WorldWideScience

Sample records for calmodulin

  1. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  2. Tau regulates the subcellular localization of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Barreda, Elena Gomez de [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avila, Jesus, E-mail: javila@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); CIBER de Enfermedades Neurodegenerativas, 28031 Madrid (Spain)

    2011-05-13

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  3. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    SUN; Daye(

    2001-01-01

    [1]Cheng. W. Y., Cyclic 3', 5'-nucleotide phosphodiestrase: demonstration of an activator, Biochm. Biophys. Res. Commun.,1970, 38: 533-538.[2]Boynton, A. L., Whitfield, J. F., MacManus, J. P., Calmodulin stimulates DNA synthesis by rat liver cells, BBRC.1980,95(2): 745-749.[3]Gorbacherskaya, L. V., Borovkova, T. V., Rybin, U. O. et al., Effect of exogenous calmodulin on lymphocyte proliferation in normal subjects, Bull Exp. Med. Biol., 1983, 95: 361-363.[4]Wong, P. Y.-K., Lee, W. H., Chao, PH.-W., The role of calmodulin in prostaglandin metabolism, Ann. NY Acad. Sci.,1980, 356: 179-189.[5]Mac Neil, S., Dawson, R. A., Crocker, G. et al., Effects of extracellular calmodulin and calmodulin antagonists on B16 melanoma cell growth, J. Invest. Dermatol., 1984, 83: 15-19.[6]Crocker, D. G., Dawson, R. A., Mac Neil, S. et al., An extracellular role for calmodulin-like activity in cell proliferation,Biochem. J., 1988, 253: 877-884.[7]Polito. V. S., Calmodulin and calmodulin inhibitors: effect on pollen germination and tube growth, in Pollen: Biology and Implications for Plant Breeding (eds. Mulvshy, D. L., Ottaviaro, E.), New York: Elsevier, 1983.53-60.[8]Biro, R. L., Sun, D. Y., Roux, S. J.et al., Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution, Plant Physiol., 1984,75: 382-386.[9]Terry, M. E., Bonner, B. A., An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of IAA-induced growth, Plant Physiol., 1980, 66: 321-325.[10]Josefina, H. N., Aldasars, J. J., Rodriguez, D., Localization of calmodulin on embryonic Cice aricium L, in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.), New York, London: Plenum Press, 1985, 313.[11]Dauwalder, M., Roux, S. J., Hardison, L., Distribution of calmodulin in pea seedling: immunocytochemical localization in plumules and root apices, Planta, 1986, 168: 461

  4. Immunoelectron microscopic localization of calmodulin in corn root cells

    Institute of Scientific and Technical Information of China (English)

    LIJIAXU; JIEWENLIU; DAYESUN

    1993-01-01

    Methods for the localization of plant calmodulin by immuno-gold and immuno-peroxidase electron microscopy have been developed. In both corn root-cap cells and meristematic cells, calmodulin was found to be localized in the nucleus, cytoplasm, mitochondria as well as in the cell wall, In the meristematic cells, calmodulin was distinctly localized on the plasma membrane, cytoplasmic face of rough endoplasmic rcticulum and polyribosomes. Characteristically, calmodulin was present in the amyloplasts of root-cap cells. The widespread distribution of calmodulin may reflect its plciotropic functions in plant cellular activities.

  5. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  6. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  7. Kv7 Channels Can Function without Constitutive Calmodulin Tethering

    Science.gov (United States)

    Alberdi, Araitz; Alaimo, Alessandro; Etxeberría, Ainhoa; Fernández-Orth, Juncal; Zamalloa, Teresa; Roura-Ferrer, Meritxell; Villace, Patricia; Areso, Pilar; Casis, Oscar; Villarroel, Alvaro

    2011-01-01

    M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function. PMID:21980481

  8. Competitive inhibition of TRPV1-calmodulin interaction by vanilloids.

    Science.gov (United States)

    Hetényi, Anasztázia; Németh, Lukács; Wéber, Edit; Szakonyi, Gerda; Winter, Zoltán; Jósvay, Katalin; Bartus, Éva; Oláh, Zoltán; Martinek, Tamás A

    2016-08-01

    There is enormous interest toward vanilloid agonists of the pain receptor TRPV1 in analgesic therapy, but the mechanisms of their sensory neuron-blocking effects at high or repeated doses are still a matter of debate. Our results have demonstrated that capsaicin and resiniferatoxin form nanomolar complexes with calmodulin, and competitively inhibit TRPV1-calmodulin interaction. These interactions involve the protein recognition interface of calmodulin, which is responsible for all of the cell-regulatory calmodulin-protein interactions. These results draw attention to a previously unknown vanilloid target, which may contribute to the explanation of the paradoxical pain-modulating behavior of these important pharmacons.

  9. Use of fluorescently labelled calmodulins as tools to measure subcellular calmodulin activation in living dorsal root ganglion cells.

    Science.gov (United States)

    Milikan, J M; Bolsover, S R

    2000-01-01

    We have used fluorescently labelled calmodulins to probe the activity of calmodulin in living dorsal root ganglion cells. Calmodulin labelled with the fluorophore 5-([4,6 dichlorotriazin-2yl]amino)-fluorescein (FL-CaM) does not change its fluorescence when it binds calcium, while calmodulin labelled at lysine 75 with 2-chloro-(6-(4-N,N-diethylamino-phenyl)-1,4,5-triazin-4-yl (TA-CaM), an environment-sensitive probe, increases its fluorescence when it binds calcium. We micro-injected FL-CaM or TA-CaM into rat dorsal root ganglion cells and found that both probes localise to the cell nucleus. In contrast, endogenous cellular calmodulin, in dorsal root ganglion cells as in hippocampal neurones, is predominantly cytosolic unless the neurones are depolarised, then it moves to the nucleus. FL-CaM and TA-CaM, introduced into dorsal root ganglion cells via a patch pipette, also immediately move to the nucleus, indicating that the nuclear localisation is a property of the labelled calmodulins. Although the subcellular distribution of FL-CaM and TA-CaM does not necessarily match that of endogenous calmodulin, we show that FL-CaM can be used as a control for TA-CaM when studying calmodulin activation in different cellular compartments.

  10. High-pressure SANS and fluorescence unfolding study of calmodulin.

    Science.gov (United States)

    Gibrat, Gabriel; Hoa, Gaston Hui Bon; Craescu, Constantin T; Assairi, Liliane; Blouquit, Yves; Annighöfer, Burkhard; May, Roland P; Bellissent-Funel, Marie-Claire

    2014-09-01

    Apo-calmodulin, a small soluble mainly α protein, is a calcium-dependent protein activator. Calcium binding affects the calmodulin conformation but also its stability. Calcium free form unfolds between 40 and 80°C, whereas the calcium-saturated form is stable up to temperatures as high as 100°C, forbidding comparison of the thermal unfolding pathways of the two forms. Thus, this paper focuses especially on the conformation of pressure-induced unfolding states of both forms of calmodulin, by combining small-angle neutron scattering (SANS) with biophysical techniques such as tyrosines and ANS fluorescence. In contrast to heat denaturation (Gibrat et al., BBA, 2012), the pressure denaturation of calmodulin is reversible up to pressures of 3000bar (300MPa). A pressure-induced compact intermediate state has been found for the two calmodulin forms, but their unfolding pathways are different. A domain compaction and an increase of the ANS fluorescence of holo form have been evidenced. On the contrary, a domain dilatation and an ANS fluorescence decrease have been found for the apo form. The pressure induced an increase of the interdomain distance for both calmodulin forms, suggesting that the central linker of calmodulin is flexible in solution.

  11. Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence.

    Directory of Open Access Journals (Sweden)

    Sophia Magen

    Full Text Available Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34 has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2(nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.

  12. Mediation of flowering by a calmodulin-dependent proteinkinase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A calmodulin-dependent protein kinase (MCK1) appeared important in regulating flowering in tobacco. The expression of modified MCK1 that lacks the C-terminal including calmodulin-binding domain upsets the flowering developmental program, leading to the abortion of flower primordia initiated on the main axis of the plant and, as well, caused the prolongation of the vegetative phase in axillary buds. The abortion process of flowers began first in the developing anthers and subsequently the entire flower senesces. In axillary buds the prolonged vegetative phase was characterized by atypical elongated, narrow, twisted leaves. These results suggested a role for calmodulin-dependent protein kinase homologs in mediating flowering.

  13. Localization of calmodulin and calmodulin-like protein and their functions in biomineralization in P. fucata

    Institute of Scientific and Technical Information of China (English)

    Zi Fang; Zhenguang Yan; Shuo Li; Qin Wang; Weizhong Cao; Guangrui Xu; Xunhao Xiong; Liping Xie; Rongqing Zhang

    2008-01-01

    Calmodulin (CaM) and calmodulin-like protein (CaLP) are two proteins involved in biomineralization. Their localizations in Pinct-ada fucata mantle epithelia were studied by Western blot (WB) analysis of the nuclear/cytosol fraction of primary cultured P. fucata mantle cells and immunogold electron microscopy. The results showed a completely different distribution of these two proteins at the subcellular level. CaM was distributed throughout both the nucleus and cytoplasm of the mantle epithelium but CaLP was distributed only in the cytoplasm. The functions of these two proteins in biomineralization were investigated by shell regeneration. During this process, the expressions of CaM and CaLP were greatly enhanced in different organelles of the mantle epithelium. Overexpression of these two proteins and a mutant of calmodulin-like protein (M-CaLP) that lacks an extra C-terminal tail in MC3T3-E1 promoted the mRNA expression of osteopontin, a biomineralization marker for osteoblasts. All of the results indicated that CaM and CaLP have completely different distributions in the mantle epithelium and affect the biomineralization process at different levels. The extra C-terminal tail of CaLP is important for its functions in biomineralization in P. fucata.

  14. Ca/calmodulin-dependent phosphorylation of endocytic scaffold ITSN1

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.

    2014-01-01

    Full Text Available ITSN1 is an endocytic scaffold protein with a prominent function in synaptic transmission. It is known that Ca signaling is crucial for the regulation of synaptic proteins functioning. Aim. Checking the possibility of Ca/calmodulin-dependent phosphorylation of ITSN1. Methods. Affinity chromatography, in vitro kinase reaction, Western blotting, gel staining with fluorescent stains. Results. We show that the fraction of calmodulin-binding proteins is able to phosphorylate the recombinant fragments encoding the coiled-coil region and the SH3 domain-containing region of ITSN1 in the presence of Ca ions and calmodulin. Conclusions. The coiled-coil region and the SH3 domain-containing region of ITSN1 undergo Ca/calmodulin-dependent phosphorylation in vitro, suggesting a possible regulation of ITSN1 by Ca signaling.

  15. Surface plasmon resonance characterization of calspermin-calmodulin binding kinetics.

    Science.gov (United States)

    Murphy, Andrew J; Kemp, Fred; Love, John

    2008-05-01

    We cloned, expressed, and purified a chimeric fusion between a soluble green fluorescent protein (smGFP) and the calmodulin binding protein calspermin. We have shown that the fusion protein, labeled smGN, has a K(i) in the calmodulin-dependent cyclic nucleotide phosphodiesterase activity assay of 1.97 nM, i.e., 3800 times smaller than that of the commonly used calmodulin inhibitor W7. Association and dissociation rate constants (k(a) and k(d)) and the dissociation equilibrium constant (K(D)) of smGN for calmodulin were determined using surface plasmon resonance (SPR). The k(a)=1.24 x 10(6)M(-1)s(-1), the k(d)=5.49 x 10(-3)s(-1), and the K(D)=4.42 x 10(-9)M. We also found that the GFP moiety was important for successfully binding calspermin to the surface of the CM5 flow cell at a sufficiently high concentration for SPR, and that this procedure may be used for SPR analysis of other acidic polypeptides, whose pIliquid chromatography-tandem mass spectrometry, indicating a high level of specificity. We conclude that the high affinity and specific binding between smGN and calmodulin make it an easily localized recombinant alternative to chemical calmodulin inhibitors.

  16. Inorganic lead and calcium interact positively in activation of calmodulin.

    Science.gov (United States)

    Kern, M; Wisniewski, M; Cabell, L; Audesirk, G

    2000-06-01

    Calmodulin is a ubiquitous calcium-binding protein that mediates many of the intracellular actions of Ca2+ ions. The calcium-binding sites of calmodulin consist of four EF-hand motifs; full activation of calmodulin normally occurs when all four sites are occupied by Ca2+. Inorganic lead (PY2+) has been shown to activate calmodulin at total lead concentrations similar to the concentrations of Ca2+ required for activation (Goldstein and Ar, 1983; Habermann et al., 1983), but the free Pb2+ concentrations required for calmodulin activation have not been determined. In addition, it is possible that activation may occur with different sites occupied by different divalent cations, for example Ca2+ and Pb2+. We investigated the ability of free Pb2+, alone or in combination with Ca2+, to activate calmodulin. In aqueous media, N-phenyl-1-naphthylamine (NPN) and 8-anilino-1-naphthalenesulfonate (ANS) show increased fluorescence when bound to hydrophobic regions of proteins. This increased fluorescence has been used to monitor the conformational change that occurs during calmodulin activation (LaPorte et al., 1980). In the presence of calmodulin, both Ca2+ and Pb2+ stimulated increased fluorescence of NPN and ANS. Threshold and EC50 free metal concentrations were approximately 100 nM and 450-500 nM, respectively, for Ca2+ and 100 pM and 400-550 pM, respectively, for Pb2+. Fluorescence was enhanced by combinations of low concentrations of free Ca2+ and Pb2+; for example, as little as 20 pM free Pb2+ enhanced fluorescence in combination with 200 nM free Ca2+. The activity of the PDE1 isoform of cyclic nucleotide phosphodiesterase is stimulated by Ca2+/calmodulin (Wang et al., 1990). In the presence of calmodulin, we found that Ca2+ and Pb2+ activated calmodulin-stimulated PDE activity, with threshold and EC50 free metal concentrations of approximately 200 nM and 1200 nM, respectively, for Ca2+ and 300 pM and 430 pM, respectively, for Pb2+. PDE activity was stimulated by

  17. Calmodulin modulation of ion channels and receptors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.

  18. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    孙大业; 唐文强; 马力耕

    2001-01-01

    Traditionally, calmodulin (CaM) was thought to be a multi-functional receptor for intracellular Ca2+ signals. But in the last ten years, it was found that CaM also exists and acts extracellularly in animal and plant cells to regulate many important physiological functions. Laboratory studies by the authors showed that extracellular CaM in plant cells can stimulate the proliferation of suspension cultured cell and protoplast; regulate pollen germination and pollen tube elongation,and stimulate the light-independent gene expression of Rubisco small subunit (rbcS). Furthermore,we defined the trans-membrane and intracellular signal transduction pathways for extracellular CaM by using a pollen system. The components in this pathway include heterotrimeric G-protein,phospholipase C, IP3, calcium signal and protein phosphorylation etc. Based on our findings, we suggest that extracellular CaM is a polypeptide signal in plants. This idea strongly argues against the traditional concept that there is no intercellular polypeptide signal in plants.

  19. Conformational heterogeneity of the calmodulin binding interface

    Science.gov (United States)

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-04-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention.

  20. Acute inhibition of corticosteroidogenesis by inhibitors of calmodulin action.

    Science.gov (United States)

    Carsia, R V; Moyle, W R; Wolff, D J; Malamed, S

    1982-11-01

    To identify the possible role of calmodulin in ACTH function, we tested the ability of chlorpromazine (CP) and other calmodulin antagonists to inhibit steroidogenesis of isolated adrenocortical cells of the rat. CP reversibly inhibited maximal ACTH-induced corticosterone (B) production. The presence of the drug did not alter the ED50 of ACTH stimulation (3.2 X 10(3) pg/ml), suggesting that it inhibited ACTH-induced steroidogenesis in a noncompetitive manner. The CP concentration required for half-maximal inhibition was 8.2 microM, a value close to the dissociation constant of the CP-calmodulin complex (5.3 microM). Concentrations greater than 40 microM resulted in complete inhibition. Similar concentrations of CP inhibited ACTH-induced cAMP accumulation in a dose-dependent manner, indicating an effect of the drug on early events in ACTH action. In addition, CP also apparently acted at a site distal to the point of cAMP formation, as shown by the finding that it inhibited cAMP-induced B production. CP inhibition of ACTH-induced B production was independent of the Ca2+ concentration, suggesting that the drug did not compete with Ca2+ directly. Concentrations of CP greater than 20 microM inhibited protein synthesis as measured by leucine incorporation into cellular proteins. Thus, although the inhibitory effect of high concentrations of CP on steroidogenesis might be explained by an effect on protein synthesis, the inhibition seen at 10 microM appeared to be independent of protein synthesis. Other antagonists of calmodulin action inhibited maximal ACTH-induced B production with the following relative potencies: trifluoperazine greater than CP greater than haloperidol greater than chlordiazepoxide. This order is similar to that reported for inhibition of calmodulin-activated phosphodiesterase and for binding to calmodulin. These findings suggest that calmodulin may modulate the effect of ACTH on steroidogenesis at multiple sites.

  1. Pivoting between calmodulin lobes triggered by calcium in the Kv7.2/calmodulin complex.

    Science.gov (United States)

    Alaimo, Alessandro; Alberdi, Araitz; Gomis-Perez, Carolina; Fernández-Orth, Juncal; Bernardo-Seisdedos, Ganeko; Malo, Covadonga; Millet, Oscar; Areso, Pilar; Villarroel, Alvaro

    2014-01-01

    Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca(2+). First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using (15)N-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca(2+) the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca(2+) makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca(2+).

  2. Mediation of flowering by a calmodulin-dependent proteinkinase

    Institute of Scientific and Technical Information of China (English)

    LIANG; Shuping(

    2001-01-01

    [1]Roberts. D. M., Harmon, A. C., Calcium-modulated proteins: Targets of the intracellular signals in higher plants, Ann. Rev.Plant Physiol. Plant Mol. Biol., 1992, 43: 375-414.[2]Sun. D. Y.. Bian, Y. Q., Zhao, B. H. et al., The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division, Plant Cell Physiol., 1995, 36: 133-138.[3]Hrabak, E M., Dickmann, L. J., Satterlee, J. S. et al., Characterization of eight new members of the calmodulin-like domain protein kinase gene family from A rabidopsis thaliana, Plant Mol. Biol., 1996, 31:405-412.[4]Huang, J. F., Teyton, L., Harper, J, F., Activation of a Ca2+-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain, Biochemistry, 1996, 35: 13222-13234.[5]Yoo, B. C., Harmon, A. C., Intramolecular binding contributes to the activation of CDPK, a protein kinase with a calmodulin-like domain, Biochem., 1996, 35: 12029-12037.[6]Saijo, Y., Hata, S., Sheen, J. et al., cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases,Biochem. Biophys. Acta, 1997, 1350: 109-114.[7]Neuhaus. G., Bowler, C., Kern, R. et al., Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways, Cell, 1993, 73: 937-952.[8]Yang, T., Poovaiah, B. W., Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action, J. Biol. Chem., 2000, 275(5): 3137-3143.[9]Watillon, B., Kettmenn, R., Boxus, P. et al., Calcium/calmodulin-binding serine/threonine protein kinase homologous to mammalian type II calcium/calmodulin-dependent protein kinase is expressed in plant cells, Plant Physiol., 1993, 101:1381-1384.[10]Baum, G., Lev-Yadun, S., Fridmann, Y. et al., Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants, EMBO J, 1996, 15: 2988-2996.[11]Lu, Y. T., Dharmasiri, M. A. N., Harrington

  3. Structural Consequences of Calmodulin EF Hand Mutations.

    Science.gov (United States)

    Piazza, Michael; Taiakina, Valentina; Dieckmann, Thorsten; Guillemette, J Guy

    2017-02-21

    Calmodulin (CaM) is a cytosolic Ca(2+)-binding protein that serves as a control element for many enzymes. It consists of two globular domains, each containing two EF hand pairs capable of binding Ca(2+), joined by a flexible central linker region. CaM is able to bind and activate its target proteins in the Ca(2+)-replete and Ca(2+)-deplete forms. To study the Ca(2+)-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca(2+)-binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. These CaM mutant proteins are deficient in binding Ca(2+) in either the N-lobe EF hands (CaM12), C-lobe EF hands (CaM34), or all four EF hands (CaM1234). To investigate potential structural changes these mutations may cause, we performed detailed NMR studies of CaM12, CaM34, and CaM1234 including determining the solution structure of CaM1234. We then investigated if these CaM mutants affected the interaction of CaM with a target protein known to interact with apoCaM by determining the solution structure of CaM34 bound to the iNOS CaM binding domain peptide. The structures provide direct structural evidence of changes that are present in these Ca(2+)-deficient CaM mutants and show these mutations increase the hydrophobic exposed surface and decrease the electronegative surface potential throughout each lobe of CaM. These Ca(2+)-deficient CaM mutants may not be a true representation of apoCaM and may not allow for native-like interactions of apoCaM with its target proteins.

  4. Intron analyses reveal multiple calmodulin copies in Littorina.

    Science.gov (United States)

    Simpson, R J; Wilding, C S; Grahame, J

    2005-04-01

    Intron 3 and the flanking exons of the calmodulin gene have been amplified, cloned, and sequenced from 18 members of the gastropod genus Littorina. From the 48 sequences, at least five different gene copies have been identified and their functionality characterized using a strategy based upon the potential protein product predicted from flanking exon data. The functionality analyses suggest that four of the genes code for functional copies of calmodulin. All five copies have been identified across a wide range of littorinid species although not ubiquitously. Using this novel approach based on intron sequences, we have identified an unprecedented number of potential calmodulin copies in Littorina, exceeding that reported for any other invertebrate. This suggests a higher number of, and more ancient, gene duplications than previously detected in a single genus.

  5. Intracellular levels of calmodulin are increased in transformed cells

    Institute of Scientific and Technical Information of China (English)

    WANG; HONGQINGZHANG; 等

    1992-01-01

    By using Hoechst 33342,rabbit anti calmodulin antibody,FITC-labeled goat anti rabbit IgG and SR101(sulfo rhodamine 101)simultaneously to stain individual normal and transformed cells,the microspectrophotometric analysis demonstrated that 3 markers which represented the nucleus,calmodulin and total protein respectively,could be recognized in individualj cells without interference,The phase of the cell cycle was determined by DNA content(Hoechst 33342),We found that in transformed cells(NIH3T3) tsRSV-LA90,cultured at 33℃ and transformed C3H10T1/2 Cells),the ration of calmodulin to total protein (based on the phases of cell cycle)was higher than that in normal cells (NIH3T3 tsRSV-LA90 cells,cultured at 39℃ and C3H10T1/2 cells)in every cell cycle phase,This ration increased obviously only from G1 to S phase in either normal or transformed cells.The results showed that calmodulinreally increased during the transformation,and its increase was specific.In the meantime when cells proceeded from G1 to S.the intraceollular calmodulin content also increased specifically.

  6. Bending of the calmodulin central helix : A theoretical study

    NARCIS (Netherlands)

    VanderSpoel, D; DeGroot, BL; Hayward, S; Berendsen, HJC; Vogel, HJ

    1996-01-01

    The crystal structure of calcium-calmodulin (CaM) reveals a protein with a typical dumbbell structure. Various spectroscopic studies have suggested that the central linker region of CaM, which is alpha-helical in the crystal structure, is flexible in solution. In particular, NMR studies have indicat

  7. 43. Calmodulin regulating calcium sensitivity of Na channels

    Directory of Open Access Journals (Sweden)

    R. Vegiraju

    2016-07-01

    Full Text Available By extrapolating information from existing research and observing previous assumptions regarding the structure of the Na Channel, this experiment was conducted under the hypothesis that the Na Channel is in part regulated by the calmodulin protein, as a result proving calcium sensitivity of the Na Channel. Furthermore, we assume that there is a one to one stoichiometry between the Na Channel and the Calmodulin. There has been extensive research into the functionality and structure of sodium ion channels (Na channels, as several diseases are associated with the lack of regulation of sodium ions, that is caused by the disfunction of these Na channels. However, one highly controversial matter in the field is the importance of the protein calmodulin (CaM and calcium in Na channel function. Calmodulin is a protein that is well known for its role as a calcium binding messenger protein, and that association is believed to play an indirect role in regulating the Na channel through the Na channel’s supposed calcium sensitivity. While there are proponents for both sides, there has been relatively little research that provides strong evidence for either case. In this experiment, the effect of calmodulin on NaV 1.5 is tested by preparing a set of cardiac cells (of the human specie with the NaV 1.5 C-Termini and CaM protein, which were then to be placed in solutions with varying concentrations of calcium. We took special care to test multiple concentrations of calcium, as previous studies have tested very low concentrations, with Manu Ben-Johny’s team from the John Hopkins laboratory in particular testing up to a meager 50 micromolar, despite producing a well-respected paper (By comparison, the average Na channel can naturally sustain a concentration of almost 1-2 millimolar and on some occasions, reaching even higher concentrations. After using light scattering and observing the signals given off by the calcium interacting with these Nav1.5/Ca

  8. Fluorescence Spectra Studies on the Interaction between Lanthanides and Calmodulin

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The conformation of Calmodulin(CaM) induced by lanthanides has been examined using fluorescence methods.With the addition of lanthanide (Ln3+), the intrinsic fluorescence intensity of CaM without calcium ions (Apo-CaM) first increases and then decreases.Ln3+ causes the decrease of intrinsic fluorescence intensity of calcium saturated CaM (Ca2+4-CaM) only at high concentrations.At low concentrations, Ln3+ results not only in the enhancement of fluorescence intensity of Apo-CaM, but also in a blue shift of the maximum emission wavelengh of dansyl labeled calmodulin(Apo-D-CaM).The molecular mechanism of the interaction between Ln3+ and CaM has been discussed in the light of the fluorescence spectra.

  9. Calmodulin disruption impacts growth and motility in juvenile liver fluke

    OpenAIRE

    McCammick, Erin M.; McVeigh, Paul; McCusker, Paul; Timson, David J; Morphew, Russell M.; Brophy, Peter M.; Marks, Nikki J.; Mousley, Angela; Maule, Aaron G.

    2016-01-01

    Background Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamen...

  10. Dual Regulation of a Chimeric Plant Serine/Threonine Kinase by Calcium and Calcium/Calmodulin

    Science.gov (United States)

    Takezawa, D.; Ramachandiran, S.; Paranjape, V.; Poovaiah, B. W.

    1996-01-01

    A chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain was recently cloned from plants. The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substrates in a Ca(2+)/calmodulin-dependent manner. The calmodulin-binding region of CCAMK has similarity to the calmodulin-binding region of the alpha-subunit of multifunctional Ca(2+)/calmodulin-dependent protein kinase (CaMKII). CCaMK exhibits basal autophosphorylation at the threonine residue(s) (0.098 mol of P-32/mol) that is stimulated 3.4-fold by Ca(2+) (0.339 mol of P-32/mol), while calmodulin inhibits Ca(2+)-stimulated autophosphorylation to the basal level. A deletion mutant lacking the visinin-like domain did not show Ca(2+)-simulated autophosphorylation activity but retained Ca(2+)/calmodulin-dependent protein kinase activity at a reduced level. Ca(2+)-dependent mobility shift assays using E.coli-expressed protein from residues 358-520 revealed that Ca(2+) binds to the visinin-like domain. Studies with site-directed mutants of the visinin-like domain indicated that EF-hands II and III are crucial for Ca(2+)-induced conformational changes in the visinin-like domain. Autophosphorylation of CCaMK increases Ca(2+)/calmodulin-dependent protein kinase activity by about 5-fold, whereas it did not affect its C(2+)-independent activity. This report provides evidence for the existence of a protein kinase in plants that is modulated by Ca(2+) and Ca(2+)/calmodulin. The presence of a visinin-like Ca(2+)-binding domain in CCaMK adds an additional Ca(2+)-sensing mechanism not previously known to exist in the Ca(2+)/calmodulin-mediated signaling cascade in plants.

  11. Influence of neurotropic compounds on the calmodulin- and troponin C-dependent processes

    Energy Technology Data Exchange (ETDEWEB)

    Baldenkov, G.N.; Men' shikov, M.Yu.; Feoktistov, I.A.; Tkachuk, V.A.

    1986-01-20

    An analysis was made of the effects of neurotropic compounds on the Ca-binding proteins - calmodulin and troponin C. It was shown that most of the neuroleptics of the phenothiazine group interact effectively both with calmodulin and with troponin C and also inhibit the calmodulin-dependent phosphodiesterase of cyclic nucleotides and calcium-activated actomyosin ATPase. Neuroleptics of the butyrophenone group, as well as imipramine and diphenhydramine, are capable of a low-efficiency interaction only with calmodulin. It was found that one of the phenothiazines - methophenazine, which is an effective inhibitor of calmodulin and calmodulin-dependent phosphodiesterase - does not affect troponin C and Ca-dependent actomyosin ATPase. As a result of this, methophenazine can serve as a convenient tool for studying processes regulated by these Ca-binding proteins. It was concluded that troponin C possesses Ca-dependent binding sites for drugs structurally similar to those of calmodulin but binding the drugs less effectively and exhibiting selectivity with respect to certain preparations. It was shown that despite the homology of the two Ca-binding proteins, calmodulin and troponin C, a selective action on the processes regulated by them is possible.

  12. Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins.

    Science.gov (United States)

    Slavov, Nikolai; Carey, Jannette; Linse, Sara

    2013-04-17

    Diverse physiological processes are regulated differentially by Ca(2+) oscillations through the common regulatory hub calmodulin. The capacity of calmodulin to combine specificity with promiscuity remains to be resolved. Here we propose a mechanism based on the molecular properties of calmodulin, its two domains with separate Ca(2+) binding affinities, and target exchange rates that depend on both target identity and Ca(2+) occupancy. The binding dynamics among Ca(2+), Mg(2+), calmodulin, and its targets were modeled with mass-action differential equations based on experimentally determined protein concentrations and rate constants. The model predicts that the activation of calcineurin and nitric oxide synthase depends nonmonotonically on Ca(2+)-oscillation frequency. Preferential activation reaches a maximum at a target-specific frequency. Differential activation arises from the accumulation of inactive calmodulin-target intermediate complexes between Ca(2+) transients. Their accumulation provides the system with hysteresis and favors activation of some targets at the expense of others. The generality of this result was tested by simulating 60 000 networks with two, four, or eight targets with concentrations and rate constants from experimentally determined ranges. Most networks exhibit differential activation that increases in magnitude with the number of targets. Moreover, differential activation increases with decreasing calmodulin concentration due to competition among targets. The results rationalize calmodulin signaling in terms of the network topology and the molecular properties of calmodulin.

  13. Preparation of Europium Induced Conformation—specific anti—calmodulin Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    WeiGuoLI; ChaoQI; 等

    2002-01-01

    Monoclonal antibody technique was employed to detect the conformational difference of CaM induced by metal ions. A trivalent europium ion induced conformation-specific anti-calmodulin monoclonal antibody was successfully prepared with europium-saturated calmodulin as antigen.

  14. Preparation of Europium Induced Conformation-specific anti-calmodulin Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Monoclonal antibody technique was employed to detect the conformational difference of CaM induced by metal ions. A trivalent europium ion induced conformation-specific anti-calmodulin monoclonal antibody was successfully prepared with europium-saturated calmodulin as antigen.

  15. Calmodulin regulates the post-anaphase reposition of centrioles during cytokinesis

    Institute of Scientific and Technical Information of China (English)

    Yue Yue YU; Gu DAI; Fei Yan PAN; Jie CHEN; Chao Jun LI

    2005-01-01

    A transient postanaphase repositioning of the centriole is found to control the completion of cytokinesis.Using a green fluorescent protein-calmodulin fusion protein as a living cell probe,we have previously found that calmodulin is associated with the initiation and progression of cytokinesis.In this study,we further studied the effect of calmodulin on the repositioning of the centriole and subsequent cell cycle progression.When activity of calmodulin is inhibited,the regression of the centriole from the intercellular bridge to the cell center is blocked,and thus the completion of cell division is repressed and two daughter cells are linked by longer cell bridge in perturbed cells.W7 treatment during cytokinesis also results in unfinished cytokinesis and stopped G1 phase.These results suggest that calmodulin activity is required for centriole repositioning and can affect the completion of cytokinesis and cell cycle progression.

  16. Identification of spectrin as a calmodulin-binding component in the pituitary gonadotrope

    Energy Technology Data Exchange (ETDEWEB)

    Wooge, C.H.

    1989-01-01

    Gonadotropin releasing hormone (GnRH) is a hypothalamic decapeptide which stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) from the pituitary. Ca{sup 2+} fulfills the requirements of a second messenger for this system. Inhibition of calmodulin will inhibit GnRH stimulated LH release. The aim of the present studies has been to identify the locus of action of calmodulin within the pituitary. By use of an {sup 125}I-calmodulin gel overlayer assay, five major Ca{sup 2+}-dependent {sup 125}I-calmodulin labelled components of subunit M{sub r} > 205,000; 200,000; 135,000; 60,000; and 52,000 have been identified. This labeling was found to be phenothiazine-sensitive. Ca{sup 2+}-independent binding that was observed appears to be due to hydrophobic interactions of calmodulin with acid-soluble proteins, principally histones. Subcellular fractionation revealed that the Ca{sup 2+}-dependent calmodulin-binding components are localized primarily in the cytosolic fraction. Separation of dispersed anterior pituitary cells through a linear Metrizamide gradient yielded gonadotrope-enriched fractions, which were found to contain all five {sup 125}I-calmodulin binding components corresponding to the major bands in the pituitary homogenate. The calmodulin-binding component levels do not appear to be differentially regulated by steroids. The calmodulin binding component with a M{sub r} > 205,000 has been identified as spectrin. Spectrin-like immunoreactivity and {sup 125}I-calmodulin-binding activity in pituitary tissue homogenates co-migrated in various percentage acrylamide gels with avian erythrocyte spectrin. Spectrin was detected in a gonadotrope-enriched fraction by immunoblotting, and confirmed in gonadotropes by indirect immunofluorescence of cultured pituitary cells in which spectrin- and LH-immunoreactivity co-localized.

  17. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel.

    Science.gov (United States)

    Oláh, Zoltán; Jósvay, Katalin; Pecze, László; Letoha, Tamás; Babai, Norbert; Budai, Dénes; Otvös, Ferenc; Szalma, Sándor; Vizler, Csaba

    2007-06-20

    Ca(2+)-loaded calmodulin normally inhibits multiple Ca(2+)-channels upon dangerous elevation of intracellular Ca(2+) and protects cells from Ca(2+)-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+). Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+)-uptake via the vanilloid inducible Ca(2+)-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca(2+) entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45)Ca(2+)-uptake at microM concentrations: calmidazolium (broad range) > or = trifluoperazine (narrow range) chlorpromazine/amitriptyline>fluphenazine>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+) or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+)-uptake in intact TRPV1(+) cells, and suggests an extracellular site of inhibition. TRPV1(+), inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+)-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+)-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+)-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2

  18. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel.

    Directory of Open Access Journals (Sweden)

    Zoltán Oláh

    Full Text Available Ca(2+-loaded calmodulin normally inhibits multiple Ca(2+-channels upon dangerous elevation of intracellular Ca(2+ and protects cells from Ca(2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+-uptake via the vanilloid inducible Ca(2+-channel/inflamatory pain receptor 1 (TRPV1, which suggests that calmodulin inhibitors may block pore formation and Ca(2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45Ca(2+-uptake at microM concentrations: calmidazolium (broad range > or = trifluoperazine (narrow range chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially. Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+-uptake in intact TRPV1(+ cells, and suggests an extracellular site of inhibition. TRPV1(+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2

  19. Insulin phosphorylates calmodulin in preparations of solubilized rat hepatocyte insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, D.B.; McDonald, J.M.

    1987-05-01

    It has previously been shown that insulin stimulates the phosphorylation of calmodulin in adipocyte insulin receptor preparations. Here they demonstrate that insulin also stimulates the phosphorylation of calmodulin in wheat germ lectin-enriched insulin receptor preparations obtained from rat hepatocytes. Standard phosphorylation assays were performed at 30C in the presence of 50mM Tris-HCl (pH 7.5), 0.1% (v/v) Triton X-100, 1mM EGTA, 50 M (el-TSP)ATP, 5mM MgCl2, 0.25 M polylysine, 1.2 M calmodulin and various CaS and insulin concentrations. The phosphorylation of calmodulin was determined by SDS-PAGE and autoradiography. Phosphorylation of calmodulin had an absolute requirement for insulin receptors, insulin and certain basic proteins. Phosphorylation was maximal above 13 nM insulin and at submicromolar CaS concentrations, whereas supramicromolar CaS concentrations were inhibitory. As was observed in the adipocyte insulin receptor system, calmodulin phosphorylation was dependent upon the presence of co-factors, such as polylysine, histone H/sub f/2b and protamine sulfate. The role played by these co-factors has not yet been established. These data suggest that both CaS and calmodulin participate in post receptor insulin events in hepatocytes.

  20. Plant chimeric Ca2+/Calmodulin-dependent protein kinase. Role of the neural visinin-like domain in regulating autophosphorylation and calmodulin affinity

    Science.gov (United States)

    Sathyanarayanan, P. V.; Cremo, C. R.; Poovaiah, B. W.

    2000-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.

  1. Monoclonal antibody against brain calmodulin-dependent protein kinase type II detects putative conformational changes induced by Ca/sup 2 +/-calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    LeVine, H. III; Su, J.L.; Sahyoun, N.E.

    1988-08-23

    A mouse monoclonal IgG1 antibody has been generated against the soluble form of the calmodulin-dependent protein kinase type II. This antibody recognizes both the soluble and cytoskeletal forms of the enzyme, requiring Ca/sup 2 +/ for the interaction. Other divalent cations such as Zn/sup 2 +/, Mn/sup 2 +/, Cd/sup 2 +/, Co/sup 2 +/, and Ni/sup 2 +/ will substitute for Ca/sup 2 +/, while Mg/sup 2 +/ and Ba/sup 2 +/ will not. The antibody reacts with both the ..cap alpha..- and ..beta..-subunits on Western blots in a similar Ca/sup 2 +/-dependent fashion but with a lower sensitivity. The affinity of the antibody for the kinase is 0.13 nM determined by displacement of /sup 125/I Bolton-Hunter-labeled kinase with unlabeled enzyme. Calmodulin and antibody reciprocally potentiate each other's interaction with the enzyme. This is illustrated both by direct binding studies and by a decrease of the K/sub m app/ for calmodulin and an increase in the V/sub max/ for the autophosphorylation reaction of the enzyme. The antibody thus appears to recognize and stabilize a conformation of the kinase which favors calmodulin binding although it does not itself activate the kinase in the absence of calmodulin. Since the M/sub r/ 30,000 catalytic fragment of the kinase is not immunoreactive, either the antibody combining site of the kinase must be present in the noncatalytic portion of the protein along with the calmodulin binding site or proteolysis interferes with the putative Ca/sup 2 +/-dependent conformational change. Thus, monoclonal antibodies can be useful tools in elucidating the mechanism by which Ca/sup 2 +/ and calmodulin act on the kinase molecule.

  2. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Rodriguez-del Valle Nuri

    2007-11-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  3. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Søndergaard, Mads

    2012-01-01

    a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe...... dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser......]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2...

  4. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors

    Directory of Open Access Journals (Sweden)

    Latha eMukunda

    2016-02-01

    Full Text Available Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs, occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX and a highly conserved co-receptor protein (Orco. The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs expressing Or22a inside the fly’s antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native

  5. Thermodynamics of calmodulin trapping by Ca2+/calmodulin-dependent protein kinase II: subpicomolar Kd determined using competition titration calorimetry.

    Science.gov (United States)

    Tse, Joyce K Y; Giannetti, Anthony M; Bradshaw, J Michael

    2007-04-03

    Calmodulin (CaM) trapping by Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a phenomenon whereby the affinity of CaM for CaMKII increases >1000-fold following CaMKII autophosphorylation. The molecular basis of this effect is not entirely understood. Binding of CaM to the phosphorylated and the unphosphorylated states of CaMKII is well mimicked by the interaction of CaM with two different length peptides taken from the CaM-binding region of CaMKII, peptides we refer to as the long and intermediate peptides. To better understand the conformational change accompanying CaM trapping, we have used isothermal titration calorimetry (ITC) to compare the binding thermodynamics of CaM to these peptides as well as to a shorter CaMKII-based peptide. Calorimetric analysis revealed that the enthalpy, rather than the entropy, distinguished binding of these three peptides. Furthermore, the heat capacity change was found to be similar for the long and intermediate peptides but smaller in magnitude for the short peptide. Direct titration of CaM with peptide provided the Kd value for the short peptide (Kd = 5.9 +/- 2.4 microM), but a novel, two-phased competitive binding strategy was necessary to ascertain the affinities of the intermediate (Kd = 0.17 +/- 0.06 nM) and long (Kd = 0.07 +/- 0.04 pM) peptides. To our knowledge, the Kd for the long peptide is the most potent measured to date using ITC. Together, the findings reported here support a model whereby the final conformational change accompanying CaM trapping buries little additional surface area but does involve formation of new hydrogen bonds and van der Waals contacts that contribute to formation of the high-affinity, CaM-trapped state.

  6. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit.

    Science.gov (United States)

    Peng, Hui; Yang, Tianbao; Ii, Wayne M Jurick

    2014-08-29

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  7. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  8. Impact of methionine oxidation on calmodulin structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States); Moen, Rebecca J. [Chemistry and Geology Department, Minnesota State University, Mankato, MN 56001 (United States); Olenek, Michael J. [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Klein, Jennifer C., E-mail: jklein@uwlax.edu [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Thomas, David D., E-mail: ddt@umn.edu [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States)

    2015-01-09

    Highlights: • We measured the distance distribution between two spin labels on calmodulin by DEER. • Two structural states, open and closed, were resolved at both low and high Ca. • Ca shifted the equilibrium toward the open state by a factor of 13. • Methionine oxidation, simulated by glutamine substitution, decreased the Ca effect. • These results have important implications for aging in muscle and other tissues. - Abstract: We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron–electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4 nm (closed) and another at ∼6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each

  9. Characterization and functional analysis of the calmodulin-binding domain of Rac1 GTPase.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151-164 in Rac1 is essential for calmodulin binding. Within the 151-164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A, activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration.

  10. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-01-01

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  11. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-12-31

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  12. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  13. Calmodulin kinase II inhibition protects against structural heart disease.

    Science.gov (United States)

    Zhang, Rong; Khoo, Michelle S C; Wu, Yuejin; Yang, Yingbo; Grueter, Chad E; Ni, Gemin; Price, Edward E; Thiel, William; Guatimosim, Silvia; Song, Long-Sheng; Madu, Ernest C; Shah, Anisha N; Vishnivetskaya, Tatiana A; Atkinson, James B; Gurevich, Vsevolod V; Salama, Guy; Lederer, W J; Colbran, Roger J; Anderson, Mark E

    2005-04-01

    Beta-adrenergic receptor (betaAR) stimulation increases cytosolic Ca(2+) to physiologically augment cardiac contraction, whereas excessive betaAR activation causes adverse cardiac remodeling, including myocardial hypertrophy, dilation and dysfunction, in individuals with myocardial infarction. The Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a recently identified downstream element of the betaAR-initiated signaling cascade that is linked to pathological myocardial remodeling and to regulation of key proteins involved in cardiac excitation-contraction coupling. We developed a genetic mouse model of cardiac CaMKII inhibition to test the role of CaMKII in betaAR signaling in vivo. Here we show CaMKII inhibition substantially prevented maladaptive remodeling from excessive betaAR stimulation and myocardial infarction, and induced balanced changes in excitation-contraction coupling that preserved baseline and betaAR-stimulated physiological increases in cardiac function. These findings mark CaMKII as a determinant of clinically important heart disease phenotypes, and suggest CaMKII inhibition can be a highly selective approach for targeting adverse myocardial remodeling linked to betaAR signaling.

  14. Structure and expression of the chicken calmodulin I gene

    DEFF Research Database (Denmark)

    Ye, Q; Berchtold, M W

    1997-01-01

    The chicken calmodulin I (CaMI) gene has been isolated and characterized on the level of cDNA and genomic DNA. The deduced amino acid (aa) sequence is identical to the one of chicken CaMII which consists of 148 aa. The CaMI gene contains six exons. Its intron/exon organization is identical...... to that of the chicken CaMII and the CaMI and CaMIII genes of rat and human. Expression of the CaMI gene was detected in all chicken tissues examined, although at varying levels. The gene is transcribed into four mRNAs of 0.8, 1.4, 1.7 and 4.4 kb as determined by Northern blot analysis. Our results demonstrate...... that the "multigene-one-protein" principle of CaM synthesis is not only applicable to mammals whose CaM is encoded by three different genes, but also to chickens....

  15. A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding

    Science.gov (United States)

    Porter Moore, C.; Zhang, J. Z.; Hamilton, S. L.

    1999-01-01

    Oxidation of the skeletal muscle Ca(2+) release channel (RYR1) increases its activity, produces intersubunit disulfide bonds, and blocks its interaction with calmodulin. Conversely, bound calmodulin protects RYR1 from the effects of oxidants (Zhang, J.-Z., Wu, Y., Williams, B. Y., Rodney, G., Mandel, F., Strasburg, G. M., and Hamilton, S. L. (1999) Am. J. Physiol. 276, Cell Physiol. C46-C53). In addition, calmodulin protects RYR1 from trypsin cleavage at amino acids 3630 and 3637 (Moore, C. P., Rodney, G., Zhang, J.-Z., Santacruz-Toloza, L., Strasburg, G. M., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). The sequence between these two tryptic sites is AVVACFR. Alkylation of RYR1 with N-ethylmaleimide (NEM) blocks both (35)S-apocalmodulin binding and oxidation-induced intersubunit cross-linking. In the current work, we demonstrate that both cysteines needed for the oxidation-induced intersubunit cross-link are protected from alkylation with N-ethylmaleimide by bound calmodulin. We also show, using N-terminal amino acid sequencing together with analysis of the distribution of [(3)H]NEM labeling with each sequencing cycle, that cysteine 3635 of RYR1 is rapidly labeled by NEM and that this labeling is blocked by bound calmodulin. We propose that cysteine 3635 is located at an intersubunit contact site that is close to or within a calmodulin binding site. These findings suggest that calmodulin and oxidation modulate RYR1 activity by regulating intersubunit interactions in a mutually exclusive manner and that these interactions involve cysteine 3635.

  16. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1.

    Science.gov (United States)

    Fanger, C M; Ghanshani, S; Logsdon, N J; Rauer, H; Kalman, K; Zhou, J; Beckingham, K; Chandy, K G; Cahalan, M D; Aiyar, J

    1999-02-26

    Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1, a human intermediate conductance channel expressed in peripheral tissues. Cal- modulin was found to interact strongly with the cytoplasmic carboxyl (C)-tail of hIKCa1 in a yeast two-hybrid system. Deletion analyses defined a requirement for the first 62 amino acids of the C-tail, and the binding of calmodulin to this region did not require Ca2+. The C-tail of hSKCa3, a human neuronal small conductance channel, also bound calmodulin, whereas that of a voltage-gated K+ channel, mKv1.3, did not. Calmodulin co-precipitated with the channel in cell lines transfected with hIKCa1, but not with mKv1. 3-transfected lines. A mutant calmodulin, defective in Ca2+ sensing but retaining binding to the channel, dramatically reduced current amplitudes when co-expressed with hIKCa1 in mammalian cells. Co-expression with varying amounts of wild-type and mutant calmodulin resulted in a dominant-negative suppression of current, consistent with four calmodulin molecules being associated with the channel. Taken together, our results suggest that Ca2+-calmodulin-induced conformational changes in all four subunits are necessary for the channel to open.

  17. Fluorescence probe study of Ca2+-dependent interactions of calmodulin with calmodulin-binding peptides of the ryanodine receptor.

    Science.gov (United States)

    Gangopadhyay, Jaya Pal; Grabarek, Zenon; Ikemoto, Noriaki

    2004-10-22

    We have used a highly environment-sensitive fluorescent probe 6-bromoacetyl-2-dimethylaminonaphthalene (badan) to study the interaction between calmodulin (CaM) and a CaM-binding peptide of the ryanodine receptor (CaMBP) and its sub-fragments F1 and F4. Badan was attached to the Thr34Cys mutant of CaM (CaM-badan). Ca(2+) increase in a physiological range of Ca(2+) (0.1-2 microM) produced about 40 times increase in the badan fluorescence. Upon binding to CaMBP, the badan fluorescence of apo-CaM showed a small increase at a slow rate; whereas that of Ca-CaM showed a large decrease at a very fast rate. Upon binding of CaM to the badan-labeled CaMBP, the badan fluorescence showed a small and slow increase at low Ca(2+), and a large and fast increase at high Ca(2+). Thus, the badan probe attached to CaM Cys(34) can be used to monitor conformational changes occurring not only in CaM, but also those in the CaM-CaMBP interface. Based on our results we propose that both the interaction interface and the global conformation of the CaM-CaMBP complex are altered by calcium.

  18. The distribution of calmodulin and Ca2+—activated calmodulin in cell cycle of mouse erythroleukemia cells

    Institute of Scientific and Technical Information of China (English)

    YouJinsong; LiSuwen; 等

    1990-01-01

    Cell proliferation is accompanied with changing levels of intracellular calmodulin (CaM) and its activation.Prior data from synchronized cell population could not actually stand for various CaM levels in different phases of cell cycle.Here,based upon quantitative measurement of fluorescence in individual cells,a method was developed to investigate intracellular total CaM and Ca2+-activated CaM contents. Intensity of CaM immunoflurescence gave total CaM level,and Ca2+-activated CaM was measured by fluorescence intensity of CaM antagonist trifluoperazine (TFP).In mouse erythroleukemia (MEL) cells,total CaM level increased from G1 through S to G2M,reaching a maximum of 2-fold increase,then reduced to half amount after cell division.Meanwhile,Ca2+-activated CaM also in creased through the cell cycle(G1,S,G2M).Increasing observed in G1 meant that the entry of cells from G1 into S phase may require CaM accumulation,and,equally or even more important,Ca2+-dependent activation of CaM.Ca2+-activated CaM decreased after cell division.The results suggested that CaM gene expression and C2+-modulated CaM activation act synergistically to accomplish the cell cycle progression.

  19. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  20. Calmodulin interacts with PAC1 and VPAC2 receptors and regulates PACAP-induced FOS expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    is a well-known marker of neuronal activation, so we used a human neuroblastoma cell line NB-1 to explore the role of calmodulin in PACAP-induced FOS gene expression. We observed both short-term and prolonged altered PACAP-mediated activation of the FOS gene in the presence of the calmodulin-antagonist W-7...

  1. Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, R.; Kale, R.K. (Jawaharlal Nehru Univ., New Delhi (India). School of Life Sciences)

    1990-11-01

    Rat liver microsomes were irradiated with {gamma}-rays at a dose of 1.31 Gy s{sup -1}. The extent of lipid peroxidation, measured in terms of malondialdehyde (MDA) formed, increased with radiation dose. The presence of calmodulin antagonists during irradiation decreased lipid peroxidation. The order of their protective efficiency was: chlorpromazine (CPZ)>promethazine (PMZ)>trimeprazine (TMZ). Their protective effect was diminished in the presence of ferrous (Fe{sup 2+}) ions and was restored on addition of EDTA. However, calmodulin antagonists considerably inhibited radiation-induced lipid peroxidation in the presence of ferric (Fe{sup 3+}) ions. Calmodulin antagonists also decreased the cytochrome P-450 content of microsomes. These results are discussed with respect to their applicability to radiotherapy. A possible mechanism for the inhibition of radiation-induced lipid peroxidation is suggested. (author).

  2. Impedance Characterization of Adsorption Process of Calmodulin on Au Substrate and its Combination with Ca2+

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper,the adsorption process of calmodulin (CaM) on Au substrate was first investigated with electrochemical impedance spectroscopy (EIS) method.The result reveals that the adsorption of the protein-calmodulin contains two steps,i.e.,one short quick step followed by a slow one.The complexation of calmodulin with Ca2+ was also first probed using EIS technique,in which the complexation of CaM with Ca2+ could be reflected by the change of apparent membrane capacitance(Capp) clearly.In all above measurements,a redox couple Fe(CN)63-/ Fe(CN)64- was used as probing-pin to reflect all the changes occurring in the above process.Our work suggests that some biological processes of CaM could be studied using EIS method conveniently.

  3. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  4. Ca2+/Calmodulin and Apo-Calmodulin Both Bind to and Enhance the Tyrosine Kinase Activity of c-Src.

    Directory of Open Access Journals (Sweden)

    Silviya R Stateva

    Full Text Available Src family non-receptor tyrosine kinases play a prominent role in multiple cellular processes, including: cell proliferation, differentiation, cell survival, stress response, and cell adhesion and migration, among others. And when deregulated by mutations, overexpression, and/or the arrival of faulty incoming signals, its hyperactivity contributes to the development of hematological and solid tumors. c-Src is a prototypical member of this family of kinases, which is highly regulated by a set of phosphorylation events. Other factor contributing to the regulation of Src activity appears to be mediated by the Ca2+ signal generated in cells by different effectors, where the Ca2+-receptor protein calmodulin (CaM plays a key role. In this report we demonstrate that CaM directly interacts with Src in both Ca2+-dependent and Ca2+-independent manners in vitro and in living cells, and that the CaM antagonist N-(6-aminohexyl-5-chloro-1-naphthalenesulfonamide (W-7 inhibits the activation of this kinase induced by the upstream activation of the epidermal growth factor receptor (EGFR, in human carcinoma epidermoide A431 cells, and by hydrogen peroxide-induced oxidative stress, in both A431 cells and human breast adenocarcinoma SK-BR-3 cells. Furthermore, we show that the Ca2+/CaM complex strongly activates the auto-phosphorylation and tyrosine kinase activity of c-Src toward exogenous substrates, but most relevantly and for the first time, we demonstrate that Ca2+-free CaM (apo-CaM exerts a far higher activatory action on Src auto-phosphorylation and kinase activity toward exogenous substrates than the one exerted by the Ca2+/CaM complex. This suggests that a transient increase in the cytosolic concentration of free Ca2+ is not an absolute requirement for CaM-mediated activation of Src in living cells, and that a direct regulation of Src by apo-CaM could be inferred.

  5. Essential roles for calcium and calmodulin in G2/M progression in Aspergillus nidulans

    OpenAIRE

    1993-01-01

    nimT encodes a protein in Aspergillus nidulans that is required for tyrosine dephosphorylation of p34cdc2 and has a strong homology to cdc25-type proteins. Conditional mutation of nimT (nimT23 mutation) arrests cells in G2 at the restrictive temperature. After release of the temperature-sensitive nimT23 block, p34cdc2 undergoes tyrosine dephosphorylation and we showed that as cells entered mitosis, a rapid increase in calmodulin was observed. The increase in calmodulin and progression into mi...

  6. Impact of Methionine Oxidation on Calmodulin Structural Dynamics

    Science.gov (United States)

    McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin; Moen, Rebecca J.; Olenek, Michael J.; Klein, Jennifer C.; Thomas, David D.

    2014-01-01

    We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron-electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous x-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: In both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ~4 nm (closed) and another at ~6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each population ranging from 1.5 to 3 nm. Both mutations (M109Q and M124Q) decrease the effect of Ca on the structure of CaM, primarily by decreasing the closed-to-open equilibrium constant in the presence of Ca. We propose that Met oxidation alters CaM’s functional interaction with its target proteins by perturbing this Ca-dependent structural shift. PMID:25478640

  7. Direct detection of calmodulin tuning by ryanodine receptor channel targets using a Ca2+-sensitive acrylodan-labeled calmodulin.

    Science.gov (United States)

    Fruen, Bradley R; Balog, Edward M; Schafer, Janet; Nitu, Florentin R; Thomas, David D; Cornea, Razvan L

    2005-01-11

    Calmodulin (CaM) activates the skeletal muscle ryanodine receptor (RyR1) at nanomolar Ca(2+) concentrations but inhibits it at micromolar Ca(2+) concentrations, indicating that binding of Ca(2+) to CaM may provide a molecular switch for modulating RyR1 channel activity. To directly examine the Ca(2+) sensitivity of RyR1-complexed CaM, we used an environment-sensitive acrylodan adduct of CaM. The resulting (ACR)CaM probe displayed high-affinity binding to, and Ca(2+)-dependent regulation of, RyR1 similar to that of unlabeled wild-type (WT) CaM. Upon addition of Ca(2+), (ACR)CaM exhibited a substantial (>50%) decrease in fluorescence (K(Ca) = 2.7 +/- 0.8 microM). A peptide derived from the RyR1 CaM binding domain (RyR1(3614)(-)(43)) caused an even more pronounced Ca(2+)-dependent fluorescence decrease, and a >or=10-fold leftward shift in its K(Ca) (0.2 +/- 0.1 microM). In the presence of intact RyR1 channels in SR vesicles, (ACR)CaM fluorescence spectra were distinct from those in the presence of RyR1(3614)(-)(43), although a Ca(2+)-dependent decrease in fluorescence was still observed. The K(Ca) for (ACR)CaM fluorescence in the presence of SR (0.8 +/- 0.4 microM) was greater than in the presence of RyR1(3614)(-)(43) but was consistent with functional determinations showing the conversion of (ACR)CaM from channel activator (apoCaM) to inhibitor (Ca(2+)CaM) at Ca(2+) concentrations between 0.3 and 1 microM. These results indicate that binding to RyR1 targets evokes significant changes in the CaM structure and Ca(2+) sensitivity (i.e., CaM tuning). However, changes resulting from binding of CaM to the full-length, tetrameric channels are clearly distinct from changes caused by the RyR1-derived peptide. We suggest that the Ca(2+) sensitivity of CaM when in complex with full-length channels may be tuned to respond to physiologically relevant changes in Ca(2+).

  8. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines.

    Directory of Open Access Journals (Sweden)

    Thom Griffith

    2016-05-01

    Full Text Available The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR and voltage-gated Ca2+ -channel (VGCC activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators.

  9. Phylogenetic analysis of dermatophyte species using DNA sequence polymorphism in calmodulin gene

    NARCIS (Netherlands)

    Ahmadi, Bahram; Mirhendi, Hossein; Makimura, Koichi; de Hoog, G Sybren; Shidfar, Mohammad Reza; Nouripour-Sisakht, Sadegh; Jalalizand, Niloofar

    2016-01-01

    Use of phylogenetic species concepts based on rDNA internal transcribe spacer (ITS) regions have improved the taxonomy of dermatophyte species; however, confirmation and refinement using other genes are needed. Since the calmodulin gene has not been systematically used in dermatophyte taxonomy, we e

  10. Real—time Analysis of the Interaction between Calmodulin and Melittin by SPR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WeiGuoLI; XiaoQiangCUI; 等

    2002-01-01

    The dynamic interaction process of calmodulin with an immobilized peptide melittin was investigated in real time by surface plasmon resonance spectroscopy, and dissociation constant of the complex was calculated to be 3.37×10-6 mol/L.

  11. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin

    DEFF Research Database (Denmark)

    Perrier, J F; Mejia-Gervacio, S; Hounsgaard, J

    2000-01-01

    or trifluoperazine reduced the amplitude of depolarization-induced plateau potentials. Inactivation of calmodulin also inhibited facilitation of plateau potentials by activation of group I metabotropic glutamate receptors or muscarinic receptors. 3. In low-sodium medium and in the presence of tetraethylammonium...

  12. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep;

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins. ...

  13. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II.

    Directory of Open Access Journals (Sweden)

    Shirley Pepke

    2010-02-01

    Full Text Available During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,including Ca2+/calmodulin-dependent protein kinase II (CaMKII, are regulated by calmodulin, a small protein that can bindup to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic

  14. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function

    Science.gov (United States)

    Astegno, Alessandra; Maresi, Elena; Marino, Valerio; Dominici, Paola; Pedroni, Marco; Piccinelli, Fabio; Dell'Orco, Daniele

    2014-11-01

    Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca2+-binding ability in the C-terminal lobe suggest that the EF-hand Ca2+-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface.Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous

  15. Fast activation of Ca2+-ATPases in plasma membranes from cardiac muscle and from ascites carcinoma cells: a possible function of endogenous calmodulin.

    Science.gov (United States)

    Wetzker, R; Klinger, R; Haase, H; Vetter, R; Böhmer, F D

    1987-01-01

    Content of endogenous calmodulin, binding of calmodulin to, and Ca2+-ATPase activity in plasma membranes of cardiac muscle. Ehrlich ascites carcinoma (EAC) cells and erythrocytes were examined. The content of endogenous calmodulin in cardiac and EAC cells was shown to be considerably higher than in erythrocyte membranes. Ca2+-independent binding of calmodulin to cardiac and EAC cell membranes was found to be realized by some low molecular weight proteins. Ca2+-ATPases in cardiac and EAC cell membranes differ from those in erythrocytes with respect to their activation by Ca2+ and calmodulin. The erythrocyte enzyme is strongly stimulated by exogenous calmodulin and reaches its maximum activity about 2 min after Ca2+-addition. In contrast, the Ca2+-ATPases in cardiac and EAC cell plasma membranes cannot be considerably stimulated by exogenous calmodulin and are instantaneously activated by Ca2+.

  16. Apocalmodulin and Ca2+ calmodulin bind to the same region on the skeletal muscle Ca2+ release channel

    Science.gov (United States)

    Moore, C. P.; Rodney, G.; Zhang, J. Z.; Santacruz-Toloza, L.; Strasburg, G.; Hamilton, S. L.

    1999-01-01

    The skeletal muscle Ca2+ release channel (RYR1) is regulated by calmodulin in both its Ca2+-free (apocalmodulin) and Ca2+-bound (Ca2+ calmodulin) states. Apocalmodulin is an activator of the channel, and Ca2+ calmodulin is an inhibitor of the channel. Both apocalmodulin and Ca2+ calmodulin binding sites on RYR1 are destroyed by a mild tryptic digestion of the sarcoplasmic reticulum membranes, but calmodulin (either form), bound to RYR1 prior to tryptic digestion, protects both the apocalmodulin and Ca2+ calmodulin sites from tryptic destruction. The protected sites are after arginines 3630 and 3637 on RYR1. These studies suggest that both Ca2+ calmodulin and apocalmodulin bind to the same or overlapping regions on RYR1 and block access of trypsin to sites at amino acids 3630 and 3637. This sequence is part of a predicted Ca2+ CaM binding site of amino acids 3614-3642 [Takeshima, H., et al. (1989) Nature 339, 439-445].

