WorldWideScience

Sample records for calorimeter dance array

  1. Neutron capture experiments with 4π DANCE Calorimeter

    Directory of Open Access Journals (Sweden)

    Krtička M.

    2012-02-01

    Full Text Available In recent years we have performed a series of neutron capture experiments with the DANCE detector array located at the Los Alamos Neutron Science Center. The radiative decay spectrum from the compound nucleus contains important information about nuclear structure and the reaction mechanism. The primary goals of the measurements are to obtain improved capture cross sections, to determine properties of the photon strength function, to improve neutron level densities and strength functions by determining the spin and parity of the capturing states. We shall present examples of our recent results.

  2. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  3. Development and performance of a calibration system for a large calorimeter array

    International Nuclear Information System (INIS)

    Arenton, M.; Dawson, J.; Ditzler, W.R.

    1982-01-01

    Experiment 609 at Fermilab is a study of the properties of high-p/sub t/ collisions using a large segmented hadron calorimeter. The calibration and monitoring of such a large calorimeter array is a difficult undertaking. This paper describes the systems developed by E609 for automatic monitoring of the phototube gains and performance of the associated electronics

  4. Array-scale performance of TES X-ray Calorimeters Suitable for Constellation-X

    Science.gov (United States)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A. D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.; hide

    2008-01-01

    Having developed a transition-edge-sensor (TES) calorimeter design that enables high spectral resolution in high fill-factor arrays, we now present array-scale results from 32-pixel arrays of identical closely packed TES pixels. Each pixel in such an array contains a Mo/Au bilayer with a transition temperature of 0.1 K and an electroplated Au or Au/Bi xray absorber. The pixels in an array have highly uniform physical characteristics and performance. The arrays are easy to operate due to the range of bias voltages and heatsink temperatures over which solution better than 3 eV at 6 keV can be obtained. Resolution better than 3 eV has also been obtained with 2x8 time-division SQUID multiplexing. We will present the detector characteristics and show spectra acquired through the read-out chain from the multiplexer electronics through the demultiplexer software to real-time signal processing. We are working towards demonstrating this performance over the range of count rates expected in the observing program of the Constellation-X observatory. We mill discuss the impact of increased counting rate on spectral resolution, including the effects of crosstalk and optimal-filtering dead time.

  5. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    Science.gov (United States)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  6. Study of a 3×3 module array of the ECAL0 calorimeter with an electron beam at the ELSA

    Science.gov (United States)

    Dziewiecki, M.; Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.

    2015-02-01

    ECAL0 is a new electromagnetic calorimeter designed for studying generalized parton distributions at the COMPASS II experiment at CERN. It will be located next to the target and will cover larger photon angles (up to 30 degrees). It is a modular high-granularity Shashlyk device with total number of individual channels of approx. 1700 and readout based on wavelength shifting fibers and micropixel avalanche photodiodes. Characterization of the calorimeter includes tests of particular sub-components, tests of complete modules and module arrays, as well as a pilot run of a fully-functional, quarter-size prototype in the COMPASS experiment. The main goals of the tests on low-intensity electron beam at the ELSA accelerator in Bonn were: to provide energy calibration using electrons, to measure angular response of the calorimeter and to perform an energy scan to cross-check previously collected data. A dedicated measurement setup was prepared for the tests, including a 3x3 array of the ECAL0 modules, a scintillating-fibre hodoscope and a remotely-controlled motorized movable platform. The measurements were performed using three electron energies: 3.2 GeV, 1.6 GeV and 0.8 GeV. They include a calibration of the whole detector array with a straight beam and multiple angular scans.

  7. Study of a 3×3 module array of the ECAL0 calorimeter with an electron beam at the ELSA

    International Nuclear Information System (INIS)

    Dziewiecki, M; Kurjata, R; Marzec, J; Rychter, A; Anfimov, N; Anosov, V; Chalyshev, V; Chirikov-Zorin, I; Frolov, V; Guskov, A; Krumshteyn, Z; Nagaytsev, A; Olchevski, A; Orlov, I; Rybnikov, A; Selyunin, A; Barth, J; Elsner, D; Frommberger, F; Klein, F

    2015-01-01

    ECAL0 is a new electromagnetic calorimeter designed for studying generalized parton distributions at the COMPASS II experiment at CERN. It will be located next to the target and will cover larger photon angles (up to 30 degrees). It is a modular high-granularity Shashlyk device with total number of individual channels of approx. 1700 and readout based on wavelength shifting fibers and micropixel avalanche photodiodes. Characterization of the calorimeter includes tests of particular sub-components, tests of complete modules and module arrays, as well as a pilot run of a fully-functional, quarter-size prototype in the COMPASS experiment. The main goals of the tests on low-intensity electron beam at the ELSA accelerator in Bonn were: to provide energy calibration using electrons, to measure angular response of the calorimeter and to perform an energy scan to cross-check previously collected data. A dedicated measurement setup was prepared for the tests, including a 3x3 array of the ECAL0 modules, a scintillating-fibre hodoscope and a remotely-controlled motorized movable platform. The measurements were performed using three electron energies: 3.2 GeV, 1.6 GeV and 0.8 GeV. They include a calibration of the whole detector array with a straight beam and multiple angular scans

  8. Fine-granularity electromagnetic calorimeter using plastic scintillator strip-array

    International Nuclear Information System (INIS)

    Nagano, A.; Yamauchi, S.; Matsunaga, H.; Kim, S.; Matsumoto, T.; Sekiguchi, K.; Uchida, N.; Yamada, Y.; Yamamoto, S.; Evtoukhovitch, P.; Fujii, Y.; Garutti, E.; Iba, S.; Itoh, S.; Kajino, F.; Kalinnikov, V.; Kallies, W.; Kanzaki, J.; Kawagoe, K.; Kishimoto, S.; Miyata, H.; Mzavia, D.; Nakajima, N.; Nakamura, R.; Ono, H.; Samoilov, V.; Sanchez, A.L.C.; Takeshita, T.; Tamura, Y.; Tsamalaidze, Z.

    2006-01-01

    For the future linear collider calorimetry, fine-granularity is indispensable for energy measurements based on particle flow algorithm, which could achieve better energy resolution for jets than the conventional method. To explore the possibility for such a calorimeter using scintillator, an electromagnetic calorimeter test module, made of scintillator-strips and lead plates, was constructed and tested with test beams. Performance of the test module is presented in this article, in terms of the shower profile studies as well as energy and spatial measurements

  9. Impact of Improved Heat Sinking of an X-Ray Calorimeter Array on Crosstalk, Noise, and Background Events

    Science.gov (United States)

    Kilbourne, C. A.; Adams, J. S.; Brekosky, R. P.; Chervenak, J. A.; Chiao, M. P.; Kelley, R. L.; Kelly, D. P.; Porter, F. S.

    2011-01-01

    The x-ray calorimeter array of the Soft X-ray Spectrometer (SXS) of the Astro-H satellite will incorporate a silicon thermistor array produced during the development of the X-Ray Spectrometer (XRS) of the Suzaku satellite. On XRS, inadequate heat sinking of the array led to several non-ideal effects. The thermal crosstalk, while too small to be confused with x-ray signals, nonetheless contributed a noise term that could be seen as a degradation in energy resolution at high flux. When energy was deposited in the silicon frame around the active elements of the array, such as by a cosmic ray, the resulting pulse in the temperature of the frame resulted in coincident signal pulses on most of the pixels. In orbit, the resolution was found to depend on the particle background rate. In order to minimize these effects on SXS, heat-sinking gold was applied to areas on the front and back of the array die, which was thermally anchored to the gold of its fanout board via gold wire bonds. The thermal conductance from the silicon chip to the fanout board was improved over that of XRS by an order of magnitude. This change was sufficient for essentially eliminating frame events and allowing high-resolution to be attained at much higher counting rates. We will present the improved performance, the measured crosstalk, and the results of the thermal characterization of such arrays.

  10. Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at ELSA

    Science.gov (United States)

    Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Dziewiecki, M.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Hillert, W.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rezinko, T.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.

    2015-07-01

    The array of 3 × 3 modules of the electromagnetic calorimeter ECAL0 of the COMPASS experiment at CERN has been tested with an electron beam of the ELSA (Germany) facility. The dependence of the response and the energy resolution of the calorimeter from the angle of incidence of the electron beam has been studied. A good agreement between the experimental data and the results of Monte Carlo simulation has been obtained. It will significantly expand the use of simulation to optimize event reconstruction algorithms.

  11. Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at the ELSA

    International Nuclear Information System (INIS)

    Anosov, V.A.; Anfimov, N.V.; Barth, J.

    2015-01-01

    The array of 3x3 modules of the electromagnetic calorimeter ECAL0 of the COMPASS experiment at CERN has been tested with an electron beam of the ELSA (Germany) facility. The dependence of the response and the energy resolution of the calorimeter on the angle of incidence of the electron beam has been studied. A good agreement between the experimental data and the results of Monte Carlo simulation has been obtained. It will significantly expand the use of simulation to optimize event reconstruction algorithms.

  12. Dance Facilities.

    Science.gov (United States)

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  13. Restoration of parameters of high-energy cascades in Cherenkov water calorimeter with a dense array of quasispherical modules

    International Nuclear Information System (INIS)

    Khomyakov, V. A.; Bogdanov, A. G.; Kindin, V. V.; Kokoulin, R. P.; Petrukhin, A. A.; Khokhlov, S. S.; Shutenko, V. V.; Yashin, I. I.

    2015-01-01

    A problem concerning the restoration of the parameters of a cascade shower with an unknown axis originating by muons in a Cherenkov water calorimeter is considered. A method for estimating the direction and geometric position of the cascade’s axis, which is based on the analysis of responses of quasispherical modules, and the criteria of selection of the events with cascades among the events with a large energy liberation are proposed. The method and the criteria are tested on events with cascades generated by near-horizontal muons of high energies detected by a DECOR coordinate-track detector. The preliminary results of measurements of the energy spectrum of cascade showers are presented

  14. Dance Lessons.

    Science.gov (United States)

    Hahn, Emily

    2015-01-01

    Nursing has been described as an art and a science. The scientific aspect of nursing can be learned in nursing school and in years of practice. However, the art of nursing is enriched by each nurse's connection with life experiences. The purpose of this article is to highlight my particular life experience with dance and to show how studying dance has helped me become the strong nursing leader I am today.

  15. A fast charge-integrating sample-and-hold circuit for fast decision-making with calorimeter arrays

    International Nuclear Information System (INIS)

    Schuler, G.

    1982-01-01

    This paper describes a fast charge-integrating sample-and-hold circuit, particularly suited to the fast trigger electronics used with large arrays of photomultipliers in total-energy measurements of high-energy particles interactions. During a gate logic pulse, the circuit charges a capacitor with the current fed into the signal input. The output voltage is equal to the voltage developed across the capacitor, which is held until a fast clear discharges the capacitor. The main characteristics of the fast-charge-integrating sample-and-hold circuit are: i) a conversion factor of 1 V/220 pC; ii) a droop rate of 4 mV/μs for a 50 Ω load; and iii) a 1 μs fast-clear time. (orig.)

  16. Dancing Aikido

    DEFF Research Database (Denmark)

    Ravn, Susanne

    to defend them-selves effectively. The incorporation of aikido-movement requires them to train to being able to adjust their sense of energy in their movement according to the energy sensed in the interaction with their actual partner attacking them. At the same time, aikido is practiced in a setting which......The martial art form of aikido can be related to the development of the dance genre of contact improvisation as well as to different kinds of dance training. Having this relation to dance practices in mind, the aim of this paper is to explore how an embodied sense of energy is developed...... in the interactional settings of aikido training. Methodologically, the exploration of aikido practices draws on auto-ethnographical methodologies and recent phenomenological discussions and explorations of interaction. In the training of aikido, practitioners focus on developing an embodied competence of how...

  17. Dance Therapy.

    Science.gov (United States)

    Leventhal, Marcia B.

    1980-01-01

    Dance therapy deals with personal growth via body-mind interaction. A change in movement expression is believed to result in a personality or behavior change. The therapist is trained to become sensitive to movement expression as it relates to the psychological, motor, and cognitive development of the child. (JN)

  18. Plutonium assay calorimeters

    International Nuclear Information System (INIS)

    Perry, R.B.

    1978-01-01

    Three calorimeters were developed for the IAEA: a small-sample portable calorimeter, a bulk calorimeter for up to 2 kg Pu in cans and capable of measuring up to 25 watts, and a calorimeter for 4-m long LWR Pu-recycle fuel roads. Design parameters and performance capability are given, and the instruments are compared with those developed for NRC

  19. Dancing club

    CERN Multimedia

    Dancing club

    2015-01-01

    The CERN Dancing Club organizes a Tango workshop on Saturday 21 March and a West Coast and Boogie workshop on Saturday 18 April. These workshops are open to everyone in its B566 ballroom (See the poster). Furthermore, the club invites you to its Argentine Tango party on 20 March. These events are free and open to everyone. You bring something to eat and the club offers the drinks (non alcoholic).  

  20. Dance: Verities, Values, Visions.

    Science.gov (United States)

    Boorman, Joyce, Ed.; Harris, Dorothy, Ed.

    The Binational Dance Conference was organized into three focal themes--verities, values, and visions in dance--to emphasize the known and accepted worth and value of dance, and to stimulate through knowledge and idea exchange, imaginative directions for dance in the future of both the United States and Canada. This thematic structure is also the…

  1. Dance learning in motion: global dance education

    DEFF Research Database (Denmark)

    Brown, Ann Kipling; Koff, Susan R.; Meiners, Jeff

    2015-01-01

    Reports indicate that dance-learning experiences provided for young people in and outside schools impact positively upon young people’s learning in schools, as well as in pre-service and professional development programs for those who teach dance in various settings. Support of major dance...... organizations as well as the goals of the United Nations Educational, Scientific and Cultural Organisation (UNESCO) affirm the importance of dance education and encourage the research and practice to provide lifelong and intergenerational learning in, about and through dance education. This paper describes...... the results of a survey questionnaire, which captures the narratives and contexts from lived experiences of university students and graduates in formal, informal and non-formal settings and how those are experienced. This initial study confirmed the power of dance and the significance of dance in peoples...

  2. Installing the ATLAS calorimeter

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The eight toroid magnets can be seen surrounding the calorimeter that is later moved into the middle of the detector. This calorimeter will measure the energies of particles produced when protons collide in the centre of the detector.

  3. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  4. Peltier ac calorimeter

    OpenAIRE

    Jung, D. H.; Moon, I. K.; Jeong, Y. H.

    2001-01-01

    A new ac calorimeter, utilizing the Peltier effect of a thermocouple junction as an ac power source, is described. This Peltier ac calorimeter allows to measure the absolute value of heat capacity of small solid samples with sub-milligrams of mass. The calorimeter can also be used as a dynamic one with a dynamic range of several decades at low frequencies.

  5. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  6. Current and Future Research at DANCE

    Science.gov (United States)

    Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Hayes, A.; Kawano, T.; Mosby, S.; Rusev, G.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Walker, C. L.; Wilhelmy, J. B.

    2015-05-01

    An overview of the current experimental program on measurements of neutron capture and neutron induced fission at the Detector for Advanced Neutron Capture Experiments (DANCE) is presented. Three major projects are currently under way: 1) high precision measurements of neutron capture cross sections on Uranium isotopes, 2) research aimed at studies of the short-lived actinide isomer production in neutron capture on 235U and 3) measurements of correlated data of fission observables. New projects include developments of auxiliary detectors to improve the capability of DANCE. We are building a compact, segmented NEUtron detector Array at DANCE (NEUANCE), which will be installed in the central cavity of the DANCE array. It will provide experimental information on prompt fission neutrons in coincidence with the prompt fission gamma-rays measured by 160 BaF2 crystals of DANCE. Unique correlated data will be obtained for neutron capture and neutron-induced fission using the DANCE-NEUANCE experimental set up in the future.

  7. Dance Education Research and Supplementary Articles.

    Science.gov (United States)

    Minton, Sandra, Comp.

    This bibliography presents listings in the following areas: assessment in dance education; attitudinal studies in dance education; dance certification, standards, status; dance curricula; dance education history; dance education and technology; dance education theory; dance teacher behaviors; dance teacher preparation; descriptions of dance…

  8. The BaBar electromagnetic calorimeter

    CERN Document Server

    Lewandowski, B

    2002-01-01

    The BaBar electromagnetic calorimeter is a hermetic, total-absorption array of CsI(Tl)-crystals, operated at the asymmetric e sup - e sup + -collider PEP-II at SLAC. The design and the status of the performance as of February 2002 is presented.

  9. Dance in The Netherlands

    NARCIS (Netherlands)

    Wildschut, E.M.M.

    2005-01-01

    The aim of my lecture is to give you an overview of the history of Dutch theatre dance. I will show you the richness of our dance landscape by the video examples. Dutch theatre dance has no long tradition and it is this lack of tradition that made dancers and choreographers curious for new elements

  10. Shall We Dance?

    Science.gov (United States)

    Black, Susan

    2001-01-01

    Of all art forms, dance is experienced least and considered low-priority. Art educators and the NAEP's arts education framework view dance as essential for every child's complete development. The National Dance Association has set high standards. Baltimore and South Bronx programs are profiled. (MLH)

  11. Dance Education in Korea

    Science.gov (United States)

    Byeon, Jae-Kyung

    2012-01-01

    Despite a structured physical education system and related policies, dance education in Korea largely exists as a course in name only, without achieving its unique goals. It lacks standards within the physical education curriculum, which indicates that dance education is not conducted properly. Thus, the content and level of dance education vary…

  12. Dance Therapy: Focus on Dance VII.

    Science.gov (United States)

    Mason, Kathleen Criddle, Ed.

    This document is a collection of essays by various authors on the subject of dance therapy. Dance therapy, in the introduction of this document, is defined as a form of psychotherapy in which the therapist utilizes movement interaction as the primary means of accomplishing therapeutic goals. The document is divided into five parts: a)…

  13. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  14. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    International Nuclear Information System (INIS)

    Machefert, F.

    2011-01-01

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the pre-shower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure this tolerance are also given. The second part of this document concerns both the identification of the photons with LHCb and the calibration of the calorimeters. The photon identification method is presented and the performances given. Finally, the absolute energy calibration of the PRS and ECAL, based on the data stored in 2010 is explained. (author)

  15. RENAISSANCE AND BAROQUE DANCES: RECONSTRUCTION AND DANCE WORKSHOPS

    OpenAIRE

    Katarinčić, Ivana

    2008-01-01

    The numerous dance manual publications dating from the Renaissance and Baroque eras testify to the exceptional importance of the art of dance during those eras. From as early as the 15th century, they noted the history of dance, conduct while dancing and the style and technique of dancing. They contained information on the performance of individual steps, their combinations and the structure of the complete choreographies, as well as instructions on exemplary behaviour on the dance podium ...

  16. PANDA electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Semenov, P.A.; Kharlov, Yu.V.; Uzunian, A.V.; Chernichenko, S.K.; Derevschikov, A.A.; Davidenko, A.M.; Goncharenko, Y.M.; Kachanov, V.A.; Konstantinov, A.S.; Kormilitsin, V.A.; Matulenko, Yu.A.; Meschanin, A.P.; Melnick, Y.M.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Novotny, R.W.; Ryazantsev, A.A.; Soldatov, A.P.; Soloviev, L.F.

    2009-01-01

    PANDA is a challenging experimental setup to be implemented at the high-energy storage ring (HESR) at the international facility FAIR, GSI (Germany). PANDA physics program relies heavily on the capability to measure photons with excellent energy, position and timing resolution. For this purpose PANDA proposed to employ electromagnetic calorimeters using two different technologies: compact crystal calorimeter cooled to -25 deg. C around target and lead-scintillator sandwich calorimeter with optical fibers light collection (so-called shashlyk calorimeter) in the forward region. Institute for High Energy Physics (IHEP) PANDA group reports on two types of measurements performed at IHEP, Protvino: radiation hardness of the PWO crystals at -25 deg. C and testbeam studies of the energy and position resolution of the shashlyk calorimeter prototype in the energy range up to 19 GeV.

  17. AIDA: concerted calorimeter development

    CERN Multimedia

    Felix Sefkow

    2013-01-01

    AIDA – the EU-funded project bringing together more than 80 institutes worldwide – aims at developing new detector solutions for future accelerators. Among the highlights reported at AIDA’s recent annual meeting in Frascati was the completion of an impressive calorimeter test beam programme, conducted by the CALICE collaboration over the past two years at CERN’s PS and SPS beam lines.   The CALICE tungsten calorimeter prototype under test at CERN. This cubic-metre hadron calorimeter prototype has almost 500,000 individually read-out electronics channels – more than all the calorimeters of ATLAS and CMS put together. Calorimeter development in AIDA is mainly motivated by experiments at possible future electron-positron colliders, namely ILC or CLIC. The physics requirements of such future machines demand extremely high-performance calorimetry. This is best achieved using a finely segmented system that reconstructs events using the so-called pa...

  18. Nordic Dance Spaces

    DEFF Research Database (Denmark)

    This volume identifies different kinds of dance activities and examines their distribution and modes of operation across and beyond the Nordic region. The focus of the research is on dance and how it moves between different locations, organizations and networks of individuals. The study integrates...... three complementary perspectives. One looks at the interplay between politics and larger global flows on the one hand and the movements of dance and dancers on the other. Another looks at the contribution of localized activities such as dance festivals, competitions and cultural mobility pro......-grammes to the transnational movements within dance. The third looks at the ways in which the impact of the transnational context is supported, resisted or commented upon either by the general public, in the dance itself or by the dancers themselves. The book presents a critical analysis of cul-tural location, relocation...

  19. The Negro Dance

    Directory of Open Access Journals (Sweden)

    Katherine Dunham

    2016-12-01

    Full Text Available Katherine Dunham’s The Negro Dance (1941 focuses on dances in the West Indies and on their similarities with North American dance forms rooted in African culture. Though backed up by the New Negro arguments of the time, it shows Dunham’s prominent elaboration of a dignified African-American art based on syncretic bodily practices, which anticipated theorizations in dance and cultural studies. By uniting a theoretical approach and performance ability, she also made methodological choices which, decades later, became standard practices in the field of dance anthropology. Moreover, she is now considered an ante litteram exponent of public or applied anthropology due to the fact that, by using various strategies, she managed to take anthropological knowledge out of the academic world and use it as an instrument for social transformation. The Negro Dance is introduced by Rossella Mazzaglia and followed by an afterword by Cristiana Natali and a biographical note by Marie-Christine Dunham Pratt.

  20. British Dance: Black Routes

    OpenAIRE

    Adair, C.; Burt, Ramsay, 1953-

    2016-01-01

    British Dance: Black Routes re-examines the distinctive contributions made to British dance by dancers who are Black. Covering the period 1946 to the present, it presents a radical re-reading of dancers and their companies, placing their achievements within a broader historical, cultural and artistic context. The result of a two year research project, British Dance and the African Diaspora, led by editors Christy Adair and Ramsay Burt, the collection looks at artists working with contempor...

  1. International workshop on calorimeter simulation

    International Nuclear Information System (INIS)

    Filges, D.; Cloth, P.

    1988-10-01

    The aim of the Juelich workshop was to provide an overview of the state of calorimeter simulation and the methods used. This resulted in 29 contributions to the following topics: Code systems relevant to calorimeter simulation, vectorization and code speed-up, simulation of calorimeter experiments, special applications of calorimeter simulation. This report presents the viewgraphs of the given talks. (orig./HSI)

  2. Calorimeters for biotechnology

    International Nuclear Information System (INIS)

    Russell, Donald J.; Hansen, Lee D.

    2006-01-01

    The isothermal and temperature scanning calorimeters manufactured by Calorimetry Sciences Corporation are briefly described. Applications of calorimetry to determine thermodynamics and kinetics of reactions of interest in biotechnology are described with illustrative examples

  3. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer componentsThe Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  4. Dance for Older Adults.

    Science.gov (United States)

    Pruett, Diane Milhan, Ed.; And Others

    1983-01-01

    Dance programs for older adults that encourage exercise and socializing are described in six articles. Program guidelines of the American Alliance Committee on Aging are explained, and other articles emphasize a movement education approach that may involve intergenerational contact. A dance program held in a worship setting is also discussed. (PP)

  5. [Dance/Movement Therapy.

    Science.gov (United States)

    Fenichel, Emily, Ed.

    1994-01-01

    This newsletter theme issue focuses on dance, play, and movement therapy for infants and toddlers with disabilities. Individual articles are: "Join My Dance: The Unique Movement Style of Each Infant and Toddler Can Invite Communication, Expression and Intervention" (Suzi Tortora); "Dynamic Play Therapy: An Integrated Expressive Arts Approach to…

  6. Dances and Games.

    Science.gov (United States)

    Hansen, Karen

    1991-01-01

    Presents guidelines for teaching students about African culture via dances and games and for developing related activities to expand student learning experiences. Student activity pages describe how to do the Ghana national dance and how to play Mankala, a popular African game. (SM)

  7. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  8. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  9. Dance Critique as Signature Pedagogy

    Science.gov (United States)

    Kearns, Lauren

    2017-01-01

    The curriculum of preprofessional university degree programs in dance typically comprise four components: theory and history, dance technique, creative process, and performance. This article focuses on critique in the modern dance technique and choreography components of the dance curriculum. Bachelor of Fine Arts programs utilize critique as a…

  10. The evolution of dance.

    Science.gov (United States)

    Laland, Kevin; Wilkins, Clive; Clayton, Nicky

    2016-01-11

    Evidence from multiple sources reveals a surprising link between imitation and dance. As in the classical correspondence problem central to imitation research, dance requires mapping across sensory modalities and the integration of visual and auditory inputs with motor outputs. Recent research in comparative psychology supports this association, in that entrainment to a musical beat is almost exclusively observed in animals capable of vocal or motor imitation. Dance has representational properties that rely on the dancers' ability to imitate particular people, animals or events, as well as the audience's ability to recognize these correspondences. Imitation also plays a central role in learning to dance and the acquisition of the long sequences of choreographed movements are dependent on social learning. These and other lines of evidence suggest that dancing may only be possible for humans because its performance exploits existing neural circuitry employed in imitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Proportional wire calorimeters at ISABELLE

    International Nuclear Information System (INIS)

    Matthews, J.A.J.

    1979-01-01

    Gas calorimeters have recently increased in popularity because they provide a simple method of achieving a high degree of calorimeter segmentation with only a modest loss in energy resolution compared with liquid argon or scintillator calorimeters. High radiation levels at ISABELLE will result in gas calorimeter lifetimes similar to those of MWPCs, although the intermediate speed of these devices may cause some resolution degradation due to signal pileup. Schemes for calibration and monitoring gas calorimeters in situ must be evolved and will presumably utilize a combination of pulsers, imbedded 55 Fe sources, etc. Most of the recent development work on gas calorimeters has been centered on electromagnetic (em) calorimetry for large detectors at CESR and PEP. Data on the performance of gas calorimeters are given and compared with the liquid argon results of Hitlin et al. The hadronic gas calorimeter results of Anderson et al. are shown along with typical energy resolution results from various scintillator and liquid argon steel calorimeters

  12. The presampler for the forward and rear calorimeter in the ZEUS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, A; Bornheim, A; Crittenden, J; Grabosch, H -J; Grothe, M; Hervas, L; Hilger, E; Holm, U; Horstmann, D; Kaufmann, V; Kharchilava, A; Koetz, U; Kummerow, D; Mallik, U; Meyer, A; Nowoczyn, M; Ossowski, R; Schlenstedt, S; Tiecke, H; Verkerke, W; Vossebeld, J; Vreeswijk, M; Wang, S M; Wu, J [Bonn Univ. (Germany). Phys. Inst.; [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); [DESY-IfH Zeuthen, Zeuthen (Germany); [Fakultaet fuer Physik der Universitaet Freiburg, Freiburg i.Br. (Germany); [Hamburg University, I. Institute of Exp. Physics, Hamburg (Germany); [University of Iowa Physics and Astronomy Dept, Iowa City (United States); [Univer. Autonoma Madrid, Depto de Fisica Teorica, Madrid (Spain); [NIKHEF and University of Amsterdam, Amsterdam (Netherlands)

    1996-11-21

    The ZEUS detector at HERA has been supplemented with a presampler detector in front of the forward and rear calorimeters. It consists of a segmented scintillator array read out with wavelength-shifting fibers. We discuss its design, construction and performance. Test beam data obtained with a prototype presampler and the ZEUS prototype calorimeter demonstrate the main function of this detector, i.e. the correction for the energy lost by an electron interacting in inactive material in front of the calorimeter. (orig.).

  13. The caring dance.

    Science.gov (United States)

    Johns, C

    2001-02-01

    As nursing and health care practice enter the new Millennium, practitioners are increasingly urged to pay attention to evidenced based practice to justify what they do. Yet the truth is, that within the caring dance, practitioners need to connect with more ancient sources of wisdom. Failure to do so leads to a life out of balance and a failure to dance well and fulfil the fundamental role of being a nurse. The paper draws exclusively on the work of Blackwolf and Gina Jones, as an example of such ancient wisdom to inform and inspire the caring dance.

  14. Magnetically Coupled Calorimeters

    Science.gov (United States)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  15. WHEN PROSE DANCES AND DANCE WALKS

    Directory of Open Access Journals (Sweden)

    Ana Marques Gastão

    2011-04-01

    Full Text Available To Paul Valéry, prose follows the less action path, as in marching in a straight line, and poetry, as in dancing – in as much as it is a «system of acts» – it not only intends to go nowhere but it remains in its own realisation, creating its own purpose. Why then does his prose contain this commanded impulse, led by desire, and his poetry does not, since they are so often one and the same? In this essay, looking at works by Rainer Marie Rilke, Fernando Pessoa, António Vieira and Yvette K. Centeno, I develop the idea that, very often, to establish a distinction between genres can be impractical and useless, if one considers concepts such as march/walk and dance from a choreographic perspective. Even if it be a possible question and since it has nevertheless been the object of study by scholars of all times, why is it undertaken? Why can’t prose be danced to, and poetry marched to? Can the walking essence unconsciously dance?

  16. Definition of dance and dance movement therapy: overview of dance styles and their application for the scopes of the dance movement therapy in different countries and cultures

    OpenAIRE

    Di Dio, Kristina

    2017-01-01

    The master thesis discusses the areas of dance and dance movement therapy. Moreover it presents an overview of the artistic dance, which is applied for therapeutic treatment purposes. Furthermore, it defines concepts and dance genres that are present within different dance movement therapy approaches. Dance description is further elaborated in those chapters dedicated to the understanding and development of dance movement therapy. The thesis presents different dance genres and forms, whi...

  17. The ATLAS Tile Calorimeter

    CERN Document Server

    Henriques Correia, Ana Maria

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics.

  18. The ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Henriques, A.

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)

  19. ALICE Zero Degree Calorimeter

    CERN Multimedia

    De Marco, N

    2013-01-01

    Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.

  20. SLD liquid argon calorimeter

    International Nuclear Information System (INIS)

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z 0 decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z 0 events) is discussed

  1. Modeling of Reaction Calorimeter

    OpenAIRE

    Farzad, Reza

    2014-01-01

    The purpose of this project was to model the reaction calorimeter in order to calculate the heat of absorption which is the most important parameter in this work. Reaction calorimeter is an apparatus which is used in measuring the heat of absorption of CO2 as well as the total pressure in vapor phase based on vapor-liquid equilibrium state. Mixture of monoethanolamine (MEA) and water was used as a solvent to absorb the CO2.Project was divided in to three parts in order to make the programming...

  2. A digital calorimeter

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1983-01-01

    The paper describes a calorimeter which is used to determine the particle flux of an accelerator. It incorporates as its principal feature a Peltier module which is operated in a constant current pulse mode. Via a feedback arrangement, the Peltier module thermally compensates the heat generated by the particle beam by supplying discrete 'cooling quanta'. The number of 'quanta' generated per unit time is measured with a frequency counter and is proportional to the beam power. The calorimeter can be calibrated via internal resistors which dissipate a precisely known amount of power in the target. (orig.)

  3. The SDC central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Proudfoot, J.

    1992-01-01

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design.

  4. The SDC central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Proudfoot, J.; The SDC Collaboration

    1992-11-01

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R&D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design.

  5. Injuries in Irish dance.

    Science.gov (United States)

    Stein, Cynthia J; Tyson, Kesley D; Johnson, Victor M; Popoli, David M; d'Hemecourt, Pierre A; Micheli, Lyle J

    2013-12-01

    Irish dance is growing in popularity and competitiveness; however, very little research has focused specifically on this genre of dance. The purpose of this study was to analyze the types of dance injuries incurred by Irish dancers. A chart review was performed to identify all injuries associated with Irish dance seen in the sports medicine or orthopaedic clinics at the investigators' hospital over an 11-year period. "Injury" was defined as any dance-related pain or disorder that led to evaluation in the clinics. Survey data were also collected from study participants. Ultimately, 255 patients from over 30 different schools of dance were seen with injuries directly related (726 clinic visits) or partially related (199 visits) to Irish dance. Participants ranged in age from 4 to 47, with 95% (243/255) under the age of 19. These 255 patients received 437 diagnoses. Almost 80% of the injuries (348/437) were attributable to overuse, and 20.4% were acute and traumatic injuries (89/437). Ninety-five percent (95.9%) of injuries involved the hip or lower extremity. The most common sites were the foot (33.2%), ankle (22.7%), knee (19.7%), and hip (14.4%). Typical diagnoses were tendon injury (13.3%), apophysitis (11.4%), patellofemoral pain and instability (10.8%), stress injury (10.1%), and muscle injury (7.8%). The majority of traumatic injuries were seen in clinic within 3 weeks, but less than a quarter of overuse injuries were seen that quickly. The most common treatment, prescribed to 84.3% of patients, was physical therapy and home exercises, and the majority of dancers (64.3%) were able to return to full dance activity after injury.

  6. Sports dance artistic expression culture analysis

    Directory of Open Access Journals (Sweden)

    Chen Zegang

    2017-01-01

    Full Text Available At present, the sports dance has entered every stage of the people’s life, has become the public’s favorite sport. Sports dance has been well developed. This article mainly uses the literature material law to carry on the detailed analysis to the sports dance constitution, elaborated in detail the sports dance artistic expression. The composition of sports dance elements; sports dance is a form of dance art show; sports dance through the dance art can be divided into three aspects, namely, form, music, shape of the expressive force. In this paper, the study will be more in-depth excavation of the cultural connotation of sports dance, and promote the development of sports dance can be more comprehensive. In 20s of last century, Chinese Sports Dance Association officially joined the International Sports Dance Association, which also makes our country’s sports dance and international exchange more frequent. However, due to China’s sports dance sports dance learning time is not long, while learning is influenced by Chinese traditional culture, the sports dance movements are too conservative, there is a very large gap and international enthusiasm, bold and unrestrained, the pursuit of individual sports dance in the dance style, music and performance hand. Sports dance originated from abroad, it is produced in the daily life of people in foreign countries. China’s domestic sports dance players in learning dance at the same time, the production and the connotation of dance is not very understanding, therefore, it is difficult to better reflect the emotional expression of sports dance. Although the sports dance is a kind of similar to the competitive projects, but it is also a kind of dance culture, and to constitute a force from the dance art show a detailed study, detailed mining playing officer of sports dance performance further, reducing China’s sports dance and international sports dance gap.

  7. Marketing communication of dancing school Luas Dancing School.

    OpenAIRE

    Vařechová, Alice

    2016-01-01

    Title: Marketing communication of dancing school Luas Dancing School. Objectives: This thesis is trying to come up with new and effective marketing communication for dancing school. It is based on the old propagation methods and trying to do it better with documents obtained from theoretical part. Methods: Methods we used for this thesis are interview with owner and founder of this dancing school and discussion with dancers of this school. Some of them are long term dancers and some of them a...

  8. Dancing beyond exercise: young people's experiences in dance classes

    OpenAIRE

    Gardner, SM; Komesaroff, P; Fensham, R

    2008-01-01

    Dance classes in urban settings may have a role in health-promotion programmes seeking to increase physical activity amongst young people. However, little is so far known about the motivations, experiences or health outcomes of those participating in dance classes. This qualitative study of young people attending recreational dance classes addressed motivations, the nature of the class experience, and implications for health and well-being. Data show that young dance participants' experiences...

  9. MAC calorimeters and applications

    International Nuclear Information System (INIS)

    MAC Collaboration.

    1982-03-01

    The MAC detector at PEP features a large solid-angle electromagnetic/hadronic calorimeter system, augmented by magnetic charged-particle tracking, muon analysis and scintillator triggering. Its implementation in the context of electron-positron annihilation physics is described, with emphasis on the utilization of calorimetry

  10. CMS Central Hadron Calorimeter

    OpenAIRE

    Budd, Howard S.

