thesis is focused on the accurate evaluation and optimization of the read-out electronics in real data taking conditions. The results obtained in the laboratory at IPN Lyon

  7. Results on the LHCb hadron calorimeter prototype

    International Nuclear Information System (INIS)

    The hadron calorimeter HCAL of the LHCb experiment at CERN is the key device which provides data for the level-0 high pt trigger and can perform fast trigger signal construction with reasonable background suppression when B decays are reconstructed. During 1997-1999 an HCAL prototype stack of 6 modules of 0.96 x 0.96 m2 front surface and with different internal structure has been constructed and exposed to the X7 test beams of the SPS at CERN. HCAL technology consists of a scintillator/iron sampling structure with scintillating tiles parallel to the beam axis and a passive radiator made of steel plates. The absorber plates were supplied by Romanian, CERN and IPT Kharkiv groups. Scintillating tiles have been produced in Russia using a modern casting technique. In the prototype we use Pol.Hi.Tech.(S250) single clad wave-length shifting fibers of 1 mm in diameter with a polished and aluminized mirror at one end. Parts of two HCAL modules have been recently re-assembled with new faster fiber of type Bicron BCF-92 and irradiated components. Two types of Russian photomultipliers have been used in the CAL Prototype beam-tests: FEU-84-3 and FEU-115M. A calibration system with radioactive source and pulsing LED has been used and checked. Beam tests with the HCAL Prototype have been done at the X7 beam-line of the West Area experimental hall at CERN in a wide beam momentum range from 5 to 100 GeV. A rotating table on the platform allows to turn the detector on up to 180 angle around he vertical axis and a lateral and an up-down displacement of 2 m. A computer controlled High Voltage distribution scheme, developed by IFIN-HH group, allows individual setting of the HV on each PMT for the gain adjustment with a minimal amount of cables. The system consists of three parts: 1) the control box which includes the low voltage power supply, the RS232 interface to a PC and three modules of the high voltage power supply: two with Vmax = 2000 V, Imax = 10 mA and one with Vmax = 2500 V

  8. The ATLAS Tile Calorimeter, its performance with 13~TeV proton-proton collisions, and its upgrades for the high luminosity LHC

    CERN Document Server

    Davidek, Tomas; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with the other calorimeters it is designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. It also assists in the muon identification. A summary of the upgrades and performance results for TileCal using pp collisions from the initial LHC Run II at 13~TeV will be presented. For the high luminosity era a major upgrade of the TileCal electronics is planned, and the ongoing developments for on- and off-detector systems, together with expected performance characteristics and recent beam tests of prototypes, will be described.

  9. CALIFA, a Dedicated Calorimeter for the R{sup 3}B/FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Cortina-Gil, D., E-mail: d.cortina@usc.es [Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Alvarez-Pol, H. [Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Aumann, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt (Germany); Avdeichikov, V. [University of Lund, SE 221 00 Lund (Sweden); Bendel, M. [Technische Universität München, D-85748 Garching (Germany); Benlliure, J. [Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Bertini, D. [Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt (Germany); Bezbakh, A. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Bloch, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Böhmer, M. [Technische Universität München, D-85748 Garching (Germany); Borge, M.J.G.; Briz, J.A. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Cabanelas, P. [Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Casarejos, E. [Universidad de Vigo, E-36310 Vigo (Spain); Carmona Gallardo, M. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Cederkäll, J. [University of Lund, SE 221 00 Lund (Sweden); Chulkov, L. [Nuclear Reseach Center, Kurchatov Institute, RU-123182 Moscow (Russian Federation); Dierigl, M. [Technische Universität München, D-85748 Garching (Germany); Di Julio, D. [University of Lund, SE 221 00 Lund (Sweden); Durán, I. [Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); and others

    2014-06-15

    The R{sup 3}B experiment (Reactions with Relativistic Radioactive Beams) at FAIR (Facility for Antiproton and Ion Research) is a versatile setup dedicated to the study of reactions induced by high-energy radioactive beams. It will provide kinematically complete measurements with high efficiency, acceptance and resolution, making possible a broad physics program with rare-isotopes. CALIFA (CALorimeter for In-Flight detection of gamma-rays and high energy charged pArticles), is a complex detector based on scintillation crystals, that will surround the target of the R{sup 3}B experiment. CALIFA will act as a total absorption gamma-calorimeter and spectrometer, as well as identifier of charged particles from target residues. This versatility is its most challenging requirement, demanding a huge dynamic range, to cover from low energy gamma-rays up to 300 MeV protons. This fact, along with the high-energy of the beams determine the conceptual design of the detector, presented in this paper, together with the technical solutions proposed for its construction.

  10. Single event effect hardness for the front-end ASICs in the DAMPE satellite BGO calorimeter

    Science.gov (United States)

    Shan-Shan, Gao; Di, Jiang; Chang-Qing, Feng; Kai, Xi; Shu-Bin, Liu; Qi, An

    2016-01-01

    The Dark Matter Particle Explorer (DAMPE) is a Chinese scientific satellite designed for cosmic ray studies with a primary scientific goal of indirect detection of dark matter particles. As a crucial sub-detector, the BGO calorimeter measures the energy spectrum of cosmic rays in the energy range from 5 GeV to 10 TeV. In order to implement high-density front-end electronics (FEE) with the ability to measure 1848 signals from 616 photomultiplier tubes on the strictly constrained satellite platform, two kinds of 32-channel front-end ASICs, VA160 and VATA160, are customized. However, a space mission period of more than 3 years makes single event effects (SEEs) become threats to reliability. In order to evaluate SEE sensitivities of these chips and verify the effectiveness of mitigation methods, a series of laser-induced and heavy ion-induced SEE tests were performed. Benefiting from the single event latch-up (SEL) protection circuit for power supply, the triple module redundancy (TMR) technology for the configuration registers and the optimized sequential design for the data acquisition process, 52 VA160 chips and 32 VATA160 chips have been applied in the flight model of the BGO calorimeter with radiation hardness assurance. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-4) and Fundamental Research Funds for the Central Universities (WK2030040048)