  17. Ca2+-dependent inhibition of G protein-coupled receptor kinase 2 by calmodulin.

    Science.gov (United States)

    Haga, K; Tsuga, H; Haga, T

    1997-02-11

    Agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptor m2 subtypes (m2 receptors) or rhodopsin by G protein-coupled receptor kinase 2 (GRK2) was found to be inhibited by calmodulin in a Ca2+-dependent manner. The phosphorylation was fully inhibited in the absence of G protein betagamma subunits and partially inhibited in the presence of betagamma subunits. The dose-response curve for stimulation by betagamma subunits of the m2 and rhodopsin phosphorylation was shifted to the higher concentration of betagamma subunits by addition of Ca2+-calmodulin. The phosphorylation by GRK2 of a glutathione S-transferase fusion protein containing a peptide corresponding to the central part of the third intracellular loop of m2 receptors (I3-GST) was not affected by Ca2+-calmodulin in the presence or absence of betagamma subunits, but the agonist-dependent stimulation of I3-GST phosphorylation by an I3-deleted m2 receptor mutant in the presence of betagamma subunits was suppressed by Ca2+-calmodulin. These results indicate that Ca2+-calmodulin does not directly interact with the catalytic site of GRK2 but inhibits the kinase activity of GRK2 by interfering with the activation of GRK2 by agonist-bound m2 receptors and G protein betagamma subunits. In agreement with the assumption that GRK2 activity is suppressed by the increase in intracellular Ca2+, the sequestration of m2 receptors expressed in Chinese hamster ovary cells was found to be attenuated by the treatment with a Ca2+ ionophore, A23187.

  18. Purification and characterization of a Ca2+ -dependent/calmodulin-stimulated protein kinase from moss chloronema cells

    Indian Academy of Sciences (India)

    Jacinta S D’souza; Man Mohan Johri

    2003-03-01

    We have demonstrated the presence of a Ca2+-dependent/calmodulin-stimulated protein kinase (PK) in chloronema cells of the moss Funaria hygrometrica. The kinase, with a molecular mass of 70,000 daltons (PK70), was purified to homogeneity using ammonium sulphate fractionation, DEAE-cellulose chromatography, and calmodulin (CaM)-agarose affinity chromatography. The kinase activity was stimulated at a concentration of 50 M free Ca2+, and was further enhanced 3–5-fold with exogenously added 3–1000 nm moss calmodulin (CaM). Autophosphorylation was also stimulated with Ca2+ and CaM. Under in vitro conditions, PK70 phosphorylated preferentially lysine-rich substrates such as HIIIS and HVS. This PK shares epitopes with the maize Ca2+-dependent/calmodulin-stimulated PK (CCaMK) and also exhibits biochemical properties similar to the maize, lily, and tobacco CCaMK. We have characterized it as a moss CCaMK.

  19. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure

    Directory of Open Access Journals (Sweden)

    Hayashi Nobuhiro

    2008-02-01

    Full Text Available Abstract Background The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. Results The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC in different temperatures, and Kd was observed to be in the low μM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Conclusion Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure

  20. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    Science.gov (United States)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  1. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.

    Directory of Open Access Journals (Sweden)

    John P Cavaretta

    Full Text Available KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is impaired by mutations in KCNQ2 carboxy-terminal tail that cause benign familial neonatal convulsion and myokymia, suggesting that their correct surface distribution and density at the axon is crucial for control of neuronal excitability. However, the molecular mechanisms responsible for regulating enrichment of KCNQ channels at the neuronal axon remain elusive. Here, we show that enrichment of KCNQ channels at the axonal surface of dissociated rat hippocampal cultured neurons is regulated by ubiquitous calcium sensor calmodulin. Using immunocytochemistry and the cluster of differentiation 4 (CD4 membrane protein as a trafficking reporter, we demonstrate that fusion of KCNQ2 carboxy-terminal tail is sufficient to target CD4 protein to the axonal surface whereas inhibition of calmodulin binding to KCNQ2 abolishes axonal surface expression of CD4 fusion proteins by retaining them in the endoplasmic reticulum. Disruption of calmodulin binding to KCNQ2 also impairs enrichment of heteromeric KCNQ2/KCNQ3 channels at the axonal surface by blocking their trafficking from the endoplasmic reticulum to the axon. Consistently, hippocampal neuronal excitability is dampened by transient expression of wild-type KCNQ2 but not mutant KCNQ2 deficient in calmodulin binding. Furthermore, coexpression of mutant calmodulin, which can interact with KCNQ2/KCNQ3 channels but not calcium, reduces but does not abolish their enrichment at the axonal surface, suggesting that apo calmodulin but not calcium-bound calmodulin is necessary for their preferential targeting to the axonal

  2. Calmodulin as a downstream gene of octopamine-OAR α1 signalling mediates olfactory attraction in gregarious locusts.

    Science.gov (United States)

    Xu, L; Li, L; Yang, P; Ma, Z

    2017-02-01

    The migratory locust (Locusta migratoria) shows aggregative traits in nymph marching bands and swarm formations through mutual olfactory attraction of conspecifics. However, olfactory preference in different nymph stages in gregarious locusts is not sufficiently explored. In this study, we found that the nymph olfactory preference for gregarious volatiles exhibited obvious variations at different developmental stages. The gregarious locusts show attractive response to conspecific volatiles from the third stadium. Transcriptome comparison between third- and fourth-stadium nymphs showed that the G protein-coupled receptor (GPCR) pathways are significantly enriched. Amongst the genes present in GPCR pathways, the expression level of calmodulin in locust brains significantly increased from the third- to the fourth-stadium nymphs. Amongst the four octopamine receptors (OARs) belonging to the GPCR family, only OAR α1 showed similar expression patterns to those of calmodulin, and knockdown of OAR α1 reduced the expression level of calmodulin. RNA interference of calmodulin decreased locomotion and induced the loss of olfactory attraction in gregarious locusts. Moreover, the activation of OAR α1 in calmodulin-knockdown locusts did not induce olfactory attraction of the nymphs to gregarious volatiles. Thus, calmodulin as a downstream gene of octopamine-OAR α1 (OA-OAR α1) signalling mediates olfactory attraction in gregarious locusts. Overall, this study provides novel insights into the mechanism of OA-OAR α1 signalling involved in olfactory attraction of gregarious locusts.

  3. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis.

    Science.gov (United States)

    Galon, Yael; Nave, Roy; Boyce, Joy M; Nachmias, Dikla; Knight, Marc R; Fromm, Hillel

    2008-03-19

    Calmodulin-binding transcription activator (CAMTA) 3 (also called SR1) is a calmodulin-binding transcription factor in Arabidopsis. Two homozygous T-DNA insertion mutants (camta3-1, camta3-2) showed enhanced spontaneous lesions. Transcriptome analysis of both mutants revealed 6 genes with attenuated expression and 99 genes with elevated expression. Of the latter, 32 genes are related to defense against pathogens (e.g. WRKY33, PR1 and chitinase). Propagation of a virulent strain of the bacterial pathogen Pseudomonas syringae and the fungal pathogen Botrytis cinerea were attenuated in both mutants. Moreover, both mutants accumulated high levels of H2O2. We suggest that CAMTA3 regulates the expression of a set of genes involved in biotic defense responses.

  4. Calmodulin-binding transcription activators and perspectives for applications in biotechnology.

    Science.gov (United States)

    Shen, Chenjia; Yang, Yanjun; Du, Liqun; Wang, Huizhong

    2015-12-01

    In recent years, a novel family of calmodulin-binding transcription activators (CAMTAs) has been reported in various species. The CAMTAs share a conserved domain organization, with a CG-1 DNA-binding domain, a transcription factor immunoglobulin domain, several ankyrin repeats, a calmodulin-binding domain, and a varying number of IQ motifs. CAMTAs participate in transcriptional regulation by recognizing and binding to a specific cis-element: (G/A/C)CGCG(C/G/T). Plants suffer from the environmental challenges, including abiotic and biotic stresses. Investigations in various plant species indicate a broad range of CAMTA functions involved in developmental regulation, environmental stress response, and hormone cross talk. In this review, we focus on the expression patterns and biological functions of CAMTAs to explore their probable applications in biotechnology. Furthermore, the identification and phylogenetic analysis of CAMTAs in crops could open new perspectives for enhancing stress tolerance, which could lead to improved crop production.

  5. Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels.

    Science.gov (United States)

    Ben-Johny, Manu; Dick, Ivy E; Sang, Lingjie; Limpitikul, Worawan B; Kang, Po Wei; Niu, Jacqueline; Banerjee, Rahul; Yang, Wanjun; Babich, Jennifer S; Issa, John B; Lee, Shin Rong; Namkung, Ho; Li, Jiangyu; Zhang, Manning; Yang, Philemon S; Bazzazi, Hojjat; Adams, Paul J; Joshi-Mukherjee, Rosy; Yue, Daniel N; Yue, David T

    2015-01-01

    Voltage-gated Na and Ca(2+) channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca(2+) and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms.

  6. Synthesis and decay of calmodulin-ubiquitin conjugates in cell-free extracts of various rabbit tissues.

    Science.gov (United States)

    Laub, M; Jennissen, H P

    1997-06-27

    Calmodulin is the natural substrate for ubiquitin-ligation by the enzyme ubiquitin-calmodulin ligase (uCaM-synthetase; EC 6.3.2.21). The activity of this ligase is regulated by the binding of the second messenger Ca2+ to the substrate calmodulin, which increases the activity ca. 10-fold. Up till now, two components of the ligase could be identified: uCaM Syn-F1 and uCaM Syn-F2, the first of which binds to ubiquitin and the second which binds to calmodulin. Since the physiological role of this enzyme is still unclear, this study was designed to examine whether the activity of uCaM-Synthetase in 40,000 x g tissue supernatants correlates with the calmodulin content in the various tissues. In reticulocytes, spleen, erythrocytes, testis and brain, which are rich in uCaM synthetase, the tissue contents calculated on the basis of activity measurements were between 4-80-fold higher than in red and white skeletal muscle. These activities did not correlate with the respective calmodulin contents of the tissues indicating that other factors were determining these enzyme levels. A second aim was to gain information on the role of the ATP-ubiquitin-dependent proteolytic pathway in those tissues displaying uCaM synthetase activity. In the reticulocyte system which contains the classical ATP-ubiquitin-dependent proteolytic pathway as measured with 125I-BSA, no ubiquitin-dependent degradation of calmodulin could be detected. We therefore examined the other tissues of the rabbit with the substrate 125I-BSA and succeeded in finding a ubiquitin-independent ATP-dependent proteolytic activity in every case but no ubiquitin-dependent activity. The ubiquitin-independent activity was highest in smooth muscle and red skeletal muscle being ca. 3-4-fold higher than in lung and testis. In 50% of the tissue crude extracts the time curve of calmodulin ubiquitylation progressed through a maximum indicating a dynamic steady state based on conjugate synthesis and decay. If a ubiquitylation pulse

  7. Phylogenetic analysis of dermatophyte species using DNA sequence polymorphism in calmodulin gene.

    Science.gov (United States)

    Ahmadi, Bahram; Mirhendi, Hossein; Makimura, Koichi; de Hoog, G Sybren; Shidfar, Mohammad Reza; Nouripour-Sisakht, Sadegh; Jalalizand, Niloofar

    2016-07-01

    Use of phylogenetic species concepts based on rDNA internal transcribe spacer (ITS) regions have improved the taxonomy of dermatophyte species; however, confirmation and refinement using other genes are needed. Since the calmodulin gene has not been systematically used in dermatophyte taxonomy, we evaluated its intra- and interspecies sequence variation as well as its application in identification, phylogenetic analysis, and taxonomy of 202 strains of 29 dermatophyte species. A set of primers was designed and optimized to amplify the target followed by bilateral sequencing. Using pairwise nucleotide comparisons, a mean similarity of 81% was observed among 29 dermatophyte species, with inter-species diversity ranging from 0 to 200 nucleotides (nt). Intraspecies nt differences were found within strains of Trichophyton interdigitale, Arthroderma simii, T. rubrum and A. vanbreuseghemii, while T. tonsurans, T. violaceum, Epidermophyton floccosum, Microsporum canis, M. audouinii, M. cookei, M. racemosum, M. gypseum, T. mentagrophytes, T schoenleinii, and A. benhamiae were conserved. Strains of E. floccosum/M. racemosum/M. cookei, A. obtosum/A. gertleri, T. tonsurans/T. equinum and a genotype of T. interdigitale had identical calmodulin sequences. For the majority of the species, tree topology obtained for calmodulin gene showed a congruence with coding and non-coding regions including ITS, BT2, and Tef-1α. Compared with the phylogenetic tree derived from ITS, BT2, and Tef-1α genes, some species such as E. floccosum and A. gertleri took relatively remote positions. Here, characterization and obtained dendrogram of calmodulin gene on a broad range of dermatophyte species provide a basis for further discovery of relationships between species. Studies of other loci are necessary to confirm the results.

  8. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog

    OpenAIRE

    Kato, Kentaro; Sugi, Tatsuki; Takemae, Hitoshi; Takano, Ryo; Gong, Haiyan; Ishiwa, Akiko; Horimoto, Taisuke; Akashi, Hiroomi

    2016-01-01

    Background Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and a major pathogen of animals and immunocompromised humans, in whom it causes encephalitis. Understanding the mechanism of tachyzoite invasion is important for the discovery of new drug targets and may serve as a model for the study of other apicomplexan parasites. We previously showed that Plasmodium falciparum expresses a homolog of human calcium calmodulin-dependent protein kinase (CaMK) that is ...

  9. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    Science.gov (United States)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  10. Increased calcium/calmodulin-dependent protein kinase II activity by morphine-sensitization in rat hippocampus.

    Science.gov (United States)

    Kadivar, Mehdi; Farahmandfar, Maryam; Ranjbar, Faezeh Esmaeli; Zarrindast, Mohammad-Reza

    2014-07-01

    Repeated exposure to drugs of abuse, such as morphine, elicits a progressive enhancement of drug-induced behavioral responses, a phenomenon termed behavioral sensitization. These changes in behavior may reflect long-lasting changes in some of the important molecules involved in memory processing such as calcium/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of morphine sensitization on mRNA expression of α and β isoforms and activity of CaMKII in the hippocampus of male rats. Animals were treated for 3 days with saline or morphine (20mg/kg) and following a washout period of 5 days, a challenge dose of morphine (5mg/kg) were administered. The results indicate that morphine administration in pre-treated animals produces behavioral sensitization, as determined by significant increase in locomotion and oral stereotypy behavior. In addition, repeated morphine treatment increased mRNA expression of both α and β isoforms of CaMKII in the hippocampus. The present study also showed that induction of morphine sensitization significantly increased both Ca2+/calmodulin-independent and Ca2+/calmodulin-dependent activities of CaMK II in the rat hippocampus. However, acute administration of morphine (5mg/kg) did not alter either α and β CaMKII mRNA expression or CaMKII activity in the hippocampus. The stimulation effects of morphine sensitization on mRNA expression and activity of CaMKII were completely abolished by administration of naloxone, 30min prior to s.c. injections of morphine (20mg/kg/day×3 days). Our data demonstrated that induction of morphine sensitization could effectively modulate the activity and the mRNA expression of CaMKII in the hippocampus and this effect of morphine was exerted by the activation of opioid receptors.

  11. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Poovaiah, B. W.

    2002-01-01

    Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.

  12. MIPS: a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock.

    Science.gov (United States)

    Zhang, Xuan; Zhou, Huiyue; Zang, Xiaonan; Gong, Le; Sun, Hengyi; Zhang, Xuecheng

    2014-08-01

    To study the Ca(2+)/Calmodulin (CaM) signal transduction pathway of Gracilaria lemaneiformis under heat stress, myo-inositol-1-phosphate synthase (MIPS), a calmodulin-binding protein, was isolated using the yeast two-hybrid system. cDNA and DNA sequences of mips were cloned from G. lemaneiformis by using 5'RACE and genome walking procedures. The MIPS DNA sequence was 2,067 nucleotides long, containing an open reading frame (ORF) of 1,623 nucleotides with no intron. The mips ORF was predicted to encode 540 amino acids, which included the conserved MIPS domain and was 61-67 % similar to that of other species. After analyzing the amino acid sequence of MIPS, the CaM-Binding Domain (CaMBD) was inferred to be at a site spanning from amino acid 212 to amino acid 236. The yeast two-hybrid results proved that MIPS can interact with CaM and that MIPS is a type of calmodulin-binding protein. Next, the expression of CaM and MIPS in wild-type G. lemaneiformis and a heat-tolerant G. lemaneiformis cultivar, "981," were analyzed using real-time PCR under a heat shock of 32 °C. The expression level displayed a cyclical upward trend. Compared with wild type, the CaM expression levels of cultivar 981 were higher, which might directly relate to its resistance to high temperatures. This paper indicates that MIPS and CaM may play important roles in the high-temperature resistance of G. lemaneiformis.

  13. Activation of ERK1/2 and TNF-α production are regulated by calcium/calmodulin signaling pathway during Penicillium marneffei infection within human macrophages.

    Science.gov (United States)

    Chen, Renqiong; Ji, Guangquan; Wang, Ling; Ren, Hong; Xi, Liyan

    2016-04-01

    Previous study have shown that Penicillium marneffei (P. marneffei)-induced TNF-α production via an extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase-dependent mechanism is an important host defence mechanism against P. marneffei in human macrophages. Therefore, we explore signaling pathway that regulates TNF-α secretion and activation of ERK1/2 by intracellular signaling mechanisms during P. marneffei infection. We found that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase Ⅱ pathway in P. marneffei-infected human macrophages. In contrast, P. marneffei-induced p38 MAPK activation was negatively regulated by calcium/calmodulin/calmodulin kinase Ⅱ signaling pathway. Furthermore, TNF-α production in P. marneffei-infected human macrophages was also dependent on Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway. These data suggest that Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway plays vital regulatory roles in macrophage activation and subsequent cytokine production during P. marneffei infection.

  14. Identification of Ca2+/calmodulin-dependent phosphorylation sites of endocytic scaffold ITSN1 by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.

    2015-10-01

    Full Text Available ITSN1 is a scaffold protein involved in endocytosis, signal transduction and cytoskeleton regulation. It has been previously shown that ITSN1 undergoes Ca2+/calmodulin-dependent phosphorylation in vitro. Aim. We intend to identify these phosphorylation sites. Methods. In vitro kinase reaction; liquid chromatography-tandem mass spectrometry (LC/MS/MS. Results. We identified five sites of Ca2+/calmodulin-dependent phosphorylation in the recombinant fragments of ITSN1. Conclusions. We have shown that the ITSN1 coiled-coil region (CCR and the interdomain linkers between EH2 and CCR, SH3A and SH3B, SH3B and SH3C domains were phosphorylated in a Ca2+/calmodulin-dependent manner in vitro.

  15. Cloning and Characterization of a Homologous Ca2+/Calmodulin-Dependent Protein Kinase PSKH1 from Pearl Oyster Pinctada fucata

    Institute of Scientific and Technical Information of China (English)

    DAI Yiping; XIE Liping; XIONG Xunhao; CHEN Lei; FAN Weimin; ZHANG Rongqing

    2005-01-01

    Many of the effects of Ca2+ signaling are mediated through the Ca2+/calmodulin complex and its acceptors, the Ca2+/calmodulin-dependent protein kinases, including PSKH1. Studies of the proteins involved in the calcium metabolism in oysters will help elucidate the pearl formation mechanism. This paper describes a full-length PSKH1 cDNA isolated from pearl oyster Pinctada fucata. Oyster PSKH1 shares 65% homology with human PSKH1 and 48% similarity with rat CaM kinase I in the amino acid sequence, and contains a calmodulin-binding domain. The results of semi-quantitative reverse transcription-polymerase chain reaction and in situ hybridization revealed that oyster PSKH1 mRNA is highly expressed in the outer epithelial cells of the mantle pallial and in the gill epithelial cells. These studies provide important information describing the complex Ca2+ signaling mechanism in oyster calcium metabolism.

  16. La régulation des protéines plastidiales par la calmoduline

    OpenAIRE

    Dell'Aglio, Elisa

    2013-01-01

    Calmodulin (CaM) is an important modulator of cell responses of eukaryotes. This protein is composed of four calcium (Ca2+)-binding sites and a flexible central helix. CaM can interact with other proteins in a Ca2+-dependent way. This leads to a wide variety of effects, such as activation/inhibition of enzymes, opening of membrane channels and regulation of protein trafficking. The identification of high-affinity CaM targets requires techniques allowing the study of the CaM-binding parameters...

  17. Postsynaptic long-term enhancement (LTE) by dopamine may be mediated by Ca2+ and calmodulin.

    Science.gov (United States)

    Mochida, S; Libet, B

    1990-04-01

    Long-term enhancement (LTE), of postsynaptic slow depolarizing responses to a muscarinic agonist (MCh), follows a brief exposure of the rabbit superior cervical ganglion to another transmitter, dopamine (DA). Either reduction of external Ca2+ (to 1.0 mM or 0.2 mM) or presence of a specific calmodulin antagonist (calmidazolium at 5 microM) blocked DA induction of this LTE. However, unlike LTP in hippocampus, induction of LTE is not mediated by depolarization-dependent influx of Ca2+.

  18. Protective effects of calmodulin antagonists (trifluoperazine and W-7 on hypothermic ischemic rat hearts.

    Directory of Open Access Journals (Sweden)

    Sugawara,Eiji

    1991-06-01

    Full Text Available The cardioprotective effect of calmodulin antagonists, trifluoperazine (TFP and N-(6-aminohexyl-5-chloro-1-naphthalene sulfonamide (W-7 was examined on the isolated rat heart exposed to hypothermic and ischemic conditions by measuring distribution of lysosomal enzymes in myocardial cells, and leakage of creatine kinase (CK during reperfusion and postischemic recovery in myocardial systolic function. Experimental hearts were infused with 20 degrees C Krebs-Henseleit bicarbonate buffer (KHB or KHB containing TFP or W-7 for 2min every 30min during hypothermic ischemia. After ischemia for 120min at 20 degrees C, rat hearts were reperfused at 37 degrees C for 30min. TFP and W-7 improved functional recovery and prevented CK release. In TFP treated hearts, leakage of lysosomal enzymes was reduced significantly, whereas stabilization of lysosomes by W-7 did not occur. These results suggest that calcium-calmodulin dependent enzymes may play an important role in the development of cellular damage of the myocardium during hypothermic ischemia, although levels of leakage of lysosomal enzymes may be unreliable predictors of functional recovery after hypothermic ischemia.

  19. Isolation of Hybridomas for Golgi-associated Proteins and a Plant Calmodulin

    Science.gov (United States)

    Kuzmanoff, K. M.; Ray, P. M.

    1985-01-01

    The demonstration of a role for calcium in the mechanism of the gravitropic response indicates a role for calmodulin. Localization studies indicate that plant cell walls have a high content of calmodulin which suggests a regulatory role for CaM in both gravitropic curvature and auxin-induced growth. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the ctivity of Golgi-localized B-1,4-glucan synthase (GS), an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. In order to determine whether auxin stimulates GS activity either by modulation of existing enzyme or induces de novo formation of Golgi glucan synthase, a study was undertaken to isolate and quantitate glucan synthase. This enzyme appears to be an integral protein of the Golgi membrane and has resisted isolation with retention of activity. The production of monoclonal antibody for glucan synthase was undertaken due to the inability to isolate GS by standard detergent/liposome techniques.

  20. Resveratrol increases nitric oxide production in the rat thick ascending limb via Ca2+/calmodulin.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Cabral, Pablo D; Garvin, Jeffrey L

    2014-01-01

    The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent deacetylase sirtuin1 (SIRT1) activities, all of which could activate NO production. We hypothesized that resveratrol stimulates NO production by thick ascending limbs via a Ca2+/calmodulin-dependent mechanism. To test this, the effect of resveratrol on NO bioavailability was measured in thick ascending limb suspensions. Cai was measured in single perfused thick ascending limbs. SIRT1 activity and expression were measured in thick ascending limb lysates. Resveratrol (100 µM) increased NO bioavailability in thick ascending limb suspensions by 1.3±0.2 AFU/mg/min (pthick ascending limbs via a Ca2+/calmodulin dependent mechanism, and SIRT1 and AMPK do not participate. Resveratrol-stimulated NO production in thick ascending limbs may account for part of its beneficial effects.

  1. NMR and molecular dynamics studies of the interaction of melatonin with calmodulin

    Science.gov (United States)

    Turjanski, Adrián G.; Estrin, Darío A.; Rosenstein, Ruth E.; McCormick, John E.; Martin, Stephen R.; Pastore, Annalisa; Biekofsky, Rodolfo R.; Martorana, Vincenzo

    2004-01-01

    Pineal hormone melatonin (N-acetyl-5-methoxytryptamine) is thought to modulate the calcium/calmodulin signaling pathway either by changing intracellular Ca2+ concentration via activation of its G-protein–coupled membrane receptors, or through a direct interaction with calmodulin (CaM). The present work studies the direct interaction of melatonin with intact calcium-saturated CaM both experimentally, by fluorescence and nuclear magnetic resonance spectroscopies, and theoretically, by molecular dynamics simulations. The analysis of the experimental data shows that the interaction is calcium-dependent. The affinity, as obtained from monitoring 15N and 1H chemical shift changes for a melatonin titration, is weak (in the millimolar range) and comparable for the N- and C-terminal domains. Partial replacement of diamagnetic Ca2+ by paramagnetic Tb3+ allowed the measurement of interdomain NMR pseudocontact shifts and residual dipolar couplings, indicating that each domain movement in the complex is not correlated with the other one. Molecular dynamics simulations allow us to follow the dynamics of melatonin in the binding pocket of CaM. Overall, this study provides an example of how a combination of experimental and theoretical approaches can shed light on a weakly interacting system of biological and pharmacological significance. PMID:15498938

  2. Proteomic Analysis of Calcium- and Phosphorylation-dependentCalmodulin Complexes in Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Deok-Jin; Wang, Daojing

    2006-05-26

    Protein conformational changes due to cofactor binding (e.g. metal ions, heme) and/or posttranslational modifications (e.g. phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium (Ca{sup 2+}) signaling and homeostasis. No systematic approach on the identification of phosphorylation-dependent Ca{sup 2+}/CaM binding proteins has been published. Herein, we report a proteome-wide study of phosphorylation-dependent CaM binding proteins from mammalian cells. This method, termed 'Dynamic Phosphoprotein Complex Trapping', 'DPPC Trapping' for short, utilizes a combination of in vivo and in vitro assays. The basic strategy is to drastically shift the equilibrium towards endogenous phosphorylation of Ser, Thr, and Tyr at the global scale by inhibiting corresponding phosphatases in vivo. The phosphorylation-dependent calmodulin-binding proteins are then trapped in vitro in a Ca{sup 2+}-dependent manner by CaM-Sepharose chromatography. Finally, the isolated calmodulin-binding proteins are separated by SDS-PAGE and identified by LC/MS/MS. In parallel, the phosphorylation-dependent binding is visualized by silver staining and/or Western blotting. Using this method, we selectively identified over 120 CaM-associated proteins including many previously uncharacterized. We verified ubiquitin-protein ligase EDD1, inositol 1, 4, 5-triphosphate receptor type 1 (IP{sub 3}R1), and ATP-dependent RNA helicase DEAD box protein 3 (DDX3), as phosphorylation-dependent CaM binding proteins. To demonstrate the utilities of our method in understanding biological pathways, we showed that pSer/Thr of IP{sub 3}R1 in vivo by staurosporine-sensitive kinase(s), but not by PKA/PKG/PKC, significantly reduced the affinity of its Ca{sup 2+}-dependent CaM binding. However, pSer/Thr of IP{sub 3}R1 did not substantially affect its Ca{sup 2+}-independent CaM binding. We further showed that phosphatase PP1, but not PP2A or PP2B

  3. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    Science.gov (United States)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  4. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    Science.gov (United States)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  5. Genotyping species of the Sporothrix schenckii complex by PCR-RFLP of calmodulin.

    Science.gov (United States)

    Rodrigues, Anderson Messias; de Hoog, G Sybren; de Camargo, Zoilo Pires

    2014-04-01

    Sporotrichosis is one of the most common subcutaneous mycosis in Latin America and is caused by 4 pathogenic thermodimorphic fungi in the genus Sporothrix. From both therapeutic and epidemiological perspectives, it is essential to identify the causative agents down to the species level. Traditional parameters may overlap among closely related species, and we propose polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) as an alternative approach. In the present study, the calmodulin gene was amplified and digested with HhaI to yield 5 different electrophoretic patterns representing all medically important Sporothrix species: Sporothrix brasiliensis, Sporothrix schenckii sensu stricto, Sporothrix globosa, and Sporothrix luriei. The PCR-RFLP protocol described here is a simple and inexpensive method and is highly suitable for accurate routine genotyping of relevant Sporothrix species.

  6. Calcium and Calmodulin-Mediated Regulation of Gene Expression in Plants

    Institute of Scientific and Technical Information of China (English)

    Min Chul Kim; Woo Sik Chung; Dae-Jin Yun; Moo Je Cho

    2009-01-01

    Sessile plants have developed a very delicate system to sense diverse kinds of endogenous developmental cues and exogenous environmental stimuli by using a simple Ca2+ ion. Calmodulin (CAM) is the predominant Ca2+ sensor and plays a crucial role in decoding the Ca2+ signatures into proper cellular responses in various cellular compartments in eukaryotes. A growing body of evidence points to the importance of Ca2+ and CaM in the regulation of the transcriptional process during plant responses to endogenous and exogenous stimuli. Here, we review recent progress in the identification of transcriptional regulators modulated by Ca2+ and CaM and in the assessment of their functional significance during plant signal transduction in response to biotic and abiotic stresses and developmental cues.

  7. Immunohistochemical locali- zation of Ca2+/calmodulin- dependent kinase in tobacco

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The existence of Ca2+/calmodulin-dependent kinase (CaM kinase, CaMK) in tobacco is verified immuno- logically and its distribution in different tissues of tobacco is studied. It has been demonstrated that CaMK is mainly distributed in early developing anthers, developing ovules and embryos, lateral root primordium, apical meristem and leaf primordium of buds and mesophyll cells and developing vascular bundles of leaves. There is enormous CaM kinase distributed in leaf epidermis fair cells and guard cells of stomas too. Little kinase is found in mature stem or root cells. The distribution properties of CaM kinase in tobacco are consistent with those of CaM, suggesting that there exists the Ca2+ signal transduction pathway mediated by CaM kinase in tobacco and it plays an important role in the plant growth and development.

  8. The Ca(2+)/Calmodulin/CaMKK2 Axis: Nature's Metabolic CaMshaft.

    Science.gov (United States)

    Marcelo, Kathrina L; Means, Anthony R; York, Brian

    2016-10-01

    Calcium (Ca(2+)) is an essential ligand that binds its primary intracellular receptor calmodulin (CaM) to trigger a variety of downstream processes and pathways. Central to the actions of Ca(2+)/CaM is the activation of a highly conserved Ca(2+)/CaM kinase (CaMK) cascade that amplifies Ca(2+) signals through a series of subsequent phosphorylation events. Proper regulation of Ca(2+) flux is necessary for whole-body metabolism and disruption of Ca(2+) homeostasis has been linked to various metabolic diseases. Here we provide a synthesis of recent advances that highlight the roles of the Ca(2+)/CaMK axis in key metabolic tissues. An appreciation of this information is critical to understanding the mechanisms by which Ca(2+)/CaM-dependent signaling contributes to metabolic homeostasis and disease.

  9. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

    2010-08-06

    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  10. Allosteric activation of Bordetella pertussis adenylyl cyclase by calmodulin: molecular dynamics and mutagenesis studies.

    Science.gov (United States)

    Selwa, Edithe; Davi, Marilyne; Chenal, Alexandre; Sotomayor-Pérez, Ana-Cristina; Ladant, Daniel; Malliavin, Thérèse E

    2014-07-25

    Adenylyl cyclase (AC) toxin is an essential toxin that allows Bordetella pertussis to invade eukaryotic cells, where it is activated after binding to calmodulin (CaM). Based on the crystal structure of the AC catalytic domain in complex with the C-terminal half of CaM (C-CaM), our previous molecular dynamics simulations (Selwa, E., Laine, E., and Malliavin, T. (2012) Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 80, 1028–1040) suggested that three residues (i.e. Arg(338), Asn(347), and Asp(360)) might be important for stabilizing the AC/CaM interaction. These residues belong to a loop-helix-loop motif at the C-terminal end of AC, which is located at the interface between CaM and the AC catalytic loop. In the present study, we conducted the in silico and in vitro characterization of three AC variants, where one (Asn(347); ACm1A), two (Arg(338) and Asp(360); ACm2A), or three residues (Arg(338), Asn(347), and Asp(360); ACm3A) were substituted with Ala. Biochemical studies showed that the affinities of ACm1A and ACm2A for CaM were not affected significantly, whereas that of ACm3A was reduced dramatically. To understand the effects of these modifications, molecular dynamics simulations were performed based on the modified proteins. The molecular dynamics trajectories recorded for the ACm3AC-CaM complex showed that the calcium-binding loops of C-CaM exhibited large fluctuations, which could be related to the weakened interaction between ACm3A and its activator. Overall, our results suggest that the loop-helix-loop motif at the C-terminal end of AC is crucial during CaM binding for stabilizing the AC catalytic loop in an active configuration.

  11. Kinetics of interaction of the myristoylated alanine-rich C kinase substrate, membranes, and calmodulin.

    Science.gov (United States)

    Arbuzova, A; Wang, J; Murray, D; Jacob, J; Cafiso, D S; McLaughlin, S

    1997-10-24

    Membrane binding of the myristoylated alanine-rich C kinase substrate (MARCKS) requires both its myristate chain and basic "effector" region. Previous studies with a peptide corresponding to the effector region, MARCKS-(151-175), showed that the 13 basic residues interact electrostatically with acidic lipids and that the 5 hydrophobic phenylalanine residues penetrate the polar head group region of the bilayer. Here we describe the kinetics of the membrane binding of fluorescent (acrylodan-labeled) peptides measured with a stopped-flow technique. Even though the peptide penetrates the polar head group region, the association of MARCKS-(151-175) with membranes is extremely rapid; association occurs with a diffusion-limited association rate constant. For example, kon = 10(11) M-1 s-1 for the peptide binding to 100-nm diameter phospholipid vesicles. As expected theoretically, kon is independent of factors that affect the molar partition coefficient, such as the mole fraction of acidic lipid in the vesicle and the salt concentration. The dissociation rate constant (koff) is approximately 10 s-1 (lifetime = 0.1 s) for vesicles with 10% acidic lipid in 100 mM KCl. Ca2+-calmodulin (Ca2+.CaM) decreases markedly the lifetime of the peptide on vesicles, e.g. from 0.1 to 0.01 s in the presence of 5 micrM Ca2+.CaM. Our results suggest that Ca2+.CaM collides with the membrane-bound MARCKS-(151-175) peptide and pulls the peptide off rapidly. We discuss the biological implications of this switch mechanism, speculating that an increase in the level of Ca2+-calmodulin could rapidly release phosphatidylinositol 4, 5-bisphosphate that previous work has suggested is sequestered in lateral domains formed by MARCKS and MARCKS-(151-175).

  12. Conformational selection and functional dynamics of calmodulin: a (19)F nuclear magnetic resonance study.

    Science.gov (United States)

    Hoang, Joshua; Prosser, R Scott

    2014-09-16

    Calcium-bound calmodulin (CaM-4Ca(2+)) is innately promiscuous with regard to its protein interaction network within the cell. A key facet of the interaction process involves conformational selection. In the absence of a binding peptide, CaM-4Ca(2+) adopts an equilibrium between a native state (N) and a weakly populated near-native peptide-bound-like state (I), whose lifetime is on the order of 1.5 ms at 37 °C, based on (19)F nuclear magnetic resonance (NMR) Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion measurements. This peptide-bound-like state of CaM-4Ca(2+) is entropically stabilized (ΔS = 280 ± 35 J mol(-1) K(-1)) relative to the native state, water-depleted, and likely parental to specific bound states. Solvent depletion, conformational selection, and flexibility of the peptide-bound-like state may be important in priming the protein for binding. At higher temperatures, the exchange rate, kex, appears to markedly slow, suggesting the onset of misfolded or off-pathway states, which retards interconversion between N and I. (19)F NMR CPMG relaxation dispersion experiments with both CaM-4Ca(2+) and the separate N-terminal and C-terminal domains reveal the cooperative role of the two domains in the binding process and the flexibility of the N-terminal domain in facilitating binding. Thus, when calcium binds, calmodulin establishes its interaction with a multitude of protein binding partners, through a combination of conformational selection to a state that is parental to the peptide-bound state and, finally, induced fit.

  13. Calmodulin and calcium interplay in the modulation of TRPC5 channel activity. Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation.

    Science.gov (United States)

    Ordaz, Benito; Tang, Jisen; Xiao, Rui; Salgado, Alfonso; Sampieri, Alicia; Zhu, Michael X; Vaca, Luis

    2005-09-02

    TRPC5 forms Ca2+-permeable nonselective cation channels important for neurite outgrowth and growth cone morphology of hippocampal neurons. Here we studied the activation of mouse TRPC5 expressed in Chinese hamster ovary and human embryonic kidney 293 cells by agonist stimulation of several receptors that couple to the phosphoinositide signaling cascade and the role of calmodulin (CaM) on the activation. We showed that exogenous application of 10 microM CaM through patch pipette accelerated the agonist-induced channel activation by 2.8-fold, with the time constant for half-activation reduced from 4.25 +/- 0.4 to 1.56 +/- 0.85 min. We identified a novel CaM-binding site located at the C terminus of TRPC5, 95 amino acids downstream from the previously determined common CaM/IP3R-binding (CIRB) domain for all TRPC proteins. Deletion of the novel CaM-binding site attenuated the acceleration in channel activation induced by CaM. However, disruption of the CIRB domain from TRPC5 rendered the channel irresponsive to agonist stimulation without affecting the cell surface expression of the channel protein. Furthermore, we showed that high (>5 microM) intracellular free Ca2+ inhibited the current density without affecting the time course of TRPC5 activation by receptor agonists. These results demonstrated that intracellular Ca2+ has dual and opposite effects on the activation of TRPC5. The novel CaM-binding site is important for the Ca2+/CaM-mediated facilitation, whereas the CIRB domain is critical for the overall response of receptor-induced TRPC5 channel activation.

  14. The effects of various incubation temperatures, particulate isolation, and possible role of calmodulin on the activity of the base exchange enzymes of rat brain.

    Science.gov (United States)

    Buchanan, A G; Kanfer, J N

    1980-10-01

    The involvement of calmodulin in the choline, ethanolamine, and serine exchange activities of rat brain microsomes was investigated. Calmodulin stimulated choline exchange activity to a greater extent than ethanolamine and serine exchange activities. The three base exchange activities were inhibited by antipsychotic drugs believed to prevent calmodulin interaction, but not by calmodulin-binding protein. The solutions employed for tissue homogenization and subsequent isolation of microsomes greatly influenced the base exchange activities. The process of resuspending isolated microsomes and recentrifugation, or "washing," produced major losses of detectable activity. The base exchange enzyme activities were maximal at 45 degrees, and Arrhenius plots revealed a common transition temperature of 31 degrees. The activation energies for the base exchange reactions decreased at temperatures above the observed transition temperature. Kinetic data, Km and Vmax, for the base exchange activities at 27, 37, and 45 degrees are presented.

  15. Chemosensitizing acridones: in vitro calmodulin dependent cAMP phosphodiesterase inhibition, docking, pharmacophore modeling and 3D QSAR studies.

    Science.gov (United States)

    Rajendra Prasad, V V S; Deepak Reddy, G; Appaji, D; Peters, G J; Mayur, Y C

    2013-03-01

    Calmodulin inhibitors have proved to play a significant role in sensitizing MDR cancer cells by interfering with cellular drug accumulation. The present investigation focuses on the evaluation of in vitro inhibitory efficacy of chloro acridones against calmodulin dependent cAMP phosphodiesterase (PDE1c). Moreover, molecular docking of acridones was performed with PDE1c in order to identify the possible protein ligand interactions and results thus obtained were compared with in vitro data. In addition an efficient pharmacophore model was developed from a set of 38 chemosensitizing acridones effective against doxorubicin resistant (HL-60/DX) cancer cell lines. Pharmacophoric features such as one hydrogen bond acceptor, one hydrophobic region, a positive ion group and three aromatic rings i.e., AHPRRR have been identified. Ligand based 3D-QSAR was also performed by employing partial least square regression analysis.

  16. The intracerebroventricular (ICV) administration of W-7, a calmodulin inhibitor, attenuates the development of morphine tolerance in rats.

    Science.gov (United States)

    Sepehri, Gholamreza; Sheibani, Vahid; Azarang, Afrooz; Shamsizadeh, Ali; Afarinesh, Mohammad Reza; Azizollahi, Saeed; Sepehri, Ehsan

    2010-04-01

    The present study was performed to determine the effect of intracerebroventricular (ICV) administration of W-7, a specific calmodulin inhibitor, on the development of tolerance to antinociceptive effect morphine administration. This study was carried out on male wistar rats, weighing 200-250 g. Morphine was administered daily (15 mg/kg for 8 days). The threshold to thermal nociceptive stimuli was measured by tail-flick test. W-7 (0.25, 0.5 and 1 micromol/rat) was injected through ICV. Maximal possible effect percentage (MPE %) was considered as analgesia index. Our result showed that chronic morphine exposure induced tolerance to its antinociceptive effect and administration of W-7 (0.5 and 1 micromol/rat) decreased the development of tolerance to it. In conclusion these data showed that chronic injection of W-7 inhibited the development of morphine tolerance which indicates that calmodulin and its dependent pathways may play a role in the morphine tolerance processes.

  17. Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission

    OpenAIRE

    Slonimsky, John D.; Mattaliano, Mark D.; Moon, Jung-Il; Leslie C. Griffith; Birren, Susan J.

    2006-01-01

    Neurotrophins regulate sympathetic neuron cotransmission by modulating the activity-dependent release of norepinephrine and acetylcholine. Nerve growth factor promotes excitatory noradrenergic transmission, whereas brain-derived neurotrophic factor (BDNF), acting through the p75 receptor, increases inhibitory cholinergic transmission. This regulation of corelease by target-derived factors leads to the functional modulation of myocyte beat rate in neuron–myocyte cocultures. Calcium/calmodulin-...

  18. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    Directory of Open Access Journals (Sweden)

    Yang Tianbao

    2012-02-01

    Full Text Available Abstract Background Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Results Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. Conclusions This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions.

  19. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  20. A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana.

    Science.gov (United States)

    Landoni, Michela; De Francesco, Alessandra; Galbiati, Massimo; Tonelli, Chiara

    2010-10-01

    Calmodulin (CAM) is an ubiquitous calcium binding protein whose function is to translate the signals, perceived as calcium concentration variations, into the appropriate cellular responses. In Arabidopsis thaliana there are 4 CAM isoforms which are highly similar, encoded by 7 genes, and one possible explanation proposed for the evolutionary conservation of the CAM gene family is that the different genes have acquired different functions so that they play possibly overlapping but non-identical roles. Here we report the characterization of the Arabidopsis mutant cam2-2, identified among the lines of the gene-trapping collection EXOTIC because of a distorted segregation of kanamycin resistance. Phenotypic analysis showed that in normal growth conditions cam2-2 plants were indistinguishable from the wild type while genetic analysis showed a reduced transmission of the cam2-2 allele through the male gametophyte and in vitro pollen germination revealed a reduced level of germination in comparison with the wild type. These results provide genetic evidence of the involvement of a CAM gene in pollen germination and support the theory of functional diversification of the CAM gene family.

  1. Responses of plant calmodulin to endocytosis induced by rare earth elements.

    Science.gov (United States)

    Wang, Lihong; Cheng, Mengzhu; Chu, Yunxia; Li, Xiaodong; Chen, David D Y; Huang, Xiaohua; Zhou, Qing

    2016-07-01

    The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells.

  2. Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Keizo Takao

    Full Text Available Calcium-calmodulin dependent protein kinase IV (CaMKIV is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency.

  3. Calcium/calmodulin dependence of nitric oxide synthase from Viviparus ater

    Directory of Open Access Journals (Sweden)

    D Tagliazucchi

    2005-04-01

    Full Text Available The calcium ion dependence of soluble and particulate nitric oxyde synthase (NOS activity fromViviparus ater immunocytes was investigated. At a calcium ion concentration of 2 nM, the NOS activitymeasured by citrulline formation was 27.1 ± 2.2 and 9.3 ± 0.8 pmol/min/106cell for soluble andparticulate NOS, respectively. The increase in free calcium ion concentration to 300 nM increasesenzyme activity to 57.5 ± 4.1 and 23.5 ± 1.2 pmol/min/106cell, respectively. The 50 % activation of thecalcium-dependent activity is 91 and 97 nM Ca2+ for soluble and particulate enzymes. Trifluoperazine,an inhibitor of the calmodulin-dependent enzyme, partially inhibits both activities. Soluble NOS is fivetimes more sensitive than particulate NOS. The behaviour of both activities with three NOS inhibitors(7-nitroindazole, S-methylisothiourea sulphate, diphenyleneiodonium is very similar, with IC50 valuesthat are not significantly different. The calcium ion dependence of NOS activities, in a range of freecalcium ion variations, which are transiently observed in receptor-stimulated cells, suggests that nitricoxyde in V. ater immunocytes not only has a defensive role but also signalling relevance in crosstalkingbetween immunocytes and other cells.

  4. Intracerebroventricular administration of morphine confers remote cardioprotection--role of opioid receptors and calmodulin.

    Science.gov (United States)

    Zhang, Ye; Irwin, Michael G; Lu, Yao; Mei, Bin; Zuo, You-Mei; Chen, Zhi-Wu; Wong, Tak-Ming

    2011-04-10

    The current study aimed to delineate the mechanism of remote preconditioning by intracerebroventricular morphine (RMPC) against myocardial ischemia-reperfusion injury. Male Sprague-Dawley rats were given an intracerebroventricular morphine injection before myocardial ischemia and reperfusion injury. Ischemia-reperfusion injury was achieved by 30min of left coronary artery occlusion followed by 120min of reperfusion. The effects of remote preconditioning by intracerebroventricular morphine preconditioning were also determined upon selective blockade of the δ, κ or μ-opioid receptors, or calmodulin (CaM). The infarct size, as a percentage of the area at risk, was determined by 2,3,5-triphenyltetrazolium staining. Remote preconditioning by intracerebroventricular morphine reduced infarct size in the ischemic/reperfused myocardium, and the effect was abolished by the selective blockade of any one of the three δ, κ and μ opioid receptors or CaM. Furthermore, remote preconditioning by intracerebroventricular morphine increased the expression of CaM in the hippocampus and the plasma level of calcitonin gene-related peptide (CGRP). The results of the present study provide evidence that the cardioprotection of remote preconditioning by intracerebroventricular morphine involves not only all three types of opioid receptors in the central nervous system, but also CaM, which releases CGRP, one of the mediators of remote preconditioning.

  5. Structural and thermodynamic studies of the tobacco calmodulin-like rgs-CaM protein.

    Science.gov (United States)

    Makiyama, Rodrigo K; Fernandes, Carlos A H; Dreyer, Thiago R; Moda, Bruno S; Matioli, Fabio F; Fontes, Marcos R M; Maia, Ivan G

    2016-11-01

    The tobacco calmodulin-like protein rgs-CaM is involved in host defense against virus and is reported to possess an associated RNA silencing suppressor activity. Rgs-CaM is also believed to act as an antiviral factor by interacting and targeting viral silencing suppressors for autophagic degradation. Despite these functional data, calcium interplay in the modulation of rgs-CaM is still poorly understood. Here we show that rgs-CaM displays a prevalent alpha-helical conformation and possesses three functional Ca(2+)-binding sites. Using computational modeling and molecular dynamics simulation, we demonstrate that Ca(2+) binding to rgs-CaM triggers expansion of its tertiary structure with reorientation of alpha-helices within the EF-hands. This conformational change leads to the exposure of a large negatively charged region that may be implicated in the electrostatic interactions between rgs-CaM and viral suppressors. Moreover, the kd values obtained for Ca(2+) binding to the three functional sites are not within the affinity range of a typical Ca(2+) sensor.

  6. Bcl10 is phosphorylated on Ser138 by Ca2+/calmodulin-dependent protein kinase II.

    Science.gov (United States)

    Ishiguro, Kazuhiro; Ando, Takafumi; Goto, Hidemi; Xavier, Ramnik

    2007-03-01

    Ordered assembly of scaffold proteins Carma1-Bcl10-Malt1 determines NF-kappaB activation following T cell receptor (TCR) engagement. Carma1-Bcl10 interaction and the signaling pathway are controlled by Carma1 phosphorylation, which are induced by PKCtheta and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In addition to Carma1 phosphorylation, previous studies have demonstrated that Bcl10 is phosphorylated in the C-terminal Ser/Thr rich region following TCR engagement. However the kinases that phosphorylate Bcl10 are incompletely understood. Here we show that CaMKII phosphorylates Bcl10 on Ser138. Furthermore, a CaMKII inhibitor, KN93, and CaMKII siRNA substantially reduce Bcl10 phosphorylation induced by phorbol myristate acetate/ionomycin. S138A mutation prolongs Bcl10-induced NF-kappaB activation, suggesting that Bcl10 phosphorylation is involved in attenuation of NF-kappaB activation. These findings suggest that CaMKII modulates NF-kappaB activation via phosphorylating Bcl10 as well as Carma1.

  7. High-level expression of human calmodulin in E. coli and its effects on cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xiao Jun Li; Jian Guo Wu; Jun Ling Si; Da Wen Guo; Jian Ping Xu

    2000-01-01

    Calmodulin (CaM), widely distributed in almost all eukaryotic cells, is a major intracellular calcium receptor responsible for mediating the Ca2 + signal to a multitude of different enzyme systems and is thought to play a vital role in the regulation of cell proliferative cycle[1,2]. Recently, many studies showed that CaM is also present in extracellular fluid such as cell culture media and normal body fluid and has been reported to stimulate proliferation in a range of normal and neoplastic cells, apparently acting as an autocrine growth factor[3-11]. In 1988, Crocker et al reported for the first time that addition of extracellular pure pig brain CaM could promote DNA synthesis and cell [7]proliferation in K562 human leukaemic lymphocytes[7].After that, more and more research was done on extracellular CaM and evidences demonstrated that extracellular CaM could also stimulate cell proliferation in normal human umbilical vein endothelial cells[5], keratinocytes[4], suspension-cultured cells of Angelica Dahurica, etc[6]. CaM is a monomeric protein of 148 amino acids that contains four homologous Ca2 + -binding domains. CaM has been highly conserved throughout the evolution. Only 1 out of 148 amino acids of human CaM is different from that of fish CaM. Complementary DNAs encoding rat, eel, chicken, human, and trypanosome CaM have been cloned.

  8. Molecular cloning and characterisation of two calmodulin isoforms of the Madagascar periwinkle Catharanthus roseus.

    Science.gov (United States)

    Poutrain, P; Guirimand, G; Mahroug, S; Burlat, V; Melin, C; Ginis, O; Oudin, A; Giglioli-Guivarc'h, N; Pichon, O; Courdavault, V

    2011-01-01

    Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase.

  9. Characterization and expression of calmodulin gene during larval settlement and metamorphosis of the polychaete Hydroides elegans

    KAUST Repository

    Chen, Zhangfan

    2012-08-01

    The polychaete . Hydroides elegans (Serpulidae, Lophotrochozoa) is a problematic marine fouling organism in most tropical and subtropical coastal environment. Competent larvae of . H. elegans undergo the transition from the swimming larval stage to the sessile juvenile stage with substantial morphological, physiological, and behavior changes. This transition is often referred to as larval settlement and metamorphosis. In this study, we examined the possible involvement of calmodulin (CaM) - a multifunctional calcium metabolism regulator, in the larval settlement and metamorphosis of . H. elegans. A full-length . CaM cDNA was successfully cloned from . H. elegans (. He-CaM) and it contained an open reading frame of 450. bp, encoding 149 amino acid residues. It was highly expressed in 12. h post-metamorphic juveniles, and remained high in adults. . In situ hybridization conducted in competent larvae and juveniles revealed that . He-CaM gene was continuously expressed in the putative growth zones, branchial rudiments, and collar region, suggesting that . He-CaM might be involved in tissue differentiation and development. Our subsequent bioassay revealed that the CaM inhibitor W7 could effectively inhibit larval settlement and metamorphosis, and cause some morphological defects of unsettled larvae. In conclusion, our results revealed that CaM has important functions in the larval settlement and metamorphosis of . H. elegans. © 2012 Elsevier Inc..

  10. Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations

    CERN Document Server

    Nandigrami, Prithviraj

    2015-01-01

    Calmodulin (CaM) is a ubiquitous calcium binding protein consisting of two structurally similar domains with distinct stabilities, binding affinities, and flexibilities. We present coarse grained simulations that suggest the mechanism for the domain's allosteric transitions between the open and closed conformations depend on subtle differences in the folded state topology of the two domains. Throughout a wide temperature range, the simulated transition mechanism of the N-terminal domain (nCaM) follows a two-state transition mechanism while domain opening in the C-terminal domain (cCaM) involves unfolding and refolding of the tertiary structure. The appearance of the unfolded intermediate occurs at a higher temperature in nCaM than it does in cCaM. That is, we find that cCaM unfolds more readily along the transition route than nCaM. Furthermore, unfolding and refolding of the domain significantly slows the domain opening and closing rates of cCaM, a distinct scenario which can potentially influence the mechani...

  11. Subtle pH differences trigger single residue motions for moderating conformations of calmodulin

    CERN Document Server

    Atilgan, Ali Rana; Atilgan, Canan

    2011-01-01

    This study reveals the essence of ligand recognition mechanisms by which calmodulin (CaM) controls a variety of Ca2+ signaling processes. We study eight forms of calcium-loaded CaM each with distinct conformational states. Reducing the structure to two degrees of freedom conveniently describes main features of conformational changes of CaM via simultaneous twist-bend motions of the two lobes. We utilize perturbation-response scanning (PRS) technique, coupled with molecular dynamics simulations to analyze conformational preferences of calcium-loaded CaM, initially in extended form. PRS is comprised of sequential application of directed forces on residues followed by recording the resulting coordinates. We show that manipulation of a single residue, E31 located in one of the EF hand motifs, reproduces structural changes to compact forms, and the flexible linker acts as a transducer of binding information to distant parts of the protein. Independently, using four different pKa calculation strategies, we find E31...

  12. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Daniel X Keller

    Full Text Available The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.

  13. ARRHYTHMOGENIC CALMODULIN MUTATIONS AFFECT THE ACTIVATION AND TERMINATION OF CARDIAC RYANODINE RECEPTOR MEDIATED CA2+ RELEASE

    DEFF Research Database (Denmark)

    Søndergaard, Mads Toft; Chazin, Walter J.; Chen, Wayne S.R.;

    We recently identified the first two human missense mutations in a calmodulin (CaM) gene (CALM1) and linked these to catecholaminergic polymorphic ventricular tachycardia (CPVT) and sudden cardiac death in young individuals1. More CaM mutations have since been identified in CALM1 and also......M in the presence of RyR2 CaMBD. The D95V, N97S and D129G mutations lowered the affinity of Ca2+ binding of the C-lobe of CaM, to apparent KDs of ~ 140, 150, and 4000 nM, respectively, consistent with the critical role of these residues in Ca2+ binding to the C-lobe. Thus, we suggest that these mutations may shift...... to an apo-CaM binding state during diastole, leading to dysregulation of RyR2 mediated Ca2+ release. Despite the pronounced impact on RyR2 mediated Ca2+ release, the N-lobe N53I mutation only imposed a small lowering of the N-lobe Ca2+ affinity (KD ~1200 nM). Thus, the RyR2 mediated Ca2+ release is either...

  14. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms.

    Science.gov (United States)

    Love, Nick R; Pollak, Nadine; Dölle, Christian; Niere, Marc; Chen, Yaoyao; Oliveri, Paola; Amaya, Enrique; Patel, Sandip; Ziegler, Mathias

    2015-02-03

    Nicotinamide adenine dinucleotide phosphate (NADP) is a critical cofactor during metabolism, calcium signaling, and oxidative defense, yet how animals regulate their NADP pools in vivo and how NADP-synthesizing enzymes are regulated have long remained unknown. Here we show that expression of Nadk, an NAD(+) kinase-encoding gene, governs NADP biosynthesis in vivo and is essential for development in Xenopus frog embryos. Unexpectedly, we found that embryonic Nadk expression is dynamic, showing cell type-specific up-regulation during both frog and sea urchin embryogenesis. We analyzed the NAD kinases (NADKs) of a variety of deuterostome animals, finding two conserved internal domains forming a catalytic core but a highly divergent N terminus. One type of N terminus (found in basal species such as the sea urchin) mediates direct catalytic activation of NADK by Ca(2+)/calmodulin (CaM), whereas the other (typical for vertebrates) is phosphorylated by a CaM kinase-dependent mechanism. This work indicates that animal NADKs govern NADP biosynthesis in vivo and are regulated by evolutionarily divergent and conserved CaM-dependent mechanisms.

  15. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  16. Depolymerization of actin cytoskeleton is involved in stomatal closure-induced by extracellular calmodulin in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Extracellular calmodulin(CaM)plays significant roles in many physiological processes,but little is known about its mechanism of regulating stomatal movements.In this paper,whether CaM exists in the guard cell walls of Arabidopsis and whether depolymerization of actin cytoskeleton is involved in extracellular CaM-induced stomatal closing are investigated.It is found that CaM exists in guard cell walls of Arabidopsis,and its molecular weight is about 17 kD.Bioassay using CaM antagonists W7-agarose and anti-CaM serum shows that the endogenous extracellular CaM promotes stomatal closure and delays stomatal opening.The long radial actin filaments in guard cells undergo disruption in a time-dependent manner during exogenous CaM-induced stomatal closing.Pharmacological experiments show that depolymerization of actin cytoskeleton enhances the effect of exogenous CaM-induced stomatal closing and polymerization reduces the effect.We also find that exogenous CaM triggers an increase in [Ca2+]cyt of guard cells.If [Ca2+]cyt increase is blocked with EGTA,exogenous CaM-induced stomatal closure is inhibited.These results indicate that extracellular CaM causes elevation of [Ca2+]cyt in guard cells,subsequently resulting in disruption of actin filaments and finally leading to guard cells closure.

  17. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed....... Furthermore, the effect of exercise duration and intensity on skeletal muscle CaMKII activity and phosphorylation of downstream targets was examined. Eight healthy men exercised at ~67% of peak pulmonary O2 uptake (VO2peak) with muscle samples taken at rest and after 1, 10, 30, 60 and 90 min of exercise. Ten...... other men exercised for three consecutive 10 min bouts at 35%, 60% and 85% VO2peak with muscle samples taken at rest, at the end of each interval and 30 min post-exercise. There was a rapid and transient increase in autonomous CaMKII activity and CaMKII phosphorylation at Thr287 in skeletal muscle...

  18. Transcriptional effect of a calmodulin inhibitor, W-7, on the ligninolytic enzyme genes in Phanerochaete chrysosporium.

    Science.gov (United States)

    Sakamoto, Takaiku; Kitaura, Hironori; Minami, Masahiko; Honda, Yoichi; Watanabe, Takashi; Ueda, Akio; Suzuki, Kazumi; Irie, Toshikazu

    2010-10-01

    We investigated the effects of a calmodulin (CaM) inhibitor, W-7, on the expression of lignin peroxidase (LiP) and manganese peroxidase (MnP) genes in Phanerochaete chrysosporium to consider the role of cam gene, which was upregulated in parallel with the total activities of LiP and MnP in our previous transcriptomic analysis. The addition of 100 μM W-7 to the fungal cultures repressed the total activities of LiP and MnP, whereas the addition of 100 μM W-5, which is a control drug of W-7, retained approximately half of them, indicating that the effect of W-7 was attributable to CaM inhibition. Real-time reverse transcription polymerase chain reaction analysis revealed that most of lip and mnp isozyme genes predicted from whole-genome data were significantly inhibited by W-7 at the transcription level (P ≤ 0.05). These results suggest that CaM has an important role for the expression of isozyme genes of LiP and MnP at the transcription level.

  19. Altered calmodulin degradation and signaling in non-neuronal cells from Alzheimer's disease patients.

    Science.gov (United States)

    Esteras, Noemí; Muñoz, Úrsula; Alquézar, Carolina; Bartolomé, Fernando; Bermejo-Pareja, Félix; Martín-Requero, Ángeles

    2012-03-01

    Previous work indicated that changes in Ca(2+)/calmodulin (CaM) signaling pathway are involved in the control of proliferation and survival of immortalized lymphocytes from Alzheimer's disease (AD) patients. We examined the regulation of cellular CaM levels in AD lymphoblasts. An elevated CaM content in AD cells was found when compared with control cells from age-matched individuals. We did not find significant differences in the expression of the three genes that encode CaM: CALM1, 2, 3, by real time RT-PCR. However, we observed that the half-life of CaM was higher in lymphoblasts from AD than in control cells, suggesting that degradation of CaM is impaired in AD lymphoblasts. The rate of CaM degradation was found to be dependent on cellular Ca(2+) and ROS levels. CaM degradation occurs mainly via the ubiquitin-proteasome system. Increased levels of CaM were associated with overactivation of PI3K/Akt and CaMKII. Our results suggest that increased levels of CaM synergize with serum to overactivate PI3K/Akt in AD cells by direct binding of CaM to the regulatory α-subunit (p85) of PI3K. The systemic failure of CaM degradation, and thus of Ca(2+)/CaM-dependent signaling pathways, may be important in the etiopathogenesis of AD.

  20. Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations.

    Science.gov (United States)

    Nandigrami, Prithviraj; Portman, John J

    2016-03-14

    Calmodulin (CaM) is a ubiquitous Ca(2+)-binding protein consisting of two structurally similar domains with distinct stabilities, binding affinities, and flexibilities. We present coarse grained simulations that suggest that the mechanism for the domain's allosteric transitions between the open and closed conformations depends on subtle differences in the folded state topology of the two domains. Throughout a wide temperature range, the simulated transition mechanism of the N-terminal domain (nCaM) follows a two-state transition mechanism while domain opening in the C-terminal domain (cCaM) involves unfolding and refolding of the tertiary structure. The appearance of the unfolded intermediate occurs at a higher temperature in nCaM than it does in cCaM consistent with nCaM's higher thermal stability. Under approximate physiological conditions, the simulated unfolded state population of cCaM accounts for 10% of the population with nearly all of the sampled transitions (approximately 95%) unfolding and refolding during the conformational change. Transient unfolding significantly slows the domain opening and closing rates of cCaM, which can potentially influence its Ca(2+)-binding mechanism.