    2001-01-01

    We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.

  11. Gas calorimeter workshop: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Gas calorimeters combining functions of energy measurement and fine tracking have become more and more popular in the past few years. They help identify muons, gammas, electrons, and hadrons within dense tracks from transverse and longitudinal shower development. Fine segmentation capability using pads and strips on the cathodes have made gas-sampling calorimeters very attractive for colliding-beam detectors where a large multiplicity of particles are detected in a projected geometry. Linearity, energy resolution, shower position resolution, multishower resolution, and calibration questions were discussed in detail at the workshop. Ease of energy calibration by monitoring radioactive sources, good gain uniformity, and gain stability obtained were among the topics of the speakers. There was a discussion session on the operation mode of wire chambers. Gas calorimeters have been used successfully at CERN, Cornell, Fermilab, and SLAC for experiments. Some of the results from those large-scale devices were reported. Future usage of gas-sampling calorimeters for colliding-beam experiments at Fermilab and CERN were discussed. Wire chambers using extruded conductive plastic tubes have made construction easy of pads and strips which can conveniently read out induced signals from the cathode. The results of extensive studies on such devices were discussed. Separate entries were prepared for the data base for the 17 papers presented

  12. An Inexpensive Solution Calorimeter

    Science.gov (United States)

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  13. Calorimeter for thermal sources

    International Nuclear Information System (INIS)

    Shai, I.; Shaham, Ch.; Barnea, I.

    1978-12-01

    A calorimeter was built, enabling the thermal power of radioactive sources to be measured in the range of 50 to 120 mW. The system was calibrated with an electrical heater. The calibration curves serve to determine the power of radioactive sources with a reasonable accuracy

  14. Automatic low-temperature calorimeter

    International Nuclear Information System (INIS)

    Malyshev, V.M.; Mil'ner, G.A.; Shibakin, V.F.; Sorkin, E.L.

    1986-01-01

    This paper describes a low-temperature adiabatic calorimeter with a range of 1.5-500K. The system for maintaining adiabatic conditions is implemented by two resitance thermometers, whose sensitivity at low temperatures is several orders higher than that of thermocouples. The calorimeter cryostat is installed in an STG-40 portable Dewar flask. The calorimeter is controlled by an Elektronika-60 microcomputer. Standard platinum and germanium thermometers were placed inside of the calorimeter to calibrate the thermometers of the calorimeter and the shield, and the specific heats of specimens of OSCh 11-4 copper and KTP-8 paste were measured to demonstrate the possibilities of the described calorimeter. Experience with the calorimeter has shown that a thorough study of the dependence of heat capacity on temperature (over 100 points for one specimen) can be performed in one or two dats

  15. Dance your way to fitness

    Science.gov (United States)

    ... ency/patientinstructions/000809.htm Dance your way to fitness To use the sharing features on this page, ... to rhythm and music. Many health clubs and fitness centers offer dance workout classes, such as Zumba. ...

  16. New approach to the readout system for a very large bismuth germanate calorimeter

    International Nuclear Information System (INIS)

    Sumner, R.

    1982-01-01

    This note presents a possible solution to the problem of data acquisition and control for a very large array of BGO crystals. The array is a total energy calorimeter, which is a part of a detector being designed for LEPC. After a brief description of the environment, we present a working definition of the calorimeter, followed by a statement of the desirable characteristics of the readout system. After a discussion of some alternatives, a complete system is described

  17. Remixing the Dance Education Classroom

    Science.gov (United States)

    Koff, Susan R.

    2017-01-01

    Dance Education and Music Education are not the same, but are often considered together as Arts Education along with Theatre Education and Art Education. The history of Dance Education as a discipline is much shorter than Music Education, so Dance Education often looks to music education for leadership as well as scholarship. Remixing the…

  18. From Square Dance to Mathematics

    Science.gov (United States)

    Bremer, Zoe

    2010-01-01

    In this article, the author suggests a cross-curricular idea that can link with PE, dance, music and history. Teacher David Schmitz, a maths teacher in Illinois who was also a square dance caller, had developed a maths course that used the standard square dance syllabus to teach mathematical principles. He presents an intensive, two-week course…

  19. Speaking without words: Zorba's dance

    Directory of Open Access Journals (Sweden)

    Hnaraki Maria

    2009-01-01

    Full Text Available Anthony Quinn 'teaching dance' on the island of Crete to the music of Mikis Theodorakis is a popular image that portrays Greeks as extremely emotional passionate and spontaneous. This paper shows the importance of dancing in Greek culture and how Greeks talk through their body by examining Kazantzakis character, Zorba, who 'has many things to say but would rather dance them'.

  20. Dead Time in the LAr Calorimeter Front-End Readout

    CERN Document Server

    Gingrich, D M

    2002-01-01

    We present readout time, latency, buffering, and dead-time calculations for the switched capacitor array controllers of the LAr calorimeter. The dead time is compared with algorithms for the dead-time generation in the level-1 central trigger processor.

  1. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Roger Rusack

    Occupancy of the trigger primitives during a global run: the observed pattern is consistent with the polar angle dependence of the transverse energy equivalent of the electronic noise in the endcaps.   Progress on ECAL since the last CMS week has been mostly on three major fronts: we have continued with the installation and commissioning of the preshower detectors; the endcap calorimeter trigger has been installed and tested; and there have been many changes to the calorimeter detector control and safety systems. Both Preshower (ES) endcaps were installed in CMS on schedule, just before Easter. There followed a campaign of "first commissioning" to ensure that all services were correctly connected (electrical, optical, cooling, etc.). Apart from some optical ribbons that had to be replaced the process went rather smoothly, finishing on 23rd April. All power supplies are installed and operational. The cooling system (two branches of the joint Tracker-Preshower system) is fully fun...

  2. NA48 prototype calorimeter

    CERN Multimedia

    1990-01-01

    This is a calorimeter, a detector which measures the energy of particles. When in use, it is filled with liquid krypton at -152°C. Electrons and photons passing through interact with the krypton, creating a shower of charged particles which are collected on the copper ribbons. The ribbons are aligned to an accuracy of a tenth of a millimetre. The folding at each end allows them to be kept absolutely flat. Each shower of particles also creates a signal in scintillating material embedded in the support disks. These flashes of light are transmitted to electronics by the optical fibres along the side of the detector. They give the time at which the interaction occurred. The photo shows the calorimeter at NA48, a CERN experiment which is trying to understand the lack of anti-matter in the Universe today.

  3. UA2 central calorimeter

    CERN Multimedia

    The UA2 central calorimeter measured the energy of individual particles created in proton-antiproton collisions. Accurate calibration allowed the W and Z masses to be measured with a precision of about 1%. The calorimeter had 24 slices like this one, each weighing 4 tons. The slices were arranged like orange segments around the collision point. Incoming particles produced showers of secondary particles in the layers of heavy material. These showers passed through the layers of plastic scintillator, generating light which was taken by light guides (green) to the data collection electronics. The amount of light was proportional to the energy of the original particle. The inner 23 cm of lead and plastic sandwiches measured electrons and photons; the outer 80 cm of iron and plastic sandwiches measured strongly interacting hadrons. The detector was calibrated by injecting light through optical fibres or by placing a radioactive source in the tube on the bottom edge.

  4. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  5. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  6. Sharing the dance -

    DEFF Research Database (Denmark)

    He, Jing; Ravn, Susanne

    2018-01-01

    In his recent works on daily face-to-face encounters, Zahavi claims that the phenomenon of sharing involves reciprocity. Following Zahavi’s line of thought, we wonder what exactly reciprocity amounts to and how the shared experience emerges from the dynamic process of interaction. By turning...... to the highly specialized field of elite sports dance, we aim at exploring the way in which reciprocity unfolds in intensive deliberate practices of movement. In our analysis, we specifically argue that the ongoing dynamics of two separate flows of movement constitute a shared experience of dancing together...

  7. The CMS crystal calorimeter

    CERN Document Server

    Lustermann, W

    2004-01-01

    The measurement of the energy of electrons and photons with very high accuracy is of primary importance far the study of many physics processes at the Large Hadron Collider (LHC), in particular for the search of the Higgs Boson. The CMS experiment will use a crystal calorimeter with pointing geometry, almost covering 4p, as it offers a very good energy resolution. It is divided into a barrel composed of 61200 lead tungstate crystals, two end-caps with 14648 crystals and a pre-shower detector in front of the end-cap. The challenges of the calorimeter design arise from the high radiation environment, the 4 Tesla magnetic eld, the high bunch crossing rate of 40 MHz and the large dynamic range, requiring the development of fast, radiation hard crystals, photo-detectors and readout electronics. An overview of the construction and design of the calorimeter will be presented, with emphasis on some of the details required to meet the demanding performance goals. 19 Refs.

  8. Sports dance artistic expression culture analysis

    OpenAIRE

    Chen Zegang

    2017-01-01

    At present, the sports dance has entered every stage of the people’s life, has become the public’s favorite sport. Sports dance has been well developed. This article mainly uses the literature material law to carry on the detailed analysis to the sports dance constitution, elaborated in detail the sports dance artistic expression. The composition of sports dance elements; sports dance is a form of dance art show; sports dance through the dance art can be divided into three aspects, namely, fo...

  9. Precision titration mini-calorimeter

    International Nuclear Information System (INIS)

    Ensor, D.; Kullberg, L.; Choppin, G.

    1977-01-01

    The design and test of a small volume calorimeter of high precision and simple design is described. The calorimeter operates with solution sample volumes in the range of 3 to 5 ml. The results of experiments on the entropy changes for two standard reactions: (1) reaction of tris(hydroxymethyl)aminomethane with hydrochloric acid and (2) reaction between mercury(II) and bromide ions are reported to confirm the accuracy and overall performance of the calorimeter

  10. "Dance for Your Health": Exploring Social Latin Dancing for Community Health Promotion

    Science.gov (United States)

    Iuliano, Joseph E.; Lutrick, Karen; Maez, Paula; Nacim, Erika; Reinschmidt, Kerstin

    2017-01-01

    The goal of "Dance for Your Health" was to explore the relationship between social Latin dance and health as described by members of the Tucson social Latin dance community. Social Latin dance was selected because of the variety of dances, cultural relevance and popularity in Tucson, and the low-key, relaxed atmosphere. Dance has been…

  11. Advanced Thin Ionization Calorimeter (ATIC)

    Science.gov (United States)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  12. Careers in Dance.

    Science.gov (United States)

    Weeks, Sandra

    Trends in the current job market in the field of dance are identified, and aspects, such as personal qualifications, training requirements, income potential, and employment possibilities, are discussed. Employment opportunities in the professional world, the field of education, and the corporate environment are explored. Career opportunities for…

  13. Dance Like a Butterfly

    Science.gov (United States)

    Stapp, Alicia; Chessin, Debby; Deason, Rebecca

    2018-01-01

    The authors represent the life cycle of the butterfly through writing, drawing, dance, and math. The Next Generation Science Standards (NGSS) (NGSS Lead States 2013) emphasize college and career readiness as well as critical thinking and problem-solving skills. Students must develop a deep understanding of science concepts and engage in scientific…

  14. Doctors Can Dance

    Science.gov (United States)

    Newell, Anna; Kleiman, Paul

    2012-01-01

    Between 2008-2010 the School of Medicine at Queen's University Belfast funded and supported two unique and intensive three week interdisciplinary performance projects in which medical and drama students worked together to create an experimental dance theatre piece. One of the unique aspects of this collaboration was that the medical students who…

  15. Dance Theatre of Harlem.

    Science.gov (United States)

    Petrides, Angelica

    1983-01-01

    Describes the emergence of the Dance Theatre of Harlem, which has united both aesthetic excellence and social purpose/community involvement since its founding in 1971. Reveals how current government policies have endangered its funding. Offers a critique of several productions, which showed a new emphasis on technique. (DMM)

  16. The dance of time

    CERN Document Server

    Aparici, Irene; Brokenbrow, Jon

    2014-01-01

    Winner at the 2014 Living Now Book Awards The Dance of Time is a book full of imagination and information, which will be useful for parents and teachers looking to accompany children on a different kind of journey through our solar system. Guided Reading Level: P, Lexile Level: 830L.

  17. Preferred Dance Tempo

    DEFF Research Database (Denmark)

    Dahl, Sofia; Huron, David; Brod, Garvin

    2014-01-01

    In two experiments participants tuned a drum machine to their preferred dance tempo. Measurements of height, shoulder width, leg length, and weight were taken for each participant, and their sex recorded. Using a multiple regression analysis, height and leg length combined was found to be the bes...

  18. "Learning to Dance"

    Science.gov (United States)

    Keller, Nicole

    2013-01-01

    This article describes how the author, Nicole Keller, found that her writing grew richer and more honest as her understanding of movement and her own body evolved through an Introduction to Modern Dance course. For the first time in her life as an aspiring writer, she felt connected to art, literature, and her personal history in ways that…

  19. SSRI Facilitated Crack Dancing

    Directory of Open Access Journals (Sweden)

    Ravi Doobay

    2017-01-01

    Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”

  20. Dance and Special Education

    Science.gov (United States)

    Munsell, Sonya E.; Bryant Davis, Kimberly E.

    2015-01-01

    Arts activities have been included in the educational curriculum of public schools for a number of years. Most often, course offerings in the arts consist of visual art, vocal music, and instrumental music classes. Although not as common, dance has also been included in the educational curriculum. Research and anecdotal evidence suggest that…

  1. Moving to the Rhythm of Africa: A Case Study of a Tertiary Educator's Understanding of Multicultural Dance in Teacher Education

    Science.gov (United States)

    Joseph, Dawn

    2013-01-01

    Australia is proud of its rich and varied array of the Arts depicting a range of cultural diversity formed by ongoing migration. Although the complex issues of dance, culture and identity are interconnected, forming a multicultural society in Australia, dance education is a powerful platform to transmit and promote togetherness where understanding…

  2. Preventing dance injuries: current perspectives

    Directory of Open Access Journals (Sweden)

    Russell JA

    2013-09-01

    Full Text Available Jeffrey A Russell Division of Athletic Training, School of Applied Health Sciences and Wellness, Ohio University, Athens, OH, USA Abstract: Dancers are clearly athletes in the degree to which sophisticated physical capacities are required to perform at a high level. The standard complement of athletic attributes – muscular strength and endurance, anaerobic and aerobic energy utilization, speed, agility, coordination, motor control, and psychological readiness – all are essential to dance performance. In dance, as in any athletic activity, injuries are prevalent. This paper presents the research background of dance injuries, characteristics that distinguish dance and dancers from traditional sports and athletes, and research-based perspectives into how dance injuries can be reduced or prevented, including the factors of physical training, nutrition and rest, flooring, dancing en pointe, and specialized health care access for dancers. The review concludes by offering five essential components for those involved with caring for dancers that, when properly applied, will assist them in decreasing the likelihood of dance-related injury and ensuring that dancers receive optimum attention from the health care profession: (1 screening; (2 physical training; (3 nutrition and rest; (4 specialized dance health care; and (5 becoming acquainted with the nature of dance and dancers. Keywords: dance, injuries, injury prevention, fitness, wellness, health

  3. Dance and sexuality: many moves.

    Science.gov (United States)

    Hanna, Judith Lynne

    2010-03-01

    This literature review of dance and sexual expression considers dance and religion, dance and sexuality as a source of power, manifestations of sexuality in Western theater art and social dance, plus ritual and non-Western social dance. Expressions of gender, sexual orientation, asexuality, ambiguity, and adult entertainment exotic dance are presented. Prominent concerns in the literature are the awareness, closeting, and denial of sexuality in dance; conflation of sexual expression and promiscuity of gender and sexuality, of nudity and sexuality, and of dancer intention and observer interpretation; and inspiration for infusing sexuality into dance. Numerous disciplines (American studies, anthropology, art history, comparative literature, criminology, cultural studies, communication, dance, drama, English, history, history of consciousness, journalism, law, performance studies, philosophy, planning, retail geography, psychology, social work, sociology, and theater arts) have explored dance and sexual expression, drawing upon the following concepts, which are not mutually exclusive: critical cultural theory, feminism, colonialism, Orientalism, postmodernism, poststructuralism, queer theory, and semiotics. Methods of inquiry include movement analysis, historical investigation, anthropological fieldwork, autoethnography, focus groups, surveys, and self-reflection or autobiographical narrative. Directions for future exploration are addressed.

  4. Psychophysiological responses to Salsa dance.

    Directory of Open Access Journals (Sweden)

    Laura Guidetti

    Full Text Available Speculation exists whether dance provides physiological stimuli adequate to promote health and fitness benefits. Unfortunately, research to date has not addressed the affective and exertional responses to dance. These responses are of interest as positive affective and exertional responses experienced during physical activity may play an important role in predicting adherence. The present study aims to examine the psychophysiological responses of different Salsa dance styles. Ten pairs of dancers performed two different structured lessons of Salsa dance, including Typical Salsa and Rueda de Casino lessons, and a non-structured Salsa dance at a night club. Physiological responses (i.e., percent of heart rate reserve; %HRR were continuously assessed and perceived exertion and affective valence were rated every 15 min throughout the trials. %HRR responses differed between the Salsa dance styles (%HRR from 41.3 to 51.9%, and participants were dancing at intensities near their ventilatory threshold. Specifically, Typical Salsa lesson elicited lower %HRR responses than Rueda de Casino lesson (p 0.05. Surprisingly, exertional (from 8 to 11 and affective (from +3 to +5 responses were unaffected by Salsa dance styles (p > 0.05. These data support that different Salsa dance styles provide physiological stimuli adequate to promote health and fitness benefits, and perhaps more importantly, produce pleasurable experiences, which in turn might lead to an increase in adherence to Salsa dancing which likely provides exercise-like health benefits.

  5. HCI challenges in Dance Education

    Directory of Open Access Journals (Sweden)

    K.El Raheb

    2016-08-01

    Full Text Available Dance learning is by nature multimodal, while dance practice presents a wide diversity across genres and contexts. Choreography and artistic contemporary dance performances have been using interactive technologies to support their creative process for several decades. Nevertheless the use of interactive technologies to support dance learning and education is still relatively immature and raises many challenges and interesting questions when it comes to choosing the appropriate human computer interaction methods. In this paper, we present the characteristics of dance teaching and learning in relation to interactive technology and we highlight the points/feedback that dance, as a field of mastering expressive movement, can bring to the design of whole-body interaction experiences.

  6. Therapeutic Dancing for Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Lorenna Pryscia Carvalho Aguiar

    2016-06-01

    Full Text Available Therapeutic dancing has been advocated as an effective adjunct to conventional physical therapies for people living with Parkinson's disease (PD. This systematic review evaluates studies on the outcomes of different dance genres on mobility and quality of life in PD. We searched databases including CINHAL (1982–2015, Medline (1922–2015, Scopus (1996–2015, Web of Science (2002–2015, Embase (2007–2015, PEDro (1999–2015 and the Cochrane Library (1996–2015. The key words were: Parkinson's disease, Parkinson*, Parkinsonism, dance, dance therapy, dance genres, safety, feasibility, and quality of life. Two independent investigators reviewed the texts. Only randomized controlled trials, quasirandomized controlled trials, and case series studies were included. There was emerging evidence that therapeutic dance can be safe and feasible for people with mild to moderately severe PD, with beneficial effects on walking, freezing of gait, and health related quality of life.

  7. Bulgarian folk dances at CERN

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    On Sunday 29 August, the Bulgarian folklore dance group Rhythm visited CERN. After their visit to the ATLAS visitor centre and the SM18 hall, they performed a show in the Pump Room, introducing CERN people to the musical traditions of their country.   The visit of the Bulgarian dance group was organized by Zornitsa Zaharieva, a member of the Beams Department, and Svejina Dimitrova, Director of the Varna Astronomical Observatory. “The students were enthusiastic about the opportunity to visit CERN”, says Zornitsa. “The idea of the performance came from the dance group itself, who wanted to express their gratitude for being given this chance”. The group, comprising around 25 children aged between 11 and 16 from the city of Varna, was hosted by the CERN Dancing Club. For their show, the young dancers, choreographed by Tashka Pavlova, performed traditional dances and songs from different Bulgarian regions. “As a member of the CERN Dancing Club com...

  8. Dance for Individuals With Dementia.

    Science.gov (United States)

    Lapum, Jennifer L; Bar, Rachel J

    2016-03-01

    The movement and music associated with dance plays an important role in many individuals' lives and can become imprinted upon the body and mind. Dance is thus closely associated with memory because of these deep connections. Without conscious thought, dance has the potential to be initiated as individuals age. In the current article, the authors share narrative reflections about their experiences with, and the potential of, dance as an intervention for aging populations diagnosed with dementia-related diseases. They draw upon their experiences in working with the aging population and a dance program currently being developed by Canada's National Ballet School and Baycrest Health Sciences for individuals with dementia-related diseases in long-term care. The current article is structured as dialogue between the authors because it mimics dance as a dialogical encounter between movement and music, and/or between individuals. Copyright 2016, SLACK Incorporated.

  9. Development of the CsI Calorimeter Subsystem for AMEGO

    Science.gov (United States)

    Grove, J. Eric; Woolf, Richard; Johnson, W. Neil; Phlips, Bernard

    2018-01-01

    We report on the development of the thallium-doped cesium iodide (CsI:Tl) calorimeter subsystem for the All-Sky Medium-Energy Gamma-ray Observatory (AMEGO). The CsI calorimeter is one of the three main subsystems that comprise the AMEGO instrument suite; the others include the double-sided silicon strip detector (DSSD) tracker/converter and a cadmium zinc telluride (CZT) calorimeter. Similar to the LAT instrument on Fermi, the hodoscopic calorimeter consists of orthogonally layered CsI bars. Unlike the LAT, which uses PIN photodiodes, the scintillation light readout from each end of the CsI bar is done with recently developed large-area silicon photomultiplier (SiPM) arrays. We currently have an APRA program to develop the calorimeter technology for a larger, future space-based gamma-ray observatory. Under this program, we are building and testing a prototype calorimeter consisting of 24 CsI bars (16.7 mm x 16.7 mm x 100 mm) arranged in 4 layers with 6 bars per layer. The ends of each bar are read out with a 2 x 2 array of 6 mm x 6 mm SensL J series SiPMs. Signal readout and processing is done with the IDEAS SIPHRA (IDE3380) ASIC. Performance testing of this prototype will be done with laboratory sources, a beam test, and a balloon flight in conjunction with the other subsystems led by NASA GSFC. Additionally, we will test 16.7 mm x 16.7 mm x 450 mm CsI bars with SiPM readout to understand the performance of longer bars in advance of the developing the full instrument.Acknowledgement: This work was sponsored by the Chief of Naval Research (CNR) and NASA-APRA (NNH15ZDA001N-APRA).

  10. ELECTROMAGNET CALORIMETER (ECAL)

    CERN Multimedia

    R. Rusack

    Installation is under way of the last piece of the electromagnetic calorimeter. This is the preshower (ES) that sits in front of the two endcap calorimeters. The construction of the ES was completed in December and went through a detailed set of tests in December and January. The two preshower detectors have a total of 4300 silicon sensors with 137,000 strips. After final assembly and system testing in January, only two of the strips were found to be defective. Once CMS was fully opened a new support structure (‘Gazprom’) was put into place underneath the beam pipe, to support the Surkov platform, on which the preshower installation takes place. In the early hours of 26th February the first two Dees, which form the ‘ES+’ endcap,  were transported to P5 , a journey that took two and a half hours. The Dees, still inside environmental protection boxes, were then lowered  underground and moved to the ‘+’ end of CMS. Installation start...

  11. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL crystal calorimeter (EB + EE) The Barrel and Endcaps ECAL calorimeters have been used routinely in global runs. The CRAFT data have confirmed that ECAL performance is the same with or without magnetic field. The CRUZET and CRAFT runs have allowed experience to be gained with ECAL operation in many areas, in particular for the trigger and the calibration sequence using gap events (laser events and LED pulsing). More details can be found in the Commissioning/DPG report in this bulletin.   The last components remaining to be installed and commissioned are the specific Endcap Trigger modules (TCC-48). Most of the modules have been delivered to LLR and half of them are already at CERN. In parallel, large progress has been made on the validation of the TCC-48 firmware. Preshower (ES) The Preshower project has also made impressive progress during Autumn. All the elements required to complete the detector assembly are at hand. Ladder assembly, test and calibration with cosmic rays at the operating ...

  12. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Central Calorimeter (HB/HE/HO) Photodetectors The main activity of the HCAL group during the present shutdown is the replacement of a small fraction of the Central Calorimeter (HB/HE/HO) photodetectors -- the Hybrid Photo-Detectors (HPDs). During the MTCC of 2006 it was established that all HPDs exhibit a low rate of discharge generating large random pulses. This behaviour persists at the full CMS field. However, at relatively low fields (0.5 Tesla) this discharge rate increases dramatically and becomes very large for a fraction of the HPDs. The HO HPDs which sit in the gap of the return yoke are thus adversly affected. These discharge pulses have been labelled "HPD noise" (which must be distinguished from low level electronic noise which manifests itself as pedestal noise for all HPD readout channels). Additional intermediate level noise can be generated by ion-feedback arising from thermal and field emission electrons. Ion feedback noise never exceeds the equivalent of few 10s of GeV, the...

  13. The LHCb hadron calorimeter

    International Nuclear Information System (INIS)

    Dzhelyadin, R.I.

    2002-01-01

    The Hadron Calorimeter (HCAL) is designed for the LHCb experiment. The main purpose of the detector is to provide data for the L0 hadron trigger. The HCAL is designed as consisting of two symmetric movable parts of about 500 ton in total getting in touch in operation position without non-instrumented zones. The lateral dimensions of an active area are X=8.4 m width, Y=6.8 m height, and is distanced from the interaction point at Z=13.33 m. Both halves are assembled from stacked up modules. An internal structure consisting of thin iron plates interspaced with scintillating tiles has been chosen. Attention is paid to optimize the detector according to the requirements of the experiment, reducing the spending needed for its construction. Different construction technologies are being discussed. The calorimeter properties have been extensively studied with a variety of prototype on the accelerator beam. The calibration with a radioactive source and module-0 construction experience is discussed

  14. Dance as Aggressiveness

    Directory of Open Access Journals (Sweden)

    Tina Hamrin

    1996-01-01

    Full Text Available The woman who founded Tenho-kötai-jingii-kyö, Kitamura Sayo (1900-1967, publicly announced in July 1945 that the world was coming to an end and that she had been chosen by the absolute deity Tensho Kotai Jingu to be the savior of the world. People began to gather to her banner, a religious organization was formed, and legal incorporation of the group as a religious juridical person took place in January 1947. Teaching that regret, desire, hatred, love and other emotional antipathies were the cause of all misfortune, the founder urged people to free themselves of such restraints by praying earnestly until they attained a state in which the self was completely forgotten. Since the members of the group perform a ritual dance and fall into an ecstatic condition at the group meetings, the movement is called the Dancing Religion.

  15. Doing a Dialogic Dance

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth

    2013-01-01

    experience is that the use of visual and narrative methods is a dance with participants, which I conceptualize as a mutual meaning-making process that emerges in a specific context. In the discussion, I consider how I try to develop a dialogic dance inspired by a dialogic understanding of empowerment......In this panel presentation and paper, I draw on personal experience regarding the challenges of facilitating visually-oriented workshops for students and professionals. I critically examine and reflect on my core beliefs and values as a researcher and my roots in dialogic communication theory......, and phenomenological approaches to arts therapy. A general characteristic of using visual methods is that they promote emergence and transformation of meanings. Typically, many associations and metaphors emerge and alter rapidly as people work collaboratively with images and stories in a workshop setting. My...

  16. Dance, Sexuality, and Education Today: Observations for Dance Educators

    Science.gov (United States)

    Risner, Doug S.

    2004-01-01

    This paper aims to provide a comprehensive discussion of sexuality and dance education from multiple perspectives including public schools (K-12), private studios, conservatories, and higher education. Among innumerable potential topics emanating from this review of sexuality and dance education in the 21st century, this article focuses on today's…

  17. The socio-cultural implications of African music and dance ...

    African Journals Online (AJOL)

    This paper sets out to discuss the socio-cultural implications of African music and dance. To this end, the paper looks at African music, African dance and human culture, kinds of dance, dance and the human body, dance and the society, the interrelationship between African music and dance, the importance of dance to the ...

  18. The Dance Within: A Pilot Project in Dance for the Handicapped and Teaching Dance for the Handicapped: A Curriculum Guide.

    Science.gov (United States)

    Michigan Dance Association, Lansing.

    The Michigan Dance Association's Dance Project for the Handicapped is the subject of the two pamphlets that make up this document. The first pamphlet, "The Dance Within," describes the history, nature and goals of the Jackson Pilot Project, the first handicapped dance program in Michigan; it also offers suggestions on how to set up similar…

  19. CMS hadronic forward calorimeter

    International Nuclear Information System (INIS)

    Merlo, J.P.

    1998-01-01

    Tests of quartz fiber prototypes, based on the detection of Cherenkov light from showering particles, demonstrate a detector possessing all of the desirable characteristics for a forward calorimeter. A prototype for the CMS experiment consists of 0.3 mm diameter fibers embedded in a copper matrix. The response to high energy (10-375 GeV) electrons, pions, protons and muons, the light yield, energy and position resolutions, and signal uniformity and linearity, are discussed. The signal generation mechanism gives this type of detector unique properties, especially for the detection of hadronic showers: Narrow, shallow shower profiles, hermeticity and extremely fast signals. The implications for measurements in the high-rate, high-radiation LHC environment are discussed. (orig.)

  20. Nemo-3 calorimeter electronics

    International Nuclear Information System (INIS)

    Bernaudin, P.; Cheikali, C.; Lavigne, B.; Richard, A.; Lebris, J.

    2000-11-01

    The calorimeter electronics of the NEMO-3 double beta decay experiment fulfills three functions: -energy measurement of the electrons by measuring the charge of the pulses, - time measurement, - fast first level triggering. The electronics of the 1940 Scintillator-PM modules is implemented as 40 '9U x 400 mm VME' boards of up to 51 channels. For each channel the analog signals conditioning is implemented as one SMD daughter board. Each board performs 12 bit charge measurements with 0.35 pC charge resolution, 12 bit time measurements with 50 ps time resolution and a fast analog multiplicity level for triggering. The total handling and conversion time for all the channels is less than 100 μs. The electronics will be presented as well as the test system. (authors)

  1. D0 calorimeter electronics

    International Nuclear Information System (INIS)

    Schamberger, R.D.

    1991-01-01

    A detailed description of the electronics used to readout the signals from the D0 Uranium-Liquid Argon Calorimeter is presented. The three major components of the readout system are the charge sensitive preamps, the shaping and sample and hold circuits, and the Analog to Digital converters. The very low noise preamps achieve an input noise equivalent to 2000e's + 3000e's per nanofarad of input capacitance. The coherent noise in the system is very low, less than 1/20 of an ADC count which is equivalent to about 200 KeV of energy incident on the detector. The ADC system contains a 12 bit, 5 μsecond successive approximation digitizer. We maintain a 15 bit dynamic range by automatically amplifying small signals after they are held, but before digitization. The ADC also contains pedestal and limit memory, to allow (on a channel by channel basis) offset subtraction, and suppression of small signals, symmetrically around zero signal. (orig.)

  2. Cerenkov fiber sampling calorimeters

    International Nuclear Information System (INIS)

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R.; Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W.; Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E.

    1994-01-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1 degree--7 degree). The 7 λ deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented

  3. Using Dance To Integrate Exceptionalities.

    Science.gov (United States)

    Wolf, Geraldine A.; Launi, Barbara A.

    This conference presentation handout describes a program which uses dance therapy to integrate special education students with various disabilities. The 6-week program at a middle school involved having a professional dancer teach students traditional and modern dance methods as a means of expressing emotions, followed by teams of students…

  4. The Jerusarema Dance of Zimbabwe.

    Science.gov (United States)

    Asante, Kariamu Welsh

    1985-01-01

    Traces the historical development of the Jerusarema, a traditional dance of the Shona of Zimbabwe, from its origins as a form of military defense to its present role in recreation and ceremony. Describes the Jerusarema, classifies it in relation to other African dance forms, and discusses how it is learned. (KH)

  5. Schools Integrate Dance into Lessons

    Science.gov (United States)

    Robelen, Erik W.

    2010-01-01

    Photosynthesis may be an unlikely topic to inspire an opera or ballet, but in a 2nd grade classroom in Pikesville, Maryland, the children were asked to use dance to help them learn about that process. Small groups of pupils in this class at Fort Garrison Elementary School brainstormed to come up with dance movements to convey elements of…

  6. Authorships of habitual bodies dancing

    DEFF Research Database (Denmark)

    Ravn, Susanne

    Dance is a mandatory part of physical education in Denmark and in this context imitation and improvisation are often used as if they are to be understood as dichotomies. In this paper I focus on analyzing how the students’ experience of the authorships of their dance-movements – whether improvise...

  7. The Philippine "Hip Hop Stick Dance"

    Science.gov (United States)

    Lewis, Lisa

    2012-01-01

    This article introduces a dance that blends the traditional cultural heritage of the Philippines with modern music and moves. "Hip Hop Stick Dance" incorporates Tinikling (the Philippine national dance) and Arnis (a Filipino style of martial arts) to create a contemporary combination of rhythm, dance, and fitness. It was designed to introduce…

  8. Effects of dance on anxiety.

    Science.gov (United States)

    Lesté, A; Rust, J

    1984-06-01

    The study investigated the effects of modern dance on anxiety. State anxiety was assessed before and after a 3-mo. education programme, using the Spielberger State-Trait Anxiety Inventory. The target group followed a class in modern dance. Control groups were (1) a physical education group to control for the effects of exercise, (2) a music group to control for aesthetic sensitivity training, and (3) a mathematics group. Several concomitant variables were measured: age, sex, attitude towards dance, and previous experience in sport, dance, and relaxation. Dance training significantly reduced anxiety, but no control activities did so. Examination of the concomitant variables showed that the result could not be accounted for by any obvious artifacts.

  9. Aesthetic experience of dance performances

    Directory of Open Access Journals (Sweden)

    Vukadinović Maja

    2012-01-01

    Full Text Available In this study the aesthetic experience of dance performances is investigated. The study includes construction of an instrument for measuring the aesthetic experience of dance performances and an investigation of the structure of both dancers’ and spectators’ aesthetic experience. The experiments are carried out during eight different performances of various dance forms, including classical ballet, contemporary dance, flamenco and folklore. Three factors of aesthetic experience of dance performances are identified: Dynamism, Exceptionality and Affective Evaluation. The results show that dancers’ aesthetic experience has a somewhat different factorial structure from that of the spectators’. Unlike spectators’ aesthetic experience, dancers’ aesthetic experience singles out the Excitement factor. The results are discussed within the context of dancers’ proprioception and spectators’ exteroception since these findings confirm the idea of a significant role of proprioception in dancers’ aesthetic experience.

  10. Electromagnetic shower detector-calorimeters

    International Nuclear Information System (INIS)

    Appel, J.A.

    1975-01-01

    A brief review of the state-of-the-art of electromagnetic calorimeters is presented. The choice of detector based on the experimental requirements in cost, spatial resolution, energy resolution, and hadron rejection is discussed

  11. Decolonizing Dance Pedagogy: Application of Pedagogies of Ugandan Traditional Dances in Formal Dance Education

    Science.gov (United States)

    Mabingo, Alfdaniels

    2015-01-01

    Dances from African communities are gradually getting incorporated into formal education at pre-tertiary and tertiary levels in the United States. Whereas strides have been made to embrace this artistic and cultural diversity, the instructional methodologies that are applied in teaching these dances are commonly founded on Western pedagogic canons…

  12. What Does Dance History Have to Do with Dancing? Making College Dance History Usable for Dancers

    Science.gov (United States)

    Kattner, Elizabeth

    2016-01-01

    This paper explores methods for bringing dance history directly into the studio. It shows how the movement components that have proven successful in introductory courses can be extended to in-depth studies of dance history with dancers who have formal training. Through the example of a research project on the early work of George Balanchine, it…

  13. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  14. Physics and Applications of Metallic Magnetic Calorimeters

    Science.gov (United States)

    Kempf, S.; Fleischmann, A.; Gastaldo, L.; Enss, C.

    2018-03-01

    Metallic magnetic calorimeters (MMCs) are calorimetric low-temperature particle detectors that are currently strongly advancing the state of the art in energy-dispersive single particle detection. They are typically operated at temperatures below 100 mK and make use of a metallic, paramagnetic temperature sensor to transduce the temperature rise of the detector upon the absorption of an energetic particle into a change of magnetic flux which is sensed by a superconducting quantum interference device. This outstanding interplay between a high-sensitivity thermometer and a near quantum-limited amplifier results in a very fast signal rise time, an excellent energy resolution, a large dynamic range, a quantum efficiency close to 100% as well as an almost ideal linear detector response. For this reason, a growing number of groups located all over the world is developing MMC arrays of various sizes which are routinely used in a variety of applications. Within this paper, we briefly review the state of the art of metallic magnetic calorimeters. This includes a discussion of the detection principle, sensor materials and detector geometries, readout concepts, the structure of modern detectors as well as the state-of-the-art detector performance.