  11. CALIFA, a Dedicated Calorimeter for the R3B/FAIR

    International Nuclear Information System (INIS)

    The R3B experiment (Reactions with Relativistic Radioactive Beams) at FAIR (Facility for Antiproton and Ion Research) is a versatile setup dedicated to the study of reactions induced by high-energy radioactive beams. It will provide kinematically complete measurements with high efficiency, acceptance and resolution, making possible a broad physics program with rare-isotopes. CALIFA (CALorimeter for In-Flight detection of gamma-rays and high energy charged pArticles), is a complex detector based on scintillation crystals, that will surround the target of the R3B experiment. CALIFA will act as a total absorption gamma-calorimeter and spectrometer, as well as identifier of charged particles from target residues. This versatility is its most challenging requirement, demanding a huge dynamic range, to cover from low energy gamma-rays up to 300 MeV protons. This fact, along with the high-energy of the beams determine the conceptual design of the detector, presented in this paper, together with the technical solutions proposed for its construction

  12. Experimental tests of particle flow calorimetry

    International Nuclear Information System (INIS)

    Precision physics at future colliders requires highly granular calorimeters to support the Particle Flow Approach for event reconstruction. This article presents a review of about 10-15 years of R and D, mainly conducted within the CALICE collaboration, for this novel type of detector. The performance of large scale prototypes in beam tests validate the technical concept of particle flow calorimeters. The comparison of test beam data with simulation, of e.g. hadronic showers, supports full detector studies and gives deeper insight into the structure of hadronic cascades than was possible previously.

  13. Experimental Tests of Particle Flow Calorimetry

    CERN Document Server

    Sefkow, Felix; Kawagoe, Kiyotomo; Pöschl, Roman; Repond, José

    2015-01-01

    Precision physics at future colliders requires highly granular calorimeters to support the Particle Flow Approach for event reconstruction. This article presents a review of about 10 - 15 years of R\\&D, mainly conducted within the CALICE collaboration, for this novel type of detector. The performance of large scale prototypes in beam tests validate the technical concept of particle flow calorimeters. The comparison of test beam data with simulation, of e.g.\\ hadronic showers, supports full detector studies and gives deeper insight into the structure of hadronic cascades than was possible previously.

  14. The ATLAS Level-1 Calorimeter Trigger Architecture

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Watkins, P M; Watson, A T; Achenbach, R; Hanke, P; Kluge, E E; Meier, K; Meshkov, P; Nix, O; Penno, K; Schmitt, K; Ay, Cc; Bauss, B; Dahlhoff, A; Jakobs, K; Mahboubi, K; Schäfer, U; Trefzger, T M; Eisenhandler, E F; Landon, M; Moyse, E; Thomas, J; Apostoglou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Perera, V J O; Qian, W; Bohm, C; Hellman, S; Hidvégi, A; Silverstein, S; RT 2003 13th IEEE-NPSS Real Time Conference

    2004-01-01

    The architecture of the ATLAS Level-1 Calorimeter Trigger system (L1Calo) is presented. Common approaches have been adopted for data distribution, result merging, readout, and slow control across the three different subsystems. A significant amount of common hardware is utilized, yielding substantial savings in cost, spares, and development effort. A custom, high-density backplane has been developed with data paths suitable for both the em/tt cluster processor (CP) and jet/energy-summation processor (JEP) subsystems. Common modules also provide interfaces to VME, CANbus and the LHC Timing, Trigger and Control system (TTC). A common data merger module (CMM) uses FPGAs with multiple configurations for summing electron/photon and tau/hadron cluster multiplicities, jet multiplicities, or total and missing transverse energy. The CMM performs both crate- and system-level merging. A common, FPGA-based readout driver (ROD) is used by all of the subsystems to send input, intermediate and output data to the data acquis...

  15. Bon voyage to the hadronic calorimeter

    CERN Multimedia

    2006-01-01

    It was a grand entourage for the first half of the CMS hadronic forward calorimeter (HF) that was escorted to Cessy, France by the police on 11 July. The impressive trailer carrying the 7-m-long and 4-m-wide element was pushed and pulled by two specially designed trucks. It took the 64-m-long convoy around 5 hours to travel the 15 km to its final destination. The days leading up to this operation involved intensive checks to the balance and pressure of the hydraulic system of the trailer's wheels. As one side of the HF is slightly heavier than the other, it is crucial to take this into account when transporting such a massive object (each half of the HF weighs 260 tonnes). However, once these checks were complete, the transport was safely underway. The second half of the HF also received a police escort on 18 July as it made its way to the assembly hall at Point 5. The HF will be the first major detector to be lowered into the CMS cavern via the gantry crane in the coming months.