  1. The Ca(2+ influence on calmodulin unfolding pathway: a steered molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    Full Text Available The force-induced unfolding of calmodulin (CaM was investigated at atomistic details with steered molecular dynamics. The two isolated CaM domains as well as the full-length CaM were simulated in N-C-terminal pulling scheme, and the isolated N-lobe of CaM was studied specially in two other pulling schemes to test the effect of pulling direction and compare with relevant experiments. Both Ca(2+-loaded CaM and Ca(2+-free CaM were considered in order to define the Ca(2+ influence to the CaM unfolding. The results reveal that the Ca(2+ significantly affects the stability and unfolding behaviors of both the isolated CaM domains and the full-length CaM. In Ca(2+-loaded CaM, N-terminal domain unfolds in priori to the C-terminal domain. But in Ca(2+-free CaM, the unfolding order changes, and C-terminal domain unfolds first. The force-extension curves of CaM unfolding indicate that the major unfolding barrier comes from conquering the interaction of two EF-hand motifs in both N- and C- terminal domains. Our results provide the atomistic-level insights in the force-induced CaM unfolding and explain the observation in recent AFM experiments.

  2. Molecular characterization of a calmodulin involved in the signal transduction chain of gravitaxis in Euglena gracilis.

    Science.gov (United States)

    Daiker, Viktor; Lebert, Michael; Richter, Peter; Häder, Donat-Peter

    2010-04-01

    The unicellular flagellate Euglena gracilis shows a negative gravitactic behavior. This is based on physiological mechanisms which in the past have been indirectly assessed. Meanwhile, it was possible to isolate genes involved in the signal transduction chain of gravitaxis. The DNA sequences of five calmodulins were found in Euglena, one of which was only known in its protein structure (CaM.1); the other four are new. The biosynthesis of the corresponding proteins of CaM.1-CaM.5 was inhibited by means of RNA interference to determine their involvement in the gravitactic signal transduction chain. RNAi of CaM.1 inhibits free swimming of the cells and pronounced cell-form aberrations. The division of cells was also hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Blockage of CaM.3 to CaM. 5 did not impair gravitaxis. In contrast, the blockage of CaM.2 has only a transient and not pronounced influence on motility and cell form, but leads to a total loss of gravitactic orientation for more than 30 days. This indicates that CaM.2 is an element in the signal transduction chain of gravitaxis in E. gracilis. The results are discussed with regard to the current working model of gravitaxis in E. gracilis.

  3. Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we investigated the effects of increasing salinity on growth, gas exchange, abscisic acid(ABA), calmodulin (CAM), and the relevance to salt tolerance in seedlings of Populus euphratica Oliv. and cuttings of P. "pupularis 35-44" (P. popularis) and P. x euramericana cv. 1-214 (P. cv. Italica). The relative growth rates of shoot height (RGRH) for P. cv. Italica and P. popularis were severely reduced by increasing salt stress,whereas the growth reduction was relatively less in P. euphratica. Similarly, P. euphratica maintained higher net photosynthetic rates (Pn) and unit transpiration rates (TRN) than P. cv. Italica and P. popularis under conditions of higher salinity. Salinity caused a significant increase in leaf ABA and CaM in the three genotypes after the onset of stress, but NaCl-induced ABA and CaM accumulation was more pronounced in P. euphratica,suggesting that P. euphratica plants are more sensitive in sensing soil salinity than the other two poplars.Furthermore, P. euphratica maintained relatively higher ABA and CaM concentrations under conditions of high salinity. The higher capacity to synthesize stress signals, namely ABA and CaM, in P. euphratica and the contribution of this to the salt resistance of P. euphratica are discussed.

  4. Calmodulin Involvement in Stress-Activated Nuclear Localization of Albumin in JB6 Epithelial Cells.

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas J.; Negash, Sewite; Smallwood, Heather S.; Ramos, Kenneth S.; Thrall, Brian D.; Squier, Thomas C.

    2004-06-15

    We report that in response to oxidative stress, albumin is translocated to the nucleus where it binds in concert with known transcription factors to an antioxidant response element (ARE), which controls the expression of glutathione-S-transferase and other antioxidant enzymes, functioning to mediate adaptive cellular responses. To investigate the mechanisms underlying this adaptive cell response, we have identified linkages between calcium signaling and the nuclear translocation of albumin in JB6 epithelial cells. Under resting conditions, albumin and the calcium regulatory protein, calmodulin (CaM), co-immunoprecipitate using antibodies against either protein, indicating a tight association. Calcium activation of CaM disrupts the association between CaM and albumin, suggesting that transient increases in cytosolic calcium levels function to mobilize intracellular albumin to facilitate its translocation into the nucleus. Likewise, nuclear translocation of albumin is induced by exposure of cells to hydrogen peroxide or a phorbol ester, indicating a functional linkage between reactive oxygen species, calcium, and PKC-signaling pathways. Inclusion of an antioxidant enzyme (i.e., superoxide dismutase) blocks nuclear translocation, suggesting that the oxidation of sensitive proteins functions to coordinate the adaptive cellular response. These results suggest that elevated calcium transients, and associated increases in reactive oxygen species, contribute to adaptive cellular responses through the mobilization and nuclear translocation of cellular albumin to mediate the transcriptional regulation of antioxidant responsive elements.

  5. Distinguishing Unfolding and Functional Conformational Transitions of Calmodulin Using Ultraviolet Resonance Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Eric M.; Balakrishnan, G.; Squier, Thomas C.; Spiro, Thomas

    2014-06-14

    Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this paper, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in teritary contacts at the inter-domain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.

  6. Calmodulin-mediated suppression of 2-ketoisovalerate reductase in Beauveria bassiana beauvericin biosynthetic pathway.

    Science.gov (United States)

    Kim, Jiyoung; Yoon, Deok-Hyo; Oh, Junsang; Hyun, Min-Woo; Han, Jae-Gu; Sung, Gi-Ho

    2016-11-01

    Ketoisovalerate reductase (KIVR, E.C. 1.2.7.7) mediates the specific reduction of 2-ketoisovalerate (2-Kiv) to d-hydroxyisovalerate (d-Hiv), a precursor for beauvericin biosynthesis. Beauvericin, a famous mycotoxin produced by many fungi, is a cyclooligomer depsipeptide, which has insecticidal, antimicrobial, antiviral, and cytotoxic activities. In this report, we demonstrated that Beauveria bassiana 2-ketoisovalerate reductase (BbKIVR) acts as a typical KIVR enzyme in the entomopathogenic fungus B. bassiana. In addition, we found that BbKIVR interacts with calmodulin (CaM) in vitro and in vivo. The functional role of CaM-binding to BbKIVR was to negatively regulate the BbKIVR activity in B. bassiana. Environmental stimuli such as light and salt stress suppressed BbKIVR activity in B. bassiana. Interestingly, this negative effect of BbKIVR activity by light and salt stress was recovered by CaM inhibitors, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbKIVR plays an important role in the beauvericin biosynthetic pathway mediated by environmental stimuli such as light and salt stress via the CaM signaling pathway.

  7. Three synonymous genes encode calmodulin in a reptile, the Japanese tortoise, Clemmys japonica

    Directory of Open Access Journals (Sweden)

    Kouji Shimoda

    2002-01-01

    Full Text Available Three distinct calmodulin (CaM-encoding cDNAs were isolated from a reptile, the Japanese tortoise (Clemmys japonica, based on degenerative primer PCR. Because of synonymous codon usages, the deduced amino acid (aa sequences were exactly the same in all three genes and identical to the aa sequence of vertebrate CaM. The three cDNAs, referred to as CaM-A, -B, and -C, seemed to belong to the same type as CaMI, CaMII, and CaMIII, respectively, based on their sequence identity with those of the mammalian cDNAs and the glutamate codon biases. Northern blot analysis detected CaM-A and -B as bands corresponding to 1.8 kb, with the most abundant levels in the brain and testis, while CaM-C was detected most abundantly in the brain as bands of 1.4 and 2.0 kb. Our results indicate that, in the tortoise, CaM protein is encoded by at least three non-allelic genes, and that the ‘multigene-one protein' principle of CaM synthesis is applicable to all classes of vertebrates, from fishes to mammals.

  8. Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin.

    Science.gov (United States)

    Wang, C L; Leavis, P C; Gergely, J

    1984-12-18

    The stepwise addition of Tb3+ to calmodulin yields a large tyrosine-sensitized Tb3+ luminescence enhancement as the third and fourth ions bind to the protein [Wang, C.-L. A., Aquaron, R. R., Leavis, P. C., & Gergely, J. (1982) Eur. J. Biochem. 124, 7-12]. Since the only tyrosine residues in calmodulin are located within binding sites III and IV, these results suggest that Tb3+ binds first to sites I and II. Recent NMR studies have provided evidence that Ca2+, on the other hand, binds preferentially to sites III and IV. Kinetic studies using a stopped-flow apparatus also show that the preferential binding of Ca2+ and lanthanide ions is different. Upon rapid mixing of 2Ca-calmodulin with two Tb3+ ions, there was a small and rapid tyrosine fluorescence change, but no Tb3+ luminescence was observed, indicating that Tb3+ binds to sites I and II but not sites III and IV. When two Tb3+ ions are mixed with 2Dy-calmodulin, Tb3+ luminescence rises rapidly as Tb3+ binds to the empty sites III and IV, followed by a more gradual decrease (k = 0.4 s-1 as the ions redistribute themselves over the four sites. These results indicate that (i) both Tb3+ and Dy3+ prefer binding to sites I and II of calmodulin and (ii) the binding of Tb3+ to calmodulin is not impeded by the presence of two Ca2+ ions initially bound to the protein. Thus, the Ca2+ and lanthanide ions must exhibit opposite preferences for the four sites of calmodulin: sites III and IV are the high-affinity sites for Ca2+, whereas Tb3+ and Dy3+ prefer sites I and II.

  9. Involvement of heterotrimeric G protein in signal transduc-tion of extracellular calmodu-lin in regulating rbcS expres-sion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The role of heterotrimeric G protein in signal transduction pathway of extracellular calmodulin in regulating rbcS expression was examined in suspension-cultured cells of transgenic tobacco. Pharmalogical experiments indicated that G protein agonist cholera toxin enhanced rbcS expression and heterotrimeric G protein antagonist pertussis toxin inhibited rbcS expression in transgenic tobacco cells. Pertussis toxin also inhibited the enhancement effect caused by exogenous purified calmodulin on rbcS expression, whereas cholera toxin completely reversed the inhibitory effects caused by anti-calmodulin serum on rbcS expression. The right side-out vesicles from tobacco cell membrane were purified, which contained all of substrates for fluometric assay of GTPase activity. Exogenous purified calmodulin, when adding directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in the right side-out plasma membrane vesicles, and this increase in GTPase activity was completely inhibited both by hetero-trimeric G proteins antagonist pertussis toxin and nonhy-drolyzable GTP analogs GMP-PCP. These results provided the evidence that heterotrimeric G proteins may be involved in signal transduction pathways of extracellular calmodulin to regulate rbcS gene expression.

  10. Intrinsically disordered caldesmon binds calmodulin via the “buttons on a string” mechanism

    Directory of Open Access Journals (Sweden)

    Sergei E. Permyakov

    2015-09-01

    Full Text Available We show here that chicken gizzard caldesmon (CaD and its C-terminal domain (residues 636–771, CaD136 are intrinsically disordered proteins. The computational and experimental analyses of the wild type CaD136 and series of its single tryptophan mutants (W674A, W707A, and W737A and a double tryptophan mutant (W674A/W707A suggested that although the interaction of CaD136 with calmodulin (CaM can be driven by the non-specific electrostatic attraction between these oppositely charged molecules, the specificity of CaD136-CaM binding is likely to be determined by the specific packing of important CaD136 tryptophan residues at the CaD136-CaM interface. It is suggested that this interaction can be described as the “buttons on a charged string” model, where the electrostatic attraction between the intrinsically disordered CaD136 and the CaM is solidified in a “snapping buttons” manner by specific packing of the CaD136 “pliable buttons” (which are the short segments of fluctuating local structure condensed around the tryptophan residues at the CaD136-CaM interface. Our data also show that all three “buttons” are important for binding, since mutation of any of the tryptophans affects CaD136-CaM binding and since CaD136 remains CaM-buttoned even when two of the three tryptophans are mutated to alanines.

  11. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan

    2012-02-13

    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (= Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca 2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. © 2012 Chen et al.

  12. NMR Structure of Calmodulin Complexed to an N-terminally Acetylated α-Synuclein Peptide

    Science.gov (United States)

    Gruschus, James M.; Yap, Thai Leong; Pistolesi, Sara; Maltsev, Alexander S.; Lee, Jennifer C.

    2013-01-01

    Calmodulin (CaM) is a calcium binding protein that plays numerous roles in Ca-dependent cellular processes, including uptake and release of neurotransmitters in neurons. α-Synuclein (α-syn), one of the most abundant proteins in central nervous system neurons, helps maintain presynaptic vesicles containing neurotransmitters and moderates their Ca-dependent release into the synapse. Ca-bound CaM interacts with α-syn most strongly at its N-terminus. The N-terminal region of α-syn is important for membrane binding, thus CaM could modulate membrane association of α-syn in a Ca-dependent manner. In contrast, Ca-free CaM has negligible interaction. The interaction with CaM leads to significant signal broadening in both CaM and α-syn NMR spectra, most likely due to conformational exchange. The broadening is much reduced when binding a peptide consisting of the first 19 residues of α-syn. In neurons, most α-syn is acetylated at the N-terminus, and acetylation leads to a ten-fold increase in binding strength for the α-syn peptide (KD = 35 ± 10 μM). The N-terminally acetylated peptide adopts a helical structure at the N-terminus with the acetyl group contacting the N-terminal domain of CaM, and with less ordered helical structure towards the C-terminus of the peptide contacting the CaM C-terminal domain. Comparison with known structures shows the CaM/α-syn complex most closely resembles Ca-bound CaM in a complex with an IQ motif peptide. However, a search comparing the α-syn peptide sequence with known CaM targets, including IQ motifs, found no homologies, thus the N-terminal α-syn CaM binding site appears to be a novel CaM target sequence. PMID:23607618

  13. Structural Studies of a Complex Between Endothelial Nitric Oxide Synthase and Calmodulin at Physiological Calcium Concentration.

    Science.gov (United States)

    Piazza, Michael; Dieckmann, Thorsten; Guillemette, Joseph Guy

    2016-10-04

    The small acidic protein Calmodulin (CaM) serves as a Ca(2+) sensor and control element for many enzymes including nitric oxide synthase (NOS) enzymes that play major roles in key physiological and pathological processes. CaM binding causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. In this report, NMR spectroscopy was used to determine the solution structure of the endothelial NOS (eNOS) peptide in complex with CaM at the lowest Ca(2+) concentration (225 nM) required for CaM to bind to eNOS and corresponds to a physiological elevated Ca2+ level found in mammalian cells. Under these conditions, the CaM-eNOS complex has a Ca(2+)-replete C-terminal lobe bound the eNOS peptide and a Ca(2+) free N-terminal lobe loosely associated to the eNOS peptide. With increasing Ca(2+) concentration, the binding of Ca(2+) by the N-lobe of CaM results in a stronger interaction with the C-terminal region of the eNOS peptide and increased α-helical structure of the peptide that may be part of the mechanism resulting in electron transfer from the FMN to the heme in the oxygenase domain of the enzyme. SPR studies performed under the same conditions show Ca(2+) concentration dependent binding kinetics were consistent with the NMR structural results. This investigation shows that structural studies performed under more physiological relevant conditions provide information on subtle changes in structure that may not be apparent when experiments are performed in excess Ca(2+) concentrations.

  14. Localization and function of calmodulin in live-cells of Aspergillus nidulans.

    Science.gov (United States)

    Chen, Shaochun; Song, Yiju; Cao, Jinling; Wang, Gang; Wei, Hua; Xu, Xushi; Lu, Ling

    2010-03-01

    Calmodulin (CaM) is a small, eukaryotic protein that reversibly binds Ca(2+). Study of CaM localization in genetically tractable organisms has yielded many insights into CaM function. Here, we described the dynamic localization of Aspergillus nidulans CaM (AnCaM) in live-cells by using recombination strains with homologous, single cross-over insertions at the target gene which placed the GFP fused copy under the inducible alcA promoter and the RFP-CaM integration under the native cam promoter. We found that the localization of CaM fusion was quite dynamic throughout the hypha and was concentrated to the active growing sites during germination, hyphal growth, cytokinesis and conidiation. The depletion of CaM by alcA promoter repression induced the explicit abnormalities of germlings with the swollen germ tubes. In addition, the position of highly concentrated GFP-CaM in the extreme apex seemed to determine the hyphal orientation. These data collectively suggest that CaM is constantly required for new hyphal growth. In contrast to this constant accumulation at the apex, GFP-CaM was only transiently localized at septum sites during cytokinesis. Notably, depletion of CaM caused the defect of septation with a completely blocked septum formation indicating that the transient CaM accumulation at the septum site is essential for septation. Moreover, the normal localization of CaM at a hyphal tip required the presence of the functional actin cytoskeleton and the motor protein KipA, which is indispensable for positioning Spitzenkörper. This is the first report of CaM localization and function in live-cells by the site-specific homologous integration in filamentous fungi.

  15. Immunohistochemical determination of calcium-calmodulin binding predicts neuronal damage after global ischemia.

    Science.gov (United States)

    Picone, C M; Grotta, J C; Earls, R; Strong, R; Dedman, J

    1989-12-01

    Since ionic Ca2+ binds with intracellular calmodulin (CaM) before activating proteases, kinases, and phospholipases, demonstration of persistent Ca2+-CaM binding in neurons destined to show ischemic cellular injury would support the concept that elevated intracellular Ca2+ plays a causative role in ischemic neuronal damage. In order to characterize Ca2+-CaM binding, we used a sheep anti-CaM antibody (CaM-Ab) which recognizes CaM that is not bound to Ca2+ or brain target proteins. Therefore, immunohistochemical staining of brain sections by labeled CaM-Ab represented only unbound CaM. Six normal rats were compared to 15 animals rendered ischemic for 30 min by a modification of the four-vessel occlusion model. Animals were killed immediately after ischemia, and after 2 and 24 h of reperfusion. Brain sections through hippocampus were incubated in CaM-Ab, and a diaminobenzadiene labeled anti-sheep secondary antibody was added to stain the CaM-Ab. Staining in the endal limb of dentate, dorsal CA1, lateral CA3, and parietal cortex was graded on a 4-point scale. All normal animals had grade 4 staining indicating the presence of unbound CaM in all four brain regions. Ischemic animals demonstrated reduced (grade 0 to 2) staining in the CA1 and CA3 regions immediately and 2 and 24 h after ischemia (p less than 0.01 for both regions at all three time intervals) indicating persistent binding of CaM with Ca2+ and target proteins in these regions. Staining decreased in dentate and cortex up to 2 h after ischemia (p = 0.02 for both regions) but returned toward normal by 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. α-Calcium calmodulin kinase II modulates the temporal structure of hippocampal bursting patterns.

    Directory of Open Access Journals (Sweden)

    Jeiwon Cho

    Full Text Available The alpha calcium calmodulin kinase II (α-CaMKII is known to play a key role in CA1/CA3 synaptic plasticity, hippocampal place cell stability and spatial learning. Additionally, there is evidence from hippocampal electrophysiological slice studies that this kinase has a role in regulating ion channels that control neuronal excitability. Here, we report in vivo single unit studies, with α-CaMKII mutant mice, in which threonine 305 was replaced with an aspartate (α-CaMKII(T305D mutants, that indicate that this kinase modulates spike patterns in hippocampal pyramidal neurons. Previous studies showed that α-CaMKII(T305D mutants have abnormalities in both hippocampal LTP and hippocampal-dependent learning. We found that besides decreased place cell stability, which could be caused by their LTP impairments, the hippocampal CA1 spike patterns of α-CaMKII(T305D mutants were profoundly abnormal. Although overall firing rate, and overall burst frequency were not significantly altered in these mutants, inter-burst intervals, mean number of intra-burst spikes, ratio of intra-burst spikes to total spikes, and mean intra-burst intervals were significantly altered. In particular, the intra burst intervals of place cells in α-CaMKII(T305D mutants showed higher variability than controls. These results provide in vivo evidence that besides its well-known function in synaptic plasticity, α-CaMKII, and in particular its inhibitory phosphorylation at threonine 305, also have a role in shaping the temporal structure of hippocampal burst patterns. These results suggest that some of the molecular processes involved in acquiring information may also shape the patterns used to encode this information.

  17. Oxidized calmodulin kinase II regulates conduction following myocardial infarction: a computational analysis.

    Directory of Open Access Journals (Sweden)

    Matthew D Christensen

    2009-12-01

    Full Text Available Calmodulin kinase II (CaMKII mediates critical signaling pathways responsible for divergent functions in the heart including calcium cycling, hypertrophy and apoptosis. Dysfunction in the CaMKII signaling pathway occurs in heart disease and is associated with increased susceptibility to life-threatening arrhythmia. Furthermore, CaMKII inhibition prevents cardiac arrhythmia and improves heart function following myocardial infarction. Recently, a novel mechanism for oxidative CaMKII activation was discovered in the heart. Here, we provide the first report of CaMKII oxidation state in a well-validated, large-animal model of heart disease. Specifically, we observe increased levels of oxidized CaMKII in the infarct border zone (BZ. These unexpected new data identify an alternative activation pathway for CaMKII in common cardiovascular disease. To study the role of oxidation-dependent CaMKII activation in creating a pro-arrhythmia substrate following myocardial infarction, we developed a new mathematical model of CaMKII activity including both oxidative and autophosphorylation activation pathways. Computer simulations using a multicellular mathematical model of the cardiac fiber demonstrate that enhanced CaMKII activity in the infarct BZ, due primarily to increased oxidation, is associated with reduced conduction velocity, increased effective refractory period, and increased susceptibility to formation of conduction block at the BZ margin, a prerequisite for reentry. Furthermore, our model predicts that CaMKII inhibition improves conduction and reduces refractoriness in the BZ, thereby reducing vulnerability to conduction block and reentry. These results identify a novel oxidation-dependent pathway for CaMKII activation in the infarct BZ that may be an effective therapeutic target for improving conduction and reducing heterogeneity in the infarcted heart.

  18. Cooperativity between calmodulin-binding sites in Kv7.2 channels.

    Science.gov (United States)

    Alaimo, Alessandro; Alberdi, Araitz; Gomis-Perez, Carolina; Fernández-Orth, Juncal; Gómez-Posada, Juan Camilo; Areso, Pilar; Villarroel, Alvaro

    2013-01-01

    Among the multiple roles assigned to calmodulin (CaM), controlling the surface expression of Kv7.2 channels by binding to two discontinuous sites is a unique property of this Ca(2+) binding protein. Mutations that interfere with CaM binding or the sequestering of CaM prevent this M-channel component from exiting the endoplasmic reticulum (ER), which reduces M-current density in hippocampal neurons, enhancing excitability and offering a rational mechanism to explain some forms of benign familial neonatal convulsions (BFNC). Previously, we identified a mutation (S511D) that impedes CaM binding while allowing the channel to exit the ER, hinting that CaM binding may not be strictly required for Kv7.2 channel trafficking to the plasma membrane. Alternatively, this interaction with CaM might escape detection and, indeed, we now show that the S511D mutant contains functional CaM-binding sites that are not detected by classical biochemical techniques. Surface expression and function is rescued by CaM, suggesting that free CaM in HEK293 cells is limiting and reinforcing the hypothesis that CaM binding is required for ER exit. Within the CaM-binding domain formed by two sites (helix A and helix B), we show that CaM binds to helix B with higher apparent affinity than helix A, both in the presence and absence of Ca(2+), and that the two sites cooperate. Hence, CaM can bridge two binding domains, anchoring helix A of one subunit to helix B of another subunit, in this way influencing the function of Kv7.2 channels.

  19. Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus.

    Science.gov (United States)

    Suetomi, Takashi; Sakamoto, Takaiku; Tokunaga, Yoshitaka; Kameyama, Toru; Honda, Yoichi; Kamitsuji, Hisatoshi; Kameshita, Isamu; Izumitsu, Kousuke; Suzuki, Kazumi; Irie, Toshikazu

    2015-05-01

    Previously, we suppressed the expression of genes encoding isozymes of lignin peroxidase (LiP) and manganese peroxidase (MnP) using a calmodulin (CaM) inhibitor, W7, in the white-rot fungus Phanerochaete chrysosporium; this suggested that CaM positively regulates their expression. Here, we studied the role of CaM in another white-rot fungus, Pleurotus ostreatus, which produces MnP and versatile peroxidase (VP), but not LiP. W7 upregulated Mn(2+)-dependent oxidation of guaiacol, suggesting that CaM negatively regulates the production of the enzymes. Suppression of CaM in P. ostreatus using RNAi also led to upregulation of enzyme activity, whereas overexpression of CaM in P. ostreatus caused downregulation. Real-time RT-PCR showed that MnP1-6 and VP3 levels in the CaM-knockdown strain were higher than those in the wild-type strain, while MnP-5 and -6 and VP1 and 2 levels in the CaM-overexpressing strain were lower than in the wild type. Moreover, we also found that another ligninolytic enzyme, laccase, which is not produced by P. chrysosporium, was negatively regulated by CaM in P. ostreatus similar to MnP and VP. Although overexpression of CaM did not reduce the ability of P. ostreatus to digest beech wood powder, the percentage of lignin remaining in the digest was slightly higher than in the wild-type strain digest.

  20. Designing molecular dynamics simulations to shift populations of the conformational states of calmodulin.

    Directory of Open Access Journals (Sweden)

    Ayse Ozlem Aykut

    Full Text Available We elucidate the mechanisms that lead to population shifts in the conformational states of calcium-loaded calmodulin (Ca(2+-CaM. We design extensive molecular dynamics simulations to classify the effects that are responsible for adopting occupied conformations available in the ensemble of NMR structures. Electrostatic interactions amongst the different regions of the protein and with its vicinal water are herein mediated by lowering the ionic strength or the pH. Amino acid E31, which is one of the few charged residues whose ionization state is highly sensitive to pH differences in the physiological range, proves to be distinctive in its control of population shifts. E31A mutation at low ionic strength results in a distinct change from an extended to a compact Ca(2+-CaM conformation within tens of nanoseconds, that otherwise occur on the time scales of microseconds. The kinked linker found in this particular compact form is observed in many of the target-bound forms of Ca(2+-CaM, increasing the binding affinity. This mutation is unique in controlling C-lobe dynamics by affecting the fluctuations between the EF-hand motif helices. We also monitor the effect of the ionic strength on the conformational multiplicity of Ca(2+-CaM. By lowering the ionic strength, the tendency of nonspecific anions in water to accumulate near the protein surface increases, especially in the vicinity of the linker. The change in the distribution of ions in the vicinal layer of water allows N- and C- lobes to span a wide variety of relative orientations that are otherwise not observed at physiological ionic strength. E31 protonation restores the conformations associated with physiological environmental conditions even at low ionic strength.

  1. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors.

    Science.gov (United States)

    Van Hook, Matthew J; Parmelee, Caitlyn M; Chen, Minghui; Cork, Karlene M; Curto, Carina; Thoreson, Wallace B

    2014-11-01

    At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca(2+)) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons.

  2. Autonomous CaMKII requires further stimulation by Ca2+/calmodulin for enhancing synaptic strength.

    Science.gov (United States)

    Barcomb, Kelsey; Buard, Isabelle; Coultrap, Steven J; Kulbe, Jacqueline R; O'Leary, Heather; Benke, Timothy A; Bayer, K Ulrich

    2014-08-01

    A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is generation of autonomous (Ca(2+)-independent) activity by T286 autophosphorylation. Biochemical studies have shown that "autonomous" CaMKII is ∼5-fold further stimulated by Ca(2+)/CaM, but demonstration of a physiological function for such regulation within cells has remained elusive. In this study, CaMKII-induced enhancement of synaptic strength in rat hippocampal neurons required both autonomous activity and further stimulation. Synaptic strength was decreased by CaMKIIα knockdown and rescued by reexpression, but not by mutants impaired for autonomy (T286A) or binding to NMDA-type glutamate receptor subunit 2B (GluN2B; formerly NR2B; I205K). Full rescue was seen with constitutively autonomous mutants (T286D), but only if they could be further stimulated (additional T305/306A mutation), and not with two other mutations that additionally impair Ca(2+)/CaM binding. Compared to rescue with wild-type CaMKII, the CaM-binding-impaired mutants even had reduced synaptic strength. One of these mutants (T305/306D) mimicked an inhibitory autophosphorylation of CaMKII, whereas the other one (Δstim) abolished CaM binding without introducing charged residues. Inhibitory T305/306 autophosphorylation also reduced GluN2B binding, but this effect was independent of reduced Ca(2+)/CaM binding and was not mimicked by T305/306D mutation. Thus, even autonomous CaMKII activity must be further stimulated by Ca(2+)/CaM for enhancement of synaptic strength.

  3. A new calmodulin-binding motif for inositol 1,4,5-trisphosphate 3-kinase regulation.

    Science.gov (United States)

    Franco-Echevarría, Elsa; Baños-Sanz, Jose I; Monterroso, Begoña; Round, Adam; Sanz-Aparicio, Julia; González, Beatriz

    2014-11-01

    IP3-3K [Ins(1,4,5)P3 3-kinase] is a key enzyme that catalyses the synthesis of Ins(1,3,4,5)P4, using Ins(1,4,5)P3 and ATP as substrates. Both inositides, substrate and product, present crucial roles in the cell. Ins(1,4,5)P3 is a key point in Ca2+ metabolism that promotes Ca2+ release from intracellular stores and together with Ins(1,3,4,5)P4 regulates Ca2+ homoeostasis. In addition, Ins(1,3,4,5)P4 is involved in immune cell development. It has been proved that Ca2+/CaM (calmodulin) regulates the activity of IP3-3K, via direct interaction between both enzymes. Although we have extensive structural knowledge of the kinase domains of the three IP3-3K isoforms, no structural information is available about the interaction between IP3-3K and Ca2+/CaM. In the present paper we describe the crystal structure of the complex between human Ca2+/CaM and the CaM-binding region of human IP3-3K isoform A (residues 158-183) and propose a model for a complex including the kinase domain. The structure obtained allowed us to identify all of the key residues involved in the interaction, which have been evaluated by site-directed mutagenesis, pull-down and fluorescence anisotropy experiments. The results allowed the identification of a new CaM-binding motif, expanding our knowledge about how CaM interacts with its partners.

  4. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation.

    Directory of Open Access Journals (Sweden)

    Peter Rellos

    Full Text Available UNLABELLED: Long-term potentiation (LTP, a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM-dependent kinase II (CaMKII. CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.

  5. Isolation and Characterization of Calmodulin Gene of Alexandrium catenella (Dinoflagellate) and Its Performance in Cell Growth and Heat Stress

    Institute of Scientific and Technical Information of China (English)

    WEN Ruobing; SUI Zhenghong; BAO Zhenmin; ZHOU Wei; WANG Chunyan

    2014-01-01

    Harmful algal blooms (HABs) can occur and then disappear quickly, corresponding to consistent growing and declining of heavy biomasses. The molecular mechanism of blooming remains unclear. In this study, calmodulin gene (cam) of HAB causing species Alexandrium catenella was isolated and characterized. The expression of calmodulin gene was profiled at different growth rates and in heat stress. The full cDNA of cam was 597 nucleotides (nt) in length, including a 25 nt 5′untranslated region (UTR), an 122 nt 3′ UTR, and a 450 nt open reading frame (ORF) encoding 149 amino acids. The deduced calmodulin (CaM) was highly conserved in comparison with those of other organisms. As was determined with real-time RT PCR, the abundance of cam transcript varied in a pattern similar to cell growth rate during the whole growing period. The abundance of cam transcript increased by more than 8 folds from lag growth phase to exponential growth phase, and then obviously decreased from exponential growth phase to stationary/decline growth phase. In addition, the relative abundance of cam transcript significantly declined with time during heat shock. Taking CaM function described in other organisms into account, we believe that Ca2+-involved signal transduction, methyla-tion of DNA and toxin precursors underlined the cell growth of this species. The response of cam gene to heat stress in dinoflagellate suggested restrictions in Ca2+signal transduction and methylation. These findings are helpful to understand the relationships among growth, cell signal transduction, bloom formation and interaction with environmental stimuli in dinoflagellates.

  6. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat's Hippocampus during Morphine Withdrawal

    OpenAIRE

    Ahmadi, Shamseddin; Amiri, Shahin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2013-01-01

    Introduction Calcium/calmodulin-dependent protein kinase II (CaMKII) which is highly expressed in the hippocampus is known to play a pivotal role in reward-related memories and morphine dependence. Methods In the present study, repeated morphine injections once daily for 7 days was done to induce morphine tolerance in male Wistar rats, after which gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hippocampus was evaluated upon discontinuation of morphine injection over 21 days o...

  7. Calmodulin Kinase II Interacts with the Dopamine Transporter C Terminus to Regulate Amphetamine-Induced Reverse Transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion

    2006-01-01

    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d...... in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIalpha binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux....

  8. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion

    2006-01-01

    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d...... in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIalpha binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux....

  9. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor.

    Science.gov (United States)

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A2A receptor (A2AR), has an exceptionally long intracellular C terminus (A2AR-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A2AR and the role of Ca(2+) in this process. First, we studied the A2AR-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A2AR-ct through its distal calmodulin-like domain in a Ca(2+)-independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A2AR-calmodulin/Ca(2+) complex. Importantly, calmodulin displaced α-actinin 1 from the A2AR-ct in a Ca(2+)-dependent fashion, disrupting the A2AR-α-actinin 1 complex. Finally, we assessed the impact of Ca(2+) on A2AR internalization in living cells, a function operated by the A2AR-α-actinin 1 complex. Interestingly, while Ca(2+) influx did not affect constitutive A2AR endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A2AR/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A2AR with calmodulin and α-actinin 1 is fine-tuned by Ca(2+), a fact that might power agonist-mediated receptor internalization and function.

  10. Calcium/calmodulin-dependent protein kinase IV mediates acute nicotine-induced antinociception in acute thermal pain tests.

    Science.gov (United States)

    Jackson, Kia J; Damaj, Mohamad I

    2013-12-01

    Calcium-activated second messengers such as calcium/calmodulin-dependent protein kinase II have been implicated in drug-induced antinociception. The less abundant calcium-activated second messenger, calcium/calmodulin-dependent protein kinase IV (CaMKIV), mediates emotional responses to pain and tolerance to morphine analgesia but its role in nicotine-mediated antinociception is currently unknown. The goal of this study was to evaluate the role of CaMKIV in the acute effects of nicotine, primarily acute nicotine-induced antinociception. CaMKIV knockout (-/-), heterozygote (+/-), and wild-type (+/+) mice were injected with various doses of nicotine and evaluated in a battery of tests, including the tail-flick and hot-plate tests for antinociception, body temperature, and locomotor activity. Our results show a genotype-dependent reduction in tail-flick and hot-plate latency in CaMKIV (+/-) and (-/-) mice after acute nicotine treatment, whereas no difference was observed between genotypes in the body temperature and locomotor activity assessments. The results of this study support a role for CaMKIV in acute nicotine-induced spinal and supraspinal pain mechanisms, and further implicate involvement of calcium-dependent mechanisms in drug-induced antinociception.

  11. Measurement of the cytotoxic effects of different strains of Mycoplasma equigenitalium on the equine uterine tube using a calmodulin assay.

    Science.gov (United States)

    Bermúdez, V M; Miller, R B; Rosendal, S; Fernando, M A; Johnson, W H; O'Brien, P J

    1992-01-01

    The cytopathic effects induced by five strains of Mycoplasma equigenitalium for cells of equine uterine tube explants were tested by measuring changes in cellular and extracellular concentrations of calmodulin (CaM). Calmodulin concentrations in samples of total homogenate (TH) and total homogenate supernates (THS) of the infected equine uterine tube explants were significantly lower than respective measurements on noninfected controls. In tissue culture medium fractions (TCM) of some infected explants, CaM concentrations were significantly higher than noninfected controls (p > 0.95). The results suggest that M. equigenitalium colonization on ciliated cells of the equine uterine tube can affect the permeability of the cell membrane leading to leakage or release of CaM during cell breakdown. Measurement of CaM concentrations in samples of TH revealed significant differences in the cytotoxic effects induced by different strains of M. equigenitalium on the equine uterine tube (EUT). The data suggests that some strains of M. equigenitalium may have a role in reproductive failure in the mare. In addition comparisons of the means of the concentrations of CaM in samples of TH or THS in EUT explants from four mares in the follicular and four in the luteal phase of the estrous cycle were found to be not significantly different. PMID:1477802

  12. Using a GFP-gene fusion technique to study the cell cycle-dependent distribution of calmodulin in living cells

    Institute of Scientific and Technical Information of China (English)

    李朝军; 吕品; 张东才

    1999-01-01

    In this study, a green fluorescent protein (GFP)-calmodulin (CaM) fusion gene method was used to examine the distribution of calmodulin during various stages of cell cycle. First, it was found that the distribution of CaM in living cells changes with the cell cycle. CaM was found mainly in the cytoplasm during G1 phase. It began to move into the nucleus when the cell entered S phase. At G2 phase, CaM became more concentrated in the nucleus than in cytoplasm. Second, the accumulation of CaM in the nucleus during G2 phase appeared to be related to the onset of mitosis, since inhibiting the activation of CaM at this stage resulted in blocking the nuclear membrane breakdown and chromatin condensation. Finally, after the cell entered mitosis, a high concentration of CaM was found at the polar regions of the mitotic spindle. At this time, inhibiting the activity of CaM would cause a disruption of the spindle structure. The relationship between the stage-specific distribution of CaM and its function in regulat

  13. In vitro and in vivo protein phosphorylation in Avena sativa L. coleoptiles: effects of Ca2+, calmodulin antagonists, and auxin

    Science.gov (United States)

    Veluthambi, K.; Poovaiah, B. W.

    1986-01-01

    In vitro and in vivo protein phosphorylations in oat (Avena sativa L.) coleoptile segments were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. In vitro phosphorylation of several polypeptides was distinctly promoted at 1 to 15 micromolar free Ca2+ concentrations. Ca2(+)-stimulated phosphorylation was markedly reduced by trifluoperazine, chlorpromazine, and naphthalene sulfonamide (W7). Two polypeptides were phosphorylated both under in vitro and in vivo conditions, but the patterns of phosphorylation of several other polypeptides were different under the two conditions indicating that the in vivo phosphorylation pattern of proteins is not truly reflected by in vitro phosphorylation studies. Trifluoperazine, W7, or ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) + calcium ionophore A23187 treatments resulted in reduced levels of in vivo protein phosphorylation of both control and auxin-treated coleoptile segments. Analysis by two-dimensional electrophoresis following in vivo phosphorylation revealed auxin-dependent changes of certain polypeptides. A general inhibition of phosphorylation by calmodulin antagonists suggested that both control and auxin-treated coleoptiles exhibited Ca2+, and calmodulin-dependent protein phosphorylation in vivo.

  14. Volatile anesthetics inhibit the activity of calmodulin by interacting with its hydrophobic site

    Institute of Scientific and Technical Information of China (English)

    ZHOU Miao-miao; XIA Hui-min; LIU Jiao; XU You-nian; XIN Nai-xin; ZHANG Shi-hai

    2012-01-01

    Background Volatile anesthetics (VAs) may affect varied and complex physiology processes by manipulating Ca2+-calmodulin (CaM).However,the detailed mechanism about the action of VAs on CaM has not been elucidated.This study was undertaken to examine the effects of VAs on the conformational change,hydrophobic site,and downstream signaling pathway of CaM,to explore the possible mechanism of anesthetic action of VAs.Methods Real-time second-harmonic generation (SHG) was performed to monitor the conformational change of CaM in the presence of VAs, each plus 100 μmol/L Ca2+. A hydrophobic fluorescence indicator,8-anilinonaphthalene-1-sulfonate (ANS),was utilized to define whether the VAs would interact with CaM at the hydrophobic site or not.High-performance liquid chromatography (HPLC) was carried out to analyze the activity of CaM-dependent phosphodiesterase (PDE1) in the presence of VAs.The VAs studied were ether,enflurane,isoflurane,and sevoflurane,with their aqueous concentrations 7.6,9.5,11.4 mmol/L; 0.42,0.52,0.62 mmol/L; 0.25,0.31,0.37 mmol/L and 0.47,0.59,0.71 mmol/L respectively,each were equivalent to their 0.8,1.0 and 1.2 concentration for 50% of maximal effect (EC50) for general anesthesia.Results The second-harmonic radiation of CaM in the presence of Ca2+ was largely inhibited by the VAs.The fluorescence intensity of ANS,generated by binding of Ca2+ to CaM,was reversed by the VAs.HPLC results also showed that AMP,the product of the hydrolysis of cAMP by CaM-dependent PDE1,was reduced by the VAs.Conclusions Our findings demonstrate that the above VAs interact with the hydrophobic core of Ca2+-CaM and the interaction results in the inhibition of the conformational change and activity of CaM.This in vitro study may provide us insight into the possible mechanism of anesthetic action of VAs in vivo.

  15. Identification of the Calmodulin-Binding Domains of Fas Death Receptor.

    Directory of Open Access Journals (Sweden)

    Bliss J Chang

    Full Text Available The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD and that of the Fas-associated protein (FADD interact to form the core of the death-inducing signaling complex (DISC, a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD. However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR, biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1 and 251-288 (Fas-Pep2 constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling

  16. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function.

    Science.gov (United States)

    Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L; Sheffield, Val C; Golan, Hava; Parvari, Ruti

    2015-08-01

    Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the Ca

  17. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium

  18. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    Science.gov (United States)

    Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan

    2012-12-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.

  19. Ca2+/calmodulin-dependent kinase II contributes to inhibitor of nuclear factor-kappa B kinase complex activation in Helicobacter pylori infection.

    Science.gov (United States)

    Maubach, Gunter; Sokolova, Olga; Wolfien, Markus; Rothkötter, Hermann-Josef; Naumann, Michael

    2013-09-15

    Helicobacter pylori, a class I carcinogen, induces a proinflammatory response by activating the transcription factor nuclear factor-kappa B (NF-κB) in gastric epithelial cells. This inflammatory condition could lead to chronic gastritis, which is epidemiologically and biologically linked to the development of gastric cancer. So far, there exists no clear knowledge on how H. pylori induces the NF-κB-mediated inflammatory response. In our study, we investigated the role of Ca(2+) /calmodulin-dependent kinase II (CAMKII), calmodulin, protein kinases C (PKCs) and the CARMA3-Bcl10-MALT1 (CBM) complex in conjunction with H. pylori-induced activation of NF-κB via the inhibitor of nuclear factor-kappa B kinase (IKK) complex. We use specific inhibitors and/or RNA interference to assess the contribution of these components. Our results show that CAMKII and calmodulin contribute to IKK complex activation and thus to the induction of NF-κB in response to H. pylori infection, but not in response to TNF-α. Thus, our findings are specific for H. pylori infected cells. Neither the PKCs α, δ, θ, nor the CBM complex itself is involved in the activation of NF-κB by H. pylori. The contribution of CAMKII and calmodulin, but not PKCs/CBM to the induction of an inflammatory response by H. pylori infection augment the understanding of the molecular mechanism involved and provide potential new disease markers for the diagnosis of gastric inflammatory diseases including gastric cancer.

  20. The calmodulin-dependent protein kinase II inhibitor KN-93 protects rat cerebral cortical neurons from N-methyl-D-aspartic acid-induced injury

    Institute of Scientific and Technical Information of China (English)

    Xuewen Liu; Cui Ma; Ruixian Xing; Weiwei Zhang; Buxian Tian; Xidong Li; Qiushi Li; Yanhui Zhang

    2013-01-01

    In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyl-D-aspartic acid-induced injury. Results showed that, compared with N-methyl-Daspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 μM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.

  1. An ion-current mutant of Paramecium tetraurelia with defects in the primary structure and post-translational N-methylation of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Wallen-Friedman, M.A.

    1988-01-01

    My work on pantophobiac A{sup 2} (pntA{sup 2}), a behavioral mutant of Paramecium tetraurelia, suggest that the Ca{sup ++}-binding protein calmodulin (CaM), and post-translation N-methylation of CaM, are important for Ca{sup ++}-related ion-current function. Calmodulin from wild-type Paramecium has two sites of lysine-N-methylation. Both of these sites are almost fully methylated in vivo; thus wild-type calmodulin is a poor substrate for N-methylation in vitro. In contrast, pntA/{sup 2} CaM can be heavily N-methylated in vitro, suggesting that the mutant calmodulin is under-methylated in vivo. Amino-acid composition analysis showed that CaM lysine 115 is undermethylated in pntA{sup 2}. Once pntA{sup 2} CaM is N-methylated, the (methyl-{sup 3}H) group does not turn over in either wild-type or pntA{sup 2} cytoplasmic fractions. The methylating enzymes in pntA{sup 2} high-speed supernatant fractions are active, but may be less robust than those of the wild type, suggesting a possible control of these enzymes by CaM.

  2. Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene replacement system

    DEFF Research Database (Denmark)

    Panina, Svetlana; Stephan, Alexander; la Cour, Jonas Marstrand;

    2012-01-01

    Calmodulin (CaM) was shown to be essential for survival of lower eukaryotes by gene deletion experiments. So far, no CaM gene deletion was reported in higher eukaryotes. In vertebrates, CaM is expressed from several genes, which encode an identical protein, making it difficult to generate a model...

  3. Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain

    Science.gov (United States)

    Hwang, I.; Harper, J. F.; Liang, F.; Sze, H.

    2000-01-01

    To investigate how calmodulin regulates a unique subfamily of Ca(2+) pumps found in plants, we examined the kinetic properties of isoform ACA2 identified in Arabidopsis. A recombinant ACA2 was expressed in a yeast K616 mutant deficient in two endogenous Ca(2+) pumps. Orthovanadate-sensitive (45)Ca(2+) transport into vesicles isolated from transformants demonstrated that ACA2 is a Ca(2+) pump. Ca(2+) pumping by the full-length protein (ACA2-1) was 4- to 10-fold lower than that of the N-terminal truncated ACA2-2 (Delta2-80), indicating that the N-terminal domain normally acts to inhibit the pump. An inhibitory sequence (IC(50) = 4 microM) was localized to a region within valine-20 to leucine-44, because a peptide corresponding to this sequence lowered the V(max) and increased the K(m) for Ca(2+) of the constitutively active ACA2-2 to values comparable to the full-length pump. The peptide also blocked the activity (IC(50) = 7 microM) of a Ca(2+) pump (AtECA1) belonging to a second family of Ca(2+) pumps. This inhibitory sequence appears to overlap with a calmodulin-binding site in ACA2, previously mapped between aspartate-19 and arginine-36 (J.F. Harper, B. Hong, I. Hwang, H.Q. Guo, R. Stoddard, J.F. Huang, M.G. Palmgren, H. Sze inverted question mark1998 J Biol Chem 273: 1099-1106). These results support a model in which the pump is kept "unactivated" by an intramolecular interaction between an autoinhibitory sequence located between residues 20 and 44 and a site in the Ca(2+) pump core that is highly conserved between different Ca(2+) pump families. Results further support a model in which activation occurs as a result of Ca(2+)-induced binding of calmodulin to a site overlapping or immediately adjacent to the autoinhibitory sequence.

  4. Characterization of calmodulin-Fas death domain interaction: an integrated experimental and computational study.

    Science.gov (United States)

    Fancy, Romone M; Wang, Lingyun; Napier, Tiara; Lin, Jiabei; Jing, Gu; Lucius, Aaron L; McDonald, Jay M; Zhou, Tong; Song, Yuhua

    2014-04-29

    The Fas death receptor-activated death-inducing signaling complex (DISC) regulates apoptosis in many normal and cancer cells. Qualitative biochemical experiments demonstrate that calmodulin (CaM) binds to the death domain of Fas. The interaction between CaM and Fas regulates Fas-mediated DISC formation. A quantitative understanding of the interaction between CaM and Fas is important for the optimal design of antagonists for CaM or Fas to regulate the CaM-Fas interaction, thus modulating Fas-mediated DISC formation and apoptosis. The V254N mutation of the Fas death domain (Fas DD) is analogous to an identified mutant allele of Fas in lpr-cg mice that have a deficiency in Fas-mediated apoptosis. In this study, the interactions of CaM with the Fas DD wild type (Fas DD WT) and with the Fas DD V254N mutant were characterized using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and molecular dynamics (MD) simulations. ITC results reveal an endothermic binding characteristic and an entropy-driven interaction of CaM with Fas DD WT or with Fas DD V254N. The Fas DD V254N mutation decreased the association constant (Ka) for CaM-Fas DD binding from (1.79 ± 0.20) × 10(6) to (0.88 ± 0.14) × 10(6) M(-1) and slightly increased a standard state Gibbs free energy (ΔG°) for CaM-Fas DD binding from -8.87 ± 0.07 to -8.43 ± 0.10 kcal/mol. CD secondary structure analysis and MD simulation results did not show significant secondary structural changes of the Fas DD caused by the V254N mutation. The conformational and dynamical motion analyses, the analyses of hydrogen bond formation within the CaM binding region, the contact numbers of each residue, and the electrostatic potential for the CaM binding region based on MD simulations demonstrated changes caused by the Fas DD V254N mutation. These changes caused by the Fas DD V254N mutation could affect the van der Waals interactions and electrostatic interactions between CaM and Fas DD, thereby affecting

  5. Expression, purification, and characterization of proteins from high-quality combinatorial libraries of the mammalian calmodulin central linker.

    Science.gov (United States)

    Bradley, Luke H; Bricken, Michael L; Randle, Charlotte

    2011-02-01

    Combinatorial libraries offer an attractive approach towards exploring protein sequence, structure and function. Although several strategies introduce sequence diversity, the likelihood of identifying proteins with novel functions is increased when the library of genes encodes for folded and soluble structures. Here we present the first application of the binary patterning approach of combinatorial protein library design to the unique central linker region of the highly-conserved protein, calmodulin (CaM). We show that this high-quality approach translates very well to the CaM protein scaffold: all library members over-express and are functionally diverse, having a range of conformations in the presence and absence of calcium as determined by circular dichroism spectroscopy. Collectively, these data support that the binary patterning approach, when applied to the highly-conserved protein fold, can yield large collections of folded, soluble and highly-expressible proteins.

  6. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations

    DEFF Research Database (Denmark)

    Shamgar, Liora; Ma, Lijuan; Schmitt, Nicole;

    2006-01-01

    The slow IKS K+ channel plays a major role in repolarizing the cardiac action potential and consists of the assembly of KCNQ1 and KCNE1 subunits. Mutations in either KCNQ1 or KCNE1 genes produce the long-QT syndrome, a life-threatening ventricular arrhythmia. Here, we show that long-QT mutations...... located in the KCNQ1 C terminus impair calmodulin (CaM) binding, which affects both channel gating and assembly. The mutations produce a voltage-dependent macroscopic inactivation and dramatically alter channel assembly. KCNE1 forms a ternary complex with wild-type KCNQ1 and Ca(2+)-CaM that prevents...... the risk of ventricular arrhythmias. Udgivelsesdato: 2006-Apr-28...

  7. Identification of a Denitrase Activity Against Calmodulin in Activated Macrophages Using High-Field Liquid Chromatography - FTICR Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; Lourette, Natacha M.; Boschek, Curt B.; Bigelow, Diana J.; Smith, Richard D.; Pasa-Tolic, Liljiana; Squier, Thomas C.

    2007-09-18

    We have identified a denitrase activity in macrophages that is upregulated following macrophage activation, which is shown by mass spectrometry to recognize nitrotyrosines in the calcium signaling protein calmodulin (CaM) and convert them to their native tyrosine structure without the formation of any aminotyrosine. Comparable extents of methionine sulfoxide reduction are also observed that are catalyzed by endogenous methionine sulfoxide reductases. Competing with repair processes, oxidized CaM is a substrate for a peptidase activity that results in the selective cleavage of the C-terminus lysine (i.e., Lys148) that is expected to diminish CaM function. Thus, competing repair and peptidase activities define the abundances and functionality of CaM to modulate cellular metabolism in response to oxidative stress, where the presence of the truncated CaM species provides a useful biomarker for the transient appearance of oxidized CaM.

  8. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Directory of Open Access Journals (Sweden)

    Mima Kazuko

    2002-01-01

    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  9. Rat vas deferens SERCA2 is modulated by Ca{sup 2+}/calmodulin protein kinase II-mediated phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.B.R.; Muzi-Filho, H. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Valverde, R.H.F. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Quintas, L.E.M. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Noel, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Einicker-Lamas, M. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ (Brazil); Cunha, V.M.N. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-03-19

    Ca{sup 2+} pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca{sup 2+}-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca{sup 2+} (Ca{sub 0.5} = 780 nM) and a low sensitivity to vanadate (IC{sub 50} = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca{sup 2+} and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca{sup 2+} accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca{sup 2+} and CaM, possibly via CaMKII, in a process that results in stimulation of Ca{sup 2+} pumping activity.

  10. The involvement of intracellular calcium ion concentration and calmodulin in the 25-hydroxylation of cholecalciferol in ovine and rat liver.

    Science.gov (United States)

    Corlett, S C; Chaudhary, M S; Tomlinson, S; Care, A D

    1987-08-01

    The effect of Ca2+ ion concentration on the 25 hydroxylation of tritiated cholecalciferol (3HD3) was investigated using homogenates of ovine liver from vitamin D replete sheep. A significant decrease in the production of 25 hydroxycholecalciferol (25OHD3) was observed when the concentration of Ca2+ in the homogenate was raised above 0.68 mmol/l by the addition of calcium gluconate. Similarly, a final concentration of 37 mumol EGTA/1 (equivalent to a Ca2+ concentration of 26.5 nmol/l) was associated with a 50% reduction of 25OHD3 production. That is, a broad bell-shaped relationship was observed between the production of 25OHD3 and the Ca2+ concentration in the homogenate. These changes in the rate of production of 25OHD3 were reproduced with hepatocytes from vitamin D replete rats, prepared by collagenase perfusion, using the drugs dantrolene sodium (DaNa) to reduce (ED50 = 57 mmol/l) and veratridine to increase (ED50 = 550 mmol/l) the intracellular Ca2+ concentration. Hepatocytes from vitamin D replete rats also showed a reduction in 25 hydroxylation of D3 (ED50 = 6 ng/ml) in response to the addition of 1-25 dihydroxycholecalciferol (1-25 (OH)2D3). The calmodulin antagonists; W7, compound 48/80, trifluoperazine (TFP) and calmidazolium (R24571) were all found to effect a dose response inhibition of the 25 hydroxylation of cholecalciferol by homogenates of ovine liver. R24571 had a similar inhibitory effect (ED50 = 70 mumol/l) upon the 25 hydroxylase enzyme of rat hepatocytes. It is concluded that the 25 hydroxylation of cholecalciferol in liver of vitamin D replete rats and sheep is calcium sensitive and is reduced in the presence of increased concentrations of 1,25(OH)2D3. Calmodulin may also be involved in the regulation of hepatocyte 25-hydroxylase activity by Ca2+.

  11. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants

    Institute of Scientific and Technical Information of China (English)

    Jianrong Sang; Aying Zhang; Fan Lin; Mingpu Tan; Mingyi Jiang

    2008-01-01

    Using pharmacological and biochemical approaches,the signaling pathways between hydrogen peroxide (H2O2),calcium (Ca2+)-calmodulin (CAM),and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants.Treatments with ABA,H2O2,and CaCI2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves.However,such increases were blocked by the pretreatments with Ca2+ inhibitors and CaM antagonists.Meanwhile,pretreatments with two NOS inhibitors also suppressed the Ca2+-induced increase in the production of NO.On the other hand,treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaMI) gene and the contents of CaM in leaves of maize plants,and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor.Moreover,SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4),cytosolic ascorbate peroxidase (cAPX),and glutathione reductase 1 (GRI) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca2+ inhibitors and CaM antagonists.Our results suggest that Ca2+-CaM functions both upstream and downstream of NO production,which is mainly from NOS,in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.

  12. Hypotonic shock modulates Na(+ current via a Cl(- and Ca(2+/calmodulin dependent mechanism in alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    André Dagenais

    Full Text Available Alveolar epithelial cells are involved in Na(+ absorption via the epithelial Na(+ channel (ENaC, an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl(- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl(- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC inhibitor reduced the total and ENaC currents, showing that transcellular Cl(- transport plays a major role in that process. During hypotonic shock, a basolateral Cl(- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca(2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl(- influx as well as Ca(2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock.

  13. Phosphorylation of calcium calmodulin-dependent protein kinase II following lateral fluid percussion brain injury in rats.

    Science.gov (United States)

    Folkerts, Michael M; Parks, Elizabeth A; Dedman, John R; Kaetzel, Marcia A; Lyeth, Bruce G; Berman, Robert F

    2007-04-01

    Traumatic brain injury (TBI) can dramatically increase levels of intracellular calcium ([Ca(2+)](i)). One consequence of increased [Ca(2+)](i) would be altered activity and function of calcium-regulated proteins, including calcium-calmodulin-dependent protein kinase II (CaMKII), which is autophosphorylated on Thr(286)(pCaMKII(286)) in the presence of calcium and calmodulin. Therefore, we hypothesized that TBI would result in increased levels of pCaMKII(286), and that such increases would occur early after injury in brain regions known to be damaged following lateral fluid percussion TBI (i.e., hippocampus and cortex). In order to test this hypothesis, immunostaining of CaMKII was examined in rat hippocampus and cortex after lateral fluid percussion (LFP) injury using an antibody directed against pCaMKII(286). LFP injury produced a marked increase in pCaMKII(286) immunostaining in the hippocampus and overlying cortex 30 min after TBI. The pattern of increased immunostaining was uneven, and unexpectedly absent in some hippocampal CA3 pyramidal neurons. This suggests that phosphatase activity may also increase following TBI, resulting in dephosphorylation of pCaMKII(286) in subpopulations of CA3 pyramidal neurons. Western blotting confirmed a rapid increase in levels of pCaMKII(286) at 10 and 30 min after brain injury, and that it was transient and no longer significantly elevated when examined at 3, 8, and 24 h. These results demonstrate that TBI alters the autophosphorylation state of CaMKII, an important neuronal regulator of critical cell functions, including enzyme activities, cell structure, gene expression, and neuronal plasticity, and provide a molecular mechanism that is likely to contribute to cell injury and impaired plasticity after TBI.

  14. Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism.

    Science.gov (United States)

    Ferguson, C; Kern, M; Audesirk, G

    2000-06-01

    Inorganic lead (Pb2+) activates calmodulin, which in turn may stimulate many other cellular processes. The plasma membrane Ca2+ ATPase is a calmodulin-stimulated enzyme that plays the major role in regulating the "resting" intracellular free Ca2+ ion concentration, [Ca2+]i. We hypothesized that exposing neurons to low levels of Pb2+ would cause Pb2+ to enter the cytoplasm, and that intracellular Pb2+, by activating calmodulin, would stimulate plasma membrane Ca2+ ATPase activity, thereby increasing Ca2+ extrusion and reducing [Ca2+]i. We used the ratiometric Ca2+ indicator fura-2 to estimate changes in [Ca2+]i. In vitro calibrations of fura-2 with solutions of defined free Ca2+ and free Pb2+ concentrations showed that, at free Ca2+ concentrations from 10 nM to 1000 nM, adding Pb2+ caused either no significant change in the F340/F380 ratio (free Pb2+ concentrations from 100 fM to 1 pM) or increased the F340/F380 ratio (free Pb2+ concentrations from 5 to 50 pM). Therefore, fura-2 should be suitable for estimating Pb2+-induced decreases in [Ca2+]i, but not increases in [Ca2+]i. We exposed cultured embryonic rat hippocampal neurons to 100 nM Pb2+ for periods from 1 hour to 2 days and measured the F340/F380 ratio; the ratio decreased significantly by 9 to 16% at all time points, indicating that Pb2+ exposure decreased [Ca2+]i. In neurons loaded with 45Ca, Pb2+ exposure increased Ca2+ efflux for at least two hours; by 24 hours, Ca2+ efflux returned to control levels. Influx of 45Ca was not altered by Pb2+ exposure. Low concentrations (250 nM) of the calmodulin inhibitor calmidazolium had no effect on either 45Ca efflux or on the F340/F380 ratio in fura-loaded control neurons, but completely eliminated the increase in 45Ca efflux and decrease in F340/F380 ratio in Pb2+-exposed neurons. Zaldoride, another calmodulin inhibitor, also eliminated the decrease in F340/F380 ratio in Pb2+-exposed neurons. We conclude that Pb2+ exposure decreases [Ca2+]i and increases Ca2+ efflux

  15. The alterations of Ca2+/calmodulin/CaMKII/CaV1.2 signaling in experimental models of Alzheimer's disease and vascular dementia.

    Science.gov (United States)

    Min, Dongyu; Guo, Feng; Zhu, Shu; Xu, Xiaoxue; Mao, Xiaoyuan; Cao, Yonggang; Lv, Xintong; Gao, Qinghua; Wang, Lei; Chen, Tianbao; Shaw, Chris; Hao, Liying; Cai, Jiqun

    2013-03-22

    The two critical forms of dementia are Alzheimer's disease (AD) and vascular dementia (VD). The alterations of Ca(2+)/calmodulin/CaMKII/CaV1.2 signaling in AD and VD have not been well elucidated. Here we have demonstrated changes in the levels of CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF proteins by Western blot analysis and the co-localization of p-CaMKII/CaV1.2 by double-labeling immunofluorescence in the hippocampus of APP/PS1 mice and VD gerbils. Additionally, expression of these proteins and intracellular calcium levels were examined in cultured neurons treated with Aβ1-42. The expression of CaV1.2 protein was increased in VD gerbils and in cultured neurons but decreased in APP/PS1 mice; the expression of calmodulin protein was increased in APP/PS1 mice and VD gerbils; levels of p-CaMKII, p-CREB and BDNF proteins were decreased in AD and VD models. The number of neurons in which p-CaMKII and CaV1.2 were co-localized, was decreased in the CA1 and CA3 regions in two models. Intracellular calcium was increased in the cultured neurons treated with Aβ1-42. Collectively, our results suggest that the alterations in CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF can be reflective of an involvement in the impairment in memory and cognition in AD and VD models.

