WorldWideScience

Sample records for calmodulin-dependent protein kinase

  1. An active form of calcium and calmodulin dependant protein kinase ...

    African Journals Online (AJOL)

    The DMI3 gene of the model legume Medicago truncatula encodes a calcium and calmodulin dependent protein kinase (CCaMK) involved in the signalling pathways leading to the establishment of both mycorrhizal and rhizobial root symbiosis. The removal of the auto-inhibitory domain that negatively regulates the kinase ...

  2. Inhibition of calcium/calmodulin-dependent protein kinase kinase β and calcium/calmodulin-dependent protein kinase IV is detrimental in cerebral ischemia.

    Science.gov (United States)

    McCullough, Louise D; Tarabishy, Sami; Liu, Lin; Benashski, Sharon; Xu, Yan; Ribar, Thomas; Means, Anthony; Li, Jun

    2013-09-01

    Elevation of intracellular calcium was traditionally thought to be detrimental in stroke pathology. However, clinical trials testing treatments that block calcium signaling have failed to improve outcomes in ischemic stroke. Emerging data suggest that calcium may also trigger endogenous protective pathways after stroke. Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is a major kinase activated by rising intracellular calcium. Compelling evidence has suggested that CaMKK and its downstream kinase CaMK IV are critical in neuronal survival when cells are under ischemic stress. We examined the functional role of CaMKK/CaMK IV signaling in stroke. We used a middle cerebral artery occlusion model in mice. Our data demonstrated that pharmacological and genetic inhibition of CaMKK aggravated stroke injury. Additionally, deletion of CaMKK β, one of the 2 CaMKK isoforms, reduced CaMK IV activation, and CaMK IV deletion in mice worsened stroke outcome. Finally, CaMKK β or CaMK IV knockout mice had exacerbated blood-brain barrier disruption evidenced by increased hemorrhagic transformation and activation of matrix metalloproteinase. We observed transcriptional inactivation including reduced levels of histone deacetylase 4 phosphorylation in mice with CaMKK β or CaMK IV deletion after stroke. Our data have established that the CaMKK/CaMK IV pathway is a key endogenous protective mechanism in ischemia. Our results suggest that this pathway serves as an important regulator of blood-brain barrier integrity and transcriptional activation of neuroprotective molecules in stroke.

  3. Muscarinic stimulation of calcium/calmodulin-dependent protein kinase II in isolated rat pancreatic acini.

    Science.gov (United States)

    Cui, Z J

    1997-05-01

    To study whether M3 receptor occupation would lead to activation of calcium/calmodulin-dependent protein kinase II (CaM kinase II). In this study, we isolated rat pancreatic acini by collagenase digestion; measured the Ca2+/calmodulin-independent activity of autophosphorylated form of the CaM kinase II both before and after stimulation of the acini with muscarinic secretagogue bethanechol (Bet). Bet stimulated the activation of, or generation of Ca(2+)-independent activity of, this kinase, in a concentration (0.0001-1 mmol.L-1) and time (5-300 s)-dependent manner; with Bet of 100 mumol.L-1, Ca(2+)-independent activity increased from an unstimulated level of 4.5 +/- 0.3 (n = 4) to 8.9 +/- 1.3 (n = 4, P Ca2+ mobilizing secretagogue cholecystokinin (CCK) also activated the kinase; at 1 mumol.L-1, CCK increased Ca(2+)-independent kinase activity to 12.9 +/- 0.5 (n = 6, P -independent kinase activity (from control 3.90 +/- 0.28 to 4.53 +/- 0.47, n = 6, P > 0.05). Atropine completely blocked Bet activation of the kinase. CaM kinase II plays a pivotal role in digestive enzyme secretion, especially during the initial phase of amylase secretion.

  4. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog.

    Science.gov (United States)

    Kato, Kentaro; Sugi, Tatsuki; Takemae, Hitoshi; Takano, Ryo; Gong, Haiyan; Ishiwa, Akiko; Horimoto, Taisuke; Akashi, Hiroomi

    2016-07-21

    Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and a major pathogen of animals and immunocompromised humans, in whom it causes encephalitis. Understanding the mechanism of tachyzoite invasion is important for the discovery of new drug targets and may serve as a model for the study of other apicomplexan parasites. We previously showed that Plasmodium falciparum expresses a homolog of human calcium calmodulin-dependent protein kinase (CaMK) that is important for host cell invasion. In this study, to identify novel targets for the treatment of Toxoplasma gondii infection (another apicomplexan parasite), we sought to identify a CaMK-like protein in the T. gondii genome and to characterize its role in the life-cycle of this parasite. An in vitro kinase assay was performed to assess the phosphorylation activities of a novel CaMK-like protein in T. gondii by using purified proteins with various concentrations of calcium, calmodulin antagonists, or T. gondii glideosome proteins. Indirect immunofluorescence microscopy was performed to detect the localization of this protein kinase by using the antibodies against this protein and organellar maker proteins of T. gondii. We identified a novel CaMK homolog in T. gondii, T. gondii CaMK-related kinase (TgCaMKrk), which exhibits calmodulin-independent autophosphorylation and substrate phosphorylation activity. However, calmodulin antagonists had no effect on its kinase activity. In T. gondii-infected cells, TgCaMKrk localized to the apical ends of extracellular and intracellular tachyzoites. TgCaMKrk phosphorylated TgGAP45 for phosphorylation in vitro. Our data improve our understanding of T. gondii motility and infection, the interaction between parasite protein kinases and glideosomes, and drug targets for protozoan diseases.

  5. Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Keizo Takao

    Full Text Available Calcium-calmodulin dependent protein kinase IV (CaMKIV is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency.

  6. Ca2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle.

    Science.gov (United States)

    Saddouk, F Z; Ginnan, R; Singer, H A

    2017-01-01

    Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies. © 2017 Elsevier Inc. All rights reserved.

  7. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    Directory of Open Access Journals (Sweden)

    Grant S. Nichols

    2015-01-01

    Full Text Available Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX, the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults.

  8. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes.

    Science.gov (United States)

    Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T

    2011-01-01

    For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.

  9. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers

    Science.gov (United States)

    Poovaiah, B. W.; Xia, M.; Liu, Z.; Wang, W.; Yang, T.; Sathyanarayanan, P. V.; Franceschi, V. R.

    1999-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca(2+) and Ca(2+)/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the beta-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by beta-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca(2+) concentration in target cells, thereby controlling developmental events in the anther.