  15. Level-1 Calorimeter Trigger starts firing

    CERN Multimedia

    Stephen Hillier

    2007-01-01

    L1Calo is one of the major components of ATLAS First Level trigger, along with the Muon Trigger and Central Trigger Processor. It forms all of the first-level calorimeter-based triggers, including electron, jet, tau and missing ET. The final system consists of over 250 custom designed 9U VME boards, most containing a dense array of FPGAs or ASICs. It is subdivided into a PreProcessor, which digitises the incoming trigger signals from the Liquid Argon and Tile calorimeters, and two separate processor systems, which perform the physics algorithms. All of these are highly flexible, allowing the possibility to adapt to beam conditions and luminosity. All parts of the system are read out through Read-Out Drivers, which provide monitoring data and Region of Interest (RoI) information for the Level-2 trigger. Production of the modules is now essentially complete, and enough modules exist to populate the full scale system in USA15. Installation is proceeding rapidly - approximately 90% of the final modules are insta...

  16. Nuclear Astrophysics at DANCE

    International Nuclear Information System (INIS)

    Reifarth, R.; Bredeweg, T.A.; Esch, E.-I.; Haight, R.C.; Kronenberg, A.; O'Donnell, J.M.; Rundberg, R.S.; Schwantes, J.M.; Ullmann, J.L.; Vieira, D.J.; Wouters, J.M.; Alpizar-Vicente, A.; Hatarik, R.; Greife, U.

    2005-01-01

    One of the most interesting nuclear physics challenges is obtaining a detailed understanding of the nucleosynthesis processes of the elements. Knowledge about the stellar sites, and how they are governed by stellar evolution and cosmology are crucial in understanding the overall picture. Information on reaction rates for neutron- and charged-particle-induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes will provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements

  17. Dance and the brain: a review.

    Science.gov (United States)

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2015-03-01

    Dance is a universal form of human expression that offers a rich source for scientific study. Dance provides a unique opportunity to investigate brain plasticity and its interaction with behavior. Several studies have investigated the behavioral correlates of dance, but less is known about the brain basis of dance. Studies on dance observation suggest that long- and short-term dance training affect brain activity in the action observation and simulation networks. Despite methodological challenges, the feasibility of conducting neuroimaging while dancing has been demonstrated, and several brain regions have been implicated in dance execution. Preliminary work from our laboratory suggests that long-term dance training changes both gray and white matter structure. This article provides a critical summary of work investigating the neural correlates of dance. It covers functional neuroimaging studies of dance observation and performance as well as structural neuroimaging studies of expert dancers. To stimulate ongoing dialogue between dance and science, future directions in dance and brain research as well as implications are discussed. Research on the neuroscience of dance will lead to a better understanding of brain-behavior relationships and brain plasticity in experts and nonexperts and can be applied to the development of dance-based therapy programs. © 2014 New York Academy of Sciences.

  18. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    All the HCAL calorimeters are ready for data-taking in 2011 and participated fully in the cosmic running and initial beam operations in the last few weeks. Several improvements were made during the winter technical stop, including replacement of the light-guide sleeves in HF, improvements to the low voltage power connections, and separation of HF from HB and HE in the DAQ partitions. During the 2010 running a form of anomalous noise in the HF was identified as being caused by scintillation when charged particles pass through a portion of the air light-guide sleeve. This portion was constructed from a non-conductive mirror-like material called “HEM”. To suppress these anomalous signals, during the recent winter technical stop all sleeves in the detector were replaced with sleeves made of Tyvek. The detector has been recommissioned with all channels fully operational. Recalibration of the detector will be required due to the differing reflectivity of the new sleeves compared with the HEM sl...

  19. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    D. Green

    The organization of CMS HCAL contains four “geographic” efforts, HB, HO, HE and HF. In addition there are presently five “common” HCAL activities. These ef¬forts are concentrated on electronics, on controls (DCS), on physics objects (JetMet), on Installation and Commissioning (I&C), and on Test Beam (TB) and Cosmic Challenge (MTCC) data taking. HCAL has begun planning to re-organize to be synchronized with the overall CMS management structure. HF The full production of the wedges is completed for some time. The 2004 test beam work has established the radioactive source calibration system for HF works at the 5 % level or better and a note is completed. The calibration of the complete HF is complete. HF is now in the UX cavern and will be hooked up and read out as soon as the services are available. HE The two HE calorimeters are installed and an initial calibration has been established. In the MTCC the HE was read out and muon data was observed. Event b...

  20. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding and A. Skuja

    2010-01-01

    Splash and Collision Data HCAL recorded the beam-on-collimator (splash) and the first collision data in November and December 2009, and provided triggers to CMS with the forward calorimeter, HF. Splash events were used to improve the energy inter-calibration of the HB and HE channels, with the basic assumption that the energy deposited in the detector by the large flux of muons that passed through in splash events was a smooth function in eta and phi. The new HB and HE calibration coefficients were applied prior to the collision data taking. For HO, a similar analysis is being finalized. Splash events were also used to determine the relative timing between channels in HB and HE, and new delay settings were calculated based on splashes from one beam, applied and verified with the splash events from the other beam. During Fall 2009, the HF technical trigger was improved in order to be effectively used as one of the main CMS triggers during the collision data taking. Collisions were successfully recorded by all...

  1. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    by J. Spalding and A. Skuja

    2010-01-01

    Operations and Maintenance All HCAL sub-detectors participated throughout the recent data taking with 7 TeV collisions. A timing scan of HF was performed to optimize the timing across the detectors and to set the overall time position of the ~10-ns wide signals within the 25-ns integration time slice. This position was chosen to ensure that the trigger primitives in physics events are generated synchronously at the desired bunch crossing, while also providing discrimination between the calorimeter signals and anomalous signals due to interactions within the photomultiplier tubes. This timing discrimination is now used in the standard filter algorithms for anomalous signals. For HB and HE, once the statistics needed to assess the timing of a sufficient number of channels was accumulated, it was verified that the time settings determined with cosmic, splash events and initial collision data were appropriate for the 7 TeV collision data taking. A further fine-tuning of the HB and HE time settings will be perfo...

  2. Calorimeter Process Variable Archiving

    International Nuclear Information System (INIS)

    Huffman, David

    2002-01-01

    These steps were taken to maintain weekly archives: (1) Friday morning you stop the archiver and wait for it to finish writing data (the lock file will be removed from the directory); (2) move the current archive information to a PC via FTP; (3) remove all previous archive information in the previous directory; (4) move the current archive into the previous directory; (5) start a new archive; (6) burn a CDROM of the archive; and (7) copy the current archive to a specific directory. There are 2 ways to check if the Calorimeter Archiver is running, either through the WEB based front end or directly from a command line. Once the archiver is running it can be monitored from a WEB page. This only works with a browser launched from the online machine running the archiver. Each time the browser is reloaded there should be an update reported in the last write check field. You might have to wait a few minutes to see the update. Calorimetry currently takes readings every (300 sec.) 5 minutes. The second method to verify the archiver is running is to issue a command from a Linux cluster machine.

  3. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    During the last 3 months commissioning of HCAL has continued for HO and HE+. We have also started the commissioning of the first wedge of HB+. Progress continues to be made by our Trigger/DAQ, DCS and DPG colleagues. HF will be used to obtain a Luminosity measurement for CMS. A first test of the modifications to the HF electronics was made in the August CMS global run. In addition to installation and commissioning of various parts of HCAL, we also completed a very successful summer Test Beam period which saw measurements of the combined HE/EE/ES calorimeter system in the H2 test beam. Installation and Commissioning a. HB commissioning This week, part of the final water-cooling system for HB was commissioned. Eighteen HB- wedges and two pilot wedges on HB+ have been connected to the water circuit on YB0. On Sept 6, 2007 cabling and commissioning was started for the first HB readout box (RBX) using temporary set of cables. We have connected RBX-17 to the Low Voltage PS and the HCAL Detector Control Sy...

  4. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...

  5. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    Throughout the entire proton-proton run of 2011, all HCAL calorimeters operated very efficiently. Over 99% of HCAL readout and trigger channels were alive. However, during the year we did face two hardware problems. One major operation problem was the occasional loss of data from a single RBX caused by single event upsets (SEUs). The rate of RBX data loss was on average one incident per 10 pb–1 of integrated luminosity. This led to approximately 1% of CMS data loss. In order to mitigate this problem, HCAL has introduced an automatic reset of the RBX. With this reset, full operation was restored within about one minute. The final hardware correction of the problem will be possible only during a long shutdown (LS1) in 2013-’14. Another hardware problem that developed in 2011 was the failure of QPLL (quartz phase lock loops) chips. This led to the loss of phase of the readout clock with respect to the LHC clock. As a consequence, in two sections in HCAL (10 degree in φ on HB and 1...

  6. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel (EB) The cabling of the ECAL Barrel services on YB0 was completed early December 2007. The team has now commissioned the complete Barrel. To run all the supermodules in parallel, it is necessary to remove the heat from the service cables on YB0. The corresponding thermal screens are being installed and, for the time being, a max¬imum of 25 supermodules has been run concurrently. EB is read out regularly with a local DAQ as well as with the central DAQ and trigger. The calorimeter trigger has also been commissioned, allowing us to trigger on cosmic muons. ECAL Endcaps (EE) The Endcaps crystal production will be completed before the end of March 2008, as planned. The gluing of the VPTs (Vacuum Photo Triodes) on the crystals and the assembly of Supercrystals (sets of 25 crystals) are proceeding at the pace of 16 Supercrystals (400 channels) per week. Two thirds of the Supercrystals needed for the complete EE have been produced. Their mounting on the Dee backplates (including the connectio...

  7. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    HCAL installation and commissioning is approaching completion. Work continues on commissioning of HE-, HF- and the minus wheels of HO. We expect that all commissioning will be completed by mid-March. HCAL commissioning is interleaved with integration of HCAL and the Global Calorimeter Trigger (GCT). HCAL is attempting to take data using the HPD self-trigger as part of the GCT trigger path. Initial attempts in mid-February have not succeeded. Work continues on HCAL and the GCT. HPD lifetimes at 4 Tesla are being measured in Princeton. After more than a month of testing in a 4 Tesla field there are no sur¬prises. As the lifetime measurements proceed, the HPD response at intermediate fields of 1 Tesla will be verified and analyzed. Work also continues on HCAL calibration and DCS/DSS at Point 5. More details for some of the subsystems are presented in what follows. HE HE plus The cooling system of HE+ is functional now. The HE+ final connections to the LV system are complete. LV and HV tests to ev...

  8. The CPLEAR Electromagnetic Calorimeter

    CERN Document Server

    Adler, R; Bal, F; Behnke, O; Bloch, P; Damianoglou, D; Dechelette, Paul; Dröge, M; Eckart, B; Felder, C; Fetscher, W; Fidecaro, Maria; Garreta, D; Gerber, H J; Gumplinger, P; Guyon, D; Johner, H U; Löfstedt, B; Kern, J; Kokkas, P; Krause, H; Mall, U; Marin, C P; Nanni, F; Pagels, B; Pavlopoulos, P; Petit, P; Polivka, G; Rheme, C; Ruf, T; Santoni, C; Schaller, L A; Schopper, A; Tauscher, Ludwig; Tschopp, H; Weber, P; Wendler, H; Witzig, C; Wolter, M

    1997-01-01

    A large-acceptance lead/gas sampling electromagnetic calorimeter (ECAL) was constructed for the CPLEAR experiment to detect photons from decays of $\\pi^0$s with momentum $p_{\\pi^0} \\le 800$ MeV$/c$. The main purpose of the ECAL is to determine the decay vertex of neutral-kaon decays $\\ko \\rightarrow \\pi^0\\pi^0 \\rightarrow 4 \\gamma$ and $\\ko \\rightarrow \\pi^0\\pi^0\\pi^0 \\rightarrow 6 \\gamma$. This requires a position-sensitive photon detector with high spatial granularity in $r$-, $\\varphi$-, and $z$-coordinates. The ECAL --- a barrel without end-caps located inside a magnetic field of 0.44 T --- consists of 18 identical concentric layers. Each layer of $1/3$ radiation length (X${_0}$) contains a converter plate followed by small cross-section high-gain tubes of 2640 mm active length which are sandwiched by passive pick-up strip plates. The ECAL, with a total of $6$ X${_0}$, has an energy resolution of $\\sigma (E)/E \\approx 13\\% / \\sqrt{E(\\mathrm{GeV})}$ and a position resolution of 4.5 mm for the shower foot. ...

  9. TiAu-based micro-calorimeters for space applications

    International Nuclear Information System (INIS)

    Dirks, B.P.F.; Popescu, M.; Bruijn, M.; Gottardi, L.; Hoevers, H.F.C.; Korte, P.A.J. de; Kuur, J. van der; Ridder, M.; Takei, Y.

    2009-01-01

    We present the latest results of the performance of micro-calorimeters based on transition edge sensors (TESs) for space applications. Sensors based on TiAu superconductive layers with Cu/Bi absorbers are discussed and have been characterized. Different coupling schemes between absorber and TES have been tested leading to an optimal (preferred) design for a new batch of arrays. We discuss the progress on array development for the International X-ray Observatory (IXO) in terms of pixel uniformity and filling factor. Inter-pixel cross-talk is discussed as well.

  10. The Status of GLAST CsI Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chekhtman, A.

    2003-09-18

    GLAST is a gamma-ray observatory for celestial sources in the energy range from 20 MeV to 300 GeV. This is NASA project with launch anticipated in 2006. The principal instrument of the GLAST mission is the Large Area Telescope (LAT), consisting of an Anti Coincidence Detector (ACD), a silicon-strip detector Tracker (TKR) and a hodoscopic CsI Calorimeter (CAL). It consists of 16 identical modules arranged in a 4 x 4 array. Each module has horizontal dimensions 38 x 38 cm{sup 2} and active thickness 8.5 radiation length. It contains 96 CsI (Tl) crystals arranged in 8 layers with 12 crystals per layer. The scintillation light is measured by PIN photodiodes mounted on both ends of each crystal. The sum of signals at the two ends of the crystal provides the energy measurement. The difference in these signals provides the position measurement along the crystal. The calorimeter was designed to meet the goals of good energy resolution (better than 10% for photon energies 100 MeV-100 GeV), position resolution of {approx} 1 mm for photon energies > 1 GeV, and a rejection factor of > 100 for charged cosmic rays, under limitations on calorimeter weight (95 kg per module) and power consumption (6 W per module). The Monte Carlo simulation and prototype beam test results confirm that proposed design meets the requirements. Calorimeter production is planned to start in 2003.

  11. Thermal dynamics of bomb calorimeters.

    Science.gov (United States)

    Lyon, Richard E

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter.

  12. Occupational therapy's dance with diversity.

    Science.gov (United States)

    Black, Roxie M

    2002-01-01

    As the demographics of the United States continue to change and we become a more pluralistic society, the increased diversity of the occupational therapy workforce and our consumers calls for an examination of the profession's stance on multiculturalism and diversity. Using the metaphor of dance, this article identifies the dance partners as the organization's leaders and its members. A historical review of the profession from the 1940s to the present traces the partners' steps to determine which led the dance of diversity during the profession's development. In this review, I discovered that the period when the profession most effectively and productively explored issues of diversity was during the early- to mid-1990s--a time when the organization and its members worked in harmony. At that time, occupational therapy's dance with diversity flowed with rhythm and synchronicity.

  13. Dance movement therapy for dementia.

    Science.gov (United States)

    Karkou, Vicky; Meekums, Bonnie

    2017-02-03

    Dementia is a collective name for different degenerative brain syndromes which, according to Alzheimer's Disease International, affects approximately 35.6 million people worldwide. The latest NICE guideline for dementia highlights the value of diverse treatment options for the different stages and symptoms of dementia including non-pharmacological treatments. Relevant literature also argues for the value of interventions that acknowledge the complexity of the condition and address the person as a whole, including their physical, emotional, social and cognitive processes. At the same time, there is growing literature that highlights the capacity of the arts and embodied practices to address this complexity. Dance movement therapy is an embodied psychological intervention that can address complexity and thus, may be useful for people with dementia, but its effectiveness remains unclear. To assess the effects of dance movement therapy on behavioural, social, cognitive and emotional symptoms of people with dementia in comparison to no treatment, standard care or any other treatment. Also, to compare different forms of dance movement therapy (e.g. Laban-based dance movement therapy, Chacian dance movement therapy or Authentic Movement). Searches took place up to March 2016 through ALOIS, Cochrane Dementia and Cognitive Improvement's Specialized Register, which covers CENTRAL, a number of major healthcare databases and trial registers, and grey literature sources. We checked bibliographies of relevant studies and reviews, and contacted professional associations, educational programmes and experts from around the world. We considered randomised controlled trials (RCTs) in any language, including cross-over design and cluster-RCTs for inclusion. Studies considered had to include people with dementia, in any age group and in any setting, with interventions delivered by a dance movement therapy practitioner who (i) had received formal training (ii) was a dance movement

  14. The ATLAS Level-1 Calorimeter Trigger

    International Nuclear Information System (INIS)

    Achenbach, R; Andrei, V; Adragna, P; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P; Asman, B; Bohm, C; Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S; Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J

    2008-01-01

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, τ leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 μs, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern

  15. The ATLAS Level-1 Calorimeter Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, R; Andrei, V [Kirchhoff-Institut fuer Physik, University of Heidelberg, D-69120 Heidelberg (Germany); Adragna, P [Physics Department, Queen Mary, University of London, London E1 4NS (United Kingdom); Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Asman, B; Bohm, C [Fysikum, Stockholm University, SE-106 91 Stockholm (Sweden); Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S [Institut fuer Physik, University of Mainz, D-55099 Mainz (Germany); Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)], E-mail: e.eisenhandler@qmul.ac.uk (and others)

    2008-03-15

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, {tau} leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 {mu}s, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern.

  16. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  17. The CHORUS calorimeter: test results

    International Nuclear Information System (INIS)

    Buontempo, S.; Capone, A.; Cocco, A.G.; De Pedis, D.; Di Capua, E.; Dore, U.; Ereditato, A.; Ferroni, M.; Fiorillo, G.; Loverre, P.F.; Luppi, C.; Macina, D.; Mazzoni, M.A.; Migliozzi, P.; Palladino, V.; Piredda, G.; Riccardi, F.; Righini, P.P.; Saitta, B.; Santacesaria, R.; Strolin, P.; Zucchelli, P.

    1995-01-01

    In the framework of the CHORUS experiment for the search of ν μ ν τ oscillations at CERN, we have built the high resolution calorimeter, intended for the measurement of the energy of hadronic showers produced in neutrino interactions. The calorimeter consists of three parts. The first two are made of lead and plastic scintillating fibers in the volume ratio 4 : 1, such as to achieve compensation. The third is a sandwich of lead plates and scintillator strips in the same volume ratio. The techniques used for the construction of the calorimeter are described, as well as its performance in shower and muon detection. We used electron, pion and muon beams in the energy range 2-100 GeV for this purpose. (orig.)

  18. Overview of the Calorimeter Readout Upgrades

    CERN Document Server

    Straessner, Arno; The ATLAS collaboration

    2018-01-01

    The ATLAS and CMS calorimeter electronics will be upgraded for the HL-LHC data taking phase to cope with higher event pile-up and to allow improved trigger strategies. This presentations gives an overview of the ongoing developments for the CMS barrel calorimeters and the ATLAS LAr and Tile calorimeters.

  19. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  20. Some possible improvements in scintillation calorimeters

    International Nuclear Information System (INIS)

    Lorenz, E.

    1985-03-01

    Two ideas for improvements of scintillation calorimeters will be presented: a) improved readout of scintillating, totally active electromagnetic calorimeters with combinations of silicon photodiodes and fluorescent panel collectors, b) use of time structure analysis on calorimetry, both for higher rate applications and improved resolution for hadron calorimeters. (orig.)

  1. Cosmology, Clusters and Calorimeters

    Science.gov (United States)

    Figueroa-Feliciano, Enectali

    2005-01-01

    I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.

  2. How To Dance through Time. Volume V: Victorian Era Couple Dances. [Videotape].

    Science.gov (United States)

    Teten, Carol

    This 55-minute VHS videotape is the fifth in a series of "How To Dance Through Time" videos. It continues the tradition of the romance of the mid-19th century couple dances, focusing on Victorian era couple dances. The videotape offers 35 variations of the renowned 19th century couple dances, including the waltz, the polka, the galop,…

  3. Sexuality and Sexual Identity: Critical Possibilities for Teaching Dance Appreciation and Dance History

    Science.gov (United States)

    Dils, Ann

    2004-01-01

    The intersections of dance and sexuality and sexual identity are part of the critical discourse important to teaching dance appreciation and dance history. This essay presents aspects of my teaching practice, informed by current writings in queer studies, dance studies, education, and sociology. Awareness of potential classroom diversity helps…

  4. Design and Status of the Mu2e Crystal Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Atanov, N.; et al.

    2018-01-08

    The Mu2e experiment at Fermilab searches for the charged-lepton flavour violating (CLFV) conversion of a negative muon into an electron in the field of an aluminum nucleus, with a distinctive signature of a mono-energetic electron of energy slightly below the muon rest mass (104.967 MeV). The Mu2e goal is to improve by four orders of magnitude the search sensitivity with respect to the previous experiments. Any observation of a CLFV signal will be a clear indication of new physics. The Mu2e detector is composed of a tracker, an electro- magnetic calorimeter and an external veto for cosmic rays surrounding the solenoid. The calorimeter plays an important role in providing particle identification capabilities, a fast online trigger filter, a seed for track reconstruction while working in vacuum, in the presence of 1 T axial magnetic field and in an harsh radiation environment. The calorimeter requirements are to provide a large acceptance for 100 MeV electrons and reach at these energies: (a) a time resolution better than 0.5 ns; (b) an energy resolution < 10% and (c) a position resolution of 1 cm. The calorimeter design consists of two disks, each one made of 674 undoped CsI crystals read by two large area arrays of UV-extended SiPMs. We report here the construction and test of the Module-0 prototype. The Module-0 has been exposed to an electron beam in the energy range around 100 MeV at the Beam Test Facility in Frascati. Preliminary results of timing and energy resolution at normal incidence are shown. A discussion of the technical aspects of the calorimeter engineering is also reported in this paper.

  5. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2017-01-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  6. The new ATLAS Fast Calorimeter Simulation

    Science.gov (United States)

    Schaarschmidt, J.; ATLAS Collaboration

    2017-10-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  7. The Evolution of Modern Dance Therapy.

    Science.gov (United States)

    Levy, Fran

    1988-01-01

    The article traces the impact of the modern dance movement from the early 1900s and its emphasis on creativity and self-expression on the professional and institutional development of dance therapy. (CB)

  8. Dance Careers for the Next Decade.

    Science.gov (United States)

    Lappe, Mary Martha

    1984-01-01

    Dance educators need to be aware of current career trends and focus their programs on practical needs of their students. Teaching, dance journalism, therapy, and photography are career options for the dancer who is not a professional performer. (DF)

  9. Dance Theatre of Harlem: Inspiring the Deprived

    Science.gov (United States)

    Weil, Henry

    1976-01-01

    The Dance Theatre of Harlem, which includes both a school and a publicly performing dance company, is described from its inception by its artistic director, Arthur Mitchell, to its current activities. Budgets, student characteristics, and philosophy are discussed. (LBH)

  10. Excerpts from the Dances of Haiti: Function.

    Science.gov (United States)

    Dunham, Katherine

    1985-01-01

    Analyzes the sociological and psychological functions of the different forms of traditional Haitian dance. Describes uses of dances for recreation and play, social solidarity, externalization of emotions or sexuality, worship, and artistic expression. (KH)

  11. SEMIOTICS IN INDIGENOUS DANCE PERFORMANCES: EKELEKE ...

    African Journals Online (AJOL)

    Dean SPGS NAU

    dance performance presents Ekwe people; situated in Isu local government ... Indigenous dance is not a luxury… it is part of each .... symbols for certain brand products in adverts. ... music, costumes, make-up, set lights and any other effects.

  12. Performance of an electromagnetic calorimeter with lead-tungstate crystals

    International Nuclear Information System (INIS)

    Kohara, R.; Sugitate, T.; Sugita, N.; Tsuchimoto, Y.; Toyoda, D.; Homma, K.; Yamazaki, H.

    2003-01-01

    The performance of an electromagnetic calorimeter with lead-tungstate (PWO) crystals was tested by using 1 GeV photons. The calorimeter consisted of nine crystals of 20 x 20 x 200 mm in size arranged in a 3 x 3 array. The energy resolution was obtained to be σ E /E = (2.50 ± 0.75%) / √E + (1.25 ± 0.34%) with a photomultiplier tube (PMT) reading all signals. Another setup, reading the central cell with an avalanche photo diode (APD) and the surrounding 8 cells with the PMT, was also studied, however, its energy resolution was not scaled with the stochastic function and we found the resolution of about 10% around 1 GeV. (author)

  13. The Dancing Picture - The Ritual Dance of Native Australians

    Directory of Open Access Journals (Sweden)

    Monica Engelhart

    1996-01-01

    Full Text Available What kind of message does -or did — the dance convey to the Native Australians? Several types of communication can be distinguished in ritual dance. There is the narrative aspect, i.e., the dramatization of a myth, or of certain social relations, there is an aspect of explanation, i.e., the visual performance of significant conditions, an expressive aspect of worship, and even an aspect of transmission, as when the body of the dancer is thought to mediate divine power to the audience. When a dancer is considered possessed, the boundaries between his human identity and the divine are wiped out. This last aspect leads us to the second item of interest regarding the ritual dance in Australia, an issue that has been discussed at length regarding masked dancers in other societies, i.e., the question of whether the dancer is identified with the being represented, or merely performs as an actor in a play. In this discussion, the very technique of dancing may have some explanatory faculty, at least as long as we are dealing with Native Australian ritual dance.

  14. Software studies of GLD calorimeter

    Indian Academy of Sciences (India)

    a reconstruction code in a GEANT4-based simulator, and evaluate the performance with single π0's. In the GLD, an option for the hadron calorimeter, the so-called digital calorime- ter, is still under consideration. It has a huge number of small active cells, signals from which are read out as 1-bit digital value (or at most few ...

  15. COE1 Calorimeter Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    The purpose of this manual is to describe the operations of the COE1 calorimeter which is used to measure the thermal power generated by the radioactive decay of plutonium-bearing materials for the purposes of assaying the amount of plutonium within the material.

  16. Concerning background from calorimeter ports

    International Nuclear Information System (INIS)

    Digiacomo, N.J.

    1985-01-01

    Any detector system viewing a port or slit in a calorimeter wall will see, in addition to the primary particles of interest, a background of charged and neutral particles and photons generated by scattering from the port walls and by leakage from incompletely contained primary particle showers in the calorimeter near the port. The signal to noise ratio attainable outside the port is a complex function of the primary source spectrum, the calorimeter and port design and, of course, the nature and acceptance of the detector system that views the port. Rather than making general statements about the overall suitability (or lack thereof) of calorimeter ports, we offer here a specific example based on the external spectrometer and slit of the NA34 experiment. This combination of slit and spectrometer is designed for fixed-target work, so that the primary particle momentum spectrum contains higher momentum particles than expected in a heavy ion colliding beam environment. The results are, nevertheless, quite relevant for the collider case

  17. Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. It is 500 times faster than full simulation in the calorimeter system. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of mach...

  18. ELECTRONICS FOR CALORIMETERS AT LHC

    International Nuclear Information System (INIS)

    Radeka, V.

    2001-01-01

    Some principal design features of front-end electronics for calorimeters in experiments at the LHC will be highlighted. Some concerns arising in the transition from the research and development and design phase to the construction will be discussed. Future challenges will be indicated

  19. Barrel calorimeter of the CMD-3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, V. E., E-mail: V.E.Shebalin@inp.nsk.su; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Epifanov, D. A. [University of Tokyo, Department of Physics (Japan); Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  20. An instant dose obtainable in situ calorimeter

    International Nuclear Information System (INIS)

    Kubo, H.; Mento, D.

    1984-01-01

    The development of a computer-linked water calorimeter is described. The advantages of this system are twofold: (i) instant dose determination is possible; and (ii) the calorimeter operation is much simpler than conventional null balance techniques. The entire calorimeter measurement procedure from the set-up to the dose determination for 10 runs was finished in approximately 2 1/2 h. A smaller calorimeter which could be kept in the treatment room for equilibrium, should permit further reduction of the time. The use of a smaller, portable computer would allow local data taking and analysis, eliminating the need for modems, phone lines and long cables. This would lead to a completely self-contained set-up at the treatment room. Although the technique is described for a polystyrene-water calorimeter, it should be equally applicable for a water calorimeter as well as a conventional isolated calorimeter. (author)

  1. Barrel calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Shebalin, V. E.; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2015-01-01

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV

  2. Enhancement of Pleasure during Spontaneous Dance

    Science.gov (United States)

    Bernardi, Nicolò F.; Bellemare-Pepin, Antoine; Peretz, Isabelle

    2017-01-01

    Dancing emphasizes the motor expression of emotional experiences. The bodily expression of emotions can modulate the subjective experience of emotions, as when adopting emotion-specific postures and faces. Thus, dancing potentially offers a ground for emotional coping through emotional enhancement and regulation. Here we investigated the emotional responses to music in individuals without any prior dance training while they either freely danced or refrained from movement. Participants were also tested while imitating their own dance movements but in the absence of music as a control condition. Emotional ratings and cardio-respiratory measures were collected following each condition. Dance movements were recorded using motion capture. We found that emotional valence was increased specifically during spontaneous dance of groovy excerpts, compared to both still listening and motor imitation. Furthermore, parasympathetic-related heart rate variability (HRV) increased during dance compared to motor imitation. Nevertheless, subjective and physiological arousal increased during movement production, regardless of whether participants were dancing or imitating. Significant correlations were found between inter-individual differences in the emotions experienced during dance and whole-body acceleration profiles. The combination of movement and music during dance results in a distinct state characterized by acutely heightened pleasure, which is of potential interest for the use of dance in therapeutic settings. PMID:29238298

  3. Afro-American Music and Dance.

    Science.gov (United States)

    Floyd, Samuel A., Jr.

    1989-01-01

    Outlines the concurrent development of Black music and Black dance in the United States, and describes the interaction of the two genres throughout their mutually dependent evolutions. Traces the histories of the dances of African American culture, known collectively as "jazz dance," in relation to ragtime, jazz, and the blues. (AF)

  4. Dance Dynamics. Athletes & Dancers Training & Moving Together.

    Science.gov (United States)

    Pruett, Diane Milhan, Ed.; And Others

    1981-01-01

    This series of articles explores the various ways in which training procedures in both dance and athletics are compatible. Topics include: traditional and adapted dance class structures and materials; the inclusion of dance in the physical education curriculum; and the physical fitness of dancers as compared to athletes. (JN)

  5. Dance/Movement Therapy. A Healing Art.

    Science.gov (United States)

    Levy, Fran J.

    This book examines the field of dance therapy from its inception in the 1940's to the present. A detailed analysis is conducted of the theory and practice of the major pioneers. The book covers biographical reports and the influence of many dance therapy leaders. Laban Movement Analysis (LMA) is discussed as well as dance therapy in specific…

  6. DANCE FOR CHILDREN: A FUNCTIONAL EDUCATION FOR ...

    African Journals Online (AJOL)

    children, to that neglected pillar of growth, the traditional dance, using dance for children ... Children are not left out of these emotional actions. They .... Teaching dance form among children (ages 6-12 years) will require the following steps or ...

  7. Embodied Subjectivities: Nine Young Women Talking Dance

    Science.gov (United States)

    O'Flynn, Gabrielle; Pryor, Zoe; Gray, Tonia

    2013-01-01

    The purpose of this paper is to examine nine Australian young women's embodied experiences of dance. The young women were all amateur dancers involved in weekly jazz, tap, and ballet dance classes at the same dance studio. In this paper, embodiment is defined as multidimensional (Burkitt 1999). The authors explore the ways the corporeal and the…

  8. Shaping future directions for dance education

    DEFF Research Database (Denmark)

    Brown, Ann Kipling; Koff, Susan R.; Meiners, Jeff

    2017-01-01

    for the maintenance and implementation of dance curricula in our schools. In this paper, ideas and successes may provide a platform from which to support and guide dance experiences for young people. Firstly, an outline of the results of a survey questionnaire that was sent to dance educators in selected countries...

  9. The Origins of the "Fanga" Dance

    Science.gov (United States)

    Damm, Robert J.

    2015-01-01

    The "fanga" is a dance taught throughout the United States to children in elementary music classes, students in African dance classes, teachers in multicultural workshops, and professional dancers in touring ensembles. Although the history of the fanga is a path overgrown with myth, this article offers information about the dance's…

  10. DANCE FOR CHILDREN: A FUNCTIONAL EDUCATION FOR ...

    African Journals Online (AJOL)

    the society and, to maintain growth and development of the child. Dance was ... expression in space through body movements and other dance elements to ... enjoy music and dancing just like their parents or the adults in the society. Children ...

  11. Care to dance?

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The second part of the artistic programme Collide@CERN was officially launched at the beginning of November. The initiative, a dance and performance award, is the result of a partnership between CERN, the City of Geneva and the Canton of Geneva.   From left to right: Sami Kanaan, Rolf Heuer, and Charles Beer. The project Collide@CERN was launched in September in the framework of CERN's new cultural policy (announced in an article published in Bulletin No. 50-51/2010). The project, whose main objective is to achieve a symbiosis between the imagination of artists and the creativity of scientists, features an artist-in-residence scheme that will run for three years. The Organization has concluded two cultural partnerships for the purpose: one with Ars Electronica Linz, an Austrian organisation specialising in the digital arts, which will sponsor a digital arts prize (see article published in Bulletin No. 37-38 earlier this year), and the other with the City and the Canton of Geneva, wh...

  12. Epilepsy is Dancing.

    Science.gov (United States)

    Tuft, Mia; Gjelsvik, Bergljot; Nakken, Karl O

    2015-10-01

    In "Epilepsy is Dancing", in Antony and the Johnsons' album "The Crying Light"(2009), the lyrics and accompanying music video depicts an epileptic seizure in which the person is transferred to another beautiful and magical world. This may be called "enchanted epilepsy"; i.e., the experience of epilepsy as deeply nourishing and (positively) transforming, is conveyed not only in the lyrics but also the visual and auditory qualities of the video. The seizure in the video gives associations to Shakespeare's "A Midsummer Night's dream". If epilepsy appears in music lyrics, the focus is mostly on negative aspects of the illness, such as horror, fear and repulsive sexuality associated with the fits [1,2]. Contradictory to these lyrics, Anthony and the Johnsons' song is an example of a positive portrayal of epilepsy. It is open to a multitude of meanings, emotional valence and appraisal of epilepsy. By widening the experiential range associated with epileptic seizures, these lyrics highlight the inherently construed nature of epileptic experience. The song stands out in several ways. First, it describes epilepsy in positive terms, prioritising the euphoric, ecstatic, potentially empowering and enhancing aspects of epileptic seizures. Second, the lyrics and accompanying video point to divine experiences associated with epileptic seizures. Through the lyrics and the music video we are, as an audience, able to sense a snicket of an epileptic seizure, but also the universal experience of loosing control. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. X-ray calorimeters used for measurement in laser-fusion experiments

    International Nuclear Information System (INIS)

    Tang Daorun; China Academy of Engineering Physics, Mianyang; Wu Dengxue; Lin Libin; Sun Kexu; Jiang Shaoen

    2005-01-01

    X-ray calorimeters are ready to measure the total soft X-ray energy emitted from the plasma produced by laser because of their bodily absorption, linear response, insensitivity to the electromagnetic disturbance, and so on. The calorimeters mainly include absorbers, thermocouples, bases and shrouds. When X-rays are deposited in the absorbers, photon energy absorbed is quickly converted into intrinsic energy which simultaneously dissipates by thermal conduction and radiation. The X-ray calorimeters were absolutely on-line calibrated in Shenguang-II laser facility with the X-ray diode array spectrometer which has been absolutely calibrated on Beijing Synchrotron Radiation Facility. 20 shots' experimental results show that the X-ray calorimeters are stable, the sensitivity of calorimeter is (84.1 ± 3.4) μv/mJ and the related combined standard uncertainty in the X-ray energy measure is about 31%. The calorimeters can be applied to measure the X-ray energy. (authors)

  14. The dancing plague: a public health conundrum.

    Science.gov (United States)

    Donaldson, L J; Cavanagh, J; Rankin, J

    1997-07-01

    The phenomenon of mass, frenzied dancing affected large populations in various parts of Europe from the thirteenth century and lasted, on and off, for three centuries. The exact aetiology of the Dancing Plague (or Dancing Mania) is still unclear. Retrospective historical review of this public health problem reveals claims for causative factors including demonic possession, epilepsy, the bite of a tarantula, ergot poisoning and social adversity. It seems unlikely that Dancing Mania resulted from a single cause but rather resulted from multiple factors combining with a predisposing cultural background and triggered by adverse social circumstances. Dancing Mania remains one of the unresolved mysteries of public health.