  16. The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively.

    Science.gov (United States)

    Chigri, Fatima; Flosdorff, Sandra; Pilz, Sahra; Kölle, Eva; Dolze, Esther; Gietl, Christine; Vothknecht, Ute C

    2012-02-01

    Calmodulin (CaM) is a ubiquitous sensor/transducer of calcium signals in eukaryotic organisms. While CaM mediated calcium regulation of cytosolic processes is well established, there is growing evidence for the inclusion of organelles such as chloroplasts, mitochondria and peroxisomes into the calcium/calmodulin regulation network. A number of CaM-binding proteins have been identified in these organelles and processes such as protein import into chloroplasts and mitochondria have been shown to be governed by CaM regulation. What have been missing to date are the mediators of this regulation since no CaM or calmodulin-like protein (CML) has been identified in any of these organelles. Here we show that two Arabidopsis CMLs, AtCML3 and AtCML30, are localized in peroxisomes and mitochondria, respectively. AtCML3 is targeted via an unusual C-terminal PTS1-like tripeptide while AtCML30 utilizes an N-terminal, non-cleavable transit peptide. Both proteins possess the typical structure of CaMs, with two pairs of EF-hand motifs separated by a short linker domain. They furthermore display common characteristics, such as calcium-dependent alteration of gel mobility and calcium-dependent exposure of a hydrophobic surface. This indicates that they can function in a similar manner as canonical CaMs. The presence of close homologues to AtCML3 and AtCML30 in other plants further indicates that organellar targeting of these CMLs is not a specific feature of Arabidopsis. The identification of peroxisomal and mitochondrial CMLs is an important step in the understanding how these organelles are integrated into the cellular calcium/calmodulin signaling pathways.

  17. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana

    Science.gov (United States)

    Li, Fangfang; Zhao, Nan; Xu, Xiongbiao; Wang, Yaqin; Yang, Xiuling; Liu, Shu-Sheng; Wang, Aiming; Zhou, Xueping

    2017-01-01

    A recently characterized calmodulin-like protein is an endogenous RNA silencing suppressor that suppresses sense-RNA induced post-transcriptional gene silencing (S-PTGS) and enhances virus infection, but the mechanism underlying calmodulin-like protein-mediated S-PTGS suppression is obscure. Here, we show that a calmodulin-like protein from Nicotiana benthamiana (NbCaM) interacts with Suppressor of Gene Silencing 3 (NbSGS3). Deletion analyses showed that domains essential for the interaction between NbSGS3 and NbCaM are also required for the subcellular localization of NbSGS3 and NbCaM suppressor activity. Overexpression of NbCaM reduced the number of NbSGS3-associated granules by degrading NbSGS3 protein accumulation in the cytoplasm. This NbCaM-mediated NbSGS3 degradation was sensitive to the autophagy inhibitors 3-methyladenine and E64d, and was compromised when key autophagy genes of the phosphatidylinositol 3-kinase (PI3K) complex were knocked down. Meanwhile, silencing of key autophagy genes within the PI3K complex inhibited geminivirus infection. Taken together these data suggest that NbCaM acts as a suppressor of RNA silencing by degrading NbSGS3 through the autophagy pathway. PMID:28212430

  18. Roles of extracellular Ca++ and calmodulin in roxatidine-stimulated secretion and synthesis of mucus by cultured rabbit gastric mucosal cells.

    Science.gov (United States)

    Takahashi, S; Okabe, S

    1998-01-01

    We found that roxatidine stimulates mucus secretion and synthesis by cultured rabbit gastric mucosal cells. In this study, we examined the roles of the extracellular Ca++ and calmodulin in these effects of roxatidine. Reduction of the extracellular Ca++ concentration decreased the roxatidine-induced increases in mucus secretion and synthesis by gastric mucosal cells. Roxatidine concentration-dependently promoted Ca++ influx and caused an increases in intracellular Ca++. After the addition of roxatidine, the increases in the secretion and synthesis reflected those in Ca++ influx and intracellular Ca++ concentration and then disappeared as Ca++ influx and intracellular Ca++ concentration returned to the control level. The roxatidine-stimulated Ca++ influx and intracellular Ca++ mobilization were abolished by reduction of the extracellular Ca++ concentration. Nifedipine and diltiazem inhibited both the effects of roxatidine, but even at 10 microM, the inhibition was partial. Furthermore, W-7 (a calmodulin antagonist) completely abolished the effects of roxatidine on mucus secretion and synthesis without causing a reduction of the stimulated Ca++ influx. Taken together, these results suggest that roxatidine promotes Ca++ influx through both voltage-sensitive Ca++ channels and other Ca++ entry gates and the subsequent intracellular Ca++ mobilization, leading to potentiation of mucus secretion and synthesis by rabbit gastric mucosal cells. In addition, Ca(++)-activated calmodulin may play a pivotal role in these stimulatory effects of roxatidine.

  19. Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)-calmodulin-Munc13-1 signaling.

    Science.gov (United States)

    Lipstein, Noa; Sakaba, Takeshi; Cooper, Benjamin H; Lin, Kun-Han; Strenzke, Nicola; Ashery, Uri; Rhee, Jeong-Seop; Taschenberger, Holger; Neher, Erwin; Brose, Nils

    2013-07-10

    Short-term synaptic plasticity, the dynamic alteration of synaptic strength during high-frequency activity, is a fundamental characteristic of all synapses. At the calyx of Held, repetitive activity eventually results in short-term synaptic depression, which is in part due to the gradual exhaustion of releasable synaptic vesicles. This is counterbalanced by Ca(2+)-dependent vesicle replenishment, but the molecular mechanisms of this replenishment are largely unknown. We studied calyces of Held in knockin mice that express a Ca(2+)-Calmodulin insensitive Munc13-1(W464R) variant of the synaptic vesicle priming protein Munc13-1. Calyces of these mice exhibit a slower rate of synaptic vesicle replenishment, aberrant short-term depression and reduced recovery from synaptic depression after high-frequency stimulation. Our data establish Munc13-1 as a major presynaptic target of Ca(2+)-Calmodulin signaling and show that the Ca(2+)-Calmodulin-Munc13-1 complex is a pivotal component of the molecular machinery that determines short-term synaptic plasticity characteristics.

  20. Structural Insights into the Calcium-Mediated Allosteric Transition in the C-Terminal Domain of Calmodulin from Nuclear Magnetic Resonance Measurements.

    Science.gov (United States)

    Kukic, Predrag; Lundström, Patrik; Camilloni, Carlo; Evenäs, Johan; Akke, Mikael; Vendruscolo, Michele

    2016-01-12

    Calmodulin is a two-domain signaling protein that becomes activated upon binding cooperatively two pairs of calcium ions, leading to large-scale conformational changes that expose its binding site. Despite significant advances in understanding the structural biology of calmodulin functions, the mechanistic details of the conformational transition between closed and open states have remained unclear. To investigate this transition, we used a combination of molecular dynamics simulations and nuclear magnetic resonance (NMR) experiments on the Ca(2+)-saturated E140Q C-terminal domain variant. Using chemical shift restraints in replica-averaged metadynamics simulations, we obtained a high-resolution structural ensemble consisting of two conformational states and validated such an ensemble against three independent experimental data sets, namely, interproton nuclear Overhauser enhancements, (15)N order parameters, and chemical shift differences between the exchanging states. Through a detailed analysis of this structural ensemble and of the corresponding statistical weights, we characterized a calcium-mediated conformational transition whereby the coordination of Ca(2+) by just one oxygen of the bidentate ligand E140 triggers a concerted movement of the two EF-hands that exposes the target binding site. This analysis provides atomistic insights into a possible Ca(2+)-mediated activation mechanism of calmodulin that cannot be achieved from static structures alone or from ensemble NMR measurements of the transition between conformations.

  1. Structural analysis of the complex between calmodulin and full-length myelin basic protein, an intrinsically disordered molecule.

    Science.gov (United States)

    Majava, Viivi; Wang, Chaozhan; Myllykoski, Matti; Kangas, Salla M; Kang, Sung Ung; Hayashi, Nobuhiro; Baumgärtel, Peter; Heape, Anthony M; Lubec, Gert; Kursula, Petri

    2010-06-01

    Myelin basic protein (MBP) is present between the cytoplasmic leaflets of the compact myelin membrane in both the peripheral and central nervous systems, and characterized to be intrinsically disordered in solution. One of the best-characterized protein ligands for MBP is calmodulin (CaM), a highly acidic calcium sensor. We pulled down MBP from human brain white matter as the major calcium-dependent CaM-binding protein. We then used full-length brain MBP, and a peptide from rodent MBP, to structurally characterize the MBP-CaM complex in solution by small-angle X-ray scattering, NMR spectroscopy, synchrotron radiation circular dichroism spectroscopy, and size exclusion chromatography. We determined 3D structures for the full-length protein-protein complex at different stoichiometries and detect ligand-induced folding of MBP. We also obtained thermodynamic data for the two CaM-binding sites of MBP, indicating that CaM does not collapse upon binding to MBP, and show that CaM and MBP colocalize in myelin sheaths. In addition, we analyzed the post-translational modifications of rat brain MBP, identifying a novel MBP modification, glucosylation. Our results provide a detailed picture of the MBP-CaM interaction, including a 3D model of the complex between full-length proteins.

  2. Neuronal calcium/calmodulin-dependent protein kinase II mediates nicotine reward in the conditioned place preference test in mice.

    Science.gov (United States)

    Jackson, Kia J; Muldoon, Pretal P; Walters, Carrie; Damaj, Mohamad Imad

    2016-02-01

    Several recent studies have indicated the involvement of calcium-dependent mechanisms, in particular the abundant calcium-activated kinase, calcium/calmodulin-dependent kinase II (CaMKII), in behaviors associated with nicotine dependence in mice. Behavioral and biochemical studies have shown that CaMKII is involved in acute and chronic nicotine behaviors and nicotine withdrawal; however, evidence of a role for CaMKII in nicotine reward is lacking. Thus, the goal of the current study was to examine the role of CaMKII in nicotine reward. Using pharmacological and genetic tools, we tested nicotine conditioned place preference (CPP) in C57Bl/6 mice after administration of CaMKII antagonists and in α-CaMKII wild-type (+/+) and heterozygote (±) mice. CaMKII antagonists blocked expression of nicotine CPP, and the preference score was significantly reduced in α-CaMKII ± mice compared with their +/+ counterparts. Further, we assessed CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), prefrontal cortex, and hippocampus after nicotine CPP and found significant increases in CaMKII activity in the mouse VTA and NAc that were blocked by CaMKII antagonists. The findings from this study show that CaMKII mediates nicotine reward and suggest that increases in CaMKII activity in the VTA and NAc are relevant to nicotine reward behaviors.

  3. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Xing-Xia Li

    2016-01-01

    Full Text Available The shell of the pearl oyster (Pinctada fucata mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization.

  4. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin.

    Science.gov (United States)

    Otto, Edgar A; Loeys, Bart; Khanna, Hemant; Hellemans, Jan; Sudbrak, Ralf; Fan, Shuling; Muerb, Ulla; O'Toole, John F; Helou, Juliana; Attanasio, Massimo; Utsch, Boris; Sayer, John A; Lillo, Concepcion; Jimeno, David; Coucke, Paul; De Paepe, Anne; Reinhardt, Richard; Klages, Sven; Tsuda, Motoyuki; Kawakami, Isao; Kusakabe, Takehiro; Omran, Heymut; Imm, Anita; Tippens, Melissa; Raymond, Pamela A; Hill, Jo; Beales, Phil; He, Shirley; Kispert, Andreas; Margolis, Benjamin; Williams, David S; Swaroop, Anand; Hildebrandt, Friedhelm

    2005-03-01

    Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.

  5. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas

    Science.gov (United States)

    Li, Xing-Xia; Yu, Wen-Chao; Cai, Zhong-Qiang; He, Cheng; Wei, Na

    2016-01-01

    The shell of the pearl oyster (Pinctada fucata) mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas) is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM) is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM) and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization. PMID:27703977

  6. The Role of Extracellular Ca2+Influx, Intracellular Ca2+ Release and Calmodulin in Mouse Egg Fertilization

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The effects of various Ca2+-modifying drugs on moue egg fertilization were studied. Ca2+ chelator, ethylen glycol-bis-(2-aminoethyl)-tetracetic acid (EGTA) ,and calmodulin (CaM) antagonist,trifluoperzaine (TFP) ,inhibited fertilization in a dose-dependent manner,whild Ca2+ channel bolcker,verapamil ,did not have any effect. When intracellular Ca2+ release was blocked by 8-(N, N-diethylamino) octy1-3,4,5-trimethoxy- benzonate (TMB-8) or the Ca2+ oscillations were inhibited by an inhibitor of endoplasmic reticulum Ca2+-AT- Pase,thapsigargin,the second polar body emission and pronuclear formation were significantly decreased. In contrast,inhibition of intracellular Ca2+ release via bolckage of inositol 1,4,5-triphosphate (IP3) production by neomycin or lithium did not affect fertilization. The results sugest that both extracellular influx,intracellu- lar Ca2+ release and CaM activation are required for normal fertilization. However ,extracellular influx through voltage-gated Ca2+ channel and intracellular release induced by IP3 are not the only pathways for producing Ca2+ transients in moue eggs.

  7. The Role of Extracellular Ca2+ Influx,Intracellular Ca2+ Release and Calmodulin in Mouse Egg Fertilization

    Institute of Scientific and Technical Information of China (English)

    SunQing-yuan; TanJing-he; 等

    1999-01-01

    The effects of various Ca2+-modifying drugs on moue egg fertilization were studied.Ca2+ chelator,ethylen glycol-bis-(2-aminoethyl)-tetracetic acid(EGTA),and calmodulin(CaM) antagonist,trifluoperzaine (TFP),inhibited fertilization in a dose-dependent manner,whild Ca2+ channel bolcker,verspamil,did not have any effect.When intracellular Ca2+ release was blocked by 8-(N,N-diethylamino) octy 1-3,4,5-trimethoxy-benzonate(TME-8) or the Ca2+ oscillations were inhibited by an inhibitor of endoplasmic reticulum Ca2+-At-Pase,thapsigargin,the second polar body emission and pronuclear formation were significantly decreased.In contrast,inhibition of intracellular Ca2+ release via bolckage of inositol 1,4,5-triphosphate (IP3) production by neomycin or lithium did not affect fertilization.The results sugest that both extracellular influx,intracellular Ca2+ release and CaM activation are required for mormal fertilization.However,extracellular influx through voltage-gated Ca2+ channel and intracellular release induced by IP3 and not the only pathways for producing Ca2+ transients in moue eggs.

  8. Engineering of a novel Ca²⁺-regulated kinesin molecular motor using a calmodulin dimer linker.

    Science.gov (United States)

    Shishido, Hideki; Maruta, Shinsaku

    2012-06-29

    The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have "on-off" control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca(2+)-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca(2+)-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.

  9. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses.

    Science.gov (United States)

    Rodrigues, Sarina M; Farb, Claudia R; Bauer, Elizabeth P; LeDoux, Joseph E; Schafe, Glenn E

    2004-03-31

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in synaptic plasticity and memory formation in a variety of learning systems and species. The present experiments examined the role of CaMKII in the circuitry underlying pavlovian fear conditioning. First, we reveal by immunocytochemical and tract-tracing methods that alphaCaMKII is postsynaptic to auditory thalamic inputs and colocalized with the NR2B subunit of the NMDA receptor. Furthermore, we show that fear conditioning results in an increase of the autophosphorylated (active) form of alphaCaMKII in lateral amygdala (LA) spines. Next, we demonstrate that intra-amygdala infusion of a CaMK inhibitor, 1-[NO-bis-1,5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl-4-phenylpiperazine, KN-62, dose-dependently impairs the acquisition, but not the expression, of auditory and contextual fear conditioning. Finally, in electrophysiological experiments, we demonstrate that an NMDA receptor-dependent form of long-term potentiation at thalamic input synapses to the LA is impaired by bath application of KN-62 in vitro. Together, the results of these experiments provide the first comprehensive view of the role of CaMKII in the amygdala during fear conditioning.

  10. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    Science.gov (United States)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  11. Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging

    Science.gov (United States)

    Oscar, Breland G.; Liu, Weimin; Zhao, Yongxin; Tang, Longteng; Wang, Yanli; Campbell, Robert E.; Fang, Chong

    2014-01-01

    Fluorescent proteins (FPs) have played a pivotal role in bioimaging and advancing biomedicine. The versatile fluorescence from engineered, genetically encodable FP variants greatly enhances cellular imaging capabilities, which are dictated by excited-state structural dynamics of the embedded chromophore inside the protein pocket. Visualization of the molecular choreography of the photoexcited chromophore requires a spectroscopic technique capable of resolving atomic motions on the intrinsic timescale of femtosecond to picosecond. We use femtosecond stimulated Raman spectroscopy to study the excited-state conformational dynamics of a recently developed FP-calmodulin biosensor, GEM-GECO1, for calcium ion (Ca2+) sensing. This study reveals that, in the absence of Ca2+, the dominant skeletal motion is a ∼170 cm−1 phenol-ring in-plane rocking that facilitates excited-state proton transfer (ESPT) with a time constant of ∼30 ps (6 times slower than wild-type GFP) to reach the green fluorescent state. The functional relevance of the motion is corroborated by molecular dynamics simulations. Upon Ca2+ binding, this in-plane rocking motion diminishes, and blue emission from a trapped photoexcited neutral chromophore dominates because ESPT is inhibited. Fluorescence properties of site-specific protein mutants lend further support to functional roles of key residues including proline 377 in modulating the H-bonding network and fluorescence outcome. These crucial structural dynamics insights will aid rational design in bioengineering to generate versatile, robust, and more sensitive optical sensors to detect Ca2+ in physiologically relevant environments. PMID:24987121

  12. Ca2+-Calmodulin is Involved in Betacyanin Accumulation Induced by Dark in C3 Halophyte Suaeda salsa

    Institute of Scientific and Technical Information of China (English)

    Chang-Quan Wang; Bao-Shan Wang

    2007-01-01

    The C3 halophyte Suaeda salsa was used to investigate the roles of Ca2+, Ca2+ channels, and calmodulin (CaM) in betacyanin metabolism. Seeds of S. salsa were cultured in both the dark and light for 3 days. The fresh weight and betacyanin content were much higher in S. salsa seedlings formed in the dark than in seedlings formed in the light. The addition of Ca2+ to the half-strength MS nutrient solution promoted betacyanin accumulation in the dark, whereas Ca2+ depletion by EGTA suppressed the dark-induced betacyanin accumulation in shoots of S. salsa. The Ca2+ channel blocker LaCl3 also inhibited dark-induced betacyanin accumulation. The highest activity of CaM and the maximum betacyanin content decreased by 51% and 45%, respectively, in shoots of S. salsa seedlings treated with the potent CaM antagonist chlorpromazine in the dark. Furthermore, the other CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) also inhibited the activity of CaM and dark-dependent betacyanin accumulation, whereas its less active structural analog N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5) had little effect on the responses to dark of S. salsa seedlings. These results suggest that Ca2+, Ca2+-regulated ion channels, and CaM play an important role in dark-induced betacyanin accumulation in the shoots of the C3 halophyte S. salsa.

  13. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants.

    Science.gov (United States)

    Baum, G; Lev-Yadun, S; Fridmann, Y; Arazi, T; Katsnelson, H; Zik, M; Fromm, H

    1996-06-17

    Glutamate decarboxylase (GAD) catalyzes the decarboxylation of glutamate to CO2 and gamma-aminobutyrate (GABA). GAD is ubiquitous in prokaryotes and eukaryotes, but only plant GAD has been shown to bind calmodulin (CaM). Here, we assess the role of the GAD CaM-binding domain in vivo. Transgenic tobacco plants expressing a mutant petunia GAD lacking the CaM-binding domain (GADdeltaC plants) exhibit severe morphological abnormalities, such as short stems, in which cortex parenchyma cells fail to elongate, associated with extremely high GABA and low glutamate levels. The morphology of transgenic plants expressing the full-length GAD (GAD plants) is indistinguishable from that of wild-type (WT) plants. In WT and GAD plant extracts, GAD activity is inhibited by EGTA and by the CaM antagonist trifluoperazine, and is associated with a CaM-containing protein complex of approximately 500 kDa. In contrast, GADdeltaC plants lack normal GAD complexes, and GAD activity in their extracts is not affected by EGTA and trifluoperazine. We conclude that CaM binding to GAD is essential for the regulation of GABA and glutamate metabolism, and that regulation of GAD activity is necessary for normal plant development. This study is the first to demonstrate an in vivo function for CaM binding to a target protein in plants.

  14. Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution.

    Science.gov (United States)

    Zik, M; Arazi, T; Snedden, W A; Fromm, H

    1998-08-01

    The nucleotide sequences of cDNAs encoding two isoforms of Arabidopsis glutamate decarboxylase, designated GAD1 (57.1 kDa) and GAD2 (56.1 kDa) and sharing 82% identical amino acid sequences, were determined. The recombinant proteins bound [35S] calmodulin (CaM) in the presence of calcium, and a region of 30-32 amino acids from the C-terminal of each isoform was sufficient for CaM binding when fused to glutathione S-transferase. Full-length GAD1 and GAD2 were expressed in Sf9 insect cells infected with recombinant baculovirus vectors. Recombinant proteins were partially purified by CaM affinity chromatography and were found to exhibit glutamate decarboxylase activity, which was dependent on the presence of Ca2+/CaM at pH 7.3. Southern hybridizations with GAD gene-specific probes suggest that Arabidopsis possesses one gene related to GAD1 and one to GAD2. Northern hybridization and western blot analysis revealed that GAD1 was expressed only in roots and GAD2 in roots, leaves, inflorescence stems and flowers. Our study provides the first evidence for the occurrence of multiple functional Ca2+/CaM-regulated GAD gene products in a single plant, suggesting that regulation of Arabidopsis GAD activity involves modulation of isoform-specific gene expression and stimulation of the catalytic activity of GAD by calcium signalling via CaM.

  15. The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein.

    Science.gov (United States)

    Rodríguez-Concepción, M; Yalovsky, S; Zik, M; Fromm, H; Gruissem, W

    1999-04-01

    Post-translational attachment of isoprenyl groups to conserved cysteine residues at the C-terminus of a number of regulatory proteins is important for their function and subcellular localization. We have identified a novel calmodulin, CaM53, with an extended C-terminal basic domain and a CTIL CaaX-box motif which are required for efficient prenylation of the protein in vitro and in vivo. Ectopic expression of wild-type CaM53 or a non-prenylated mutant protein in plants causes distinct morphological changes. Prenylated CaM53 associates with the plasma membrane, but the non-prenylated mutant protein localizes to the nucleus, indicating a dual role for the C-terminal domain. The subcellular localization of CaM53 can be altered by a block in isoprenoid biosynthesis or sugar depletion, suggesting that CaM53 activates different targets in response to metabolic changes. Thus, prenylation of CaM53 appears to be a novel mechanism by which plant cells can coordinate Ca2+ signaling with changes in metabolic activities.

  16. Metal binding discrimination of the calmodulin Q41C/K75C mutant on Ca2+ and La3+

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Calmodulin (CaM) is a multifunctional Ca2+-binding protein regulating the activity of many enzymes in response to fluctuation of the intracellular Ca2+ level. It has been shown that a CaM Q41C/K75C mutant (CaMSS) with a disulfide bond in the N-terminal domain exhibits greatly reduced affinity to Ca2+. In the present study, the experimental results revealed a unique metal binding pattern in CaMSS towards La3+ and Ca2+ separately: the mutant protein binds Ca2+ at site Ⅰ, Ⅲ and IV; however, it binds La3+ at site Ⅰ, Ⅱ and IV. A putative mechanism was proposed which is the conformation of site Ⅱ (or siteⅢ) of CaMSS could be altered and thus loses its metal ion affinity in response to metal binding in the opposite terminal domain possibly through the long range domain interaction. The present work may offer new perspectives for understanding the mechanisms of specific metal ion affinity in CaM and for CaM-based protein design.

  17. Calmodulin Gene Family in Potato: Developmental and Touch-Induced Expression of the mRNA Encoding a Novel Isoform

    Science.gov (United States)

    Takezawa, D.; Liu, Z. H.; An, G.; Poovaiah, B. W.

    1995-01-01

    Eight genomic clones of potato calmodulin (PCM1 to 8) were isolated and characterized. Sequence comparisons of different genes revealed that the deduced amino acid sequence of PCM1 had several unique substitutions, especially in the fourth Ca(2+)-binding area. The expression patterns of different genes were studied by northern analysis using the 3'-untranslated regions as probes. The expression of PCM1, 5, and 8 was highest in the stolon tip and it decreased during tuber development. The expression of PCM6 did not vary much in the tissues tested, except in the leaves, where the expression was lower; whereas, the expression of PCM4 was very low in all the tissues. The expression of PCM2 and PCM3 was not detected in any of the tissues tested. Among these genes, only PCM1 showed increased expression following touch stimulation. To study the regulation of PCM1, transgenic potato plants carrying the PCM1 promoter fused to the beta-glucuronidase (GUS) reporter gene were produced. GUS expression was found to be developmentally regulated and touch-responsive, indicating a positive correlation between the expression of PCM1 and GUS mRNAs. These results suggest that the 5'-flanking region of PCM1 controls developmental and touch-induced expression. X-Gluc staining patterns revealed that GUS localization is high in meristematic tissues such as the stem apex, stolon tip, and vascular regions.

  18. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity.

    Science.gov (United States)

    Beccia, Maria Rosa; Sauge-Merle, Sandrine; Lemaire, David; Brémond, Nicolas; Pardoux, Romain; Blangy, Stéphanie; Guilbaud, Philippe; Berthomieu, Catherine

    2015-07-01

    Calmodulin (CaM) is an essential Ca(II)-dependent regulator of cell physiology. To understand its interaction with Ca(II) at a molecular level, it is essential to examine Ca(II) binding at each site of the protein, even if it is challenging to estimate the site-specific binding properties of the interdependent CaM-binding sites. In this study, we evaluated the site-specific Ca(II)-binding affinity of sites I and II of the N-terminal domain by combining site-directed mutagenesis and spectrofluorimetry. The mutations had very low impact on the protein structure and stability. We used these binding constants to evaluate the inter-site cooperativity energy and compared it with its lower limit value usually reported in the literature. We found that site I affinity for Ca(II) was 1.5 times that of site II and that cooperativity induced an approximately tenfold higher affinity for the second Ca(II)-binding event, as compared to the first one. We further showed that insertion of a tryptophan at position 7 of site II binding loop significantly increased site II affinity for Ca(II) and the intra-domain cooperativity. ΔH and ΔS parameters were studied by isothermal titration calorimetry for Ca(II) binding to site I, site II and to the entire N-terminal domain. They showed that calcium binding is mainly entropy driven for the first and second binding events. These findings provide molecular information on the structure-affinity relationship of the individual sites of the CaM N-terminal domain and new perspectives for the optimization of metal ion binding by mutating the EF-hand loops sequences.

  19. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Science.gov (United States)

    Jackson, Kia J; Sanjakdar, Sarah S; Chen, Xiangning; Damaj, M Imad

    2012-01-01

    The influx of Ca(2+) through calcium-permeable nicotinic acetylcholine receptors (nAChRs) leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV) phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB), which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/-) mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  20. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    35S-Labeled calmodulin (CaM) was used to screen a tobacco anther cDNA library. A positive clone (NtER1) with high homology to an early ethylene-up-regulated gene (ER66) in tomato, and an Arabidopsis homolog was isolated and characterized. Based on the helical wheel projection, a 25-mer peptide corresponding to the predicted CaM-binding region of NtER1 (amino acids 796-820) was synthesized. The gel-mobility shift assay showed that the peptide formed a stable complex with CaM only in the presence of Ca(2+). CaM binds to NtER1 with high affinity (K(d) approximately 12 nm) in a calcium-dependent manner. Tobacco flowers at different stages of development were treated with ethylene or with 1-methylcyclopropene for 2 h before treating with ethylene. Northern analysis showed that the NtER1 was rapidly induced after 15 min of exposure to ethylene. However, the 2-h 1-methylcyclopropene treatment totally blocked NtER1 expression in flowers at all stages of development, suggesting that NtER1 is an early ethylene-up-regulated gene. The senescing leaves and petals had significantly increased NtER1 induction as compared with young leaves and petals, implying that NtER1 is developmentally regulated and acts as a trigger for senescence and death. This is the first documented evidence for the involvement of Ca(2+)/CaM-mediated signaling in ethylene action.

  1. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  2. Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Qian eZhao

    2015-01-01

    Full Text Available Many bacteria use signal molecules of low molecular weight to monitor their local population density and to coordinate their collective behavior in a process called quorum sensing (QS. N-acyl-homoserine lactones (AHLs are the primary QS signals among Gram-negative bacteria. AHL-mediated QS plays an essential role in diverse bacterial physiological processes. Recent evidence shows that plants are able to sense bacterial AHLs and respond to them appropriately. However, little is known about the mechanism by which plants perceive and transduce the bacterial AHLs within cells. In this study, we found that the stimulatory effect of N-3-oxo-hexanoyl homoserine lactone (3OC6-HSL on primary root elongation of Arabidopsis was abolished by the calmodulin (CaM antagonists N-(6-aminohexyl-5-chloro-1-naphthalene sulfonamide (W-7 and trifluoperazine (TFP. Western-blot and ELISA analysis revealed that the concentration of CaM protein in Arabidopsis roots increased after treatment with 1 μM 3OC6-HSL. Results from quantitative RT-PCR demonstrated that the transcription of all nine CaM genes in Arabidopsis genome was up-regulated in the plants treated with 3OC6-HSL. The loss-of-function mutants of each AtCaM gene (AtCaM1-9 were insensitive to 3OC6-HSL-stimulation of primary root elongation. On the other hand, the genetic evidence showed that CaM may not participates the inhibition of primary root length caused by application of long-chained AHLs such as C10-HSL and C12-HSL. Nevertheless, our results suggest that CaM is involved in the bacterial 3OC6-HSL signaling in plant cells. These data offer new insight into the mechanism of plant response to bacterial QS signals.

  3. Cloning and Characterization of Two NAD Kinases from Arabidopsis. Identification of a Calmodulin Binding Isoform1[w

    Science.gov (United States)

    Turner, William L.; Waller, Jeffrey C.; Vanderbeld, Barb; Snedden, Wayne A.

    2004-01-01

    NAD kinase (NADK; ATP:NAD 2′-phosphotransferase, EC 2.7.1.23), an enzyme found in both prokaryotes and eukaryotes, generates the important pyridine nucleotide NADP from substrates ATP and NAD. The role of NADKs in plants is poorly understood, and cDNAs encoding plant NADKs have not previously been described to our knowledge. We have cloned two cDNAs from Arabidopsis predicted to encode NADK isoforms, designated NADK1 and NADK2, respectively. Expressed as recombinant proteins in bacteria, both NADK1 and NADK2 were catalytically active, thereby confirming their identity as NADKs. Transcripts for both isoforms were detected in all tissues examined and throughout development. Although the predicted catalytic regions for NADK1 and NADK2 show sequence similarity to NADKs from other organisms, NADK2 possesses a large N-terminal extension that appears to be unique to plants. Using recombinant glutathione-S-transferase fusion proteins and calmodulin (CaM)-affinity chromatography, we delineated a Ca2+-dependent CaM-binding domain to a 45-residue region within the N-terminal extension of NADK2. Although recombinant NADK2 was not responsive to CaM in vitro, immunoblot analysis suggests that native NADK2 is a CaM-binding protein. In Arabidopsis crude extracts, CaM-dependent NADK activity was much greater than CaM-independent activity throughout development, particularly in young seedlings. A native CaM-dependent NADK was partially purified from Arabidopsis seedlings (KmNAD = 0.20 mM, KmMg2+−ATP = 0.17 mM). The enzyme was fully activated by conserved CaM (S0.5 = 2.2 nm) in the presence of calcium but displayed differential responsiveness to eight CaM-like Arabidopsis proteins. Possible roles for NADKs in plants are discussed in light of our observations. PMID:15247403

  4. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.

  5. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    Science.gov (United States)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  6. Light-modulated abundance of an mRNA encoding a calmodulin-regulated, chromatin-associated NTPase in pea

    Science.gov (United States)

    Hsieh, H. L.; Tong, C. G.; Thomas, C.; Roux, S. J.

    1996-01-01

    A CDNA encoding a 47 kDa nucleoside triphosphatase (NTPase) that is associated with the chromatin of pea nuclei has been cloned and sequenced. The translated sequence of the cDNA includes several domains predicted by known biochemical properties of the enzyme, including five motifs characteristic of the ATP-binding domain of many proteins, several potential casein kinase II phosphorylation sites, a helix-turn-helix region characteristic of DNA-binding proteins, and a potential calmodulin-binding domain. The deduced primary structure also includes an N-terminal sequence that is a predicted signal peptide and an internal sequence that could serve as a bipartite-type nuclear localization signal. Both in situ immunocytochemistry of pea plumules and immunoblots of purified cell fractions indicate that most of the immunodetectable NTPase is within the nucleus, a compartment proteins typically reach through nuclear pores rather than through the endoplasmic reticulum pathway. The translated sequence has some similarity to that of human lamin C, but not high enough to account for the earlier observation that IgG against human lamin C binds to the NTPase in immunoblots. Northern blot analysis shows that the NTPase MRNA is strongly expressed in etiolated plumules, but only poorly or not at all in the leaf and stem tissues of light-grown plants. Accumulation of NTPase mRNA in etiolated seedlings is stimulated by brief treatments with both red and far-red light, as is characteristic of very low-fluence phytochrome responses. Southern blotting with pea genomic DNA indicates the NTPase is likely to be encoded by a single gene.

  7. The octopamine receptor OAMB mediates ovulation via Ca2+/calmodulin-dependent protein kinase II in the Drosophila oviduct epithelium.

    Directory of Open Access Journals (Sweden)

    Hyun-Gwan Lee

    Full Text Available Ovulation is an essential physiological process in sexual reproduction; however, the underlying cellular mechanisms are poorly understood. We have previously shown that OAMB, a Drosophila G-protein-coupled receptor for octopamine (the insect counterpart of mammalian norepinephrine, is required for ovulation induced upon mating. OAMB is expressed in the nervous and reproductive systems and has two isoforms (OAMB-AS and OAMB-K3 with distinct capacities to increase intracellular Ca2+ or intracellular Ca2+ and cAMP in vitro. Here, we investigated tissue specificity and intracellular signals required for OAMB's function in ovulation. Restricted OAMB expression in the adult oviduct epithelium, but not the nervous system, reinstated ovulation in oamb mutant females, in which either OAMB isoform was sufficient for the rescue. Consistently, strong immunoreactivities for both isoforms were observed in the wild-type oviduct epithelium. To delineate the cellular mechanism by which OAMB regulates ovulation, we explored protein kinases functionally interacting with OAMB by employing a new GAL4 driver with restricted expression in the oviduct epithelium. Conditional inhibition of Ca2+/Calmodulin-dependent protein kinase II (CaMKII, but not protein kinase A or C, in the oviduct epithelium inhibited ovulation. Moreover, constitutively active CaMKII, but not protein kinase A, expressed only in the adult oviduct epithelium fully rescued the oamb female's phenotype, demonstrating CaMKII as a major downstream molecule conveying the OAMB's ovulation signal. This is consistent with the ability of both OAMB isoforms, whose common intracellular signal in vitro is Ca2+, to reinstate ovulation in oamb females. These observations reveal the critical roles of the oviduct epithelium and its cellular components OAMB and CaMKII in ovulation. It is conceivable that the OAMB-mediated cellular activities stimulated upon mating are crucial for secretory activities suitable for egg

  8. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Institute of Scientific and Technical Information of China (English)

    Shucheng Xu

    2010-01-01

     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  9. Approaches to the assignment of {sup 19}F resonances from 3-fluorophenylalanine labeled calmodulin using solution state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Kitevski-LeBlanc, Julianne L.; Evanics, Ferenc; Scott Prosser, R., E-mail: scott.prosser@utoronto.c [University of Toronto, Department of Chemistry (Canada)

    2010-06-15

    Traditional single site replacement mutations (in this case, phenylalanine to tyrosine) were compared with methods which exclusively employ {sup 15}N and {sup 19}F-edited two- and three-dimensional NMR experiments for purposes of assigning {sup 19}F NMR resonances from calmodulin (CaM), biosynthetically labeled with 3-fluorophenylalanine (3-FPhe). The global substitution of 3-FPhe for native phenylalanine was tolerated in CaM as evidenced by a comparison of {sup 1}H-{sup 15}N HSQC spectra and calcium binding assays in the presence and absence of 3-FPhe. The {sup 19}F NMR spectrum reveals six resolved resonances, one of which integrates to three 3-FPhe species, making for a total of eight fluorophenylalanines. Single phenylalanine to tyrosine mutants of five phenylalanine positions resulted in {sup 19}F NMR spectra with significant chemical shift perturbations of the remaining resonances, and provided only a single definitive assignment. Although {sup 1}H-{sup 19}F heteronucleclear NOEs proved weak, {sup 19}F-edited {sup 1}H-{sup 1}H NOESY connectivities were relatively easy to establish by making use of the {sup 3}J{sub FH} coupling between the fluorine nucleus and the adjacent fluorophenylalanine {delta} proton. {sup 19}F-edited NOESY connectivities between the {delta} protons and {alpha} and {beta} nuclei in addition to {sup 15}N-edited {sup 1}H, {sup 1}H NOESY crosspeaks proved sufficient to assign 4 of 8 {sup 19}F resonances. Controlled cleavage of the protein into two fragments using trypsin, and a repetition of the above 2D and 3D techniques resulted in unambiguous assignments of all 8 {sup 19}F NMR resonances. Our studies suggest that {sup 19}F-edited NOESY NMR spectra are generally adequate for complete assignment without the need to resort to mutational analysis.

  10. Molecular characterisation of a calmodulin gene, VcCaM1, that is differentially expressed under aluminium stress in highbush blueberry.

    Science.gov (United States)

    Inostroza-Blancheteau, C; Aquea, F; Loyola, R; Slovin, J; Josway, S; Rengel, Z; Reyes-Díaz, M; Alberdi, M; Arce-Johnson, P

    2013-11-01

    Calmodulin (CaM), a small acidic protein, is one of the best characterised Ca(2+) sensors in eukaryotes. This Ca(2+) -regulated protein plays a critical role in decoding and transducing environmental stress signals by activating specific targets. Many environmental stresses elicit changes in intracellular Ca(2+) activity that could initiate adaptive responses under adverse conditions. We report the first molecular cloning and characterisation of a calmodulin gene, VcCaM1 (Vaccinium corymbosum Calmodulin 1), in the woody shrub, highbush blueberry. VcCaM1 was first identified as VCAL19, a gene induced by aluminium stress in V. corymbosum L. A full-length cDNA of VcCaM1 containing a 766-bp open reading frame (ORF) encoding 149 amino acids was cloned from root RNA. The sequence encodes four Ca(2+) -binding motifs (EF-hands) and shows high similarity (99%) with the isoform CaM 201 of Daucus carota. Expression analyses showed that following Al treatment, VcCaM1 message level decreased in roots of Brigitta, an Al-resistant cultivar, and after 48 h, was lower than in Bluegold, an Al-sensitive cultivar. VcCAM1 message also decreased in leaves of both cultivars within 2 h of treatment. Message levels in leaves then increased by 24 h to control levels in Brigitta, but not in Bluegold, but then decreased again by 48 h. In conclusion, VcCaM1 does not appear to be directly involved in Al resistance, but may be involved in improved plant performance under Al toxicity conditions through regulation of Ca(2+) homeostasis and antioxidant systems in leaves.

  11. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol; Kim, Hye Won [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of); Jung, Won-Kyo [Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737 (Korea, Republic of); Na, Sung Hun [Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 200-701 (Korea, Republic of); Jung, In Duk; Park, Yeong-Min [Department of Immunology, Lab of Dendritic Cell Differentiation and Regulation, College of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Choi, Il-Whan, E-mail: cihima@inje.ac.kr [Department of Microbiology, Inje University College of Medicine, Busan, 614-735 (Korea, Republic of); Park, Won Sun, E-mail: parkws@kangwon.ac.kr [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of)

    2015-06-15

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivation curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.

  12. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C by Ca2+/calmodulin-dependent protein kinase II inhibits DNA synthesis

    DEFF Research Database (Denmark)

    Maga, G; Mossi, R; Fischer, R

    1997-01-01

    that the PCNA binding domain is phosphorylated by the Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme required for cell cycle progression in eukaryotic cells. The DNA binding domain, on the other hand, is not phosphorylated. Phosphorylation by CaMKII reduces the binding of PCNA to RF......Replication factor C (RF-C) is a heteropentameric protein essential for DNA replication and DNA repair. It is a molecular matchmaker required for loading of the proliferating cell nuclear antigen (PCNA) sliding clamp onto double-strand DNA and for PCNA-dependent DNA synthesis by DNA polymerases...

  13. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Issinger, O G;

    1994-01-01

    The noncatalytic beta-subunit is responsible for the latency of casein kinase 2 (CK2) activity toward calmodulin. Twenty-one mutants of the beta-subunit bearing either deletions or Ala substitutions for charged residues in the 5-6, 55-70, and 171-178 sequences have been assayed for their ability...... insensitive to 42 nM polylysine, which conversely promotes a more than 10-fold increase of calmodulin phosphorylation with wild-type beta.(ABSTRACT TRUNCATED AT 250 WORDS)...

  14. The Ca²⁺-calmodulin-Ca²⁺/calmodulin-dependent protein kinase II signaling pathway is involved in oxidative stress-induced mitochondrial permeability transition and apoptosis in isolated rat hepatocytes.

    Science.gov (United States)

    Toledo, Flavia D; Pérez, Leonardo M; Basiglio, Cecilia L; Ochoa, Justina E; Sanchez Pozzi, Enrique J; Roma, Marcelo G

    2014-09-01

    Oxidative stress (OS) is a common event in most hepatopathies, leading to mitochondrial permeability transition pore (MPTP) formation and further exacerbation of both OS from mitochondrial origin and cell death. Intracellular Ca²⁺ increase plays a permissive role in these events, but the underlying mechanisms are poorly known. We examined in primary cultured rat hepatocytes whether the Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling pathway is involved in this process, by using tert-butyl hydroperoxide (tBOOH) as a pro-oxidant, model compound. tBOOH (500 μM, 15 min) induced MPTP formation, as assessed by measuring mitochondrial membrane depolarization as a surrogate marker, and increased lipid peroxidation in a cyclosporin A (CsA)-sensitive manner, revealing the involvement of MPTPs in tBOOH-induced radical oxygen species (ROS) formation. Intracellular Ca²⁺ sequestration with BAPTA/AM, CaM blockage with W7 or trifluoperazine, and CaMKII inhibition with KN-62 all fully prevented tBOOH-induced MPTP opening and reduced tBOOH-induced lipid peroxidation to a similar extent to CsA, suggesting that Ca²⁺/CaM/CaMKII signaling pathway fully mediates MPTP-mediated mitochondrial ROS generation. tBOOH-induced apoptosis, as shown by flow cytometry of annexin V/propidium iodide, mitochondrial release of cytochrome c, activation of caspase-3 and increase in the Bax-to-Bcl-xL ratio, and the Ca²⁺/CaM/CaMKII signaling antagonists fully prevented these effects. Intramitochondrial CaM and CaMKII were partially involved in tBOOH-induced MPTP formation, since W7 and KN-62 both attenuated the tBOOH-induced, MPTP-mediated swelling of isolated mitochondria. We concluded that Ca²⁺/CaM/CaMKII signaling pathway is a key mediator of OS-induced MPTP formation and the subsequent exacerbation of OS from mitochondrial origin and apoptotic cell death.

  15. Is buffer a good proxy for a crowded cell-like environment? A comparative NMR study of calmodulin side-chain dynamics in buffer and E. coli lysate.

    Directory of Open Access Journals (Sweden)

    Michael P Latham

    Full Text Available Biophysical studies of protein structure and dynamics are typically performed in a highly controlled manner involving only the protein(s of interest. Comparatively fewer such studies have been carried out in the context of a cellular environment that typically involves many biomolecules, ions and metabolites. Recently, solution NMR spectroscopy, focusing primarily on backbone amide groups as reporters, has emerged as a powerful technique for investigating protein structure and dynamics in vivo and in crowded "cell-like" environments. Here we extend these studies through a comparative analysis of Ile, Leu, Val and Met methyl side-chain motions in apo, Ca(2+-bound and Ca(2+, peptide-bound calmodulin dissolved in aqueous buffer or in E. coli lysate. Deuterium spin relaxation experiments, sensitive to pico- to nano-second time-scale processes and Carr-Purcell-Meiboom-Gill relaxation dispersion experiments, reporting on millisecond dynamics, have been recorded. Both similarities and differences in motional properties are noted for calmodulin dissolved in buffer or in lysate. These results emphasize that while significant insights can be obtained through detailed "test-tube" studies, experiments performed under conditions that are "cell-like" are critical for obtaining a comprehensive understanding of protein motion in vivo and therefore for elucidating the relation between motion and function.

  16. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  17. Phosphorylation of anchoring protein by calmodulin protein kinase associated to the sarcoplasmic reticulum of rabbit fast-twitch muscle.

    Science.gov (United States)

    Damiani, E; Sacchetto, R; Margreth, A

    2000-12-09

    Regulatory phosphorylation of phospholamban and of SR Ca(2+)-ATPase SERCA2a isoform by endogenous CaM-K II in slow-twitch skeletal and cardiac sarcoplasmic reticulum (SR) is well documented, but much less is known of the exact functional role of CaM K II in fast-twitch muscle SR. Recently, it was shown that RNA splicing of brain-specific alpha CaM K II, gives rise to a truncated protein (alpha KAP), consisting mainly of the association domain, serving to anchor CaM K II to SR membrane in rat skeletal muscle [Bayer, K.-U., et al. (1998) EMBO J. 19, 5598-5605]. In the present study, we searched for the presence of alpha KAP in sucrose-density purified SR membrane fractions from representative fast-twitch and slow-twitch limb muscles, both of the rabbit and the rat, using immunoblot techniques and antibody directed against the association domain of alpha CaM K II. Putative alpha KAP was immunodetected as a 23-kDa electrophoretic component on SDS-PAGE of the isolated SR from fast-twitch but not from slow-twitch muscle, and was further identified as a specific substrate of endogenous CaM K II, in the rabbit. Immunodetected, (32)P-labeled, non-calmodulin binding protein, behaved as a single 23-kDa protein species under several electrophoretic conditions. The 23-kDa protein, with defined properties, was isolated as a complex with 60-kDa delta CaM K II isoform, by sucrose-density sedimentation analysis. Moreover, we show here that putative alphaKAP, in spite of its inability to bind CaM in ligand blot overlay, co-eluted with delta CaM K II from CaM-affinity columns. That raises the question of whether CaM K II-mediated phosphorylation of alpha KAP and triadin together might be involved in a molecular signaling pathway important for SR Ca(2+)-release in fast-twitch muscle SR.

  18. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Finley, Natosha L., E-mail: finleynl@miamioh.edu [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 (United States)

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  19. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin.

    Science.gov (United States)

    Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L

    2014-10-10

    Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM.

  20. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis.

    Science.gov (United States)

    Drum, C L; Yan, S Z; Sarac, R; Mabuchi, Y; Beckingham, K; Bohm, A; Grabarek, Z; Tang, W J

    2000-11-17

    The edema factor exotoxin produced by Bacillus anthracis is an adenylyl cyclase that is activated by calmodulin (CaM) at resting state calcium concentrations in infected cells. A C-terminal 60-kDa fragment corresponding to the catalytic domain of edema factor (EF3) was cloned, overexpressed in Escherichia coli, and purified. The N-terminal 43-kDa domain (EF3-N) of EF3, the sole domain of edema factor homologous to adenylyl cyclases from Bordetella pertussis and Pseudomonas aeruginosa, is highly resistant to protease digestion. The C-terminal 160-amino acid domain (EF3-C) of EF3 is sensitive to proteolysis in the absence of CaM. The addition of CaM protects EF3-C from being digested by proteases. EF3-N and EF3-C were expressed separately, and both fragments were required to reconstitute full CaM-sensitive enzyme activity. Fluorescence resonance energy transfer experiments using a double-labeled CaM molecule were performed and indicated that CaM adopts an extended conformation upon binding to EF3. This contrasts sharply with the compact conformation adopted by CaM upon binding myosin light chain kinase and CaM-dependent protein kinase type II. Mutations in each of the four calcium binding sites of CaM were examined for their effect on EF3 activation. Sites 3 and 4 were found critical for the activation, and neither the N- nor the C-terminal domain of CaM alone was capable of activating EF3. A genetic screen probing loss-of-function mutations of EF3 and site-directed mutations based on the homology of the edema factor family revealed a conserved pair of aspartate residues and an arginine that are important for catalysis. Similar residues are essential for di-metal-mediated catalysis in mammalian adenylyl cyclases and a family of DNA polymerases and nucleotidyltransferases. This suggests that edema factor may utilize a similar catalytic mechanism.

  1. Analysis of common bean (Phaseolus vulgaris L., genotype BAT93 calmodulin cDNA using computational tools

    Directory of Open Access Journals (Sweden)

    Kassim Amelia

    2015-01-01

    Full Text Available Background: Common bean (Phaseolus vulgaris L. is an important part of the human diet and serves as a source of natural products. Identification and understanding of genes in P. vulgaris is important for its improvement. Characterization of expressed sequence tags (ESTs is one of the approaches in understanding the expressed genes. For the understanding of genes expression in P. vulgaris pod-tissue, research work of ESTs generation was initiated by constructing cDNA libraries using 5-day and 20-day old bean-pod-tissues. Altogether, 5972 cDNA clones were isolated to have ESTs. While processing ESTs, we found a transcript for calmodulin (CaM gene. It is an important gene that encodes for a calcium-binding protein and known to express in all eukaryotic cells. Hence, this study was undertaken to analyse and annotate it. Objective: The objective of this study was to analyze and annotate P. vulgaris CaM (PvCaM gene cDNA and its deduced protein (amino acids sequence. Materials and Methods: Both strands of PvCaM cDNA clone were sequenced using M13 forward and reverse primer to elucidate the nucleotide sequence. The cDNA sequence and deduced protein sequence were analyzed and annotated using bioinformatics tools available online. The secondary structures and three-dimensional (3D structure of PvCaM protein were predicted using the Phyre automatic fold recognition server. Results: Results showed that PvCaM cDNA is 818 bp in length. The cDNA analysis results showed that it contains an open reading frame that encodes for 149 amino acid residues. The deduced protein sequence analysis results showed the presence of conserved domains required for CaM function. The predicted secondary structures and 3D structure are analogous to the Solanum tuberosum CaM. Conclusions: This study analyzed and annotated PvCaM cDNA and protein. However, in order to obtain a complete understanding of PvCaM protein, further study on its expression, structure and regulation is

  2. Effects of selective inhibition of protein kinase C, cyclic AMP-dependent protein kinase, and Ca(2+)-calmodulin-dependent protein kinase on neurite development in cultured rat hippocampal neurons.

    Science.gov (United States)

    Cabell, L; Audesirk, G

    1993-06-01

    A variety of experimental evidence suggests that calmodulin and protein kinases, especially protein kinase C, may participate in regulating neurite development in cultured neurons, particularly neurite initiation. However, the results are somewhat contradictory. Further, the roles of calmodulin and protein kinases on many aspects of neurite development, such as branching or elongation of axons vs dendrites, have not been extensively studied. Cultured embryonic rat hippocampal pyramidal neurons develop readily identifiable axons and dendrites. We used this culture system and the new generation of highly specific protein kinase inhibitors to investigate the roles of protein kinases and calmodulin in neurite development. Neurons were cultured for 2 days in the continuous presence of calphostin C (a specific inhibitor of protein kinase C), KT5720 (inhibitor of cyclic AMP-dependent protein kinase), KN62 (inhibitor of Ca(2+)-calmodulin-dependent protein kinase II), or calmidazolium (inhibitor of calmodulin), each at concentrations from approximately 1 to 10 times the concentration reported in the literature to inhibit each kinase by 50%. The effects of phorbol 12-myristate 13-acetate (an activator of protein kinase C) and 4 alpha-phorbol 12,13-didecanoate (an inactive phorbol ester) were also tested. At concentrations that had no effect on neuronal viability, calphostin C reduced neurite initiation and axon branching without significantly affecting the number of dendrites per neuron, dendrite branching, dendrite length, or axon length. Phorbol 12-myristate 13-acetate increased axon branching and the number of dendrites per cell, compared to the inactive 4 alpha-phorbol 12,13-didecanoate. KT5720 inhibited only axon branching. KN62 reduced axon length, the number of dendrites per neuron, and both axon and dendrite branching. At low concentrations, calmidazolium had no effect on any aspect of neurite development, but at high concentrations, calmidazolium inhibited every

  3. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mendez Ricardo

    2011-07-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic dimorphic fungus of worldwide distribution. It grows in the saprophytic form with hyaline, regularly septated hyphae and pyriform conidia at 25°C and as the yeast or parasitic form at 35°C. Previously, we characterized a calcium/calmodulin kinase in this fungus. Inhibitors of this kinase were observed to inhibit the yeast cell cycle in S. schenckii. Results The presence of RNA interference (RNAi mechanism in this fungus was confirmed by the identification of a Dicer-1 homologue in S. schenckii DNA. RNAi technology was used to corroborate the role of calcium/calmodulin kinase I in S. schenckii dimorphism. Yeast cells were transformed with the pSilent-Dual2G (pSD2G plasmid w/wo inserts of the coding region of the calcium/calmodulin kinase I (sscmk1 gene. Transformants were selected at 35°C using resistance to geneticin. Following transfer to liquid medium at 35°C, RNAi transformants developed as abnormal mycelium clumps and not as yeast cells as would be expected. The level of sscmk1 gene expression in RNAi transformants at 35°C was less than that of cells transformed with the empty pSD2G at this same temperature. Yeast two-hybrid analysis of proteins that interact with SSCMK1 identified a homologue of heat shock protein 90 (HSP90 as interacting with this kinase. Growth of the fungus similar to that of the RNAi transformants was observed in medium with geldanamycin (GdA, 10 μM, an inhibitor of HSP90. Conclusions Using the RNAi technology we silenced the expression of sscmk1 gene in this fungus. RNAi transformants were unable to grow as yeast cells at 35°C showing decreased tolerance to this temperature. The interaction of SSCMK1 with HSP90, observed using the yeast two-hybrid assay suggests that this kinase is involved in thermotolerance through its interaction with HSP90. SSCMK1 interacted with the C terminal domain of HSP90 where effector proteins and co-chaperones interact. These

  4. MICrocephaly, disproportionate pontine and cerebellar hypoplasia syndrome: A clinico-radiologic phenotype linked to calcium/calmodulin-dependent serine protein kinase gene mutation

    Directory of Open Access Journals (Sweden)

    Rashid Saleem

    2013-01-01

    Full Text Available MICrocephaly, disproportionate pontine and cerebellar hypoplasia (MICPCH syndrome, a rare X-linked disorder, generally seen in girls, is characterized by neurodevelopmental delay, microcephaly, and disproportionate pontine and cerebellar hypoplasia. It is caused by inactivating calcium/calmodulin-dependent serine protein kinase (CASK gene mutations. We report a 2-year-old girl with severe neurodevelopmental delay, microcephaly, minimal pontine hypoplasia, cerebellar hypoplasia, and normal looking corpus callosum, with whom the conventional cytogenetic studies turned out to be normal, and an array-comparative genomic hybridization (a-CGH analysis showed CASK gene duplication at Xp11.4. Our case highlights the importance of using clinico-radiologic phenotype to guide genetic investigation and it also confirms the role of a-CGH analysis in establishing the genetic diagnosis of MICPCH syndrome, when conventional cytogenetic studies are inconclusive.

  5. New insight into molecular phylogeny and epidemiology of Sporothrix schenckii species complex based on calmodulin-encoding gene analysis of Italian isolates.

    Science.gov (United States)

    Romeo, Orazio; Scordino, Fabio; Criseo, Giuseppe

    2011-09-01

    In this study, we investigated phylogenetic relationships among Italian Sporothrix schenckii isolates, by comparing their partial calmodulin sequences. In this analysis, we used 26 environmental strains of S. schenckii, plus two autochthonous clinical isolates. The results showed that our clinical strains grouped with S. schenckii sensu stricto isolates, whereas all 26 environmental isolates co-clustered with Sporothrix albicans (now regarded as a synonym of Sporothrix pallida), a non-pathogenic species closely related to S. schenckii. Furthermore, the group of environmental strains was found to be quite heterogeneous and further subdivided into two subgroups. The data reported here also showed that molecular methods, for specific identification of S. schenckii, developed before the description of its closely related species should be used with caution because of the possibility of false positive results, which could lead to inappropriate antifungal therapy. This study improves our understanding of the distribution of these new closely related Sporothrix species which also showed significant differences in antifungal susceptibilities.

  6. Altered RyR2 regulation by the calmodulin F90L mutation associated with idiopathic ventricular fibrillation and early sudden cardiac death.

    Science.gov (United States)

    Nomikos, Michail; Thanassoulas, Angelos; Beck, Konrad; Vassilakopoulou, Vyronia; Hu, Handan; Calver, Brian L; Theodoridou, Maria; Kashir, Junaid; Blayney, Lynda; Livaniou, Evangelia; Rizkallah, Pierre; Nounesis, George; Lai, F Anthony

    2014-08-25

    Calmodulin (CaM) association with the cardiac muscle ryanodine receptor (RyR2) regulates excitation-contraction coupling. Defective CaM-RyR2 interaction is associated with heart failure. A novel CaM mutation (CaM(F90L)) was recently identified in a family with idiopathic ventricular fibrillation (IVF) and early onset sudden cardiac death. We report the first biochemical characterization of CaM(F90L). F90L confers a deleterious effect on protein stability. Ca(2+)-binding studies reveal reduced Ca(2+)-binding affinity and a loss of co-operativity. Moreover, CaM(F90L) displays reduced RyR2 interaction and defective modulation of [(3)H]ryanodine binding. Hence, dysregulation of RyR2-mediated Ca(2+) release via aberrant CaM(F90L)-RyR2 interaction is a potential mechanism that underlies familial IVF.

  7. Data for the co-expression and purification of human recombinant CaMKK2 in complex with calmodulin in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lisa Gerner

    2016-09-01

    Full Text Available Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2 has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 ‘apo’, CaMKK2 (165-501 in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, “Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2” [1].

  8. Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: Involvement of a transient receptor potential-like channel and a calmodulin

    Science.gov (United States)

    Häder, Donat-Peter; Richter, Peter R.; Schuster, Martin; Daiker, Viktor; Lebert, Michael

    2009-04-01

    Euglena gracilis, a unicellular, photosynthetic flagellate is a model system for environmentally controlled behavior responses. The organism shows pronounced negative gravitaxis. This movement is based on physiological mechanisms, which in the past had been only indirectly assessed. It was shown that mechano-sensitive calcium channels are involved in the gravitaxis response. Recent studies have demonstrated that members of the transient receptor potential (TRP) family function as mechano-sensitive channels in several different cell types. We have sequenced part of a TRP gene in Euglena and applied RNA interference (RNAi) to confirm that these channels are involved in graviperception. It was found that RNAi against the putative TRP channel abolished gravitaxis. The genes of three calmodulins were sequences in Euglena, one of which was previously known in its protein structure (cal 1). The other two were unknown (cal 2 and cal 3). Cal 2 has been analyzed in detail. The biosynthesis of the corresponding proteins of cal 1 and cal 2 was inhibited by means of RNA interference to see whether this blockage impairs gravitaxis. RNAi of cal 1 leads to a long-term loss of free swimming in the cells (while euglenoid movement persists). It induced pronounced cell form aberrations and the division of cells was hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Thus cal 1 does not seem to be involved in gravitaxis. In contrast, the blockage of cal 2 has no pronounced influence on motility and cell form but leads to a complete loss of gravitactic orientation for more than 30 days showing that this calmodulin is an element in the signal transduction chain. The data are discussed in the context of the current model of the gravitaxis signal transduction chain in Euglena gracilis.

  9. Effect of Calmodulin on the Differrentiation and Migration of PC12 Cells%钙调蛋白在PC12细胞分化和迁移中的作用

    Institute of Scientific and Technical Information of China (English)

    袁俊; 李朝军

    2011-01-01

    To investigate the roles of calmodulin during neuronal differentiation and migration,we checked PC12 cells by immunofluorescence staining and single cell tracking assay after NGF treatment. We found that calmodulin showed a dense distribution pattern in top of PC12 cells. Only a small percentage of the cells grown in W7 treatment cells. A single cell tracking experiment showed that calmodulin in PC12 cells could increase cell motility. The data suggested that calmodulin may play an important role in differentiation and migration of PC12 cells.%PC12 细胞经神经生长因子 (NGF)作用后,利用免疫荧光染色、单个细胞迁移率检测等方法,研究了钙调蛋白在PC12 细胞中的分布以及钙调蛋白对PC12 细胞分化和迁移的影响.免疫荧光染色结果表明,钙调蛋白在PC12细胞突起的顶端处呈密集分布.加入钙调蛋白抑制剂W7的细胞仅有少量长出突起.单个细胞迁移率检测表明钙调蛋白可能促进PC12 细胞迁移.提示钙调蛋白可能在PC12细胞的分化和迁移过程中发挥作用.

  10. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway.

    Science.gov (United States)

    Said, Hamid M; Wang, Shuling; Ma, Thomas Y

    2005-07-15

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na+ dependent, (3) saturable as a function of concentration with an apparent Km of 80 +/- 14 nM, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) as well as by the Na+ -H+ exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca2+ -calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is

  11. Functional analysis of the stress-inducible soybean calmodulin isoform-4 (GmCaM-4) promoter in transgenic tobacco plants.

    Science.gov (United States)

    Park, Hyeong Cheol; Kim, Man Lyang; Kang, Yun Hwan; Jeong, Jae Cheol; Cheong, Mi Sun; Choi, Wonkyun; Lee, Sang Yeol; Cho, Moo Je; Kim, Min Chul; Chung, Woo Sik; Yun, Dae-Jin

    2009-04-30

    The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between -1,207 and -1,128 bp, and between -858 and -728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.

  12. Variants in doublecortin- and calmodulin kinase like 1, a gene up-regulated by BDNF, are associated with memory and general cognitive abilities.