  10. Calcium/calmodulin-dependent protein kinase II mediates hippocampal glutamatergic plasticity during benzodiazepine withdrawal.

    Science.gov (United States)

    Shen, Guofu; Van Sickle, Bradley J; Tietz, Elizabeth I

    2010-08-01

    Benzodiazepine withdrawal anxiety is associated with potentiation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) currents in hippocampal CA1 pyramidal neurons attributable to increased synaptic incorporation of GluA1-containing AMPARs. The contribution of calcium/calmodulin-dependent protein kinase II (CaMKII) to enhanced glutamatergic synaptic strength during withdrawal from 1-week oral flurazepam (FZP) administration was further examined in hippocampal slices. As earlier reported, AMPAR-mediated miniature excitatory postsynaptic current (mEPSC) amplitude increased in CA1 neurons from 1- and 2-day FZP-withdrawn rats, along with increased single-channel conductance in neurons from 2-day rats, estimated by non-stationary noise analysis. Input-output curve slope was increased without a change in paired-pulse facilitation, suggesting increased AMPAR postsynaptic efficacy rather than altered glutamate release. The increased mEPSC amplitude and AMPAR conductance were related to CaMKII activity, as intracellular inclusion of CaMKIINtide or autocamtide-2-related inhibitory peptide, but not scrambled peptide, prevented both AMPAR amplitude and conductance changes. mEPSC inhibition by 1-naphthyl acetyl spermine and the negative shift in rectification index at both withdrawal time points were consistent with functional incorporation of GluA2-lacking AMPARs. GluA1 but not GluA2 or GluA3 levels were increased in immunoblots of postsynaptic density (PSD)-enriched subcellular fractions of CA1 minislices from 1-day FZP-withdrawn rats, when mEPSC amplitude, but not conductance, was increased. Both GluA1 expression levels and CaMKII alpha-mediated GluA1 Ser(831) phosphorylation were increased in PSD-subfractions from 2-day FZP-withdrawn rats. As phospho-Thr(286)CaMKII alpha was unchanged, CaMKII alpha may be activated through an alternative signaling pathway. Synaptic insertion and subsequent CaMKII alpha-mediated Ser(831) phosphorylation of GluA1 homomers

  11. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed...... response factor at Ser103, a putative CaMKII substrate, was higher after 30 min of exercise. PLN phosphorylation at Thr17 was higher with increasing exercise intensities. These data indicate that CaMKII is the major multifunctional CaMK in skeletal muscle and its activation occurs rapidly and is sustained...

  12. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Directory of Open Access Journals (Sweden)

    Mima Kazuko

    2002-01-01

    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  13. Involvement of Ca(2+)/calmodulin-dependent protein kinases in mycelial growth of the basidiomycetous mushroom, Coprinus cinereus.

    Science.gov (United States)

    Kameshita, Isamu; Yamada, Yusuke; Nishida, Tetsuyuki; Sugiyama, Yasunori; Sueyoshi, Noriyuki; Watanabe, Akira; Asada, Yasuhiko

    2007-09-01

    Although multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) are widely distributed in animal cells, the occurrence of CaM-kinases in the basidiomycetous mushroom has not previously been documented. When the extracts from various developmental stages from mycelia to the mature fruiting body of Coprinus cinereus were analyzed by Western blotting using Multi-PK antibodies, which had been generated to detect a wide variety of protein serine/threonine kinases (Ser/Thr kinases), a variety of stage-specific Ser/Thr kinases was detected. Calmodulin (CaM) overlay assay using digoxigenin-labeled CaM detected protein bands of 65 kDa, 58 kDa, 46 kDa, 42 kDa, and 38 kDa only in the presence of CaCl(2), suggesting that these bands were CaM-binding proteins. When the CaM-binding fraction was prepared from mycelial extract of C. cinereus by CaM-Sepharose and analyzed with Multi-PK antibodies, two major immunoreactive bands corresponding to 65 kDa and 46 kDa were detected. CaM-binding fraction, thus obtained, exhibited Ca(2+)/CaM-dependent protein kinase activity toward protein substrates such as histones. These CaM-kinases were found to be highly expressed in the actively growing mycelia, but not in the resting mycelial cells. Mycelial growth was enhanced by the addition of CaCl(2) in the culture media, but inhibited by the addition of EGTA or trifluoperazine, a potent CaM inhibitor. This suggested that CaM-dependent enzymes including CaM-kinases play crucial roles in mycelial growth of basidiomycete C. cinereus.

  14. Brain-derived neurotrophic factor increases Ca2+/calmodulin-dependent protein kinase 2 activity in hippocampus.

    Science.gov (United States)

    Blanquet, P R; Lamour, Y

    1997-09-26

    Here we show that brain-derived neurotrophic factor (BDNF) stimulates both the phosphorylation of the Ca2+/calmodulin-dependent protein kinase 2 (CaMK2) and its kinase activity in rat hippocampal slices. In addition, we find that: (i) the time course of BDNF action is not accompanied by a change in the spectrum of either alpha- and beta-subunits of CaMK2 detected by immunoblotting; (ii) both treatment of solubilized CaMK2 with alkaline phosphatase and treatment of immunoprecipitated CaMK2 with protein phosphatase 1 reverse phosphorylation and activation of the kinase; (iii) phospholipase C inhibitor D609 and intracellular Ca2+ chelation by 1,2-bis-(o-aminophenoxy)ethane-N,N,N",N',-tetracetic acid tetra(acetoxymethyl)ester or 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate but not omission of Ca2+ or Ca2+ chelation by EGTA, abolish the stimulatory effect of BDNF on phosphorylation and activation of CaMK2. These results strongly suggest that the conversion of CaMK2 into its active, autophosphorylated form, but not its concentration, is increased by BDNF via stimulation of phospholipase C and subsequent intracellular Ca2+ mobilization.

  15. The octopamine receptor OAMB mediates ovulation via Ca2+/calmodulin-dependent protein kinase II in the Drosophila oviduct epithelium.