  16. Monolithic JFET preamplifier for ionization chamber calorimeters

    International Nuclear Information System (INIS)

    A prototype preamplifier circuit is presented for use in SSC ionization chamber calorimeters. It consists of a new type of silicon integrated circuit comprised of very low noise junction FET (JFET) components. Presently, monolithic preamplifier circuits for use in highly segmented detectors are made of implanted channel JFETs or MOS devices. While such circuits solve the density problems, they do not perform to the same level of low noise characteristics as found in discrete JFET components. The JFETs which comprise this new integrated circuit preserve the excellent low noise performance normally found only in discrete JFETs. JFETs also are much more radiation resistant and less prone to damage by electromagnetic discharges than MOS transistors. Two innovative fabrication processes are discussed. They solve the difficult gate-to-gate isolation problem needed to manufacture JFET integrated circuits. Both allow the use of an epitaxially formed channel and a diffused gate, as in standard discrete JFET processing. This, presumably, results in JFETs which exhibit lower noise than those made with implanted channels. 11 refs., 9 figs

  17. Important ATLAS Forward Calorimeter Milestone Reached

    CERN Multimedia

    Loch, P.

    The ATLAS Forward Calorimeter working group has reached an important milestone in the production of their detectors. The mechanical assembly of the first electromagnetic module (FCal1C) has been completed at the University of Arizona on February 25, 2002, only ten days after the originally scheduled date. The photo shows the University of Arizona FCal group in the clean room, together with the assembled FCal1C module. The module consists of a stack of 18 round copper plates, each about one inch thick. Each plate is about 90 cm in diameter, and has 12260 precision-drilled holes in it, to accommodate the tube/rod electrode assembly. The machining of the plates, which was done at the Science Technology Center (STC) at Carleton University, Ottawa, Canada, required high precision to allow for easy insertion of the electrode copper tube. The plates have been carefully cleaned at the University of Arizona, to remove any machining residue and metal flakes. This process alone took about eleven weeks. Exactly 122...

  18. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Milic, Adriana; The ATLAS collaboration

    2015-01-01

    The high luminosities of $L > 10^{34} cm^{-2} s^{-1}$ at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-1 trigger processors. New trigger readout electronics have been designed for this purpose, which wil...

  19. The Mu2e crystal calorimeter and improvements in the μ-N → e-N search sensitivity

    International Nuclear Information System (INIS)

    The Mu2e experiment will search for Charged Lepton Flavor Violation (CLFV) looking at the conversion of a muon into an electron in the field of an aluminum nucleus. About 7 · 1017 muons, provided by a dedicated muon beam line in construction at the Fermi National Accelarator Laboratory (Fermilab), will be stopped in 3 years in the Aluminum target. The corresponding single event sensitivity will be $2.5 · 1017. The Standard Model of particle physics, even extendend to include the finite neutrino masses, predicts the ratio Rμe between muon conversions and muon nuclear captures to be ~ 10-52. Several extensions of the Standard Model predict Rμe to be in the range of 1014 - 10-18. The current best experimental limit, set by the SINDRUM II experiment is 7 · 1013 @ 90% CL. The Mu2e experiment plans to improve this experimental limit by four order of magnitude to test many of the possible extensions of the Standard Model. To reach this ambitious goal, the Mu2e experiment is expected to use an intense pulsed muon beam, and rely on a detector system composed of a straw tube tracker and a calorimeter made of pure CsI crystals. The calorimeter plays a central role in the Mu2e measurement, providing particle identification capabilities that are necessary for rejecting two of the most dangerous background sources that can mimic the μ-N → e-N conversion electron: cosmic muons and p-bar induced background. The calorimeter information allows also to improve the tracking performance. Thanks to a calorimeter-seeded track finder algorithm, it is possible to increase the track reconstruction efficiency, and make it more robust with respect to the occupancy level. Expected performances of the calorimeter have been studied in a beam test at the Beam Test Facility in Frascati (Rome, Italy). A reduced scale calorimeter prototype has been exposed to an electron beam, with energy varying from 80 to 140 MeV, for measuring the timing resolution and validate the Monte Carlo prediction

  20. Readout Electronics for BGO Calorimeter of DAMPE: Status during the First Half-year after Launching

    Science.gov (United States)

    Ma, Siyuan; Feng, Changqing; Zhang, Deliang; Wang, Qi

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientic satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objective of DAMPE mission is indirect searching for dark matter by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO (Bismuth Germanate Oxide) calorimeter, which is a critical sub-detector of DAMPE payload, was developed for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It is composed of 308 BGO crystal logs, with the size of 2.5cm*2.5cm*60cm for each log to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. Each PMT incorporates a three dynode pick off to achieve a large dynamic range, which results in 616 PMTs and 1848 signal channels. The main function of readout electronics system, which consists of 16 FEE(Front End Electronics) modules, is to precisely measure the charge of PMT signals and providing "hit" signals. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) to generate triggers for the payload. The calibration of the BGO calorimeter is composed of pedestal testing and electronic linear scale, which are executed frequently in the space after launching. The data of the testing is transmitted to ground station in the form of scientific data. The monitor status consists of temperature, current and status words of the FEE, which are measured and recorded every 16 seconds and packed in the engineering data, then transmitted to ground station. The status of the BGO calorimeter can be evaluated by the calibration

  1. The CMS Electromagnetic Calorimeter: Results on Crystal Measurements, Quality Control and Data Management in the Rome Regional Center

    CERN Document Server

    Costantini, S

    2004-01-01

    The barrel of the CMS electromagnetic calorimeter is currently under construction and will contain 61200 PbWO4 crystals. Half of them are being fully characterized for dimensions, optical properties and light yield in the INFN-ENEA Regional Center near Rome. We describe the setup of an automatic quality control system for the crystal measurements and the present results on their qualification, as well as the REDACLE project, which has been developed to control and ease the production process. As it will not be possible to precalibrate the whole calorimeter,the crystal measurements and quality checks performed at the Regional Center will be crucial to provide a basis for fast in-situ calibration with particles. REDACLE is at the same time a fast database and a data management system, where the database and the workflow structures are decoupled, in order to obtain the best flexibility.