    Directory of Open Access Journals (Sweden)

    Stéphanie Le Hellard

    Full Text Available BACKGROUND: Human memory and general cognitive abilities are complex functions of high heritability and wide variability in the population. The brain-derived neurotrophic factor (BDNF plays an important role in mammalian memory formation. METHODOLOGY / PRINCIPAL FINDING: Based on the identification of genes markedly up-regulated during BDNF-induced synaptic consolidation in the hippocampus, we selected genetic variants that were tested in three independent samples, from Norway and Scotland, of adult individuals examined for cognitive abilities. In all samples, we show that markers in the doublecortin- and calmodulin kinase like 1 (DCLK1 gene, are significantly associated with general cognition (IQ scores and verbal memory function, resisting multiple testing. DCLK1 is a complex gene with multiple transcripts which vary in expression and function. We show that the short variants are all up-regulated after BDNF treatment in the rat hippocampus, and that they are expressed in the adult human brain (mostly in cortices and hippocampus. We demonstrate that several of the associated variants are located in potential alternative promoter- and cis-regulatory elements of the gene and that they affect BDNF-mediated expression of short DCLK1 transcripts in a reporter system. CONCLUSION: These data present DCLK1 as a functionally pertinent gene involved in human memory and cognitive functions.

  13. Competitive binding of postsynaptic density 95 and Ca2+-calmodulin dependent protein kinase Ⅱ to N-methyl-D-aspartate receptor subunit 2B in rat brain

    Institute of Scientific and Technical Information of China (English)

    Fan-jie MENG; Jun GUO; Bo SONG; Xue-bo YAN; Guang-yi ZHANG

    2004-01-01

    AIM: To investigate the interactions among postsynaptic density 95 (PSD-95), Ca2+-calmodulin dependent protein kinase Ⅱα (CaMKⅡα), and N-methyl-D-aspartate receptor subunit 2B (NR2B) during ischemia and reperfusion in hippocampus of rats. METHODS: Brain ischemia was induced by four-vessel occlusion procedure in rats. Immunoprecipitation and immunoblotting were performed to study the interactions and phosphorylation of proteins. The association-dissociation of PSD-95 and CaMKⅡα to and from N-methyl-D-aspartate (NMDA) receptor induced by ischemia and reperfusion and the effects of 1-[N,O-bis-(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenyl-piperazine (KN-62, a selective inhibitor of CaMKⅡ) on these protein interactions were investigated. Coimmunoprecipitation and immunoblotting were performed for the studies of interactions among proteins. RESULTS: The alternations of the binding level of PSD-95 and CaMKⅡα to NR2B during ischemia and reperfusion demonstrated the negative correlation to each other. Pre-administration of KN62 through both cerebral ventricles inhibited the 10 min ischemia-induced increase of the binding of PSD-95 to NR2B and, on the contrary, promoted the binding of CaMKⅡα to NR2B. CONCLUSION: PSD-95 competes with CaMKⅡ to bind to NR2B during ischemia and reperfusion in rat hippocampus.

  14. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    Directory of Open Access Journals (Sweden)

    Cong Haolong

    Full Text Available Enterovirus 71 (EV71 is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  15. Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca[superscript 2+]·calmodulins

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, Jennifer L.; Baker, Mariah R.; Xiong, Liangwen; Loy, Ryan E.; Yang, Guojun; Dirksen, Robert T.; Hamilton, Susan L.; Quiocho, Florante A.; (Baylor); (Rochester-Med)

    2009-11-10

    Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is an unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.

  16. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells

    Science.gov (United States)

    Chi, Mengna; Evans, Hamish; Gilchrist, Jackson; Mayhew, Jack; Hoffman, Alexander; Pearsall, Elizabeth Ann; Jankowski, Helen; Brzozowski, Joshua Stephen; Skelding, Kathryn Anne

    2016-01-01

    Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional kinase that controls a range of cellular functions, including proliferation, differentiation and apoptosis. The biological properties of CaMKII are regulated by multi-site phosphorylation. However, the role that CaMKII phosphorylation plays in cancer cell metastasis has not been examined. We demonstrate herein that CaMKII expression and phosphorylation at T286 is increased in breast cancer when compared to normal breast tissue, and that increased CAMK2 mRNA is associated with poor breast cancer patient prognosis (worse overall and distant metastasis free survival). Additionally, we show that overexpression of WT, T286D and T286V forms of CaMKII in MDA-MB-231 and MCF-7 breast cancer cells increases invasion, migration and anchorage independent growth, and that overexpression of the T286D phosphomimic leads to a further increase in the invasive, migratory and anchorage independent growth capacity of these cells. Pharmacological inhibition of CaMKII decreases MDA-MB-231 migration and invasion. Furthermore, we demonstrate that overexpression of T286D, but not WT or T286V-CaMKII, leads to phosphorylation of FAK, STAT5a, and Akt. These results demonstrate a novel function for phosphorylation of CaMKII at T286 in the control of breast cancer metastasis, offering a promising target for the development of therapeutics to prevent breast cancer metastasis. PMID:27605043

  17. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures.

    Directory of Open Access Journals (Sweden)

    Qing Lu

    Full Text Available We have recently shown that p38MAP kinase (p38MAPK stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.

  18. Human Calmodulin-Like Protein CALML3: A Novel Marker for Normal Oral Squamous Mucosa That Is Downregulated in Malignant Transformation

    Directory of Open Access Journals (Sweden)

    Michael D. Brooks

    2013-01-01

    Full Text Available Oral cancer is often diagnosed only at advanced stages due to a lack of reliable disease markers. The purpose of this study was to determine if the epithelial-specific human calmodulin-like protein (CALML3 could be used as marker for the various phases of oral tumor progression. Immunohistochemical analysis using an affinity-purified CALML3 antibody was performed on biopsy-confirmed oral tissue samples representing these phases. A total of 90 tissue specimens were derived from 52 patients. Each specimen was analyzed in the superficial and basal mucosal cell layers for overall staining and staining of cellular subcompartments. CALML3 was strongly expressed in benign oral mucosal cells with downregulation of expression as squamous cells progress to invasive carcinoma. Based on the Cochran-Armitage test for trend, expression in the nucleus and at the cytoplasmic membrane significantly decreased with increasing disease severity. Chi-square test showed that benign tissue specimens had significantly more expression compared to dysplasia/CIS and invasive specimens. Dysplasia/CIS tissue had significantly more expression than invasive tissue. We conclude that CALML3 is expressed in benign oral mucosal cells with a statistically significant trend in downregulation as tumorigenesis occurs. CALML3 may thus be a sensitive new marker for oral cancer screening.

  19. Ca2+/calmodulin-dependent protein kinase II alpha is required for the initiation and maintenance of opioid-induced hyperalgesia.

    Science.gov (United States)

    Chen, Yan; Yang, Cheng; Wang, Zaijie Jim

    2010-01-01

    Repeated administration of opioids not only leads to tolerance and dependence, but also results in nociceptive enhancement called opioid-induced hyperalgesia (OIH). Nociceptive mediators involved in OIH generation remain poorly understood. In the present study, we tested the hypothesis that Ca(2+)/calmodulin-depent protein kinase II (CaMKIIalpha) is critical for OIH. Opioid-induced hyperalgesia was produced by repeated morphine administration or pellet implantation in mice. Correlating with the development of tactile allodynia and thermal hyperalgesia, spinal CaMKIIalpha activity was significantly increased in OIH. KN93, a CaMKII inhibitor, dose- and time-dependently reversed OIH and CaMKII activation without impairing locomotor coordination. To elucidate the specific CaMKII isoform involved, we targeted CaMKIIalpha by using small interfering RNA and demonstrated that knockdown of spinal CaMKIIalpha attenuated OIH. Furthermore, morphine failed to induce OIH in CaMKIIalpha(T286A) point mutant mice, although wild-type littermate mice developed robust OIH after repeated treatments with morphine. These data implicate, for the first time, an essential role of CaMKIIalpha as a cellular mechanism leading to and maintaining opioid-induced hyperalgesia.

  20. Identification of striated muscle activator of Rho signaling (STARS) as a novel calmodulin target by a newly developed genome-wide screen.

    Science.gov (United States)

    Furuya, Yusui; Denda, Miwako; Sakane, Kyohei; Ogusu, Tomoko; Takahashi, Sumio; Magari, Masaki; Kanayama, Naoki; Morishita, Ryo; Tokumitsu, Hiroshi

    2016-07-01

    To search for novel target(s) of the Ca(2+)-signaling transducer, calmodulin (CaM), we performed a newly developed genome-wide CaM interaction screening of 19,676 GST-fused proteins expressed in human. We identified striated muscle activator of Rho signaling (STARS) as a novel CaM target and characterized its CaM binding ability and found that the Ca(2+)/CaM complex interacted stoichiometrically with the N-terminal region (Ala13-Gln35) of STARS in vitro as well as in living cells. Mutagenesis studies identified Ile20 and Trp33 as the essential hydrophobic residues in CaM anchoring. Furthermore, the CaM binding deficient mutant (Ile20Ala, Trp33Ala) of STARS further enhanced its stimulatory effect on SRF-dependent transcriptional activation. These results suggest a connection between Ca(2+)-signaling via excitation-contraction coupling and the regulation of STARS-mediated gene expression in muscles.

  1. Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca(2+) and calmodulin.

    Science.gov (United States)

    Li, Zhong-Guang; Gong, Ming; Xie, Hong; Yang, Lan; Li, Jing

    2012-04-01

    Hydrogen sulfide (H(2)S) is considered as a new emerging cell signal in higher plants. Hydrogen sulfide donor, sodium hydrosulfide, pretreatment significantly increased survival percentage of tobacco suspension cultured cells under heat stress and regrowth ability after heat stress, and alleviated decrease in vitality of cells, increase in electrolyte leakage and accumulation of malondialdehyde (MDA). In addition, sodium hydrosulfide-induced heat tolerance was markedly strengthened by application of exogenous Ca(2+) and its ionophore A23187, respectively, while this heat tolerance was weakened by addition of Ca(2+) chelator ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), plasma membrane channel blocker La(3+), as well as calmodulin (CaM) antagonists chlorpromazine (CPZ) and trifluoperazine (TFP), respectively, but intracellular channel blocker ruthenium red (RR) did not. These results suggested that sodium hydrosulfide pretreatment could improve heat tolerance in tobacco suspension cultured cells and the acquisition of this heat tolerance requires the entry of extracellular Ca(2+) into cells across the plasma membrane and the mediation of intracellular CaM.

  2. Calmodulin protects cells from death under normal growth conditions and mitogenic starvation but plays a mediating role in cell death upon B-cell receptor stimulation

    DEFF Research Database (Denmark)

    Schmalzigaug, R; Ye, Q; Berchtold, M W

    2001-01-01

    MII gene causes the intracellular CaM level to decrease by 60%. CaMII-/- cells grow more slowly and die more frequently as compared to wild type (wt) cells but do not exhibit significant differences in their cell cycle profile. Both phenotypes are more pronounced at reduced serum concentrations. Upon......Calmodulin (CaM) is the main intracellular Ca2+ sensor protein responsible for mediating Ca2+ triggered processes. Chicken DT40 lymphoma B cells express CaM from the two genes, CaMI and CaMII. Here we report the phenotypes of DT40 cells with the CaMII gene knocked out. The disruption of the Ca...... stimulation of the B-cell receptor (BCR), the resting Ca2+ levels remain elevated after the initial transient in CaMII-/- cells. Despite higher Ca2+ resting levels, the CaMII-/- cells are partially protected from BCR induced apoptosis indicating that CaM plays a dual role in apoptotic processes....

  3. Calmodulin Mediates DNA Repair Pathways Involving H2AX in Response to Low-Dose Radiation Exposure of RAW 264.7 Macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; Lopez Ferrer, Daniel; Eberlein, P. Elis; Watson, David J.; Squier, Thomas C.

    2009-02-05

    Understanding the molecular mechanisms that modulate macrophage radioresistance is necessary for the development of effective radiation therapies, as tumor-associated macrophages promote both angiogenesis and matrix remodeling that, in turn, enhance metastasis. In this respect, we have identified a dose-dependent increase in the abundance of the calcium regulatory protein calmodulin (CaM) in RAW 264.7 macrophages upon irradiation. CaM overexpression results in increased macrophage survival following radiation exposure, acting to diminish the sensitivity to low-dose exposures. Increases in CaM abundance also result in an increase in the number of phosphorylated histone H2AX protein complexes associated with DNA repair following macrophage irradiation, with no change in the extent of double-stranded DNA damage. In comparison, when NFκB-dependent pathways are inhibited, through the expression of a dominant-negative IκB construct, there is no significant increase in phosphorylated H2AX upon irradiation. These results indicate that the molecular basis for the up-regulation of histone H2AX mediated DNA-repair pathways is not the result of nonspecific NFκB-dependent pathways or a specific threshold of DNA damage. Rather, increases in CaM abundance act to minimize the low-dose hypersensitivity to radiation to enhance macrophage radioresistance through processes that include the upregulation of DNA repair pathways involving histone protein H2AX phosphorylation.

  4. Possible interaction of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II on reversal of spatial memory impairment induced by morphine.

    Science.gov (United States)

    Farahmandfar, Maryam; Kadivar, Mehdi; Naghdi, Nasser

    2015-03-15

    The opioid system plays an important role in learning and memory by modulation of different molecules in the brain. The aim of the present study was to investigate the role of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II (CaMKII) on the morphine-induced modulation of spatial memory consolidation in male rats. Spatial memory was assessed in Morris water maze task by a single training session of eight trials followed by a probe trial and visible test 24h later. Our data indicated that post-training administration of L-arginine, a nitric oxide precursor (6 and 9 µg/rat, intra-CA1) significantly decreased amnesia induced by morphine (10 mg/kg) in spatial memory consolidation. A reversal effect of L-arginine on morphine-induced amnesia prevented by KN-93 (N-[2-(N-(4-chlorocinnamyl)-N-methylaminomethyl) phenyl]-N-[2-hydroxyethyl] methoxybenzenesulfnamide), CaMKII inhibitor, (10 nmol/0.5 µl/site). In addition, post-training injection of L-NAME, (NG-nitro-L-arginine methyl ester), a nitric oxide synthase (NOS) inhibitor (10 and 15 µg/rat) or KN-93 (10 nmol/0.5 µl/site) with lower dose of morphine (2.5 mg/kg), which did not induce amnesia by itself, caused inhibition of memory consolidation. We also showed that co-administration of L-arginine (9 µg/rat) and morphine (10 mg/kg) significantly increased CaMKII activity in the rat hippocampus. On the other hand, administration of L-NAME (10 µg/rat) led to a decrease in the haippocampal activity of CaMKII in morphine-treated (2.5mg/kg) animals. These results indicate that acute single exposure to morphine can modulate consolidation of spatial memory, which may be mediated by a hippocampal nitrergic system and CaMKII activity.

  5. Behavioral modulation of neuronal calcium/calmodulin-dependent protein kinase II activity: differential effects on nicotine-induced spinal and supraspinal antinociception in mice.

    Science.gov (United States)

    Damaj, M Imad

    2007-10-15

    Recent studies have implicated the involvement of Ca(2+)-dependent mechanisms, in particular calcium/calmodulin-dependent protein kinase II (CaM kinase II) in nicotine-induced antinociception using the tail-flick test. The spinal cord was suggested as a possible site of this involvement. The present study was undertaken to investigate the hypothesis that similar mechanisms exist for nicotine-induced antinociception in the hot-plate test, a response thought to be centrally mediated. In order to assess these mechanisms, i.c.v. administered CaM kinase II inhibitors were evaluated for their effects on antinociception produced by either i.c.v. or s.c. administration of nicotine in both tests. In addition, nicotine's analgesic effects were tested in mice lacking half of their CaM kinase II (CaM kinase II heterozygous) and compare it to their wild-type counterparts. Our results showed that although structurally unrelated CaM kinase II inhibitors blocked nicotine's effects in the tail-flick test in a dose-related manner, they failed to block the hot-plate responses. In addition, the antinociceptive effects of systemic nicotine in the tail-flick but not the hot-plate test were significantly reduced in CaM kinase II heterozygous mice. These observations indicate that in contrast to the tail-flick response, the mechanism of nicotine-induced antinociception in the hot-plate test is not mediated primarily via CaM kinase II-dependent mechanisms at the supraspinal level.

  6. L-type calcium channels and calcium/calmodulin-dependent kinase II differentially mediate behaviors associated with nicotine withdrawal in mice.

    Science.gov (United States)

    Jackson, K J; Damaj, M I

    2009-07-01

    Smoking is a widespread health problem. Because the nicotine withdrawal syndrome is a major contributor to continued smoking and relapse, it is important to understand the molecular and behavioral mechanisms of nicotine withdrawal to generate more effective smoking cessation therapies. Studies suggest a role for calcium-dependent mechanisms, such as L-type calcium channels and calcium/calmodulin-dependent protein kinase II (CaMKII), in the effects of nicotine dependence; however, the role of these mechanisms in nicotine-mediated behaviors is unclear. Thus, the goal of this study was to elucidate the role of L-type calcium channels and CaMKII in nicotine withdrawal behaviors. Using both pharmacological and genetic methods, our results show that L-type calcium channels are involved in physical, but not affective, nicotine withdrawal behaviors. Although our data do provide evidence of a role for CaMKII in nicotine withdrawal behaviors, our pharmacological and genetic assessments yielded different results concerning the specific role of the kinase. Pharmacological data suggest that CaMKII is involved in somatic signs and affective nicotine withdrawal, and activity level is decreased after nicotine withdrawal, whereas the genetic assessments yielded results suggesting that CaMKII is involved only in the anxiety-related response, yet the kinase activity may be increased after nicotine withdrawal; thus, future studies are necessary to clarify the precise behavioral specifics of the relevance of CaMKII in nicotine withdrawal behaviors. Overall, our data show that L-type calcium channels and CaMKII are relevant in nicotine withdrawal and differentially mediate nicotine withdrawal behaviors.

  7. C-terminal extension of calmodulin-like 3 protein from Oryza sativa L.: interaction with a high mobility group target protein.

    Science.gov (United States)

    Chinpongpanich, Aumnart; Phean-O-Pas, Srivilai; Thongchuang, Mayura; Qu, Li-Jia; Buaboocha, Teerapong

    2015-11-01

    A large number of calmodulin-like (CML) proteins are present in plants, but there is little detailed information on the functions of these proteins in rice (Oryza sativa L.). Here, the CML3 protein from rice (OsCML3) and its truncated form lacking the C-terminal extension (OsCML3m) were found to exhibit a Ca2+-binding property and subsequent conformational change, but the ability to bind the CaM kinase II peptide was only observed for OsCML3m. Changes in their secondary structure upon Ca2+-binding measured by circular dichroism revealed that OsCML3m had a higher helical content than OsCML3. Moreover, OsCML3 was mainly localized in the plasma membrane, whereas OsCML3m was found in the nucleus. The rice high mobility group B1 (OsHMGB1) protein was identified as one of the putative OsCML3 target proteins. Bimolecular fluorescence complementation analysis revealed that OsHMGB1 bound OsCML3, OsCML3m or OsCML3s (cysteine to serine mutation at the prenylation site) in the nucleus presumably through the methionine and phenylalanine-rich hydrophobic patches, confirming that OsHMGB1 is a target protein in planta. The effect of OsCML3 or OsCML3m on the DNA-binding ability of OsHMGB1 was measured using an electrophoretic mobility shift assay. OsCML3m decreased the level of OsHMGB1 binding to pUC19 double-stranded DNA whereas OsCML3 did not. Taken together, OsCML3 probably provides a mechanism for manipulating the DNA-binding ability of OsHMGB1 in the nucleus and its C-terminal extension provides an intracellular Ca2+ regulatory switch.

  8. Ischemia and reperfusion induce differential expression of calpastatin and its homologue high molecular weight calmodulin-binding protein in murine cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sreejit Parameswaran

    Full Text Available In the heart, calpastatin (Calp and its homologue high molecular weight calmodulin-binding protein (HMWCaMBP regulate calpains (Calpn by inhibition. A rise in intracellular myocardial Ca2+ during cardiac ischemia activates Calpn thereby causing damage to myocardial proteins, which leads to myocyte death and consequently to loss of myocardial structure and function. The present study aims to elucidate expression of Calp and HMWCaMBP with respect to Calpn during induced ischemia and reperfusion in primary murine cardiomyocyte cultures. Ischemia and subsequently reperfusion was induced in ∼ 80% confluent cultures of neonatal murine cardiomyocytes (NMCC. Flow cytometric analysis (FACS has been used for analyzing protein expression concurrently with viability. Confocal fluorescent microscopy was used to observe protein localization. We observed that ischemia induces increased expression of Calp, HMWCaMBP and Calpn. Calpn expressing NMCC on co-expressing Calp survived ischemic induction compared to NMCC co-expressing HMWCaMBP. Similarly, living cells expressed Calp in contrast to dead cells which expressed HMWCaMBP following reperfusion. A significant difference in the expression of Calp and its homologue HMWCaMBP was observed in localization studies during ischemia. The current study adds to the existing knowledge that HMWCaMBP could be a putative isoform of Calp. NMCC on co-expressing Calp and Calpn-1 survived ischemic and reperfusion inductions compared to NMCC co-expressing HMWCaMBP and Calpn-1. A significant difference in expression of Calp and HMWCaMBP was observed in localization studies during ischemia.

  9. The roles and relations of calpastatin, calmodulin and an undefined cytoplasmic factor in the regulation of cardiac L-type Ca2+ channels

    Institute of Scientific and Technical Information of China (English)

    HAO Li-ying; ZHU Tong; HU Hui-yuan; ZHAO Mei-mi; RUI Feng; LIU Yan; ZHAO Jin-sheng; tsuko Minobe; Masaki Kameyama

    2008-01-01

    Objective To explore the mechanism that cytoplasmic factors could recover L-type Ca2+ channel activity after "run-down'. The factors include ATP, calpastatin and H fraction (a high molecular fraction of bovine cardiac cytoplasm). Methods Single Ca2+ channel activities were recorded with patch clamp technique in guinea-pig cardiac myocytes. Run-down was induced by the inside-out patch formation. Calpastatin (CS), calmodulin(CaM) and three GST-fusion fragment peptides derived from the C-terminal tail of guineapig Car1.2, CT-1 (amino acids number 1509-1791), CTo2 (1777-2003) and CT-3 (1944-2169) were produced as GST fusion proteins. Results (1)CaM + ATP or CS + ATP restored the channels after rundown;however, the CaM or CS's effects became smaller with the longer run-down time. (2)After run down, CaM-dependent protein kinase (CaMKII) produced Ca2+ channel activity to only 2-10% of the basal activity, however, in the presence of CaMKII, the time-dependent nature of the CaM effect was abolished. (3) In pull-down assay, CT-1 treated with CaMKII showed a higher affinity for CaM than that treated with phosphatase. (4)CaMKII was detected in the H fraction of bovine cardiac cytoplasm. Conclusions The results show that CS, CaM and CaMKII are all involved in the maintenance of the basal activity of L-type Ca2+ channels, and that there might be cross talks among the four factors (CS, CaM, CaMKII and the undefined cytoplasmic factor). This work was supported by the grants from the Japan Society for the Promotion of Science and the National Natural Science Foundation of China (No. 30670761, No. 30671726).

  10. Age-dependent targeting of protein phosphatase 1 to Ca2+/calmodulin-dependent protein kinase II by spinophilin in mouse striatum.

    Directory of Open Access Journals (Sweden)

    Anthony J Baucum

    Full Text Available Mechanisms underlying age-dependent changes of dendritic spines on striatal medium spiny neurons are poorly understood. Spinophilin is an F-actin- and protein phosphatase 1 (PP1-binding protein that targets PP1 to multiple downstream effectors to modulate dendritic spine morphology and function. We found that calcium/calmodulin-dependent protein kinase II (CaMKII directly and indirectly associates with N- and C-terminal domains of spinophilin, but F-actin can displace CaMKII from the N-terminal domain. Spinophilin co-localizes PP1 with CaMKII on the F-actin cytoskeleton in heterologous cells, and spinophilin co-localizes with synaptic CaMKII in neuronal cultures. Thr286 autophosphorylation enhances the binding of CaMKII to spinophilin in vitro and in vivo. Although there is no change in total levels of Thr286 autophosphorylation, maturation from postnatal day 21 into adulthood robustly enhances the levels of CaMKII that co-immunoprecipitate with spinophilin from mouse striatal extracts. Moreover, N- and C-terminal domain fragments of spinophilin bind more CaMKII from adult vs. postnatal day 21 striatal lysates. Total levels of other proteins that interact with C-terminal domains of spinophilin decrease during maturation, perhaps reducing competition for CaMKII binding to the C-terminal domain. In contrast, total levels of α-internexin and binding of α-internexin to the spinophilin N-terminal domain increases with maturation, perhaps bridging an indirect interaction with CaMKII. Moreover, there is an increase in the levels of myosin Va, α-internexin, spinophilin, and PP1 in striatal CaMKII immune complexes isolated from adult and aged mice compared to those from postnatal day 21. These changes in spinophilin/CaMKII interactomes may contribute to changes in striatal dendritic spine density, morphology, and function during normal postnatal maturation and aging.

  11. Regulation of a phenylalanine ammonia lyase (BbPAL) by calmodulin in response to environmental changes in the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Kim, Jiyoung; Park, Hyesung; Han, Jae-Gu; Oh, Junsang; Choi, Hyung-Kyoon; Kim, Seong Hwan; Sung, Gi-Ho

    2015-11-01

    Phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5) catalyses the deamination of L -phenylalanine to trans-cinnamic acid and ammonia, facilitating a critical step in the phenylpropanoid pathway that produces a variety of secondary metabolites. In this study, we isolated BbPAL gene in the entomopathogenic fungus Beauveria bassiana. According to multiple sequence alignment, homology modelling and in vitro PAL activity, we demonstrated that BbPAL acts as a typical PAL enzyme in B. bassiana. BbPAL interacted with calmodulin (CaM) in vitro and in vivo, indicating that BbPAL is a novel CaM-binding protein. The functional role of CaM in BbPAL action was to negatively regulate the BbPAL activity in B. bassiana. High-performance liquid chromatography analysis revealed that L -phenylalanine was reduced and trans-cinnamic acid was increased in response to the CaM inhibitor W-7. Dark conditions suppressed BbPAL activity in B. bassiana, compared with light. In addition, heat and cold stresses inhibited BbPAL activity in B. bassiana. Interestingly, these negative effects of BbPAL activity by dark, heat and cold conditions were recovered by W-7 treatment, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbPAL plays a role in the phenylpropanoid pathway mediated by environmental stimuli via the CaM signalling pathway.

  12. Melatonin Stimulates Dendrite Formation and Complexity in the Hilar Zone of the Rat Hippocampus: Participation of the Ca++/Calmodulin Complex

    Directory of Open Access Journals (Sweden)

    Aline Domínguez-Alonso

    2015-01-01

    Full Text Available Melatonin (MEL, the main product synthesized by the pineal gland, stimulates early and late stages of neurodevelopment in the adult brain. MEL increases dendrite length, thickness and complexity in the hilar and mossy neurons of hippocampus. Dendrite formation involves activation of Ca2+/Calmodulin (CaM-dependent kinase II (CaMKII by CaM. Previous work showed that MEL increased the synthesis and translocation of CaM, suggesting that MEL activates CaM-dependent enzymes by this pathway. In this work we investigated whether MEL stimulates dendrite formation by CaMKII activation in organotypic cultures from adult rat hippocampus. We found that the CaMKII inhibitor, KN-62, abolished the MEL stimulatory effects on dendritogenesis and that MEL increased the relative amount of CaM in the soluble fraction of hippocampal slices. Also, PKC inhibition abolished dendritogenesis, while luzindole, an antagonist of MEL receptors (MT1/2, partially blocked the effects of MEL. Moreover, autophosphorylation of CaMKII and PKC was increased in presence of MEL, as well as phosphorylation of ERK1/2. Our results indicate that MEL stimulates dendrite formation through CaMKII and the translocation of CaM to the soluble fraction. Dendritogenesis elicited by MEL also required PKC activation, and signaling through MT1/2 receptors was partially involved. Data strongly suggest that MEL could repair the loss of hippocampal dendrites that occur in neuropsychiatric disorders by increasing CaM levels and activation of CaMKII.

  13. Characterization and expression analysis of Calmodulin (CaM) in orange-spotted grouper (Epinephelus coioides) in response to Vibrio alginolyticus challenge.

    Science.gov (United States)

    Luo, Sheng-Wei; Xie, Fu-Xing; Liu, Yuan; Wang, Wei-Na

    2015-10-01

    Vibrio alginolyticus containing the highly toxic extracellular product is one of the most serious threats to grouper survival and its minimum lethal dose is approximately 500 CFU/g fish body weight in grouper. To study the toxic effects of V. alginolyticus on the immune system in teleost, Calmodulin (CaM), an important molecular indicator gene, was cloned from the orange-spotted grouper (Epinephelus coioides). The full-length Ec-CaM consisted of a 5'-UTR of 103 bp, an ORF of 450 bp and a 3'-UTR of 104 bp. The Ec-CaM gene encoded a protein of 149 amino acids with an estimated molecular mass of 16.4 kDa and a predicted isoelectric point of 3.93. The deduced amino acid sequence showed that Ec-CaM contained four highly conserved EF-hand domains known to be critical for the function of CaM. Ec-CaM was widely expressed and the highest expression level was observed in liver. Following V. alginolyticus challenge, a sharp increase level of respiratory burst activity and apoptosis ratio were observed. Further analyses of CaM expression and p53 expression in liver, kidney and spleen by qRT-PCR demonstrated that the up-regulated expression of CaM and p53 were observed in the vibrio challenge group. Western blotting analysis confirmed that the Ec-CaM protein was strongly induced in liver at 12 h post-injection, while a sharp increase of p53 protein expression was observed at 24 h post-injection. These results showed CaM expression serving as a potential molecular indicator may help to assess the toxicological effects of V. alginolyticus on the ROS generation and apoptotic process in grouper.

  14. 70-kDa Heat Shock Cognate Protein hsc70 Mediates Calmodulin-dependent Nuclear Import of the Sex-determining Factor SRY*

    Science.gov (United States)

    Kaur, Gurpreet; Lieu, Kim G.; Jans, David A.

    2013-01-01

    We recently showed that the developmentally important family of SOX (SRY (sex determining region on the Y chromosome)-related high mobility group (HMG) box) proteins require the calcium-binding protein calmodulin (CaM) for optimal nuclear accumulation, with clinical mutations in SRY that specifically impair nuclear accumulation via this pathway resulting in XY sex reversal. However, the mechanism by which CaM facilitates nuclear accumulation is unknown. Here, we show, for the first time, that the 70-kDa heat shock cognate protein hsc70 plays a key role in CaM-dependent nuclear import of SRY. Using a reconstituted nuclear import assay, we show that antibodies to hsc70 significantly reduce nuclear accumulation of wild type SRY and mutant derivatives thereof that retain CaM-dependent nuclear import, with an increased rate of nuclear accumulation upon addition of both CaM and hsc70, in contrast to an SRY mutant derivative with impaired CaM binding. siRNA knockdown of hsc70 in intact cells showed similar results, indicating clear dependence upon hsc70 for CaM-dependent nuclear import. Analysis using the technique of fluorescence recovery after photobleaching indicated that hsc70 is required for the maximal rate of SRY nuclear import in living cells but has no impact upon SRY nuclear retention/nuclear dynamics. Finally, we demonstrate direct binding of hsc70 to the SRY·CaM complex, with immunoprecipitation experiments from cell extracts showing association of hsc70 with wild type SRY, but not with a mutant derivative with impaired CaM binding, dependent on Ca2+. Our novel findings strongly implicate hsc70 in CaM-dependent nuclear import of SRY. PMID:23235156

  15. Calmodulin-dependent nuclear import of HMG-box family nuclear factors: importance of the role of SRY in sex reversal

    Science.gov (United States)

    Kaur, Gurpreet; Delluc-Clavieres, Aurelie; Poon, Ivan K. H.; Forwood, Jade K.; Glover, Dominic J.; Jans, David A.

    2010-01-01

    The HMG (high-mobility group)-box-containing chromatin-remodelling factor SRY (sex-determining region on the Y chromosome) plays a key role in sex determination. Its role in the nucleus is critically dependent on two NLSs (nuclear localization signals) that flank its HMG domain: the C-terminally located ‘β-NLS’ that mediates nuclear transport through Impβ1 (importin β1) and the N-terminally located ‘CaM-NLS’ which is known to recognize the calcium-binding protein CaM (calmodulin). In the present study, we examined a number of missense mutations in the SRY CaM-NLS from human XY sex-reversed females for the first time, showing that they result in significantly reduced nuclear localization of GFP (green fluorescent protein)–SRY fusion proteins in transfected cells compared with wild-type. The CaM antagonist CDZ (calmidazolium chloride) was found to significantly reduce wild-type SRY nuclear accumulation, indicating dependence of SRY nuclear import on CaM. Intriguingly, the CaM-NLS mutants were all resistant to CDZ's effects, implying a loss of interaction with CaM, which was confirmed by direct binding experiments. CaM-binding/resultant nuclear accumulation was the only property of SRY found to be impaired by two of the CaM-NLS mutations, implying that inhibition of CaM-dependent nuclear import is the basis of sex reversal in these cases. Importantly, the CaM-NLS is conserved in other HMG-box-domain-containing proteins such as SOX-2, -9, -10 and HMGN1, all of which were found for the first time to rely on CaM for optimal nuclear localization. CaM-dependent nuclear translocation is thus a common mechanism for this family of important transcription factors. PMID:20528776

  16. C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin.

    Science.gov (United States)

    Zik, Moriyah; Fridmann-Sirkis, Yael; Fromm, Hillel

    2006-05-01

    Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.

  17. Hyperexcitability and changes in activities of Ca2+/calmodulin-dependent kinase II and mitogen-activated protein kinase in the hippocampus of rats exposed to 1-bromopropane.

    Science.gov (United States)

    Fueta, Yukiko; Fukunaga, Kohji; Ishidao, Toru; Hori, Hajime

    2002-12-20

    Chronic inhalation of 1-bromopropane (1-BP), a substitute of ozone-depleting chlorofluorocarbons, has been suspected of having central neurotoxicity (Clinical Neurology and Neurosurgery 101 (1999) 199; Journal of Occupational Health 44 (2002) 1) for humans. In animal experiments, 1-BP inhalation (1500 ppm) caused hyperexcitability in the CA1 and the dentate gyrus (DG) [Journal of Occupational Health 42 (2000) 149, Journal of Occupational Health 44 (2002) 156]. We studied whether the hyperexcitability is associated with changes of Ca2+/calmodulin-dependent kinase II (CaMKII), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC). Male Wistar rats were exposed to 1-BP for 6 hours in a day in an exposure chamber with a concentration of 700 ppm for 8 weeks. After the inhalation, paired-pulse ratios of field excitatory postsynaptic potentials and population spikes (PSs) were analyzed in the CA1 and DG of hippocampal slices. Control rats were then given fresh air in the inhalation chamber. Semiquantitative immunoblotting analyses of protein kinases using antibodies against active and conventional protein kinases were done using the whole hippocampus. A paired-pulse ratio of PS was increased at the 5 ms interpulse interval in the CA1 and at the 10-20 ms interpulse intervals in the DG. The amount of active MAPK and total amount of CaMKIIalpha and beta were significantly increased by 28, 29, and 46% compared to control, respectively, without any change in PKC activity. In contrast, the amount of active CaMKIIbeta was decreased to 78%. These results suggest that modifications of intracellular signaling cascades are associated with hyperexcitability that occurred in the hippocampal formation of rats exposed to the chronic inhalation of 1-BP.

  18. SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression.

    Science.gov (United States)

    Tokizawa, Mutsutomo; Kobayashi, Yuriko; Saito, Tatsunori; Kobayashi, Masatomo; Iuchi, Satoshi; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki

    2015-03-01

    In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5' truncated promoters of different lengths showed that the promoter region between -540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around -297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5' untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression.

  19. Atomic resolution experimental phase information reveals extensive disorder and bound 2-methyl-2,4-pentanediol in Ca 2+ -calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; van den Bedem, Henry; Brunger, Axel T.; Wilson, Mark A.

    2016-01-01

    Calmodulin (CaM) is the primary calcium signaling protein in eukaryotes and has been extensively studied using various biophysical techniques. Prior crystal structures have noted the presence of ambiguous electron density in both hydrophobic binding pockets of Ca2+-CaM, but no assignment of these features has been made. In addition, Ca2+-CaM samples many conformational substates in the crystal and accurately modeling the full range of this functionally important disorder is challenging. In order to characterize these features in a minimally biased manner, a 1.0 Å resolution single-wavelength anomalous diffraction data set was measured for selenomethionine-substituted Ca2+-CaM. Density-modified electron-density maps enabled the accurate assignment of Ca2+-CaM main-chain and side-chain disorder. These experimental maps also substantiate complex disorder models that were automatically built using low-contour features of model-phased electron density. Furthermore, experimental electron-density maps reveal that 2-methyl-2,4-pentanediol (MPD) is present in the C-terminal domain, mediates a lattice contact between N-terminal domains and may occupy the N-terminal binding pocket. The majority of the crystal structures of target-free Ca2+-CaM have been derived from crystals grown using MPD as a precipitant, and thus MPD is likely to be bound in functionally critical regions of Ca2+-CaM in most of these structures. The adventitious binding of MPD helps to explain differences between the Ca2+-CaM crystal and solution structures and is likely to favor more open conformations of the EF-hands in the crystal.

  20. Chronic ethanol intake-induced changes in open-field behavior and calcium/calmodulin-dependent protein kinase Ⅳ expression in nucleus accumbens of rats: naloxone reversal

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Wei-liang BIAN; Gui-qin XIE; Sheng-zhong CUI; Mei-ling WU; Yue-hua LI; Ling-li QUE; Xiao-ru YUAN

    2008-01-01

    Aim: To investigate the effects of chronic ethanol intake on the locomotor activity and the levels of calcium/calmodulin-dependent protein kinase Ⅳ (CaM kinase Ⅳ) in the nucleus accumbens (NAc) of rats. Simultaneously, the effects of non-selective opioid antagonist (naloxone) on the CaM kinase Ⅳ expression in the NAc and ethanol consumption of rats were also observed. Methods: Ethanol was administered in drinking water at the concentrations of 6% (v/v), for 28 d. The locomotor activity of rats was investigated in the open-field apparatus. CaM kinase Ⅳ levels in the NAc were analyzed using Western blotting. Results: Rats consuming ethanol solution exhibited a significant decrease of ambulation activity, accompanied by a reduced frequency of explorative rearing in an open-field task on d 7 and d 14 of chronic ethanol ingestion, whereas presumed adaptation to the neurological effects of ethanol was observed on d 28. Chronic ethanol intake elicited a significant decrease of the CaM kinase Ⅳ expression in the nuclei, but not in the cytoplasm of the NAc on d 28. Naloxone treatment significantly attenu-ated ethanol intake of rats and antagonized the decrease of CaM kinase Ⅳ in the nuclei of NAc neurons. The cytosolic CaM kinase Ⅳ protein levels of the NAc also increased in rats exposed to ethanol plus naloxone. Conclusion: Chronic ethanol intake-induced changes in explorative behavior is mediated at least partly by changes in CaM kinase Ⅳ signaling in the nuclei of the NAc, and naloxone attenuates ethanol consumption through antagonizing the downregulation of CaM kinase Ⅳ in the NAc.

  1. Reversible bleb formation in mast cells stimulated with antigen is Ca2+/calmodulin-dependent and bleb size is regulated by ARF6.

    Science.gov (United States)

    Yanase, Yuhki; Carvou, Nicolas; Frohman, Michael A; Cockcroft, Shamshad

    2009-12-14

    Mast cells stimulated with antigen undergo extensive changes in their cytoskeleton. In the present study, we assess the impact of actin-modifying drugs and report that, in the presence of cytochalasin D, mast cells stop membrane ruffling, but instead bleb. Bleb formation is reversible following washout of cytochalasin D and occurs in an actin-polymerization-dependent manner. Bleb formation is inhibited by expression of constitutively active ezrin-T567D. Blebbing is also inhibited by blebbistatin, a myosin II inhibitor, implying myosin II activation in the process. We used a selection of inhibitors and observed that myosin II activation is dependent mainly on Ca2+-calmodulin, with only a small contribution from Rho kinase. The signalling pathways stimulated by antigen include PLC (phospholipase C) and PLD (phospholipase D). Bleb formation was dependent on activation of PLC, but not PLD. Primary alcohols, used previously as a means to reduce PLD-derived phosphatidic acid, were potent inhibitors of membrane blebbing, but a more selective inhibitor of PLD, FIPI (5-fluoro-2-indolyl des-chlorohalopemide), was without effect. FIPI also did not inhibit membrane ruffling or degranulation of mast cells, indicating that inhibition by primary alcohols works through an unidentified mechanism rather than via diversion of PLD activity as assumed. We also examined the requirement for ARF6 (ADP-ribosylation factor 6) and observed that its expression led to an increase in bleb size and a further increase was observed with the dominant-active mutant, ARF6-Q67L. Since ARF6-T27N had no effect on bleb size, we conclude that ARF6 needs to be active to regulate the size of the blebs.

  2. Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain.

    Science.gov (United States)

    Shioda, Norifumi; Beppu, Hideyuki; Fukuda, Takaichi; Li, En; Kitajima, Isao; Fukunaga, Kohji

    2011-01-05

    In humans, mutations in the gene encoding ATRX, a chromatin remodeling protein of the sucrose-nonfermenting 2 family, cause several mental retardation disorders, including α-thalassemia X-linked mental retardation syndrome. We generated ATRX mutant mice lacking exon 2 (ATRX(ΔE2) mice), a mutation that mimics exon 2 mutations seen in human patients and associated with milder forms of retardation. ATRX(ΔE2) mice exhibited abnormal dendritic spine formation in the medial prefrontal cortex (mPFC). Consistent with other mouse models of mental retardation, ATRX(ΔE2) mice exhibited longer and thinner dendritic spines compared with wild-type mice without changes in spine number. Interestingly, aberrant increased calcium/calmodulin-dependent protein kinase II (CaMKII) activity was observed in the mPFC of ATRX(ΔE2) mice. Increased CaMKII autophosphorylation and activity were associated with increased phosphorylation of the Rac1-guanine nucleotide exchange factors (GEFs) T-cell lymphoma invasion and metastasis 1 (Tiam1) and kalirin-7, known substrates of CaMKII. We confirmed increased phosphorylation of p21-activated kinases (PAKs) in mPFC extracts. Furthermore, reduced protein expression and activity of protein phosphatase 1 (PP1) was evident in the mPFC of ATRX(ΔE2) mice. In cultured cortical neurons, PP1 inhibition by okadaic acid increased CaMKII-dependent Tiam1 and kalirin-7 phosphorylation. Together, our data strongly suggest that aberrant CaMKII activation likely mediates abnormal spine formation in the mPFC. Such morphological changes plus elevated Rac1-GEF/PAK signaling seen in ATRX(ΔE2) mice may contribute to mental retardation syndromes seen in human patients.

  3. Regulation of voltage-gated Ca(2+) currents by Ca(2+)/calmodulin-dependent protein kinase II in resting sensory neurons.

    Science.gov (United States)

    Kostic, Sandra; Pan, Bin; Guo, Yuan; Yu, Hongwei; Sapunar, Damir; Kwok, Wai-Meng; Hudmon, Andy; Wu, Hsiang-En; Hogan, Quinn H

    2014-09-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0μM) reduced depolarization-induced ICa by 16-30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by the efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent.

  4. Identification of calcium/calmodulin-binding receptor-like kinase GsCBRLK-interactive proteins using yeast two-hybrid system%酵母双杂交筛选与GsCBRLK相互作用的蛋白质

    Institute of Scientific and Technical Information of China (English)

    杨姗姗; 孙晓丽; 于洋; 才华; 纪巍; 柏锡; 朱延明

    2013-01-01

    GsCBRLK(calcium/calmodulin-binding receptor-like kinase from Glycine soja)在ABA及盐胁迫诱导的钙离子信号通路中起到关键的调节作用.为深入研究GsCBRLK蛋白的作用机制,文章采用膜酵母双杂交系统,以GsCBRLK为诱饵蛋白,筛选与其相互作用的蛋白质.通过构建野生大豆盐胁迫条件下的cDNA文库、膜酵母双杂交系统筛选、复筛、回转验证、生物信息学分析以及酵母体内互作验证等手段,最终获得2个(SNARE和14-3-3蛋白)与GsCBRLK诱饵蛋白相互作用的蛋白质.%GsCBRLK (calcium/calmodulin-binding receptor-like kinase from Glycine soja) links ABA (abscisic acid)-and salt-induced calcium/calmodulin signal in plant cells. In order to study the molecular mechanismes of GsCBLRK, the salt-treated Glycine soja cDNA library was screened with pB73-STE-CBRLK as bait plasmid using yeast two hybrid system. Two positive clones (SNARE and 14-3-3 protein) were identified by constructing cDNA library of wild soybean under salt treatment, membrane system yeast two hybrid screening, multiple screen, rotary validation, bioinformatic analysis and interaction identification in yeast.

  5. Influence of zoledronate on osteoclast differentiation and gene expression of calmodulin and calmodulin-dependent protein kinase Ⅱ%唑来膦酸对破骨细胞分化中钙调蛋白和钙调蛋白依赖性激酶Ⅱ基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    李鹏; 林珏杉; 张鹏; 董伟; 李金源; 戚孟春

    2013-01-01

    目的 研究唑来膦酸对破骨细胞分化及信号分子钙调蛋白、钙调蛋白依赖性激酶(calmodulin-dependent protein kinase,CAMK)Ⅱ基因表达的影响.方法 应用核因子κB受体激活蛋白配体(receptor activatior of nuclear factor κB ligand,RANKL)诱导小鼠单核巨噬细胞株RAW264.7向破骨细胞分化.细胞分为两组:A组用RANKL诱导5 d;B组在RANKL诱导3d后加用唑来膦酸处理2d.检测破骨细胞生成及钙调蛋白、CAMKⅡ基因表达情况.结果 B组新生多核破骨细胞、吸收陷窝数目及面积分别为(23±3)、(19±2)和(4951±223) μm2,均显著低于A组的(44±3)、(46±1)和(13 331±248) μm2 (P <0.01).与A组比较,B组钙调蛋白、CAMKⅡ基因表达也显著下降(P<0.01),mRNA及蛋白水平钙调蛋白分别下降了26.7%和37.2%;CAMKⅡ分别下降了57.0%和76.1%.结论 唑来膦酸可显著抑制破骨细胞生成和骨吸收功能,并下调钙调蛋白、CAMKⅡ基因表达;信号分子钙调蛋白、CAMKⅡ可能参与了唑来膦酸对破骨细胞的抑制作用.%Objective To investigate the effect of zoledronate acid on osteoclast differentiation and gene expression of calmodulin (CAM) and calmodulin-dependent protein kinase (CAMK) Ⅱ.Methods Receptor activatior of nuclear factor κB ligand (RANKL) was used to induce differentiation of RAW264.7cells into osteoclasts in vitro.The cells were divided into two groups,group A and group B.Both groups were treated with RANKL for 5 days,whereas group B was also treated with zoledronate for the last 2 days.Osteoclastogenesis and gene expression of CAM and CAMK Ⅱ were examined.Results In group B,the number of new-generated osteoclasts (≥ 3 nuclei),number and size of dentin resorption lacunaes were (23 ±3),(19 ±2) and (4951 ±223) μm2 respevtively,which were significantly lower than those [(44 ±3),(46±1) and (13 331 ±248) μ m2]in group A (P<0.01).mRNA and protein level of CAM and CAMK Ⅱ were also significantly

  6. Beta 2 subunit-containing nicotinic receptors mediate acute nicotine-induced activation of calcium/calmodulin-dependent protein kinase II-dependent pathways in vivo.

    Science.gov (United States)

    Jackson, K J; Walters, C L; Damaj, M I

    2009-08-01

    Nicotine is the addictive component of tobacco, and successful smoking cessation therapies must address the various processes that contribute to nicotine addiction. Thus, understanding the nicotinic acetylcholine receptor (nAChR) subtypes and subsequent molecular cascades activated after nicotine exposure is of the utmost importance in understanding the progression of nicotine dependence. One possible candidate is the calcium/calmodulin-dependent protein kinase II (CaMKII) pathway. Substrates of this kinase include the vesicle-associated protein synapsin I and the transcription factor cAMP response element-binding protein (CREB). The goal of these studies was to examine these postreceptor mechanisms after acute nicotine treatment in vivo. We first show that administration of nicotine increases CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), and amygdala. In beta2 nAChR knockout (KO) mice, nicotine does not induce an increase in kinase activity, phosphorylated (p)Synapsin I, or pCREB. In contrast, alpha7 nAChR KO mice show nicotine-induced increases in CaMKII activity and pCREB, similar to their wild-type littermates. Moreover, we show that when animals are pretreated with the CaMKII inhibitors 4-[(2S)-2-[(5-isoquinolinylsulfonyl) methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl]phenyl isoquinolinesulfonic acid ester (KN-62) and N-[2-[[[3-(4-chlorophenyl)-2 propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide (KN-93), nicotine-induced increase in the kinase activity and pCREB was attenuated in the VTA and NAc, whereas pretreatment with (2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, phosphate) (KN-92), the inactive analog, did not alter the nicotine-induced increase in pCREB. Taken together, these data suggest that the nicotine-induced increase in CaMKII activity may correlate with the nicotine-induced increase in pSynapsin I and pCREB in the VTA and NAc via beta2

  7. Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2.

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    Full Text Available BACKGROUND: Antimicrobial peptides derived from the natural processing of chromogranin A (CgA are co-secreted with catecholamines upon stimulation of chromaffin cells. Since PMNs play a central role in innate immunity, we examine responses by PMNs following stimulation by two antimicrobial CgA-derived peptides. METHODOLOGY/PRINCIPAL FINDINGS: PMNs were treated with different concentrations of CgA-derived peptides in presence of several drugs. Calcium mobilization was observed by using flow cytometry and calcium imaging experiments. Immunocytochemistry and confocal microscopy have shown the intracellular localization of the peptides. The calmodulin-binding and iPLA2 activating properties of the peptides were shown by Surface Plasmon Resonance and iPLA2 activity assays. Finally, a proteomic analysis of the material released after PMNs treatment with CgA-derived peptides was performed by using HPLC and Nano-LC MS-MS. By using flow cytometry we first observed that after 15 s, in presence of extracellular calcium, Chromofungin (CHR or Catestatin (CAT induce a concentration-dependent transient increase of intracellular calcium. In contrast, in absence of extra cellular calcium the peptides are unable to induce calcium depletion from the stores after 10 minutes exposure. Treatment with 2-APB (2-aminoethoxydiphenyl borate, a store operated channels (SOCs blocker, inhibits completely the calcium entry, as shown by calcium imaging. We also showed that they activate iPLA2 as the two CaM-binding factors (W7 and CMZ and that the two sequences can be aligned with the two CaM-binding domains reported for iPLA2. We finally analyzed by HPLC and Nano-LC MS-MS the material released by PMNs following stimulation by CHR and CAT. We characterized several factors important for inflammation and innate immunity. CONCLUSIONS/SIGNIFICANCE: For the first time, we demonstrate that CHR and CAT, penetrate into PMNs, inducing extracellular calcium entry by a CaM-regulated i

  8. Quantitative measurement of Ca(2+)-dependent calmodulin-target binding by Fura-2 and CFP and YFP FRET imaging in living cells.

    Science.gov (United States)

    Mori, Masayuki X; Imai, Yuko; Itsuki, Kyohei; Inoue, Ryuji

    2011-05-31

    Calcium dynamics and its linked molecular interactions cause a variety of biological responses; thus, exploiting techniques for detecting both concurrently is essential. Here we describe a method for measuring the cytosolic Ca(2+) concentration ([Ca(2+)](i)) and protein-protein interactions within the same cell, using Fura-2 and superenhanced cyan and yellow fluorescence protein (seCFP and seYFP, respectively) FRET imaging techniques. Concentration-independent corrections for bleed-through of Fura-2 into FRET cubes across different time points and [Ca(2+)](i) values allowed for an effective separation of Fura-2 cross-talk signals and seCFP and seYFP cross-talk signals, permitting calculation of [Ca(2+)](i) and FRET with high fidelity. This correction approach was particularly effective at lower [Ca(2+)](i) levels, eliminating bleed-through signals that resulted in an artificial enhancement of FRET. By adopting this correction approach combined with stepwise [Ca(2+)](i) increases produced in living cells, we successfully elucidated steady-state relationships between [Ca(2+)](i) and FRET derived from the interaction of seCFP-tagged calmodulin (CaM) and the seYFP-fused CaM binding domain of myosin light chain kinase. The [Ca(2+)](i) versus FRET relationship for voltage-gated sodium, calcium, and TRPC6 channel CaM binding domains (IQ domain or CBD) revealed distinct sensitivities for [Ca(2+)](i). Moreover, the CaM binding strength at basal or subbasal [Ca(2+)](i) levels provided evidence of CaM tethering or apoCaM binding in living cells. Of the ion channel studies, apoCaM binding was weakest for the TRPC6 channel, suggesting that more global Ca(2+) and CaM changes rather than the local CaM-channel interface domain may be involved in Ca(2+)CaM-mediated regulation of this channel. This simultaneous Fura-2 and CFP- and YFP-based FRET imaging system will thus serve as a simple but powerful means of quantitatively elucidating cellular events associated with Ca(2

  9. Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels.

    Science.gov (United States)

    Vaca, Luis; Sampieri, Alicia

    2002-11-01

    In the present study we have explored the role of calmodulin (CaM) and inositol 1,4,5-trisphosphate receptor (IP(3)R) in the communication process activated after the release of calcium from the endoplasmic reticulum (ER) and the activation of calcium influx via endogenous TRP1 channels from Chinese hamster ovary cells. Experiments using combined rapid confocal calcium and electrophysiology measurements uncovered a consistent delay of around 900 ms between the first detectable calcium released from the ER and the activation of the calcium current. This delay was evident with two different methods used to release calcium from the ER: either the blockade of the microsomal calcium ATPase with thapsigargin or activation of bradykinin receptors linked to the IP(3) cascade. Direct application of IP(3) or a peptide from the NH(2)-terminal region of the IP(3)R activated store operated calcium, reducing the delay period. Introduction of CaM into the cell via the patch pipette increased the delay period from 900 +/- 100 ms to 10 +/- 2.1 s (n = 18). Furthermore, the use of selective CaM antagonists W7 and trifluoperazine maleate resulted in a substantial reduction of the delay period to 200 +/- 100 ms with 5 microm trifluoperazine maleate (n = 16) and 150 +/- 50 ms with 500 nm W7 (n = 22). CaM reduced also the current density activated by thapsigargin or brandykinin to about 60% from control. The CaM antagonists did not affect significantly the current density. The results presented here are consistent with an antagonistic effect of IP(3)R and CaM for the activation of store operated calcium after depletion of the ER. The functional competition between the activating effect of IP(3)R and the inhibiting effect of CaM may modulate the delay period between the release of calcium from the ER and the activation of calcium influx observed in different cells, as well as the amount of current activated after depletion of the ER.

  10. Extending students' practice of metacognitive regulation strategies in the undergraduate chemistry laboratory and investigation of Pb2+ binding to calmodulin with circular dichroism and molecular dynamics modeling

    Science.gov (United States)

    Valencia Navarro, Laura N.

    The following dissertation was composed of two projects in chemistry education and benchwork/computational biochemistry. The chemistry education research explored students' practice of metacognitive strategies while solving open-ended laboratory problems when engaged in an instructional environment, the Science Writing Heuristic (SWH), that was characterized as supporting metacognitive regulation strategy use. Through in-depth interviews with students, results demonstrated that students in the SWH environment, compared to non-SWH students, used metacognitive strategies to a greater degree and to a greater depth when solving open-ended laboratory problems. As students engaged in higher levels of metacognitive regulation, their elective use of peers became a prominent path for supporting the practice of metacognitive strategies. Students claimed that the structure of the SWH weekly laboratory experiments improved their ability to solve open-ended lab problems. This research not only provided a lens into students' descriptions of their regulation strategy practices in the laboratory, but it also supported that the way that a laboratory environment is arranged can affect these regulation strategy practices and their transfer to new situations. In the biochemical study on the binding of Pb2+ to calmodulin (CaM), data was acquired via circular dichroism (CD) and molecular dynamics modeling. CD signal data indicated a unique signal from Pb-CaM and a significantly smaller ratio theta208/theta222 for Pb-CaM than Ca-CaM. An analysis of secondary structure content indicated that alpha-helical structure decreased and random coil structure increased when CaM was saturated with Pb2+ compared to Ca2+ saturated CaM. A molecular dynamics simulation of Pb2+ binding to CaM showed that Pb2+ ions bound to sites outside of the known canonical binding sites including the linker region, and indicated change in secondary structure. These results support the theory of opportunistic binding

  11. Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Sze-Yi; Procko, Erik; Gaudet, Rachelle [Harvard

    2012-11-01

    Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TRPV1: the N-terminal ankyrin repeat domain (ARD) and a short distal C-terminal (CT) segment. Here, we present the crystal structure of calcium-bound CaM (Ca2+–CaM) in complex with the TRPV1-CT segment, determined to 1.95-Å resolution. The two lobes of Ca2+–CaM wrap around a helical TRPV1-CT segment in an antiparallel orientation, and two hydrophobic anchors, W787 and L796, contact the C-lobe and N-lobe of Ca2+–CaM, respectively. This structure is similar to canonical Ca2+–CaM-peptide complexes, although TRPV1 contains no classical CaM recognition sequence motif. Using structural and mutational studies, we established the TRPV1 C terminus as a high affinity Ca2+–CaM-binding site in both the isolated TRPV1 C terminus and in full-length TRPV1. Although a ternary complex of CaM, TRPV1-ARD, and TRPV1-CT had previously been postulated, we found no biochemical evidence of such a complex. In electrophysiology studies, mutation of the Ca2+–CaM-binding site on TRPV1-ARD abolished desensitization in response to repeated application of capsaicin, whereas mutation of the Ca2+–CaM-binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved in separate regulatory mechanisms.

  12. Membrane actions of 1α,25(OH)2D3 are mediated by Ca(2+)/calmodulin-dependent protein kinase II in bone and cartilage cells.

    Science.gov (United States)

    Doroudi, Maryam; Plaisance, Marc C; Boyan, Barbara D; Schwartz, Zvi

    2015-01-01

    1α,25(OH)2D3 regulates osteoblasts and chondrocytes via its membrane-associated receptor, protein disulfide isomerase A3 (Pdia3) in caveolae. 1α,25(OH)2D3 binding to Pdia3 leads to phospholipase-A2 (PLA2)-activating protein (PLAA) activation, stimulating cytosolic PLA2 and resulting in prostaglandin E2 (PGE2) release and PKCα activation, subsequently stimulating differentiation. However, how PLAA transmits the signal to cPLA2 is unknown. Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) activation is required for PLA2 activation in vascular smooth muscle cells, suggesting a similar role in 1α,25(OH)2D3-dependent signaling. The aim of the present study is to evaluate the roles of CaM and CaMKII as mediators of 1α,25(OH)2D3-stimulated PLAA-dependent activation of cPLA2 and PKCα, and downstream biological effects. The results indicated that 1α,25(OH)2D3 and PLAA-peptide increased CaMKII activity within 9 min. Silencing Cav-1, Pdia3 or Plaa in osteoblasts suppressed this effect. Similarly, antibodies against Plaa or Pdia3 blocked 1α,25(OH)2D3-dependent CaMKII. Caveolae disruption abolished activation of CaMKII by 1α,25(OH)2D3 or PLAA. CaMKII-specific and CaM-specific inhibitors reduced cPLA2 and PKC activities, PGE2 release and osteoblast maturation markers in response to 1α,25(OH)2D3. Camk2a-silenced but not Camk2b-silenced osteoblasts showed comparable effects. Immunoprecipitation showed increased interaction of CaM and PLAA in response to 1α,25(OH)2D3. The results indicate that membrane actions of 1α,25(OH)2D3 via Pdia3 triggered the interaction between PLAA and CaM, leading to dissociation of CaM from caveolae, activation of CaMKII, and downstream PLA2 activation, and suggest that CaMKII plays a major role in membrane-mediated actions of 1α,25(OH)2D3.

  13. Calcium/calmodulin-dependent protein kinase Ⅱ signaling system in cardiovascular diseases%钙/钙调蛋白激酶Ⅱ信号系统与心血管疾病

    Institute of Scientific and Technical Information of China (English)

    赵妍

    2011-01-01

    CaMKⅡ是钙/钙调蛋白激酶(Ca2 +/calmodulin-dependent protein kinase,CaMK)成员之一.心脏中的CaMK包括Ⅰ,Ⅱ和Ⅳ三种类型,CaMKⅡ含量最多.CaMKⅡ单体由氨基端的催化域、中间部分的调节域和羧基端的结合域组成.钙调蛋白(calmodulin,CaM)与Ca2+结合后被激活,结合于CaMKⅡ调节域中的CaM结合区激活CaMKⅡ.CaMKⅡ富集于T管并靠近L-Ca2通道,也存在于肌浆网和细胞核中.激活的CaMKⅡ通过多种途径调节细胞内Ca2+平衡,广泛参与心血管系统生理活动及病理变化的信号转导过程,与多种心血管系统疾病密切相关.目前研究认为,CaMKⅡ信号系统在心律失常、心肌肥厚、心力衰竭、缺血性心脏病和扩张性心肌病的发生和发展中起着重要作用.%Ca2+/calmodulin-dependent protein kinase II ( CaMKII ) is one of the members of calcium/calmodulin protein kinases ( CaMKs). There are 3 types of CaMKs ( I , II , and IV ) in the heart, while CaMKII is the most abundant one. CaMK II monomer is composed of catalytic domain in the N-terminal, combining domain in the C-terminal and adjust domain in the middle. When CaM is activated by Ca2 + , Ca2+/CaM combines with the adjust domain, and further activates CaMK II. CaMK II is rich in T tube, close to L-Ca2 + channel, and also exists in sacoplasmic reticulum ( SR) and nucleus. CaMK II can adjust the balance of Ca 2+ in cells through various pathways, and then regulate a variety of physiological and pathological signaling transductions in the cardiovascular system. Therefore it is closely related to the cardiovascular system disease. Recent studies have suggested that CaMK II plays an important role in the occurrence and development of arrhythmia, cardiac hypertrophy, heart failure, ischemic heart diseases, and dilated cardiomyopathy.