    Directory of Open Access Journals (Sweden)

    Hyun-Gwan Lee

    Full Text Available Ovulation is an essential physiological process in sexual reproduction; however, the underlying cellular mechanisms are poorly understood. We have previously shown that OAMB, a Drosophila G-protein-coupled receptor for octopamine (the insect counterpart of mammalian norepinephrine, is required for ovulation induced upon mating. OAMB is expressed in the nervous and reproductive systems and has two isoforms (OAMB-AS and OAMB-K3 with distinct capacities to increase intracellular Ca2+ or intracellular Ca2+ and cAMP in vitro. Here, we investigated tissue specificity and intracellular signals required for OAMB's function in ovulation. Restricted OAMB expression in the adult oviduct epithelium, but not the nervous system, reinstated ovulation in oamb mutant females, in which either OAMB isoform was sufficient for the rescue. Consistently, strong immunoreactivities for both isoforms were observed in the wild-type oviduct epithelium. To delineate the cellular mechanism by which OAMB regulates ovulation, we explored protein kinases functionally interacting with OAMB by employing a new GAL4 driver with restricted expression in the oviduct epithelium. Conditional inhibition of Ca2+/Calmodulin-dependent protein kinase II (CaMKII, but not protein kinase A or C, in the oviduct epithelium inhibited ovulation. Moreover, constitutively active CaMKII, but not protein kinase A, expressed only in the adult oviduct epithelium fully rescued the oamb female's phenotype, demonstrating CaMKII as a major downstream molecule conveying the OAMB's ovulation signal. This is consistent with the ability of both OAMB isoforms, whose common intracellular signal in vitro is Ca2+, to reinstate ovulation in oamb females. These observations reveal the critical roles of the oviduct epithelium and its cellular components OAMB and CaMKII in ovulation. It is conceivable that the OAMB-mediated cellular activities stimulated upon mating are crucial for secretory activities suitable for egg

  16. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart.

    Science.gov (United States)

    Maier, Lars S; Bers, Donald M

    2007-03-01

    Calcium (Ca(2+)) is the central second messenger in the translation of electrical signals into mechanical activity of the heart. This highly coordinated process, termed excitation-contraction coupling or ECC, is based on Ca(2+)-induced Ca(2+) release from the sarcoplasmic reticulum (SR). In recent years it has become increasingly clear that several Ca(2+)-dependent proteins contribute to the fine tuning of ECC. One of these is the Ca(2+)/calmodulin-dependent protein kinase (CaMK) of which CaMKII is the predominant cardiac isoform. During ECC CaMKII phosphorylates several Ca(2+) handling proteins with multiple functional consequences. CaMKII may also be co-localized to distinct target proteins. CaMKII expression as well as activity are reported to be increased in heart failure and CaMKII overexpression can exert distinct and novel effects on ECC in the heart and in isolated myocytes of animals. In the present review we summarize important aspects of the role of CaMKII in ECC with an emphasis on recent novel findings.

  17. Urea-induced denaturation of human calcium/calmodulin-dependent protein kinase IV: a combined spectroscopic and MD simulation studies.

    Science.gov (United States)

    Naz, Huma; Shahbaaz, Mohd; Haque, Md Anzarul; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-02-01

    Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a multifunctional enzyme which belongs to the Ser/Thr kinase family. CaMKIV plays important role in varieties of biological processes such as gene expression regulation, memory consolidation, bone growth, T-cell maturation, sperm motility, regulation of microtubule dynamics, cell-cycle progression, and apoptosis. To measure stability parameters, urea-induced denaturation of CaMKIV was carried out at pH 7.4 and 25°C, using three different probes, namely far-UV CD, near-UV absorption, and tryptophan fluorescence. A coincidence of normalized denaturation curves of these optical properties suggests that urea-induced denaturation is a two-state process. Analysis of these denaturation curves gave values of 4.20 ± 0.12 kcal mol-1, 2.95 ± 0.15 M, and 1.42 ± 0.06 kcal mol-1 M-1 for [Formula: see text] (Gibbs free energy change (ΔGD) in the absence of urea), Cm (molar urea concentration ([urea]) at the midpoint of the denaturation curve), and m (=∂ΔGD/∂[urea]), respectively. All these experimental observations have been fully supported by 30 ns molecular dynamics simulation studies.

  18. Structural Properties of Human CaMKII Ca2+ /Calmodulin-Dependent Protein Kinase II using X-ray Crystallography

    Science.gov (United States)

    Cao, Yumeng Melody; McSpadden, Ethan; Kuriyan, John; Department of Molecular; Cell Biology; Department of Chemistry Team

    To this day, human memory storage remains a mystery as we can at most describe the process vaguely on a cellular level. Switch-like properties of Calcium/Calmodulin-Dependent Protein Kinase II make it a leading candidate in understanding the molecular basis of human memory. The protein crystal was placed in the beam of a synchrotron source and the x-ray crystallography data was collected as reflections on a diffraction pattern that undergo Fourier transform to obtain the electron density. We observed two drastic differences from our solved structure at 2.75Å to a similar construct of the mouse CaMKII association domain. Firstly, our structure is a 6-fold symmetric dodecamer, whereas the previously published construct was a 7-fold symmetric tetradecamer. This suggests the association domain of human CaMKII is a dynamic structure that is triggered subunit exchange process. Secondly, in our structure the N-terminal tag is docked as an additional beta-strand on an uncapped beta-sheet present in each association domain protomer. This is concrete evidence of the involvement of the polypeptide docking site in the molecular mechanism underlining subunit exchange. In the future, we would like to selectively inhibit the exchange process while not disrupting the other functionalities of CaMKII.

  19. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism

    Science.gov (United States)

    Lu, Y. T.; Hidaka, H.; Feldman, L. J.

    1996-01-01

    Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 microM KN-93, but binding is not affected by 5 microM KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 microM KN-93, but not by 5 microM KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.

  20. Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis.

    Science.gov (United States)

    Singh, Sylvia; Parniske, Martin

    2012-08-01

    The key molecular event during the development of arbuscular mycorrhiza and the root nodule symbiosis is the activation of calcium- and calmodulin-dependent protein kinase (CCaMK). Its regulation is complex and involves positive as well as negative regulation facilitated by autophosphorylation of two conserved sites. Deregulated versions of CCaMK are sufficient for mediating both organogenesis and infection processes. Epistasis tests demonstrated that a main function of signaling components upstream of calcium spiking is the activation of CCaMK. Despite CCaMK being a central signaling hub, specificity for both symbioses exists, resulting in differential transcriptional gene expression patterns. While the specificity upstream of CCaMK can be conceptualized by the specific perception of rhizobial and fungal lipo-chitooligosaccharides via cognate LysM receptors, the mechanisms conferring transcriptional specificity downstream of CCaMK are likely conferred by a variety of transcriptional regulators, mediating symbiosis appropriate gene regulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Regulation of Ca2+/Calmodulin-Dependent Protein Kinase II Signaling within Hippocampal Glutamatergic Postsynapses during Flurazepam Withdrawal