  2. The response to high magnetic fields of the vacuum phototriodes for the Compact Muon Solenoid endcap electromagnetic calorimeter

    International Nuclear Information System (INIS)

    The endcap electromagnetic calorimeter of the compact muon solenoid detects particles with the dense fast scintillator lead tungstate (PbWO4). Due to the low light yield of this scintillator, photodetectors with internal gain are required. Silicon avalanche photodiodes cannot be used in the endcap region due to the intense neutron flux. Following an extensive R and D programme, 26 mm diameter single-stage photomultipliers (vacuum phototriodes) have been chosen as the photodetector in the endcap region. The first 1400 production devices are currently being evaluated following recent tests of a pre-production batch of 500 tubes. Tubes passing our acceptance tests have responses, averaged over the angular acceptance of the endcap calorimeter, corresponding to the range 20-55 electrons/MeV deposited in PbWO4. These phototriodes operate, with a typical gain of 10, in magnetic fields up to 4 T

  3. A novel strip energy splitting algorithm for the fine granular readout of a scintillator strip electromagnetic calorimeter

    International Nuclear Information System (INIS)

    We describe an algorithm which has been developed to extract fine granularity information from an electromagnetic calorimeter (ECAL) with strip-based readout. Such a calorimeter, based on scintillator strips, is being developed to apply particle flow reconstruction to future experiments in high energy physics. The application of this algorithm to 100 GeV hadronic jets in an ECAL with 45×5 mm2 transverse segmentation improves the energy resolution from 3.6% to 3.0%, to be compared to the resolution of 2.9% achieved by an ECAL with 5×5 mm2 segmentation. The performance can be further improved by the use of 10×10 mm2 tile-shaped layers interspersed between strip layers

  4. The COSINUS project - perspectives of a NaI scintillating calorimeter for dark matter search

    CERN Document Server

    Angloher, G; Gironi, L; Gotti, C; Pessina, G; Gütlein, A; Maino, M; Nagorny, S S; Pagnanini, L; Petricca, F; Pirro, S; Pröbst, F; Reindl, F; Schäffner, K; Schieck, J; Seidel, W

    2016-01-01

    The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop a cryogenic scintillating calorimeter using NaI as target crystal for direct darkmatter search. Dark matter particles interacting with the detector material generate both a phonon signal and scintillation light. While the phonon signal provides a precise determination of the deposited energy, the simultaneously measured scintillation light allows for a particle identification on an event-by-event basis, a powerful tool to study material-dependent interactions, and to suppress backgrounds. Using the same target material as the DAMA/LIBRA collaboration, the COSINUS technique may offer a unique possibility to investigate and contribute information to the presently controversial situation in the dark matter sector. We report on the dedicated design planned for the NaI proof-of-principle detector and the objectives of using this detection technique in the light of direct dark matter detec...

  5. Selection of violent collisions by means of a neutron calorimeter for interferometry measurements

    International Nuclear Information System (INIS)

    Two-particle correlation measurements can be used to study heavy-ion collisions at intermediate energy to obtain information on the space-time characteristics of the emitting source as well as on the temperature deduced from the population of excited states. Improvement in this approach can be obtained by selecting the involved impact parameter interval. An experiment is described, in which a 208Pb beam at 29 MeV per nucleon on a 93Nb target was used. The aim of the experiment is to choose experimental conditions to observe mainly light particle correlations coming from heavy equilibrated quasi-projectile nuclei and to sort the events in several intervals of reaction violence. It is demonstrated that one can use a high efficiency 4π neutron detector as a calorimeter and gain with such an instrument high selectivity on the violence of a collision. (K.A.) 17 refs.; 5 figs.; 1 tab

  6. Arbor, a new approach of the Particle Flow Algorithm

    OpenAIRE

    Ruan, Manqi

    2014-01-01

    The granularity of calorimeter has been revolutionary boosted for future collider experiments. The calorimeter has been pushed to a stage that the sub structure of showers especially hadronic showers can be recorded to a high precision. New reconstruction algorithms are expected from these informations. Following the idea that shower follows the topology of the tree, we developed Arbor, a Particle Flow Algorithm framework. Tested on both simulated data and test beam data, it can successfully ...

  7. Characterization of Novel Calorimeters in the Annular Core Research Reactor *

    Directory of Open Access Journals (Sweden)

    Hehr Brian D.

    2016-01-01

    Full Text Available A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field – a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response.

  8. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  9. Research on calorimeter for high-power microwave measurements

    International Nuclear Information System (INIS)

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement

  10. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    Science.gov (United States)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  11. Commissioning of the ATLAS electromagnetic calorimeter with minimum bias events

    CERN Document Server

    Hubaut, F

    2007-01-01

    This note presents the potentiality to commission the ATLAS EM calorimeter during the (very) first days of data taking, prior to be able to trig and identify correctly electrons. For this purpose, a very simple analysis using the $\\phi$ symmetry of the abundant minimum bias events and computing the energy accumulated in the EM calorimeter is proposed. No input from the Monte Carlo is necessary, and only information from the calorimeter is used. To cope with the high number of events, simulation and analysis are performed using the GRID technology. Adopting a simple energy reconstruction scheme based on the cosmic muon experience should allow to spot intrinsic problems of the EM calorimeter in a few days. It should also give first hints on the $\\phi$ dispersion of the Inner Detector material, if the excess is sizeable >10\\% X$_0$ in a region $\\Delta \\eta \\times \\Delta \\phi=0.1\\times 0.1$. Ultimately, a first flavor of systematics coming from the EM calorimeter $\\phi$~non-uniformity and its positionning (in the...