  15. Dancing in the 'Contact Zone'

    Directory of Open Access Journals (Sweden)

    Monica Wulff

    2006-09-01

    Full Text Available In October 2002 I performed and exhibited Troppo Obscura: A Peepshow of Historical Perversity at the Performance Space as part of the multicultural Arts festival, Carnivale, in Sydney, Australia. Troppo Obscura is a multimedia installation that explores some aspects of the complex relationships between the West and Asia. The work looks at a large range of possibilities, from the colonial gaze through to personal relationships forged through artistic endeavor. This paper—the first of two extended mediations on the topic—focuses on one such personal relationship addressed in the installation, namely that between traditional master mask dancer Ibu Sawitri from Cirebon on the West coast of Java, Indonesia and myself, a Sydney based contemporary dancer and performance artist. Between 1992 and 1999, the year Ibu Sawitri passed away, I spent many long-term visits learning dance and living in Ibu Sawitri’s house in Losari. This essay focuses on Ibu Sawitri’s family and dance background and how she, the younger generation of dancers, the dance context, and the dance itself, have been transformed over time as a result of rapidly changing socio-historical conditions. In the second half of this paper I move the discussion to the broader issues of cross-cultural encounters in what Pratt terms the ‘contact zone’ (1992. This includes looking at dance as an embodied practice and its function in the ‘contact zone’ as well as dealing with Spivak’s debates about the subaltern voice in reference to my telling of Ibu Sawitri’s story, both in the installation and in text. A closer analysis of the dynamics of my dance with Ibu Sawitri in the ‘contact zone’ is addressed here.

  16. ''Massless gaps'' for solenoid + calorimeter

    International Nuclear Information System (INIS)

    Marraffino, J.; Wu, W.; Beretvas, A.; Green, D.; Denisenko, K.; Para, A.

    1991-11-01

    The necessary existence of material in front of the first active element in a calorimeter will degrade the performance of that device. The question is by what factor. The follow up question is what can be done to minimize the damage. These questions are usually of primary importance for liquid argon calorimetry because of the necessity of containment dewars. However, the problem is universal. For example, the Solenoid Detector Collaboration, SDC, has proposed a superconducting coil which would be placed in front of the EM calorimeter. Although much effort has been made to minimize the depth of material in the coil, still the resolution and linearity must be optimized if the SDC goal of precision electromagnetic (EM) calorimetry is to be realized

  17. Electromagnetic calorimeter on liquid krypton

    International Nuclear Information System (INIS)

    Bazzotti, M.; Bianco, G.L.; Lanni, F.; Maggi, B.; Palombo, F.; Sala, A.

    1990-01-01

    This paper reports on use of noble condensed gases as calorimeter media that is attractive due to the possibility to get not only good energy resolution (like in NaI and CsI calorimeters) but better space resolution for photons. Longitudinal segmentation can provide information for particle identification by dE/dx and also e/π-separation based on longitudinal structure of the shower. The best material for this aim is of course liquid Zenon, but it is impossible to get the necessary amount of it in reasonable time. Therefore, the authors have stopped their choice on the next candidate-liquid Krypton (LKr). Its sufficient amount can be obtained before to the beginning of the experiment

  18. Dance Specialists around the World--A Living History

    Science.gov (United States)

    Musmon, Margaret; Welsh, Kariamu; Heath, Freddie-Lee; Minton, Sandra; Laverty, Mary Ann; Maeshiba, Naoko; Weeks, Sandy; Cardinal, Marita K.; Howton, Amy; Tavacioglu, Leyla

    2008-01-01

    Dance embraces the entire globe. Universities offer world dance classes to expose students to various styles and educators travel to different countries to experience how dance is viewed, performed, and taught in different cultures. In this article nine dance educators share their experiences of teaching and observing dance abroad. These accounts…

  19. Next Generation CALICE Electromagnetic Calorimeter

    OpenAIRE

    Grondin, Denis; Jeans, Daniel

    2010-01-01

    This paper presents mechanical R&D for the CALICE Silicon-tungsten electromagnetic calorimeter. After the physics ECAL prototype, tested in 2006 (DESY-CERN), 2007 (CERN), 2008 (FNAL) and before the design of different 'modules 0' (barrel and endcap) for a final detector, a technological ECAL prototype, called the EUDET module, is under design in order to have a close to full scale technological solution which could be used for the final detector, taking into account future industrialisation o...

  20. Next Generation CALICE Electromagnetic Calorimeter

    OpenAIRE

    Grondin, Denis; Jeans, Daniel

    2010-01-01

    This paper presents mechanical R&D for the CALICE Silicon-tungsten electromagnetic calorimeter. After the physics ECAL prototype, tested in 2006 (DESY-CERN), 2007 (CERN), 2008 (FNAL) and before the design of different "modules 0" (barrel and endcap) for a final detector, a technological ECAL prototype, called the EUDET module, is under design in order to have a close to full scale technological solution which could be used for the final detector, taking into account future industrialisation o...

  1. The KLOE fiber electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Incagli, Marco

    1998-01-01

    The construction and equipment of the KLOE electromagnetic calorimeter has ended in March 1997. In parallel to the construction, all modules have been tested at the Cosmic Ray Test Stand (CRTS) facility, in Frascati National Laboratories (Rome). The construction technique, based on scintillating fibers alternated to very thin (0.5 mm) grooved lead planes, is described and the main results both from the CRTS and from a preliminary Test Beam with low energy electrons and muons are reported in this note

  2. The T.M. Calorimeter

    International Nuclear Information System (INIS)

    Mas, P.; Goer, J. de

    1970-01-01

    The T.M. calorimeter is the isothermal type. It consists only of a sample of graphite and a jacket of stainless steel filled with nitrogen. The chromel-alumel thermocouples which measure the temperature difference between the sample and the jacket also serve to suspend the sample. The jacket is kept at a constant temperature: i.e. that of the water in the swimming pool

  3. Electromagnetic Calorimeter for HADES Experiment

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ramos P.

    2014-01-01

    Full Text Available Electromagnetic calorimeter (ECAL is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.

  4. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  5. Upgrading ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of s...

  6. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.J.

    1983-12-01

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (author)

  7. Rugged calorimeter with a fast rise time

    International Nuclear Information System (INIS)

    McMurtry, W.M.; Dolce, S.R.

    1980-01-01

    An intrinsic 1-mil-thick gold foil calorimeter has been developed which rises to 95% of the energy deposited in less than 2 microseconds. This calorimeter is very rugged, and can withstand rough handling without damage. The time constant is long, in the millisecond range, because of its unique construction. Use of this calorimeter has produced 100% data recovery, and agreement with true deposition to less than 10%

  8. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.J.; Ellis, N.N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.J.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Barnes, G.; Bowcock, T.J.V.; Eisenhandler, E.; Gibson, W.R.; Honma, A.K.; Kalmus, P.I.P.; Keeler, R.K.; Pritchard, T.W.; Salvi, G.A.P.; Thompson, G.; Arnison, G.T.J.; Astbury, A.; Cash, A.R.; Grayer, G.H.; Haynes, W.J.; Hill, D.L.; Moore, D.R.; Nandi, A.K.; Percival, M.D.; Roberts, J.H.C.; Scott, W.G.; Shah, T.P.; Stanhope, R.J.; White, D.E.A.

    1985-01-01

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (orig.)

  9. Performance of prototypes for the ALICE electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Allen, J.; Awes, T.; Badala, A.; Baumgart, S.; Bellwied, R.; Benhabib, L.; Bernard, C.; Bianchi, N.; Blanco, F.; Bortoli, Y.; Bourdaud, G.; Bourrion, O.; Boyer, B.; Bruna, E.; Butterworth, J.; Caines, H.; Calvo Diaz Aldagalan, D.; Capitani, G.P.; Carcagno, Y.; Casanova Diaz, A.

    2010-01-01

    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4x4 array of final design modules showed an energy resolution of about 11%/√(E(GeV))+1.7% with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5mm+5.3mm/√(E(GeV)). For an electron identification efficiency of 90% a hadron rejection factor of >600 was obtained.

  10. Signal processing for liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Cleland, W.E.; Stern, E.G.

    1992-01-01

    We present the results of a study of the effects of thermal and pileup noise in liquid ionization calorimeters operating in a high luminosity calorimeters operating in a high luminosity environment. The method of optimal filtering of multiply-sampled signals which may be used to improve the timing and amplitude resolution of calorimeter signals is described, and its implications for signal shaping functions are examined. The dependence of the time and amplitude resolution on the relative strength of the pileup and thermal noise, which varies with such parameters as luminosity, rapidity and calorimeter cell size, is examined

  11. Family reunion for the UA2 calorimeter

    CERN Multimedia

    Abha Eli Phoboo

    2015-01-01

    After many years in CERN’s Microcosm exhibition, the last surviving UA2 central calorimeter module has been moved to Hall 175, the technical development laboratory of the ATLAS Tile Hadronic Calorimeter (Tilecal). The UA2 and ATLAS calorimeters are cousins, as both were designed by Otto Gildemeister. Now side by side, the calorimeters illustrate the progress made in sampling organic scintillator calorimeters over the past 35 years.   The ATLAS Tile Calorimeter prototypes (left) and the UA2 central calorimeter (right) in Hall 175. (Image: Mario Campanelli/ATLAS.) From 1981 to 1990, the UA2 experiment was one of the two detectors on CERN’s flagship accelerator, the SPS. At the heart of the UA2 detector was the central calorimeter. It was made up of 24 slices – each weighing four tonnes – arranged like orange segments around the collision point. These calorimeter slices played a central role in the research carried out by UA2 for the discovery of W bosons...

  12. Secondary Emission Calorimeter Sensor Development

    Science.gov (United States)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is

  13. The ATLAS Liquid Argon Calorimeters: integration, installation and commissioning

    International Nuclear Information System (INIS)

    Tikhonov, Yu.

    2008-01-01

    The ATLAS liquid argon calorimeter system consists of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters positioned in three cryostats. Since May 2006 the LAr barrel calorimeter records regular calibration runs and takes cosmic muon data together with tile hadronic calorimeter in the ATLAS cavern. The cosmic runs with end-cap calorimeters started in April 2007. First results of these combined runs are presented

  14. Development of ATLAS Liquid Argon Calorimeter Front-end Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219286; The ATLAS collaboration

    2016-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5-7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter channels at 40-80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented.

  15. Meaning of dancing therapy in therapy of clients with psychological diseases

    OpenAIRE

    NĚMCOVÁ, Barbora

    2010-01-01

    Bachelor thesis deals with meaning and effects of Dance therapy in frame of medical therapy of clients with psychical disease. Theoretical part defines words like dance, movement and Dance therapy. This part also describes history of dance, meaning and aims of Dance therapy, its school, aims and divisions. Mensioned are person of dance therapist, personalities connected with dance and Dance therapy, target groups of clients suitable for Dance therapy, importance of Dance therapy for clients w...

  16. Benefits of Implementing a Dance Unit in Physical Education

    Science.gov (United States)

    Bajek, Mary; Richards, K. Andrew R.; Ressler, James

    2015-01-01

    This article discusses the benefits of participating in a dance curriculum, as well as how dance relates to the National Standards. It also provides insight into how physical educators can overcome the barriers to teaching dance in their programs.

  17. Ethnic Dance. The Origins of Jazz. A Curriculum Design for Dance.

    Science.gov (United States)

    Hubbard, Karen W.

    1988-01-01

    The article describes the development, organization, goals, and activities of a course designed to trace the evolution of jazz dance and tie this dynamic dance form to the cultural experiences of African-Americans. (CB)

  18. Why Do You Dance? Development of the Dance Motivation Inventory (DMI)

    OpenAIRE

    Maraz, Aniko; Kir?ly, Orsolya; Urb?n, R?bert; Griffiths, Mark D.; Demetrovics, Zsolt

    2015-01-01

    Dancing is a popular form of physical exercise and studies have show that dancing can decrease anxiety, increase self-esteem, and improve psychological wellbeing. The aim of the current study was to explore the motivational basis of recreational social dancing and develop a new psychometric instrument to assess dancing motivation. The sample comprised 447 salsa and/or ballroom dancers (68% female; mean age 32.8 years) who completed an online survey. Eight motivational factors were identified ...

  19. How To Dance through Time. Volume III: The Majesty of Renaissance Dance. [Videotape].

    Science.gov (United States)

    Teten, Carol

    This 42-minute VHS videotape is the third in a series of "How To Dance Through Time" videos. It highlights the intricacies of an Italian court dance suite, which mirrors the episodic changes of courtship. Nido D'Amore" (The Nest of Love) exposes the technique for all the dance suites of the era, and features The Opening (which…

  20. African Dance Aesthetics in a K-12 Dance Setting: From History to Social Justice

    Science.gov (United States)

    Ward, Sheila A.

    2013-01-01

    This article invites the reader to gain a deeper understanding of the aesthetics of African-based dance through the elements of tradition, transformation, and social justice. A discussion of the aesthetics of African dances within Africa and throughout the African diaspora opens the doors to present these dances in a K-12 setting, to explore a…

  1. National Dance Education Organization: Building a Future for Dance Education in the Arts

    Science.gov (United States)

    Bonbright, Jane; McGreevy-Nichols, Susan

    2012-01-01

    The field of dance arts education in the United States is in an entirely different place today than it was at the turn of the century. Much of this change is due to a convergence of events that involved: federal and state legislation, policy, and funding that supported dance in arts education; a forty-year transition of dance out of departments of…

  2. Critical Postcolonial Dance Pedagogy: The Relevance of West African Dance Education in the United States

    Science.gov (United States)

    Cruz Banks, Ojeya

    2010-01-01

    This dance ethnography examines work conducted by the Dambe Project--a nonprofit organization that specializes in African performing arts education and mentorship. The study focuses on the implications of the organization's dance pedagogy in light of its postcolonial context and the importance of West African dance education in the United States.…

  3. Status of the ATLAS hadronic tile calorimeter

    International Nuclear Information System (INIS)

    Leitner, R.

    2005-01-01

    Short status of the Tile Calorimeter project is given. Major achievements in the mechanical construction of the detector modules, their instrumentation, cylinders assembly, as well as the principles of the detector front-end electronics, are described. The ideas of Tile Calorimeter module calibration are presented

  4. An overview of CMS central hadron calorimeter

    CERN Document Server

    Katta, S

    2002-01-01

    The central hadron calorimeter for CMS detector is a sampling calorimeter with active medium as scintillator plates interleaved with brass absorber plates. It covers the central pseudorapidity region (¿ eta ¿<3.0). The design and construction aspects are reported. The status of construction and assembly of various subdetectors of HCAL are presented. (5 refs).

  5. Cone calorimeter tests of wood composites

    Science.gov (United States)

    Robert H. White; Kuma Sumathipala

    2013-01-01

    The cone calorimeter is widely used for the determination of the heat release rate (HRR) of building products and other materials. As part of an effort to increase the availability of cone calorimeter data on wood products, the U.S. Forest Products Laboratory and the American Wood Council conducted this study on composite wood products in cooperation with the Composite...

  6. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  7. Assembly of the CMS hadronic calorimeter

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  8. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  9. Several versions of forward gas ionization calorimeter

    International Nuclear Information System (INIS)

    Babintsev, V.V.; Kholodenko, A.G.; Rodnov, Yu.V.

    1994-01-01

    The properties of several versions of a gas ionization calorimeter are analyzed by means of the simulation with the GEANT code. The jet energy and coordinate resolutions are evaluated. Some versions of the forward calorimeter meet the ATLAS requirements. 13 refs., 15 figs., 7 tabs

  10. LHCb: Physics with the LHCb calorimeter

    CERN Multimedia

    Barsuk, S

    2007-01-01

    The LHCb calorimeter comprises the scintillator pad detector (SPD), preshower (PS), electromagnetic Shashlyk type (ECAL) and hadronichadronic Tile (HCAL) calorimeters, arranged in pseudo-projective geometry. All the four detectors follow the general principle of reading the light from scintillator tiles with wave length shifting fibers, and transporting the light towards photomultipliers (25 ns R/O).

  11. Test and characterization of a prototype silicon–tungsten electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Muhuri, Sanjib, E-mail: sanjibmuhuri@vecc.gov.in [Variable Energy Cyclotron Centre, Kolkata 700064 (India); Mukhopadhyay, Sourav; Chandratre, Vinay B.; Sukhwani, Menka [Bhabha Atomic Research Centre, Electronics Division, Trombay, Mumbai 400085 (India); Jena, Satyajit [Indian Institute of Technology, Bombay, Mumbai 400076 (India); Khan, Shuaib Ahmad; Nayak, Tapan K.; Saini, Jogender; Singaraju, Rama Narayana [Variable Energy Cyclotron Centre, Kolkata 700064 (India)

    2014-11-11

    New generation high-energy physics experiments demand high precision tracking and accurate measurements of a large number of particles produced in the collisions of elementary particles and heavy-ions. Silicon–tungsten (Si–W) calorimeters provide the most viable technological option to meet the requirements of particle detection in high multiplicity environments. We report a novel Si–W calorimeter design, which is optimized for γ/π{sup 0} discrimination up to high momenta. In order to test the feasibility of the calorimeter, a prototype mini-tower was constructed using silicon pad detector arrays and tungsten layers. The performance of the mini-tower was tested using pion and electron beams at the CERN Proton Synchrotron (PS). The experimental results are compared with the results from a detailed GEANT-4 simulation. A linear relationship between the observed energy deposition and simulated response of the mini-tower has been obtained, in line with our expectations.

  12. The "filarial dance" is not characteristic of filariasis: observations of "dancing megasperm" on high-resolution sonography in patients from nonendemic areas mimicking the filarial dance and a proposed mechanism for this phenomenon.

    Science.gov (United States)

    Adejolu, Margaret; Sidhu, Paul S

    2011-08-01

    The objective of this series was to show that the sonographic appearance described as the "filarial dance" is not characteristic of filariasis but occurs in nonendemic areas as a manifestation of epididymal obstruction. An experienced observer documented cases after initial observation of the filarial dance in routine clinical practice using high-frequency linear array transducers. The filarial dance was described as excessive to-and-fro movement of echogenic particles within a prominent epididymis and graded 1 to 4 according to the extent and distribution of the abnormality. The country of birth, exposure to filarial infection or travel to a filarial-endemic area, previous scrotal surgery including vasectomy, any previous or current scrotal inflammatory disease, and any congenital testicular abnormalities were recorded. Over a 10-year period, sonographic appearances consistent with the filarial dance were observed in 18 patients (bilateral in 6). The mean patient age was 47.7 (range, 28-91) years. The abnormality was graded in the 24 affected testes as follows: grade 1, n = 3; grade 2, n = 8; grade 3, n = 8; and grade 4, n = 5. No patient had a history of filariasis or travel to an endemic area. Six of 18 patients (33.3%) had bilateral vasectomies; 5 (27.8%) had a history of epididymo-orchitis in the ipsilateral testis; 3 (16.7%) had previous scrotal surgery; and 4 (22.2%) had no relevant urologic history. We have described a sonographic appearance identical to the filarial dance in men with no history of filarial infection. Most had previous scrotal surgery or infection, suggesting that the filarial dance may not always be due to movement of filarial worms. The unifying condition in patients with filariasis and our patients is lymphatic obstruction, likely the underlying cause of the appearance in both groups.

  13. Calorimeter triggers for hard collisions

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.

    1978-01-01

    We discuss the use of a forward calorimeter to trigger on hard hadron-hadron collisions. We give a derivation in the covariant parton model of the Ochs-Stodolsky scaling law for single-hard-scattering processes, and investigate the conditions when instead a multiple- scattering mechanism might dominate. With a proton beam, this mechanism results in six transverse jets, with a total average multiplicity about twice that seen in ordinary events. We estimate that its cross section is likely to be experimentally accessible at avalues of the beam energy in the region of 100 GeV/c

  14. The STAR endcap electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Allgower, C.E.; Anderson, B.D.; Baldwin, A.R.; Balewski, J.; Belt-Tonjes, M.; Bland, L.C.; Brown, R.L.; Cadman, R.V.; Christie, W.; Cyliax, I.; Dunin, V.; Efimov, L.; Eppley, G.; Gagliardi, C.A.; Gagunashvili, N.; Hallman, T.; Hunt, W.; Jacobs, W.W.; Klyachko, A.; Krueger, K.; Kulikov, A.; Ogawa, A.; Panebratsev, Y.; Planinic, M.; Puskar-Pasewicz, J.; Rakness, G.; Razin, S.; Rogachevski, O.; Shimansky, S.; Solberg, K.A.; Sowinski, J.; Spinka, H.; Stephenson, E.J.; Tikhomirov, V.; Tokarev, M.; Tribble, R.E.; Underwood, D.; Vander Molen, A.M.; Vigdor, S.E.; Watson, J.W.; Westfall, G.; Wissink, S.W.; Yokosawa, A.; Yurevich, V.; Zhang, W.-M.; Zubarev, A.

    2003-01-01

    The STAR endcap electromagnetic calorimeter will provide full azimuthal coverage for high-p T photons, electrons and electromagnetically decaying mesons over the pseudorapidity range 1.086≤η≤2.00. It includes a scintillating-strip shower-maximum detector to provide π 0 /γ discrimination and preshower and postshower layers to aid in distinguishing between electrons and charged hadrons. The triggering capabilities and coverage it offers are crucial for much of the spin physics program to be carried out in polarized proton-proton collisions

  15. The STAR endcap electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Allgower, C.E.; Anderson, B.D.; Baldwin, A.R.; Balewski, J.; Belt-Tonjes, M.; Bland, L.C.; Brown, R.L.; Cadman, R.V.; Christie, W.; Cyliax, I.; Dunin, V.; Efimov, L.; Eppley, G.; Gagliardi, C.A.; Gagunashvili, N.; Hallman, T.; Hunt, W.; Jacobs, W.W.; Klyachko, A.; Krueger, K.; Kulikov, A.; Ogawa, A.; Panebratsev, Y.; Planinic, M.; Puskar-Pasewicz, J.; Rakness, G.; Razin, S.; Rogachevski, O.; Shimansky, S.; Solberg, K.A.; Sowinski, J.; Spinka, H.; Stephenson, E.J.; Tikhomirov, V.; Tokarev, M.; Tribble, R.E.; Underwood, D.; Vander Molen, A.M.; Vigdor, S.E. E-mail: vigdor@iucf.indiana.edu; Watson, J.W.; Westfall, G.; Wissink, S.W.; Yokosawa, A.; Yurevich, V.; Zhang, W.-M.; Zubarev, A

    2003-03-01

    The STAR endcap electromagnetic calorimeter will provide full azimuthal coverage for high-p{sub T} photons, electrons and electromagnetically decaying mesons over the pseudorapidity range 1.086{<=}{eta}{<=}2.00. It includes a scintillating-strip shower-maximum detector to provide {pi}{sup 0}/{gamma} discrimination and preshower and postshower layers to aid in distinguishing between electrons and charged hadrons. The triggering capabilities and coverage it offers are crucial for much of the spin physics program to be carried out in polarized proton-proton collisions.

  16. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  17. Upgrading the Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    The tremendous need for simulated samples now and even more so in the future, encourage the development of fast simulation techniques. The Fast Calorimeter Simulation is a faster though less accurate alternative to the full calorimeter simulation with Geant4. It is based on parametrizing the longitudunal and lateral energy deposits of single particles in the ATLAS calorimeter. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. The parametrizations are expanded to cover very high energies and very forward detector regions, to increase the applicability of the tool. A prototype of this upgraded Fast Calorimeter Simulation has been developed and first validations with single particles show substantial improvements over the previous version.

  18. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Marjanovic, Marija; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of the full readout chain during the data taking, a set of calibration sub-systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements, and an integrator based readout system. Combined information from all systems allows to monitor and to equalize the calorimeter response at each stage of the signal evolution, from scintillation light to digitization. Calibration runs are monitored from a data quality perspective and u...

  19. The large hadron collider beauty experiment calorimeters

    International Nuclear Information System (INIS)

    Martens, A.; LHCb Collaboration; Martens, A.

    2010-01-01

    The Large Hadron Collider beauty experiment (LHCb), one of the four largest experiments at the LHC at CERN, is dedicated to precision studies of CP violation and other rare effects, in particular in the b and c quark sectors. It aims at precisely measuring the Standard Model parameters and searching for effects inconsistent with this picture. The LHCb calorimeter system comprises a scintillating pad detector, a pre-shower (PS), electromagnetic (ECAL) and hadronic calorimeters, all of these employing the principle of transporting the light from scintillating layers with wavelength shifting fibers to photomultipliers. The fast response of the calorimeters ensures their key role in the LHCb trigger, which has to cope with the LHC collision rate of 40MHz. After discussing the design and expected performance of the LHCb calorimeter system, one addresses the time and energy calibration issues. The results obtained with the calorimeter system from the first LHC data will be shown.

  20. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  1. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  2. Differences in Itself: Redefining Disability through Dance

    Directory of Open Access Journals (Sweden)

    Carolien Hermans

    2016-11-01

    Full Text Available This paper brings together two different terms: dance and disability. This encounter between dance and disability might be seen as an unusual, even conflicting, one since dance is traditionally dominated by aesthetic virtuosity and perfect, idealized bodies which are under optimized bodily control. However, recently there has been a growing desire within dance communities and professional dance companies to challenge binary thinking (beautiful-ugly, perfect-imperfect, valid-invalid, success-failure by incorporating an aesthetic of difference. The traditional focus of dance on appearance (shape, technique, virtuosity is replaced by a focus on how movement is connected to a sense of self. This notion of the subjective body not only applies to the dancer's body but also to disabled bodies. Instead of thinking of a body as a thing, an object (Körper that is defined by its physical appearance, dance is more and more seduced by the body as we sense it, feel it and live it (Leib. This conceptual shift in dance is illustrated by a theoretical analysis of The Cost of Living, a dance film produced by DV8.

  3. Virtual Dance and Motion-Capture

    Directory of Open Access Journals (Sweden)

    Marc Boucher

    2011-01-01

    Full Text Available A general view of various ways in which virtual dance can be understood is presented in the first part of this article. It then appraises the uses of the term “virtual” in previous studies of digital dance. A more in-depth view of virtual dance as it relates to motion-capture is offered, and key issues are discussed regarding computer animation, digital imaging, motion signature, virtual reality and interactivity. The paper proposes that some forms of virtual dance be defined in relation to both digital technologies and contemporary theories of virtuality.

  4. The Mu2e undoped CsI crystal calorimeter

    Science.gov (United States)

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2018-02-01

    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.

  5. Dance notations and robot motion

    CERN Document Server

    Abe, Naoko

    2016-01-01

    How and why to write a movement? Who is the writer? Who is the reader? They may be choreographers working with dancers. They may be roboticists programming robots. They may be artists designing cartoons in computer animation. In all such fields the purpose is to express an intention about a dance, a specific motion or an action to perform, in terms of intelligible sequences of elementary movements, as a music score that would be devoted to motion representation. Unfortunately there is no universal language to write a motion. Motion languages live together in a Babel tower populated by biomechanists, dance notators, neuroscientists, computer scientists, choreographers, roboticists. Each community handles its own concepts and speaks its own language. The book accounts for this diversity. Its origin is a unique workshop held at LAAS-CNRS in Toulouse in 2014. Worldwide representatives of various communities met there. Their challenge was to reach a mutual understanding allowing a choreographer to access robotics ...

  6. Fast calorimeter simulation in LHCb

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Fast calorimeter simulation in LHCb In HEP experiments CPU resources required by MC simulations are constantly growing and become a very large fraction of the total computing power (greater than 75%). At the same time the pace of performance improvements from technology is slowing down, so the only solution is a more efficient use of resources. Efforts are ongoing in the LHC experiments to provide multiple options for simulating events in a faster way when higher statistics is needed. A key of the success for this strategy is the possibility of enabling fast simulation options in a common framework with minimal action by the final user. In this talk we will describe the solution adopted in Gauss, the LHCb simulation software framework, to selectively exclude particles from being simulated by the Geant4 toolkit and to insert the corresponding hits generated in a faster way. The approach, integrated within the Geant4 toolkit, has been applied to the LHCb calorimeter but it could also be used for other subdetec...

  7. Dance in K through 12 Basic Education: adequacy of contemporary practices in dance teaching

    Directory of Open Access Journals (Sweden)

    Josiane Gisela Franken

    2014-09-01

    Full Text Available This article focuses on dance teaching in K-12 basic education from a reflection about the relevant adoption of elements from post 1950’s artistic movement on dancing creative processes in a dialogue with authors as Hassan (1985, Silva (2005, and Rengel (2008. On this perspective, changes on dance teaching and learning practical attitudes are considered, resulting from postmodern dance transformations, such as: the reformulation of body concept, the conception of dance as a democratic, collective, and creative process and the progressively narrowed bounds between school artistic approaches and art forms developed outside of the school environment

  8. Preventive effects of group dance movement therapy on participants of oriental dance courses

    OpenAIRE

    Jevšenak, Vesna

    2014-01-01

    The connection of mind and body as well as the impact of physical activity on mental state of the person is defined in the theoretical part of the thesis. It featured dance as an expressive means of non-verbal communication in the therapeutic process in the group and stressed the importance of creativity in dance expression. It has given a historical overview of the role of women in dance and described the therapeutic characteristics of oriental dance. In addition to presenting dance - moveme...

  9. Kazakh Traditional Dance Gesture Recognition

    Science.gov (United States)

    Nussipbekov, A. K.; Amirgaliyev, E. N.; Hahn, Minsoo

    2014-04-01

    Full body gesture recognition is an important and interdisciplinary research field which is widely used in many application spheres including dance gesture recognition. The rapid growth of technology in recent years brought a lot of contribution in this domain. However it is still challenging task. In this paper we implement Kazakh traditional dance gesture recognition. We use Microsoft Kinect camera to obtain human skeleton and depth information. Then we apply tree-structured Bayesian network and Expectation Maximization algorithm with K-means clustering to calculate conditional linear Gaussians for classifying poses. And finally we use Hidden Markov Model to detect dance gestures. Our main contribution is that we extend Kinect skeleton by adding headwear as a new skeleton joint which is calculated from depth image. This novelty allows us to significantly improve the accuracy of head gesture recognition of a dancer which in turn plays considerable role in whole body gesture recognition. Experimental results show the efficiency of the proposed method and that its performance is comparable to the state-of-the-art system performances.

  10. Energy Resolution of the Barrel of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Baillon, Paul; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Bialas, Wojciech; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton, David; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Del Re, Daniele; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl, James; Gras, Philippe; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel De Montechenault, G; Hansen, Magnus; Heath, Helen F; Hill, Jack; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, M A; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman, Harvey B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Y; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; Triantis, F A; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Jia-Wen; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2007-01-01

    The energy resolution of the barrel part of the CMS Electromagnetic Calorimeter has been studied using electrons of 20 to 250 GeV in a test beam. The incident electron's energy was reconstructed by summing the energy measured in arrays of 3x3 or 5x5 channels. There was no significant amount of correlated noise observed within these arrays. For electrons incident at the centre of the studied 3x3 arrays of crystals, the mean stochastic term was measured to be 2.8% and the mean constant term to be 0.3%. The amount of the incident electron's energy which is contained within the array depends on its position of incidence. The variation of the containment with position is corrected for using the distribution of the measured energy within the array. For uniform illumination of a crystal with 120 GeV electrons a resolution of 0.5% was achieved. The energy resolution meets the design goal for the detector.

  11. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1991-07-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN-SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  12. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1992-01-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  13. Large capacity water and air bath calorimeters

    International Nuclear Information System (INIS)

    James, S.J.; Kasperski, P.W.; Renz, D.P.; Wetzel, J.R.

    1993-01-01

    EG and G Mound Applied Technologies has developed an 11 in. x 17 in. sample size water bath and an 11 in. x 17 in. sample size air bath calorimeter which both function under servo control mode of operation. The water bath calorimeter has four air bath preconditioners to increase sample throughput and the air bath calorimeter has two air bath preconditioners. The large capacity calorimeters and preconditioners were unique to Mound design which brought about unique design challenges. Both large capacity systems calculate the optimum set temperature for each preconditioner which is available to the operator. Each system is controlled by a personal computer under DOS which allows the operator to download data to commercial software packages when the calorimeter is idle. Qualification testing yielded a one standard deviation of 0.6% for 0.2W to 3.0W Pu-238 heat standard range in the water bath calorimeter and a one standard deviation of 0.3% for the 6.0W to 20.0W Pu-238 heat standard range in the air bath calorimeter

  14. Smiljana Mandukic (1908-1992 Beginning of Modern Dance and Dance Expressionism in Europe

    Directory of Open Access Journals (Sweden)

    Vera Obradović

    2018-02-01

    Full Text Available Smiljana Mandukić (1908-1992 a dancer, choreographer, and teacher, was among those dancers who pioneering the modern dance in Serbia. The beginning of the 20th century brought new forms of art as the old ones were not sufficient to express new feelings and experiences, in that era of rapid technological progress. Mandukic was educated as a dancer in interwar Vienna, so she happened to be at the centre of Central European expressionist dance, free dance, at the time of her formation as a dancer. Smiljana acquired dance knowledge from her teachers, famous dancers and choreographers, Gertrud Bodenwieser, who developed her own style of modern expressionist dance, known as “Bodenwieser Viennise Style”, and Grete Wiesenthal, who was a member of the corps de ballet of the Hofoper in Vienna (Vienna Court Opera Ballet. Both her teachers were the representatives of “Ausdrukstanz” or “Neur Tanz”, and were rejected formalism and virtuosity of classical dance in favour of more natural movements. Like her pair, Maga Magazinovic (1882-1968, who introduced expressionist dance in Serbia, established the first school of modern dance in 1910, and founded the first modern dance group consisted of female dancers, Mandukic advocated for the importance of dance in education of female population. In the traditional, patriarchal Serbian society, she opened the second school of modern dance in 1931, and was the first artist who established a professional group of modern dance. Her greatest achievement was the creation of “epic-patriotic choreodrama”. The main goal of this article is to confirm that Smiljana Mandukic’s pioneer work in establishing modern dance in Serbia was the part of the European expressionist modern dance movement of the equal importance and significance not only when considering the Western Balkans but the broader European context.

  15. Dance and Music in "Gangnam Style": How Dance Observation Affects Meter Perception.

    Science.gov (United States)

    Lee, Kyung Myun; Barrett, Karen Chan; Kim, Yeonhwa; Lim, Yeoeun; Lee, Kyogu

    2015-01-01

    Dance and music often co-occur as evidenced when viewing choreographed dances or singers moving while performing. This study investigated how the viewing of dance motions shapes sound perception. Previous research has shown that dance reflects the temporal structure of its accompanying music, communicating musical meter (i.e. a hierarchical organization of beats) via coordinated movement patterns that indicate where strong and weak beats occur. Experiments here investigated the effects of dance cues on meter perception, hypothesizing that dance could embody the musical meter, thereby shaping participant reaction times (RTs) to sound targets occurring at different metrical positions.In experiment 1, participants viewed a video with dance choreography indicating 4/4 meter (dance condition) or a series of color changes repeated in sequences of four to indicate 4/4 meter (picture condition). A sound track accompanied these videos and participants reacted to timbre targets at different metrical positions. Participants had the slowest RT's at the strongest beats in the dance condition only. In experiment 2, participants viewed the choreography of the horse-riding dance from Psy's "Gangnam Style" in order to examine how a familiar dance might affect meter perception. Moreover, participants in this experiment were divided into a group with experience dancing this choreography and a group without experience. Results again showed slower RTs to stronger metrical positions and the group with experience demonstrated a more refined perception of metrical hierarchy. Results likely stem from the temporally selective division of attention between auditory and visual domains. This study has implications for understanding: 1) the impact of splitting attention among different sensory modalities, and 2) the impact of embodiment, on perception of musical meter. Viewing dance may interfere with sound processing, particularly at critical metrical positions, but embodied familiarity with

  16. Some Problems in the Aesthetics of Dance

    Science.gov (United States)

    Best, David N.