    Directory of Open Access Journals (Sweden)

    Damien E. Earl

    2012-01-01

    Full Text Available Cessation of one-week oral administration of the benzodiazepine flurazepam (FZP to rats results in withdrawal anxiety after 1 day of withdrawal. FZP withdrawal is correlated with synaptic incorporation of homomeric GluA1-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs in the proximal stratum radiatum of CA1 neurons. After 2 days of withdrawal, Ca2+/calmodulin-dependent protein kinase II (CaMKII phosphorylates GluA1 subunits at Ser831, increasing channel conductance. Secondary to AMPAR potentiation, GluN2B-containing N-methyl-D-aspartate receptors (NMDARs, known binding partners of CaMKII, are selectively removed from the postsynaptic density (PSD. While activation of synaptic CaMKII is known to involve translocation to the PSD, CaMKII bound to NMDARs may be removed from the PSD. To distinguish these possibilities, the current studies used postembedding immunogold electron microscopy to investigate alterations in CaMKII signaling at CA1 stratum radiatum synapses after 2 days of FZP withdrawal. These studies revealed decreased total, but not autophosphorylated (Thr286 CaMKIIα expression in CA1 PSDs. The removal of CaMKII-GluN2B complexes from the PSD during drug withdrawal may serve as a homeostatic mechanism to limit AMPAR-mediated CA1 neuron hyperexcitability and benzodiazepine withdrawal anxiety.

  2. Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies.

    Science.gov (United States)

    Hoda, Nasimul; Naz, Huma; Jameel, Ehtesham; Shandilya, Ashutosh; Dey, Sharmistha; Hassan, Md Imtaiyaz; Ahmad, Faizan; Jayaram, B

    2016-01-01

    Calcium-calmodulin-dependent protein kinase IV (CAMK4) plays significant role in the regulation of calcium-dependent gene expression, and thus, it is involved in varieties of cellular functions such as cell signaling and neuronal survival. On the other hand, curcumin, a naturally occurring yellow bioactive component of turmeric possesses wide spectrum of biological actions, and it is widely used to treat atherosclerosis, diabetes, cancer, and inflammation. It also acts as an antioxidant. Here, we studied the interaction of curcumin with human CAMK4 at pH 7.4 using molecular docking, molecular dynamics (MD) simulations, fluorescence binding, and surface plasmon resonance (SPR) methods. We performed MD simulations for both neutral and anionic forms of CAMK4-curcumin complexes for a reasonably long time (150 ns) to see the overall stability of the protein-ligand complex. Molecular docking studies revealed that the curcumin binds in the large hydrophobic cavity of kinase domain of CAMK4 through several hydrophobic and hydrogen-bonded interactions. Additionally, MD simulations studies contributed in understanding the stability of protein-ligand complex system in aqueous solution and conformational changes in the CAMK4 upon binding of curcumin. A significant increase in the fluorescence intensity at 495 nm was observed (λexc = 425 nm), suggesting a strong interaction of curcumin to the CAMK4. A high binding affinity (KD = 3.7 × 10(-8) ± .03 M) of curcumin for the CAMK4 was measured by SPR further indicating curcumin as a potential ligand for the CAMK4. This study will provide insights into designing a new inspired curcumin derivatives as therapeutic agents against many life-threatening diseases.

  3. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  4. The molecular, temporal and region-specific requirements of the beta isoform of Calcium/Calmodulin-dependent protein kinase type 2 (CAMK2B) in mouse locomotion

    OpenAIRE

    Kool, Martijn J.; Jolet E. van de Bree; Bodde, Hanna E.; Ype Elgersma; van Woerden, Geeske M.

    2016-01-01

    Genetic approaches using temporal and brain region-specific restricted gene deletions have provided a wealth of insight in the brain regions and temporal aspects underlying spatial and associative learning. However, for locomotion such extensive studies are still scarce. Previous studies demonstrated that Camk2b ?/? mice, which lack the ? isoform of Calcium/Calmodulin-dependent protein kinase 2 (CAMK2B), show very severe locomotion deficits. However, where these locomotion deficits originate ...

  5. Berbamine inhibits the growth of liver cancer cells and cancer initiating cells by targeting Ca2+/Calmodulin-dependent protein kinase II

    OpenAIRE

    Meng, Zhipeng; Li, Tao; Ma, Xiaoxiao; Wang, Xiaoqiong; Van Ness, Carl; Gan, Yichao; Zhou, Hong; Tang, Jinfen; Lou, Guiyu; Wang, Yafan; Wu, Jun; Yen, Yun; Xu, Rongzhen; Huang, Wendong

    2013-01-01

    Liver cancer is the third leading cause of cancer deaths worldwide but no effective treatment toward liver cancer is available so far. Therefore, there is an unmet medical need to identify novel therapies to efficiently treat liver cancer and improve the prognosis of this disease. Here we report that berbamine (BBM) and one of its derivatives, bbd24, potently suppressed liver cancer cell proliferation and induced cancer cell death by targeting Ca2+/calmodulin-dependent protein kinase II (CAMK...

  6. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse.

    OpenAIRE

    Llinás, R.; McGuinness, T L; Leonard, C S; Sugimori, M; Greengard, P.

    1985-01-01

    Synapsin I and calcium/calmodulin-dependent protein kinase II were pressure-injected into the preterminal digit of the squid giant synapse to test directly the possible regulation of neurotransmitter release by these substances. Neurotransmitter release was determined by measuring the amplitude, rate of rise, and latency of the postsynaptic potential generated in response to presynaptic depolarizing steps under voltage clamp conditions. Injection of dephosphosynapsin I decreased the amplitude...

  7. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    Science.gov (United States)

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2017-06-23

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  8. Specificity of calcium/calmodulin-dependent protein kinases in mouse egg activation

    OpenAIRE

    Medvedev, Sergey; Stein, Paula; Schultz, Richard M

    2014-01-01

    CaMKIIγ, the predominant CaMKII isoform in mouse eggs, controls egg activation by regulating cell cycle resumption. In this study we further characterize the involvement and specificity of CaMKIIγ in mouse egg activation. Using exogenous expression of different cRNAs in Camk2g−/− eggs, we show that the other multifunctional CaM kinases, CaMKI, and CaMKIV, are not capable of substituting CaMKIIγ to initiate cell cycle resumption in response to a rise in intracellular Ca2+. Exogenous expression...