  12. The H1 lead/scintillating-fibre calorimeter

    International Nuclear Information System (INIS)

    The backward region of the H1 detector has been upgraded in order to provide improved measurement of the scattered electron in deep inelastic scattering events. The centerpiece of the upgrade is a high-resolution lead/scintillating-fibre calorimeter. The main design goals of the calorimeter are: good coverage of the region close to the beam pipe, high angular resolution and energy resolution of better than 2% for 30 GeV electrons. The calorimeter should be capable of providing coarse hadronic energy measurement and precise time information to suppress out-of-time background events at the first trigger level. It must be compact due to space restrictions. These requirements were fulfilled by constructing two separate calorimeter sections. The inner electromagnetic section is made of 0.5 mm scintillating plastic fibres embedded in a lead matrix. Its lead-to-fibre ratio is 2.3:1 by volume. The outer hadronic section consists of 1.0 mm diameter fibres with a lead-to-fibre ratio of 3.4:1. The mechanical construction of the new calorimeter and its assembly in the H1 detector are described. (orig.)

  13. The ATLAS tile calorimeter web systems for data quality

    International Nuclear Information System (INIS)

    The ATLAS detector consists of four major components: inner tracker, calorimeter, muon spectrometer and magnet system. In the Tile Calorimeter (TileCal), there are 4 partitions, each partition has 64 modules and each module has up to 48 channels. During the ATLAS pre-operation phase, a group of physicists need to analyze the Tile Calorimeter data quality, generate reports and update the official database, when necessary. The Tile Commissioning Web System (TCWS) retrieves information from different directories and databases, executes programs that generate results, stores comments and verifies the calorimeter status. TCWS integrates different applications, each one presenting a unique data view. The Web Interface for Shifters (WIS) supports monitoring tasks by managing test parameters and all the calorimeter status. The TileComm Analysis stores plots, automatic analyses results and comments concerning the tests. With the necessity of increasing granularity, a new application was created: the Monitoring and Calibration Web System (MCWS). This application supports data quality analyses at the channel level by presenting the automatic analyses results, the problematic known channels and the channels masked by the shifters. Through the web system, it is possible to generate plots and reports, related to the channels, identify new bad channels and update the Bad Channels List at the ATLAS official database (COOL DB). The Data Quality Monitoring Viewer (DQM Viewer) displays the data quality automatic results through an oriented visualization.

  14. Summary of the liquid argon calorimeter hermeticity working group

    International Nuclear Information System (INIS)

    The cryogenic nature, and hence the need to provide thermal insulation, of liquid argon calorimeters is known to pose serious problems for precise measurements of missing transverse energy, a key signature for new physics at the SSC. This problem is exacerbated by the central detector requirement of access to both sides of the detector. The original DiGiacomo et al. design sought to satisfy this access requirement and still minimize the effect of electromagnetic showers by protruding the end cap calorimeter into the central volume. This design was compared with two design variations by using a parameterization of hadronic and electromagnetic showers assuming no transverse width. These authors concluded that a flat head End Cap design was preferable to the original design for both electromagnetic and hadronic showers. The practical design advantages of this method was further demonstrated by the conclusions that instrumented calorimeter volumes which are not thick enough to absorb most of an electromagnetic shower before a dead volume enhance the resolution degradation. This means, for instance, that calorimeter modules should have their large eta edge on the front face beveled to decrease the effect of the structural washers separating the calorimeter module bays

  15. Design and Application of the Reconstruction Software for the BaBar Calorimeter

    International Nuclear Information System (INIS)

    The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e+e- collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B0 → J/Ψ Ks0 has been studied in the two lepton, two π0 final state. The contribution of this channel to the evaluation of the angle sin 2β of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity

  16. Design and Application of the Reconstruction Software for the BaBar Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Strother, Philip David; /Imperial Coll., London

    2006-07-07

    The BaBar high energy physics experiment will be in operation at the PEP-II asymmetric e{sup +}e{sup -} collider in Spring 1999. The primary purpose of the experiment is the investigation of CP violation in the neutral B meson system. The electromagnetic calorimeter forms a central part of the experiment and new techniques are employed in data acquisition and reconstruction software to maximize the capability of this device. The use of a matched digital filter in the feature extraction in the front end electronics is presented. The performance of the filter in the presence of the expected high levels of soft photon background from the machine is evaluated. The high luminosity of the PEP-II machine and the demands on the precision of the calorimeter require reliable software that allows for increased physics capability. BaBar has selected C++ as its primary programming language and object oriented analysis and design as its coding paradigm. The application of this technology to the reconstruction software for the calorimeter is presented. The design of the systems for clustering, cluster division, track matching, particle identification and global calibration is discussed with emphasis on the provisions in the design for increased physics capability as levels of understanding of the detector increase. The CP violating channel B{sup 0} {yields} J/{Psi}K{sub S}{sup 0} has been studied in the two lepton, two {pi}{sup 0} final state. The contribution of this channel to the evaluation of the angle sin 2{beta} of the unitarity triangle is compared to that from the charged pion final state. An error of 0.34 on this quantity is expected after 1 year of running at design luminosity.