    1975-01-01

    Author considered the two-horned dilemma the teacher of dance is faced with concerning the aesthetic quality of her art; in the first case is the insistence on the importance of individual emotional response and secondly is the problem of being rational in one's approach to teaching dance. (Author/RK)

  17. Exploring Dance Careers. A Student Guidebook.

    Science.gov (United States)

    Cornell, Richard; Hansen, Mary Lewis

    One of six student guidebooks in a series of 11 arts and humanities career exploration guides for grade 7-12 teachers, counselors, and students, this student book on exploration of dance careers presents information on specific occupations in both performance careers and dance education. An introductory section describes the four different dance…

  18. Hunter College Dance Therapy Masters Program.

    Science.gov (United States)

    Schmais, Claire; White, Elissa Q.

    Described is development of the Hunter College dance therapy 18-month 30-credit masters program involving 33 adult students, (in two classes beginning in 1971 and 1972), an educational model, internship in psychiatric institutions, and preparation of instructional materials. The dance therapist is said to incorporate the psychiatric patient's…

  19. Body Image in the Dance Class

    Science.gov (United States)

    Oliver, Wendy

    2008-01-01

    Although some research has shown that dance enhances body image and self-esteem, other research shows that it sometimes has the opposite effect and causes dancers to develop a negative body image and even eating disorders. In dance, body image is not only about maintaining a certain weight; it can also refer to specific perceived body flaws.…

  20. Courage and Power: Dancing in Senegal

    Science.gov (United States)

    Moss, Suzan

    2002-01-01

    This article explores continuing professional development. I teach in a community college where 93% of the students are black and Latino. I am a Caucasian teacher, and my background is primarily modern and jazz dance. In recent years I have been studying African and Latin dance forms, so that I can address the deep hunger my students have to learn…

  1. [Dance/movement therapy in oncological rehabilitation].

    Science.gov (United States)

    Mannheim, Elana G; Helmes, Almut; Weis, Joachim

    2013-01-01

    Dance/movement therapy may be defined as a psychosocial and body-oriented art therapy, which uses dance for the expression of emotional and cognitive issues. Dance/movement therapy is an important intervention for cancer patients to enhance coping strategies. There are only few studies investigating dance therapy with cancer patients. The present study investigates effects of dance/movement therapy (n = 115) in the setting of inpatient rehabilitation based on a pre-post design with a control group as well as a follow-up 3 months later. Standardized questionnaires measuring quality of life, anxiety and depression, and self-concept (EORTC QLQ-C30, HADS, FSKN) were used. In addition, at the end of the inpatient rehabilitation program subjective expectations of the dance/movement therapy and the patients' subjective evaluation of the benefits of the intervention were measured by a new developed questionnaire. As process factors of dance/movement therapy, expression of emotions, enhancement of self-esteem, development of the personality, vitality, getting inner balance, and getting in touch with the body have been identified. In terms of quality of life and psychological well-being, the results showed significant improvements with medium to large effect sizes. Even though those effects may not be attributed to the intervention alone, the analysis of the data and the patients' subjective statements help to reveal therapeutic factors and process characteristics of dance/movement therapy within inpatient rehabilitation. Copyright © 2013 S. Karger AG, Basel.

  2. Enlivening Dance History Pedagogy through Archival Projects

    Science.gov (United States)

    Randall, Tresa

    2012-01-01

    Dance archives can bring students into contact with historical subjects through artifacts of the past. This article advocates the use of archival projects in undergraduate dance history courses, arguing that such hands-on learning activities give students dynamic and interactive experiences of history. The author describes a creative project she…

  3. The Value of Biomechanical Research in Dance.

    Science.gov (United States)

    Ranney, D. A.

    Simple observation of dance movement, while very useful, can lead to misconceptions, about the physical realities of dance movement, that make learning difficult. This gap between reality and understanding can be reduced by the application of biomechanical techniques such as cinematography, electromyography, and force-plate analysis. Biomechanical…

  4. Non-compensation of the ATLAS barrel combined calorimeter prototype

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.A.; Kuz'min, M.V.

    1998-01-01

    The e / π ratio for the ATLAS Barrel Combined Calorimeter Prototype, composed from electromagnetic LArg calorimeter and hadronic Tile calorimeter was investigated. Response of Combined Calorimeter on pions and electrons in the energy region of 20-300 GeV was studied. Found e / h = 1.37 ± 0.01 ± 0.02 is in good agreement with the results from previous Combined Calorimeter tests but has more precisions

  5. First results from the SLD silicon calorimeters

    International Nuclear Information System (INIS)

    Berridge, S.C.; Bugg, W.M.; Kroeger, R.S.; Weidemann, A.W.; White, S.L.

    1992-07-01

    The small-angle calorimeters of the SLD were successfully operated during the recent SLC engineering run. The Luminosity Monitor and Small-Angle Tagger (LMSAT) covers the angular region between 28 and 68 milliradians from the beam axis, while the Medium-Angle Silicon Calorimeter (MASC) covers the 68--190 milliradian region. Both are silicon-tungsten sampling calorimeters; the LMSAT employs 23 layers of 0.86 X 0 sampling, while the MASC has 10 layers of 1.74 X 0 sampling. We present results from the first run of the SLC with the SLD on beamline

  6. Data acquisition system for LHCb calorimeter

    International Nuclear Information System (INIS)

    Dai Gang; Gong Guanghua; Shao Beibei

    2007-01-01

    LHCb Calorimeter system is mainly used to identify and measure the energy of the photon, electron, hadron produced by the collision of proton. TELL1 is a common data acquisition platform based on FPGA for LHCb experiment. It is used to adopt custom data acquisition and process method for every detector and provide the data standard for the CPU matrix. This paper provides a novel DAQ and data process model in VHDL for Calorimeter. According to this model. We have built an effective Calorimeter DAQ system, which would be used in LHCb Experiment. (authors)

  7. Calorimeter prediction based on multiple exponentials

    International Nuclear Information System (INIS)

    Smith, M.K.; Bracken, D.S.

    2002-01-01

    Calorimetry allows very precise measurements of nuclear material to be carried out, but it also requires relatively long measurement times to do so. The ability to accurately predict the equilibrium response of a calorimeter would significantly reduce the amount of time required for calorimetric assays. An algorithm has been developed that is effective at predicting the equilibrium response. This multi-exponential prediction algorithm is based on an iterative technique using commercial fitting routines that fit a constant plus a variable number of exponential terms to calorimeter data. Details of the implementation and the results of trials on a large number of calorimeter data sets will be presented

  8. ALICE Zero Degree Calorimeter (ZDC), General Pictures.

    CERN Multimedia

    2003-01-01

    The ZDC Calorimeter for spectator neutrons is made by 44 slabs of W-alloy; each slab has 44 grooves where quartz fibres are placed. The charged particles of the hadronic shower generated by the neutrons make Cerenkov light in the fibres and the light is collected by photomultipliers. Photos from 1 to 9 show the front-face of the calorimeter. Photo n. 10 shows the rear of the calorimeter where the fibres are divided in several groups to go to the different PMs.

  9. Calibration and performance of the CHORUS calorimeter

    International Nuclear Information System (INIS)

    Buontempo, S.; Capone, A.; Cocco, A.G.; De Pedis, D.; Di Capua, E.; Dore, U.; Ereditato, A.; Ferroni, M.; Fiorillo, G.; Loverre, P.F.; Luppi, C.; Macina, D.; Marchetti-Stasi, F.; Mazzoni, M.A.; Migliozzi, P.; Palladino, V.; Piredda, G.; Ricciardi, S.; Righini, P.P.; Saitta, B.; Santacesaria, R.; Strolin, P.; Zucchelli, P.

    1995-01-01

    A high resolution calorimeter has been built for CHORUS, an experiment which searches for ν μ →ν τ oscillation in the CERN neutrino beam. Aim of the calorimeter is to measure the energy and direction of hadronic showers produced in interactions of the neutrinos in a nuclear emulsion target and to track through-going muons. It is a longitudinally segmented sampling device made of lead and scintillating fibers or strips. This detector has been exposed to beams of pions and electrons of defined momentum for calibration. The method used for energy calibration and results on the calorimeter performance are reported. (orig.)

  10. CMS Calorimeter Trigger Phase I upgrade

    International Nuclear Information System (INIS)

    Klabbers, P; Gorski, T; Bachtis, M; Dasu, S; Fobes, R; Grothe, M; Ross, I; Smith, W H; Compton, K; Farmahini-Farahani, A; Gregerson, A; Seemuth, D; Schulte, M

    2012-01-01

    We present a design for the Phase-1 upgrade of the Compact Muon Solenoid (CMS) calorimeter trigger system composed of FPGAs and Multi-GBit/sec links that adhere to the μTCA crate Telecom standard. The upgrade calorimeter trigger will implement algorithms that create collections of isolated and non-isolated electromagnetic objects, isolated and non-isolated tau objects and jet objects. The algorithms are organized in several steps with progressive data reduction. These include a particle cluster finder that reconstructs overlapping clusters of 2x2 calorimeter towers and applies electron identification, a cluster overlap filter, particle isolation determination, jet reconstruction, particle separation and sorting.

  11. MARK II end cap calorimeter electronics

    International Nuclear Information System (INIS)

    Jared, R.C.; Haggerty, J.S.; Herrup, D.A.; Kirsten, F.A.; Lee, K.L.; Olson, S.R.; Wood, D.R.

    1985-10-01

    An end cap calorimeter system has been added to the MARK II detector in preparation for its use at the SLAC Linear Collider. The calorimeter uses 8744 rectangular proportional counter tubes. This paper describes the design features of the data acquisition electronics that has been installed on the calorimeter. The design and use of computer-based test stands for the amplification and signal-shaping components is also covered. A portion of the complete system has been tested in a beam at SLAC. In these initial tests, using only the calibration provided by the test stands, a resolution of 18%/√E was achieved

  12. Dance/Movement Therapy: A Unique Career Opportunity.

    Science.gov (United States)

    Armeniox, Leslie Flint

    Dance and movement therapy is a form of psychotherapy that uses the body, dance, and movement as the primary mediums for the therapeutic process. Dance is a fundamental art form that involves the body as an instrument of self-expression; movement is a universal means of learning and communicating. Dance and movement therapy is the…

  13. The Correlates of Dance Education among Adolescent Girls.

    Science.gov (United States)

    Vicario, Terra; Henninger, Erica; Chambliss, Catherine

    This investigation extends previous research on the benefits of dance education, by further exploring the correlates of participation in dance classes for adolescent girls. The survey evaluated self-esteem, body image, dance ability, and perceived quality of peer and parent relationships. Students with greater dance experience were expected to…

  14. Ramogi Dance and Luo Cultural Values | Odwar | Humanities ...

    African Journals Online (AJOL)

    Specifically the study describes the dance performance with a view to analyze the dance vocabulary so as to provide an interpretation of how the dance movements enact the Luo cultural values. This study is based on personal interview with two Ramogi performers and my observation of the dance performance during ...

  15. Learning to Learn: A Hidden Dimension within Community Dance Practice

    Science.gov (United States)

    Barr, Sherrie

    2013-01-01

    This article explores ways of learning experienced by university dance students participating in a community dance project. The students were unfamiliar with community-based practices and found themselves needing to remediate held attitudes about dance. How the students came to approach their learning within the dance-making process drew on…

  16. Moving Social Justice: Challenges, Fears and Possibilities in Dance Education

    Science.gov (United States)

    Risner, Doug; Stinson, Susan W.

    2010-01-01

    This essay explores social justice commitments in dance pedagogy and dance education teacher preparation in the USA as developed through a series of conversations between two dance educators and former administrators in higher education. The authors examine the history of multiculturalism, multicultural practices in postsecondary dance, their…

  17. Restaurant 1: dance theatre for a day

    CERN Document Server

    Caroline Duc

    2012-01-01

    On Tuesday 31 July, CERN’s Restaurant 1 transformed into a dance studio for the duration of a public rehearsal. The performers from the dance troupe of Geneva choreographer Gilles Jobin, CERN’s current artist in residence, presented their 2011 creation, Spider Galaxies. The result: a voyage of bodies suspended between art and science.   Just two months after the choreographer’s “Strangels” invaded the library, the same bodies returned to take over another iconic CERN space: Restaurant 1. While a black floor covering was spread over the dance floor, bordered on three sides by the glass partitions overlooking the terrace, the four dancers warmed up. Gilles Jobin, the first prize winner of the “Collide@CERN” competition held last March in the dance/performance category, briefly introduced the dance that would follow, called Spider Galaxies. The piece, created in 2011, features four dancers moving to music...

  18. The D0 calorimeter trigger

    International Nuclear Information System (INIS)

    Guida, J.

    1992-12-01

    The D0 calorimeter trigger system consists of many levels to make physics motivated trigger decisions. The Level-1 trigger uses hardware techniques to reduce the trigger rate from ∼ 100kHz to 200Hz. It forms sums of electromagnetic and hadronic energy, globally and in towers, along with finding the missing transverse energy. A minimum energy is set on these energy sums to pass the event. The Level-2 trigger is a set of software filters, operating in a parallel-processing microvax farm which further reduces the trigger rate to a few Hertz. These filters will reject events which lack electron candidates, jet candidates, or missing transverse energy in the event. The performance of these triggers during the early running of the D0 detector will also be discussed

  19. Tritium calorimeter setup and operation

    CERN Document Server

    Rodgers, D E

    2002-01-01

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (...

  20. Liquid Krypton Calorimeter Calibration Software

    CERN Document Server

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  1. Are starburst galaxies proton calorimeters?

    Science.gov (United States)

    Wang, Xilu; Fields, Brian D.

    2018-03-01

    Several starburst galaxies have been observed in the GeV and TeV bands. In these dense environments, gamma-ray emission should be dominated by cosmic ray (CR) interactions with the interstellar medium (pcrpism → π0 → γγ). Indeed, starbursts may act as proton `calorimeters' where a substantial fraction of CR energy input is emitted in gamma-rays. Here, we build a one-zone, `thick-target' model implementing calorimetry and placing a firm upper bound on gamma-ray emission from CR interactions. The model assumes that CRs are accelerated by supernovae (SNe), and all suffer nuclear interactions rather than escape. Our model has only two free parameters: the CR proton acceleration energy per SN ɛcr, and the proton injection spectral index s. We calculate the pionic gamma-ray emission from 10 MeV to 10 TeV, and derive thick-target parameters for six galaxies with Fermi, H.E.S.S., and/or VERITAS data. Our model provides good fits for the M82 and NGC 253, and yields ɛcr and s values suggesting that SN CR acceleration is similar in starbursts and in our Galaxy. We find that these starbursts are indeed nearly if not fully proton calorimeters. For NGC 4945 and NGC 1068, the models are consistent with calorimetry but are less well-constrained due to the lack of TeV data. However, the Circinus galaxy and the ultra-luminous infrared galaxy Arp 220 exceed our pionic upper-limit; possible explanations are discussed.

  2. A highly segmented and compact liquid argon calorimeter for the LHC the TGT calorimeter

    CERN Document Server

    Berger, C; Geulig, H; Pierschel, G; Siedling, R; Tutas, J; Wlochal, M; Wotschack, J; Cheplakov, A P; Eremeev, R V; Feshchenko, A; Gavrishchuk, O P; Kazarinov, Yu M; Khrenov, Yu V; Kukhtin, V V; Ladygin, E; Obudovskij, V; Shalyugin, A N; Tolmachev, V T; Volodko, A G; Geweniger, C; Hanke, P; Kluge, E E; Krause, J; Putzer, A; Tittel, K; Wunsch, M; Bán, J; Bruncko, Dusan; Kriván, F; Kurca, T; Murín, P; Sándor, L; Spalek, J; Aderholz, Michael; Brettel, H; Dydak, Friedrich; Fent, J; Huber, J; Hajduk, L; Jakobs, K; Kiesling, C; Oberlack, H; Schacht, P; Stiegler, U; Bogolyubsky, M Yu; Chekulaev, S V; Kiryunin, A E; Kurchaninov, L L; Levitsky, M S; Maximov, V V; Minaenko, A A; Moiseev, A M; Semenov, P A; CERN. Geneva. Detector Research and Development Committee

    1992-01-01

    The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter is proposed as an R&D project for an LHC calorimeter with full rapidity coverage. The proposed ``Thin Gap Turbine'' (TGT) calorimeter offers uniform energy response and constant energy resolution independent of the production angle of the impinging particle and of its impact position at the calorimeter. An important aspect of the project is the development of electronics for fast signal processing matched to the short charge collection time in the TGT read-out cell. The system aspects of the integration of a high degree of signal processing into the liquid argon would be investigated.

  3. [Dance, art and top performance sport with specific injuries].

    Science.gov (United States)

    Rietveld, Boni; van de Wiel, Albert

    2011-01-01

    Professional theatre dance has high and specific physical demands, comparable to top sport. Dance injuries are often caused by faulty technique due to compensation for physical limitations. Knowledge of these limitations and professional teaching can prevent many problems. Dance injuries mostly involve the lower limbs, especially the ankles and knees. Dance injuries require that the medical professional has knowledge of dance technique and respects the passion of the dancer. The advice to stop dancing has hardly ever to be given. Scientific, prospective dance medical research is recommended.

  4. What? Me? Teach Dance? Background and Confidence of Primary Preservice Teachers in Dance Education across Five Countries

    Science.gov (United States)

    Russell-Bowie, Deirdre E.

    2013-01-01

    In primary schools across many countries, dance is now included within the arts key learning area with its own outcomes and content. But as future teachers of dance and other art forms, how do preservice generalist primary teachers perceive their background and confidence in relation to dance and dance education? This study investigates the…

  5. DSI--Dance Scene Investigation: Exploring a Time in Dance History as Dancer, Choreographer, Historian, and Critic

    Science.gov (United States)

    Spear-Jones, Gwen

    2008-01-01

    This article provides a brief description of a dance program at the Old Donation Center Dance Education Program in Virginia Beach, Virginia. The mission of DSI--Dance Scene Investigation--is to nurture the full development of each student's dance potential through intense involvement in every aspect of the art. The program provides differentiated…

  6. How To Dance through Time. Volume VI: A 19th Century Ball--The Charm of Group Dances. [Videotape].

    Science.gov (United States)

    Teten, Carol

    This 48-minute VHS videotape is the sixth in a series of "How To Dance Through Time" videos. It shows the festivity of the 19th century group dances, enabling the viewer to plan and participate in the elegant opening to the ball, a refined square dance, and flirtatious Cotillion dancing games. Professional dancers demonstrate the…

  7. What's new with the CMS hadron calorimeter

    CERN Document Server

    Hagopian, V

    2002-01-01

    The CMS Hadron Calorimeter is designed to measure hadron jets, single hadrons and single mu 's. The central barrel and the two end caps, made of brass and scintillators cover the ¿ eta ¿ range of 0.0 to 3.0. The two forward calorimeters made of iron and quartz fibers extend the ¿ eta ¿ range to 5.0. Scintillators are also placed outside of the magnet coil, within the muon system to measure the energy leakage from the central barrel. The construction of the calorimeter is about 50% complete. Several design changes were made to simplify the calorimeter and reduce the cost. The longitudinal segmentation of the central barrel and end caps was reduced by one unit. The quartz fiber diameter was doubled from 300 to 600 microns. Improvements were made to the hybrid photodetectors (HPD) and various other components. The special purpose ADC (QIE) and other electronics are in prototype stage. (3 refs).

  8. Upgrading the Atlas Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    Tile Calorimeter is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2024, after the upgrade of the LHC the peak luminosity will increase by a factor of 5 compared to the design value, thus requiring an upgrade of the Tile Calorimeter readout electronics. Except the photomultipliers tubes (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at the front-end level and sending them with 10 Gb/s optical links to the back-end electronics. One demonstrator prototype module is planned to be inserted in Tile Calorimeter in 2015 that will include hybrid electronic components able to probe the new design.

  9. Modeling response variation for radiometric calorimeters

    International Nuclear Information System (INIS)

    Mayer, R.L. II.

    1986-01-01

    Radiometric calorimeters are widely used in the DOE complex for accountability measurements of plutonium and tritium. Proper characterization of response variation for these instruments is, therefore, vital for accurate assessment of measurement control as well as for propagation of error calculations. This is not difficult for instruments used to measure items within a narrow range of power values; however, when a single instrument is used to measure items over a wide range of power values, improper estimates of uncertainty can result since traditional error models for radiometric calorimeters assume that uncertainty is not a function of sample power. This paper describes methods which can be used to accurately estimate random response variation for calorimeters used to measure items over a wide range of sample powers. The model is applicable to the two most common modes of calorimeter operation: heater replacement and servo control. 5 refs., 4 figs., 1 tab

  10. The Compact Muon Solenoid (CMS) hadron calorimeter

    International Nuclear Information System (INIS)

    Hagopian, Vasken

    1999-01-01

    The Hadron Calorimeter of the CMS detector for the CERN LHC accelerator is designed to measure hadron jets as well as single hadrons. It has six segments. The central barrel made of brass and scintillators covers the vertical bar η vertical bar range of about 0 to 1.3. Two End Caps, also made of brass and scintillators extends the vertical bar η vertical bar range to 3.0. Two Forward calorimeters made of iron and quartz fibers cover the range 3.0 to 5.0. Since the barrel portion of the calorimeter is only 6.5 interaction lengths, the outer barrel will sample, by scintillators, outside the magnet coil and cryostat. Progress has been made on all subsystems and prototypes have been built. We now have a better understanding of magnetic field effects on calorimeters

  11. CDF End Plug calorimeter Upgrade Project

    International Nuclear Information System (INIS)

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R ampersand D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R ampersand D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, γ and π 0 has been designed. Its performance requirements, R ampersand D results and mechanical design are discussed

  12. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00304670; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  13. Performance of the ATLAS Zero Degree Calorimeter

    CERN Document Server

    Leite, M; The ATLAS collaboration

    2013-01-01

    The ATLAS Zero Degree Calorimeter (ZDC) at the Large Hadron Collider (LHC) is a set of two sampling calorimeters modules symmetrically located at 140m from the ATLAS interaction point. The ZDC covers a pseudorapidity range of |eta| > 8.3 and it is both longitudinally and transversely segmented, thus providing energy and position information of the incident particles. The ZDC is installed between the two LHC beam pipes, in a configuration such that only the neutral particles produced at the interaction region can reach this calorimeter. The ZDC uses Tungsten plates as absorber material and rods made of quartz interspersed in the absorber as active media. The energetic charged particles crossing the quartz rods produces Cherenkov light which is then detected by photomultipliers and sent to the front end electronics for processing, in a total of 120 individual electronic channels. The Tungsten plates and quartz rods are arranged in a way to segment the calorimeters in 4 longitudinal sections. The first section (...

  14. Land of a Couple of Dances: Global and Local Influences on Freestyle Play in Dance Dance Revolution

    Directory of Open Access Journals (Sweden)

    Gillian

    2006-01-01

    Full Text Available This paper traces successful and unsuccessful attempts to shape the meanings of the video game Dance Dance Revolution, specifically with reference to what "dancing" means in this context, as the game moves between various interested parties - game developers, players, Internet forum participants, and other media producers. Drawing on Actor-Network Theory and the network analyses of Manuel Castells, the paper reconstructs the forces shaping players' stylistic decisions through an analysis of dance game machines and software, and of a single forum thread on DDRFreak.com, a major website in the dance game community. The paper asks who decides how DDR players dance and at what times? Are the decisions about play made in the development meeting, the arcade, competitions, online or around the home console? Globally, how do some regions or groups emerge as experts or leaders in play style? Analysis indicates that within the United States, Californian players from major cities dominate discussion, supported by the global flows of people, resources, and capital through the state. The dominant players support their stated norms for play through recourse to mainstream conceptions of masculinity, rap music and associated styles of dance.

  15. The Analysis of Topeng Sinok Dance in Brebes Regency

    OpenAIRE

    Sintho Rukmi, Dinar Ayu; -, Indriyanto

    2015-01-01

    Topeng Sinok dance is the characteristic art of Brebes regency. This dance tells about the typical women in Brebes who are hard-working. Beauty, flexibility, and elegance do not reduce their love for nature and farming. This dance is a combination of Cirebon, Banyumas, and Surakarta style. The dance is basically aiming at showing that women from the border areas of Central and West Java are not spoiled, whiny, and lazy. Topeng Sinok dance is performed beautifully, elegant, and swift. This pap...

  16. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1980-01-01

    Attention is given to sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers. A very cursory overview is presented of some fundamental aspects of sampling calorimeters. First the properties of shower development are described for both the electromagnetic and hadronic cases. Then examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described

  17. Heavy ion studies with CMS HF calorimeter

    International Nuclear Information System (INIS)

    Damgov, I.; Genchev, V.; Kolosov, V.A.; Lokhtin, I.P.; Petrushanko, S.V.; Sarycheva, L.I.; Teplov, S.Yu.; Shmatov, S.V.; Zarubin, P.I.

    2001-01-01

    The capability of the very forward (HF) calorimeter of the CMS detector at LHC to be applied to specific studies with heavy ion beams is discussed. The simulated responses of the HF calorimeter to nucleus-nucleus collisions are used for the analysis of different problems: reconstruction of the total energy flow in the forward rapidity region, accuracy of determination of the impact parameter of collision, study of fluctuations of the hadronic-to-electromagnetic energy ratio, fast inelastic event selection

  18. The new RD52 (DREAM) fiber calorimeter

    International Nuclear Information System (INIS)

    Wigmans, Richard

    2012-01-01

    Simultaneous detection of the Cerenkov light and scintillation light produced in hadron showers makes it possible to measure the electromagnetic shower fraction event by event and thus eliminate the detrimental effects of fluctuations in this fraction on the performance of calorimeters. In the RD52 (DREAM) project, the possibilities of this dual-readout calorimetry are investigated and optimized. In this talk, the first test results of prototype modules for the new full-scale fiber calorimeter are presented.

  19. The performance of the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Crittenden, J.A.

    1994-12-01

    The ZEUS experiment has now completed its third year of operation at the electron-proton collider HERA. The uranium/scintillator sampling calorimeter surrounding the inner tracking detectors has proven an essential component for the online triggering algorithms, for offline event-type identification, for kinematic variable reconstruction, and for a ariety of physics analyses. This paper summarizes the experimental context, the operating characteristics, the calibration techniques, and the performance of the calorimeter during its first three years of operation. (orig.)

  20. The electromagnetic calorimeter of the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Autiero, D; Baldo-Ceolin, M; Barichello, G; Bianchi-Bonaiti, V; Bobisut, F; Cardini, A; Cattaneo, P W; Cavasinni, V; Conta, C; Del Prete, T; De Santo, A; Di Lella, L; Ferrari, R; Flaminio, V; Fraternali, M; Gibin, D; Gninenko, S N; Guglielmi, A; Iacopini, E; Kovzelev, A V; La Rotonda, L; Lanza, A; Laveder, M; Lazzeroni, C; Livan, M; Mezzetto, M; Orestano, D; Pastore, F; Pennacchio, E; Petti, R; Polesello, G; Renzoni, G; Rimoldi, A; Roda, C; Sconza, A; Sobczynski, C; Valdata-Nappi, M; Vascon, M; Vercesi, V; Visentin, L; Volkov, S A [Pisa Univ. (Italy). Dipt. di Fisica; [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, Padova (Italy); [Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia and INFN, Sezione di Pavia, Pavia (Italy); [CERN, Geneva (Switzerland); [Dipartimento di Fisica, Universita di Firenze and INFN, Sezione di Firenze, Firenze (Italy); [Institute of Nuclear Research, INR, Moscow (Russian Federation); [Dipartimento di Fisica, Universita della Calabria and INFN, Gruppo Collegato di Cosenza, Cosenza (Italy)

    1996-05-01

    A description is given of the NOMAD electromagnetic calorimeter, consisting of 875 lead-glass counters read out by two-stage photomultipliers and a low noise electronic chain. The detector operates in a 0.4 T magnetic field transverse to the counter axis. The paper discusses the design criteria, the lead-glass characteristics, the properties of the read out chain and provides a summary of the calorimeter performance. (orig.).

  1. Radiation-Hard Quartz Cerenkov Calorimeters

    International Nuclear Information System (INIS)

    Akgun, U.; Onel, Y.

    2006-01-01

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment

  2. The high resolution spaghetti hadron calorimeter

    International Nuclear Information System (INIS)

    Jenni, P.; Sonderegger, P.; Paar, H.P.; Wigmans, R.

    1987-01-01

    It is proposed to build a prototype for a hadron calorimeter with scintillating plastic fibres as active material. The absorber material is lead. Provided that these components are used in the appropriate volume ratio, excellent performance may be expected, e.g. an energy resolution of 30%/√E for jet detection. The proposed design offers additional advantages compared to the classical sandwich calorimeter structures in terms of granularity, hermiticity, uniformity, compactness, readout, radiation resistivity, stability and calibration. 22 refs.; 7 figs

  3. A neutron calorimeter as a fusion diagnostic

    International Nuclear Information System (INIS)

    Proctor, A.E.; Harker, Y.D.; Neischmidt, E.B.

    1986-01-01

    A calorimeter is described which is applicable as a fusion neutron diagnostic. The advantages of the device are discussed, including: low sensitivity to thermal neutrons, no heat loss to surroundings, large dynamic range, small mass resulting in fair time resolution, and small physical size. The heat generation is provided by neutron induced fissions in a foil of 238 U and a calorimeter is isothermal. The effects, advantages and disadvantages of other target materials are discussed. Also discussed are time resolution and calibration

  4. The NA48 liquid krypton calorimeter

    CERN Document Server

    Gorini, B

    1997-01-01

    The NA48 collaboration goal is to measure the CP violation parameter Re(ɛl/ɛ) at the level of 2 × 10−4. The neutral Kaon decays will be reconstructed by an electromagnetic liquid Krypton calorimeter with fine granularity and a volume almost totally sensible, to obtain excellent position and energy resolution, as well as time resolution. A description of the detector, results from tests of a prototype and the status of the final calorimeter are reported.

  5. The electromagnetic calorimeter of the NOMAD experiment

    International Nuclear Information System (INIS)

    Autiero, D.; Baldo-Ceolin, M.; Barichello, G.; Bianchi-Bonaiti, V.; Bobisut, F.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Conta, C.; Del Prete, T.; De Santo, A.; Di Lella, L.; Ferrari, R.; Flaminio, V.; Fraternali, M.; Gibin, D.; Gninenko, S.N.; Guglielmi, A.; Iacopini, E.; Kovzelev, A.V.; La Rotonda, L.; Lanza, A.; Laveder, M.; Lazzeroni, C.; Livan, M.; Mezzetto, M.; Orestano, D.; Pastore, F.; Pennacchio, E.; Petti, R.; Polesello, G.; Renzoni, G.; Rimoldi, A.; Roda, C.; Sconza, A.; Sobczynski, C.; Valdata-Nappi, M.; Vascon, M.; Vercesi, V.; Visentin, L.; Volkov, S.A.

    1996-01-01

    A description is given of the NOMAD electromagnetic calorimeter, consisting of 875 lead-glass counters read out by two-stage photomultipliers and a low noise electronic chain. The detector operates in a 0.4 T magnetic field transverse to the counter axis. The paper discusses the design criteria, the lead-glass characteristics, the properties of the read out chain and provides a summary of the calorimeter performance. (orig.)

  6. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  7. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Van Daalen, Tal Roelof; The ATLAS collaboration

    2018-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for the reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized every 25 ns by sampling the signal. About 10000 channels of the front-end electronics measure the signals of the calorimeter with energies ranging from ~30 MeV to ~2 TeV. Each step of the signal reconstruction from scintillation light to the digital pulse reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations...

  8. Transportable high sensitivity small sample radiometric calorimeter

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Biddle, R.S.; Cordova, B.S.; Sampson, T.E.; Dye, H.R.; McDow, J.G.

    1998-01-01

    A new small-sample, high-sensitivity transportable radiometric calorimeter, which can be operated in different modes, contains an electrical calibration method, and can be used to develop secondary standards, will be described in this presentation. The data taken from preliminary tests will be presented to indicate the precision and accuracy of the instrument. The calorimeter and temperature-controlled bath, at present, require only a 30-in. by 20-in. tabletop area. The calorimeter is operated from a laptop computer system using unique measurement module capable of monitoring all necessary calorimeter signals. The calorimeter can be operated in the normal calorimeter equilibration mode, as a comparison instrument, using twin chambers and an external electrical calibration method. The sample chamber is 0.75 in (1.9 cm) in diameter by 2.5 in. (6.35 cm) long. This size will accommodate most 238 Pu heat standards manufactured in the past. The power range runs from 0.001 W to <20 W. The high end is only limited by sample size

  9. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  10. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  11. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1981-01-01

    At our current understanding of elementary particle physics, the fundamental constituents are the photon, quarks, gluons and leptons with a few highly forecasted heavy bosons. Calorimeters are essential for detecting all of these particles. Quarks and gluons fragment into many particles - at high energies, so many particles that one may not want to measure each one separately. This group of both charged and neutral particles can only be measured by calorimeters. The energy of an electron needs to be measured by a calorimeter and muon identification is enhanced by the recognition of a minimum ionizing particle passing through the calorimeter. Sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers - are reviewed. What follows is a very cursory overview of some fundamental aspects of sampling calorimeters. First, the properties of shower development are described for both the electromagnetic and hadronic cases. Then, examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described. 21 references

  12. Performance of the ATLAS Tile Calorimeter

    Science.gov (United States)

    Hrynevich, A.

    2017-06-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC . Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV . Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response and its modelling by the Monte Carlo simulations. The calorimeter time resolution is studied with multijet events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  13. First level trigger processor for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Dawson, J.W.; Talaga, R.L.; Burr, G.W.; Laird, R.J.; Smith, W.; Lackey, J.

    1990-01-01

    This paper discusses the design of the first level trigger processor for the ZEUS calorimeter. This processor accepts data from the 13,000 photomultipliers of the calorimeter which is topologically divided into 16 regions, and after regional preprocessing, performs logical and numerical operations which cross regional boundaries. Because the crossing period at the HERA collider is 96 ns, it is necessary that first-level trigger decisions be made in pipelined hardware. One microsecond is allowed for the processor to perform the required logical and numerical operations, during which time the data from ten crossings would be resident in the processor while being clocked through the pipelined hardware. The circuitry is implemented in 100K ECL, Advanced CMOS discrete devices, and programmable gate arrays, and operates in a VME environment. All tables and registers are written/read from VME, and all diagnostic codes are executed from VME. Preprocessed data flows into the processor at a rate of 5.2GB/s, and processed data flows from the processor to the Global First-Level Trigger at a rate of 700MB/s. The system allows for subsets of the logic to be configured by software and for various important variables to be histogrammed as they flow through the processor. 2 refs., 3 figs

  14. CsI calorimeter with 3-D position resolution

    International Nuclear Information System (INIS)

    Schopper, F.; Andritschke, R.; Shaw, H.; Nefzger, C.; Zoglauer, A.; Schoenfelder, V.; Kanbach, G.

    2000-01-01

    New γ-ray calorimeter have been developed for the MEGA Compton camera. They consist of arrays of small CsI(Tl) scintillator bars read out by Silicon PIN-diodes and low noise, self-triggering frontend electronics. The length of the bars (the thickness of the calorimeter) can be varied for different applications to fit the stopping power needed and the light loss tolerable. In this paper we present calibration results from 2 cm long bars with diodes on one side, and 8 cm long bars with diodes on two opposite sides. Double-sided readout gives 3-D information of interactions which will be used to overcome the limited position resolution in Anger-cameras at high energies. Simpler detection devices like Anger-cameras might finally resolve only the centre of gravity. As events from γ-rays with energies of MeV do extend over several cm, it is a prerequisite for an imaging device to resolve the interaction structure in detail. Combining CsI(Tl) scintillators, Silicon PIN-photodiodes and frontend electronics inside the housing results in a cheap rugged design. While the development in our institute is mainly done for the Compton camera prototype, many other applications are conceivable

  15. First-level trigger processor for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Dawson, J.W.; Talaga, R.L.; Burr, G.W.; Laird, R.J.; Smith, W.; Lackey, J.