  14. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-Tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Tam, Emily W T; Chen, Jonathan H K; Lau, Eunice C L; Ngan, Antonio H Y; Fung, Kitty S C; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2014-04-01

    Aspergillus nomius and Aspergillus tamarii are Aspergillus species that phenotypically resemble Aspergillus flavus. In the last decade, a number of case reports have identified A. nomius and A. tamarii as causes of human infections. In this study, using an internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, only 8 of 11 clinical isolates reported as A. flavus in our clinical microbiology laboratory by phenotypic methods were identified as A. flavus. The other three isolates were A. nomius (n = 2) or A. tamarii (n = 1). The results corresponded with those of metabolic fingerprinting, in which the A. flavus, A. nomius, and A. tamarii strains were separated into three clusters based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC MS) analysis. The first two patients with A. nomius infections had invasive aspergillosis and chronic cavitary and fibrosing pulmonary and pleural aspergillosis, respectively, whereas the third patient had A. tamarii colonization of the airway. Identification of the 11 clinical isolates and three reference strains by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) showed that only six of the nine strains of A. flavus were identified correctly. None of the strains of A. nomius and A. tamarii was correctly identified. β-Tubulin or the calmodulin gene should be the gene target of choice for identifying A. flavus, A. nomius, and A. tamarii. To improve the usefulness of MALDI-TOF MS, the number of strains for each species in MALDI-TOF MS databases should be expanded to cover intraspecies variability.

  15. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.

    Science.gov (United States)

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming

    2014-05-01

    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.

  16. The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence.

    Science.gov (United States)

    Ruge, Henning; Flosdorff, Sandra; Ebersberger, Ingo; Chigri, Fatima; Vothknecht, Ute C

    2016-06-01

    Calmodulins (CaMs) are important mediators of Ca(2+) signals that are found ubiquitously in all eukaryotic organisms. Plants contain a unique family of calmodulin-like proteins (CMLs) that exhibit greater sequence variance compared to canonical CaMs. The Arabidopsis thaliana proteins AtCML4 and AtCML5 are members of CML subfamily VII and possess a CaM domain comprising the characteristic double pair of EF-hands, but they are distinguished from other members of this subfamily and from canonical CaMs by an N-terminal extension of their amino acid sequence. Transient expression of yellow fluorescent protein-tagged AtCML4 and AtCML5 under a 35S-promoter in Nicotiana benthamiana leaf cells revealed a spherical fluorescence pattern. This pattern was confirmed by transient expression in Arabidopsis protoplasts under the native promoter. Co-localization analyses with various endomembrane marker proteins suggest that AtCML4 and AtCML5 are localized to vesicular structures in the interphase between Golgi and the endosomal system. Further studies revealed AtCML5 to be a single-pass membrane protein that is targeted into the endomembrane system by an N-terminal signal anchor sequence. Self-assembly green fluorescent protein and protease protection assays support a topology with the CaM domain exposed to the cytosolic surface and not the lumen of the vesicles, indicating that AtCML5 could sense Ca(2+) signals in the cytosol. Phylogenetic analysis suggests that AtCML4 and AtCML5 are closely related paralogues originating from a duplication event within the Brassicaceae family. CML4/5-like proteins seem to be universally present in eudicots but are absent in some monocots. Together these results show that CML4/5-like proteins represent a flowering plant-specific subfamily of CMLs with a potential function in vesicle transport within the plant endomembrane system.

  17. Immunoselection of cDNAs to avian intestinal calcium binding protein 28K and a novel calmodulin-like protein: assessment of mRNA regulation by the Vitamin D hormone

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsdorf, D.J.; Komm, B.S.; McDonnell, D.P.; Pike, J.W.; Haussler, M.R.

    1987-12-15

    Calcium's role in a variety of cellular processes has been well documented. The storage, distribution, and delivery of calcium are regulated by a family of binding proteins including troponin C, calmodulin, parvalbumin, and vitamin D dependent calcium binding protein (CaBP-28), all of which have evolved from a common ancestral gene. To evaluate vitamin D regulation of gene transcription, a CaBP-28 cDNA (767 base pairs) was isolated from a chicken intestine lambdagt11 library utilizing a polyvalent CaBP-28 antibody as a probe. Coincident with the identification of the CaBP-28 cDNA, a group of cDNAs also was isolated (with the anti-CaBP-28 antibody) that demonstrated 84% nucleotide homology and 99% deduced amino acid homology with chicken brain calmodulin (CaM). This new CaM-like cDNA was named neoCaM. There is little nucleotide homology between the CaBP-28 cDNA and neoCaM. The CaBP-28 cDNA hybridizes with three transcripts of 2000, 2900, and 3300 bases which are dramatically induced by 1,25-dihydroxyvitamin D/sub 3/ (1,25(OH)/sub 2/D/sub 3/), while the neoCaM cDNA recognizes three distinct (from CaBP-28) transcripts. Two of these mRNAs are 1400 and 1800 bases as described for brain CaM, but another large 4000-base transcript is detected with neoCaM. Neither the CaM nor the neoCaM transcript reveals any modulation by 1,25(OH)/sub 2/D/sub 3/. Herein, the authors discuss the possible significance of not only the isolation of both cDNAs with a single antibody but also the relation of neoCaM to other well-characterized CaM cDNAs.

  18. Affinity-tagged phosphorylation assay by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (ATPA-MALDI): application to calcium/calmodulin-dependent protein kinase.

    Science.gov (United States)

    Kinumi, Tomoya; Niki, Etsuo; Shigeri, Yasushi; Matsumoto, Hiroyuki

    2005-12-01

    A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based kinase assay using a peptide substrate tagged with a biotinyl group has been developed. The peptide moiety was designed to serve as an efficient substrate for calcium/calmodulin-dependent protein kinase II, based on the in vivo phosphorylation site of phosrestin I, a Drosophila homolog of arrestin. In the assay, the quantitative relationship was determined from the ratio of the peak areas between the two peaks respectively representing the unphosphorylated and the phosphorylated substrate. Attempts to assay phosphorylated peptides directly from the reaction mixture, gave inaccurate results because of the high noise level caused by the presence of salts and detergents. In contrast, after purifying the substrate peptides with the biotin affinity tag using streptavidin-coated magnetic beads, peak areas accurately represented the ratio between the unphosphorylated and phosphorylated peptide. By changing the substrate peptide to a peptide sequence that serves as a kinase substrate, it is expected that an efficient non-radioactive protein kinase assay using MALDI-TOF MS can be developed for any type of protein kinase. We call this technique "Affinity-Tagged Phosphorylation Assay by MALDI-TOF MS (ATPA-MALDI)." ATPA-MALDI should serve as a quick and efficient non-radioactive protein kinase assay by MALDI-TOF MS.

  19. 2型糖尿病患者红细胞胞浆钙调素活性变化的研究%A study of calmodulin activities of erythrocytes and its influencing factors in type 2 diabetic patients

    Institute of Scientific and Technical Information of China (English)

    赵铁耘; 李秀钧; 吴兆锋; 张翔迅; 左凤琼

    2000-01-01

    ObjectiveTo evaluate the calmodulin (CaM) activities of erythrocytes and the possible causes toinfluence the changes of CaM levels in type 2 diabetic (DM2) patients.Methods 70 patients with DM2 were studied.Of the 70 patients, 46 were treated with only oral hypoglycemic agents (OHA) (32 treated with sulfonylureas, 20treated with biguanides, 4 treated with Acarbose).24 were on insulin or insulin+OHA for more than three weeks.Themeasurement of soluble CaM of erythrocytes was performed by the methods of Wallace RW.Results ①)The activities ofsoluble CaM of erythrocytes in DM2 were significantly lower than that in normal subjects ( P 0.05);而OHA组CaM活性较正常组显著降低(P<0.05)。③多因素分析显示2型糖尿病患者红细胞胞浆中CaM活性与年龄、体重指数(BMI)呈负相关,与空腹Ins水平呈正相关。结论2型糖尿病患者红细胞胞浆中可溶性CaM活性明显降低,而Ins治疗可使其红细胞胞浆中可溶性CaM活性有所恢复。

  20. Downregulation of extracellular signal-regulated kinase 1/2 activity by calmodulin KII modulates p21Cip1 levels and survival of immortalized lymphocytes from Alzheimer's disease patients.

    Science.gov (United States)

    Esteras, Noemí; Alquézar, Carolina; Bermejo-Pareja, Félix; Bialopiotrowicz, Emilia; Wojda, Urszula; Martín-Requero, Angeles

    2013-04-01

    Previously, we reported a Ca(2+)/calmodulin (CaM)-dependent impairment of apoptosis induced by serum deprivation in Alzheimer's disease (AD) lymphoblasts. These cell lines showed downregulation of extracellular signal-regulated kinase (ERK)1/2 activity and elevated content of p21 compared with control cells. The aim of this study was to delineate the molecular mechanism underlying the distinct regulation of p21 content in AD cells. Quantitative reverse transcription polymerase chain reaction analysis demonstrated increased p21 messenger RNA (mRNA) levels in AD cells. The ERK1/2 inhibitor, PD98059, prevented death of control cells and enhanced p21 mRNA and protein levels. The CaM antagonist, calmidazolium, and the CaMKII inhibitor, KN-62, normalized the survival pattern of AD lymphoblasts by augmenting ERK1/2 activation and reducing p21 mRNA and protein levels. Upregulation of p21 transcription in AD cells appears to be the consequence of increased activity of forkhead box O3a (FOXO3a) as the result of diminished ERK1/2-mediated phosphorylation of this transcription factor, which in turn facilitates its nuclear accumulation. Murine double minute 2 (MDM2) protein levels were decreased in AD cells relative to control lymphoblasts, suggesting an impairment of FOXO3a degradation.

  1. STUDY ON EXPRESSION OF CALMODULIN GENE IN THE PATIENTS WITH SECONDARY RIGHT VENTRICULAR HYPERTROPHY%继发性右室肥厚患者钙调蛋白基因表达的研究

    Institute of Scientific and Technical Information of China (English)

    钟明; 张运; 张薇; 卞继峰; 卜培莉; 耿昭; 钟敬泉; 赵静

    2001-01-01

    探讨继发性右室肥厚(RVH)患者心肌细胞内Ca2+超负荷及钙调蛋白mRNA和蛋白 质表达的变化。方法:采用三电极直流等离子体原子发射直读光电光谱法测定心肌细胞内Ca2+含量;采用RT-PCR和Western bbt法测定RVH患者和正常对照钙调蛋白mRNA和蛋白质表达的变化。结果:与正常对照组相比,RVH患者心肌细胞内Ca2+含量提高3倍以上〔(1025.67±414.71)ug/ml vs(270.86±109.24)μg/ml,P0.05);Ca2+ -ATPase的蛋白质表达明显低于对照组(0.78±0.09 vs 1.03±0.03,P0.05)。结论:RVH患者SR Ca2+ -ATPase mRNA和蛋白质表达减低及细胞膜L型Ca2+ 通道mRNA转录减低是导致心肌细胞内Ca2+ 超负荷和RVH发生的主要分子生物学机制。%To elucidate molecular mechanisms of the changes of calmodulin gene expression when Ca2+ is overload in cardic muscle cell of patients with secondary right ventricular hypertrophy(RVH). Methods: Ten patients with secondary RVH and 6 control subjects were randomly selected. The content of calci um was assayed by spectrocomparator. The mRNA amounts of these calmodulin genes including L-type calcium channel, sarcoplasmic reticular(SR) Ca2+ -ATPase, ryanodine receptor, calsequestrin and phospholamban were de tected by reverse transcription-polymerase chain reaction(RT-PCR) and normalized to the mRNA levels of actin. The protein levels of SR Ca2+ -ATPase and phospholamban were analyzed by Western blot analysis. Results:The content of calcium increased significantly in patients with RVH. RT-PCR analyses showed that the steady-state level of mRNA encoding the SR Ca2 +-ATPase and cardiac L-type calcium channel decreased significantly in pa tients with RVH(0.66±0.28 vs 1.09±0.11, P<0.05,0.72±0.21 vs 1.08±0.14, P<0.05 ). In contrast, no alterations at the mRNA level for SR phospholamban, ryanodine receptor,calsequestrin were observed in pa tients with RVH compared with those in control subjects. Protein level of SR Ca2+ -ATPase

  2. Beta2-containing nicotinic acetylcholine receptors mediate calcium/calmodulin-dependent protein kinase-II and synapsin I protein levels in the nucleus accumbens after nicotine withdrawal in mice.

    Science.gov (United States)

    Jackson, Kia J; Imad Damaj, M

    2013-02-15

    Nicotinic acetylcholine receptors are calcium-permeable and the initial targets for nicotine. Studies suggest that calcium-dependent mechanisms mediate some behavioral responses to nicotine; however, the post-receptor calcium-dependent mechanisms associated with chronic nicotine and nicotine withdrawal remain unclear. The proteins calcium/calmodulin-dependent protein kinase II (CaMKII) and synapsin I are essential for neurotransmitter release and were shown to be involved in drug dependence. In the current study, using pharmacological techniques, we sought to (a) complement previously published behavioral findings from our lab indicating a role for calcium-dependent signaling in nicotine dependence and (b) expand on previously published acute biochemical and pharmacological findings indicating the relevance of calcium-dependent mechanisms in acute nicotine responses by evaluating the function of CaMKII and synapsin I after chronic nicotine and withdrawal in the nucleus accumbens, a brain region implicated in drug dependence. Male mice were chronically infused with nicotine for 14 days, and treated with the β2-selective antagonist dihydro-β-erythroidine (DHβE), or the α7 antagonist, methyllycaconitine citrate (MLA) 20min prior to dissection of the nucleus accumbens. Results show that phosphorylated and total CaMKII and synapsin I protein levels were significantly increased in the nucleus accumbens after chronic nicotine infusion, and reduced after treatment with DHβE, but not MLA. A spontaneous nicotine withdrawal assessment also revealed significant reductions in phosphorylated CaMKII and synapsin I levels 24h after cessation of nicotine treatment. Our findings suggest that post-receptor calcium-dependent mechanisms associated with nicotine withdrawal are mediated through β2-containing nicotinic receptors.

  3. Receptor-mediated stimulation of lipid signalling pathways in CHO cells elicits the rapid transient induction of the PDE1B isoform of Ca2+/calmodulin-stimulated cAMP phosphodiesterase.

    Science.gov (United States)

    Spence, S; Rena, G; Sullivan, M; Erdogan, S; Houslay, M D

    1997-01-01

    Chinese hamster ovary cells (CHO cells) do not exhibit any Ca2+/calmodulin-stimulated cAMP phosphodiesterase (PDE1) activity. Challenge of CHO cells with agonists for endogenous P2-purinoceptors, lysophosphatidic acid receptors and thrombin receptors caused a similar rapid transient induction of PDE1 activity in each instance. This was also evident on noradrenaline challenge of a cloned CHO cell line transfected so as to overexpress alpha 1B-adrenoceptors. This novel PDE1 activity appeared within about 15 min of exposure to ligands, rose to a maximum value within 30 min to 1 h and then rapidly decreased. In each case, the expression of novel PDE1 activity was blocked by the transcriptional inhibitor actinomycin D. Challenge with insulin of either native CHO cells or a CHO cell line transfected so as to overexpress the human insulin receptor failed to induce PDE1 activity. Reverse transcriptase-PCR analyses, using degenerate primers able to detect the PDE1C isoform, did not amplify any fragment from RNA preparations of CHO cells expressing PDE1 activity, although they did so from the human thyroid carcinoma FTC133 cell line. Reverse transcriptase-PCR analyses, using degenerate primers able to detect the PDE1A and PDE1B isoforms, successfully amplified a fragment of the predicted size from RNA preparations of both CHO cells expressing PDE1 activity and human Jurkat T-cells. Sequencing of the PCR products, generated using the PDE1A/B primers, yielded a novel sequence which, by analogy with sequences reported for bovine and murine PDE1B forms, suggests that the PDE1 species induced in CHO cells through protein kinase C activation and that expressed in Jurkat T-cells are PDE1B forms.

  4. Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice

    Science.gov (United States)

    Huang, Tzyy-Nan; Hsueh, Yi-Ping

    2017-01-01

    Background Human genetic studies have indicated that mutations in calcium/calmodulin-dependent serine protein kinase (CASK) result in X-linked mental retardation and autism-spectrum disorders. We aimed to establish a mouse model to study how Cask regulates mental ability. Methods Because Cask encodes a multidomain scaffold protein, a possible strategy to dissect how CASK regulates mental ability and cognition is to disrupt specific protein–protein interactions of CASK in vivo and then investigate the impact of individual specific protein interactions. Previous in vitro analyses indicated that a rat CASK T724A mutation reduces the interaction between CASK and T-brain-1 (TBR1) in transfected COS cells. Because TBR1 is critical for glutamate receptor, ionotropic, N-methyl-d-aspartate receptor subunit 2B (Grin2b) expression and is a causative gene for autism and intellectual disability, we then generated CASK T740A (corresponding to rat CASK T724A) mutant mice using a gene-targeting approach. Immunoblotting, coimmunoprecipitation, histological methods and behavioural assays (including home cage, open field, auditory and contextual fear conditioning and conditioned taste aversion) were applied to investigate expression of CASK and its related proteins, the protein–protein interactions of CASK, and anatomic and behavioural features of CASK T740A mice. Results The CASK T740A mutation attenuated the interaction between CASK and TBR1 in the brain. However, CASK T740A mice were generally healthy, without obvious defects in brain morphology. The most dramatic defect among the mutant mice was in extinction of associative memory, though acquisition was normal. Limitations The functions of other CASK protein interactions cannot be addressed using CASK T740A mice. Conclusion Disruption of the CASK and TBR1 interaction impairs extinction, suggesting the involvement of CASK in cognitive flexibility. PMID:28234597

  5. Phosphorylation at Ser²⁶ in the ATP-binding site of Ca²⁺/calmodulin-dependent kinase II as a mechanism for switching off the kinase activity.

    Science.gov (United States)

    Yilmaz, Mehtap; Gangopadhyay, Samudra S; Leavis, Paul; Grabarek, Zenon; Morgan, Kathleen G

    2013-02-07

    CaMKII (Ca²⁺/calmodulin-dependent kinase II) is a serine/threonine phosphotransferase that is capable of long-term retention of activity due to autophosphorylation at a specific threonine residue within each subunit of its oligomeric structure. The γ isoform of CaMKII is a significant regulator of vascular contractility. Here, we show that phosphorylation of CaMKII γ at Ser²⁶, a residue located within the ATP-binding site, terminates the sustained activity of the enzyme. To test the physiological importance of phosphorylation at Ser²⁶, we generated a phosphospecific Ser²⁶ antibody and demonstrated an increase in Ser²⁶ phosphorylation upon depolarization and contraction of blood vessels. To determine if the phosphorylation of Ser²⁶ affects the kinase activity, we mutated Ser²⁶ to alanine or aspartic acid. The S26D mutation mimicking the phosphorylated state of CaMKII causes a dramatic decrease in Thr²⁸⁷ autophosphorylation levels and greatly reduces the catalytic activity towards an exogenous substrate (autocamtide-3), whereas the S26A mutation has no effect. These data combined with molecular modelling indicate that a negative charge at Ser²⁶ of CaMKII γ inhibits the catalytic activity of the enzyme towards its autophosphorylation site at Thr²⁸⁷ most probably by blocking ATP binding. We propose that Ser²⁶ phosphorylation constitutes an important mechanism for switching off CaMKII activity.

  6. Active Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII Regulates NMDA Receptor Mediated Postischemic Long-Term Potentiation (i-LTP by Promoting the Interaction between CaMKII and NMDA Receptors in Ischemia

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2014-01-01

    Full Text Available Active calcium/calmodulin-dependent protein kinase II (CaMKII has been reported to take a critical role in the induction of long-term potentiation (LTP. Changes in CaMKII activity were detected in various ischemia models. It is tempting to know whether and how CaMKII takes a role in NMDA receptor (NMDAR-mediated postischemic long-term potentiation (NMDA i-LTP. Here, we monitored changes in NMDAR-mediated field excitatory postsynaptic potentials (NMDA fEPSPs at different time points following ischemia onset in vitro oxygen and glucose deprivation (OGD ischemia model. We found that 10 min OGD treatment induced significant i-LTP in NMDA fEPSPs, whereas shorter (3 min or longer (25 min OGD treatment failed to induce prominent NMDA i-LTP. CaMKII activity or CaMKII autophosphorylation displays a similar bifurcated trend at different time points following onset of ischemia both in vitro OGD or in vivo photothrombotic lesion (PT models, suggesting a correlation of increased CaMKII activity or CaMKII autophosphorylation with NMDA i-LTP. Disturbing the association between CaMKII and GluN2B subunit of NMDARs with short cell-permeable peptides Tat-GluN2B reversed NMDA i-LTP induced by OGD treatment. The results provide support to a notion that increased interaction between NMDAR and CaMKII following ischemia-induced increased CaMKII activity and autophosphorylation is essential for induction of NMDA i-LTP.

  7. Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD.

    Science.gov (United States)

    Sosanya, Natasha M; Cacheaux, Luisa P; Workman, Emily R; Niere, Farr; Perrone-Bizzozero, Nora I; Raab-Graham, Kimberly F

    2015-06-26

    The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the "capture" of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the "tag" is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner.

  8. Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD*

    Science.gov (United States)

    Sosanya, Natasha M.; Cacheaux, Luisa P.; Workman, Emily R.; Niere, Farr; Perrone-Bizzozero, Nora I.; Raab-Graham, Kimberly F.

    2015-01-01

    The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the “capture” of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the “tag” is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner. PMID:25944900

  9. Effect of melatonin and calmodulin on idiopathic scoliosis model%褪黑素、钙调蛋白在脊柱侧凸模型中的相互作用

    Institute of Scientific and Technical Information of China (English)

    吴俊哲; 柯庆峰; 吴文华; 何立江; 王江波; 黄隆; 戴章生; 林朝晖

    2015-01-01

    Objective To explore influence of continuous illumination, luzindole and calmodulin antagonist, on success rate and Cobb angle of making animal model of bipedal rat scoliosis.Methods Make 32 one-month female rats, who were just weaned, into bipedal rats and randomly divided them into 4 groups.Group A: luzindole by intraperitoneal injection + continuous illumination, Group B: luzindole by intraperitoneal injection, Group C: luzindole by intraperitoneal injection + calmodulin antagonist TMX by drinking and Group D: equivalent normal saline by intraperitoneal injection as blank control.Take X-ray films on weeks 8 and 16 and count scoliosis model incidence and different scoliosis degree of different groups of rats.Results (1) On week 8, scoliosis occurs in part of rats in groups A and B, with incidence of 75.0% and 12.5% respectively.Scoliosis degrees of group A are between 10.8° and 16.8°, with an average of 12.4°, and average scoliosis of group B is 19.4°.The scoliosis incidences of both groups are with statistically significant differences (P < 0.05).Either group C or D has no scoliosis, with incidence of 0;(2) On week 16, scoliosis incidences of groups A and B are 57.0% and 62.5% respectively, and degrees of which are between 10.1° and 17.9° for group A and between 18.0° and 30.3° for group B, with an average of 14.3° and 25.2° respectively.Scoliosis incidences of groups A and B are of no significant difference (P > 0.05).No scoliosis occurs in either group C or group D, with incidence of 0, while incidences of groups B and C as well as groups B and D are of significant differences (P < 0.05).Conclusion (1) By intraperitoneal injection of luzindole to bipedal rats, scoliosis rat models could be successfully made, the incidence of scoliosis is associated with the loss of effect of melatonin;(2) Under light, the occurrence of scoliosis may be increased in early period, but it is reversible;(3) Light conditions can not increase the incidence

  10. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development.

    Science.gov (United States)

    Park, Jung-Hyun; Jin, Yoon Mi; Hwang, Soojin; Cho, Du-Hyong; Kang, Duk-Hee; Jo, Inho

    2013-08-01

    The elevated level of uric acid in the body is associated with increased risk of cardiovascular diseases, which is mediated by endothelial dysfunction. However, its underlying mechanism is not fully understood, although dysregulation of endothelial nitric oxide (NO) production is likely to be involved. Using human umbilical vascular endothelial cells (HUVEC), we explored the molecular mechanism of uric acid on endothelial NO synthase (eNOS) activity and NO production. Although high dose of uric acid (12mg/dl for 24h treatment) significantly decreased eNOS activity and NO production, it did not alter eNOS expression and phosphorylations at eNOS-Ser(1177), eNOS-Thr(495) and eNOS-Ser(114). Under this condition, we also found no alterations in the dimerization and acetylation of eNOS, compared with the control. Furthermore, uric acid did not change the activity of arginase II, an enzyme degrading l-arginine, a substrate of eNOS, and intracellular level of calcium, a cofactor for eNOS activation. We also found that uric acid did not alter xanthine oxidase activity, suggesting no involvement of xanthine oxidase-derived O2(-) production in the observed inhibitory effects. In vitro and in cell coimmunoprecipitation studies, however, revealed that uric acid significantly decreased the interaction between eNOS and calmodulin (CaM), an eNOS activator, although it did not change the intracellular CaM level. Like in HUVEC, uric acid also decreased eNOS-CaM interaction in bovine aortic EC. Finally, uric acid attenuated ionomycin-induced increase in the interaction between eNOS and CaM. This study suggests firstly that uric acid decreased eNOS activity and NO production through reducing the binding between eNOS and CaM in EC. Our result may provide molecular mechanism by which uric acid induces endothelial dysfunction.

  11. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels.

    Directory of Open Access Journals (Sweden)

    Valentina Taiakina

    Full Text Available NSCaTE is a short linear motif of (xWxxx(I or Lxxxx, composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca(2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA, but disappears in high buffer conditions (10 mM EGTA. Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca(2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.

  12. Isolation of a Calmodulin cDNA from Salvia miltiorrhiza Bunge and Construction of its Antisense Expression Vector%丹参钙调蛋白cDNA的克隆及其反义表达载体的构建

    Institute of Scientific and Technical Information of China (English)

    张成; 王喆之

    2006-01-01

    丹参是著名的传统中药,对心血管疾病和癌症有广泛的疗效.钙调蛋白是细胞信号转导途径中的重要蛋白,在各种生理活动中起着重要的作用,其序列比较保守.国内外对中药丹参的分子学研究很少,本文利用分子生物学手段克隆了丹参钙调蛋白基因.从丹参成熟叶片中提取总RNA,cDNA第一链经反转录合成,利用设计的引物,PCR扩增,得到丹参钙调蛋白基因,测定其全序列.在GeneBank进行了注册.其次构建了丹参钙调蛋白基因反义表达载体,以后可进行基因敲除.通过Southern杂交,进行拷贝数推测,丹参钙调蛋白cDNA至少为2个拷贝.序列分析结果表明:得到的丹参钙调蛋白基因具有完整地读码框,由454个核苷酸组成,编码150个氨基酸.与别的植物钙调蛋白基因相比有很高的同源性,核苷酸序列同源性在80%以上,编码的氨基酸序列同源性在80%以上.以上结果能使我们更加深入地研究和了解钙调蛋白.%Salvia miltiorrhiza Bunge is a famous Chinese traditional medicinal herb to cure heart and cancer diseases. Calmodulin is a key regulatory protein involved in the signal transduction pathway and plays important roles in all aspects. There are few molecular researches on Salvia miltiorrhiza Bunge. The Calmodulin gene was cloned from Salvia miltiorrhiza Bunge. The total RNA was isolated from mature leaves of Salvia miltiorrhiza Bunge. The Calmodulin gene was amplified by PCR after reverse transcription with the conserved primer sequences. A band of 454bp in length of PCR product was subsequently cloned with T-easy vector. The gene was registered in GenBank.The antisense express vector was constructed. The copy number of the gene is estimated to be at least two copies per genome by using southern blot. The result showed that the PCR product had complete Open Reading Frame which had 454bp nucleotides. This gene shared more than 80% homologies with the calmodulian cDNAs of

  13. 钙调素拮抗剂EBB抗小鼠肝癌的作用及其机制的研究%The Effect of calmodulin antagonist berbaminederivative-EBB on hepatoma in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    刘杰文; 齐淑玲; 朱惠芳; 张金红; 李卓; 王彤

    2002-01-01

    Objective To evaluate the anti-hepatoma effect of Calmodulin antagonist 0-4-ethoxy l-butyl-Berbamine (EBB), one of the berbamine derivatives.Methods Monotetrazolium (MTT) method was used to analysize the effect of EBB on the prol iferation and growth inhibition effect. Of a hepatoma cell line in vitro. A mouse hepatoma model was induced by injection of hepatoma ells (H22) in the abdo minal cavity. The effect of EBB on survival at different concentrations as wel l as in combination with 5-FU were investigated in vivo. Flow cytometry ana lysis, dot blot hybridization, western blot, immunochemistry, enzyme-linked lec tin assay (ELISA), trifluoperazine (TFP) and electron microscopic observation we re used to study the effect of EBB on cell cycle process, P53 mRNA and protein l evels, calmodulin content and ultrastractural changes of hepatome cells. Results EBB exerts a very strong inhibitory effect on human hepatoma cell line 7402 and mouse hepatoma cell line H22 in vitro. The IC50 value of EBB for the two cell lines are 3.312 μg/ml and 1.167 μg/ml, respectively. The sensitivi ty o f H22 cells to 5-FU can be markedly enhanced: The IC50 dosage of 5-Fu ca n be decreased from 0.75 μg/ml down to 0.15 μg/ml, when jointly administered with nontoxic dosages of EBB (IC10). In vivo, EBB can prolong the lifes pan of mice with ascites H22 to more than three months. 64% of mice survived, while all animals in the control group died by the 18th day. When EBB (5 mg* kg-1*d-1) is jointly used with 5-FU (25 mg*ml-1*d -1), 73% of mice with ascites H22 survived, much higher than 27% in the 5 -FU trea ted group. EBB can enhance the anti-hepatoma ability of 5-Fu treatment. EBB mechanism against hepatoma: P53 expression in the EBB treated group is substanti ally higher than that in the control group. EBB increased the translation of P5 3. As a calmodulin antagonist, EBB decreases amount of the CaM in hepatoma cell s and blocked the hepatoma cell proliferation cycle at the G2M phase

  14. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  15. Cloning and Expression Analysis of Calmodulin Gene from Hevea brasiliensis%巴西橡胶树钙调蛋白基因的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    陈鑫; 朱家红; 张治礼

    2011-01-01

    为了进一步研究橡胶生物合成的分子机制,根据巴西橡胶树(Hevea brasiliensis)cDNA文库中的EST序列,利用cDNA末端快速扩增(RACE)技术分离了1个巴西橡胶树钙调蛋白基因,命名为HbCAM1.分析结果显示,该基因cDNA全长775 bp,含有完整的阅读框架,编码区为450 bp,编码149个氨基酸,5'非编码区26 bp,3'非编码区299bp.通过序列比对以及结构预测分析,HbCAM1编码的氨基酸序列与蓖麻、毛葡萄、烟草、麻风树中相应基因氨基酸序列的一致性分别达到100%、100%、99%、99%.半定量RT-PCR分析显示,HbCAM1基因可能通过对相关代谢基因表达调节,参与乙烯利刺激橡胶树增产的分子调控.%In order to clarify the processes and mechanisms of the biosynthesis of natural rubber, based on EST sequence from an SSH cDNA library of Hevea brasiliensis, a full-lengh cDNA encoding calmodulin,designated HbCAM1, was cloned from H.brasiliensis by RACE-PCR, which had a total length of 775 bp with an open reading frame (ORF) of 450 bp and encodes 149 amino acid residues. The deduced amino acid sequence showed high identity of 100% , 100%, 99% and 99% to those of CAM from Ricinus communis, Vitis quinquangularis, Nicotiana attenuate and Jatropha curcas. Semi-quantitative RT-PCR analysis indicated that the transcription of HbCAMl in latex was induced by tapping and ethphon treatment, suggested that HbCAMl might be involved in the regulation of ehphon-induced high latex yield in Hevea brasiliensis.

  16. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter.

    Science.gov (United States)

    Park, Hyeong Cheol; Kim, Man Lyang; Lee, Sang Min; Bahk, Jeong Dong; Yun, Dae-Jin; Lim, Chae Oh; Hong, Jong Chan; Lee, Sang Yeol; Cho, Moo Je; Chung, Woo Sik

    2007-01-01

    Calmodulin (CaM) is involved in defense responses in plants. In soybean (Glycine max), transcription of calmodulin isoform 4 (GmCaM4) is rapidly induced within 30 min after pathogen stimulation, but regulation of the GmCaM4 gene in response to pathogen is poorly understood. Here, we used the yeast one-hybrid system to isolate two cDNA clones encoding proteins that bind to a 30-nt A/T-rich sequence in the GmCaM4 promoter, a region that contains two repeats of a conserved homeodomain binding site, ATTA. The two proteins, GmZF-HD1 and GmZF-HD2, belong to the zinc finger homeodomain (ZF-HD) transcription factor family. Domain deletion analysis showed that a homeodomain motif can bind to the 30-nt GmCaM4 promoter sequence, whereas the two zinc finger domains cannot. Critically, the formation of super-shifted complexes by an anti-GmZF-HD1 antibody incubated with nuclear extracts from pathogen-treated cells suggests that the interaction between GmZF-HD1 and two homeodomain binding site repeats is regulated by pathogen stimulation. Finally, a transient expression assay with Arabidopsis protoplasts confirmed that GmZF-HD1 can activate the expression of GmCaM4 by specifically interacting with the two repeats. These results suggest that the GmZF-HD1 and -2 proteins function as ZF-HD transcription factors to activate GmCaM4 gene expression in response to pathogen.

  17. 外周血中钙调蛋白对阿尔茨海默病的诊断价值%Diagnostic value of calmodulin in peripheral blood for Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    高丽丽; 唐咏春; 毛德军; 邢岩

    2016-01-01

    目的 检测阿尔茨海默病(AD)患者外周血单个核细胞和血浆中钙调蛋白(CaM)的表达水平,评价其作为AD生物标志物的诊断价值. 方法 将2013年2月~2015年1月于青岛大学医学院附属海慈医院就诊和体检的对象共116例纳入本研究,包括AD患者40例、轻度认知障碍(MCI)患者20例、帕金森病(PD)患者20例、额颞叶痴呆(FTD)患者10例、路易体痴呆(DLB)患者10例、进行性核上性麻痹(PSP)患者6例、认知正常的健康体检者(对照组)10名.取外周血分离单个核细胞和血浆,采用Western blot和酶联免疫吸附测定(ELISA)检测CaM在外周血单个核细胞和血浆中的表达水平,并通过绘制ROC曲线判断其诊断能力. 结果 AD患者外周血单个核细胞和血浆中CaM的表达水平显著高于对照组,差异有统计学意义(P< 0.05),且CaM的表达水平不随AD的进展变化. 以对照组和PSP、DLB、FTD、PD患者中CaM的表达作为标准绘制ROC曲线,曲线下面积分别为0.958、0.946、0.846、0.958和0.896. 结论 CaM在AD患者外周血单个核细胞和血浆中高表达, 是一种潜在的AD生物标志物.%Objective To test the expression levels of calmodulin (CaM) in the mononuclear cells and plasma of peripheral blood of patients with Alzheimer disease (AD), and to evaluate its diagnostic value as the biomarker of AD. Methods Total 116 objects treated and examined in the Affiliated Hiser Hospital of Qingdao University Medical College from February 2013 to January 2015 were enrolled into the research, including 40 cases with AD, 20 cases with mild cognitive impairment (MCI), 20 cases with Parkinson disease (PD), 10 cases with frontotemporal dementia (FTD), 10 cases with dementia with Lewy bodies (DLB), 6 cases with progressive supranuclear palsy (PSP) and 10 healthy cases with normal cognition (control group). The peripheral blood was obtained to separate the mononuclear cells and plasma. Western blot and enzyme-linked immuno

  18. 钙调蛋白激酶Ⅱ抑制剂对肥厚心肌细胞的影响%The effects of calmodulin kinase Ⅱ inhibitor on hypertrophic cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    柯俊; 陈锋; 肖幸; 戴木森; 王晓萍; 陈兵; 陈敏; 张存泰

    2012-01-01

    目的 观察钙调蛋白激酶Ⅱ(CaMKⅡ)抑制剂KN-93对肥厚心肌细胞L型钙电流(ICa,L)及细胞内钙离子浓度([Ca2+]i)的影响.方法 选取雌性新西兰大白兔48只,随机(随机数字法)分为4组:假手术组(sham组)、心肌肥厚组(LVH组)、心肌肥厚+KN-93组(KN-93组)、心肌肥厚+KN-92组(KN-92组),每组12只,通过缩窄腹主动脉制备兔心肌肥厚模型,Sham组仅游离腹主动脉未进行缩窄.8周后,采用胶原酶消化法分离单个心肌细胞,应用穿孔膜片钳技术记录L型钙电流(ICa,L);应用钙荧光指示剂Fura-2/AM结合图像分析技术测定各组心肌细胞内[Ca2+]i.结果 8周后,心肌肥厚模型建立成功.在0 mV时LVH组、Sham组的峰值ICa.L分另为(1.38±0.3)nA、(0.87±0.1)nA(P<0.01,n=12),电流密度分别为(6.7±1.0)pA/pF、(6.3 ±0.7)pA/pF(P>0.05,n=12).当KN-92及KN-93在浓度为0.5μmol/L时,可分别使肥厚心肌细胞0 mV时的峰值ICa,L降低(9.4±2.8)%、(10.5±3)%(P>0.05,n=12);当浓度增至1 μmol/L时,其峰值ICa,L降低程度分别为(13.4±3.7)%、(40±4.9)%(P<0.01,n=12).Sham组、LVH组、KN-92组及KN-93组中心肌细胞[Ca2+]i分别为(98.0±12.3)nmol/L、(154.0±26.2)nmol/L、(147.0±29.6)nmol/L和(108.0±21.2)nmol/L.结论 CaMKⅡ特异性抑制剂KN-93可有效抑制肥厚心肌细胞ICa.L,减轻细胞内钙超载,这可能是其抗肥厚心肌室性心律失常发生的主要细胞电生理机制.%Objective To investigate the effect of the calmodulin kinase Ⅱ Inhibitor KN-93 on L-typecalcium current(ICa,L)and intracellular calcium concentration([Ca2+]i)in hypertrophic cardiac myocytes.Methods Forty-eight female New Zealand white rabbits were randomized(random number)into four groups(12 animals in each group):the sham operation group(sham group),the left ventricular hypertrophy group(LVH group),the myocardial hypertrophy + KN-93 group(KN-93 group),and the myocardial hypertrophy + KN-92 group(KN-92 group).Myocardial hypertrophy in

  19. Regulation Effect of Calcium/Calmodulin on Physiological Traits in Wheat Seedling Under Osmotic Stress%渗透胁迫下Ca2+/CaM信使系统对小麦幼苗生理特性的调控效应

    Institute of Scientific and Technical Information of China (English)

    王贺正; 梁力平; 吴金芝; 张均; 陈明灿; 付国占; 李友军

    2013-01-01

    为探讨Ca2+/CaM信使系统对渗透胁迫下小麦幼苗生理特性的调控效应,以豫麦49-198为材料,研究了Ca2+通道阻断剂异博啶(VP)和CaM拮抗剂盐酸氯丙嗪(CPZ)对PEG胁迫下小麦幼苗相对含水量、丙二醛(MDA)、超氧阴离子(O2·-)、双氧水(H2O2)、可溶性糖、可溶性蛋白质、脯氨酸和谷胱甘肽(GSH)含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性的影响.结果表明,随着渗透胁迫时间延长,VP和CPZ处理提高了小麦幼苗MDA、O2·-和H2O2含量,降低了相对含水量、可溶性糖、脯氨酸、可溶性蛋白质和GSH含量,抑制了SOD、POD和CAT活性,而且VP和CPZ复合处理对小麦幼苗的伤害程度更大.试验表明,Ca2+/CaM信使系统可能通过提高渗透调节物质和抗氧化剂含量、增强抗氧化酶活性、降低膜质过氧化水平调节小麦幼苗对渗透胁迫的适应性.%In order to investigate regulation effect of calcium/calmodulin on physiological traits in wheat seedling under osmotic stress,the experiment was carried out in laboratory to study the effects of calcium channel blockers VP and calmodulin antagonists CPZ on relative water content,malondialdehyde content (MDA),superoxide anion free radical content (O2·-),hydrogen peroxide content (H2O2),soluble sugar content,soluble protein content,proline content,glutathione content (GSH) and activities of superoxide dismutase(SOD),catalase(CAT) and peroxidase(POD) in wheat seedling under PEG stress.The results showed that VP and CPZ treatments were increased the MDA,O2·-and H2O2 contents,decreased the relative water content,soluble sugar content,proline content,soluble protein content and glutathione content(GSH) and decreased the activities of SOD,CAT and POD in wheat seedling.At the same time,the injury to seedlings was more serious under compound treatment of VP and CPZ.These results indicated that calcium/calmodulin messenger system might regulate the

  20. 苹果‘国光’花柱中与S-RNase互作的钙调素结合蛋白研究%Preliminary study of calmodulin binding protein interacting with stylar S-RNase in apple 'Rails Genet~

    Institute of Scientific and Technical Information of China (English)

    呼荣媚; 孟冬; 白松龄; 胡建芳; 李天忠

    2012-01-01

    通过酵母双杂交的方法寻找苹果‘国光’花柱中与S-RNase互作的非S因子。以苹果‘国光’花柱为试材,构建了酵母cDNA文库,检测插入片段大小在300~2 000bp之间,符合库容要求。将S1-RNase成熟区cDNA序列S1-mat构建到pGBKT7载体上作为诱饵,筛选‘国光’花柱酵母cDNA文库。经文库筛选,获得一个大小为371bp的片段,与苹果全基因组序列比对后发现,该片段位于第9号染色体,其全长序列为552bp。NCBI BLAST比对及蛋白结构域分析显示其与拟南芥钙调素结合蛋白的同源性最高,且具有钙调素结合蛋白特有的磷酸二酯酶结构域。同时,酵母互作实验显示其与‘国光’花柱钙调素(CaM)有强烈互作,故认为此基因是苹果钙调素结合蛋白基因,命名为MdCaMBP。半定量RT-PCR结果显示其在‘国光’叶片及花的各组织中均有表达,与苹果花柱S1-、S2-、S9-RNase成熟多肽区均有互作且作用强烈。推测MdCaMBP可能作为一种S-RNase辅助因子参与了自交不亲和反应。%The research was to investigate non-S factors interacting with S-RNase in SI through the yeast two-hybrid (Y2H)system. Yeast cDNA library was successfully constructed for apple 'Rails Genet' style, and being inserted by inserting sequences of 300 - 2 000 bp in size. One cDNA fragment of 371 bp was obtained from the library screening by apple pGBKTT,SI-mat as bait through the yeast two-hybrid(Y2H)system. With comparison in NCBI and structure projection,the fragment had highly homology with calmodulin binding protein in Arabidopsis thaliana, and had the peculiar phosphodiesterase structure domain with calmodulin binding protein. The the calmodulin binding protein gene named as MdCaMBP could be considered as the segment, located on chromosome 9 of apple and interacted with calmodulin(CaM). This gene had one complete ORF of 552 bp and expressed in leaf,sepal,petal,ovary and pollen,style of apple

  1. The Role of Calcium and Calmodulin in Freezing-Induced Freezing Resistance of Populus tomentosa Cuttings%钙-钙调素在零下低温诱导毛白杨扦插苗抗冻性中的作用

    Institute of Scientific and Technical Information of China (English)

    林善枝; 张志毅; 林元震; 张谦; 郭睆

    2004-01-01

    以零下低温锻炼和结合效应剂(CaCl2、钙离子螯合剂EGTA、钙离子通道阻断剂LaCl3或钙调素拮抗剂CPZ)处理的低温锻炼下的毛白杨(Populus tomentosa)扦插苗为试材,对其体内丙.醛(M D A)及钙调素(CaM)含量,超氧化物歧化酶(SOD)、过氧化物酶(POD)及线粒体腺苷三磷酸酶(Ca2+-ATPase)活性,以及幼苗的半致死温度(LT50)分别进行测定.结果表明,低温锻炼不仅在一定程度上提高了幼苗 CaM含量,SOD、POD和线粒体Ca2+-ATPase活性,降低了MDA含量和幼苗半致死温度;而且减小了低温胁迫所引起的SOD、POD、线粒体Ca2+-ATPase活性和CaM含量的下降程度以及MDA的增加幅度,促进了胁迫后恢复过程中SOD、POD、线粒体Ca2+-ATPase活性和CaM水平的迅速回升以及MDA的下降.在低温锻炼的同时,用CaCl2处理能加强低温锻炼的效果,但这种效应可被EGTA、LaCl3或CPZ处理抑制.经或未经CaCl2处理的低温锻炼后,幼苗中CaM含量的增加有助于SOD、POD和线粒体Ca2+-ATPase活性的提高,进而对幼苗抗冻性的提高有明显的促进作用.看来,Ca2+-CaM信号系统可能参与了SOD、POD和线粒体Ca2+-ATPase活性的调节和抗冻性的低温诱导.%To explore the role of calcium-calmodulin messenger system in the transduction of low temperature signal in woody plants, Populus tomentosa cuttings after being treated with CaC12 (10 mmol/L), Ca2+chelator EGTA (3 mmol/L), Ca2+ channel inhibitor LaCl3 (100 mmol/L) or CaM antagonist CPZ (50 mmol/L) were used for freezing acclimation at -3℃. The changes in the calmodulin (CaM) and malonaldehyde (MDA) contents, the activities of superoxide dismutase (SOD), peroxidase (POD) and Ca2+-dependent adenosinetriphosphatase (Ca2+-ATPase) of mitochondrial membrane as well as freezing resistance (expressed as LT50) of cuttings were investigated to elucidate the physiological mechanisms by which trees adapt to freezing. The results showed that freezing acclimation

  2. Pollination-induced Apoptosis in Tobacco Related to Expression of Calcium/calmodulin-dependent Protein Kinase T1%烟草花粉发育过程中的细胞凋亡及其与钙/钙调素依赖性蛋白激酶T1表达的关系

    Institute of Scientific and Technical Information of China (English)

    王玲; 王盈; 张美; 吕应堂

    2001-01-01

    用原位末端标记及免疫组化显色方法,对烟草花药发育过程中的细胞凋亡进行了检测.结果表明绒毡层、环形细胞、药隔组织细胞在减数分裂后四分体时期开始凋亡(Plate I,C&D),而花药维管束细胞从小孢子母细胞时期就开始凋亡(Plate I,E).这些特定的细胞在花药发育特定时期的凋亡担负着特定的作用.钙/钙调素依赖性蛋白激酶T1在这些凋亡细胞中大量特异表达(PlateII),表明钙信号途径参与了烟草花粉发育的细胞凋亡调控.%Using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and immunohistochemical methods, the pollination-induced cell death in tobacco (Nicotiana tabacum L.) was detected. The results indicated that pollination induced apoptotic death in specific cells. Apoptosis was initiated during the tetrad stage after meiosis in the tapetal cells, cyclic cells, and connective cells (Plate I, C and D), and during pollen mother cell stage in the vascular bundle (Plate I, E). Those apoptotic events,which occurred in the specific cells in the specific stages of antherdevelopment, play some vital roles of specific biological function. The highly expression of calcium/calmodulin dependent protein kinase T1 related closely to these apoptotic processes (Plate II) in these cells, suggesting that calcium-mediated signal pathway is involved in the regulation of apoptosis during anther development in tobacco.

  3. Effect of Four Calciun Begulators on Calcium and Calmodulin Contents During Flower Bud Differentiation of Guzmania ‘Amaranth’ Inducced by Ethylene%4种钙素调节剂对乙烯诱导的紫花擎天凤梨花芽分化中钙和钙调素含量的影响

    Institute of Scientific and Technical Information of China (English)

    易籽林; 李志英; 何铁光; 丛汉卿; 黄绵佳; 徐立

    2011-01-01

    以紫花擎天凤梨(Guzmania‘Amaranth’)为试材,研究了外源乙烯催花条件下4种钙素调节剂对紫花擎天凤梨花芽分化过程中Ca和CaM(钙调素)含量的影响.结果表明:各处理紫花擎天凤梨花芽中Ca和CaM在花芽孕育期积累,在花芽发端期降低.促进剂A23187处理可显著提高总Ca和CaM的含量,提早CaM峰值出现,促进花芽分化:EGTA处理可显著降低Ca和CaM的含量,推迟Ca峰值出现,延缓花芽分化;而TEP、W-7处理也可显著降低Ca和CaM的含量,延缓花芽分化.研究发现,Ca和CaM参与了乙烯诱导的花芽分化过程.%Using Guzmania 'Amaranth' [G. Wittmackii (Andr6) Andre ex MezxG. Lingulala (Linnaeus) Mez] as the materials, the effects of 4 calcium regulators on the floral buds differentiation and contents of Calcium and Calmodulin of Guzmania 'Amaranth' under exogenous ethylene treatments were studied. A23187 treatment enhanced the contents of Ca and CaM of during the flower bud differentiation, and promoted the flower bud differentiation. EGTA treatment reduced the contents of Ca and CaM during the flower bud differentiation, and delayed the accumulation of Ca and CaM, which inhibited the flower bud differentiation. It showed that Ca and CaM maight be involved in the process of ethylene-induced flower bud differentiation.

  4. 脑缺血时NMDA受体通过Src激酶和Ca2+/钙调蛋白依赖性蛋白激酶Ⅱ调控ERKs激活%N-methyl-D-aspartate receptors mediate diphosphorylation of extracellular signal-regulated kinases through Src family tyrosine kinases and Ca2+/calmodulin-dependent protein kinase Ⅱ in rat hippocampus after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    吴辉文; 李洪福; 郭军

    2007-01-01

    目的 ERKs是钙依赖性激活蛋白,本研究旨在探讨钙依赖性蛋白激酶是否参与了脑缺血后ERK级联的调控.方法 采用四动脉结扎诱导大鼠前脑缺血,用免疫印迹的方法观察几个钙依赖性蛋白激酶含量及活性的变化.结果 致死性脑缺血以NMDA受体依赖的方式激活ERKs,并差异性上调Src和Ca2+/钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)的活性.Src激酶和CaMKⅡ的抑制剂PP2和KN62能显著的阻止缺血诱导的ERKs激活.然而,缺血诱导的Src过度激活也伴随着ERKs的活性抑制.结论 致死性脑缺血刺激NMDA受体通过Src激酶和CaMKⅡ介导ERKs活性上调,但是脑缺血诱导的Src过度激活可能也参与了ERKs信号通路的负性调控.%Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia.Methods Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. Results Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA)receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) activities. With the inhibition of Src family tyrosine kinases or CaMKⅡ by administration of PP2or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. Conclusions Src family tyrosine kinases and CaMKⅡ might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.

  5. 水稻受精前后胚囊内钙调素分布的变化:免疫金电镜观察%Changes of Calmodulin Distribution in the Embryo Sac of Oryza sativa Before and After Fertilization: an Immunogold Electron Microscope Study

    Institute of Scientific and Technical Information of China (English)

    杨军; 赵洁; 梁世平; 杨弘远

    2002-01-01

    Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before pollination, both cytoplasm and vacuoles of the egg cell, synergids and central cell were labeled by gold particles. A small amount of gold particles were localized in the nucleus, endoplasmic reticulum, mitochondria and dictyosomes. From pollination to fertilization, CaM amount increased in these cells, especially rich in the starch of amyloplasts. Increase of gold particles in the central cell began about 2 h earlier than that in the egg cell. There was no distinct difference of CaM amount between the degenerated and the persistent synergids. It is interesting to observe an obvious change of CaM distribution form during pollination and fertilization from scattered single particles to clustered particles, and back again to single particles after the fertilization finished. CaM was also localized extracellularly in the embryo sac wall as well as in the wall and intercellular space of nucellus cells. The extracellular CaM also changes in its amount and form after pollination. These results suggest that CaM, either intra- or extra-cellular, may play important roles in fertilization and zygote formation.%用胶体金免疫电镜技术观察了水稻(Oryza sativa subsp. japonica)受精前后胚囊内钙调素的分布变化.授粉后,卵细胞、助细胞和中央细胞内的钙调素较授粉前均有所增加.中央细胞内钙调素的增加要比卵细胞中约早2 h,退化助细胞与宿存助细胞之间的钙调素含量无明显差异.授粉到受精期间,钙调素的主要分布形式由分散的单颗粒转变为聚集颗粒,受精完成后再变为分散的单颗粒形式.胚囊壁及珠心细胞的细胞壁和胞间隙中也观察到钙调素的分布和数量变化.初步讨论了胞内和胞外钙调素在水稻受精与合子形成中的作用.

  6. 蚕豆下表皮细胞外钙调素的存在及其对气孔运动的调节%Existence of Extracellular Calmodulin in the Lower Epidermis of the Leaves of Vicia faba and Its Role in Regulating Stomatal Movements

    Institute of Scientific and Technical Information of China (English)

    陈玉玲; 张学琴; 陈珈; 王学臣

    2003-01-01

    细胞外钙调素可能作为多肽第一信使,调节细胞增殖、花粉萌发、特定基因表达等生理过程.气孔能灵敏地对外界刺激作出反应,快速开闭.本文用免疫电镜和免疫荧光显微镜技术证明保卫细胞及其它表皮细胞胞外都存在钙调素.外源纯化钙调素能促进气孔关闭、抑制气孔开放,最适浓度为10-8mol/L;不能透过质膜的大分子钙调素拮抗剂W7-agarose和钙调素抗血清都能抑制气孔关闭、促进开放,说明保卫细胞的内源胞外钙调素确实能促进气孔关闭、抑制开放,而且只能在细胞外起作用.推测在自然情况下,保卫细胞内源胞外钙调素可能作为胞外第一信使和其它信号分子一起调节气孔的开关运动,而且可能在环境刺激与细胞响应之间起重要作用.%As a possible peptide primary messenger, extracellular calmodulin (CaM) may regulate processes such as cell proliferation, pollen germination and expression of some genes. Stomata open or close quickly in response to environmental stimuli. CaM was found to be extracellular both in guard cells of broad bean leaves and in epidermal cells by immuno-electron microscopy and immuno-fluorescence microscopy techniques. Exogenous purified CaM enhanced stomatal closure and inhibited stomatal opening with an optimal concentration of 10-8 mol/L; CaM antagonist W7-agarose and anti-CaM serum, which were membrane-impermeable macromolecules, inhibited stomatal closure and promoted stomatal opening. All these data showed that endogenous extracellular CaM of guard cells did promote stomatal closure and inhibit stomatal opening, and could be active only outside the cells. Therefore under natural conditions, the endogenous extracellular CaM of guard cells might regulate stomatal movements as a primary messenger together with other signal molecules, and might be an important linkage between environmental stimuli and cell responses.

  7. Stimulation of dopamine receptors inhibited Ca2+-calmodulin- dependent protein kinase Ⅱ activity in rat striatal slices%激动多巴胺受体抑制大鼠纹状体脑片Ca2+-钙调蛋白依赖性蛋白激酶Ⅱ活性

    Institute of Scientific and Technical Information of China (English)

    唐放鸣; 侯筱宇; 张光毅

    2001-01-01

    AIM: To investigate the mechanism underlying dopa minergic neurotoxicity in the striamm during anoxia. METHODS: Using rat striatal slices as an in vitro model, the activity of Ca2 + -calmodulin-dependent protein kinase Ⅱ (CCDPK Ⅱ ) was examined by the method of substrate phosphorylation 32 P-incorporation. RESULTS: Anoxia for 30 min greatly reduced CCDPK Ⅱ activity by about 75 %. Reserpinization by repeated reserpine administration ( 1 mg· kg- 1 · d- 1 for 7 d, sc ) preserved CCDPK Ⅱ activity against the anoxia-induced decrease (about 40 % of control). The activity of CCDPK Ⅱ was reduced significantly by exposure of rat striatal slices to micromolar concentrations of dopamine in the presence of extracellular Ca2+. Omission of Ca2+ in the incubation medium (with addition of 1 mmol/L egtazic acid) diminished the dopamine-induced decrease of the kinase activity. Application of apomorphine, a non selective dopamine receptor agonist, produced a similar concentration-related decrease of CCDPK Ⅱ activity. Exposure to SKF38393 (selective D1-like receptor agonist) or quinpirole (selective D2-like receptor agonist) also inhibited the kinase activity. The dopamine-induced decrease of CCDPK Ⅱ activity was attenuated by preincubation with Sch-23390 (selective D1-like receptor antagonist) or domperidone (selective D2-like receptor antagonist). CONCLUSION: Dopamine is involved in the anoxia-induced inhibition of CCDPK Ⅱ activity by activation of both D1-like and D2-like receptors and influx of Ca2+, which may contribute to dopamine-mediated striatal neuronal damage.%目的:研究缺氧时纹状体多巴胺能神经毒性的机制. 方法:采用大鼠纹状体脑片体外培养模型,以底物 磷酸化32P-掺入法测定Ca2+-钙调蛋白依赖性蛋白激 酶Ⅱ(CCDPKⅡ)的活性.结果:缺氧30 min,纹状 体脑片CCTPKⅡ活性降低75%,慢性利血平化使 得缺氧诱导的酶活性降低程度减轻,与对照组相比 大约降低40%.

  8. Effects of Ca2+/calmodulin-dependent protein kinase Ⅱ on PDGF-induced collagen α1(Ⅰ) production in human hepatic stellate cells%Ca2+/钙调蛋白依赖性蛋白激酶Ⅱ在PDGF诱导肝星状细胞胶原合成中的作用

    Institute of Scientific and Technical Information of China (English)

    安萍; 刘亚玲; 全晓静; 刘璐; 罗和生

    2013-01-01

    目的 观察Ca2+/钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)对PDGF诱导下人肝星状细胞(hepatic stellate cell,HSC) collagen α1(Ⅰ)合成的影响.方法 CaMKⅡα siRNA转染对HSC内CaMKⅡα进行干扰,real-time PCR法检测HSC collagen α1(Ⅰ)及TIMP-1 mRNA的表达,Western blot法检测collagen α1(Ⅰ)及MMP-2、TIMP-1表达的变化,ELISA法检测HSC collagen α1(Ⅰ)分泌的变化.结果 CaMKⅡα siRNA可显著抑制PDGF诱导下HSC collagen α1(Ⅰ) 及MMP-2、TIMP-1的转录、蛋白表达以及collagen α1(Ⅰ)的分泌,差异均有统计学意义(P<0.05).结论 CaMKⅡα信号参与了PDGF诱导下HSC collagen α1(Ⅰ)的产生与分泌,同时通过抑制MMP-2、促进TIMP-1的表达而阻止胶原的降解,是肝纤维化发展过程中PDGF信号的重要调控分子和肝纤维化的潜在治疗靶点.%Objective To observe the effects of Ca2+/calmodulin-dependent protein kinase Ⅱ ( CaMK Ⅱ ) on PDGF-induced collagen α1 (Ⅰ) production in human hepatic stellate cells. Methods The knockdown of CaMK Ⅱ a was performed by CaMK Ⅱ α siRNA transient transfection. The mRNA and protein expression of collagen α1 (Ⅰ) , MMP-2 and TIMP-1 were determined by real-time PCR and Western blot, respectively. The secretion of collagen α1 (Ⅰ) in culture media was tested by ELISA. Results CaMK Ⅱ knockdown by CaMK Ⅱ a siRNA significantly inhibited collagen α1 (Ⅰ) expression and secretion in PDGF-induced HSCs. CaMK Ⅱ inhibition resulted in up-regulation of MMP-2 and down-regulation of TIMP-1. Conclusion CaMK Ⅱ α regulate PDGF-induced collagen α1 (Ⅰ) production and secretion, increase TIMP-1 expression and decrease MMP-2 expression. Our study shed light on CaMK Ⅱ as a crucial signal in PDGF-activated HSCs and a potential therapeutic target in hepatic fibrosis.