  17. Identification of Low PT Muon with the Atlas Tile Calorimeter

    Science.gov (United States)

    Usai, G.

    2005-02-01

    A method for the identification of muons with the ATLAS Tile Calorimeter is presented and its efficiency and mis-tagging fraction are discussed. It is demonstrated that the Tile Calorimeter can identify muons with good efficiency down to 2 GeV/c transverse momentum, where the stand-alone Muon Spectrometer has zero efficiency. This kinematic region is important for study of B meson physics and in the particular for the CP violating decay channels. The effectiveness of this method is tested, in particular, in the case of bbar {b} events at low LHC luminosity (1033cm-1s-2) with full simulation of experimental conditions. The muon identification with the Tile Calorimeter is fast and can be used for muon selection at the trigger level. A method of exploiting the information available in other ATLAS sub-detectors in order to reduce spurious muon-tag and measure the candidate muon momentum is discussed.

  18. Detector Control System of the ATLAS Tile Calorimeter

    CERN Document Server

    Arabidze, G; The ATLAS collaboration; Ribeiro, G; Santos, H; Vinagre, F

    2011-01-01

    The main task of the ATLAS Tile calorimeter Detector Control System (DCS) is to enable the coherent and safe operation of the calorimeter. All actions initiated by the operator, as well as all errors, warnings and alarms concerning the hardware of the detector are handled by DCS. The Tile calorimeter DCS controls and monitors mainly the low voltage and high voltage power supply systems, but it is also interfaced with the infrastructure (cooling system and racks), the calibration systems, the data acquisition system, configuration and conditions databases and the detector safety system. The system has been operational since the beginning of LHC operation and has been extensively used in the operation of the detector. In the last months effort was directed to the implementation of automatic recovery of power supplies after trips. Current status, results and latest developments will be presented.

  19. Integrator based readout in Tile Calorimeter of the ATLAS experiment

    CERN Document Server

    Gonzalez Parra, G

    2012-01-01

    TileCal is the hadronic tile calorimeter of the ATLAS experiment at LHC/CERN. To equalize the response of individual TileCal cells with a precision better than 1 % and to monitor the response of each cell over time, a calibration and monitoring system based on a Cs137 radioactive source driven through the calorimeter volume by liquid flow has been implemented. This calibration system relies on dedicated readout chain based on a slow integrators that read currents from the TileCal photomultipliers integrating over milliseconds during the calibration runs. Moreover, during the LHC collisions the TileCal integrator based readout provides the signal coming from inelastic proton- proton collisions at low momentum transfer (MB) which is used to monitor ATLAS instantaneously luminosity and to continuously monitor the response of all calorimeter cells during data-taking.

  20. The development of a virtual heat bath for calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Bracken, D.S.; Rudy, C.R.

    1998-12-31

    All existing calorimeter systems for sensitive nuclear assay employ a heat bath surrounding the sample chamber. The purpose of the heat bath is to maintain a constant temperature so that a fixed temperature difference is maintained across the thermal resistance of the calorimeter. Present calorimeter systems all employ an active, feedback-controlled system to maintain a fixed temperature. An alternative would be to allow the heat-bath temperature to change, to measure it, and to compensate the assay for this change. Two significant observations make this approach possible: (1) the effect on the measurement of a temperature change in the heat bath is differential in form and (2) temperature measurement systems are very accurate when measuring differences in temperature (either in time or between two locations). From these observations, the authors have developed a virtual heat-bath compensation system. The control theory and results will be presented.

  1. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S

    2004-01-01

    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  2. The lead-glass electromagnetic calorimeter for the SELEX experiment

    International Nuclear Information System (INIS)

    A large-acceptance, highly segmented electromagnetic lead-glass calorimeter for Experiment E781 (SELEX) at Fermi National Acceleration Laboratory was designed and built. This detector has been used to reconstruct photons and electrons with energies ranging from a few GeV up to 500GeV in the collisions of the 600GeV Σ- hyperons, π mesons and protons with the target nucleons. The design, calibration and performance of the calorimeter are described. Energy resolution and position resolution are assessed using both calibration electron beams and π0 mesons reconstructed in 600GeV hadron-hadron interactions. The performance of the calorimeter in selecting resonant states that involve photons is demonstrated

  3. Researchers use world's only direct calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Tollinsky, N.

    2008-09-15

    The world's only direct calorimeter is being used as part of a study to evaluate the risk of heat stress in miners working underground. The direct calorimeter measures the body's capacity for heat dissipation in specific environmental conditions. The body dissipates heat by increasing blood flow to the skin and transferring it to the environment. The surface of the skin is then cooled by airflow and sweat evaporation. While most studies examining the risks of heat stress are conducted using young, healthy males, the average age of most miners is 42, and many miners are obese or diabetic. Conditions such as diabetes can compromise the body's ability to cool itself. The calorimeter will also be used to measure the impact of different clothing options and materials on heat dissipation. The aim of the study was to ensure that adequate guidelines are developed to ensure the safety and comfort of miners. 1 fig.