    1990-01-01

    The design of the first-level trigger processor for the Zeus calorimeter is discussed. This processor accepts data from the 13,000 photomultipliers of the calorimeter, which is topologically divided into 16 regions, and after regional preprocessing performs logical and numerical operations that cross regional boundaries. Because the crossing period at the HERA collider is 96 ns, it is necessary that first-level trigger decisions be made in pipelined hardware. One microsecond is allowed for the processor to perform the required logical and numerical operations, during which time the data from ten crossings would be resident in the processor while being clocked through the pipelined hardware. The circuitry is implemented in 100K emitter-coupled logic (ECL), advanced CMOS discrete devices and programmable gate arrays, and operates in a VME environment. All tables and registers are written/read from VME, and all diagnostic codes are executed from VME. Preprocessed data flows into the processor at a rate of 5.2 Gbyte/s, and processed data flows from the processor to the global first-level trigger at a rate of 70 Mbyte/s. The system allows for subsets of the logic to be configured by software and for various important variables to be histogrammed as they flow through the processor

  16. CsI calorimeter with 3-D position resolution

    CERN Document Server

    Schopper, Herwig Franz; Shaw, H; Nefzger, C; Zoglauer, A; Schönfelder, V; Kanbach, G

    2000-01-01

    New gamma-ray calorimeter have been developed for the MEGA Compton camera. They consist of arrays of small CsI(Tl) scintillator bars read out by Silicon PIN-diodes and low noise, self-triggering frontend electronics. The length of the bars (the thickness of the calorimeter) can be varied for different applications to fit the stopping power needed and the light loss tolerable. In this paper we present calibration results from 2 cm long bars with diodes on one side, and 8 cm long bars with diodes on two opposite sides. Double-sided readout gives 3-D information of interactions which will be used to overcome the limited position resolution in Anger-cameras at high energies. Simpler detection devices like Anger-cameras might finally resolve only the centre of gravity. As events from gamma-rays with energies of MeV do extend over several cm, it is a prerequisite for an imaging device to resolve the interaction structure in detail. Combining CsI(Tl) scintillators, Silicon PIN-photodiodes and frontend electronics in...

  17. [Kapoera--popular dance or martial art?].

    Science.gov (United States)

    Kluger, Y; Ravid, A; Ben Avraham, R; Soffer, D; Aladgem, D

    1997-01-15

    Kapoera, a combination of acrobatics and coordinated athletic movement, is believed to have been introduced to South America during the 19th century by transported African slaves. The dance does not involve intentional physical contact, but during 6 months, 3 patients were admitted here for injuries induced by the forceful movements of this dance. 2 underwent exploratory laparotomy that revealed bowel perforations and 1 suffered a comminuted nasal bone fracture. Medical personnel should be familiar with the potential hazards of this dance and martial art.

  18. Manufacturing of a graphite calorimeter at Yazd Radiation Processing Center

    International Nuclear Information System (INIS)

    Ziaie, F.

    2004-01-01

    In this work, a few quasi-adiabatic graphite calorimeters of different dimensions are described. The calorimeters have been manufactured by ourselves and studied for accurate absorbed dose measurements in 10 MeV electron beam. In order to prove the accuracy and reliability of dose measurements with the use of self designed graphite calorimeters (SCD), an inter comparison study was performed on these calorimeters and Risoe graphite calorimeters (SC,standard calorimeter) at different doses by using Rhodothron accelerator. The comparison shows conclusively of the optimal size, the results agreeing with those obtained with the Sc within 1%. (author)

  19. Social Dancing for Successful Ageing: Models for Health, Happiness and Social Inclusion amongst Senior Citizens

    Directory of Open Access Journals (Sweden)

    Jonathan Skinner

    2013-03-01

    Full Text Available Abstract: This article presents findings from a qualitative study of social dancing for successful ageing amongst senior citizens in three locales: in Blackpool (GB, around Belfast (NI, and in Sacramento (US. Findings also attest to the social, psychological and health benefits of social dancing amongst senior citizens. They also articulate three different social dancing models: social dance as tea dance (Sacramento, social dance as practice dance (Blackpool, social dance as motility (Belfast and environs.

  20. The spaghetti calorimeter. Research, development, application

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, C V

    1994-12-22

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from {Sigma} decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at {sigma}/E=12.9%/{radical}E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/{radical}E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam {Sigma}{sup -}particles via its decay {Sigma}{sup -}{yields}n{pi}{sup -}. Details of the calibration of SPACAL with electrons and protons are presented. (orig.).

  1. The spaghetti calorimeter. Research, development, application

    International Nuclear Information System (INIS)

    Scheel, C.V.

    1994-01-01

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from Σ decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at σ/E=12.9%/√E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/√E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam Σ - particles via its decay Σ - →nπ - . Details of the calibration of SPACAL with electrons and protons are presented. (orig.)

  2. A new ultrasensitive scanning calorimeter.

    Science.gov (United States)

    Plotnikov, V V; Brandts, J M; Lin, L N; Brandts, J F

    1997-08-01

    A new ultrasensitive differential scanning calorimeter is described, having a number of novel features arising from integration between hardware and software. It is capable of high performance in either a scanning or isothermal mode of operation. Upscanning is carried out adiabatically while downscanning is nonadiabatic. By using software-controlled signals sent continuously to appropriate hardware devices, it is possible to improve adiabaticity and constancy of scan rate through use of empirical prerun information stored in memory rather than by using feedback systems which respond in real time and generate thermal noise. Also, instrument response time is software-selectable, maximizing performance for both slow- and fast-transient systems. While these and other sophisticated functionalities have been introduced into the instrument to improve performance and data analysis, they are virtually invisible and add no additional complexities into operation of the instrument. Noise and baseline repeatability are an order of magnitude better than published raw data from other instruments so that high-quality results can be obtained on protein solutions, for example, using as little as 50 microg of protein in the sample cell.

  3. Tritium calorimeter setup and operation

    International Nuclear Information System (INIS)

    Rodgers, David E.

    2002-01-01

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (3) Install an improved temperature controller, preferably with a built in chiller, capable of temperature control to ±0.001 C

  4. Performance of prototypes for the ALICE electromagnetic calorimeter

    CERN Document Server

    Allen, J; Badala, A; Baumgart, S; Bellwied, R; Benhabib, L; Bernard, C; Bianchi, N; Blanco, F; Bortoli, Y; Bourdaud, G; Bourrion, O; Boyer, B; Bruna, E; Butterworth, J; Caines, H; Calvo Diaz Aldagalan, D; Capitani, G P; Carcagno, Y; Casanova Diaz, A; Cherney, M; Conesa Balbastre, G; Cormier, T M; Cunqueiro Mendez, L; Delagrange, H; Del Franco, M; Dialinas, M; Di Nezza, P; Donoghue, A; Elnimr, M; Enokizono, A; Estienne, M; Faivre, J; Fantoni, A; Fichera, F; Foglio, B; Fresneau, S; Fujita, J; Furget, C; Gadrat, S; Garishvili, I; Germain, M; Giudice, N; Gorbunov, Y; Grimaldi, A; Guardone, N; Guernane, R; Hadjidakis, C; Hamblen, J; Harris, J W; Hasch, D; Heinz, M; Hille, P T; Hornback, D; Ichou, R; Jacobs, P; Jangal, S; Jayananda, K; Klay, J L; Knospe, A G; Kox, S; Kral, J; Laloux, P; LaPointe, S; La Rocca, P; Lewis, S; Li, Q; Librizzi, F; Madagodahettige Don, D; Martashvili, I; Mayes, B; Milletto, T; Muccifora, V; Muller, H; Muraz, J F; Nattrass, C; Noto, F; Novitzky, N; Odyniec, G; Orlandi, A; Palmeri, A; Pappalardo, G S; Pavlinov, A; Pesci, W; Petrov, V; Petta, C; Pichot, P; Pinsky, L; Ploskon, M; Pompei, F; Pulvirenti, A; Putschke, J; Pruneau, C A; Rak, J; Rasson, J; Read, K F; Real, J S; Reolon, A R; Riggi, F; Riso, J; Ronchetti, F; Roy, C; Roy, D; Salemi, M; Salur, S; Sharma, M; Silvermyr, D; Smirnov, N; Soltz, R; Sparti, V; Stutzmann, J.-S; Symons, T J.M; Tarazona Martinez, A; Tarini, L; Thomen, R; Timmins, A; van Leeuwen, M; Vieira, R; Viticchie, A; Voloshin, S; Wang, D; Wang, Y; Ward, R M

    2010-01-01

    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A $4\\times4$ array of final design modules showed an energy resolution of about 11% /$\\sqrt{E(\\mathrm{GeV})}$ $\\oplus$ 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm $\\oplus$ 5.3 mm /$\\sqrt{E \\mathrm{(GeV)}}$. For an electron identification efficiency of 90% a hadron rejection factor of $>600$ was obtained.

  5. A superconducting supercollider calorimeter photomultiplier tube preamplifier circuit

    Energy Technology Data Exchange (ETDEWEB)

    Panescu, D; Lackey, J; Robl, P; Smith, W H [Wisconsin Univ., Madison, WI (United States). Physics Dept.

    1992-07-15

    This study presents the design of the front end amplifier for a scintillator calorimeter with photomultiplier tube (PMT) readout. The design is based on analytical computations and SPICE simulations, and is checked against tests performed on a prototyped circuit. We were looking to achieve (1) a very low droop within the 4 ns after the integration of the photomultiplier tube (PMT) signal was completed, (2) a very low noise figure for the whole amplifier in a 100 MHz bandwidth, (3) an input impedance optimized for the PMT which is actually used, (4) baseline restoration as quick as possible at the output of the clip amps, (5) no loss of information due to the saturation at intermediary stages (e.g. integrator), and (6) an output driving 100 {Omega} twisted pair cables, or 50 {Omega} coaxial cables, in order to transmit the signal to switched capacitor arrays for analog storage. (orig.).

  6. Dance and the Athlete: An Interview

    Science.gov (United States)

    Simpson, James L.

    1978-01-01

    Edward Villella, principal dancer of the New York City Ballet, has attempted to make professionals in physical education as well as athletes more aware of the great potential possessed within the interrelationship of dance and sport. (MM)

  7. The Dancing Brain: Structural and Functional Signatures of Expert Dance Training

    Directory of Open Access Journals (Sweden)

    Agnieszka Z. Burzynska

    2017-11-01

    Full Text Available Dance – as a ritual, therapy, and leisure activity – has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson’s disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task. Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations.

  8. The Dancing Brain: Structural and Functional Signatures of Expert Dance Training.

    Science.gov (United States)

    Burzynska, Agnieszka Z; Finc, Karolina; Taylor, Brittany K; Knecht, Anya M; Kramer, Arthur F

    2017-01-01

    Dance - as a ritual, therapy, and leisure activity - has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson's disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations.

  9. Hadron showers in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Benjamin

    2010-11-15

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  10. Hadron showers in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Lutz, Benjamin

    2010-11-01

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  11. SQUIDs for the readout of metallic magnetic calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ferring, Anna; Wegner, Mathias; Fleischmann, Andreas; Gastaldo, Loredana; Kempf, Sebastian; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2015-07-01

    Superconducting quantum interference devices (SQUIDs) are the devices of choice to read out metallic magnetic calorimeters (MMCs). Here, the temperature change of the detector upon the absorption of an energetic particle is measured as a magnetization change of a paramagnetic temperature sensor that is situated in a weak magnetic field. Driven by the need for devices that allow for the readout of large-scale detector arrays with hundreds or even thousands of individual detectors as well as of single channel detectors with sub-eV energy resolution, we have recently started the development of low-T{sub c} current-sensing SQUIDs. In particular, we are developing cryogenic frequency-domain multiplexers based on non-hysteretic rf-SQUIDs for detector array readout as well as dc-SQUIDs for single channel detector readout. We discuss our SQUID designs and the performance of prototype SQUIDs. We particularly focus on the frequency and temperature dependence of the SQUID noise as well as the reliability of our SQUID fabrication process for Nb/Al-AlO{sub x}/Nb Josephson junctions. Additionally, we demonstrate experimentally that state-of-the-art MMCs can successfully be read out with our current devices. Finally, we discuss different strategies to improve the SQUID and detector performance aiming to reach sub-eV energy resolution for individual detectors as well as for detector arrays.

  12. The H1 liquid argon calorimeter system

    International Nuclear Information System (INIS)

    Andrieu, B.; Babayev, A.; Ban, J.

    1993-06-01

    The liquid argon calorimeter of the H1 detector presently taking data at the HERA ep - collider at DESY, Hamburg, is described here. The main physics requirements and the most salient design features relevant to this calorimeter are given. The aim to have smooth and hermetic calorimetric coverage over the polar angular range 4 ≤ θ ≤ 154 is achieved by a single liquid argon cryostat containing calorimeter stacks structured in wheels and octants for easy handling. The absorber materials used are lead in the electromagnetic part and stainless steel in the hadronic part. The read-out system is pipelined to reduce the dead time induced by the high trigger rate expected at the HERA collider where consecutive bunches are separated in time by 96 ns. The main elements of the calorimeter, such as the cryostat, with its associated cryogenics, the stack modules, the read-out, calibration and trigger electronics as well as the data acquisition system are described. Performance results from data taken in calibration runs with full size H1 calorimeter stacks at a CERN test beam, as well as results from data collected with the complete H1 detector using cosmic rays during the initial phase of ep operations are presented. The observed energy resolutions and linearities are well in agreement with the requirements. (orig.)

  13. A water flow calorimeter calibration system

    International Nuclear Information System (INIS)

    Ullrich, F.T.

    1983-01-01

    Neutral beam systems are instrumented by several water flow calorimeter systems, and some means is needed to verify the accuracy of such systems and diagnose their failures. This report describes a calibration system for these calorimeters. The calibrator consists of two 24 kilowatt circulation water heaters, with associated controls and instrumentation. The unit can supply power from 0 to 48 kW in five coarse steps and one fine range. Energy is controlled by varying the power and the time of operation of the heaters. The power is measured by means of precision power transducers, and the energy is measured by integrating the power with respect to time. The accuracy of the energy measurement is better than 0.5% when the power supplied is near full scale, and the energy resolution is better than 1 kilojoule. The maximum energy delivered is approximately 50 megajoules. The calorimetry loop to be calibrated is opened, and the calibrator is put in series with the calorimeter heat source. The calorimeter is then operated in its normal fashion, with the calibrator used as the heat source. The calibrator can also be used in a stand alone mode to calibrate calorimeter sensors removed from systems

  14. LHCb Calorimeter modules arrive at CERN

    CERN Multimedia

    2002-01-01

    Two of the three components of the LHCb Calorimeter system have started to arrive from Russia. Members of the LHCb Calorimeter group with the ECAL and HCAL modules that have just arrived at CERN. The first two of the 56 Hadron Calorimeter (HCAL) modules and 1200 of the 3300 modules of the Electromagnetic Calorimeter (ECAL) have reached CERN from Russia. The third part of the system, the Preshower detector, is still being prepared in Russia. The calorimeter system identifies and triggers on high-energy particles, namely electrons, hadrons and photons by measuring their positions and energies. The HCAL is going to be a pure trigger device. The ECAL will also be used in the triggering, but in addition it will reconstruct neutral pions and photons from B meson decays. One of the major aims of the LHCb experiment is to study CP violation through B meson decays including Bs mesons with high statistics in different decay modes. CP violation (violation of charge and parity) is necessary to explain why the Universe...

  15. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  16. ATLAS Tile calorimeter calibration and monitoring systems

    Science.gov (United States)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  17. Smart Kinesthetic Measurement Model in Dance Composision

    OpenAIRE

    Triana, Dinny Devi

    2017-01-01

    This research aimed to discover a model of assessment that could measure kinesthetic intelligence in arranging a dance from several related variable, both direct variable and indirect variable. The research method used was a qualitative method using path analysis to determine the direct and indirect variable; therefore, the dominant variable that supported the measurement model of kinesthetic intelligence in arranging dance could be discovered. The population used was the students of the art ...

  18. Dance movement therapy and falls prevention.

    Science.gov (United States)

    Veronese, Nicola; Maggi, Stefania; Schofield, Patricia; Stubbs, Brendon

    2017-08-01

    Falls are a leading cause of morbidity, healthcare use and mortality. Dance is a popular form of physical activity among older people and previous research has suggested that it may improve various health outcomes in this population, including balance, gait and muscle performance. A systematic review of the potential benefits of dance on falls and fear of falling is lacking. Thus, we conducted a systematic review considering all randomized controls trials (RCTs) investigating if dance can reduce falls and improve fear of falling in older adults. Major databases were searched from inception until 1 March 2017 and a total of 10 RCTs were identified, which included a total of 680 people (n=356 dance, n=324 control). Overall, the mean age of the samples was 69.4 years, and 75.2% were female. Across four RCTs, dance therapy reduced falls versus usual care in only one study. Dance therapy improved fear of falling in two out of three included RCTs. There were no serious adverse events reported in the RCTs. In summary, we found a paucity of studies investigating the effect of dance on falls and fear of falling and the evidence base is preliminary and equivocal. Given the heterogeneity of the included samples and interventions, in addition to the short-term follow-up, no firm conclusions can be drawn. However, dance appears to be safe and, given its popularity and demonstrated benefits on other health/wellbeing outcomes in older adults, it is important that future research considers its potential benefits on falls/fear of falling in older age. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Dynamic Characteristic Analysis of Mini Gamma Calorimeter

    International Nuclear Information System (INIS)

    Setiyanto

    2004-01-01

    The gamma calorimeter is a facility to measure the gamma heating in the nuclear reactor. The dimensions of the conventional calorimeters are in general too large, that is an inconvenience if those calorimeters will be applied in the high temperature reactor as a nuclear power plant. To avoid that inconvenience, it is necessary to propose the innovation on the feature of the existing calorimeter. The basic idea of the innovation is to create the small type of calorimeter without the absorbed material. The last analysis was realized to determine of the static calorimeter characteristic or sensitivities as a function of the dimension and the material of gas isolations. Based on those results, the analyses is reasonably to be continued to determine the dynamic characteristic or period of calorimeter. The analysis was performed using the finite difference method, two dimension simplified. It can be concluded that the mini gamma calorimeter proposed is reasonable to be made. (author)

  20. To the calculation of energy resolution of ionization calorimeter

    International Nuclear Information System (INIS)

    Uchajkin, V.V.; Lagutin, A.A.

    1976-01-01

    The question of energy resolution of the ionization calorimeter is considered analytically. A method is discussed for calculating the probability characteristics (mean value and dispersion) of energy losses of an electron-photon shower by ionization in the calorimeter volume

  1. Performance of a shashlik calorimeter at LEP II

    CERN Document Server

    Ferrari, P; Klovning, A; Maeland, O A; Stugu, B; Benvenuti, Alberto C; Giordano, V; Guerzoni, M; Navarria, Francesco Luigi; Verardi, M G; Camporesi, T; Bozzo, M; Cereseto, R; Barreira, G; Espirito-Santo, M C; Maio, A; Onofre, A; Peralta, L; Pimenta, M; Tomé, B; Carling, H; Falk, E; Hedberg, V; Jarlskog, G; Kronkvist, I J; Bonesini, M; Chignoli, F; Gumenyuk, S A; Leoni, R; Mazza, R; Negri, P; Paganoni, M; Petrovykh, L P; Terranova, F; Dharmasiri, D R; Nossum, B; Read, A L; Skaali, T B; Castellani, L; Pegoraro, M; Fenyuk, A; Guz, Yu; Karyukhin, A N; Konoplyannikov, A K; Obraztsov, V F; Shalanda, N A; Vlasov, E; Zaitsev, A; Bigi, M; Cassio, V; Gamba, D; Migliore, E; Romero, A; Simonetti, L; Torassa, E; Trapani, P P; Bari, M D; Della Ricca, G; Lanceri, L; Poropat, P; Prest, M; Vallazza, E

    1999-01-01

    The small angle tile calorimeter (STIC) is a sampling lead- scintillator calorimeter, built with "shashlik" technique. Results are presented from extensive studies of the detector performance at LEP. (5 refs).

  2. Detailed GEANT description of the SDC central calorimeters

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Li, W.

    1994-01-01

    This article represents the very detailed simulation model of the SDC central calorimeters and some results which were obtained using that model. The central calorimeters structure was coded on the GEANT 3.15 base in the frame of the SDCSIM environment. The SDCSIM is the general shell for simulation of the SDC set-up. The calorimeters geometry has been coded according to the FNAL and ANL engineering drawings and engineering data file. SDC central calorimeters detailed description is extremely useful for different simulation tasks, for fast simulation program parameters tuning, for different geometry especially studying (local response nonuniformity from bulkheads in the e.m. calorimeter and from coil supports and many others) and for the interpretation of the experimental data from the calorimeters. This simulation model is very useful for tasks of the test beam modules calorimeter calibration and for calorimeter in situ calibration. 3 refs., 8 figs

  3. Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    Marx, M.D.; Rijssenbeek, M.

    1990-01-01

    This report discusses the following topics: the central calorimeter; and installation; commissioning; and calorimeter beam tests; the central drift chamber; cosmic ray and beam tests; chamber installation and commissioning; and software development; and SSC activities: the EMPACT project

  4. Art, dance, and music therapy.

    Science.gov (United States)

    Pratt, Rosalie Rebollo

    2004-11-01

    Art, dance, and music therapy are a significant part of complementary medicine in the twenty-first century. These creative arts therapies contribute to all areas of health care and are present in treatments for most psychologic and physiologic illnesses. Although the current body of solid research is small compared with that of more traditional medical specialties, the arts therapies are now validating their research through more controlled experimental and descriptive studies. The arts therapies also contribute significantly to the humanization and comfort of modern health care institutions by relieving stress, anxiety, and pain of patients and caregivers. Arts therapies will greatly expand their role in the health care practices of this country in the twenty-first century.

  5. STATUS OF THE ATLAS LIQUID ARGON CALORIMETER AND ITS PERFORMANCE

    CERN Document Server

    Berillari, T; The ATLAS collaboration

    2011-01-01

    The liquid argon (LAr) calorimeters are used in ATLAS for all electromagnetic and for hadron calorimetry. The LAr calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic, hadronic and forward calorimeters. The latest status of the detector as well as problems and solutions addressed during the last years will be presented. Aspects of operation of a large detector over a long time period will be summarized and selected topics showing the performance of the detector will be shown.

  6. Feasibility of a Mound-designed transportable calorimeter

    International Nuclear Information System (INIS)

    Duff, M.F.; Fellers, C.L.

    1979-01-01

    The feasibility of operating a Mound twin resistance bridge calorimeter outside a temperature-controlled water bath was demonstrated. An existing calorimeter was retrofit with two additional jackets through which water was transferred from an external reservoir. Comparison of test results collected before and after the retrofit indicated that the calorimeter performance was not degraded by this modification. Similarly designed calorimeters have potential applications in laboratories where equipment space is limited for inspectors who are required to transport their assay instrumentation

  7. Dance is more than therapy: Qualitative analysis on therapeutic dancing classes for Parkinson's.

    Science.gov (United States)

    Rocha, Priscila A; Slade, Susan C; McClelland, Jodie; Morris, Meg E

    2017-10-01

    To understand the benefits and limitations of therapeutic dancing classes for people with Parkinson's disease (PD) and how best to design and implement classes. A stakeholder forum explored the opinions of 18 allied health clinicians, dance instructors, people with PD and caregivers. Data were thematically analysed and interpreted within a grounded theory framework. Four main themes were identified: (1) the need to consider the stage of disease progression when designing classes; (2) recognition that dance is more than just therapy; (3) the benefits of carefully selecting music to move by; (4) ways to design classes that are both feasible and engaging. These themes give rise to the theory that dancing classes can provide more than just therapeutic benefits. Dance affords creative expression and enables people to immerse themselves in the art-form, rather than focussing on the disease. The results highlight the benefits of enabling individuals with PD to be able to express themselves in a supportive environment that does not see them solely through the lens of Parkinson's. The feasibility of dance programs can be increased by educating dancing teachers about PD and the unique needs of people living with this condition. Well-structured dance classes can promote social-connectedness and joy, in addition to facilitating movement to music and physical activity. Consumers advised that careful planning of the classes and tailoring them to participant needs optimizes outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dancing through the School Day: How Dance Catapults Learning in Elementary Education

    Science.gov (United States)

    Becker, Kelly Mancini

    2013-01-01

    The necessity for engaging the body in learning, the need for students to move throughout the school day, and the positive effects that dance has on students' development are all good reasons for dance to be included in the elementary curriculum. There are many ways for teachers to integrate movement into the school day, using math, science,…

  9. Dancing Thoughts: An Examination of Children's Cognition and Creative Process in Dance

    Science.gov (United States)

    Giguere, Miriam

    2011-01-01

    The purpose of this study is to examine children's cognition within the creative process in dance and to examine how dance making affects cognitive development in children. Data on children's thinking were gathered from fifth graders participating in an artist-in-residence program in a public school in Pennsylvania. Both the inquiry and the data…

  10. Encores for Dance. Selected Articles on Dance III, 1968-77.

    Science.gov (United States)

    Fallon, Dennis J., Ed.

    The nature, role, and scope of the dance in the United States is the subject of this collection of articles. The philosophical, historical, socio-cultural, and educational perspectives of dance are considered in the first four chapters. The following five chapters focus primarily on considerations that should improve teaching techniques and…

  11. Laser calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile calorimeter is achieved with a set of calibration procedures. One step of the calibrtion procedure is based on measurements of the response stability to laser excitation of the photomultipliers (PMTs) that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the test in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the resonse drifts seen with the PMT mounted on the Tile calorimeter in its normal operation during LHC run I and run II. A new statistical approach was developed to measure the drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to the data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  12. Optics robustness of the ATLAS Tile Calorimeter

    CERN Document Server

    Costa Batalha Pedro, Rute; The ATLAS collaboration

    2018-01-01

    TileCal, the central hadronic calorimeter of the ATLAS detector is composed of plastic scintillators interleaved by iron plates, and wavelength shifting optical fibres. The optical properties of these components are known to suffer from natural ageing and degrade due to exposure to radiation. The calorimeter was designed for 10 years of LHC operating at the design luminosity of $10^{34}$ cm$^{-1}$s$^{-1}$. Irradiation tests of scintillators and fibres shown that their light yield decrease about 10 for the maximum dose expected after the 10 years of LHC operation. The robustness of the TileCal optics components is evaluated using the calibration systems of the calorimeter: Cs-137 gamma source, laser light, and integrated photomultiplier signals of particles from collisions. It is observed that the loss of light yield increases with exposure to radiation as expected. The decrease in the light yield during the years 2015-2017 corresponding to the LHC Run 2 will be reported.

  13. Vacuum-jacketed hydrofluoric acid solution calorimeter

    Science.gov (United States)

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  14. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  15. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  16. The construction of the Black dance/African Peoples' dance section in Britain: Issues arising for the conceptualisation of related choreographic and dance practices

    OpenAIRE

    Adewole, Funmi

    2016-01-01

    This chapter will discuss the construction of the Black dance/African Peoples’ Dance sector (APD) in Britain in the 1990s. The debate about the definition of the terms Black dance and African peoples’ dance is shown to be part and parcel of the quest for appropriate infrastructure to sustain the work of black dancers and those using African and Diasporan dance forms and aesthetics in their productions. I argue therefore that a fuller understanding of this field of practice can only be gained ...

  17. 'Shall We Dance'? Older Adults' Perspectives on the Feasibility of a Dance Intervention for Cognitive Function.

    Science.gov (United States)

    Thøgersen-Ntoumani, Cecilie; Papathomas, Anthony; Foster, Jonathan; Quested, Eleanor; Ntoumanis, Nikos

    2017-12-28

    We explored perceptions of social dance as a possible intervention to improve cognitive functioning in older adults with subjective memory complaints. Thirty participants (19 female; M age = 72.6; SD=8.2) took part in the study. This included 21 participants who had self-reported subjective memory complaints and 9 spouses who noticed spousal memory loss. Semi-structured interviews were conducted and thematic analysis was used to analyze the data. Three main themes were constructed: 1) dance seen as a means of promoting social interaction; 2) chronic illness as a barrier and facilitator to participation; 3) social dance representing nostalgic connections to the past. Overall, the participants were positive about the potential attractiveness of social dance to improve cognitive and social functioning and other aspects of health. It is important in future research to examine the feasibility of a social dance intervention among older adults with subjective memory complaints.

  18. Neutron capture reactions on Lu isotopes at DANCE

    CERN Document Server

    Roig, O

    2010-01-01

    The DANCE (Detector for Advanced Neutron Capture Experiments) array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natLu foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured.

  19. Review of Livermore-Led Neutron Capture Studies Using DANCE

    International Nuclear Information System (INIS)

    Parker, W; Sheets, S; Agvaanluvsan, U; Becker, J; Becvar, F; Bredeweg, T; Clement, R; Couture, A; Esch, E; Haight, R; Jandel, M; Krticka, M; Mitchell, G; Macri, R; O'Donnell, J; Reifarth, R; Rundberg, R; Schwantes, J; Ullmann, J; Vieira, D; Wouters, J; Wilk, P

    2007-01-01

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,γ) reactions on 94,95 Mo, 152,154,157,160,nat Gd, 151,153 Eu and 242m Am for neutron energies from 94,95 Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei 95,96 Mo. Future plans include measurements on actinide targets; our immediate interest is in 242m Am

  20. Sensors for the CMS High Granularity Calorimeter

    CERN Document Server

    Maier, Andreas Alexander

    2017-01-01

    The CMS experiment is currently developing high granularity calorimeter endcapsfor its HL-LHC upgrade. The design foresees silicon sensors as the active material for the high radiation region close to the beampipe. Regions of lower radiation are additionally equipped with plastic scintillator tiles. This technology is similar to the calorimeter prototypes developed in the framework of the Linear Collider by the CALICE collaboration. The current status of the silicon sensor development is presented. Results of single diode measurements are shown as well as tests of full 6-inch hexagonal sensor wafers. A short summary of test beam results concludes the article.

  1. Nonuniformities in organic liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Wenzel, W.A.

    1989-06-01

    Hermeticity and uniformity in SSC calorimeter designs are compromised by structure and modularity. Some of the consequences of the cryogenic needs of liquid argon calorimetry are relatively well known. If the active medium is an organic liquid (TMP, TMS, etc.), a large number of independent liquid volumes is needed for safety and for rapid liquid exchange to eliminate local contamination. Modular construction ordinarily simplifies fabrication, assembly, handling and preliminary testing at the price of additional walls, other dead regions and many nonuniformities. Here we examine ways of minimizing the impact of some generic nonuniformities on the quality of calorimeter performance. 6 refs., 7 figs

  2. Rad Hard Active Media For Calorimeters

    CERN Document Server

    Norbeck, E; Möller, A; Onel, Y

    2006-01-01

    Zero-degree calorimeters have limited space and extreme levels of radiation. A simple, low cost, radiation hard design uses tungstenmetal as the absorber and a suitable liquid as the ˇCerenkov radiator. In other applications a PPAC (Parallel Plate Avalanche Counter) operatingwith a suitable atmosphericpressure gas is an attractive active material for a calorimeter. It can be made radiation hard and has sufficient gain in the gas that no electronic components are needed near the detector. It works well even with the highest concentration of shower particles. For this pressure range, R134A (used in auto air conditioners) has many desirable features.

  3. Fast shower simulation in the ATLAS calorimeter

    CERN Document Server

    Barberio, E; Butler, B; Cheung, S L; Dell'Acqua, A; Di Simone, A; Ehrenfeld, W; Gallas, M V; Glazov, A; Marshall, Z; Müller, J; Placakyte, R; Rimoldi, A; Savard, P; Tsulaia, V; Waugh, A; Young, C C

    2008-01-01

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.

  4. Commissioning of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Cooke, M; The ATLAS collaboration

    2009-01-01

    Since the first modules of the ATLAS LAr calorimeters were read out in situ in 2006, commissioning studies have been performed. These studies include the testing of the electronics calibration system, surveys for dead or problematic channels, investigations of the quality of the physics pulse shape prediction , and tests of energy and time reconstruction with cosmic or single beam induced signals. The results of these commissioning studies indicate the LAr calorimeters are prepared for LHC collisions and positioned to meet the physics objectives of the ATLAS experiment.

  5. Radiation damage effects on calorimeter compensation

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Handler, T.

    1990-01-01

    An important consideration in the design of a detector that is to be used at the Superconducting Super Collider (SSC) is the response of the calorimeter to electromagnetic and hadronic particles and the equality of those responses for different types of particles at equal incident energies, i.e. compensation. However, as the simulations that are reported show, the compensation characteristics of a calorimeter can be seriously compromised over a relatively short period of time due to the large radiation levels that are expected in the SSC environment. 6 refs., 3 figs

  6. Comparison between calorimeter and HLNC errors

    International Nuclear Information System (INIS)

    Goldman, A.S.; De Ridder, P.; Laszlo, G.

    1991-01-01

    This paper summarizes an error analysis that compares systematic and random errors of total plutonium mass estimated for high-level neutron coincidence counter (HLNC) and calorimeter measurements. This task was part of an International Atomic Energy Agency (IAEA) study on the comparison of the two instruments to determine if HLNC measurement errors met IAEA standards and if the calorimeter gave ''significantly'' better precision. Our analysis was based on propagation of error models that contained all known sources of errors including uncertainties associated with plutonium isotopic measurements. 5 refs., 2 tabs

  7. Irish set dancing classes for people with Parkinson's disease: The needs of participants and dance teachers.

    Science.gov (United States)

    Shanahan, Joanne; Bhriain, Orfhlaith Ní; Morris, Meg E; Volpe, Daniele; Clifford, Amanda M

    2016-08-01

    As the number of people diagnosed with Parkinson's disease increases, there is a need to develop initiatives that promote health and wellbeing and support self-management. Additionally, as exercise may slow physical decline, there is a need to develop methods that facilitate greater engagement with community-based exercise. The aim of this study is to examine the needs of (1) people with Parkinson's disease and (2) set dancing teachers to enable the development of participant-centred community set dance classes. A mixed methods study design was used. Two consensus group discussions using nominal group technique were held to (1) identify factors pertaining to the needs of people with Parkinson's disease from a set dance class and (2) the educational needs of set dancing teachers to enable them to teach set dancing to people with Parkinson's disease. Group discussions began with silent generation of ideas. A round-robin discussion and grouping of ideas into broader topic areas followed. Finally, participants ranked, by order of priority (1-5), the topic areas developed. Final data analysis involved summation of participants' ranking scores for each topic area. Rich information on the needs of people with Parkinson's disease from a dance class and the educational guidance sought by set dancing teachers was gathered. Topic areas developed include "teaching method" for set dances and "class environment". Accessing community exercise programmes is important for this population. The results of this study will inform the development of an educational resource on Parkinson's disease for set dancing teachers. This resource may facilitate a larger number of teachers to establish sustainable community set dancing classes for people with Parkinson's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials

    Science.gov (United States)

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman

    2015-01-01

    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  9. Between the Dance Studio and the Social Dance Floor: On Solidarity and Practices of Mutuality in Swing Dance Communities

    Directory of Open Access Journals (Sweden)

    Boštjan Kravanja

    2014-07-01

    Full Text Available This article discusses the dynamics of actualization of solidarity and hierarchical relations in contemporary swing dance communities. It shows how these communities are based on a specific solidarity ideology, at least it terms of dealing with processes of their institutionalization, commercialization and establishing of formal dance hierarchies. However, when we take into view the swing dancers themselves, diverse practices of mutuality become evident. In contrast to the formal solidarity discourses and practices, the latter are much more heterogeneous and as such more interesting for anthropological discussion, for they establish solidarity and hierarchical relations apart from wider mobilization movements of the swing dance industry, and many of them implicitly resist institutionalization. The thesis arising from this case study is that the practices of mutuality are not always in complementary relation with discourses of solidarity. On the contrary, they often bypass the major solidarity flows and, paradoxically, contribute most efficiently to the actual solidarity of vital parts of the swing communities. The author discusses the subject on the basis of six years of active participation in different Slovene swing dance scenes and occasional presence at international swing dance events in different European cities.

  10. Historical aspects of Belly Dance and its practice in Brazil

    OpenAIRE

    Queiroz Kussunoki, Sandra Aparecida [UNESP; Aguiar, Carmen Maria [UNESP

    2009-01-01

    Dance is regarded as one of the oldest art forms, which is based on evidence from prehistoric paintings found in caves; man expressed himself through body language prior to the development of spoken and written forms of communication. Dance was then used during important events, common to their era and culture, and often in religious rituals, to ensure good harvests - their economic activity. Belly-dance appeared approximately eight thousand years B. C. E. as a sacred dance firstly practiced ...

  11. Musical meaning and social significance : techno triggers for dancing

    OpenAIRE

    Gadir, Tami Ester

    2014-01-01

    Electronically-produced dance music has only recently achieved as much visibility in the global pop music industry as ‘live’ or instrumental pop. Yet the fascination of cultural scholars and sociologists with dance music predates its rise as a product of mass culture. Much of this interest derives from early associations of dance music with marginalised groups and oppositional ideologies. It therefore follows that many explorations of dance music focus on the ways in which tech...

  12. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Braunschweig, W. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Geulig, E. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Schoentag, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Siedling, R. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Wlochal, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Putzer, A. [European Organization for Nuclear Research, Geneva (Switzerland); Wotschack, J. [European Organization for Nuclear Research, Geneva (Switzerland); Cheplakov, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Feshchenko, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kazarinov, M. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kukhtin, V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Ladygin, E. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Obudovskij, V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Geweniger, C. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Hanke, P. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Kluge, E.E. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Krause, J. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Schmidt, M. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Stenzel, H. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Tittel, K. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Wunsch, M. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Zerwas, D. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Bruncko, D. [Slovenska Akademia Vied, Kosice (Slovakia). Ustav Experimentalnej Fyziky; Jusko, A. [Slovenska Akademia Vied, Kosice (Slovakia). Ustav Experimentalnej Fyziky; Kocper, B.; RD33 Collaboration

    1994-11-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. (orig.)