  9. Involvement of calcium-calmodulin-dependent protein kinase II in endothelin receptor expression in rat cerebral arteries.

    Science.gov (United States)

    Waldsee, Roya; Ahnstedt, Hilda; Eftekhari, Sajedeh; Edvinsson, Lars

    2010-03-01

    Experimental cerebral ischemia and organ culture of cerebral arteries result in the enhanced expression of endothelin ET(B) receptors in smooth muscle cells via increased transcription. The present study was designed to evaluate the involvement of calcium-calmodulin-dependent protein kinase (CAMK) in the transcriptional expression of endothelin receptors after organ culture. Rat basilar arteries were incubated for 24 h with or without the CAMK inhibitor KN93 or ERK1/2 inhibitor U0126. The contractile responses to endothelin-1 (ET-1; ET(A) and ET(B) receptor agonist) and sarafotoxin 6c (S6c; ET(B) receptor agonist) were studied using a sensitive myograph. The mRNA levels of the ET(A) and ET(B) receptors and CAMKII were determined by real-time PCR, and their protein levels were evaluated by immunohistochemistry and Western blot. The mRNA levels of CAMKII and the ET(B) receptor increased during organ culture, but there was no change in the expression of the ET(A) receptor. This effect was abolished by coincubation with KN93 or U0126. In functional studies, both inhibitors attenuated the S6c-induced contraction. Incubating the arteries with KN93, but not U0126, decreased the amount of phosphorylated CAMKII. The inhibitors had no effect on the levels of myosin light chain during organ culture, as measured by Western blot. CAMKII is involved in the upregulation of the endothelin ET(B) receptor and interacts with the ERK1/2 pathway to enhance receptor expression. CAMKII has no effect on the contractile apparatus in rat cerebral arteries.

  10. Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2.

    Science.gov (United States)

    Sugita, Shurei; Hosaka, Yoko; Okada, Keita; Mori, Daisuke; Yano, Fumiko; Kobayashi, Hiroshi; Taniguchi, Yuki; Mori, Yoshifumi; Okuma, Tomotake; Chang, Song Ho; Kawata, Manabu; Taketomi, Shuji; Chikuda, Hirotaka; Akiyama, Haruhiko; Kageyama, Ryoichiro; Chung, Ung-Il; Tanaka, Sakae; Kawaguchi, Hiroshi; Ohba, Shinsuke; Saito, Taku

    2015-03-10

    Notch signaling modulates skeletal formation and pathogenesis of osteoarthritis (OA) through induction of catabolic factors. Here we examined roles of Hes1, a transcription factor and important target of Notch signaling, in these processes. SRY-box containing gene 9 (Sox9)-Cre mice were mated with Hes1(fl/fl) mice to generate tissue-specific deletion of Hes1 from chondroprogenitor cells; this deletion caused no obvious abnormality in the perinatal period. Notably, OA development was suppressed when Hes1 was deleted from articular cartilage after skeletal growth in type II collagen (Col2a1)-Cre(ERT);Hes1(fl/fl) mice. In cultured chondrocytes, Hes1 induced metallopeptidase with thrombospondin type 1 motif, 5 (Adamts5) and matrix metalloproteinase-13 (Mmp13), which are catabolic enzymes that break down cartilage matrix. ChIP-seq and luciferase assays identified Hes1-responsive regions in intronic sites of both genes; the region in the ADAMTS5 gene contained a typical consensus sequence for Hes1 binding, whereas that in the MMP13 gene did not. Additionally, microarray analysis, together with the ChIP-seq, revealed novel Hes1 target genes, including Il6 and Il1rl1, coding a receptor for IL-33. We further identified calcium/calmodulin-dependent protein kinase 2δ (CaMK2δ) as a cofactor of Hes1; CaMK2δ was activated during OA development, formed a protein complex with Hes1, and switched it from a transcriptional repressor to a transcriptional activator to induce cartilage catabolic factors. Therefore, Hes1 cooperated with CaMK2δ to modulate OA pathogenesis through induction of catabolic factors, including Adamts5, Mmp13, Il6, and Il1rl1. Our findings have contributed to further understanding of the molecular pathophysiology of OA, and may provide the basis for development of novel treatments for joint disorders.

  11. Expression of Beta Subunit 2 of Ca²+/Calmodulin-Dependent Protein Kinase I in the Developing Rat Retina.

    Science.gov (United States)

    Jusuf, Ahmad Aulia; Sakagami, Hiroyuki; Kikkawa, Satoshi; Terashima, Toshio

    2016-03-07

    Expression of beta 2 subunit of Ca²+/calmodulin-dependent protein kinase I (CaMKIβ2) of the rat retina during the developmental period and in the adulthood was studied immunohistochemically. The immunoreactivity of CaMKIβ2 was detected in the earliest development of the primordial retina at embryological day (E) 12. The inner neuroblastic layer from which the presumptive ganglion cells are generated showed the ubiquitous CaMKIβ2 immunoreactivity at E15 and persistently expressed at the same level until postnatal day (P) 0 when the inner neuroblastic layer divides into the ganglionic cell layer and the inner plexiform layer. The strong immunoreactivity was detected in the ganglion cell layer and the moderate one in the internal plexiform layer. CaMKIβ2 immunoreactivities were persistantly expressed throughout the postnatal development at the same level. The low level of intensity was first found in the inner nuclear layer at P7, followed by the outer plexiform, outer nuclear and rod-cone cell layers at the age of P12, respectively. The intensities of CaMKIβ2 immunoreactivities in the inner nuclear and rod-cone cell layers were gradually increased to the strong level by P18 and persisted until adulthood. The present study revealed that the expression of CaMKIβ2 in the retina was detected from the earliest development until adulthood, indicating that CaMKIβ2 may be required in both proliferation and differentiation of the retinal precursor cells and subsequent formation of the functional layers. In addition, CaMKIβ2 immunoreactivity in the rod-cone cell layer implies that this protein may be involved in the visual signaling process.