  4. Performance of the PrimEx Electromagnetic Calorimeter

    International Nuclear Information System (INIS)

    We report the design and performance of the hybrid electromagnetic calorimeter consisting of 1152 PbWO4 crystals and 576 lead glass blocks for the PrimEx experiment at the Jefferson Laboratory. The detector was built for high precision measurement of the neutral pion lifetime via the Primakoff effect. Calorimeter installation and commissioning was completed with the first physics run in fall of 2004. We present the energy and position resolution of the calorimeter. Obtained π0 mass resolution of 1.3 MeV/c2 and its production angle resolution of 0.34 mrad demonstrate the ability of the experiment to extract the π0 lifetime on one percent level

  5. Performance of the PrimEx Electromagnetic Calorimeter

    CERN Document Server

    Kubantsev, M; Gasparyan, A

    2006-01-01

    We report the design and performance of the hybrid electromagnetic calorimeter consisting of 1152 $PbWO_4$ crystals and 576 lead glass blocks for the PrimEx experiment at the Jefferson Laboratory. The detector was built for high precision measurement of the neutral pion lifetime via the Primakoff effect. Calorimeter installation and commissioning was completed with the first physics run in fall of 2004. We present the energy and position resolution of the calorimeter. Obtained $\\pi^0$ mass resolution of $1.3 \\mathrm{MeV/c^2}$ and its production angle resolution of $0.34 \\mathrm{mrad}$ demonstrate the ability of the experiment to extract the $\\pi^0$ lifetime on one percent level.

  6. Performance of the PrimEx Electromagnetic Calorimeter

    International Nuclear Information System (INIS)

    We report the design and performance of the hybrid electromagnetic calorimeter consisting of 1152 PbWO4 crystals and 576 lead glass blocks for the PrimEx experiment at the Jefferson Laboratory. The detector was built for high precision measurement of the neutral pion lifetime via the Primakoff effect. Calorimeter installation and commissioning was completed with the first physics run in fall of 2004. We present the energy and position resolution of the calorimeter. Obtained π0 mass resolution of 1.3MeV/c2 and its production angle resolution of 0.34mrad demonstrate the ability of the experiment to extract the π0 lifetime on one percent level

  7. R&D proposal the prism plastic calorimeter:PPC

    CERN Document Server

    Dobrzynski, Ludwik; Marchand, P; Nédélec, P; Salin, P; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    This proposal supports two goals: First Goal_Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter (PPC) towers with a new "liquid crystal" type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. Second Goal_ Describe how one can design a warm liquid calorimeter integrated into a LHC detector,and list the advantages of the PPC: low price, minimum of mechanical structures, minimum amount of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronics being outside the liquid and easily accessible, one has maximum flexibility to define them. The R&D program we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  8. Energy calibration of the electromagnetic forward calorimeters in ATLAS

    International Nuclear Information System (INIS)

    The electromagnetic forward calorimeters of the ATLAS detector are responsible for the measurement of the energy of electrons in the region from 2.5 < η < 4.9. In this so called forward region tracking coverage is not available implying that electrons need to be reconstructed and identified by calorimetric information only. A calibration of the electromagnetic forward calorimeters is of importance for many electroweak measurements and searches for new physics. The energy calibration is based on an integrated luminosity of 20.3 fb-1 of proton-proton collision data at √(s) = 8 TeV recorded with the ATLAS detector in 2012. A selection of Z → ee events with one electron in the forward region and one electron in the more central region is performed to compare the shape of the Z resonance in data and simulations. This talk discusses the detailed approach to accomplish the calibration of the electromagnetic forward calorimeters in ATLAS.

  9. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 $pp$-collision data with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2016-01-01

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb$^{-1}$ of proton--proton collision data at $\\sqrt{s}=7$ TeV from 2010 and 0.1 nb$^{-1}$ of data at $\\sqrt{s}=8$ TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5\\% discrepancy in the modelling, using Geant4 physics lists, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta are derived based on these studies. The uncer...

  10. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Univ. of California, Berkeley, CA (United States)

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  11. Development and Construction of Large Size Signal Electrodes for the ATLAS Electromagnetic Calorimeter

    CERN Document Server

    Aubert, B; Colas, Jacques; Girard, C; Jérémie, A; Jézéquel, S; Lesueur, J; Sauvage, G; Lissauer, D; Makowiecki, D S; Radeka, V; Rescia, S; Wolniewicz, K; Belymam, A; Hoummada, A; Cherif, A; Chevalley, J L; Hervás, L; Marin, C P; Fassnacht, P; Szeless, Balázs; Collot, J; Gallin-Martel, M L; Hostachy, J Y; Martin, P; Leltchouk, M; Seman, M; Dargent, P; Djama, F; Monnier, E; Olivier, C; Tisserant, S; Battistoni, G; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Perini, L; Tartarelli, F; Augé, E; Bonivento, W; Fournier, D; Puzo, P; Serin, L; de La Taille, C; Astesan, F; Canton, B; Imbault, D; Lacour, D; Rossel, F; Schwemling, P

    2005-01-01

    We describe the electric circuits (electrodes) which polarize and read out the Lead-Liquid Argon electromagnetic calorimeter for the ATLAS detector. The paper covers design and material choices of the circuits as well as their production in industry. We also show how the electrodes integrate into the calorimeter and conclude with results from groups of electrodes making up calorimeter modules.