  13. Study of a novel electromagnetic liquid argon calorimeter TGT

    International Nuclear Information System (INIS)

    Berger, C.; Braunschweig, W.; Geulig, E.

    1994-01-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a test beam exposure. 15 refs., 16 figs., 2 tabs

  14. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C.; Braunschweig, W.; Geulig, E. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.] [and others

    1995-04-21

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. ((orig.)).

  15. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    International Nuclear Information System (INIS)

    Berger, C.; Braunschweig, W.; Geulig, E.

    1995-01-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. ((orig.))

  16. Monte Carlo simulation of a gas-sampled hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C Y; Kunori, S; Rapp, P; Talaga, R; Steinberg, P; Tylka, A J; Wang, Z M

    1988-02-15

    A prototype of the OPAL barrel hadron calorimeter, which is a gas-sampled calorimeter using plastic streamer tubes, was exposed to pions at energies between 1 and 7 GeV. The response of the detector was simulated using the CERN GEANT3 Monte Carlo program. By using the observed high energy muon signals to deduce details of the streamer formation, the Monte Carlo program was able to reproduce the observed calorimeter response. The behavior of the hadron calorimeter when placed behind a lead glass electromagnetic calorimeter was also investigated.

  17. CsI calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Bondar, A.E.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.; Epifanov, D.A.

    2015-01-01

    The VEPP-2000 e + e − collider has been operated at Budker Institute of Nuclear Physics since 2010. The experiments are performed with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon Calorimeter and crystal CsI calorimeter, and endcap calorimeter with BGO crystals. This paper describes the CsI calorimeter of the CMD-3 detector. The calorimeter design, its electronics and calibration procedures are discussed

  18. Study on FPGA SEU Mitigation for the Readout Electronics of DAMPE BGO Calorimeter in Space

    Science.gov (United States)

    Shen, Zhongtao; Feng, Changqing; Gao, Shanshan; Zhang, Deliang; Jiang, Di; Liu, Shubin; An, Qi

    2015-06-01

    The BGO calorimeter, which provides a wide measurement range of the primary cosmic ray spectrum, is a key sub-detector of the Dark Matter Particle Explorer (DAMPE). The readout electronics of calorimeter consists of 16 pieces of Actel ProASIC Plus FLASH-based field-programmable gate array (FPGA), of which the design-level flip-flops and embedded block random access memories (RAM) are single event upset (SEU) sensitive in the harsh space environment. To comply with radiation hardness assurance (RHA), SEU mitigation methods, including partial triple modular redundancy (TMR), CRC checksum, and multi-domain reset are analyzed and tested by the heavy-ion beam test. Composed of multi-level redundancy, a FPGA design with the characteristics of SEU tolerance and low resource consumption is implemented for the readout electronics.

  19. It takes two: the influence of dance partners on the perceived enjoyment and benefits during participation in partnered ballroom dance classes for people with Parkinson's.

    Science.gov (United States)

    Kunkel, Dorit; Robison, Judy; Fitton, Carolyn; Hulbert, Sophia; Roberts, Lisa; Wiles, Rose; Pickering, Ruth; Roberts, Helen; Ashburn, Ann

    2018-08-01

    To explore the views of people with Parkinson's and their dance partners on the influence and issues surrounding dancing with an able-bodied dance partner during partnered ball room dance classes. In depth, semi-structured interviews explored purposively selected participants' experiences and views about dance classes. Fourteen people with Parkinson's and their dance partners (six spouses, two friends/relatives, five volunteers) were interviewed within a month of completing the 10-week dance class program. Data were analyzed thematically. Generally, those partnered with a spouse or an experienced dancer, or when dance couples were able to develop good rapport, gained greater enjoyment and sense of achievement from dance classes in comparison to couples who did not enjoy dancing together or had clashing approaches to dance. Managing and negotiating who would "lead" in a dance was challenging for dance couples particularly among male people with Parkinson's. People with Parkinson's experience of the dance classes were influenced by the relationship and compatibility with their dance partner. Dance partnerships may impact on recruitment, enjoyment, outcome and continued participation in dance classes. Potential effects of partnerships should be analyzed and reported in studies evaluating the outcomes of dance classes. Implications for rehabilitation We recommend that health professionals consider involving spouses in Parkinson's dance classes as this may improve recruitment, adherence, enjoyment and overall outcome of the dance classes. If volunteers are needed, aim to recruit those who already have good dancing ability, convey a love of dancing and have the sensitivity and social skills to interact positively with the person with Parkinson's. Consider dance partnership issues when advertising and promoting dance classes. Address partnership issues through open communication and by changing partners if the dance partnership is not working well.

  20. Analysis of the dance of native Isan artists for conservation

    Directory of Open Access Journals (Sweden)

    Pakawat Petatano

    2015-11-01

    Full Text Available This is a qualitative investigation to analyse native dance in North-eastern Thailand. There were three objectives for this investigation, which were to study the history of Isan folk dance, current dance postures and ways to conserve the current dance postures of Isan folk artists. Research tools were interview, observation, participation, focus group discussion and workshop. The purposively selected research sample was composed of 3 groups of national artists. The findings show that Isan folk dancer shave their own unique dancing styles. Each artist has his or her own identity, which is constructed based on personal experience of dancing and singing. Mor lam is a dance used to accompany traditional Isansung poetry. Modern dance postures have been adapted from the traditional forms. Dance postures have been adapted from three primary sources: traditional literature, the ethnic and Lanchang dancing in the Lao People’s Democratic Republic and rhythmic Khon Kaen compositions. The conclusions of this investigation suggest that preservation of the dancing arts and postures should centre on the incorporation of new knowledge, as well as the continuation of traditional dance postures. Further research is required for people interested in performing arts conservation in other provinces and other traditional performing arts.

  1. Sensation, Perception, and Choice in the Dance Classroom

    Science.gov (United States)

    Henley, Matthew

    2014-01-01

    There are many reasons to teach dance as part of the broader curriculum. This article focuses on using dance as a way to foster critical thinking. In this conceptual article, I draw from the National Standards goals that were in line with my own framework of dance as uniquely engaging the three different sensory systems of exteroception,…

  2. Engaging Youth through African-Derived Dance and Culture

    Science.gov (United States)

    Franklin, Kikora

    2013-01-01

    This article provides a brief history of African and African-derived dance and culture and highlights the physical health, dance education, historical, and cultural benefits of a school-based program that incorporates African dance as its core component. The article also includes the phases of the programming and brings attention to potential…

  3. Projecting Nigerian Image through the Globalization of Her Dances ...

    African Journals Online (AJOL)

    The historical methodology is employed. The findings of this paper is that Nigerian dances have not benefited from globalization because, many of our dances and dance patterns have been stolen and repackaged to us as Western Euro-America cultural products. The paper therefore posits that Nigerians should take their ...

  4. Festival Works to Save Pioneering Dances by Black Choreographers.

    Science.gov (United States)

    Biemiller, Lawrence

    1988-01-01

    The American Dance Festival has begun a three-year effort to encourage scholars to delve into the history and influences of black modern dance, and the Ford Foundation has promised $300,000 to the project. Some express concern about separating black choreography from other American dance. (MSE)

  5. Dance Educator Enrichment Program (DEEP): A Model for Professional Development

    Science.gov (United States)

    Sofras, Pamela Anderson; Emory-Maier, Ambre

    2005-01-01

    In 2001, North Carolina Dance Theatre, The University of North Carolina at Charlotte, and the Charlotte-Mecklenburg School system joined forces to create a multidimensional, professional development program for dance professionals (teachers and artists) in the public schools called, The Dance Educator Enrichment Program (DEEP). DEEP was designed…

  6. An Examination of Critical Approaches to Interdisciplinary Dance Performance

    Science.gov (United States)

    Kennedy, Michelle

    2009-01-01

    As artists seek new ways to reflect an increasingly digital and global culture, theatrical dance in the UK and Europe has seen a growing collaboration and cross-fertilisation between forms of dance, theatre, visual art, film and technology. As the boundaries between artistic disciplines continue to blur, it seems clear that dance audiences need to…

  7. Searching for Evidence: Continuing Issues in Dance Education Research

    Science.gov (United States)

    Stinson, Susan

    2015-01-01

    This paper reviews, analyzes, and reflects upon two important reports released in 2013, both discussing research evidence for the value of dance education or arts education more generally, among school-aged students. One report was created by a large dance education advocacy and support group in the USA, the National Dance Education Organization;…

  8. Emotions and Feelings in a Collaborative Dance-Making Process

    Science.gov (United States)

    Rouhiainen, Leena; Hamalainen, Soili

    2013-01-01

    This paper looks into the significance emotions and feelings can have in a collaborative dance-making process. This is done by introducing a narrative based on a dance pedagogy student's writings. They contain observations of her experiences on being the facilitating choreographer in a dance-making process involving a cross-artistic group of…

  9. Shake It Out! Belly Dance in Physical Education

    Science.gov (United States)

    Marquis, Jenée; Gurvitch, Rachel

    2015-01-01

    Belly dance is a folk dance with a history that can be traced back to the beginnings of civilization. It is a form of expression and movement that has been used for hundreds of years in religious ceremonies, birthing rituals, and social and familial gatherings in the Middle East. Students of belly dance can increase their muscular strength and…

  10. Tracing Lines of Meaning: A Course Redesign for Dance Pedagogy

    Science.gov (United States)

    Enghauser, Rebecca Gose

    2012-01-01

    The 21st-century dance milieu demands that a dancer possess a highly diverse skill set, including effective teaching skills and a broader appreciation of a pedagogical orientation. It is vital that in preparing dance educators, we create opportunities for students to reflect on their dance learning histories and consequential beliefs about…

  11. Transforming Dance History: The Lost History of Rehearsals.

    Science.gov (United States)

    Hodes, Stuart

    1989-01-01

    Explains that an important aspect of dance history is lost by not recording dance rehearsals. Argues that recording rehearsals can reveal the creative process and illuminate the environment that engendered this art form. Concludes that a transformed dance history will influence curriculum development. (GG)

  12. Alienation and Transformation: An International Education in Contemporary Dance

    Science.gov (United States)

    Martin, Rosemary

    2013-01-01

    This research investigates experiences of an international education in dance. Through the narratives of seven female dance practitioners from the southern Mediterranean region, who have trained in contemporary dance in Western cultural contexts, a multiplicity of encounters are illustrated. Two key findings emerged from the dancers' experiences.…

  13. Critical Postcolonial Dance Recovery and Pedagogy: An International Literature Review

    Science.gov (United States)

    Banks, Ojeya Cruz

    2009-01-01

    This paper examines how the historical punishment of the dancing body in (post)colonial contexts has been a measure for controlling the mind and undertaking effective cultural imperialism. I bring to focus the striking global dance movement to revitalise oppressed dance forms, in an effort to do what Tuhiwai Smith calls "the recovery of…

  14. An Introduction to the Dance of India, China, Korea, Japan.

    Science.gov (United States)

    Gordon, Beate; Gordon, Joseph

    The general aim of this booklet is to assist those who desire to increase their knowledge and appreciation of Asian cultures and, more specifically, to provide an additional dimension to the Asia Society's Dance Demonstration Program. Dance history, philosophical ideas of religion, accompanying rituals, the relationship of dance to music, and…

  15. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  16. The ATLAS Tile Calorimeter gets into shape!

    CERN Multimedia

    2002-01-01

    The last of the 64 modules for one of the ATLAS Hadron tile calorimeter barrels has just arrived at CERN. This arrival puts an end to two and a half years work assembling and testing all the modules in the Institut de Física d'Altes Energies (IFAE), in Barcelona.

  17. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Oreglia, M; The ATLAS collaboration

    2013-01-01

    The ATLAS detector hadron calorimeter electronics are being redesigned to address issues associated with the High Luminosity mode of LHC running in Phase-2. We describe the issues and solutions and also discuss a demonstrator unit to be installed on the detector in 2014.

  18. ATLAS: First rehearsal for the tile calorimeter

    CERN Multimedia

    2003-01-01

    The dry run assembly of the first barrel of the ATLAS tile hadron calorimeter has been successfully completed. It is now being dismantled again so that it can be lowered into the ATLAS cavern where it will be reassembled in October 2004.

  19. Pion showers in highly granular calorimeters

    Indian Academy of Sciences (India)

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA ...

  20. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    ... a calorimeter system of a relatively simple construction and moderate costs, however with excellent properties, built upon experience gained with the extensively beam-tested DREAM (Dual REAdout. Module) prototype. The main idea of multiple readout calorimetry is to indepen- dently measure for each hadronic shower ...

  1. Performance of a uranium liquid argon calorimeter

    International Nuclear Information System (INIS)

    Tuts, P.M.

    1987-01-01

    The author presents results on the performance of a uranium and liquid argon colorimeter in the NW test beam at Fermilab. This study describes the calorimeter, and discusses its performance with electrons, pions and muons from 10 GeV to 150 GeV. The performance parameters measure response, linearity, resolution, compensation, and e/π separation

  2. SLD liquid argon calorimeter prototype test results

    International Nuclear Information System (INIS)

    Dubois, R.; Eigen, G.; Au, Y.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses

  3. Homogeneous scintillating LKr/Xe calorimeters

    International Nuclear Information System (INIS)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K.; Akyuz, D.; Chen, E.; Gaudreau, M.P.J.; Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V.; Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V.; Akopyan, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Masuda, K.; Shibamura, E.; Ishida, N.; Sugimoto, S.

    1993-01-01

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using α's, radiation hardness as well as the uniformity required for δE/E≅0.5% for e/γ's above 50 GeV. (orig.)

  4. Commissioning of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Cooke, Mark S

    2009-01-01

    A selection of ATLAS liquid argon (LAr) calorimeter commissioning studies are presented. These include a coherent noise study, a measurement of the quality of the physics pulse shape prediction, and energy and time reconstruction analyses with cosmic and single beam signals.

  5. PEP-4 geiger-mode hexagonal calorimeter

    International Nuclear Information System (INIS)

    Wenzel, W.A.

    1982-01-01

    The design and performance of the calorimeter are briefly described. Design aspects include illustrations of the active volume of the detector, edge connections, module assembly and analog electronics. Performance data for cosmic rays and radiation sources, including efficiency and channel sensitivity are discussed

  6. Calibration of the ZEUS forward calorimeter

    International Nuclear Information System (INIS)

    Kraemer, M.

    1990-10-01

    The physics at the ep-collider HERA requires high resolution calorimetry calibrated with an accuracy of better than 2%. The ZEUS detector meets these conditions by means of a compensating uranium scintillator sandwich calorimeter with an energy resolution of σ/E = 35%/√E + σ cal , where σ cal is the calibration error. One of the tools to minimize σ cal is the calibration with the signals of the radioactivity of the Uranium plates (UNO). Taking UNO data every 8 hours keeps the calibration stable within ≅ 1%. The muon calibration is done employing an algorithm, that determines the most probable energy loss with a precision of ≅ 1%. The channel-to-channel fluctuations of the ratio μ/UNO for a forward calorimeter (FCAL) prototype show a spread of 5.2% for the electromagnetic calorimeter and ≅ 2.5% for the hadronic sections. Improvements in the construction of the FCAL modules decreased these fluctuations to 2.0% and ≅ 1.8% respectively. The influence of the cracks between the calorimeter modules amounts to ≅ 1.7% on average for the ZEUS geometry, if a 2 mm thick Pb-sheet is introduced between the modules. We conclude that we are able to keep σ cal below 2%. (orig.)

  7. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. The new ATLAS Fast Calorimeter Simulation (FastCaloSim) is an improved parametrisation compared to the one used in the LHC Run-1. It provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The new FastCaloSim incorporates developments in geometry and physics lists of the last five years and benefit...

  8. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00176100; The ATLAS collaboration

    2016-01-01

    The physics and performance studies of the ATLAS detector at the Large Hadron Collider re- quire a large number of simulated events. A GEANT4 based detailed simulation of the ATLAS calorimeter systems is highly CPU intensive and such resolution is often unnecessary. To reduce the calorimeter simulation time by a few orders of magnitude, fast simulation tools have been developed. The Fast Calorimeter Simulation (FastCaloSim) provides a parameterised simulation of the particle energy response at the calorimeter read-out cell level. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: it incorporates developments in geometry and physics lists during the last five years and benefits from the knowledge acquired from the Run 1 data. The algorithm uses machine learning techniques to improve the parameterisations and to optimise the amount of information to be stored in the...

  9. CALICE silicon-tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 ...

  10. The electromagnetic calorimeter of the CMS experiment

    International Nuclear Information System (INIS)

    Diemoza, M.

    2003-01-01

    The Electromagnetic Calorimeter of the CMS experiment is made of about 80000 Lead Tungstate scintillating crystals. This project aims to achieve an extreme precision in photons and electrons energy measurement. General motivations, main technical challenges and key points in energy resolution will be discussed in the following

  11. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum fro...

  12. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Hrynevich, Aliaksei; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadr...

  13. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum from elec...

  14. Upgrading the ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The original version of FastCaloSim has been very important in the LHC Run-1, with several billion events simulated. An improved parametrisation is being developed, to eventually address shortcomings of the original version. It incorporates developme...

  15. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Dias, Flavia; The ATLAS collaboration

    2016-01-01

    A very large number of simulated events is required for physics and performance studies with the ATLAS detector at the Large Hadron Collider. Producing these with the full GEANT4 detector simulation is highly CPU intensive. As a very detailed detector simulation is not always required, fast simulation tools have been developed to reduce the calorimeter simulation time by a few orders of magnitude. The fast simulation of ATLAS for the calorimeter systems used in Run 1, called Fast Calorimeter Simulation (FastCaloSim), provides a parameterized simulation of the particle energy response at the calorimeter read-out cell level. It is then interfaced to the ATLAS digitization and reconstruction software. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: It incorporates developments in geometry and physics lists of the last five years and benefits from knowledge acquire...

  16. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  17. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    International Nuclear Information System (INIS)

    Thorn, D. B.

    2008-01-01

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  18. Lower extremity kinetics in tap dance.

    Science.gov (United States)

    Mayers, Lester; Bronner, Shaw; Agraharasamakulam, Sujani; Ojofeitimi, Sheyi

    2010-01-01

    Tap dance is a unique performing art utilizing the lower extremities as percussion instruments. In a previous study these authors reported decreased injury prevalence among tap dancers compared to other dance and sports participants. No biomechanical analyses of tap dance exist to explain this finding. The purpose of the current pilot study was to provide a preliminary overview of normative peak kinetic and kinematic data, based on the hypothesis that tap dance generates relatively low ground reaction forces and joint forces and moments. Six professional tap dancers performed four common tap dance sequences that produced data captured by the use of a force platform and a five-camera motion analysis system. The mean vertical ground reaction force for all sequences was found to be 2.06+/-0.55 BW. Mean peak sagittal, frontal, and transverse plane joint moments (hip, knee, and ankle) ranged from 0.07 to 2.62 N.m/kg. These small ground reaction forces and joint forces and moments support our hypothesis, and may explain the relatively low injury incidence in tap dancers. Nevertheless, the analysis is highly complex, and other factors remain to be studied and clarified.

  19. The effect of dance training on menstrual function in collegiate dancing students.

    Science.gov (United States)

    To, W W; Wong, M W; Chan, K M

    1995-08-01

    A total of 98 dancing students from a collegiate school of dancing were studied through interview using a highly structured questionnaire to elicit details of the duration and intensity of dance training, menstrual patterns and musculoskeletal injuries sustained during training; 70 (72%) of these dancing students were eumenorrhoeic, while 15 (15.4%) had oligomenorrhoea. Thirteen (13.4%) either had amenorrhoea for over 90 days at the time of the study, or were on hormonal treatment because of amenorrhoea for over 3 months in the past 1 year. Those who were amenorrhoeic had longer training hours per week when compared with eumenorrhoeic and oligomenorrhoeic students. Both oligomenorrhoeic and amenorrhoeic students had a lower body mass index (18.25 kg/m2 and 18.26 kg/m2 versus 19.45 kg/m2, p dance, modern dance and musical theatre dance students as well as a significantly lower average body mass index. These data suggest a proportional correlation between menstrual dysfunction and proneness to musculoskeletal injuries in training, which could be explained by a hormonal mechanism.

  20. Why do you dance? Development of the Dance Motivation Inventory (DMI).

    Science.gov (United States)

    Maraz, Aniko; Király, Orsolya; Urbán, Róbert; Griffiths, Mark D; Demetrovics, Zsolt

    2015-01-01

    Dancing is a popular form of physical exercise and studies have show that dancing can decrease anxiety, increase self-esteem, and improve psychological wellbeing. The aim of the current study was to explore the motivational basis of recreational social dancing and develop a new psychometric instrument to assess dancing motivation. The sample comprised 447 salsa and/or ballroom dancers (68% female; mean age 32.8 years) who completed an online survey. Eight motivational factors were identified via exploratory factor analysis and comprise a new Dance Motivation Inventory: Fitness, Mood Enhancement, Intimacy, Socialising, Trance, Mastery, Self-confidence and Escapism. Mood Enhancement was the strongest motivational factor for both males and females, although motives differed according to gender. Dancing intensity was predicted by three motivational factors: Mood Enhancement, Socialising, and Escapism. The eight dimensions identified cover possible motives for social recreational dancing, and the DMI proved to be a suitable measurement tool to assess these motives. The explored motives such as Mood Enhancement, Socialising and Escapism appear to be similar to those identified in other forms of behaviour such as drinking alcohol, exercise, gambling, and gaming.

  1. Why do you dance? Development of the Dance Motivation Inventory (DMI.

    Directory of Open Access Journals (Sweden)

    Aniko Maraz

    Full Text Available Dancing is a popular form of physical exercise and studies have show that dancing can decrease anxiety, increase self-esteem, and improve psychological wellbeing. The aim of the current study was to explore the motivational basis of recreational social dancing and develop a new psychometric instrument to assess dancing motivation. The sample comprised 447 salsa and/or ballroom dancers (68% female; mean age 32.8 years who completed an online survey. Eight motivational factors were identified via exploratory factor analysis and comprise a new Dance Motivation Inventory: Fitness, Mood Enhancement, Intimacy, Socialising, Trance, Mastery, Self-confidence and Escapism. Mood Enhancement was the strongest motivational factor for both males and females, although motives differed according to gender. Dancing intensity was predicted by three motivational factors: Mood Enhancement, Socialising, and Escapism. The eight dimensions identified cover possible motives for social recreational dancing, and the DMI proved to be a suitable measurement tool to assess these motives. The explored motives such as Mood Enhancement, Socialising and Escapism appear to be similar to those identified in other forms of behaviour such as drinking alcohol, exercise, gambling, and gaming.

  2. The pipelined readout for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Hervas, L.

    1991-01-01

    The electron-proton storage ring complex HERA under construction at DESY in Hamburg is the first machine of a new generation of colliders. Since physics to be studied at HERA (covered in chapter 2) base on the precise measurement of kinematic variables over a very large range of energies, a foremost emphasis is set in calorimetry. After long studies and an ambitious test program, the ZEUS collaboration has built a high resolution depleted uranium-scintillator calorimeter with photomultiplier readout, the state of the art in detectors of this type. In chapter 3 the principles of calorimetry are reviewed and the construction of the ZEUS calorimeter is described. Mainly due to the large dynamic range and the short bunch crossing times a novel concept for the readout in an analog pipelined fashion had to be designed. This concept is explained in chapter 4. The solid state implementation of the pipeline required two integrated circuits which were developed specially for the ZEUS calorimeter in collaboration with an electronics research institute and produced by industry. The design and construction of these devices and the detailed testing which has been performed for properties critical in the readout is covered in chapters 5 and 6. The whole pipelined readout is a complicated setup with many steps and collaborating systems. Its implementation and the information to operate it are covered in chapter 7. Finally the concepts presented and the applications discussed have been installed and tested on a test beam calibration experiment. There, the modules of the calorimeter have been calibrated. Chapter 8 presents results from these measurements which show excellent performance of the electronics as well as optimal properties of the calorimeter modules. (orig./HSI)

  3. Genetic control of the honey bee (Apis mellifera) dance language: segregating dance forms in a backcrossed colony.

    Science.gov (United States)

    Johnson, R N; Oldroyd, B P; Barron, A B; Crozier, R H

    2002-01-01

    We studied the genetic control of the dance dialects that exist in the different subspecies of honey bees (Apis mellifera) by observing the variation in dance form observed in a backcross between two lines that showed widely different dance dialects. To do this we generated the reciprocal of the cross performed by Rinderer and Beaman (1995), thus producing phenotypic segregation of dance forms within a single colony rather than between colonies. Our results are consistent with Rinderer and Beaman (1995) in that inheritance of the transition point from round dancing --> waggle dancing is consistent with control by a single locus with more than one allele. That is, we found one dance type to be dominant in the F(1), and observed a 1:1 segregation of dance in a backcross involving the F(1) and the recessive parent. However, we found some minor differences in dance dialect inheritance, with the most significant being an apparent reversal of dominance between our cross (for us "black" is the dominant dialect) and that of Rinderer and Beaman (1995) (they report "yellow" to be the dominant dialect). We also found that our black bees do not perform a distinct sickle dance, whereas the black bees used by Rinderer and Beaman (1995) did perform such a dance. However, our difference in dominance need not contradict the results of Rinderer and Beaman (1995), as there is no evidence that body color and dominance for dance dialect are linked.

  4. Washington Alexandria Architecture Center students merge creative concepts of dance and space to design dance studio in Arlington

    OpenAIRE

    Micale, Barbara L.

    2009-01-01

    Elements of dance and dance-theatre -- including movement and exercise, flowing costumes, and expressive lighting --inspired students in the Architecture Master's design studio at the Washington Alexandria Architecture Center to imagine innovative ways of merging public and private space for a dance studio in nearby Arlington.

  5. Dancing on Thin Ice: The Journey of Two Male Teacher Candidates Emerging as Professionals within a Teacher Education Dance Program

    Science.gov (United States)

    Kalyn, Brenda; Campbell, Eric; McAvoy, Alekcei; Weimer, Michelle

    2015-01-01

    Teacher candidates entering the world of curricula face the realities of teaching a variety of subjects, some more conceptually foreign than others. One challenging area for teacher candidates, particularly males, is in dance education (Gard, 2008; Kiley, 2010). A teacher's former dance experience, beliefs about who dances and why, personal…

  6. Dance for Physically Disabled Persons: A Manual for Teaching Ballroom, Square, and Folk Dances to Users of Wheelchairs and Crutches.

    Science.gov (United States)

    Hill, Kathleen

    The final booklet in a series on physical education and sports for the handicapped presents ideas for teaching dance to the physically disabled. Introductory sections consider the rehabilitation role of dance, physiological and psychological benefits, and facilities for dance instruction. Step-by-step suggestions are given for teaching ballroom…

  7. The aesthetic interpretation on Wooden Drum Dancing of Wa people

    Directory of Open Access Journals (Sweden)

    Youfeng Wang

    2017-02-01

    Full Text Available The Wa nationality, a typical ethnic group in Yunnan province, is an ancient one lives across Yunnan. The main residences of it are border area beside northern Yunnan and the Wa States in Burma. Among all the Wa dances, Wooden Drum Dancing leads a vital position, and it is also a symbolic dancing in the culture of Wa people. The feature of Wooden Drum Dancing is that every action expending by the beats of wooden drum, namely, first the wooden drum, then the Wooden Drum Dancing. Dancing is an important content in the life of Wa people, and the aesthetics of life comes from dancing, so they present their value on worship by the form of dancing. This article is going to interpret the aesthetic standard on Wa people’s Wooden Drum Dancing by the view of aesthetics, and come into a conclude that the inspiration of such dancing came from practice and their worship to nature and ancestor. The Wooden Drum Dancing displays totally the tough air and solidarity of Wa people, which also presents the fair society of them. The Wooden Drum Dancing is an enriched art that Wa People took from particle life, so dancing of Wa is often classified into the aesthetic area of plain. The information of people’s living situation displayed by Wa dancing also conveys their rich emotions. The sense of beauty within Wooden Drum Dancing will give others a solemn feeling. The formal beauty is displayed by the rhythm of upper part of body, and the power beauty is displayed by the rhythm of the lower part of body.

  8. Dance Dance Revolution: Usapin ng Laro at Sayaw sa Panahon ng Globalisasyon

    Directory of Open Access Journals (Sweden)

    Jema M. Pamintuan

    2001-06-01

    Full Text Available The Dance Dance Revolution (DDR Machine is becoming a favorite game among the youth and even the not-so-young. While much has been written on the mechanics and popularity of the game, this essay aims to probe into the DDR phenomenon as a parallel tool and response to the changes brought about by technology and the age of globalization. The individual's relationship with the machine, with his audience, and with the larger society will be documented and juxtaposed with the activities of a global village. The cultural implications of the DDR will also be discussed, especially how the game itself revolutionized our traditional concept of game and dance.

  9. Self psychology and the modern dance choreographer.

    Science.gov (United States)

    Press, Carol M

    2009-04-01

    Theory and research methodology of self psychology are integrated with the experiences of modern dance choreographers to investigate the importance of creativity, art making, and aesthetics in mental health and our everyday lives. Empathy, as aesthetically based, is explored to understand the capacity of the arts to unite us in our humanity. Connections between aesthetic development, creativity, and infant patterns of learning are drawn. The influence of sensual and exploration/assertion motivational systems upon the contemporary choreographer are highlighted, leading to an understanding of the selfobject function of sensation and movement for the dance artist. Through an examination of the moment to moment ritualized experiences of studio work, the creative process in making dances is discussed. Ultimately understanding creativity and aesthetically based empathy inform our delineation of mental health and the need for aesthetic experience in everyday life.

  10. Aggressive behavior prevention in a dance duet

    Directory of Open Access Journals (Sweden)

    Olena Gant

    2017-10-01

    Full Text Available Purpose: to study the features of aggression and the main directions of prevention of aggressive forms of behavior, among athletes engaged in sports dancing in the preliminary basic training. Material & Methods: analysis of scientific and methodological literature, "Personal aggressiveness and conflictness". Results: a theoretical analysis of the problem of aggressive behavior in sports dance duets. Level of aggressiveness of athletes of sports dances at the stage of preliminary basic training is determined. Reasons for the formation of aggressive behavior among young athletes are revealed. Areas of preventive and psychocorrectional work with aggressive athletes are singled out. Conclusion: a high level of aggression was detected in 19 (31,67% of the study participants. Determinants of aggressive behavior in sport ballroom pair appear particularly family upbringing style and pedagogical activity of the trainer. Correction of aggressive behavior of young athletes should have a complex systemic character and take into account the main characterological features of aggressive athletes.

  11. Dance as a therapy for cancer prevention.

    Science.gov (United States)

    Aktas, Gurbuz; Ogce, Filiz

    2005-01-01

    Even though the field of medicine has developed tremendously, the wide variety of cancer is still among chronic and life threatening disease today. Therefore, the specialists constantly research and try every possible way to find cure or preventive ways to stop its further development. For this reason, studies concerning the chronic disease such as cancer have been spread to many different fields. In this regard, many other alternative ways besides medicine, are used in prevention of cancer. Nutritional therapy, herbal therapy, sportive activities, art therapy, music therapy, dance therapy, imagery, yoga and acupuncture can be given as examples. Among these, dance/movement therapy which deals with individuals physical, emotional, cognitive as well as social integration is widely used as a popular form of physical activity. The physical benefits of dance therapy as exercise are well documented. Studies have shown that physical activity is known to increase special neurotransmitter substances in the brain (endorphins), which create a state of well-being. And total body movement such as dance enhances the functions of other body systems, such as circulatory, respiratory, skeletal, and muscular systems. Regarding its unique connection to the field of medicine, many researches have been undertaken on the effects of dance/movement therapy in special settings with physical problems such as amputations, traumatic brain injury, and stroke, chronic illnesses such as anorexia, bulimia, cancer, Alzheimer's disease, cystic fibrosis, heart disease, diabetes, asthma, AIDS, and arthritis. Today dance/movement therapy is a well recognized form of complementary therapy used in hospitals as well as at the comprehensive clinical cancer centres.

  12. What is it dance can do?

    DEFF Research Database (Denmark)

    Ravn, Susanne

    presented in this paper are based on a synthesis of the results of all three reports. The surveys presented in report 3 indicates that an impressing high percentage (87 and 98) of the participants evaluate that the dance practices are social in a ‘high’ or ‘very high’ degree. Drawing on a combination...... of observations and interviews with participants and the dancers teaching in courses and projects, report 1 and 2 present and analyse participants’ experiences running behind the surveys. In each their ways, these two reports bring to the fore that participating in the dance activities is, first of all, a matter...

  13. The Analysis of Topeng Sinok Dance in Brebes Regency

    Directory of Open Access Journals (Sweden)

    Dinar Ayu Sintho Rukmi

    2015-06-01

    Full Text Available Topeng Sinok dance is the characteristic art of Brebes regency. This dance tells about the typical women in Brebes who are hard-working. Beauty, flexibility, and elegance do not reduce their love for nature and farming. This dance is a combination of Cirebon, Banyumas, and Surakarta style. The dance is basically aiming at showing that women from the border areas of Central and West Java are not spoiled, whiny, and lazy. Topeng Sinok dance is performed beautifully, elegant, and swift. This paper purposes to uncover the meaning behind Topeng Sinok dance movement. This study implements qualitative method that uses qualitative descriptive approach. The data collection process was conducted by using observation, documentation, and interview techniques. Further, the data were analysed by using dance data analysis by following the steps of (1 identifying and describing components; (2 understanding; (3 interpreting; and (4 evaluating. The data were then validated by using triangulation.

  14. Legal Protection Against The Dance Creator In Indonesia

    Directory of Open Access Journals (Sweden)

    Juwita

    2015-08-01

    Full Text Available This research aimed to find out and to analyze the ideal legal protection so it can encourage the creator of dance in developing a creation in the field of dance and to find out and to analyze and to get the concept of legal protection of copyright in the field of dance after the enactment of Act No. 28 of 2014 concerns Copyright. This research is empirical juridical. The technique of collecting legal material is conducted through interviews questionnaires to respondents and literature study i.e by collecting various documents in the form of primary secondary and tertiary legal materials. The results of research showed that 1. Dance is a part of copyright associated with diverse art and culture owned by the Indonesian certainly dance produced by consume energy thoughts time and cost by Dance Creator with regard to the creation the state has given protection of dance creator for art as stipulated in Article 40 letter e of Act No. 28 of 2014 as an expression of respect and appreciation to the Dance Creator 2 In association with the regulation on the protection of creative works of art dance regulated in Act No. 28 of 2014 the creator of dance argues is very important to give the protection of dance creator for their copyrighted works particularly their rights as a creator of dance i.e moral and economic rights. Giving moral and economic rights cannot be felt fully by the creator of dance this is due to the creator of dance does not have an institutions that will accommodate the creativity of creators that useful for their welfare.

  15. The Sacred or the Profane: The Challenge of Modern Dance in Religious Educational Settings

    Science.gov (United States)

    Clement, Karen

    2008-01-01

    The article addresses the utilization of modern dance compositional approaches in the development of sacred dance works. A brief history of sacred dance in the Western Church is traced as a foundation for students' stereotypical approaches to dance and religion. Also examined is the 20th Century modern dance choreographers' practice of…

  16. Creating Cultures of Teaching and Learning: Conveying Dance and Somatic Education Pedagogy

    Science.gov (United States)

    Dragon, Donna A.