  12. Ca2+/calmodulin-dependent protein kinase II-dependent remodeling of Ca2+ current in pressure overload heart failure.

    Science.gov (United States)

    Wang, Yanggan; Tandan, Samvit; Cheng, Jun; Yang, Chunmei; Nguyen, Lan; Sugianto, Jessica; Johnstone, Janet L; Sun, Yuyang; Hill, Joseph A

    2008-09-12

    Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity is increased in heart failure (HF), a syndrome characterized by markedly increased risk of arrhythmia. Activation of CaMKII increases peak L-type Ca(2+) current (I(Ca)) and slows I(Ca) inactivation. Whether these events are linked mechanistically is unknown. I(Ca) was recorded in acutely dissociated subepicardial and subendocardial murine left ventricular (LV) myocytes using the whole cell patch clamp method. Pressure overload heart failure was induced by surgical constriction of the thoracic aorta. I(Ca) density was significantly larger in subepicardial myocytes than in subendocardial/myocytes. Similar patterns were observed in the cell surface expression of alpha1c, the channel pore-forming subunit. In failing LV, I(Ca) density was increased proportionately in both cell types, and the time course of I(Ca) inactivation was slowed. This typical pattern of changes suggested a role of CaMKII. Consistent with this, measurements of CaMKII activity revealed a 2-3-fold increase (p process could not be induced, suggesting already maximal activation. Internal application of active CaMKII in failing myocytes did not elicit changes in I(Ca). Finally, CaMKII inhibition by internal diffusion of a specific peptide inhibitor reduced I(Ca) density and inactivation time course to similar levels in control and HF myocytes. I(Ca) density manifests a significant transmural gradient, and this gradient is preserved in heart failure. Activation of CaMKII, a known pro-arrhythmic molecule, is a major contributor to I(Ca) remodeling in load-induced heart failure.

  13. Immunohistochemical study of Ca2+/calmodulin-dependent protein kinase II in the Drosophila brain using a specific monoclonal antibody.

    Science.gov (United States)

    Takamatsu, Yoshiki; Kishimoto, Yasuko; Ohsako, Shunji

    2003-06-06

    To analyze the distribution of Drosophila calcium/calmodulin-dependent protein kinase II (dCaMKII) in the adult brain, we generated monoclonal antibodies against the bacterially expressed 490-amino acid (a.a.) form of dCaMKII. One of those, named #18 antibody, was used for this study. Western blot analysis of the adult head extracts showed that the antibody specifically detects multiple bands between 55 and 60 kDa corresponding to the molecular weights of the splicing isoforms of dCaMKII. Epitope mapping revealed that it was in the region between 199 and 283 a.a. of dCaMKII. Preferential dCaMKII immunoreactivity in the embryonic nervous system, adult thoracic ganglion and gut, and larval neuro-muscular junction (NMJ) was consistent with previous observations by in situ hybridization and immunostaining with a polyclonal antibody at the NMJ, indicating that the antibody is applicable to immunohistochemistry. Although dCaMKII immunoreactive signal was low in the retina, it was found at regular intervals in the outer margin of the compound eye. These signals were most likely to be interommatidial bristle mechanosensory neurons. dCaMKII immunoreactivity in the brain was observed in almost all regions and relatively higher staining was found in the neuropilar region than in the cortex. Higher dCaMKII immunoreactivity in the mushroom body (MB) was found in the entire gamma lobe including the heel, and dorsal tips of the alpha and alpha' lobes, while cores of alpha and beta lobes were stained light. Finding abundant dCaMKII accumulation in the gamma lobe suggested that this lobe might especially require high levels of dCaMKII expression to function properly among MB lobes.

  14. Diabetes mellitus affects activity of calcium/calmodulin-dependent protein kinase II alpha in rat trigeminal ganglia.

    Science.gov (United States)

    Jerić, Milka; Vuica, Ana; Borić, Matija; Puljak, Livia; Jeličić Kadić, Antonia; Grković, Ivica; Filipović, Natalija

    2015-01-01

    The activity of calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. The aim of this study was to investigate the immunoreactivity of phosphorylated CaMKIIα (pCaMKIIα) in subpopulations of trigeminal ganglion (TG) neurons in rat models of early diabetes type 1 (dm1) and 2 (dm2). DM1 model was induced with intraperitoneally (i.p.) injected streptozotocin (STZ) (55mg/kg). DM2 rats were fed with the high fat diet (HFD) for 2 weeks and then received 35mg/kg of STZ i.p. Two weeks and 2 months after the STZ-diabetes induction, rats were sacrificed and immunohistochemical analysis for detection of pCaMKIIα immunoreactivity and double immunofluorescence labelling with isolectin (IB4) was performed. Increased intensity of pCaMKIIα immunofluorescence, restricted to IB4-negative small-diameter neurons, was seen in TG neurons two months after STZ-DM1 induction. DM1 model, as well as the obesity (control dm2 groups) resulted in neuronal impaired growth while dm2 model led to neuron hypertrophy in TG. Observed changes may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. In future, innovative strategies for modulation of CaMKIIα activity in specific subpopulations of neurons could be a novel approach in therapy of diabetic trigeminal neuropathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C by Ca2+/calmodulin-dependent protein kinase II inhibits DNA synthesis

    DEFF Research Database (Denmark)

    Maga, G; Mossi, R; Fischer, R

    1997-01-01

    delta and epsilon. The DNA and PCNA binding domains of the large 140 kDa subunit of human RF-C have been recently cloned [Fotedar, R., Mossi, R., Fitzgerald, P., Rousselle, T., Maga, G., Brickner, H., Messier, H., Khastilba. S., Hübscher, U., & Fotedar, A. (1996) EMBO J. 15, 4423-4433]. Here we show...... that the PCNA binding domain is phosphorylated by the Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme required for cell cycle progression in eukaryotic cells. The DNA binding domain, on the other hand, is not phosphorylated. Phosphorylation by CaMKII reduces the binding of PCNA to RF...

  16. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/calmodulin-dependent protein kinase II pathways.

    Science.gov (United States)