  12. On the optimization of the energy resolution of hadron calorimeters

    International Nuclear Information System (INIS)

    Measurements on hadron sampling calorimeters are presented. The calorimeters consisted of lead or depleted uranium plates and of scintillator plates of different thicknesses. Design properties which influence the energy resolution were investigated. It is shown that the thickness of absorber- and scintillator plates is a very important parameter. The absorber material and plate thickness leading to the optimum energy resolution of a hadron calorimeter are determined. The measurements on hadron sampling calorimeters show that the energy resolution of such instruments can be optimized if one reduces parts of the strongly fluctuating fraction of nondetectable energy. The hadronic energy resolution of a lead-scintillator calorimeter with a thickness ratio of passive to active absorber of Rd=0.95 is measured to σE/E (h)=41.0%/√E[GeV] +6.1% between 3 and 9 GeV. The e/h-ratio is =1.34 and its deviation from 1 causes the large additive term in the hadronic energy resolution. The energy resolution for hadrons improves for a depleted uranium-scintillator calorimeter of Rd=0.64 to σE/E (h)=29.6%/√E[GeV] +3.2% between 3 and 9 GeV at =1.10. With a depleted uranium-scintillator calorimeter of Rd=2.0 one can achieve overcompensation, i.e. =0.76, at an hadronic energy resolution of σE/E (h)=37.7%/√E[GeV] +3.4% between 5 and 40 GeV. The optimum energy resolution of σE/E (h)=32.9%/√E[GeV] +0.5% between 10 and 100 GeV at =1.00 is achieved for Rd=1.07. Starting from predictions obtained from Monte Carlo calculations, compensation is also achieved with a lead-scintillator calorimeter for Rd=4.0. The measured energy resolution is σE/E (h)=44.2%/√E[GeV] between 3 and 75 GeV at =1.05. (orig.)

  13. HARP: high-pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx. 200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  14. Study of Silicon Photomultipliers for the GRIPS Calorimeter Module

    Directory of Open Access Journals (Sweden)

    Alexei Ulyanov

    2013-01-01

    Full Text Available GRIPS is a proposed gamma-ray (200 keV to 80 MeV astronomy mission, which incorporates a pair-creation and Compton scattering telescope, along with X-ray and infrared telescopes. It will carry out a sensitive all-sky scanning survey, investigating phenomena such as gamma-ray bursts, blazars and core collapse supernovae. The main telescope is composed of a Si strip detector surroundedby a calorimeter with a fast scintillator material. We present the initial results of a study which considers the potential use of silicon photomultipliers in conjunction with the scintillator in the GRIPS calorimeter module.

  15. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  16. Performance of an accordion electromagnetic calorimeter with liquid krypton

    International Nuclear Information System (INIS)

    Beam test results of the liquid krypton electromagnetic calorimeter with a projective accordion type electrode structure are presented. The electrode had a fine segmentation in the front to enhance π0 rejection and pointing. The test was carried out at the H4 line at the CERN SPS with e- beams between 20 and 200 GeV. Preliminary results of energy resolution, linearity, μ response and the dependence of the energy resolution on the amount of inactive material in front of the calorimeter are presented

  17. The WiZard/CAPRICE silicon-tungsten calorimeter

    International Nuclear Information System (INIS)

    A silicon-tungsten calorimeter has been developed to be flown in the WiZard/ CAPRICE balloon borne experiment to measure the flux of antiprotons, positrons and light nuclei in the cosmic radiation. The calorimeter is composed of 8 x, y silicon sampling planes (active area (48x48) cm2) interleaved with 7 tungsten absorbers (7 radiation lengths); it provides the topology of the interacting events together with an independent measurement of the deposited energy. Details of the front-end electronics and of the read-out system are given and the overall performances during pre-flight ground operations are described as well

  18. The electromagnetic calorimeter of the AMS-02 experiment

    CERN Document Server

    Vecchi, M; Bigongiari, G; Cervelli, F; Chen, G; Chen, G M; Chen, H S; Coignet, G; Di Falco, S; Elles, S; Fiasson, A; Fougeron, D; Gallucci, G; Goy, C; Incagli, M; Kossakowki, R; Lepareur, V; Li, Z H; Maire, M; Paniccia, M; Pilo, F; Rosier-Lees, S; Tang, X W; Vannini, C; Vialle, J P; Zhuang, H L

    2012-01-01

    The electromagnetic calorimeter (ECAL) of the AMS-02 experiment is a 3-dimensional sampling calorimeter, made of lead and scintillating fibers. The detector allows for a high granularity, with 18 samplings in the longitudinal direction, and 72 sampling in the lateral direction. The ECAL primary goal is to measure the energy of cosmic rays up to few TeV, however, thanks to the fine grained structure, it can also provide the separation of positrons from protons, in the GeV to TeV region. A direct measurement of high energy photons with accurate energy and direction determination can also be provided.

  19. The Electromagentic Barrel Calorimeter for the GlueX Experiment

    OpenAIRE

    Barbi, M

    2006-01-01

    The electromagnetic barrel calorimeter is one of the main components of the planned GlueX experiment. It will consist of 48 modules made of consecutive layers of 4 m long lead sheet and fast green scintillator fibers for an overall number of approximately 3000 readout channels with silicon photomultiplier-based photo-sensors for light collection. The calorimeter is expected to achieve energy and time resolution better than 5%/sqrt(E)+2% and 200 ps, respectively. In this contribution we presen...

  20. The response of a streamer tube sampling calorimeter to electrons

    International Nuclear Information System (INIS)

    We have constructed a simple modular electromagnetic calorimeter with 0.8 X0 copper absorbers using gas sampling with streamer tubes. To suppress saturation effects we use small cell streamer tubes (6 mm x 6 mm) filled with pure isobutane. The calorimeter has been tested with electrons in the energy range from 1 to 6 GeV. In this range the instrument shows a linear response. The energy resolution from pad and wire signals amounts to sigmaapprox.=20%/√E. The longitudinal shower profiles are in reasonable agreement with expectations from standard shower calculations. (orig.)