  9. 赛庚啶对大鼠下丘脑-腺垂体-性腺轴和钙调蛋白基因表达的影响%Effects of cyproheptadine on hypothalamus-pituitary-gonad axis and calmodulin gene expression in rats

    Institute of Scientific and Technical Information of China (English)

    胡庆伟; 康白; 高尔; 李广宙; 李锋杰

    2003-01-01

    目的研究赛庚啶(Cyp)对SD大鼠生殖系统内分泌功能的影响是否有性别差异.方法 60只SD大鼠依性别各分为3组,每组10只;分别灌胃给予生理盐水(5 mL*kg-1*d-1), Cyp(2.4, 4.8 mg*kg-1*d-1),共14 d或21 d.放免法测定血清黄体生成素(LH)、促卵泡激素(FSH)、雌二醇(E2)、孕酮(P)、睾酮(T)的含量.光电镜观察促性腺激素释放激素细胞、促性腺激素细胞、间质细胞、支持细胞、黄体细胞、颗粒细胞等显微、超微结构的变化.用实时荧光定量PCR技术进行逆转录聚合酶链反应,琼脂糖凝胶电泳鉴定扩增产物.结果 Cyp可升高雄性大鼠血清LH、T的含量,而对FSH含量无明显影响.Cyp可升高雌性大鼠血清LH的水平,降低其FSH, P, E2的含量.电镜发现,Cyp促进雄性大鼠分泌功能,使雌性大鼠内分泌细胞发生退行性改变.结论Cyp对雌性大鼠下丘脑-腺垂体-卵巢轴内分泌功能有抑制作用, 而对雄性大鼠下丘脑-腺垂体-睾丸轴内分泌功能有促进作用,且使终末靶腺的内分泌细胞超微结构出现相应的变化.Cyp促进雄性大鼠睾丸钙调蛋白mRNA的表达可能与Cyp促进下丘脑-垂体-睾丸轴的内分泌功能有关.%AIM To study whether cyproheptadine(Cyp) affects endocrine functions in reproductive system with gender difference. METHODS Sixty SD rats were randomly distributed into 3 groups according to gender, respectively, and they were administered NS(5 mL*kg-1*d-1), Cyp 2.4, 4.8 mg*kg-1*d-1 accordingly by ig for 14 d or 21 d. The serum levels of luteinizing hormone(LH), follicle stimulating hormone(FSH), testosterone(T), progesterone(P), estrodiol(E2) were measured by radio-immunoassay and the ultrastructure of gonadotropin-releasing hormone(GnRH) cells, gonadotropin cells, Leydig cells, Sertoli cells, luteal cells, granulocytes and so on were observed by electronmicroscopy and microscopy. The calmodulin(CaM) mRNA expression in hypothalamus-pituitary-testis axis

  10. 复灌Ⅰ号注射液对大鼠肢体缺血-再灌注损伤骨骼肌钙调蛋白表达的影响%Effect of Fuguan Injection Ⅰ on Calmodulin Expression in Skeletal Muscle of Ischemic-Reperfusion Injury Rats

    Institute of Scientific and Technical Information of China (English)

    朱付平; 冯先; 刘金龙; 姜仁建

    2012-01-01

    Objective: To study the influence of Fuguan Injection I on calmodulin expression in skeletal muscle of ischemic-reperfusion injury rats. Methods; Fifty-four rats were divided into 3 groups at random: control group, ischemic-reperfusion group (IR group) and Fuguan injection I intervention group ( I -IR group). The rats in control group did not undergo blockade of blood flow in posterior limbs. The ischemic reperfusion models of rats in rats' posterior limbs in IR group and I -IR group were established by the method suggested by Zhang Lianyuan. No drug was given before sacrifice in control group. One ml normal sodium was intraperitoneally injected 12 hours before ischemia* at ischemia and at reperfusion in the IR group. One ml Fuguan Injection I was intraperitoneally injected at the same time points as in IR group. Zero h, 2 h, 4 h? And 8 h after reperfusion, 100mg of gastrocnemius muscle was taken from the right posterior limb respectively in the three groups for RT-PCR test of RyRI and SERCA1. Results: (l)The skeletal muscle type RyR1 mRNA expression reached its highest level < lower than IR group) in I -IR group 2 hours after ischemia, indicating significant difference between I -IR group and IR group (P<0. 01). RyR1 mRNA expression decreased (lower than IR group) in I -IR group 8 hours after ischemia, also showing significant difference between I-IR group and IR group (P<0.05). (2)Within 8 hours after reperfusion, SERCA1 mRNA expression was gradually down-regulated both in I -IR group and IR group, with less decrease in I -IR group. Except for the 2-h time point, there were significant differences between IR group and 1 -IR group (P<0. 01). Conclusion:Fuguan Injection I can protect skeletal muscle during ischemic reperfusion injury. The reasons for this may be through the two-way regulation of RyRl mRNA expression to decrease calcium overload in the early time while to protect cell organ in the later time. And this may be the main molecular mechanism of

  11. Direct Binding of Reaction Pb~(2+) to Calmodulin by Square Wave Polarography and Cyclic Voltametry%钙调素与重金属Pb~(2+)结合反应的方波极谱与循环伏安法研究

    Institute of Scientific and Technical Information of China (English)

    刘德龙; 吴彦环; 郭慧芳; 白娟; 孙大业

    2009-01-01

    采用方波极谱法研究了重金属Pb~(2+)与钙调素(CaM)的结合反应, 直接检测到Pb~(2+)-CaM配合物的存在, 并进一步利用循环伏安法研究了Pb~(2+)-CaM的电极反应. 在pH=6.5时, 用方波极谱法在Pb~(2+)-CaM体系中检测出2个还原峰, 峰电位分别为-0.44~-0.47 V和-0.73~-0.77 V, 说明在Pb~(2+)-CaM体系中铅有2种存在形式, -0.44~-0.47 V的还原峰对应于游离态Pb~(2+), 电位更负的还原峰对应于配合物[Pb~(2+)-CaM]. 2个还原峰的峰电流均随着c_(Pb2+/cCaM) 比值增大而增大;至c_(Pb2+/cCaM)≥10后, 配合物[Pb~(2+)-CaM]的峰电流基本不再变化, 而游离态Pb~(2+)的峰电流则继续增大. 利用极谱滴定曲线的拐点可判断出Pb~(2+)在CaM中有10个结合位点. 进一步的测量结果表明, 循环伏安曲线出现游离态Pb~(2+)的氧化峰和还原峰, 而络合态的[Pb~(2+)-CaM]只有其还原峰, 反向电压扫描时不出现阳极波, 即没有相对应的氧化峰出现.%Calmodulin(CaM) is a highly conserved Ca~(2+) binding protein ubiquitously found in animals and plants, which is involved in a large variety of cellular functions. The presence of many other metal ions in the physiological and nonphysiological environment such as heavy metal ions suggests that CaM might be binding other metal ions than Ca~(2+) , which might influnce CaM's function. It is important to investigate the general metal ion binding properties of CaM. Based on high sensitivity of square wave polarographic signal of Pb~(2+) , the direct binding reaction of Pb~(2+) to CaM was studied by square wave polarography(SWP). The complexing specie, Pb~(2+)-CaM, was detected for the first time by SWP in the Pb~(2+)-CaM system, and electrochemical reaction characterization was done by cyclic voltammetry. Two reduction peaks were detected in SWP polaro-grams obtained at different concentration ratios of Pb~(2+) to CaM at pH = 6.5, indicating that two electroactive species of Pb~(2+) exist

  12. 钙调蛋白依赖性蛋白激酶Ⅱ对前列腺癌PC3细胞增殖、侵袭及上皮-间充质转化的影响%Effects of calcium/calmodulin dependent protein kinase Ⅱ on proliferation, invasion and epithelia-mesenchymal transition of prostate cancer PC3 cells

    Institute of Scientific and Technical Information of China (English)

    彭璇; 陈晖; 王敏; 刘修恒

    2015-01-01

    Objective To observe the effects of inactivation of calcium/calmodulin dependent protein kinase Ⅱ (CaMK Ⅱ) on proliferation, invasion and epithelia-mesenchymal transition related signaling pathway in prostate cancer PC3 cells.Methods The activity of CaMK Ⅱ in PC3 cells was suppressed by KN93, a pharmacological inhibitor.MTT assay was used to detect the inhibition rate of PC3 cells and the invasion ability of PC3 cells was examined using Transwell invasion chambers.The protein expression of phosphorylated CaMK Ⅱ (p-CaMK Ⅱ), nuclear factor κB (NF-κB), zinc finger transcription factor (Snail), and Raf kinase inhibitory protein (RKIP) was measured by Western blotting.Results After treatment with KN93 for 24 h, the protein expression of p-CaMK Ⅱ PC3 cells treated with 5, 10, 20 μmol/L KN93 (0.453 ± 0.070, 0.368 ± 0.076, and 0.308 ± 0.011) was significantly decreased as compare with control group (0.596 ± 0.028) (P < 0.05 or 0.01), 40 μmol/L KN93 almost completely inhibited p-CaMK Ⅱ protein expression.The inhibition rate of PC3 cells treated with KN93 for 24 h was (6.88±1.79)%, (12.92 ±2.74)%, (17.88 ±2.86)% and (31.23 ±4.24)%, and (16.53 ±2.45) %, (29.02 ± 1.74) %, (40.52 ± 1.98) % and (52.26 ± 3.51) % for 48 h respectively.The number of the invasion PC3 cells in control and KN93 groups was (149 ± 17), (97 ± 7), (59 ± 9),(51 ±7), and (24 ± 3)/high magnification mirror (HP) respectively.The number of invasion cells in KN93 groups was significantly decreased when compared with control group (P < 0.01).The protein expression of NF-κB p65 had no significant difference between control and KN93 groups (P > 0.05), but p-NF-κB p65 was down-regulated in KN93 groups (0.483 ± 0.052, 0.490 ± 0.064, 0.432 ± 0.057,and 0.341 ±0.008) when compared with control group (0.597 ±0.020, P <0.05 or 0.01).As compared with control group (0.716 ±0.046), Snail protein expression in PC3 cells treated with 5, and 10 μmol/L KN93 (0

  13. The Arrhythmogenic Calmodulin p.Phe142Leu Mutation Impairs C-domain Ca2+-binding but not Calmodulin-dependent Inhibition of the Cardiac Ryanodine Receptor

    DEFF Research Database (Denmark)

    Søndergaard, Mads Toft; Liu, Yingjie; Larsen, Kamilla Taunsig

    2017-01-01

    (ryanodine receptor, RyR2), and it appears that attenuated CaM Ca2+-binding correlates with impaired CaM-dependent RyR2 inhibition. Here, we investigated the RyR2 inhibitory action of the CaM p.Phe142Leu mutation (F142L; numbered including the start methionine), which markedly reduces CaM Ca2+-binding...... to our understanding of CaM-dependent regulation of RyR2 as well as the mechanistic effects of arrhythmogenic CaM mutations. The unique properties of the CaM-F142L mutation may provide novel clues on how to suppress excessive RyR2 Ca2+-release by manipulating the CaM-RyR2 interaction....

  14. Role of calcium/calmodulin-dependent kinase Ⅱ alpha in central nucleus of amygdale in fentanyl-induced hyperalgesia in rats: the relationship with mEPSCs%中央杏仁核钙/钙调素依赖性蛋白激酶Ⅱα在芬太尼诱发大鼠痛觉过敏中的作用:与mEPSCs的关系

    Institute of Scientific and Technical Information of China (English)

    李珍; 王忠三; 罗放

    2016-01-01

    Objective To evaluate the role of calcium/calmodulin-dependent kinase Ⅱ alpha (CaMK Ⅱα) in the central nucleus of the amygdale (CeA) in fentanyl-induced hyperalgesia in rats and the relationship with miniature excitatory postsynaptic currents (mEPSCs).Methods Thirty-two male Sprague-Dawley rats,weighing 50-80 g,in which the CeA was successfully cannulated,were randomly divided into 4 groups (n=8 each) using a random number table:control 1 group (group C1),fentanylinduced hyperalgesia 1 group (group FIH1),KN92 group,and KN93 group.Normal saline was injected subcutaneously,and dimethyl sulfoxide (DMSO) was given into the amygdale in group C1.In group FIH1,fentanyl was injected subcutaneously (60 μg/kg per time,4 times in total,15-min interval,cumulative dose of 240 μg/kg) to establish the model of hyperalgesia.In KN92 and KN93 groups,KN92 and KN93 10 nmol were given into the CeA after establishing the model.The mechanical paw withdrawal threshold (MWT) and thermal paw withdrawal threshold (TWT) were measured at 6 and 7 h after fentanyl or normal saline injection.Another 12 Sprague-Dawley rats were selected and randomly divided into either control 2 group (group C2) or fentanyl-induced hyperalgesia 2 group (group FIH2) using a random number table with 6 rats in each group.The brains were removed and sliced 12 h later,and the frequency and amplitude of mEPSCs were recorded.KN93 10 nmol was then added to the artificial cerebral spinal fluid,and the frequency and amplitude of mEPSCs were recorded by whole cell patch-clamp technique.Results Compared with group C 1,the MWT and TWT were significantly decreased at 6 h after fentanyl or normal saline injection in FIH1,KN92 and KN93 groups,and at 7 h after fentanyl or normal saline injection in FIH and KN92 groups (P<0.05).Compared with group FIH1,the MWT and TWT were significantly increased at 7 h after fentanyl or normal saline injection in group KN93 (P<0.05),and no significant change was found in group KN92 (P

  15. Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal

    OpenAIRE

    Wu, Xin-Sheng; McNeil, Benjamin D.; Xu, Jianhua; Fan, Junmei; Xue, Lei; Melicoff, Ernestina; Adachi, Roberto; Bai, Li; Wu, Ling-gang

    2009-01-01

    Although endocytosis maintains synaptic transmission, how endocytosis is initiated is unclear. We found that calcium influx initiated all forms of endocytosis at a single nerve terminal in rodents, including clathrin-dependent slow endocytosis, bulk endocytosis, rapid endocytosis and endocytosis overshoot (excess endocytosis), with each being evoked with a correspondingly higher calcium threshold. As calcium influx increased, endocytosis gradually switched from very slow endocytosis to slow e...

  16. Mechanistic Basis of Calmodulin Mediated Estrogen Receptor Alpha Activation and Antiestrogen Resistance

    Science.gov (United States)

    2009-06-01

    Pharmaceutical Chemistry Dr. Aaron Cowley Dept. of Chemistry *Dr. Ryan Bartlett Dept. Molecular Biosciences *Dr. Joshua Gilmore Dept. Molecular Biosciences...American Heart Association Postdoctoral Fellow, 2001-2003 Graduate Students: Ryan Bartlett (PhD candidate) 2000-2004, currently Senior Scientist...Scholar - HOPE Scholar Neil Patel, 2006 Kimberly Indovina (seeking BS in Biochemistry) 2002-2003 Awards: - National Merit Scholar - University

  17. Genotyping species of the Sporothrix schenckii complex by PCR-RFLP of calmodulin

    NARCIS (Netherlands)

    Rodrigues, A.M.; de Hoog, G.S.; Pires Camargo, Z.

    2014-01-01

    Sporotrichosis is one of the most common subcutaneous mycosis in Latin America and is caused by 4 pathogenic thermodimorphic fungi in the genus Sporothrix. From both therapeutic and epidemiological perspectives, it is essential to identify the causative agents down to the species level. Traditional

  18. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baowei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lowry, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayer, M. Uljana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Squier, Thomas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H-15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH. Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M-1 sec-1 to 370 M-1 sec-1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces secondary structural changes within the interdomain linker that release helix A, thereby facilitating the formation of calcium binding sites in the amino-terminal lobe and linked tertiary structural rearrangements to form a high-affinity binding cleft that can associate with target proteins.

  19. Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The DNA-binding activity of heat shock transcription factor (HSF) was induced by heat shock (HS) of a whole cell extract. Addition of antiserum, specific to CaM, to a whole cell extract reduced bind of the HSF to the heat shock element (HSE) with maize, and the re-addition of CaM to the sample restored the activity of the HSF for binding to HSE. In addition, DNA-binding activity of the HSF was also induced by directly adding CaM to a whole cell extract at non-HS temperature with maize. Similar results were obtained with wheat and tomato. Our observations provide the first example of the involvement of CaM in regulation of the DNA-binding activity of the HSF.

  20. Solvent-induced differentiation of protein backbone hydrogen bonds in calmodulin.

    Science.gov (United States)

    Juranić, Nenad; Atanasova, Elena; Streiff, John H; Macura, Slobodan; Prendergast, Franklyn G

    2007-07-01

    In apo and holoCaM, almost half of the hydrogen bonds (H-bonds) at the protein backbone expected from the corresponding NMR or X-ray structures were not detected by h3JNC' couplings. The paucity of the h3JNC' couplings was considered in terms of dynamic features of these structures. We examined a set of seven proteins and found that protein-backbone H-bonds form two groups according to the h3JNC' couplings measured in solution. H-bonds that have h3JNC' couplings above the threshold of 0.2 Hz show distance/angle correlation among the H-bond geometrical parameters, and appear to be supported by the backbone dynamics in solution. The other H-bonds have no such correlation; they populate the water-exposed and flexible regions of proteins, including many of the CaM helices. The observed differentiation in a dynamical behavior of backbone H-bonds in apo and holoCaM appears to be related to protein functions.

  1. Mechanistic Basis Of Calmodulin Mediated Estrogen Receptor Alpha Activation and Antiestrogen Resistance

    Science.gov (United States)

    2010-06-01

    undergraduate participants in the SURO (Summer Undergraduate Research Opportunity) program in the Chemistry Department at UGA (summer, 2008). **Savannah...was a participant in the SURO (Summer Undergraduate Research Opportunities) program in the Department of Chemistry at UGA during the summer of 2007

  2. Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin

    OpenAIRE

    Zheng, Fei; Luo, Yongneng; Wang, Hongbing

    2009-01-01

    The induction of the immediate early gene Arc is strongly implicated in synaptic plasticity. Although the role of ERK was demonstrated, the regulation of Arc expression is largely unknown. In this study, we investigated the major signaling pathways underlying brain-derived neurotrophic factor (BDNF)-mediated Arc transcription in cultured cortical neurons. The BDNF-stimulated Arc transcription was solely regulated by the Ras-Raf-MAPK signaling through ERK, but not by phosphoinositide 3-kinase ...

  3. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    Science.gov (United States)

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  4. Structure and calcium-binding studies of calmodulin-like domain of human non-muscle alpha-actinin-1

    OpenAIRE

    Sara Drmota Prebil; Urška Slapšak; Miha Pavšič; Gregor Ilc; Vid Puž; Euripedes De Almeida Ribeiro; Dorothea Anrather; Markus Hartl; Lars Backman; Janez Plavec; Brigita Lenarčič; Kristina Djinović-Carugo

    2016-01-01

    The activity of several cytosolic proteins critically depends on the concentration of calcium ions. One important intracellular calcium-sensing protein is alpha-actinin-1, the major actin crosslinking protein in focal adhesions and stress fibers. The actin crosslinking activity of alpha-actinin-1 has been proposed to be negatively regulated by calcium, but the underlying molecular mechanisms are poorly understood. To address this, we determined the first high-resolution NMR structure of its f...

  5. The Calcium/Calmodulin/Kinase System and Arrhythmogenic Afterdepolarizations in Bradycardia-Related Acquired Long-QT Syndrome

    NARCIS (Netherlands)

    Qi, XiaoYan; Yeh, Yung-Hsin; Chartier, Denis; Xiao, Ling; Tsuji, Yukiomi; Brundel, Bianca J. J. M.; Kodama, Itsuo; Nattel, Stanley

    2009-01-01

    Background-Sustained bradycardia is associated with long-QT syndrome in human beings and causes spontaneous torsades de pointes in rabbits with chronic atrioventricular block (CAVB), at least partly by downregulating delayed-rectifier K(+)-current to cause action potential (AP) prolongation. We addr

  6. Antagonists of Calcium Fluxes and Calmodulin Block Activation of the p21-Activated Protein Kinases in Neutrophils

    NARCIS (Netherlands)

    Lian, J.P. (Jian); Crossley, L. (Lisa); Zhan, Q. (Qian); Huang, R. (Riyun); Coffer, P.J.; Toker, A. (Alex); Robinson, D. (Dwight); Badwey, J.A. (John)

    2002-01-01

    Neutrophils stimulated with fMLP or a variety of other chemoattractants that bind to serpentine receptors coupled to heterotrimeric G proteins exhibit rapid activation of two p21-activated protein kinases (Paks) with molecular masses of ~63 and 69 kDa (y- and a-Pak). Previous studies have shown that

  7. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    Science.gov (United States)

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  8. Calcium-calmodulin signalling is involved in light-induced acidification by epidermal leaf cells of pea, Pisum sativum L.

    NARCIS (Netherlands)

    Elzenga, JTM; Staal, M; Prins, HBA

    1997-01-01

    Pathways of signal transduction of red and blue light-dependent acidification by leaf epidermal cells were studied using epidermal strips of the Argenteum mutant of Pisum sativum. In these preparations the contribution of guard cells to the acidification is minimal. The hydroxypyridine nifedipine, a

  9. Ca2+-mediated potentiation of the swelling-induced taurine efflux from HeLa cells: On the role of calmodulin and novel protein kinase C isoforms

    DEFF Research Database (Denmark)

    Falktoft, Birgitte; Lambert, Ian H.

    2004-01-01

    The present work sets out to investigate how Ca2+ regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca2+-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation...

  10. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway

    OpenAIRE

    Said, Hamid M.; Wang, S.L.; Ma, T Y

    2005-01-01

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B-2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study w...

  11. Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences.

    Science.gov (United States)

    Maltsev, Victor A; Reznikov, Vitaliy; Undrovinas, Nidas A; Sabbah, Hani N; Undrovinas, Albertas

    2008-04-01

    Augmented and slowed late Na(+) current (I(NaL)) is implicated in action potential duration variability, early afterdepolarizations, and abnormal Ca(2+) handling in human and canine failing myocardium. Our objective was to study I(NaL) modulation by cytosolic Ca(2+) concentration ([Ca(2+)](i)) in normal and failing ventricular myocytes. Chronic heart failure was produced in 10 dogs by multiple sequential coronary artery microembolizations; 6 normal dogs served as a control. I(NaL) fine structure was measured by whole cell patch clamp in ventricular myocytes and approximated by a sum of fast and slow exponentials produced by burst and late scattered modes of Na(+) channel gating, respectively. I(NaL) greatly enhanced as [Ca(2+)](i) increased from "Ca(2+) free" to 1 microM: its maximum density increased, decay of both exponentials slowed, and the steady-state inactivation (SSI) curve shifted toward more positive potentials. Testing the inhibition of CaMKII and CaM revealed similarities and differences of I(NaL) modulation in failing vs. normal myocytes. Similarities include the following: 1) CaMKII slows I(NaL) decay and decreases the amplitude of fast exponentials, and 2) Ca(2+) shifts SSI rightward. Differences include the following: 1) slowing of I(NaL) by CaMKII is greater, 2) CaM shifts SSI leftward, and 3) Ca(2+) increases the amplitude of slow exponentials. We conclude that Ca(2+)/CaM/CaMKII signaling increases I(NaL) and Na(+) influx in both normal and failing myocytes by slowing inactivation kinetics and shifting SSI. This Na(+) influx provides a novel Ca(2+) positive feedback mechanism (via Na(+)/Ca(2+) exchanger), enhancing contractions at higher beating rates but worsening cardiomyocyte contractile and electrical performance in conditions of poor Ca(2+) handling in heart failure.

  12. Ca2+/calmodulin-dependent protein kinase IIα (αCaMKII) controls the activity of the dopamine transporter: Implications for angelman syndrome

    NARCIS (Netherlands)

    T. Steinkellner (Thomas); J.-W. Yang (Jae-Won); T.R. Montgomery (Therese); W.-Q. Chen (Wei-Qiang); M.-T. Winkler (Marie-Therese); S. Sucic (Sonja); G. Lubec (Gert); M. Freissmuth (Michael); Y. Elgersma (Ype); H.H. Sitte (Harald); O. Kudlacek (Oliver)

    2012-01-01

    textabstractThe dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are

  13. Influence of the Calmodulin Antagonist EBB on Cyclin B1 and Cdc2-p34 in Human Drug-resistant Breast Cancer MCF-7/ADR Cells

    Institute of Scientific and Technical Information of China (English)

    Xu Shi; Huifang Zhu; Yanhong Cheng; Linglin Zou; Dongsheng Xiong; Yuan Zhou; Ming Yang; Dongmei Fan; Xiaohua Dai; Chunzheng Yang

    2008-01-01

    OBJECTIVE To investigate the influence of O-(4-ethoxyl-butyl)-berbamine (EBB) on the expression of cyclin B1 and cdc2-p34 in the human drug-resistant breast cancer MCF-7/ADR cell line.METHODS The MTT assay was used to assess the cytotoxicity of EBB. Different levels of EBB were added to different cell lines at series of time points solely or combined with doxorubicin (DOX)to detect the effect on the expression of cyclinB1 and cdc2-p34 by Western blots, cdc2-p34 tyrosine phosphorylation was detected by immunoprecipitation. In addition, apoptosis and cytoplastic Ca2+concentrations were systematically examined by laser scanning confocal microscopy (LSCM).RESULTS EBB showed little inhibitory activity on human umbilical vein endothelial cells (ECV304), whereas EBB inhibited cell growth (IC50 range, 4.55~15.74 μmol/L) in a variety of sensitive and drug-resistance cell lines. EBB also down-regulated the expression of cyclin B1 and cdc2-p34 in a concentration and time dependent manner, which was an important reason for the G2/M phase arrest. EBB was shown to induce apoptosis of MCF-7/ADR cells while increasing the level of cytoplastic Ca2+.CONCLUSION The low cytotoxicity of EBB suggests it may be useful as a rational reversal agent. The effect of EBB on cell cycle arrest and related proteins, apoptosis, and cytoplastic Ca2+ concentration may be involved in reversing multidrug resistance.

  14. Enzyme Dynamic Study on Calmodulin Ca++-Mg++-ATPase System of Red Blood Cells Inhibited by α-anordrin and Probimane

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    EnzymeDynamicStudyonCalmodulinCa++┐Mg++┐ATPaseSystemofRedBloodCelsInhibitedbyα┐anordrinandProbimaneLuDayongChenEnhong*CaoJing...

  15. Reversible bleb formation in mast cells stimulated with antigen is Ca2+-calmodulin –dependent and bleb size is regulated by ARF6

    OpenAIRE

    Yanase, Yukki; Carvou, Nicolas; Frohman, Michael A.; Cockcroft, Shamshad

    2009-01-01

    Abstract Mast cells stimulated with antigen undergo extensive changes in their cytoskeleton. We assess here the impact of actin-modifying drugs and report that in the presence of cytochalasin D, mast cells stop membrane ruffling but instead bleb. Bleb formation is reversible following washout of the cytochalasin D and occurs in an actin polymerization-dependent manner. Bleb formation is inhibited by expression of dominant-negative ezrin-T567D. Blebbing is also inhibited by blebbist...

  16. Sequence Classification: 889165 [

    Lifescience Database Archive (English)

    Full Text Available dy (SPB) calmodulin binding protein; dosage-dependent suppressor of calmodulin mutants with specific defects in SPB assembly; Hcm1p || http://www.ncbi.nlm.nih.gov/protein/10383801 ...

  17. Membrane mechanisms and intracellular signalling in cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Dunham, Philip B.

    1995-01-01

    Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation.......Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation....

  18. Protein (Viridiplantae): 357112535 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 368:1152 PREDICTED: putative calmodulin-like protein 6-like Brachypodium distachyon MCPGGRYAGLDIPAGAGAADLRPAFDVLDADHD...GRISREDLKSFYAKAGAHEPFDDDDIAAMIAAADADHDGFVQYDEFEGLLGRAAATGTAGGCRSAMEDAFRLMDRDGDGKVGFEDLKAYLGWAGMPVADDEIRAMIGMAGDVDGGVGLEAFARVLAVDLDGIL ...

  19. CA2+/CALMODULIN-DEPENDENT KINASE II- ASSOCIATES WITH THE C TERMINUS OF THE DOPAMINE TRANSPORTER AND INCREASES AMPHETAMINE-INDUCED DOPAMINE EFFLUX VIA PHOSPHORYLATION OF N-TERMINAL SERINES

    DEFF Research Database (Denmark)

    Fog, Jacob; Khoshbouei, H; Holy, M

    The dopamine transporter(DAT) plays a key role in clearing extracellular dopamine(DA) from the synapse. Moreover DAT is a target for the action of widely abused psychostimulants such as cocaine and amphetamine(AMPH). AMPH is a substrate for the DAT and promotes the reversal of transport and thus...

  20. Isolation of a calmodulin cDNA from Vigna unguiculata ( L. ) Walp and its sequence analysis%豇豆钙调蛋白cDNA的克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    张成; 王喆之

    2006-01-01

    从豇豆成熟叶片中提取总RNA,反转录合成cDNA第一链,根据钙调蛋白结构基因两端保守序列设计引物,PCR扩增豇豆钙调蛋白基因,克隆到T-easy载体上并测定了其全序列.序列分析结果表明,豇豆钙调蛋白基因由450个核苷酸组成,编码150个氨基酸.与已知的多种植物钙调蛋白基因相比有很高的相似性,核苷酸序列相似性在80%以上,编码的氨基酸序列相似性在90%以上.

  1. Cloning and Prokaryotic Expression of C . p arvum Calmodulin-like Protein Gene%微小隐孢子虫类钙调蛋白基因的克隆与原核表达

    Institute of Scientific and Technical Information of China (English)

    杨晓娇; 陈兆国; 周鹏; 米荣升; 黄燕; 石凯; 王晓娟; 王向佩; 刘宇轩; 雷晓思

    2015-01-01

    为了对微小隐孢子虫(C . p arv um)类钙调蛋白(CM L )基因进行原核表达,分析重组表达蛋白的反应原性。以 C .parvum卵囊cDNA为模板,用PCR方法扩增得到C .parvum CML基因。将CML基因连接到克隆载体pMD18‐T ,获得重组质粒pMD‐CML ,经限制性内切酶 BamH Ⅰ和 Xho Ⅰ双酶切后,连接到经相同内切酶酶切的表达载体pGEX‐6p‐1上,构建重组表达质粒,转化到大肠埃希菌BL21(DE3)中进行诱导表达。利用GST 亲和树脂法纯化重组表达蛋白,对纯化的重组蛋白进行Western blot分析。结果表明,成功构建了重组原核表达质粒pGEX‐CML ,重组质粒转化菌经IPTG诱导后成功地表达出了分子质量约为51 ku的重组蛋白rCM L ,纯化的蛋白rCM L能与感染兔隐孢子虫(C .cuniculus)的兔血清发生特异性反应,具有很好的反应原性。%In order to express Cryptosporidium parvum calmodulin‐like protein (CML) gene in E .coli BL21(DE3) and analyze the antigenicity of the recombinant protein ,CML gene was amplified by PCR with cDNA of C .parvum oocysts .The amplified CML gene was cloned into pMD18‐T vector and the DNA of recombinant pMD‐CML plasmid was extracted .The plasmid was digested with double enzymes and the ob‐jective fragments were connected with pGEX‐6p‐1 which had been digested with same enzymes .After iden‐tifying by double restrict enzyme digestion and gene sequence analysis , the recombinant plasmids were transformed to E .coli BL21(DE3) cells and the transformed bacteria was induced to express with IPTG . Recombinant proteins were purified by High‐Affinity GST · Bind Resin affinity chromatography .Antigen‐icity of the recombinant proteins was analyzed by Western blot .The results showed that the prokaryotic expression vector pGEX‐CML was constructed successfully and an approximate 51 ku recombinant protein rCML was expressed successfully after inducing with IPTG .The purified recombinant protein could be recognized specifically by the sera from rabbit infected with C .cuniculus .

  2. 扶桑绵粉蚧钙调蛋白基因的原核表达与表达谱分析%Prokaryotic expression and expression profiling of calmodulin genes in mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae)

    Institute of Scientific and Technical Information of China (English)

    罗梅; 宾淑英; 林进添

    2013-01-01

    [目的]探究我国重要入侵生物扶桑绵粉蚧(Phenacoccus solenopsis Tinsley)钙调蛋白基因(PsCam)在各虫态中的表达差异及PsCam蛋白在体外的异源表达,为进一步揭示PsCam的生理功能提供参考.[方法]克隆PsCam基因的ORF,推导其编码的氨基酸序列,采用生物信息学方法,分析扶桑绵粉蚧钙调蛋白的结构.构建PsCam原核表达载体,将其转化到大肠杆菌中进行诱导表达,并对产物进行纯化.采用实时荧光PCR方法,分析该基因在扶桑绵粉蚧各个虫态中的相对表达量.[结果]扶桑绵粉蚧钙调蛋白基因的氨基酸序列分析结果显示,该蛋白没有信号肽,具有2个EF-hand钙结合结构域,有13个Ca2+结合位点.成功构建了原核表达载体pET28a-PsCam,经诱导表达后获得了重组的Cam蛋白,目的蛋白的分子质量约为17 ku.PsCam mRNA在不同虫态的扶桑绵粉蚧中都有表达,在成熟雌虫中的表达量最低,在1龄幼虫中的表达量最高,是成熟雌虫的7.1倍.[结论]在原核表达系统中诱导表达了重组PsCam蛋白;PsCam基因在扶桑绵粉蚧不同虫态中差异表达.

  3. 丛枝菌根真菌的钙调素基因在共生过程中的作用%The Roles of Calmodulin Gene of Glomus intraradices in Symbiosis Process

    Institute of Scientific and Technical Information of China (English)

    熊珊珊; 赵斌

    2014-01-01

    通过对丛枝菌根真菌(Glomus intraradices)中分离得到的钙调素基因序列进行分析,并利用实时荧光定量PCR(Real time PCR)研究该基因在共生体形成早期不同时间段的差异表达,以及在菌根共生体形成后,经胁迫处理,观察钙调素基因的表达量变化.荧光定量PCR结果表明,丛枝菌根真菌在与植物的共生过程中,存在钙离子激增现象,表明钙调素基因在共生早期的钙离子信号转导方面具有调控作用,而且在菌根真菌共生早期的菌丝生长过程中钙调素的调控作用可能与肌球蛋白的辅助有关.

  4. EST Table: FS761276 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available Calmodulin Bound To A Calcineurin Peptide: A New Way Of Making An Old Binding Mode pdb|2F2O|B Chain B, Struc...ture Of Calmodulin Bound To A Calcineurin Peptide: A New Way Of Making An Old Binding Mode pdb|2F2P|A Chain ...A, Structure Of Calmodulin Bound To A Calcineurin Peptide: A New Way Of Making An... Old Binding Mode pdb|2F2P|B Chain B, Structure Of Calmodulin Bound To A Calcineurin Peptide: A New Way Of Making

  5. Domain Modeling: NP_742076.1 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_742076.1 chr7 CRYSTAL STRUCTURE OF SU6656-BOUND CALCIUM/CALMODULIN-DEPENDENT PRO...TEIN KINASE II DELTA IN COMPLEX WITH CALMODULIN p2wela_ chr7/NP_742076.1/NP_742076.1_holo_10-316.pdb blast 1

  6. Main: CGCGBOXAT [PLACE

    Lifescience Database Archive (English)

    Full Text Available CGCGBOXAT S000501 04-August-2006 (last modified) kehi CGCG box recognized by AtSR1-...6 (Arabidopsis thaliana signal-responsive genes); Multiple CGCG elements are found in promoters of many gene...s; Ca++/calmodulin binds to all AtSRs; V=A/C/G; B=G/T/C; calmodulin Arabidopsis thaliana VCGCGB ...

  7. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  8. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  9. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  10. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  11. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  12. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  13. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  14. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  15. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  16. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  17. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  18. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  19. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  20. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  1. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  2. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  3. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  4. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  5. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  6. Arabidopsis CDS blastp result: AK241786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  7. NCBI nr-aa BLAST: CBRC-DDIS-02-0170 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DDIS-02-0170 pdb|2JC6|A Chain A, Crystal Structure Of Human Calmodulin-Depende...nt Protein Kinase 1d pdb|2JC6|C Chain C, Crystal Structure Of Human Calmodulin-Dependent Protein Kinase 1d 2JC6 9e-44 41% ...

  8. Molecular Cloning of Calmodulin-like Protein Gene CaLP and Comparison with Expression Profiles of CaM Gene in Scallop Chlamys f arreri%栉孔扇贝钙调素类似蛋白基因的克隆及其与钙调素基因表达特征的比较分析

    Institute of Scientific and Technical Information of China (English)

    林亚; 李世国; 谢莉萍; 张荣庆

    2014-01-01

    软体动物碳酸钙贝壳的形成过程涉及到C a2+的吸收、转运、贮藏、分泌和沉积等,与钙代谢这一高度受控的复杂生理过程紧密相关。本研究以栉孔扇贝转录组测序结果为基础,通过RACE技术,从栉孔扇贝外套膜中克隆得到钙调素类似蛋白的cDNA序列,全长863 bp ,编码149个氨基酸,相应蛋白质的预测分子量约为17.0 ku ,理论等电点为4.03。钙调素类似蛋白具有4个可能的EF‐hand Ca2+结合结构域,属于 EF‐hand钙结合蛋白家族,其氨基酸序列与栉孔扇贝钙调素钙调素的相似度为66%。半定量RT‐PCR检测显示,钙调素类似蛋白基因在外套膜中特异性高表达,预示其可能参与贝壳的矿化过程。实时定量PCR检测显示,钙调素类似蛋白基因的表达水平随环境中Ca2+浓度的升高呈先升后降趋势,表明钙调素类似蛋白与外套膜中的钙代谢过程密切相关;在贝壳缺刻损伤后的再生过程中,钙调素类似蛋白基因表达量显著上升,暗示其积极参与到了贝壳的再生过程中。上述结果为进一步阐明钙调素类似蛋白基因的功能及其在栉孔扇贝生物矿化过程中的作用提供可能的理论依据。%T he formation of mollusk shells as products of calcium metabolism is a very complicated process highly controlled by many physiological and biochemical activities .However ,the regulation of calcium me‐tabolism in bivalves is poorly understood .In this study ,a calmodulin‐like protein CaLP was cloned from the mantle tissue of scallop Chlamys f arreri .The full‐length cDNA of CaLP was 863 bp ,including a 450‐bp open reading frame (ORF) ,encoding 149 aa with 17 .0 ku and pI of 4 .03 .CaLP was found to contain four putative EF‐hand domains ,with the ability of Ca2+‐binding ,and 66% identity with the C . f arreri CaM in the amino sequence .The scallop CaLP mRNA was expressed in all tissues tested ,with the maxi‐mal level in the mantle ,a key organ involved in calcium secretion and shell formation ,indicating that CaLP takes an important part in the calcium metabolic process of the scallop .Moreover ,the expression of CaLP gene in the mantle went up and came down along with the elevated Ca2+ concentration ,and then reached a climax with a moderate (30% ) increase in Ca2+ concentration ,indicating that the suitable Ca2+ concentra‐tion accelerated the high expression of CaLP gene ,otherwise ,it inhibited the expression of CaLP gene . The function of CaLP in biomineralization was investigated in a shell notching experiment .It was found that the expression of CaLP was greatly enhanced in the mantle tissue in the notched shells ,implying that CaLP was involved in the shell regeneration .The findings will provide useful information for further stud‐ies on function of CaLP gene as well as the biomineralization process in the scallop .

  9. 脾虚大鼠壁细胞钙调素活性及黄芪作用的研究%Study of the calmodulin activity of parietal cells in Pi Deficiency(脾虚)rats and the effect of Huangqi(黄芪)

    Institute of Scientific and Technical Information of China (English)

    张根水; 王汝俊; 唐惠琼; 王建华

    2002-01-01

    目的:观察大黄、利血平两种脾虚模型大鼠胃壁细胞内钙调素活性变化以及黄芪注射液对其的作用.方法:胃壁细胞分离采用Lewin胃袋法Percoll密度梯度离心,细胞内钙调素活性测定用PDE酶法.结果:大黄和利血平脾虚模型大鼠胃壁细胞钙调素活性(ng/mg)明显下降,黄芪注射液治疗后钙调素活性明显上升.结论:脾虚大鼠壁细胞钙调素活性明显下降,黄芪注射液对壁细胞内钙调素活性这一病理变化有明显调整作用.

  10. Effect of polysaccharide P1 from Phellinus linteus on cell cycle and calcium/calmodulin-dependent protein signal pathway in HepG2 cells%桑黄多糖P1对肝癌HepG2细胞周期和钙调蛋白信号通路的影响

    Institute of Scientific and Technical Information of China (English)

    钟石; 李有贵; 林天宝; 吕志强; 计东风

    2015-01-01

    目的 探讨桑黄多糖P1抑制人源性肝癌HepG2细胞增殖的作用机制.方法 桑黄多糖P16.25~200 mg· L-1与HepG2细胞作用48 h,MTT法检测细胞存活率.桑黄多糖P1 100和200 mg· L-1与HepG2细胞作用48 h,流式细胞术检测细胞周期和凋亡;荧光分光光度法测定细胞内Ca2+浓度;实时荧光定量PCR检测细胞内钙调蛋白(CaM)、钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)、表皮生长因子(EGF)及其受体(EGFR)、K-ras和c-fos基因表达;Western蛋白质印迹法检测细胞内CaMKⅡ和Kras蛋白表达.结果 桑黄多糖P1对HepG2细胞存活的抑制率随药物浓度的增大而显著提高,100和200 mg·L-1时抑制率高达44.0%和61.3%.桑黄多糖P1 200 mg· L-1处理48h S期细胞百分含量明显升高,由对照组的(23.3±3.4)%升高至(37.8±2.2)%(P<0.01),而G2/M期细胞百分含量明显降低,由对照组的(15.3±1.2)%降至(3.4±1.9)%(P<0.01);细胞凋亡率无明显变化.与对照组相比,桑黄多糖P1 100和200 mg·L-1处理48 h后CaM,CaMKⅡ,EGF,EGFR,K-ras和c-fos mRNA水平显著下降(P<0.01);Western蛋白质印迹检测结果显示,桑黄多糖P1作用48 h后HepG2细胞内CaMK Ⅱ和K-ras蛋白水平与对照组相比显著下降(P<0.01).桑黄多糖P1 200 mg·L-1处理细胞后,细胞内Ca2+荧光强度显著升高,0~20 min内分别由951增至1430(P<0.01),而对照组一直维持在1 150左右.结论 桑黄多糖P1可能通过提高细胞内Ca2+浓度以及下调CaM,CaMKⅡ,EGF,EGFR,K-ras和c-fos基因的表达,诱导HepG2细胞S期阻滞,从而抑制HepG2细胞增殖.

  11. 幼年鼠内毒素性脑水肿模型及脑组织钙离子和钙调素表达的研究%Intracellular free calcium and calmodulin expression in a brain edema model induced by endotoxin in infant rats

    Institute of Scientific and Technical Information of China (English)

    李梅; 蔡方成

    2003-01-01

    目的:建立简单、易复制的幼年鼠内毒素性脑水肿模型,并从Ca2+、钙调素(CaM)水平探讨脑水肿的发生发展.方法:45只幼鼠,随机分内毒素组(36只)和对照组(9只),分别于腹腔内注射内毒素(LPS)10mg/kg和等容量生理盐水,并用电镜观察其病理、用常规生化法测定脑含水量和伊文氏蓝(EB)含量、用荧光标记术和免疫印迹法分别测定脑组织细胞内[Ca2+]和CaM表达.结果:脑组织含水量和EB含量显著高于对照组;细胞内[Ca2+]明显增高,脑组织CaM表达增强;电镜显示血脑屏障(Blood-brain barrier,BBB)受损、神经元变性、胶质细胞肿胀、坏死等特征.结论:LPS导致了BBB通透性改变,并引起了混合性脑水肿.LPS引起了细胞内[Ca2+]增高,并激活了CaM,从而启动了Ca2+-CaM信号通路,这可能与其增加BBB通透性并导致脑水肿形成有密切关系.

  12. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase.

    Science.gov (United States)

    Merlot, Angelica M; Shafie, Nurul H; Yu, Yu; Richardson, Vera; Jansson, Patric J; Sahni, Sumit; Lane, Darius J R; Kovacevic, Zaklina; Kalinowski, Danuta S; Richardson, Des R

    2016-06-01

    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.

  13. Effect of cadmium or magnesium on calcium-dependent central function that reduces blood pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sutoo, D.; Akiyama, K. [Univ. of Tsukuba (Japan). Inst. of Medical Sci.

    2000-03-01

    The effect of intracerebroventricular (i.c.v.) administration of cadmium or magnesium on central calcium-dependent blood pressure regulation was investigated. The systolic blood pressure of spontaneously hypertensive rats (SHR; male, 13 weeks of age) decreased following i.c.v. administration of cadmium chloride (20 nmol/rat), and increased following i.c.v. administration of magnesium chloride (20, 600, and 1200 nmol/rat). The hypotensive effect of cadmium was suppressed by i.c.v. administration of W-7 (a calmodulin antagonist, 30 {mu}g/rat). Taking into consideration these results with our previous reports, it is suggested that cadmium binds to the calcium-binding sites of calmodulin and activates calcium/calmodulin-dependent enzymes in a disorderly manner, whereas magnesium does not. Therefore, cadmium increases dopamine synthesis in the brain via a calmodulin-dependent system, and the resultant increase in dopamine levels inhibits sympathetic nerve activity and reduces blood pressure in SHR. (orig.)

  14. Protein (Cyanobacteria): 352974 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ociation-domain protein Synechococcus sp. CB0101 MALSDRDQEILSINQAMLDSVVNGDWSRYATFCA...ZP_07974427.1 1117:14446 1118:14646 1129:7054 232348:1931 Calcium/calmodulin dependent protein kinase II ass

  15. Sequence Classification: 889396 [

    Lifescience Database Archive (English)

    Full Text Available in ubiquitinating calmodulin; interacts with many SCF ubiquitin protein ligases; component of the cellular stress response; Ubc4p || http://www.ncbi.nlm.nih.gov/protein/6319556 ...

  16. UniProt search blastx result: AK288597 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288597 J090051O20 Q9VLT5|POE_DROME Protein purity of essence (Protein pushover) (Protein Calossin) (Intera...ction calmodulin and colossal molecular mass protein) - Drosophila melanogaster (Fruit fly) 0 ...

  17. Sequence Classification: 776392 [

    Lifescience Database Archive (English)

    Full Text Available ated locomotion UNC-43, DEfecation Cycle abnormal DEC-8, calcium/calmodulin-dependent Ser/Thr protein kinase II (58.3 kD) (unc-43) || http://www.ncbi.nlm.nih.gov/protein/32565732 ...

  18. Thioredoxin-dependent Redox Regulation of Cellular Signaling and Stress Response through Reversible Oxidation of Methionines

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Diana J.; Squier, Thomas C.

    2011-06-01

    Generation of reactive oxygen species (ROS) is a common feature of many forms of stress to which plants are exposed. Successful adaptation to changing environmental conditions requires sensitive sensors of ROS such as protein-bound methionines that are converted to their corresponding methionine sulfoxides, which in turn can influence cellular signaling pathways. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress response in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the sensitivity of individual methionines within plant and animal calmodulin to ROS, the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes.

  19. Stimulatory and inhibitory effects of inorganic lead on calcineurin.

    Science.gov (United States)

    Kern, M; Audesirk, G

    2000-09-07

    Calcineurin is a phosphatase with activity dependent on both Ca(2+)/calmodulin binding to the catalytic A subunit and Ca(2+) binding to the regulatory B subunit. We have previously shown that Pb(2+) activates calmodulin with a threshold of about 100 pM free Pb(2+), and that Pb(2+) and Ca(2+) are roughly additive in calmodulin activation (Kern et al., NeuroToxicology 21, 353-364 (2000)). In the present study, we evaluated the effects of Pb(2+), with and without Ca(2+) and calmodulin, on calcineurin activity. In calmodulin-containing, Ca(2+)-free solutions, Pb(2+) activated calcineurin with a threshold of about 100 pM free Pb(2+). Maximum calcineurin activity (comparable to that induced by 10 microM Ca(2+)) was reached at about 200 pM free Pb(2+). Higher Pb(2+) concentrations reduced activity, although some activity remained even at 2000 pM free Pb(2+). Combined with subsaturating Ca(2+) concentrations, as little as 20 pM free Pb(2+) enhanced calcineurin activity, but free Pb(2+) concentrations greater than 200 pM still reduced activity below maximum. Extremely high Ca(2+) concentrations (10 microM) completely reversed the inhibition of activity by 2000 pM free Pb(2+). In the absence of calmodulin, Ca(2+) slightly stimulated calcineurin activity. Pb(2+) did not substitute for Ca(2+) in calmodulin-free activation; in fact, high concentrations of Pb(2+) inhibited Ca(2+)-mediated activation. We tentatively conclude that low concentrations of free Pb(2+) activate calcineurin by activating calmodulin. Higher concentrations reduce calcineurin activity, perhaps by binding to the B subunit.

  20. Effects of intracerebroventricular morphine preconditioning on expression of calmodulin in hippocampus,calcitonin gene related peptide in plasma, substance P in hypothalamic paraventricular nucleus and myocardium in myocardial postischemia injury rats%中枢吗啡预处理对心脏缺血后大鼠海马CaM、血浆CGRP以及下丘脑室旁核和心肌P物质表达的影响

    Institute of Scientific and Technical Information of China (English)

    陆姚; 范礼斌; 张野; 翁立军; 李锐; 程新琦; 陈志武

    2009-01-01

    目的 探讨侧脑室内注射吗啡预处理对在体大鼠心肌缺血/再灌注损伤的影响及可能的信号机制.方法 建立模型大鼠,随机分为两个部分:①分为4组,每组6只:对照组(CON组),在缺血/再灌注前30 min内,侧脑室内微量泵注射0.9%生理盐水5 min,停止注射5 min,重复3次;预处理组(MPC组),在缺血/再灌注前30 min内,侧脑室内注射吗啡(1 μg·kg-1)5 min,停止5 min,重复3次;钙调蛋白抑制剂三氟拉嗪(trifluoperazine,TFP)+预处理组(TFP+MPC组),在吗啡预处理前10 min一次侧脑室内给予TFP(浓度为20 g·L-1)5 μl;另设TFP自身对照组(TFP组).②分为3组,每组6只:假手术组(Sham组),CON组和MPC组均同第一部分.观察指标包括:平均动脉压(MAP)、心率(HR),计算平均动脉压和心率乘积(RPP);心肌缺血危险区(AAR)、梗死区(IS)的体积、心肌梗死面积以IS/AAR表示;检测血浆降钙素基因相关肽(calcitonin gene related peptide, CGRP);测定海马组织钙调蛋白;测定下丘脑室旁核、心肌缺血区和非缺血区P物质的表达.结果与CON组相比,MPC组的IS和IS/AAR均明显下降(P0.05),而均明显高于MPC组(P<0.01);CON组分别与Sham组和MPC组相比,其下丘脑室旁核、心肌缺血区和非缺血区P物质表达均明显增高(P<0.01,P<0.05);MPC组血浆降钙素基因相关肽CGRP水平与海马钙调蛋白的表达均明显高于其它各组(P<0.01).结论 侧脑室内注射吗啡预处理对在体大鼠心肌缺血/再灌注损伤具有保护作用,其机制可能与钙调蛋白介导释放CGRP和痛觉的干预有关.

  1. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Craescu Constantin T

    2011-05-01

    Full Text Available Abstract Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.

  2. Extralysosomal turnover of cellular proteins: Targeting substrates in the ubiquitin, ATP-dependent degradation system

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.

    1988-01-01

    Calmodulin derived from a cloned chicken gene can be ubiquitinated and degraded by an in vitro reticulocyte lysate system. The chemical reactivity and the surface accessibility of the {epsilon}-amino group on lysine 115 in the calmodulin polypeptide chain were studied by trace labeling with acetic anhydride and with a ubiquitin derivative containing an azido group at the C-terminal glycine residue. Fractionation of reticulocyte lysate proteins separated the activity which degrades the calmodulin moiety of ubiquitin-calmodulin conjugates from that which acts on the isopeptide linkage. Neither of these two activities act on a synthetic isopeptide, which mimics the junction of ubiquitin-calmodulin, indicating the importance of the folding of ubiquitin for recognition. Based on recent findings that the ubiquitin moieties linked to {beta}galactosidase exist as a single multiubiquitin chain, studies were carried out to determine the structure of the ubiquitin-ubiquitin linkage. Ubiquitin was in vivo labeled with ({sup 3}H) and conjugated to {beta}galactosidase. Individual conjugates were isolated and subjected to peptide mapping by trypsin digestion, and tryptic fragments were analyzed of HPLC. The results indicated that the ubiquitin-ubiquitin linkage involves lysine residue 48 in the ubiquitin sequence.

  3. Synergy of cAMP and calcium signaling pathways in CFTR regulation.

    Science.gov (United States)

    Bozoky, Zoltan; Ahmadi, Saumel; Milman, Tal; Kim, Tae Hun; Du, Kai; Di Paola, Michelle; Pasyk, Stan; Pekhletski, Roman; Keller, Jacob P; Bear, Christine E; Forman-Kay, Julie D

    2017-03-14

    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport.

  4. Calcium-acting drugs modulate expression and development of chronic tolerance to nicotine-induced antinociception in mice.

    Science.gov (United States)

    Damaj, M I

    2005-11-01

    Initial studies in our laboratory suggested that tolerance to nicotine is thought to involve neuronal adaptation not only at the level of the drug-receptor interaction but at postreceptor events such as calcium-dependent second messengers. The present study was undertaken to investigate the hypothesis that L-type calcium channels and calcium-dependent calmodulin protein kinase II are involved in the development and expression of nicotine tolerance. To that end, the effects of modulation of L-type calcium channels (through the use of inhibitors or activators) as well as calcium-dependent calmodulin protein kinase II inactivation were studied in a mouse model of tolerance where mice were infused with nicotine in minipumps (24 mg/kg/day) for 14 days. In addition, the activity of calcium-dependent calmodulin protein kinase II in the lumbar spinal cord region obtained from nicotine-tolerant mice was measured. Our data showed that chronic administration of L-type calcium channel antagonists nimodipine (1 and 5 mg/kg) and verapamil (10 mg/kg) prevented the development of tolerance to nicotine-induced antinociception. In contrast, chronic exposure of BAYK8644 [(+/-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)-phenyl]-3-pyridine carboxylic acid methyl ester], a calcium channel activator, enhanced nicotine's tolerance. Moreover, a significant increase in both dependent and independent calcium-dependent calmodulin protein kinase II activity was seen in the spinal cord in nicotine-tolerant mice. Finally, spinal administration of 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-phenylpiperazine (KN-62), a calcium-dependent calmodulin protein kinase II antagonist, reduced the expression of tolerance to nicotine-induced antinociception in mice. In conclusion, our data indicate that calcium-dependent mechanisms such as L-type calcium channels and calcium-dependent calmodulin protein kinase II activation are involved in the expression and development of nicotine

  5. Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation.

    Science.gov (United States)

    Kern, M; Audesirk, G

    1995-09-01

    Inorganic lead inhibits neurite initiation in cultured rat hippocampal neurons at concentrations as low as 100 nM. Conflicting reports suggest that Pb2+ may stimulate or inhibit protein kinase C, adenylyl cyclase, phosphodiesterase, and calmodulin, or increase intracellular free Ca2+ concentrations. Therefore, Pb2+ may alter the activities of Ca2+/calmodulin-dependent protein kinase (CaM kinase) or protein kinases C or A. We cultured rat hippocampal neurons in 100 nM PbCI2 alone or in combination with kinase or calmodulin inhibitors. Inhibiting protein kinase C with calphostin C exacerbated the inhibition of neurite initiation caused by PbCI2, but inhibiting protein kinase A with KT5720, CaM kinase with KN62, or calmodulin with calmidazolium completely reversed the effects of PbCI2. These results indicate that Pb2+ may inhibit neurite initiation by inappropriately stimulating protein phosphorylation by CaM kinase or cyclic AMP-dependent protein kinase (PKA), possibly by stimulating calmodulin. This hypothesis is supported by findings that other treatments that should increase protein phosphorylation (okadaic acid, a protein phosphatase inhibitor, and Sp-cAMPS, a PKA activator) also reduced neurite initiation. Whole-cell intracellular free Ca2+ ion concentrations were not significantly altered by 100 nM PbCI2 at 4, 12, 24, or 48 hr. Therefore, the hypothesized stimulatory effects of Pb2+ exposure on calmodulin, CaM kinase, or PKA are probably not caused by increases in whole-cell intracellular free Ca2+, but may be attributable either to intracellular Pb2+ or to localized increases in [Ca2+]in that are not reflected in whole-cell measurements.

  6. The calcium mobilizing tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion

    DEFF Research Database (Denmark)

    Thastrup, Ole; Foder, B; Scharff, O

    1987-01-01

    stimulation with thrombin and Tg, respectively. The thrombin induced rise of [Ca2+]i was reversible, which indicates that active calcium sequestration and/or extrusion is operating. Tg affected [Ca2+]i in a divergent manner, thus, [Ca2+]i was stabilized on a elevated level without initial formation...... of a pronounced peak. The decline in [Ca2+]i observed after thrombin stimulation was not impaired by the calmodulin binding drug trifluoperazine but it was strongly reduced by vanadate, which suggests the active calcium transport systems to be insensitive to calmodulin. We put forward the hypothesis...

  7. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin'.

    Science.gov (United States)

    Taniwaki, Marta Hiromi; Pitt, John I; Iamanaka, Beatriz T; Massi, Fernanda P; Fungaro, Maria Helena P; Frisvad, Jens C

    2015-01-01

    A new Penicillium species, P. excelsum, is described here using morphological characters, extrolite and partial sequence data from the ITS, β-tubulin and calmodulin genes. It was isolated repeatedly using samples of nut shells and flowers from the brazil nut tree, Bertolletia excelsa, as well as bees and ants from the tree ecosystem in the Amazon rainforest. The species produces andrastin A, curvulic acid, penicillic acid and xanthoepocin, and has unique partial β-tubulin and calmodulin gene sequences. The holotype of P. excelsum is CCT 7772, while ITAL 7572 and IBT 31516 are cultures derived from the holotype.

  8. Febrile infection-related status epilepticus in a child after a common infection

    DEFF Research Database (Denmark)

    Andersen, Anne Helene; Hansen, Lars Kjærsgaard

    2014-01-01

    A 13-year-old boy developed seizures and intractable status epilepticus a week after having had a sore throat. Ketogenic diet possibly had some effect. Antibodies to calmodulin dependent protein kinase II were found and could possibly suggest an immunologic aetiology.......A 13-year-old boy developed seizures and intractable status epilepticus a week after having had a sore throat. Ketogenic diet possibly had some effect. Antibodies to calmodulin dependent protein kinase II were found and could possibly suggest an immunologic aetiology....

  9. Invasive sino-orbital mycosis in an aplastic anemia patient caused by Neosartorya laciniosa.

    Science.gov (United States)

    Malejczyk, Kathy; Sigler, Lynne; Gibas, Connie Fe C; Smith, Stephanie W

    2013-04-01

    We report the first case of Neosartorya laciniosa invasive sinusitis involving the orbit in an immunocompromised male with aplastic anemia. Treatment included surgical debridement with enucleation of the eye and combination voriconazole and micafungin therapy followed by voriconazole alone. The fungus was identified using sequencing of partial benA and calmodulin genes.

  10. Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse.

    Science.gov (United States)

    Yue, Hai-Yuan; Xu, Jianhua

    2014-01-01

    Neuronal activity triggers endocytosis at synaptic terminals to retrieve efficiently the exocytosed vesicle membrane, ensuring the membrane homeostasis of active zones and the continuous supply of releasable vesicles. The kinetics of endocytosis depends on Ca(2+) and calmodulin which, as a versatile signal pathway, can activate a broad spectrum of downstream targets, including myosin light chain kinase (MLCK). MLCK is known to regulate vesicle trafficking and synaptic transmission, but whether this kinase regulates vesicle endocytosis at synapses remains elusive. We investigated this issue at the rat calyx of Held synapse, where previous studies using whole-cell membrane capacitance measurement have characterized two common forms of Ca(2+)/calmodulin-dependent endocytosis, i.e., slow clathrin-dependent endocytosis and rapid endocytosis. Acute inhibition of MLCK with pharmacological agents was found to slow down the kinetics of both slow and rapid forms of endocytosis at calyces. Similar impairment of endocytosis occurred when blocking myosin II, a motor protein that can be phosphorylated upon MLCK activation. The inhibition of endocytosis was not accompanied by a change in Ca(2+) channel current. Combined inhibition of MLCK and calmodulin did not induce synergistic inhibition of endocytosis. Together, our results suggest that activation of MLCK accelerates both slow and rapid forms of vesicle endocytosis at nerve terminals, likely by functioning downstream of Ca(2+)/calmodulin.

  11. The novel C-terminal KCNQ1 mutation M520R alters protein trafficking

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Calloe, Kirstine; Nielsen, Nathalie Hélix

    2007-01-01

    The long QT-syndrome is characterized by a prolongation of the QT-interval and tachyarrhythmias causing syncopes and sudden death. We identified the missense mutation M520R in the calmodulin binding domain of the Kv7.1 channel from a German family with long QT-syndrome. Heterologous expression of...

  12. Calcium-regulated import of myosin IC into the nucleus.

    Science.gov (United States)

    Maly, Ivan V; Hofmann, Wilma A

    2016-06-01

    Myosin IC is a molecular motor involved in intracellular transport, cell motility, and transcription. Its mechanical properties are regulated by calcium via calmodulin binding, and its functions in the nucleus depend on import from the cytoplasm. The import has recently been shown to be mediated by the nuclear localization signal located within the calmodulin-binding domain. In the present paper, it is demonstrated that mutations in the calmodulin-binding sequence shift the intracellular distribution of myosin IC to the nucleus. The redistribution is displayed by isoform B, described originally as the "nuclear myosin," but is particularly pronounced with isoform C, the normally cytoplasmic isoform. Furthermore, experimental elevation of the intracellular calcium concentration induces a rapid import of myosin into the nucleus. The import is blocked by the importin β inhibitor importazole. These findings are consistent with a mechanism whereby calmodulin binding prevents recognition of the nuclear localization sequence by importin β, and the steric inhibition of import is released by cell signaling leading to the intracellular calcium elevation. The results establish a mechanistic connection between the calcium regulation of the motor function of myosin IC in the cytoplasm and the induction of its import into the nucleus. © 2016 Wiley Periodicals, Inc.

  13. Neuroplastin-65 and a mimetic peptide derived from its homophilic binding site modulate neuritogenesis and neuronal plasticity

    DEFF Research Database (Denmark)

    Owczarek, Sylwia; Soroka, Vladislav; Kiryushko, Darya;

    2011-01-01

    on fibroblast growth factor receptor, p38 mitogen-activated protein kinase, Ca(2+) /calmodulin-dependent protein kinase, and cytoplasmic Ca(2+) concentration. In addition, we show that interference with Np65 homophilic binding by enplastin has an inhibitory effect on Np65-mediated neurite outgrowth in vitro...

  14. A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein

    KAUST Repository

    Smirnova, Ekaterina

    2016-08-22

    Background: CASKIN2 is a homolog of CASKIN1, a scaffolding protein that participates in a signaling network with CASK (calcium/calmodulin-dependent serine kinase). Despite a high level of homology between CASKIN2 and CASKIN1, CASKIN2 cannot bind CASK due to the absence of a CASK Interaction Domain and consequently, may have evolved undiscovered structural and functional distinctions.

  15. The role of Ca 2+-related signaling in photodynamic injury of nerve and glial cells

    Science.gov (United States)

    Lobanov, A. V.; Petin, Y. O.; Uzdensky, A. B.

    2007-05-01

    Photodynamic therapy (PDT) inhibited and irreversibly abolished firing, caused necrosis of neurons, necrosis, apoptosis and proliferation of glial cells in the isolated crayfish stretch receptor. The role in these processes of the central components of Ca 2+-mediated signaling pathway: phospholipase C, calmodulin, calmodulin-dependent kinase II, and protein kinase C was studied using their inhibitors: ET-18, fluphenazine, KN-93, or staurosporine, respectively. ET-18 reduced functional inactivation of neurons, necrosis and apoptosis of glial cells. Fluphenazine and KN-93 reduced PDT-induced necrosis of neurons and glial cells. Staurosporine enhanced PDT-induced glial apoptosis. PDTinduced gliosis was prevented by KN-93 and staurosporine. Therefore, phospholipase C participated in neuron inactivation and glial necrosis and apoptosis. Calmodulin and calmodulin-dependent kinase II were involved in PDT-induced necrosis of neurons and glial cells but not in glial apoptosis. Protein kinase C protected glia from apoptosis and participated in PDT-induced gliosis and loss of neuronal activity. These data may be used for modulation of PDT of brain tumors.

  16. Penicillium salamii, a new species occurring during seasoning of dry-cured meat

    DEFF Research Database (Denmark)

    Perrone, Giancarlo; Samson, Robert A.; Frisvad, Jens Christian

    2015-01-01

    "Penicillium milanense" isolated in Denmark and Slovenia on cured meats. The taxonomic position of these strains in Penicillium was investigated using calmodulin, β tubulin and ITS sequences, phenotypic characters and extrolite patterns, and resulted in the discovery of a new Penicillium species, described...