    Luo, Zhirong; Kohli, Meetu R; Yu, Qing; Kim, Syngcuk; Qu, Tiejun; He, Wen-xi

    2014-07-01

    Biodentine (Septodont, Saint-Maur-des-Fossès, France), a new tricalcium silicate cement formulation, has been introduced as a bioactive dentine substitute to be used in direct contact with pulp tissue. The aim of this study was to investigate the response of human dental pulp stem cells (hDPSCs) to the material and whether mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and calcium-/calmodulin-dependent protein kinase II (CaMKII) signal pathways played a regulatory role in Biodentine-induced odontoblast differentiation. hDPCs obtained from impacted third molars were incubated with Biodentine. Odontoblastic differentiation was evaluated by alkaline phosphatase activity, alizarin red staining, and quantitative real-time reverse-transcriptase polymerase chain reaction for the analysis of messenger RNA expression of the following differentiation gene markers: osteocalcin (OCN), dentin sialophosprotein (DSPP), dentin matrix protein 1 (DMP1), and bone sialoprotein (BSP). Cell cultures in the presence of Biodentine were exposed to specific inhibitors of MAPK (U0126, SB203580, and SP600125), NF-κB (pyrrolidine dithiocarbamate), and CaMKII (KN-93) pathways to evaluate the regulatory effect on the expression of these markers and mineralization assay. Biodentine significantly increased alkaline phosphatase activity and mineralized nodule formation and the expression of OCN, DSPP, DMP1, and BSP. The MAPK inhibitor for extracellular signal-regulated kinase 1/2 (U0126) and Jun N-terminal kinase (SP600125) significantly decreased the Biodentine-induced mineralized differentiation of hDPSCs and OCN, DSPP, DMP1, and BSP messenger RNA expression, whereas p38 MAPK inhibitors (SB203580) had no effect. The CaMKII inhibitor KN-93 significantly attenuated and the NF-κB inhibitor pyrrolidine dithiocarbamate further enhanced the up-regulation of Biodentine-induced gene expression and mineralization. Biodentine is a bioactive and biocompatible material capable

  17. Dendritic spine changes in the development of alcohol addiction regulated by α-calcium/calmodulin-dependent protein kinase II

    Directory of Open Access Journals (Sweden)

    Zofia Mijakowska

    2014-03-01

    Full Text Available Introduction Alcohol has many adverse effects on the brain. Among them are dendritic spine morphology alterations, which are believed to be the basis of alcohol addiction. Autophosphorylation of α-calcium/calmodulin-dependent protein kinase II (αCaMKII has been shown to regulate spine morphology in vitro. Here we show that αCaMKII can also regulate addiction related behaviour and dendritic spine morphology changes caused by alcohol consumption in vivo. Method 12 αCaMKII-autophosphorylation deficient female mice (T286A and 12 wild type littermates were used in the study. T286A strain was created by Giese et al. (1998. Mice were housed and tested in two IntelliCages from NewBehavior (www.newbehavior.com. IntelliCage is an automated learning system. After 95 days of alcohol drinking interrupted by tests for motivation, persistence in alcohol seeking and probability of relapse, mice were ascribed to ‘high’ or ‘low’ drinkers group according to their performance in the tests. Additional criterion was the amount of alcohol consumed during the whole experiment. Result of each test was evaluated separately. 1/3 of the mice that scored highest in each criterion were considered ‘positive’ for this trait. ‘Positive’ animals were given 1 point, negative 0 points. Mice that were positive in at least 2 criteria were ascribed to ‘high’ drinkers (‘+’ group. Remaining mice – to ‘low’ drinkers (‘–‘. This method of behavioral phenotyping, developed by Radwanska and Kaczmarek (2012, is inspired by DSM-IV. Since the results of this evaluation are discrete (i.e. by definition all the animals score between 0 to +4, we developed also a continuous method of addiction rating, which we call ‘addiction index’. The result of the second method is a sum of the standardized (z-score results of the above mentioned tests. We use it to examine the correlations between addiction-like behavior and spine parameters. Control group (12 WT, 8

  18. Interactions of calcium/calmodulin-dependent protein kinases (CaMK) and extracellular-regulated kinase (ERK) in monocyte adherence and TNFalpha production.

    Science.gov (United States)

    Rosengart, M R; Arbabi, S; Garcia, I; Maier, R V

    2000-03-01

    The circulating monocyte possesses a markedly different functional phenotype relative to the macrophage (Mphi). The adhesive interactions encountered by the monocyte, en route to the inflammatory focus, generate signals that culminate in the expression of a pro-inflammatory Mphi phenotype, marked by enhanced cytokine production. Previously, we demonstrated that calcium and calmodulin are essential for maximal Mphi activation and, in particular, TNFalpha production. These effects are likely to be mediated through signal transduction kinases that require the calcium/calmodulin complex. Here, we investigated the effect of adherence on calcium/calmodulin-dependent protein kinase (CaMK) II and IV activation of the extracellular-signal regulated kinase (ERK) 1/2 cascade and on lipopolysaccharide (LPS)-induced TNFalpha production by human monocytes. Adherence activated ERK 1/2 and led to an 8-fold potentiation in LPS-induced TNFalpha production over similarly stimulated non-adherent cells. Inhibition of CaMK II prior to adherence prevented ERK 1/2 activation and attenuated by up to 40%, the TNFalpha response to subsequent LPS stimulation. CaMK II inhibition after adherence, however, failed to modify cytokine release. Inhibition of CaMK IV, both after adherence and in non-adherent monocytes, significantly inhibited LPS-induced ERK 1/2 activation and abrogated TNFalpha production by up to 75%. These data suggest that the function of CaMK II in TNFalpha production by adherent monocytes occurs during adhesion, is mediated in part by activation of ERK 1/2, and appears to "prime" the monocyte for enhanced cytokine production. CaMK IV, through activation of ERK 1/2, appears to have a direct role in the LPS signal transduction for TNFalpha production.

  19. Type III Transforming Growth Factor-β Receptor Drives Cardiac Hypertrophy Through β-Arrestin2-Dependent Activation of Calmodulin-Dependent Protein Kinase II.

    Science.gov (United States)

    Lou, Jie; Zhao, Dan; Zhang, Ling-Ling; Song, Shu-Ying; Li, Yan-Chao; Sun, Fei; Ding, Xiao-Qing; Yu, Chang-Jiang; Li, Yuan-Yuan; Liu, Mei-Tong; Dong, Chang-Jiang; Ji, Yong; Li, Hongliang; Chu, Wenfeng; Zhang, Zhi-Ren