    2015-01-01

    Often in teaching dance, methods of teaching and learning are silently embedded into dance classroom experiences. Unidentified and undisclosed pedagogic information has impacted the content of dance history; the perpetuation of authoritarian teaching practices within dance technique classes and in some dance classes deemed "somatics";…

  17. Dancing for Parkinson Disease: A Randomized Trial of Irish Set Dancing Compared With Usual Care.

    Science.gov (United States)

    Shanahan, Joanne; Morris, Meg E; Bhriain, Orfhlaith Ni; Volpe, Daniele; Lynch, Tim; Clifford, Amanda M

    2017-09-01

    To examine the feasibility of a randomized controlled study design and to explore the benefits of a set dancing intervention compared with usual care. Randomized controlled design, with participants randomized to Irish set dance classes or a usual care group. Community based. Individuals with idiopathic Parkinson disease (PD) (N=90). The dance group attended a 1.5-hour dancing class each week for 10 weeks and undertook a home dance program for 20 minutes, 3 times per week. The usual care group continued with their usual care and daily activities. The primary outcome was feasibility, determined by recruitment rates, success of randomization and allocation procedures, attrition, adherence, safety, willingness of participants to be randomized, resource availability, and cost. Secondary outcomes were motor function (motor section of the Unified Parkinson's Disease Rating Scale), quality of life (Parkinson's Disease Questionnaire-39), functional endurance (6-min walk test), and balance (mini-BESTest). Ninety participants were randomized (45 per group). There were no adverse effects or resource constraints. Although adherence to the dancing program was 93.5%, there was >40% attrition in each group. Postintervention, the dance group had greater nonsignificant gains in quality of life than the usual care group. There was a meaningful deterioration in endurance in the usual care group. There were no meaningful changes in other outcomes. The exit questionnaire showed participants enjoyed the classes and would like to continue participation. For people with mild to moderately severe PD, set dancing is feasible and enjoyable and may improve quality of life. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Recent developments in crystal calorimeters (featuring the CMS PbWO4 electromagnetic calorimeter)

    International Nuclear Information System (INIS)

    Gascon-Shotkin, S.

    2003-01-01

    In the mass range of 110-150 GeV the favored process for Higgs boson detection via p-p collisions is via its decay into two photons, which demands a very high-resolution electromagnetic calorimeter. This physics goal plus the Large Hadron Calorimeter (LHC)-imposed design constraints of 25ns bunch spacing and a hostile radiation environment have led the Compact Muon Solenoid (CMS) collaboration to the choice of lead tungstate (PbWO 4 ) crystals. These factors plus the presence of a 4T magnetic field and the relatively low room-temperature scintillation photon yield of PbWO 4 make photo detection a real challenge, which CMS has met via the choice of devices providing gain amplification: Avalanche photodiodes (APD) in the central barrel region and vacuum phototriodes (VPT) in the forward and backward endcap regions. In the past year the CMS electromagnetic calorimeter has entered the construction phase. We review progress in the areas of crystals, barrel and endcap photo detection devices, plans for detector calibration as well as the status of assembly and quality control. We also invoke relevant developments in other crystal calorimeters currently in operation or under development. Crystal calorimeters remain the medium of choice for precision energy and position measurements in high energy physics

  19. Conditioning Methodologies for DanceSport: Lessons from Gymnastics, Figure Skating, and Concert Dance Research.

    Science.gov (United States)

    Outevsky, David; Martin, Blake Cw

    2015-12-01

    Dancesport, the competitive branch of ballroom dancing, places high physiological and psychological demands on its practitioners, but pedagogical resources in these areas for this dance form are limited. Dancesport competitors could benefit from strategies used in other aesthetic sports. In this review, we identify conditioning methodologies from gymnastics, figure skating, and contemporary, modern, and ballet dance forms that could have relevance and suitability for dancesport training, and propose several strategies for inclusion in the current dancesport curriculum. We reviewed articles derived from Google Scholar, PubMed, ScienceDirect, Taylor & Francis Online, and Web of Science search engines and databases, with publication dates from 1979 to 2013. The keywords included MeSH terms: dancing, gymnastics, physiology, energy metabolism, physical endurance, and range of motion. Out of 47 papers examined, 41 papers met the inclusion criteria (validity of scientific methods, topic relevance, transferability to dancesport, publication date). Quality and validity of the data were assessed by examining the methodologies in each study and comparing studies on similar populations as well as across time using the PRISMA 2009 checklist and flowchart. The relevant research suggests that macro-cycle periodization planning, aerobic and anaerobic conditioning, range of motion and muscular endurance training, and performance psychology methods have potential for adaptation for dancesport training. Dancesport coaches may help their students fulfill their ambitions as competitive athletes and dance artists by adapting the relevant performance enhancement strategies from gymnastics, figure skating, and concert dance forms presented in this paper.

  20. Sources of compensation in hadronic calorimeters

    International Nuclear Information System (INIS)

    Goodman, M.S.; Gabriel, T.A.; Di Ciaccio, A.; Wilson, R.

    1988-12-01

    Monte Carlo simulations are presented using the CALOR code system to study the design of a large hybrid hadron calorimeter system employing a warm liquid active medium (tetramethylsilane, Si(CH 3 ) 4 ) and uranium plates in addition to a conventional Fe/plastic system. In the system described here, the uranium provides partial compensation by suppressing the electromagnetic cascade produced by incident electrons due to sampling inefficiencies. The results of the simulations also indicate that significant compensation is achieved (given small enough saturation) due to low energy recoil protons produced in collisions with low energy (1--20 MeV) cascade and fission neutrons in the active medium. Both compensation mechanisms are important to help balance the response of a calorimeter to incident electrons and hadrons, that is, to achieve a ratio of pulse heights (e/h ∼ 1) which will lead to the best energy resolution. 17 refs., 4 figs., 2 tabs

  1. Precision timing with liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Benary, O.; Cannon, S.; Cleland, W.; Ferguson, I.; Finley, C.; Gordeev, A.; Gordon, H.; Kistenev, E.; Kroon, P.; Letchouk, M.; Lissauer, D.; Ma, H.; Makowiecki, D.; Maslennikov, A.; McCorkle, S.; Onoprienko, D.; Onuchin, A.; Oren, Y.; Panin, V.; Parsons, J.; Rabel, J.; Radeka, V.; Rogers, L.; Rahm, D.; Rescia, S.; Rutherfoord, J.; Seman, M.; Smith, M.; Sondericker, J. III; Steiner, R.; Stephani, D.; Stern, E.; Stumer, I.; Takai, H.; Themann, H.; Tikhonov, Y.

    1993-01-01

    We present timing measurements performed with a liquid krypton electromagnetic accordion calorimeter, measured in an electron beam over an energy range of 5-20 GeV. A novel discriminator with an amplitude-independent timing response was used to extract the inherently accurate timing information from the calorimeter. As expected, the timing resolution σ τ is observed to vary inversely with the signal amplitude, which is proportional to the deposited energy E. We measure a resolution of σ τ =4.15±0.06 GeV ns/E for a sum of 5x5 towers with dimensions 2.7x2.5 cm 2 each. From this we deduce that the timing resolution for an individual tower is approximately 0.8 GeV ns/E. (orig.)

  2. Work on a ATLAS tile calorimeter Barrel

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The Tile Calorimeter is designed as one barrel and two extended barrel hadron parts. The calorimeter consists of a cylindrical structure with inner and outer radius of 2280 and 4230 mm respectively. The barrel part is 5640 mm in length along the beam axis, while each of the extended barrel cylinders is 2910 mm long. Each detector cylinder is built of 64 independent wedges along the azimuthal direction. Between the barrel and the extended barrels there is a gap of about 600 mm, which is needed for the Inner Detector and the Liquid Argon cables, electronics and services. The barrel covers the region -1.0

  3. The ATLAS Tile Calorimeter Performance at LHC

    CERN Document Server

    Molander, S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment at LHC. The TileCal pays a major role in detecting hadrons, jets, hadronic decays of tau leptons and measuring the missing transverse energy. Due to the very good signal to noise ratio it assists the muon spectrometer in the identification and reconstruction of muons, which are also a tool for the in situ energy scale validation. The results presented here stem from the data collection in dedicated calibration runs, in cosmic rays data-taking and in LHC collisions along 3 years of operation. The uniformity, stability and precision of the energy scale, the time measurement capabilities and the robustness of the performance against pile-up are exposed through the usage of hadronic and muon final states and confirm the design expectations.

  4. LHCb: Upgrade of the LHCb calorimeter electronics

    CERN Multimedia

    Mauricio Ferre, J

    2013-01-01

    The LHCb collaboration foresees a major upgrade of the detector for the high luminosity run that should take place after 2018. Apart from the increase of the instantaneous luminosity at the interaction point of the experiment, one of the major ingredients of this upgrade is a full readout at 40MHz of the sub-detectors and the acquisition of the data by a large farm of PC. The trigger will be done by this farm and should increase the overall trigger efficiency with respect to the current detector, especially in hadronic B meson decays. A general overview of the modifications foreseen to the calorimeter system and the integration of the electromagnetic and hadronic calorimeters in this new scheme will be described.

  5. Hermeticity of three cryogenic calorimeter geometries

    International Nuclear Information System (INIS)

    Strovink, M.; Wormersley, W.J.; Forden, G.E.

    1989-04-01

    We calculate the effect of cracks and dead material on resolution in three simplified cryogenic calorimeter geometries, using a crude approximation that neglects transverse shower spreading and considers only a small set of incident angles. For each dead region, we estimate the average unseen energy using a shower parametrization, and relate it to resolution broadening using a simple approximation that agrees with experimental data. Making reasonable and consistent assumptions on cryostat wall thicknesses, we find that the effects of cracks and dead material dominate the expected resolution in the region where separate ''barrel'' and ''end'' cryostats meet. This is particularly true for one geometry in which the end calorimeter caps the barrel and also protrudes into the hole within it. We also find that carefully designed auxiliary ''crack filler'' detectors can substantially reduce the loss of resolution in these areas. 6 figs

  6. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  7. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  8. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Jacka, Petr; The ATLAS collaboration

    2018-01-01

    With the huge amount of data collected with ATLAS, there is a need to produce a large number of simulated events. These productions are very CPU and time consuming when using the full GEANT4 simulation. FastCaloSim is a program to quickly simulate the ATLAS calorimeter response, based on a parameterization of the GEANT4 energy deposits of several kinds of particles in a grid of energy and eta. A new version of FastCaloSim is under development and its integration into the ATLAS simulation infrastructure is ongoing. The use of machine learning techniques improves the performance and decreases the memory usage. Dedicated parameterizations for the forward calorimeters are being studied. First results of the new FastCaloSim show substantial improvements of the description of energy and shower shape variables, including the variables for jet substructure.

  9. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    Renz, D.P.; Wetzel, J.R.; James, S.J.; Kasperski, P.W.; Duff, M.F.

    1991-01-01

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  10. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  11. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  12. Upgrading the ATLAS Tile Calorimeter Electronics

    Directory of Open Access Journals (Sweden)

    Carrió Fernando

    2013-11-01

    Full Text Available This work summarizes the status of the on-detector and off-detector electronics developments for the Phase 2 Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in the middle of 2014 during the first Long Shutdown. For the on-detector readout, three different front-end boards (FEB alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The Main Board will provide communication and control to the FEBs and the Daughter Board will transmit the digitized data to the off-detector electronics in the counting room, where the super Read-Out Driver (sROD will perform processing tasks on them and will be the interface to the trigger levels 0, 1 and 2.

  13. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2014-01-01

    This presentation summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2024. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  14. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2013-01-01

    This work summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  15. Measurements with the Chalk River Calorimeters

    International Nuclear Information System (INIS)

    Boyd, A.W.

    1970-01-01

    The Chalk River calorimeters were designed to measure the absorbed dose rate in reactors in materials such as graphite, polyethylene and beryllium in the range 0.01-1 Wg -1 . To eliminate heaters in the sample they were made to operate adiabatically, or more accurately quasi-adiabatically since there is no heater on the jacket. Both the sample and jacket temperatures are recorded from the time of insertion in the reactor flux and the absorbed dose rate is calculated from these data. The advantages of this type of calorimeter are the ease of construction and the absence of a sample heater. The disadvantage is that dose rates below ~ 10 mWg -1 cannot be determined accurately

  16. The new UA1 calorimeter trigger

    International Nuclear Information System (INIS)

    Eisenhandler, E.

    1988-01-01

    The new UA1 first-level calorimeter trigger processor is described, with emphasis on the fast two-dimensional electromagnetic cluster-finding that is its most novel feature. This processor is about five times more powerful than its predecessor, and makes extensive use of pipelining techniques. It allows multiple combinations of triggers on electromagnetic showers, hadronic jets and energy sums, including a total-energy veto of multiple interactions and a full vector sum of missing transverse energy. (author)

  17. The ZEUS second level calorimeter trigger

    International Nuclear Information System (INIS)

    Jong, S.J. de.

    1990-01-01

    ZEUS is a detector for the HERA ep collider, consisting of several large components. The most important being the inner tracking detectors, which are positioned nearest to the interaction point, the calorimeter surrounding the inner tracking detectors and the muon detectors on the outside of the experimental setup. Each component will deliver a vast amount of information. In order to keep this information manageable, data is preprocessed and condensed per component and then combined to obtain the final global trigger result. The main subject of this thesis is the second level calorimeter trigger processor of the ZEUS detector. In order to be able to reject the unwanted events passing the first level, the topological event signature will have to be used at the second level. The most demanding task of the second level is the recognition of local energy depositions corresponding to isolated electrons and hadron jets. Also part of the work performed by the first level will be repeated with a higher level of accuracy. Additional information not available to the first level trigger will be processed and will be made available to the global second level trigger decision module. For the second level calorimeter trigger processor a special VME module, containing two transputers, has been developed. The second level calorimeter trigger algorithm described in this thesis was tested with simulated events, that were tracked through a computer simulation of the ZEUS detector. A part of this thesis is therefore devoted to the description of the various Monte Carlo models and the justification of the way in which they were used. (author). 132 refs.; 76 figs.; 18 tabs

  18. Isothermal calorimeter for reactor radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Radak, B; Markovic, V [Institute of Nuclear Sciences Boris Kidric, Odeljenje za radijacionu hemiju, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    An isothermal calorimeter with thermistors for measuring absorbed dose rates from 10{sup 4}-5-6.10{sup 5} rad/h in reactor experimental holes has been designed. A kinetics method for determining the equilibrium temperature difference has been developed, and its application in isothermal calorimetry proved. The expected accuracy in measurements within {+-} 2-5% has been proved by measurements carried out in the reactor. Some data obtained by measurements in the reactor RA are presented (author)

  19. Homogeneous scintillating LKr/Xe calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K. (Lab. for Nuclear Science, MIT, Cambridge, MA (United States)); Akyuz, D.; Chen, E.; Gaudreau, M.P.J. (Plasma Fusion Center, MIT, Cambridge, MA (United States)); Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V. (ITEP, Moscow (Russia)); Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V. (IHEP, Serpukhov (Russia)); Akopyan, M. (Inst. for Nuclear Research, Moscow (Russia)); Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T. (Science and Eng. Res. Lab., Waseda Univ., Tokyo (Japan)); Masuda, K.; Shibamura, E. (Saitama Coll. of Health (Japan)); Ishida, N. (Seikei Univ. (Japan)); Sugimoto, S. (INS, Univ. Tokyo (Japan))

    1993-03-20

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using [alpha]'s, radiation hardness as well as the uniformity required for [delta]E/E[approx equal]0.5% for e/[gamma]'s above 50 GeV. (orig.).

  20. The CDF central and endwall hadron calorimeter

    International Nuclear Information System (INIS)

    Bertolucci, S.; Cordelli, M.; Eposito, B.; Curatolo, M.; Giromini, P.; Miscetti, S.; Sansoni, A.; Barnes, V.E.; Di Virgilio, A.; Garfinkel, A.F.; Kuhlmann, S.E.; Laasanen, A.T.

    1988-01-01

    The CDF central and endwall hadron calorimeter covers the polar region between 30 0 and 150 0 and a full 2π in azimuth. It consists of 48 steel-scintillator central modules with 2.5 cm sampling and 48 steel-scintillator endwall modules with 5.0 cm sampling. A general description of the detector is given. Calibration techniques and performance are discussed. Some results of the test beam studies are shown. (orig.)

  1. Measurement of ultrasound power using a calorimeter

    Science.gov (United States)

    Morgado, G.; Miqueleti, S.; Costa-Felix, R. P. B.

    2018-03-01

    This paper presents a comparison between the ultrasound power of a 1 MHz therapy equipment on the water using a calorimeter and a radiation force balance. For a range of 5 to 10 W, the results presented a normalized error less than 1, disclosing compatibility of the results from the developed system and the radiation force balance. The calorimetric method might be used as a faster and cheaper means for the verification of the ultrasonic power emitted by an equipment for physiotherapeutic treatment.

  2. Prototype calorimeters for the NA3 experiment

    CERN Multimedia

    1975-01-01

    The NA3 Experiment was set-up on the North Area of the SPS by the CERN/ Ecole Polytechnique/College de France/ Orsay/Saclay Collaboration, to study high transverse momentum leptons and hadrons from hadron collisions. The calorimeters measured the energy of hadrons (prototype on the right) and leptons (prototype on the left). They used a new type of plastic scintillator (plexipop). (see CERN Courier of November 1975) energy (prototype on the right)

  3. Upgrade of the ATLAS Tile Calorimeter Electronics

    International Nuclear Information System (INIS)

    Carrió, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year

  4. Performance test of a TMS calorimeter

    International Nuclear Information System (INIS)

    Wild, B.

    1986-10-01

    Performance tests of a first calorimeter module using the room temperature liquid tetramethylsilane (TMS) as active element are described in detail. As absorber planed carbon steel slabs had been used. The charge yield is 70% of that in a very pure sample of the liquid. A long term stability of the signal with a lifetime of half a year has been realized. Experiences are described and the results explained in detail. (orig.) [de

  5. Pion showers in highly granular calorimeters

    Czech Academy of Sciences Publication Activity Database

    Cvach, Jaroslav

    2012-01-01

    Roč. 79, č. 4 (2012), s. 859-862 ISSN 0304-4289. [International Symposium on Lepton-Photon Interactions at High Energies /25./. Mumbai, 22.08.2011-27.08.2011] R&D Projects: GA MŠk LA09042 Institutional research plan: CEZ:AV0Z10100502 Keywords : International Linear Collider * particle flow algorithm * calorimeter resolution Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.562, year: 2012

  6. Electron Reconstruction in the CMS Electromagnetic Calorimeter

    CERN Document Server

    Meschi, Emilio; Seez, Christopher; Vikas, Pratibha

    2001-01-01

    This note describes the reconstruction of electrons using the electromagnetic calorimeter (ECAL) alone. This represents the first step in the High Level Trigger reconstruction and selection chain. By making "super-clusters" (i.e. clusters of clusters) much of the energy radiated by bremsstrahlung in the tracker material can be recovered. Representative performance figures for energy and position resolution in the barrel are given.

  7. A no-load RF calorimeter

    Science.gov (United States)

    Chernoff, R. C.

    1975-01-01

    The described device can be used to measure the output of any dc powered RF source. No dummy load is required for the measurements. The device is, therefore, called the 'no-load calorimeter' (NLC). The NLC measures the power actually fed to the antenna or another useful load. It is believed that the NLC can compete successfully with directional coupler type systems in measuring the output of high-power RF sources.

  8. Analytical heat transfer modeling of a new radiation calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)

    2016-06-10

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  9. Design, Construction and Commissioning of the Digital Hadron Calorimeter - DHCAL

    CERN Document Server

    Adams, C; Bilki, B.; Butler, J.; Corriveau, F.; Cundiff, T.; Drake, G.; Francis, K.; Furst, B.; Guarino, V.; Haberichter, B.; Hazen, E.; Hoff, J.; Holm, S.; Kreps, A.; DeLurgio, P.; Matijas, Z.; Monte, L.Dal; Mucia, N.; Norbeck, E.; Northacker, D.; Onel, Y.; Pollack, B.; Repond, J.; Schlereth, J.; Skrzecz, F.; Smith, J.R.; Trojand, D.; Underwood, D.; Velasco, M.; Walendziak, J.; Wood, K.; Wu, S.; Xia, L.; Zhang, Q.; Zhao, A.

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.

  10. Some hadron calorimeter properties relevant to storage rings

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.; Ellis, N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Eisenhandler, E.; Gibson, W.R.; Kalmus, P.I.P.; Thompson, G.; Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Hill, D.; Nandi, A.K.; Roberts, C.; Shah, T.P.

    1982-01-01

    At wide angles in a storage ring environment, a substantial part of the energy seen by a hadron calorimeter can be in the form of very low momentum particles such as jet fragments or resonance cascade decay products. Data are presented on the deviations from Gaussian resolution and linear response for such low momentum particles. The differing responses to incident e - , μ - , π +- , K +- , p and anti p at momenta below 10 GeV/c are also compared. In addition, the authors discuss the significance of angle effects for a 4π calorimeter, and the problems of combining data from calorimeters with different physical characteristics. Experimental data are presented on the difference in hadron response between a fine grain (electromagnetic) lead calorimeter and a coarser (hadron) iron calorimeter, and on the dependence of the response on the energy sharing between the two calorimeters. (Auth.)

  11. Analytical heat transfer modeling of a new radiation calorimeter

    International Nuclear Information System (INIS)

    Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric

    2016-01-01

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  12. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  13. From Norway to the USA: "Anitra's Dance."

    Science.gov (United States)

    McDowell, Carol J.

    2003-01-01

    Describes an art lesson for middle school students that can be adapted for upper elementary or high school students. Explains that students compare two versions of the song "Anitra's Dance," a classical version by Edvard Grieg and a jazz version by Duke Ellington. States the lesson uses the Discipline-Based Music Education approach. (CMK)

  14. Prosthetics Making Sense: Dancing the Technogenetic Body

    Directory of Open Access Journals (Sweden)

    Erin Manning

    2006-01-01

    Full Text Available Explorations of new technologies and dance often focus on the difficulty of locating gesture-as-such. For the practitioners of dance and technology the exploration of movement is intrinsically related to how to locate where a movement begins and ends in order to map its coordinates within a sensitive system. Yet, the question "What is a gesture? (and how can the computer recognize one?" may direct the techno-dance process toward establishing a kind of grammar of movement that would — paradoxically — be more likely to tie the body to some pre-established understanding of how it actualizes. "Mapping" gesture risks breaking movement into bits of assimilable data, of replicating the very conformity the computer software is seeking to get beyond. Instead of mapping gesture-as-such, this paper therefore begins somewhere else. It seeks to explore the technogenetic potential of the wholeness of movement, including its "unmappable" virtuality. The unmappable — within a computer software program — is the aspect of movement I call pre-acceleration, a virtual becoming — a tendency toward movement — through which a displacement takes form. If a vocabulary of gesture is to be reclaimed as part of what can be stimulated in the encounter between dance and new technology, it must be done through the continuum of movement, through the body's technogenetic emergence in the realm of the virtual becoming of pre-acceleration.

  15. Movement and Dance on the Sea Islands.

    Science.gov (United States)

    Twining, Mary Arnold

    1985-01-01

    Describes the role of movement and dance in the lives of Blacks living on the Sea Islands off the coasts of South Carolina and Georgia. Claims that the isolation of this area helps preserve its Africanicity and culture. Focuses particularly on the uses of rhythmic chanting in worship and in children's games. (KH)

  16. Pathfinders on Black Dance in America.

    Science.gov (United States)

    Roy, Loriene, Ed.

    This is a compilation of 18 pathfinders (i.e., a bibliographic instruction aid) on black dance in America, prepared by graduate students in the "Information Resources in the Humanities" and the "Information Resources in the Social Sciences" classes in the Graduate School of Library and Information Science at the University of…

  17. Injury incidence in hip hop dance.

    Science.gov (United States)

    Ojofeitimi, S; Bronner, S; Woo, H

    2012-06-01

    Hip hop dance has rapidly become a popular international art form. There is limited information on injury patterns in this population. The purpose of this study was to determine injury incidence and patterns among three groups of hip hop dancers. Three hundred and twelve intermediate, advanced, and expert hip hop dancers were recruited at battles, dance conferences, clubs, and on dance related web sites within the United States and internationally. A Web-based survey was conducted over a 6-month period. Inclusion criteria included intermediate and advanced level dancers over the age of 13. Dancers were divided into three main categories: Breakers, Popper/Lockers, and New Schoolers. Separate analysis of variances were used to compare injury pattern differences between groups. Two hundred and thirty-two dancers reported a total of 738 injuries. Five hundred and six of these (sustained by 205 dancers) were time-loss (TL) injuries. Annual injury incidence was 237% (162% involving TL). Lower extremity injuries were 52% and upper extremity injuries 32% of total injuries. Breakers had a higher injury incidence compared with Popper/Lockers, and New Schoolers. Hip hop dancers report injury rates that are higher than other dance forms but similar to gymnastics. These dancers should be educated concerning injury prevention, biomechanics, and use of protective equipment. © 2010 John Wiley & Sons A/S.

  18. The Lion or Dancing the Linguistic Animal

    NARCIS (Netherlands)

    Theodoridou, Danae

    2014-01-01

    During the discussion on Dance and Politics at Southbank Center, London, in November 2010, Xavier Le Roy suggested that ‘We should look at him as we would look at the lion in the zoo, only of course the lion would not talk to us’. Later that evening he presented his work Low Pieces (2009–2011).

  19. Dancing with the regulations - Part Deux

    International Nuclear Information System (INIS)

    Nitschke, R.L.

    1995-01-01

    The disposal of low-level radioactive waste (LLW) in the United States has long been subjected to two very similar regulations depending upon the location. Disposal sites located on Department of Energy (DOE) Reservations are subject to DOE Order 5820.2A open-quotes Radioactive Waste Management,close quotes while disposal sites located elsewhere are subject to the Nuclear Regulatory Commission regulation 10 CFR 61 open-quotes Licensing Requirements for Land Disposal of Radioactive Waste.close quotes While life was not necessarily good, there was only one sheet of music to dance to. Recently a new player, named CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act), has ridden into those DOE towns, and for those whose disposal facilities lie within or adjacent to Superfund sites, she has brought along a different drum to dance to. This paper discusses the differences and similarities between the different dance partners and their associated musical scores (i.e., the performance assessment (PA) required by the DOE order and the baseline risk assessment (BRA) required by CERCLA). The paper then provides a brief discussion on the latest dancer to cut in: the Defense Nuclear Facilities Safety Board (DNFSB). This discussion should help to alleviate the confusion while dancing on the LLW disposal regulatory ballroom floor

  20. Dancing with the regulations - Part Deux

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, R.L. [Lockheed Martin Idaho Technologies, Idaho Falls, ID (United States)

    1995-12-31

    The disposal of low-level radioactive waste (LLW) in the United States has long been subjected to two very similar regulations depending upon the location. Disposal sites located on Department of Energy (DOE) Reservations are subject to DOE Order 5820.2A {open_quotes}Radioactive Waste Management,{close_quotes} while disposal sites located elsewhere are subject to the Nuclear Regulatory Commission regulation 10 CFR 61 {open_quotes}Licensing Requirements for Land Disposal of Radioactive Waste.{close_quotes} While life was not necessarily good, there was only one sheet of music to dance to. Recently a new player, named CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act), has ridden into those DOE towns, and for those whose disposal facilities lie within or adjacent to Superfund sites, she has brought along a different drum to dance to. This paper discusses the differences and similarities between the different dance partners and their associated musical scores (i.e., the performance assessment (PA) required by the DOE order and the baseline risk assessment (BRA) required by CERCLA). The paper then provides a brief discussion on the latest dancer to cut in: the Defense Nuclear Facilities Safety Board (DNFSB). This discussion should help to alleviate the confusion while dancing on the LLW disposal regulatory ballroom floor.

  1. The Honeybee Dance-Language Controversy

    Indian Academy of Sciences (India)

    some sceptics who believe that the dance that the foragers do perform may have no ... is often credited with being the prime mover in making humans what they are. ... of naive workers from its colony to a newly found source of food. After decades of .... a mechanical "robot" bee that talks to the real bees through a computer ...

  2. Dance Education Action Research: A Twin Study

    Science.gov (United States)

    Giguere, Miriam

    2015-01-01

    In this article, the author compares the practices, philosophy, and history of action research, also known as participatory action research, to the purposes and practices of dance education. The comparison yields connections in four categories, enhancing self-reflective teaching and curriculum design, taking responsibility for teaching outcomes,…

  3. Dance History Matters in British Higher Education

    Science.gov (United States)

    Carter, Alexandra

    2007-01-01

    In response to concerns about the place and nature of dance history in British higher education curricula, a database was compiled of representative but significant examples of modules which focused directly on the teaching and learning of history, or had history as a key component. An analysis is presented of these modules in terms of the place…

  4. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hasib, Ahmed; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of statistical techniques such as principal component analysis, and a neural n...

  5. Beam tests of the ZEUS barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Bienz, T; Caldwell, A; Chen, L; Derrick, M; Gialas, I; Hamri, A; Imlay, R; Kartik, S; Kim, H J; Kinnel, T; Kreutzmann, H; Li, C G; Lim, J N; Loveless, R; Lu, B; Mallik, U; McLean, K W; McNeil, R; Metcalf, W; Musgrave, B; Oh, B Y; Park, S; Parsons, J A; Reeder, D; Repond, J; Ritz, S; Roco, M T.P.; Sandler, P H; Sciulli, F; Smith, W H; Talaga, R L; Tzanakos, G; Wai, L; Wang, M Z; Whitmore, J; Wu, J; Yang, S [Argonne National Lab., IL (United States) Columbia Univ., New York, NY (United States) Nevis Labs., Irvington-on-Hudson, NY (United States) Univ. of Iowa, Iowa City, IA (United States) Louisiana State Univ., Baton Rouge, LA (United States) Ohio State Univ., Columbus, OH (United States) Pennsylvania State Univ., University Park, PA (United States) Virginia Polytechnic Inst., and State Univ., Blacksburg, VA (United States) Univ. of Wisconsin, Madison, WI (United States)

    1993-11-15

    A fully compensating uranium-scintillator calorimeter was constructed for the ZEUS detector at HERA. Several of the barrel calorimeter modules were subjected to beam tests at Fermilab before shipping them to DESY for installation. The calibrations of the modules used beams of electrons and hadrons, measuring the uniformity of the response, and checking the resolution. The runs also provided opportunity to test a large fraction of the actual ZEUS calorimeter readout system in an integrated beam environment more than one year before HERA turn on. The experiment utilized two computer controlled mechanical structures, one of which was capable of holding up to four modules in order to study shower containment, and a magnetic spectrometer with a high resolution beam tracking system. During two running periods, beams of 6 to 110 GeV containing e, [mu], [pi], and anti p were used. The results show energy resolutions of 35%/[radical]E for hadrons and 19%/[radical]E for electrons, uniformities at the 1% level, energy nonlinearity less than 1%, and equal response for electrons and hadrons. (orig.)

  6. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  7. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Souza, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5-fold compared to the design luminosity (10exp34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2023. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. The smallest independent on-detector electronics module has been reduced from 45 channels to 6, greatly reducing the consequences of a failure in the on-detector electronics. The size of t...

  8. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Reed, Robert; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter covering the central region of the ATLAS experiment at LHC. TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC operation (Phase 2 around 2023) where the peak luminosity will increase 5x compared to the design luminosity (10^{34} cm^{-2}s^{-1}) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims to replace the majority of the on- and off-detector electronics so that all calorimeter signals can be digitized and directly sent to the off-detector electronics in the counting room. This will reduce pile-up problems and allow more complex trigger algorithms. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to t...

  9. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Oreglia, M; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The main upgrade will occur for the High Luminosity LHC phase (phase 2) which is scheduled around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to use will be decided after extensive test beam studies. High speed optical links are used to read out all digitized data to the counting room. For the off-detector electronics a new back-end architecture is being developed, including the initial trigger processing and pipeline memories. A demonstrator prototype read-out for a slice of the ...

  10. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5x compared to the design luminosity (10^34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade is expected to happen around 2023. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 ...

  11. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase 2) where the peak luminosity will increase 5$\\times$ compared to the design luminosity ($10^{34} cm^{-2}s^{-1}$) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, c...

  12. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (P hase - II ) where the pea k luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expe cted to happen around 202 4 . The TileCal upgrade aims at replacing the majority of the on - and off - detector electronics to the extent that all calorimeter signals will be digitized and sent to the off - detector electronics in the counting room. To achieve th e required reliability, redundancy has been introduced at different levels. Three different options are presently being investiga...

  13. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the luminosity will have increased 5-fold compared to the design luminosity (1034 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional luminosity increase by a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to u...

  14. The New ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing the CPU requirements when detailed detector simulations are not needed. During Run-1 of the LHC, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitisation and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of...

  15. Fast shower simulation in the ATLAS calorimeter

    International Nuclear Information System (INIS)

    Barberio, E; Boudreau, J; Mueller, J; Tsulaia, V; Butler, B; Young, C C; Cheung, S L; Savard, P; Dell'Acqua, A; Simone, A D; Gallas, M V; Ehrenfeld, W; Glazov, A; Placakyte, R; Marshall, Z; Rimoldi, A; Waugh, A

    2008-01-01

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ∼ 1GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper

  16. Performance of the ATLAS Tile calorimeter

    CERN Document Server

    Bertoli, Gabriele; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau­particles and missing transverse energy. TileCal is a scintillator­steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front­end electronics read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read­out system is responsible for reconstructing the data in real­time. The digitized signals are reconstructed with the Optimal Filtering algorithm, which computes for each channel the signal amplitude, time and quality factor at the required high rate. Each stage of the signal production from scintillation light to the signal reconstruc...

  17. First Half Of CMS Hadron Calorimeter Completed

    CERN Multimedia

    2001-01-01

    CMS HCAL electronics coordinator John Elias from Fermilab inspecting the assembled first half of the calorimeter. The first half barrel of the CMS hadron calorimeter was completed last month and assembly work on the elements of the second half commenced just last week. This is not a simple task considering the fact that the constructed half-barrel consists of eighteen 30 tonne segments each made with 0.15 mm tolerance. But through the work of everyone on the CMS hadron calorimeter team it is all moving forward. In the LHC, detection of particles produced in collisions of two proton beams requires measurement of their energy. To do this, the particle energy has to be changed into a form that can be easily measured. This is achieved by stopping the initial particles in a dense medium, where they create a shower of secondary particles. While particles that interact through electromagnetic forces (electrons and positrons) create relatively small showers, the size of showers created by hadrons, particles that i...

  18. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    International Nuclear Information System (INIS)

    Wuest, C.R.; Fuchs, B.A.; Holdener, F.R.; Heck, J.L. Jr.

    1994-04-01

    New machining and polishing techniques have been developed for large scintillating crystal arrays such as the Barium Fluoride Electromagnetic Calorimeter for the GEM Detector at SSCL, the Crystal Clear Collaboration's cerium fluoride or lead tungstenate calorimeter at the proposed LHC and CERN, the PHENIX Detector at RHIC (barium fluoride), and the cesium iodide Calorimeter for the BaBar Detector at PEP-2 B Factory at SLAC. The machining and polishing methods to be presented in this paper provide crystalline surfaces without sub-surface damage or deformation as verified by Rutherford Back-scattering (RBS) analysis. Surface roughness of about 10--20 angstroms and sub-micron mechanical tolerances have been demonstrated on large barium fluoride crystal samples. Mass production techniques have also been developed for machining the proper angled surfaces and polishing up to five 50 cm long crystals at one time. These techniques utilize kinematic mount technology developed at LLNL to allow precision machining and polishing of complex surfaces. They will present this technology along with detailed surface studies of barium fluoride and cerium fluoride crystals polished with this technique

  19. Dancing for Healthy Aging: Functional and Metabolic Perspectives.

    Science.gov (United States)

    Rodrigues-Krause, Josianne; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2018-02-10

    Context • Dancing has been used as a form of exercise to improve functional and metabolic outcomes during aging. The field lacks randomized, clinical trials (RCTs) evaluating metabolic outcomes related to dance interventions, but dancing may be a form of exercise that could induce positive effects on the metabolic health of older adults. However, primary studies seem very heterogonous regarding the trial designs, characteristics of the interventions, the methods for outcomes assessments, statistical powers, and methodological quality. Objective • The current research team intended to review the literature on the use of dance as a form of intervention to promote functional and metabolic health in older adults. Specifically, the research team aimed to identify and describe the characteristics of a large range of studies using dance as an intervention, summarizing them and putting them into perspective for further analysis. Design • The research team searched the following data sources-MEDLINE, Cochrane Wiley, Clinical Trials.gov, the Physiotherapy Evidence Database (PEDRO), and the Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS)-for RCTs, quasi-experimental studies, and observational trials that compared the benefits of any style of dancing, combined with other exercises or alone, to nonexercising controls and/or controls practicing other types of exercise. Setting • The study took place at the Federal University of Rio Grande do Sul (Porto Alegre, Brazil). Participants were aging individuals, >55 y, both with or without health conditions. Interventions • Interventions should be supervised, taking form as group classes, in a dance setting environment. Dance styles were divided into 5 categories for the review: (1) cultural dances developed by groups of people to reflect the roots of a certain region, such as Greek dance; (2) ballroom dance (ie, dances with partners performed socially or competitively in a ballroom, such as foxtrot

  20. Performance of the upgraded small angle tile calorimeter at LEP

    CERN Document Server

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1998-01-01

    The small angle tile calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with so- called "shashlik" technique, $9 allows the insertion of tracking detectors within the sampling structure, in order to make it possible to determine the direction of the showering particle. Presented here are some results demonstrating the performance of the $9 calorimeter and of these tracking detectors at LEP. (5 refs).