  17. Relationship between plasma membrane Ca2+-ATPase activity and acrosome reaction in guinea pig sperm

    Institute of Scientific and Technical Information of China (English)

    李明文; 陈大元

    1996-01-01

    The results obtained by biochemical measurement demonstrated for the first time that significant decrease of the plasma membrane Ca2+-ATPase activity occurred during capacitation and acrosome reaction of guinea pig sperm. Ethaorynic acid, one kind of Ca2+-ATPase antagonists, inhibited the plasma membrane Ca2+-ATPase activity, but calmodulin (50μg/mL) and trifluoperazine (200- 500μmol/L) did not, suggesting that calmodulin is not involved in ATP-driven Ca2+ efflux from sperm. However, calmodulin is involved in the control of Ca2+ influx. TFP, one kind of calmodulin antagonists, accelerated the acrosome reaction and Ca2+ uptake into sperm cells significantly. Ca2+-ATPase antagonists, quercetin, sodium orthovandate, furosemide and ethacrynic acid promoted the acrosome reaction, but inhibited Ca2+ uptake, which cannot be explained by their inhibitory effects on the plasma membrane Ca2+-ATPase activity. It is speculated that this phenomenon might be caused by simultaneous inhibitions of the activities of C

  18. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin'

    DEFF Research Database (Denmark)

    Taniwaki, Marta Hiromi; Pitt, John I; Iamanaka, Beatriz T.;

    2015-01-01

    as bees and ants from the tree ecosystem in the Amazon rainforest. The species produces andrastin A, curvulic acid, penicillic acid and xanthoepocin, and has unique partial β-tubulin and calmodulin gene sequences. The holotype of P. excelsum is CCT 7772, while ITAL 7572 and IBT 31516 are cultures derived...

  19. Connecting RNA Processing to Abiotic Environmental Response in Arabidopsis: the role of a polyadenylation factor

    Science.gov (United States)

    Li, Q. Q.; Xu, R.; Hunt, A. G.; Falcone, D. L.

    Plants are constantly challenged by numerous environmental stresses both biotic and abiotic It is clear that plants have evolved to counter these stresses using all but limited means We recently discovered the potential role of a messenger RNA processing factor namely the Arabidopsis cleavage and polyadenylation specificity factor 30 kDa subunit AtCPSF30 when a mutant deficient in this factor displayed altered responses to an array of abiotic stresses This AtCPSF30 mutant named oxt6 exhibited an elevated tolerance to oxidative stress Microarray experiments of oxt6 and its complemented lines revealed an altered gene expression profile among which were antioxidative defense genes Interestingly the same gene encoding AtCPSF30 can also be transcribed into a large transcript that codes for a potential splicing factor Both protein products have a domain for RNA binding and a calmodulin binding domain activities of which have been confirmed by biochemical assays Surprisingly binding of AtCPSF30 to calmodulin inhibits the RNA-binding activity of the protein Mutational analysis shows that a small part of the protein is responsible for calmodulin binding and point mutations in this region abolished both RNA binding activity and the inhibition of this activity by calmodulin Analyses of the potential splicing factor are on going and the results will be presented The interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through

  20. Sex-Dependent Up-Regulation of Two Splicing Factors, Psf and Srp20, during Hippocampal Memory Formation

    Science.gov (United States)

    Antunes-Martins, Ana; Mizuno, Keiko; Irvine, Elaine E.; Lepicard, Eve M.; Giese, K. Peter

    2007-01-01

    Gene transcription is required for long-term memory (LTM) formation. LTM formation is impaired in a male-specific manner in mice lacking either of the two Ca[superscript 2+] / calmodulin-dependent kinase kinase ("Camkk") genes. Since altered transcription was suggested to cause these impairments in LTM formation, we used microarrays to screen for…

  1. Expression and affinity purification of recombinant proteins from plants

    Science.gov (United States)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  2. Sequence Classification: 748315 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|30688528|ref|NP_850343.1| touch...-responsive protein / calmodulin-related protein 3, touch-induced (TCH3) || http://www.ncbi.nlm.nih.gov/protein/30688528 ...

  3. Sequence Classification: 748314 [

    Lifescience Database Archive (English)

    Full Text Available Non-TMB Non-TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|15226833|ref|NP_181643.1| touch...-responsive protein / calmodulin-related protein 3, touch-induced (TCH3) || http://www.ncbi.nlm.nih.gov/protein/15226833 ...

  4. Domain Modeling: NP_112494.3 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_112494.3 chr11 Structural Dynamics of the Microtubule binding and regulatory ele...ments in the Kinesin-like Calmodulin binding protein c3cobc_ chr11/NP_112494.3/NP_112494.3_holo_9-363.pdb bl

  5. Taxonomy of Penicillium citrinum and related species

    DEFF Research Database (Denmark)

    Houbraken, J.A.M.P.; Frisvad, Jens Christian; Samson, A.F.

    2010-01-01

    Penicillium citrinum and related species have been examined using a combination of partial beta-tubulin, calmodulin and ITS sequence data, extrolite patterns and phenotypic characters. It is concluded that seven species belong to the series Citrina. Penicillium sizovae and Penicillium steckii are...

  6. A mutation in CABP2, expressed in cochlear hair cells, causes autosomal-recessive hearing impairment

    NARCIS (Netherlands)

    Schrauwen, I.; Helfmann, S.; Inagaki, A.; Predoehl, F.; Tabatabaiefar, M.A.; Picher, M.M.; Sommen, M.; Seco, C.Z.; Oostrik, J.; Kremer, J.M.J.; Dheedene, A.; Claes, C.; Fransen, E.; Chaleshtori, M.H.; Coucke, P.; Lee, A.; Moser, T.; Camp, G. van

    2012-01-01

    CaBPs are a family of Ca(2+)-binding proteins related to calmodulin and are localized in the brain and sensory organs, including the retina and cochlea. Although their physiological roles are not yet fully elucidated, CaBPs modulate Ca(2+) signaling through effectors such as voltage-gated Ca(v) Ca(2

  7. EST Table: CK516166 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available CK516166 rswjb0_003894.y1 10/09/29 100 %/149 aa gb|ACT88125.1| AT15141p [Drosophila...552#locus:cmd- 1#calmodulin#status:Confirmed#UniProt:O16305#protein_id: AAB65364.1 10/09/10 100 %/140 aa AGA

  8. Dicty_cDB: Contig-U04713-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ermophila centrin mR... 86 7e-16 DQ884415_1( DQ884415 |pid:none) Prorocentrum minimum...72054_1( AY072054 |pid:none) Prorocentrum minimum calmodulin mR... 64 4e-09 ( P41210 ) RecName: Full=Caltrac

  9. Dicty_cDB: Contig-U12592-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available Q884415 |pid:none) Prorocentrum minimum clone pmi-5p-... 92 3e-17 CR940352_56( CR940352 |pid:none) Theileria...054_1( AY072054 |pid:none) Prorocentrum minimum calmodulin mR... 88 3e-16 CP001324_525( CP001324 |pid:none)

  10. Regulation of molecular components of the synapse in the developing and adult rat superior cervical ganglion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.; Black, I.B.

    1987-12-01

    Rat superior cervical sympathetic ganglion was used to begin studying the regulation of molecular components of the synapse. Ganglionic postsynaptic densities (PSDs) exhibited a thin, disc-shaped profile electron microscopically, comparable to that described for brain. Moreover, the presumptive ganglionic PSD protein (PSDp) was phosphorylated in the presence of Ca/sup 2 +/ and calmodulin, bound /sup 125/I-labeled calmodulin, and exhibited a M/sub r/ of 51,000 all characteristic of the major PSD protein of brain. These initial studies indicated that ganglionic PSDp and the major PSD protein of brain are comparable, allowing the study synaptic regulation in the well-defined superior cervical sympathetic ganglion. To obtain enough quantities of ganglionic PSDp, the authors used synaptic membrane fractions. During postnatal development, calmodulin binding to the ganglionic PSDp increased 411-fold per ganglion from birth to 60 days, whereas synaptic membrane protein increased only 4.5-fold. Consequently, different synaptic components apparently develop differently. Moreover, denervation of the superior cervical sympathetic ganglion in adult rats caused an 85% decrease in ganglionic PSDp-calmodulin binding, but denervation caused no change in synaptic membrane protein 2 weeks postoperatively. The observations suggest that presynaptic innervation selectively regulates specific molecular components of the postsynaptic membrane structure.

  11. Aspergillus parasiticus CrzA, Which Encodes a Calcineurin Response Zinc-Finger Protein, is Required for Aflatoxin Production Under Calcium Stress

    Science.gov (United States)

    Calcium has been reported to be required for aflatoxin production. Calcium, like cAMP, is a second messenger. Cacineurin, a calmodulin-dependent serine/threonine protein phosphatase, is an important component of the calcium signaling pathway. The control of calcineurin-dependent gene expression is v...

  12. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Squier, Thomas C.

    2006-02-01

    Under conditions of oxidative stress, the 20S proteasome plays a critical role in maintaining cellular homeostasis through the selective degradation of oxidized and damaged proteins. This adaptive stress response is distinct from ubiquitin-dependent pathways in that oxidized proteins are recognized and degraded in an ATP-independent mechanism, which can involve the molecular chaperone Hsp90. Like the regulatory complexes 19S and 11S REG, Hsp90 tightly associates with the 20S proteasome to mediate the recognition of aberrant proteins for degradation. In the case of the calcium signaling protein calmodulin, proteasomal degradation results from the oxidation of a single surface exposed methionine (i.e., Met145); oxidation of the other eight methionines has a minimal effect on the recognition and degradation of calmodulin by the proteasome. Since cellular concentrations of calmodulin are limiting, the targeted degradation of this critical signaling protein under conditions of oxidative stress will result in the downregulation of cellular metabolism, serving as a feedback regulation to diminish the generation of reactive oxygen species. The targeted degradation of critical signaling proteins, such as calmodulin, can function as sensors of oxidative stress to downregulate global rates of metabolism and enhance cellular survival.

  13. Autophosphorylation of [alpha]CaMKII is Differentially Involved in New Learning and Unlearning Mechanisms of Memory Extinction

    Science.gov (United States)

    Kimura, Ryoichi; Silva, Alcino J.; Ohno, Masuo

    2008-01-01

    Accumulating evidence indicates the key role of [alpha]-calcium/calmodulin-dependent protein kinase II ([alpha]CaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which [alpha]CaMKII may mediate extinction by using…

  14. Delimitation and characterisation of Talaromyces purpurogenus and related species

    NARCIS (Netherlands)

    Yilmaz, N.; Houbraken, J.; Hoekstra, E.S.; Frisvad, J.C.; Visagie, C.M.; Samson, R.A.

    2012-01-01

    Taxa of the Talaromyces purpurogenus complex were studied using a polyphasic approach. ITS barcodes were used to show relationships between species of the T. purpurogenus complex and other Talaromyces species. RPB1, RPB2, β-tubulin and calmodulin sequences were used to delimit phylogenetic species i

  15. Drug-induced regulation of target expression

    DEFF Research Database (Denmark)

    Iskar, Murat; Campillos, Monica; Kuhn, Michael;

    2010-01-01

    further newly identified drug-induced differential regulation of Lanosterol 14-alpha demethylase, Endoplasmin, DNA topoisomerase 2-alpha and Calmodulin 1. The feedback regulation in these and other targets is likely to be relevant for the success or failure of the molecular intervention....

  16. Taxonomy of Penicillium citrinum and related species

    NARCIS (Netherlands)

    Houbraken, J.; Frisvad, J.C.; Samson, R.A.

    2010-01-01

    Penicillium citrinum and related species have been examined using a combination of partial beta-tubulin, calmodulin and ITS sequence data, extrolite patterns and phenotypic characters. It is concluded that seven species belong to the series Citrina. Penicillium sizovae and Penicillium steckii are re

  17. Partial purification and characterization of a Ca(2+)-dependent protein kinase from the green alga, Dunaliella salina

    Science.gov (United States)

    Roux, S. J.

    1990-01-01

    A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10(-7) molar. and half-maximal activation was at about 3 x 10(-7) molar. The optimum pH for its Ca(2+)-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separated from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants.

  18. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells

    Directory of Open Access Journals (Sweden)

    Malina Halina Z

    2011-01-01

    Full Text Available Abstract Background The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Results Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]. Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. Conclusions The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites. The formation of these polymers (aggregates leads to an unregulated and, consequently, pathological protein network. The results

  19. Calcineurin is universally involved in vesicle endocytosis at neuronal and nonneuronal secretory cells.

    Science.gov (United States)

    Wu, Xin-Sheng; Zhang, Zhen; Zhao, Wei-Dong; Wang, Dongsheng; Luo, Fujun; Wu, Ling-Gang

    2014-05-22

    Calcium influx triggers and accelerates endocytosis in nerve terminals and nonneuronal secretory cells. Whether calcium/calmodulin-activated calcineurin, which dephosphorylates endocytic proteins, mediates this process is highly controversial for different cell types, developmental stages, and endocytic forms. Using three preparations that previously produced discrepant results (i.e., large calyx-type synapses, conventional cerebellar synapses, and neuroendocrine chromaffin cells containing large dense-core vesicles), we found that calcineurin gene knockout consistently slowed down endocytosis, regardless of cell type, developmental stage, or endocytic form (rapid or slow). In contrast, calcineurin and calmodulin blockers slowed down endocytosis at a relatively small calcium influx, but did not inhibit endocytosis at a large calcium influx, resulting in false-negative results. These results suggest that calcineurin is universally involved in endocytosis. They may also help explain the discrepancies among previous pharmacological studies. We therefore suggest that calcineurin should be included as a key player in mediating calcium-triggered and -accelerated vesicle endocytosis.

  20. Calcium regulation in endosymbiotic organelles of plants.

    Science.gov (United States)

    Bussemer, Johanna; Vothknecht, Ute C; Chigri, Fatima

    2009-09-01

    In plant cells calcium-dependent signaling pathways are involved in a large array of biological processes in response to hormones, biotic/abiotic stress signals and a variety of developmental cues. This is generally achieved through binding of calcium to diverse calcium-sensing proteins, which subsequently control downstream events by activating or inhibiting biochemical reactions. Regulation by calcium is considered as a eukaryotic trait and has not been described for prokaryotes. Nevertheless, there is increasing evidence indicating that organelles of prokaryotic origin, such as chloroplasts and mitochondria, are integrated into the calcium-signaling network of the cell. An important transducer of calcium in these organelles appears to be calmodulin. In this review we want to give an overview over present data showing that endosymbiotic organelles harbour calcium-dependent biological processes with a focus on calmodulin-regulation.

  1. REGULATION OF ANTI-SRBC ANTIBODY PRODUCTION BY OPIOIDS AND THEIR MECHANISMS

    Institute of Scientific and Technical Information of China (English)

    王慧琴; 林嘉友; 刘景生

    1995-01-01

    This study focused on the influences of opioids on the generation of antibody againse sheep erythrocyte in vitro.It was found that morphine,a-CAO,DADLE,MENK were able to inhibit the capacity of murine spleen cells to generate antibody and leukotriene C4 and conversely,dynorphin was able to stimulate the capacity of murine spleen cells to generate antibody and leukotriene C4. Morphine,a-CAO,MENK,DA-DLE,dynorphin decreased intracellular cAMP level,increased [Ca2+]i and calmodulin activity.The effects were completely blocked by naloxone,the specific opioid antagonist.Our results showed that opioids regulate the production of antibody in murine spleen cells,and alter intracellular cAMP,[Ca2+]i calmodulin activity,and leukotriene C4 production by way of binding to different receptor types.

  2. Inhibition of calcineurin phosphatase promotes exocytosis of renin from juxtaglomerular cells

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Friis, Ulla Glenert; Gooch, Jennifer L;

    2010-01-01

    To examine the role of the calcium/calmodulin-dependent phosphatase calcineurin in regulation of renin release, we assayed exocytosis using whole-cell patch clamp of single juxtaglomerular cells in culture. The calcineurin inhibitor, cyclosporine A (CsA), significantly increased juxtaglomerular......A, but not tacrolimus, significantly stimulated renin release from cultured juxtaglomerular cells. Juxtaglomerular cells expressed the calcineurin isoforms A-beta and A-gamma but not A-alpha. Plasma renin concentrations (PRCs) were not different in wild-type, calcineurin A-alpha, or A-beta knockout mice but increased...... cell membrane capacitance, an index of cell surface area and an established measure of exocytosis in single-cell assays. This effect was mimicked by intracellular delivery of a calcineurin inhibitory peptide, the calcium chelator ethylene glycol tetraacetic acid (EGTA), or the calmodulin inhibitor W-13...

  3. New species in Aspergillus section Terrei

    DEFF Research Database (Denmark)

    Samson, R. A.; Peterson, S. W.; Frisvad, Jens Christian

    2011-01-01

    Section Terrei of Aspergillus was studied using a polyphasic approach including sequence analysis of parts of the beta-tubulin and calmodulin genes and the ITS region, macro- and micromorphological analyses and examination of extrolite profiles to describe three new species in this section. Based...... on phylogenetic analysis of calmodulin and beta-tubulin sequences seven lineages were observed among isolates that have previously been treated as A. terreus and its subspecies by Raper & Fennell (1965) and others. Aspergillus alabamensis, A. terreus var. floccosus, A. terreus var. africanus, A. terreus var....... floccosus, A. terreus var. africanus, A. terreus var. aureus, while Aspergillus hortai is recognised at species level. Aspergillus terreus NRRL 4017 is described as the new species A. pseudoterreus. Also included in section Terrei are some species formerly placed in sections Flavipedes and Versicolores. A...

  4. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  5. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  6. Affinity Purification of Protein Complexes Using TAP Tags

    Science.gov (United States)

    Gerace, Erica; Moazed, Danesh

    2016-01-01

    This protocol is used for the isolation and analysis of protein complexes using the tandem affinity purification (TAP) tag system. The protocol describes the purification of a protein fused to a TAP tag comprised of two protein A domains and the calmodulin binding peptide separated by a TEV cleavage site. This is a powerful technique for rapid purification of protein complexes and the analysis of their stoichiometric composition, posttranslational modifications, structure, and functional activities. PMID:26096502

  7. Integration of developmental and environmental signals via a polyadenylation factor in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Man Liu

    Full Text Available The ability to integrate environmental and developmental signals with physiological responses is critical for plant survival. How this integration is done, particularly through posttranscriptional control of gene expression, is poorly understood. Previously, it was found that the 30 kD subunit of Arabidopsis cleavage and polyadenylation specificity factor (AtCPSF30 is a calmodulin-regulated RNA-binding protein. Here we demonstrated that mutant plants (oxt6 deficient in AtCPSF30 possess a novel range of phenotypes--reduced fertility, reduced lateral root formation, and altered sensitivities to oxidative stress and a number of plant hormones (auxin, cytokinin, gibberellic acid, and ACC. While the wild-type AtCPSF30 (C30G was able to restore normal growth and responses, a mutant AtCPSF30 protein incapable of interacting with calmodulin (C30GM could only restore wild-type fertility and responses to oxidative stress and ACC. Thus, the interaction with calmodulin is important for part of AtCPSF30 functions in the plant. Global poly(A site analysis showed that the C30G and C30GM proteins can restore wild-type poly(A site choice to the oxt6 mutant. Genes associated with hormone metabolism and auxin responses are also affected by the oxt6 mutation. Moreover, 19 genes that are linked with calmodulin-dependent CPSF30 functions, were identified through genome-wide expression analysis. These data, in conjunction with previous results from the analysis of the oxt6 mutant, indicate that the polyadenylation factor AtCPSF30 is a regulatory hub where different signaling cues are transduced, presumably via differential mRNA 3' end formation or alternative polyadenylation, into specified phenotypic outcomes. Our results suggest a novel function of a polyadenylation factor in environmental and developmental signal integration.

  8. Genetically designed biosensing systems for high-throughput screening of pharmaceuticals, clinical diagnostics, and environmental monitoring

    Science.gov (United States)

    Wenner, Brett R.; Douglass, Phillip; Shrestha, Suresh; Sharma, Bethel V.; Lai, Siyi; Madou, Marc J.; Daunert, Sylvia

    2001-05-01

    The genetically-modified binding proteins calmodulin, the phosphate binding protein, the sulfate binding protein, and the galactose/glucose binding protein have been successfully employed as biosensing elements for the detection of phenothiazines, phosphate, sulfate, and glucose, respectively. Mutant proteins containing unique cysteine residues were utilized in the site-specific labeling of environment-sensitive fluorescent probes. Changes in the environment of the probes upon ligand-induced conformational changes of the proteins result in changes in fluorescence intensity.

  9. Clotrimazole as a Cancer Drug: A Short Review

    OpenAIRE

    S, Kadavakollu; C, Stailey; CS, Kunapareddy; S, White

    2014-01-01

    Although clotrimazole was first used against fungal infections, a body of research was later developed indicating that this drug has anticancer properties as well. The mechanism of action is based on the inhibition of mitochondrial-bound glycolytic enzymes and calmodulin, which starves cancer cells of energy. Clotrimazole and its derivatives have been shown to decrease rates of cancer cell proliferation, induce G1 phase arrest, and promote pro-apoptotic factors, which lead to cell death.

  10. Diversity and enzymatic profiling of halotolerant micromycetes from Sebkha El Melah, a Saharan salt flat in Southern Tunisia

    OpenAIRE

    Atef Jaouani; Mohamed Neifar; Valeria Prigione; Amani Ayari; Imed Sbissi; Sonia Ben Amor; Seifeddine Ben Tekaya; Giovanna Cristina Varese; Ameur Cherif; Maher Gtari

    2014-01-01

    Twenty-one moderately halotolerant fungi have been isolated from sample ashes collected from Sebkha El Melah, a Saharan salt flat located in southern Tunisia. Based on morphology and sequence inference from the internal transcribed spacer regions, 28S rRNA gene and other specific genes such as β-tubulin, actin, calmodulin, and glyceraldehyde-3-phosphate dehydrogenase, the isolates were found to be distributed over 15 taxa belonging to 6 genera of Ascomycetes: Cladosporium (n = 3), Alternaria ...

  11. Activity-Dependent Ubiquitination of GluA1 and GluA2 Regulates AMPA Receptor Intracellular Sorting and Degradation

    OpenAIRE

    Jocelyn Widagdo; Ye Jin Chai; Margreet C. Ridder; Yu Qian Chau; Richard C. Johnson; Pankaj Sah; Richard L. Huganir; Victor Anggono

    2015-01-01

    AMPA receptors (AMPARs) have recently been shown to undergo post-translational ubiquitination in mammalian neurons. However, the underlying molecular mechanisms are poorly understood and remain controversial. Here, we report that all four AMPAR subunits (GluA1-4) are rapidly ubiquitinated upon brief application of AMPA or bicuculline in cultured neurons. This process is Ca2+ dependent and requires the activity of L-type voltage-gated Ca2+ channels and Ca2+/calmodulin-dependent kinase II. The ...

  12. Preliminary Studies on Differential Expression of Auditory Functional Genes in the Brain After Repeated Blast Exposures

    Science.gov (United States)

    2012-01-01

    Army Medical Research and Materiel Command, Fort Detrick, MD Abstract—The mechanisms of central auditory processing involved in auditory/ vestibular ...trans- ducers in auditory neurons [22–23,45–48]. The frontal cor- tex and midbrain of blast-exposed mice showed significant increase in the expression of...auditory neurons [26]. Other types of molecules involved in calcium regula- tion, such as calreticulin and calmodulin-dependent pro- tein kinase expression

  13. Phosphatidylserine liposomes can be tethered by caldesmon to actin filaments.

    OpenAIRE

    Makuch, R.; Zasada, A; K. Mabuchi; Krauze, K; C. L. Wang; Dabrowska, R

    1997-01-01

    Rotary shadowing electron microscopy revealed that attachment of caldesmon to phosphatidylserine (PS) liposomes was mainly through its C-terminal end. To determine the PS-binding sites of caldesmon, we have made use of synthetic peptides covering the two C-terminal calmodulin binding sites and a recombinant fragment corresponding to the N-terminal end of the C-terminal domain that contains an amphipathic helix. Interactions of these peptides with the PS liposomes were studied by nondenaturing...

  14. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells.

    OpenAIRE

    1996-01-01

    FK506 (tacrolimus) is an immunosuppressive drug which interrupts Ca2+-calmodulin-calcineurin signaling pathways in T lymphocytes, thereby blocking antigen activation of T cell early activation genes. Regulation of insulin gene expression in the beta cell may also involve Ca2+-signaling pathways and FK506 has been associated with insulin-requiring diabetes mellitus during clinical use. The purpose of this study was to characterize the effects of FK506 on human insulin gene transcription, insul...

  15. Main: 1S6J [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1S6J 大豆 Soybean Glycine max (L.) Merrill Calcium-Dependent Protein Kinase Sk5 Glycine Ma...x Molecule: Calcium-Dependent Protein Kinase Sk5; Chain: A; Fragment: N-Terminal Region Of Calmodulin-Like Doma...Weljie, S.M.Gagne, H.J.Vogel Solution Structure And Backbone Dynamics Of The N-Terminal Region Of The Calcium Regulatory Doma

  16. Polyphasic taxonomy of Aspergillus fumigatus and related species

    DEFF Research Database (Denmark)

    Hong, S.B.; Go, S.J.; Shin, H.D.

    2005-01-01

    The variability within Aspergillus fumigalus Fresenius and related species was examined using macro-, micro-morphology, growth temperature regimes and extrolite patterns. In addition, DNA analyses including partial beta-tubulin, calmodulin and actin gene sequences were used. Detailed examination....... fumigatus and the other Aspergillus section Fumigati species, including the teleomorph Neosartorya, are proposed as two new species. A. fumigatiaffinis spec. nov. produces the extrolites auranthine, cycloechinulin, helvolic acid, neosartorin, palitantin, pyripyropens, tryptoquivalins and tryptoquivalons...

  17. IQGAP proteins are integral components of cytoskeletal regulation

    OpenAIRE

    2003-01-01

    IQGAP1 is a scaffolding protein that binds to a diverse array of signalling and structural molecules. By interacting with its target proteins, human IQGAP1 participates in multiple cellular functions, including Ca2+/calmodulin signalling, cytoskeletal architecture, CDC42 and Rac signalling, E-cadherin-mediated cell–cell adhesion and β-catenin-mediated transcription. Yeast IQGAP homologues are important regulators of cellular morphogenesis because they are required for budding and cytokinesis....

  18. NCBI nr-aa BLAST: CBRC-ACAR-01-0303 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0303 ref|NP_066939.1| brain adenylate cyclase 1 [Homo sapiens] sp|Q088...28|ADCY1_HUMAN Adenylate cyclase type 1 (Adenylate cyclase type I) (ATP pyrophosphate-lyase 1) (Adenylyl cyclase... 1) (Ca(2+)/calmodulin-activated adenylyl cyclase) gb|EAL23741.1| adenylate cyclase 1 (brain) [Homo sapiens] NP_066939.1 6e-54 57% ...

  19. Thiocalsin: a thioredoxin-linked, substrate-specific protease dependent on calcium.

    OpenAIRE

    Besse, I.; Wong, J.H.; Kobrehel, K.; Buchanan, B.B.

    1996-01-01

    We describe a protease, named "thiocalsin," that is activated by calcium but only after reductive activation by thioredoxin, a small protein with a redox-active disulfide group that functions widely in regulation. Thiocalsin appeared to be a 14-kDa serine protease that functions independently of calmodulin. The enzyme, purified from germinating wheat grain, specifically cleaved the major indigenous storage proteins, gliadins and glutenins, after they too had been reduced, preferentially by...

  20. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  1. Slow motility in hair cells of the frog amphibian papilla: Ca2+-dependent shape changes.

    Science.gov (United States)

    Farahbakhsh, Nasser A; Narins, Peter M

    2006-02-01

    We investigated the process of slow motility in non-mammalian auditory hair cells by recording the time course of shape change in hair cells of the frog amphibian papilla. The tall hair cells in the rostral segment of this organ, reported to be the sole recipients of efferent innervation, were found to shorten in response to an increase in the concentration of the intracellular free calcium. These shortenings are composed of two partially-overlapping phases: an initial rapid iso-volumetric contraction, followed by a slower length decrease accompanied with swelling. It is possible to unmask the iso-volumetric contraction by delaying the cell swelling with the help of K+ or Cl- channel inhibitors, quinine or furosemide. Furthermore, it appears that the longitudinal contraction in these cells is Ca2+-calmodulin-dependent: in the presence of W-7, a calmodulin inhibitor, only a slow, swelling phase could be observed. These findings suggest that amphibian rostral AP hair cells resemble their mammalian counterparts in expressing both a Ca2+-calmodulin-dependent contractile structure and an "osmotic" mechanism capable of mediating length change in response to extracellular stimuli. Such a mechanism might be utilized by the efferent neurotransmitters for adaptive modulation of mechano-electrical transduction, sensitivity enhancement, frequency selectivity, and protection against over-stimulation.

  2. Field isolates of Mycoplasma ovipneumoniae exhibit distinct cytopathic effects in ovine tracheal organ cultures.

    Science.gov (United States)

    Niang, M; Rosenbusch, R F; DeBey, M C; Niyo, Y; Andrews, J J; Kaeberle, M L

    1998-02-01

    Ovine tracheal ring explants were infected with four different Mycoplasma ovipneumoniae and one M. arginini field isolate and their ability to induce cytopathic effects was tested by measuring ciliary activity and intracellular calmodulin release. Infected tracheal rings showed significantly decreased ciliary activity as compared to the non-infected control rings. There were, however, marked differences between isolates in the onset and severity of the effects which correlated with their ability to produce hydrogen peroxide. Infected tracheal rings released more calmodulin than the non-infected controls. The amount of calmodulin released also varied between isolates, and somewhat reflected the degree of loss of ciliary activity in the corresponding rings induced by the different isolates. Light and electron microscopic examinations of infected tracheal rings revealed disorganisation and sloughing of the epithelium, and association of mycoplasmas only with the cilia. Following repeated in vitro passages, the organisms had reduced ability to inhibit ciliary activity which correlated with decreased hydrogen peroxide production. Addition of catalase to the organ cultures delayed loss of ciliary activity. These results suggest that M. ovipneumoniae induced ciliostasis in ovine tracheal ring explants which correlated with hydrogen peroxide production. Furthermore, these M. ovipneumoniae-induced injuries to respiratory epithelial cells could contribute to the role that this organism may play in sheep respiratory disease.

  3. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    JIYUN-JING; XIAOBAI; 等

    2000-01-01

    To study the suppression effect of light rare earth elements(RE) on proliferation of two cancer cell lines.Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar,microtubule structure,calmodulin levels and regulation of smoe gene expressions y Northern blot analysis with and without treatment by RE.The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal.The calmodulin (CaM) levels decreased in human leukemia cells(k562) treated with cerium chloride and neodymium chloride.The Northern blot analysis revealed marked up-regulation of p53,p16(MTS1),p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride,as compared to control PAMC82 cells,The light rare earth elements studied have certain suppression effects on proliferation of cancer cells,This effect might be realted to the decrease of calmodulin and up-regulationg of smoe gene expressions in cancer cells.

  4. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the suppression effect of light rare earth elements (RE) on proliferation of two cancer cell lines. Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar, microtubule structure, calmodulin levels and regulation of some gene expressions by Northern blot analysis with and without treatment by RE. The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal. The calmodulin (CaM) levels decreased in human leukemia cells (K562) treated with cerium chloride and neodymium chloride. The Northern blot analysis revealed marked up-regulation of p53, p16(MTS1), p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride, as compared to control PAMC82 cells. The light rare earth elements studied have certain suppression effects on proliferation of cancer cells. This effect might be related to the decrease of calmodulin and up-regulation of some gene expressions in cancer cells.

  5. The cumulative analgesic effect of repeated electroacupuncture involves synaptic remodeling in the hippocampal CA3 region

    Institute of Scientific and Technical Information of China (English)

    Qiuling Xu; Tao Liu; Shuping Chen; Yonghui Gao; Junying Wang; Lina Qiao; Junling Liu

    2012-01-01

    In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanli (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptic cleft width and thinning of the postsynaptic density, and it significantly suppressed the down-regulation of intracellular calcium/ calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region.

  6. ESR Study on calcineurin

    Institute of Scientific and Technical Information of China (English)

    魏群; 肖方祥; 卢景芬; 周捷

    1995-01-01

    X-band electron spin resonance spectroscopy was used to investigate the binding of Mn2+tothe apo-forms of calcineurin and its A and B subunits.The results indicated the presence of 2Mn2+binding sites of different affinities(20μmol/L and 60μmol/L)in the calcineurin A subunit and 4Mn2+binding sites in the calcineurin subunit B,2 high affinity and 2 low affinity binding sites withKd’s of 4μmol/L and 90μmol/L,respectively.Interestingly and quite surprisingly,Mn2+binding to theholoenzyme was characterized by only 2 binding sites with Kd’s of 7μmol/L and 33μmol/L.However,inthe presence of calmodulin about 10 Mn2+sites were detected,and the Mn2+calmodulin-calcineurin complexexhibited enzymatic activity.These results,based on direct spectral measurements of the metal ligand,demonstrate that Mn2+binds to both free subunits of calcineurin in a manner distinct from binding to theholoenzyme.Also,the data suggest that conformational changes occur upon heterodimer formation andassociation of the holoenzyme with the regulatory protein calmodulin.

  7. Calcium-binding proteins in skeletal muscles of the mdx mice: potential role in the pathogenesis of Duchenne muscular dystrophy.

    Science.gov (United States)

    Pertille, Adriana; de Carvalho, Candida Luiza Tonizza; Matsumura, Cintia Yuri; Neto, Humberto Santo; Marques, Maria Julia

    2010-02-01

    Duchenne muscular dystrophy is one of the most common hereditary diseases. Abnormal ion handling renders dystrophic muscle fibers more susceptible to necrosis and a rise in intracellular calcium is an important initiating event in dystrophic muscle pathogenesis. In the mdx mice, muscles are affected with different intensities and some muscles are spared. We investigated the levels of the calcium-binding proteins calsequestrin and calmodulin in the non-spared axial (sternomastoid and diaphragm), limb (tibialis anterior and soleus), cardiac and in the spared extraocular muscles (EOM) of control and mdx mice. Immunoblotting analysis showed a significant increase of the proteins in the spared mdx EOM and a significant decrease in the most affected diaphragm. Both proteins were comparable to the cardiac muscle controls. In limb and sternomastoid muscles, calmodulin and calsequestrin were affected differently. These results suggest that differential levels of the calcium-handling proteins may be involved in the pathogenesis of myonecrosis in mdx muscles. Understanding the signaling mechanisms involving Ca(2+)-calmodulin activation and calsequestrin expression may be a valuable way to develop new therapeutic approaches to the dystrophinopaties.

  8. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  9. Endothelial nitric oxide synthase regulation is altered in pancreas from cirrhotic rats

    Institute of Scientific and Technical Information of China (English)

    Jean-Louis Frossard; Rafael Quadri; Antoine Hadengue; Philippe Morel; Catherine M Pastor

    2006-01-01

    AIM: To determine whether biliary cirrhosis could induce pancreatic dysfunction such as modifications in endothelial nitric oxide synthase(eNOS) expression and whether the regulation of eNOS could be altered by the regulatory proteins caveolin and heat shock protein 90 (Hsp90),as well as by the modifications of calmodulin binding to eNOS.METHODS: Immunoprecipitations and Western blotting analysis were performed in pancreas isolated from sham and cirrhotic rats.RESULTS: Pancreatic injury was minor in cirrhotic rats but eNOS expression importantly decreased with the length (and the severity) of the disease. Because coimmunoprecipitation of eNOS with both Hsp90 and caveolin similarly decreased in cirrhotic rats, eNOS activity was not modified by this mechanism. In contrast,cirrhosis decreased the calmodulin binding to eNOS with a concomitant decrease in eNOS activity.CONCLUSION: In biliary cirrhosis, pancreatic injury is minor but the pancreatic nitric oxide (NO) production is significantly decreased by two mechanisms: a decreased expression of the enzyme and a decreased binding of calmodulin to eNOS.

  10. Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll

    Indian Academy of Sciences (India)

    Girdhar K Pandey; Amita Pandey; Vanga Siva Reddy; Renu Deswal; Alok Bhattacharya; Kailash C Upadhyaya; Sudhir K Sopory

    2007-03-01

    Entamoeba histolytica contains a novel calcium-binding protein like calmodulin, which was discovered earlier, and we have reported the presence of its homologue(s) and a dependent protein kinase in plants. To understand the functions of these in plants, a cDNA encoding a calcium-binding protein isolated from Entamoeba histolytica (EhCaBP) was cloned into vector pBI121 in antisense orientation and transgenic tobacco plants were raised. These plants showed variation in several phenotypic characters, of which two distinct features, more greenness and leaf thickness, were inherited in subsequent generations. The increase in the level of total chlorophyll in different plants ranged from 60% to 70%. There was no major change in chloroplast structure and in the protein level of D1, D2, LHCP and RuBP carboxylase. These morphological changes were not seen in antisense calmodulin transgenic tobacco plants, nor was the calmodulin level altered in EhCaBP antisense plants.

  11. Role of calcium in gonadotropin releasing hormone-induced luteinizing hormone secretion from the bovine pituitary

    Energy Technology Data Exchange (ETDEWEB)

    Kile, J.P.

    1986-01-01

    The hypothesis was tested that GnRH acts to release LH by increasing calcium uptake by gonadotroph which in turn stimulates calcium-calmodulin activity and results in LH release from bovine pituitary cells as it does in the rat. Pituitary glands of calves (4-10 months of age) were enzymatically dispersed (0.2% collagenase) and grown for 5 days to confluency in multiwell plates (3 x 10/sup 5//well). Cells treated with GnRH Ca/sup + +/ ionophore A23187, and ouabain all produced significant releases of LH release in a pronounced all or none fashion, while thorough washing of the cells with 0.5 mM EGTA in Ca/sup + +/-free media prevented the action of GnRH. GnRH caused a rapid efflux of /sup 45/Ca/sup + +/. Both GnRH-stimulated /sup 45/Ca efflux and LH release could be partially blocked by verapamil GnRH-induced LH release could also be blocked by nifedipine and tetrodotoxin, although these agents did not affect /sup 45/Ca efflux. The calmodulin antagonists calmidazolium and W7 were found to block GnRH induced LH release, as well as LH release induced by theophylline, KC PGE/sub 2/ and estradiol. These data indicated that: (1) calcium is required for GnRH action, but extracellular Ca/sup + +/ does not regulate LH release; (2) GnRH elevates intracellular Ca/sup + +/ by opening both voltage sensitive and receptor mediated Ca/sup + +/ channels; (3) activation of calmodulin is one mechanism involved in GnRH-induced LH release.

  12. Differences in lysine pKa values may be used to improve NMR signal dispersion in reductively methylated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Sherwin J. [University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics (United States); Kobayashi, Tomoyoshi; John Solaro, R. [University of Illinois at Chicago, Department of Physiology and Biophysics, Center for Cardiovascular Research (United States); Gaponenko, Vadim [University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics (United States)], E-mail: vadimg@uic.edu

    2009-04-15

    Reductive methylation of lysine residues in proteins offers a way to introduce {sup 13}C methyl groups into otherwise unlabeled molecules. The {sup 13}C methyl groups on lysines possess favorable relaxation properties that allow highly sensitive NMR signal detection. One of the major limitations in the use of reductive methylation in NMR is the signal overlap of {sup 13}C methyl groups in NMR spectra. Here we show that the uniform influence of the solvent on chemical shifts of exposed lysine methyl groups could be overcome by adjusting the pH of the buffering solution closer to the pKa of lysine side chains. Under these conditions, due to variable pKa values of individual lysine side chains in the protein of interest different levels of lysine protonation are observed. These differences are reflected in the chemical shift differences of methyl groups in reductively methylated lysines. We show that this approach is successful in four different proteins including Ca{sup 2+}-bound Calmodulin, Lysozyme, Ca{sup 2+}-bound Troponin C, and Glutathione S-Transferase. In all cases significant improvement in NMR spectral resolution of methyl signals in reductively methylated proteins was obtained. The increased spectral resolution helps with more precise characterization of protein structural rearrangements caused by ligand binding as shown by studying binding of Calmodulin antagonist trifluoperazine to Calmodulin. Thus, this approach may be used to increase resolution in NMR spectra of {sup 13}C methyl groups on lysine residues in reductively methylated proteins that enhances the accuracy of protein structural assessment.

  13. Molecular cloning of a novel Ca2+-binding protein that is induced by NaCl stress.

    Science.gov (United States)

    Jang, H J; Pih, K T; Kang, S G; Lim, J H; Jin, J B; Piao, H L; Hwang, I

    1998-07-01

    Plant responses to high salt stress have been studied for several decades. However, the molecular mechanisms underlying these responses still elude us. In order to understand better the molecular mechanism related to NaCl stress in plants, we initiated the cloning of a large number of NaCl-induced genes in Arabidopsis. Here, we report the cloning of a cDNA encoding a novel Ca2+-binding protein, named AtCP1, which shares sequence similarities with calmodulins. AtCP1 exhibits, in particular, a high degree of amino acid sequence homology to the Ca2+-binding loops of the EF hands of calmodulin. However, unlike calmodulin, AtCP1 appears to have only three Ca2+-binding loops. We examined Ca2+ binding of the protein by a Ca2+-dependent electrophoretic mobility shift assay. A recombinant AtCP1 protein that was expressed in Escherichia coli did show a Ca2+-dependent electrophoretic mobility shift. To gain insight into the expression of the AtCP1 gene, northern blot analysis was carried out. The AtCP1 gene had a tissue-specific expression pattern: high levels of expression in flower and root tissues and nearly undetectable levels in leaves and siliques. Also, the expression of the AtCP1 gene was induced by NaCl treatment but not by ABA treatment. Finally, subcellular localization experiments using an AtCP1:smGFP fusion gene in soybean suspension culture cells and tobacco leaf protoplasts indicate that AtCP1 is most likely a cytosolic protein.

  14. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior.

    Science.gov (United States)

    Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed

    2015-06-01

    Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.

  15. Recombinant anti-human melanoma antibodies are versatile molecules.

    Science.gov (United States)

    Neri, D; Natali, P G; Petrul, H; Soldani, P; Nicotra, M R; Vola, R; Rivella, A; Creighton, A M; Neri, P; Mariani, M

    1996-08-01

    The low cost, high versatility, and reliable production of bacterially produced recombinant antibody fragments speeds up the development of tumor-targeting agents. High-quality recombinant anti-melanoma antibodies are much sought after in the scientific community. We cloned the murine antibody 225.28S, currently used in radioimmunoimaging of human melanoma lesions, in single-chain Fv configuration (scFv) for soluble expression in bacteria. The recombinant antibody fragment conserved the binding specificity of the parental antibody. In order to arm the scFv(225.28S) with biologically useful effector functions, we developed vectors for soluble expression of scFv(225.28S) in bacteria that allow both covalent and noncovalent chemical antibody modification at positions that do not interfere with antigen binding. An expression vector was developed that appends a cysteine residue at the C-terminal extremity of the recombinant antibody, thus allowing reaction with thiol-specific reagents, including 99mTc labeling, at a position that does not interfere with antigen binding. The scFv(225.28S) was also successfully expressed with a casein kinase II substrate tag that enables efficient and stable 32P labeling. For noncovalent antibody modification, we developed an expression vector that appends the human calmodulin gene at the C-terminal extremity of scFv(225.28S). The calmodulin domain is poorly immunogenic and can be targeted with chemically modified high-affinity calmodulin ligands. The recombinant anti-human melanoma antibodies described in this article should prove useful "building blocks" for the development of anti-melanoma diagnostic and therapeutic strategies.

  16. Calcium-signaling components in rat insulinoma β-cells (INS-1) and pancreatic islets are differentially influenced by melatonin.

    Science.gov (United States)

    Bazwinsky-Wutschke, Ivonne; Mühlbauer, Eckhard; Albrecht, Elke; Peschke, Elmar

    2014-05-01

    The pineal secretory product melatonin exerts its influence on the insulin secretion of pancreatic islets by different signaling pathways. The purpose of this study was to analyze the impact of melatonin on calcium-signaling components under different conditions. In a transfected INS-1 cell line overexpressing the human MT2 receptor (hMT2-INS-1), melatonin treatment induced even stronger depressive effects on calcium/calmodulin-dependent kinase 2d and IV (Camk2d, CamkIV) transcripts during 3-isobutyl-1-methylxanthine (IBMX) treatment than in normal INS-1 cells, indicating a crucial influence of melatonin receptor density on transcript-level regulation. In addition, melatonin induced a significant downregulation of calmodulin (Calm1) in IBMX-treated hMT2-INS-1 cells. Long-term administration of melatonin alone reduced CamkIV transcript levels in INS-1 cells; however, transcript levels of Camk2d remained unchanged. The release of insulin was diminished under long-term melatonin treatment. The impact of melatonin also involved reductions in CAMK2D protein during IBMX or forskolin treatments in INS-1 cells, as measured by an enzyme-linked immunosorbent assay, indicating a functional significance of transcriptional changes in pancreatic islets. Furthermore, analysis of melatonin receptor knockout mice showed that the transcript levels of Camk2d, CamkIV, and Calm1 were differentially influenced according to the melatonin receptor subtype deleted. In conclusion, this study provides evidence that melatonin has different impacts on the regulation of Calm1 and Camk. These calcium-signaling components are known as participants in the calcium/calmodulin pathway, which plays an important functional role in the modulation of the β-cell signaling pathways leading to insulin secretion.

  17. Flagellar Radial Spokes Contain a Ca2+-stimulated Nucleoside Diphosphate Kinase

    Science.gov (United States)

    Patel-King, Ramila S.; Gorbatyuk, Oksana; Takebe, Sachiko; King, Stephen M.

    2004-01-01

    The radial spokes are required for Ca2+-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca2+-independent manner, whereas IQ2 and IQ3 show Ca2+-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca2+. This Ca2+-responsive enzyme, which accounts for ∼45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca2+-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes. PMID:15194815

  18. Phosphatidylserine liposomes can be tethered by caldesmon to actin filaments.

    Science.gov (United States)

    Makuch, R; Zasada, A; Mabuchi, K; Krauze, K; Wang, C L; Dabrowska, R

    1997-01-01

    Rotary shadowing electron microscopy revealed that attachment of caldesmon to phosphatidylserine (PS) liposomes was mainly through its C-terminal end. To determine the PS-binding sites of caldesmon, we have made use of synthetic peptides covering the two C-terminal calmodulin binding sites and a recombinant fragment corresponding to the N-terminal end of the C-terminal domain that contains an amphipathic helix. Interactions of these peptides with the PS liposomes were studied by nondenaturing gel electrophoresis and fluorescence spectroscopy. The results showed that both calmodulin-binding sites of caldesmon were able to interact with PS. The affinity (Kd) of PS for these sites was in the range of 1.8-14.3 x 10(-5) M, compared to 0.69 x 10(-5) M for the whole caldesmon molecule. Fragments located outside of calmodulin-binding sites bound PS weakly (3.85 x 10(-4) M) and thus may contain a second class of lipid-binding sites. Binding of PS induced conformational changes in regions other than the C-terminal PS-binding sites, as evidenced by the changes in the susceptibility to proteolytic cleavages. Most significantly, the presence of caldesmon greatly increased binding of PS to F-actin, suggesting that caldesmon may tether PS liposomes to actin filaments. These results raise the possibility that caldesmon-lipid interactions could play a functionally important role in the assembly of contractile filaments near the membranes. Images FIGURE 2 FIGURE 4 FIGURE 6 PMID:9284327

  19. Calcium-Mediated Induction of Paradoxical Growth following Caspofungin Treatment Is Associated with Calcineurin Activation and Phosphorylation in Aspergillus fumigatus.

    Science.gov (United States)

    Juvvadi, Praveen R; Muñoz, Alberto; Lamoth, Frédéric; Soderblom, Erik J; Moseley, M Arthur; Read, Nick D; Steinbach, William J

    2015-08-01

    The echinocandin antifungal drug caspofungin at high concentrations reverses the growth inhibition of Aspergillus fumigatus, a phenomenon known as the "paradoxical effect," which is not consistently observed with other echinocandins (micafungin and anidulafungin). Previous studies of A. fumigatus revealed the loss of the paradoxical effect following pharmacological or genetic inhibition of calcineurin, yet the underlying mechanism is poorly understood. Here, we utilized a codon-optimized bioluminescent Ca(2+) reporter aequorin expression system in A. fumigatus and showed that caspofungin elicits a transient increase in cytosolic free Ca(2+) ([Ca(2+)]c) in the fungus that acts as the initial trigger of the paradoxical effect by activating calmodulin-calcineurin signaling. While the increase in [Ca(2+)]c was also observed upon treatment with micafungin, another echinocandin without the paradoxical effect, a higher [Ca(2+)]c increase was noted with the paradoxical-growth concentration of caspofungin. Treatments with a Ca(2+)-selective chelator, BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid], or the L-type Ca(2+) channel blocker verapamil abolished caspofungin-mediated paradoxical growth in both the wild-type and the echinocandin-resistant (EMFR-S678P) strains. Concomitant with increased [Ca(2+)]c levels at higher concentrations of caspofungin, calmodulin and calcineurin gene expression was enhanced. Phosphoproteomic analysis revealed that calcineurin is activated through phosphorylation at its serine-proline-rich region (SPRR), a domain previously shown to be essential for regulation of hyphal growth, only at a paradoxical-growth concentration of caspofungin. Our results indicate that as opposed to micafungin, the increased [Ca(2+)]c at high concentrations of caspofungin activates calmodulin-calcineurin signaling at both a transcriptional and a posttranslational level and ultimately leads to paradoxical fungal growth.

  20. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China.

    Science.gov (United States)

    Luo, Yi; Lu, Xiaohong; Bi, Wu; Liu, Fan; Gao, Weiwei

    2016-01-01

    A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi.

  1. Anti-apoptotic Effects of PCP4/PEP19 in Human Breast Cancer Cell Lines: A Novel Oncotarget

    OpenAIRE

    HAMADA, Taiji; Souda, Masakazu; Yoshimura, Takuya; Sasaguri, Shoko; Hatanaka, Kazuhito; Tasaki, Takashi; Yoshioka, Takako; Ohi, Yasuyo; Yamada, Sohsuke; Tsutsui, Masato; Umekita, Yoshihisa; TANIMOTO, Akihide

    2014-01-01

    The PCP4/PEP19 is a calmodulin-binding anti-apoptotic peptide in neural cells but its potential role in human cancer has largely been unknown. We investigated the expression of PCP4/PEP19 in human breast cancer cell lines MCF-7, SK-BR-3, and MDA-MB-231 cells, and found that estrogen receptor (ER)-positive MCF-7 and ER-negative SK-BR-3 cells expressed PCP4/PEP19. In the MCF-7 cells, cell proliferation was estrogen-dependent, and PCP4/PEP19 expression was induced by estrogen. In both cell lines...

  2. Characterization of the Pathological and Biochemical Markers that Correlate to the Clinical Features of Autism

    Science.gov (United States)

    2009-10-01

    M., Kass, R.S., Pitt, G.S., 2004. Calmodulin mediates Ca2+ sensitivity of sodium channels . J Biol Chem 279, 45004-45012 15 Komuro, H., Rakic, P...K+ molecules. The Na+/K+-ATPase is composed of multiple isoforms (α1, α2 and α3), and these isoforms differ in their distribution in tissues and...hippocampus, but not in the temporal cortex (Nagy et al., 1990). Voltage-gated calcium channels mediate calcium influx in response to membrane

  3. ATP hydrolysis is critically required for function of CaV1.3 channels in cochlear inner hair cells via fueling Ca2+ clearance.

    Science.gov (United States)

    Weiler, Simon; Krinner, Stefanie; Wong, Aaron B; Moser, Tobias; Pangršič, Tina

    2014-05-14

    Sound encoding is mediated by Ca(2+) influx-evoked release of glutamate at the ribbon synapse of inner hair cells. Here we studied the role of ATP in this process focusing on Ca(2+) current through CaV1.3 channels and Ca(2+) homeostasis in mouse inner hair cells. Patch-clamp recordings and Ca(2+) imaging demonstrate that hydrolyzable ATP is essential to maintain synaptic Ca(2+) influx in inner hair cells via fueling Ca(2+)-ATPases to avoid an increase in cytosolic [Ca(2+)] and subsequent Ca(2+)/calmodulin-dependent inactivation of CaV1.3 channels.

  4. Novel Phenolic Inhibitors of Small/Intermediate-Conductance Ca(2+)-Activated K(+) Channels, KCa3.1 and KCa2.3

    DEFF Research Database (Denmark)

    Olivan-Viguera, Aida; Valero, Marta Sofía; Murillo, María Divina;

    2013-01-01

    BACKGROUND: KCa3.1 channels are calcium/calmodulin-regulated voltage-independent K(+) channels that produce membrane hyperpolarization and shape Ca(2+)-signaling and thereby physiological functions in epithelia, blood vessels, and white and red blood cells. Up-regulation of KCa3.1 is evident....... The phenols, vanillic acid, gallic acid, and hydroxytyrosol had weak or no blocking effects. Out of the NSAIDs, flufenamic acid was moderately potent (EC50 1.6 µM), followed by mesalamine (EC50≥10 µM). The synthetic fluoro-trivanillic ester, 13b ([3,5-bis[(3-fluoro-4-hydroxy-benzoyl)oxymethyl]phenyl]methyl 3...

  5. Squalamine lactate for exudative age-related macular degeneration.

    Science.gov (United States)

    Connolly, Brian; Desai, Avinash; Garcia, Charles A; Thomas, Edgar; Gast, Michael J

    2006-09-01

    Squalamine lactate inhibits angiogenesis by a long-lived, intracellular mechanism of action. The drug is taken up into activated endothelial cells through caveolae, small invaginations in the cellular membrane. Subsequently, the drug binds to and "chaperones" calmodulin to an intracellular membrane compartment and blocks angiogenesis at several levels. A series of basic investigations, preclinical studies, and human clinical trials have begun to establish the proof of concept, efficacy, and safety parameters for use of squalamine lactate as a therapeutic agent for exudative age-related macular degeneration and several types of malignancies.

  6. A dynamic look backward and forward.

    Science.gov (United States)

    Palmer, Arthur G

    2016-05-01

    The 2015 Gunther Laukien Prize recognized solution NMR studies of protein dynamics and thermodynamics. This Perspective surveys aspects of the development and application of NMR spin relaxation for investigations of protein flexibility and function over multiple time scales in solution. Methods highlighted include analysis of overall rotational diffusion, theoretical descriptions of R1ρ relaxation, and molecular dynamics simulations to interpret NMR spin relaxation. Applications are illustrated for the zinc-finger domain Xfin-31, the calcium-binding proteins calbindin D9k and calmodulin, and the bZip transcription factor of GCN4.

  7. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides

    DEFF Research Database (Denmark)

    Houbraken, J.; Visagie, C.M.; Meijer, M.

    2014-01-01

    . The taxonomy of these species has been investigated several times using various techniques, but species delimitation remains difficult. In the present study, 349 strains belonging to section Aspergilloides were subjected to multilocus molecular phylogenetic analyses using partial β-tubulin (BenA), calmodulin...... Aspergilloides are phenotypically similar and most have monoverticillate conidiophores and grow moderately or quickly on agar media. The most important characters to distinguish these species were colony sizes on agar media, growth at 30 °C, ornamentation and shape of conidia, sclerotium production and stipe...

  8. CaMKII inhibition targeted to the sarcoplasmic reticulum inhibits frequency dependent acceleration of relaxation and Ca2+ current facilitation

    OpenAIRE

    Picht, Eckard; DeSantiago, Jaime; Huke, Sabine; Kaetzel, Marcia A.; Dedman, John R.; Bers, Donald M.

    2006-01-01

    Cardiac Ca2+/calmodulin-dependent protein kinase II (CaMKII) in heart has been implicated in Ca2+ current (ICa) facilitation, enhanced sarcoplasmic reticulum (SR) Ca2+ release and frequency dependent acceleration of relaxation (FDAR) via enhanced SR Ca2+ uptake. However, questions remain about how CaMKII may work in these three processes. Here we tested the role of CaM-KII in these processes using transgenic mice (SR-AIP) that express four concatenated repeats of the CaMKII inhibitory peptide...

  9. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1

    DEFF Research Database (Denmark)

    Yang, Jenq-Lin; Tadokoro, Takashi; Keijzers, Guido

    2010-01-01

    damage after glutamate treatment, suggesting that APE1 is a key repair protein for glutamate-induced DNA damage. A cAMP-response element-binding protein (CREB) binding sequence is present in the Ape1 gene (encodes APE1 protein) promoter and treatment of neurons with a Ca(2+)/calmodulin-dependent kinase......-mediated DNA damage that is then rapidly repaired by a mechanism involving Ca(2+)-induced, CREB-mediated APE1 expression. Our findings reveal a previously unknown ability of neurons to efficiently repair oxidative DNA lesions after transient activation of glutamate receptors....

  10. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene

    OpenAIRE

    1997-01-01

    To examine the physiological role of the Fyn tyrosine kinase in neurons, we generated transgenic mice that expressed a fyn cDNA under the control of the calcium/calmodulin-dependent protein kinase IIα promoter. With this promoter, we detected only low expression of Fyn in the neonatal brain. In contrast, there was strong expression of the fyn-transgene in neurons of the adult forebrain. To determine whether the impairment of long-term potentiation (LTP) observed in adult fyn-deficient mice wa...

  11. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, M.D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an {alpha}-helix, a {open_quotes}scaffold{close_quotes} region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca{sup 2+}-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of {lambda} Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of {lambda} Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an {alpha}-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded {beta}sheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of {sup 15}N NMR relaxation properties.

  12. Biophysical and Biochemical Mechanisms in Synaptic Transmitter Release.

    Science.gov (United States)

    1992-01-31

    kinase (60 nM), 0.1% Nonidet - P40 . "Mock"-phospho-synapsin I was"treated as above except that both kinases. CaCI,. calmodulin. and Non- associated...cataly* tic subunit of cyclic AMIP-dependent protein kinase (64) nw/0-l1 %1 Nonidet -P441). Mock phospho-synapsin I was prepared as above except that...only with small (40-60 nm diameter) and not with idet- P40 were added, and ATP was omitted from the reaction mixture. large (>60 nm diameter) synaptic

  13. Metal toxicity and opportunistic binding of Pb2+ in proteins

    OpenAIRE

    Kirberger, Michael; Wong, Hing C; Jiang, Jie; Yang, Jenny J.

    2013-01-01

    Lead toxicity is associated with various human diseases. While Ca2+ binding proteins such as calmodulin (CaM) are often reported to be molecular targets for Pb2+-binding and lead toxicity, the effect of Pb2+ on the Ca2+/CaM regulated biological activities cannot be described by the primary mechanism of ionic displacement (e.g., ionic mimicry). The focus of this study was to investigate the mechanism of lead toxicity through binding differences between Ca2+ and Pb2+ for CaM, an essential intra...

  14. Aspergillus alabamensis, a New Clinically Relevant Species in the Section Terrei

    DEFF Research Database (Denmark)

    Balajee, S. A.; Baddley, J. W.; Peterson, S. W.;

    2009-01-01

    , Aspergillus alabamensis. Most members of this new cryptic species were recovered as colonizing isolates from immunocompetent patient populations, had decreased in vitro susceptibilities to the antifungal drug amphotericin B, and were morphologically similar to but genetically distinct from Aspergillus terreus......Phylogenetic analyses of sequences generated from portions of three genes coding for the proteins enolase (enoA), beta-tubulin (benA), and calmodulin (calM) of a large number of isolates within the section Terrei, genus Aspergillus, revealed the presence of a new cryptic species within this section...

  15. Aspergillus acidus from Puerh tea and black tea does not produce ochratoxin A and fumonisin B-2

    DEFF Research Database (Denmark)

    Mogensen, Jesper Mølgaard; Varga, J.; Thrane, Ulf;

    2009-01-01

    the mycotoxins ochratoxin A, fumonisins B-2 and B-4. With this in mind, we performed a preliminary study to determine if production of these mycotoxins by black Aspergilli isolated from Puerh and black tea can occur. An examination of 47 isolates from Puerh tea and black tea showed that none of these was A....... niger. A part of the calmodulin gene in 17 isolates were sequenced, and these 17 isolates were all identified as Aspergillus acidus (=A. foetidus var. acidus). The rest of the 47 isolates were also identified as A. acidus from their metabolite profile. Neither production of ochratoxin A nor fumonisins B...

  16. Centrins in unicellular organisms: functional diversity and specialization.

    Science.gov (United States)

    Zhang, Yu; He, Cynthia Y

    2012-07-01

    Centrins (also known as caltractins) are conserved, EF hand-containing proteins ubiquitously found in eukaryotes. Similar to calmodulins, the calcium-binding EF hands in centrins fold into two structurally similar domains separated by an alpha-helical linker region, shaping like a dumbbell. The small size (15-22 kDa) and domain organization of centrins and their functional diversity/specialization make them an ideal system to study protein structure-function relationship. Here, we review the work on centrins with a focus on their structures and functions characterized in unicellular organisms.

  17. Penicillium kongii, a new terverticillate species isolated from plant leaves in China.

    Science.gov (United States)

    Wang, Bo; Wang, Long

    2013-01-01

    A new Penicillium species isolated from plant leaves, characterized by restricted growth, terverticillate penicilli, ovoid to ellipsoidal conidia and a red soluble pigment on yeast extract sucrose agar is reported here. Penicillium kongii sp. nov. belongs to subgenus Penicillium section Brevicompacta and is morphologically similar to P. bialowiezense and P. brevicompactum. Phylogenetic analyses based on sequence data from calmodulin gene, β-tubulin gene and rDNA ITS1-5.8S-ITS2 show that P. kongii forms a distinctive clade.

  18. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    Science.gov (United States)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  19. Aspergillus bertholletius sp. nov. from Brazil Nuts

    DEFF Research Database (Denmark)

    Taniwaki, Marta H.; Pitt, John I.; Iamanaka, Beatriz T.

    2012-01-01

    During a study on the mycobiota of brazil nuts (Bertholletia excelsa) in Brazil, a new Aspergillus species, A. bertholletius, was found, and is described here. A polyphasic approach was applied using morphological characters, extrolite data as well as partial beta-tubulin, calmodulin and ITS...... acid and ustilaginoidin C. Phylogenetic analysis using partial beta-tubulin and camodulin gene sequences showed that A. bertholletius represents a new phylogenetic clade in Aspergillus section Flavi. The type strain of A. bertholletius is CCT 7615 (=ITAL 270/06 = IBT 29228)....

  20. Calcium Signaling Is Required for Erythroid Enucleation.

    Science.gov (United States)

    Wölwer, Christina B; Pase, Luke B; Russell, Sarah M; Humbert, Patrick O

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.