    2016-09-01

    The role of type III transforming growth factor-β receptor (TβRIII) in the pathogenesis of heart diseases remains largely unclear. Here, we investigated the functional role and molecular mechanisms of TβRIII in the development of myocardial hypertrophy. Western blot and quantitative real time-polymerase chain reaction analyses revealed that the expression of TβRIII was significantly elevated in human cardiac hypertrophic samples. Consistently, TβRIII expression was substantially increased in transverse aortic constriction (TAC)- and isoproterenol-induced mouse cardiac hypertrophy in vivo and in isoproterenol-induced cardiomyocyte hypertrophy in vitro. Overexpression of TβRIII resulted in cardiomyocyte hypertrophy, whereas isoproterenol-induced cardiomyocyte hypertrophy was greatly attenuated by knockdown of TβRIII in vitro. Cardiac-specific transgenic expression of TβRIII independently led to cardiac hypertrophy in mice, which was further aggravated by isoproterenol and TAC treatment. Cardiac contractile function of the mice was not altered in TβRIII transgenic mice; however, TAC led to significantly decreased cardiac contractile function in TβRIII transgenic mice compared with control mice. Conversely, isoproterenol- and TAC-induced cardiac hypertrophy and TAC-induced cardiac contractile function impairment were partially reversed by suppression of TβRIII in vivo. Our data suggest that TβRIII mediates stress-induced cardiac hypertrophy through activation of Ca(2+)/calmodulin-dependent protein kinase II, which requires a physical interaction of β-arrestin2 with both TβRIII and calmodulin-dependent protein kinase II. Our findings indicate that stress-induced increase in TβRIII expression results in cardiac hypertrophy through β-arrestin2-dependent activation of calmodulin-dependent protein kinase II and that transforming growth factor-β and β-adrenergic receptor signaling are not involved in spontaneous cardiac hypertrophy in cardiac

  20. Nonclassical Mechanisms of Progesterone Action in the Brain: II. Role of Calmodulin-Dependent Protein Kinase II in Progesterone-Mediated Signaling in the Hypothalamus of Female Rats

    Science.gov (United States)

    Balasubramanian, Bhuvana; Portillo, Wendy; Reyna, Andrea; Chen, Jian Zhong; Moore, Anthony N.; Dash, Pramod K.; Mani, Shaila K.

    2008-01-01

    In addition to the activation of classical progestin receptor-dependent genomic pathway, progesterone (P) can activate nonclassical, membrane-initiated signaling pathways in the brain. We recently demonstrated rapid P activation of second-messenger kinases, protein kinase A, and protein kinase C in the ventromedial nucleus (VMN) and preoptic area (POA) of rat brain. To determine whether P can activate yet another Ca+2dependent kinase, we examined the rapid P modulation of calcium and calmodulin-dependent protein kinase II (CaMKII) in the VMN and POA in female rats. A rapid P-initiated activation of CaMKII basal activity was observed in the VMN but not the POA at 30 min. Estradiol benzoate (EB) priming enhanced this CaMKII basal activity in both the VMN and POA. CaMKII protein levels and phosphorylation of Thr-286 moiety on CaMKII, however, remained unchanged with EB and/or P treatments, suggesting that the changes in the CaMKII kinase activity are due to rapid P modulation of the kinase activity and not its synthesis or autoactivation. Furthermore, intracerebroventricular (icv) administration of a CaMKII-specific inhibitor, KN-93, 30 min prior to the P infusion, in EB-primed, ovariectomized female rats inhibited CaMKII activation but not protein kinase A and protein kinase C activities. Interestingly, icv administration of KN-93 30 min prior to P infusion (icv) resulted in a reduction but not total inhibition of P-facilitated lordosis response in EB-primed female rats. These observations suggest a redundancy or, alternately, a hierarchy in the P-regulated activation of kinase signaling cascades in female reproductive behavior. PMID:18617607

  1. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling

    Science.gov (United States)

    Saddouk, Fatima Z.; Sun, Li-Yan; Liu, Yong Feng; Jiang, Miao; Singer, Diane V.; Backs, Johannes; Van Riper, Dee; Ginnan, Roman; Schwarz, John J.; Singer, Harold A.

    2016-01-01

    Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions.—Saddouk, F. Z., Sun, L.-Y., Liu, Y. F., Jiang, M., Singer, D. V., Backs, J., Van Riper, D., Ginnan, R., Schwarz, J. J., Singer, H. A. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling. PMID:26567004

  2. Genetic deletion of calcium/calmodulin-dependent protein kinase kinase β (CaMKK β) or CaMK IV exacerbates stroke outcomes in ovariectomized (OVXed) female mice.

    Science.gov (United States)

    Liu, Lin; McCullough, Louise; Li, Jun

    2014-10-21

    Stroke is the primary cause of long-term disability in the United States. Interestingly, mounting evidence has suggested potential sex differences in the response to stroke treatment in patients as, at least in part, distinct cell death programs may be triggered in females and males following stroke. The NIH has recognized that females are strikingly under-represented in pre-clinical trials. Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is a major kinase that is activated by elevated intracellular calcium. It has recently been suggested that CaMKK and CaMK IV, a downstream target molecule, are neuroprotective in stroke in males. In this study, we examined stroke outcomes in ovariectomized CaMKK β and CaMK IV deficient females. Cell death/survival signaling and inflammatory responses were assessed. Our results demonstrated that CaMKK β or CaMK IV KO exacerbated both ischemic injury and behavioral deficits in female mice. Genetic deletion of CaMKK β or CaMK IV increased hemorrhagic transformation after stroke, and this was associated with both increased MMP9 activity and loss of the blood brain barrier (BBB) protein collagen IV. Transcriptional inactivation was observed in mice lacking either CaMKK β or CaMK IV, as indicated by reduced levels of phosphorylated cAMP response element-binding protein (p-CREB) and B-cell lymphoma 2 (BCL-2) proteins. Finally, inhibiting this pathway exacerbated the inflammatory response to stroke as CaMKK β or CaMK IV KO mice had increased levels of the pro-inflammatory serum cytokines tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) after stroke. This suggests that the CaMKK pathway is involved in the immune response to brain injury. Inhibition of CaMKK signaling exacerbated stroke outcome and increased BBB impairment, transcriptional inactivation and inflammatory responses in females after stroke. Therefore, CaMKK signaling may be a potential target for stroke treatment in both males and females.

  3. Ca(2+)/calmodulin-dependent protein kinase IIβ and IIδ mediate TGFβ-induced transduction of fibronectin and collagen in human pulmonary fibroblasts.

    Science.gov (United States)

    Mukherjee, Subhendu; Sheng, Wei; Sun, Rui; Janssen, Luke J

    2017-04-01

    It is now clear that in addition to activating several complex kinase pathways (Smad, MAP kinase, PI3 kinase), TGFβ also acts by elevating cytosolic Ca(2+) concentration within human pulmonary fibroblasts. Ca(2+)/calmodulin-dependent protein kinase II (CamK II) is also known to regulate gene expression in fibroblasts. In this study, we examined the interactions between calcium signaling, activation of CamK and other kinases, and extracellular matrix (ECM) gene expression. Human pulmonary fibroblasts were cultured and stimulated with artificially generated Ca(2+) pulses in the absence of TGFβ, or with TGFβ (1 nM) or vehicle in the presence of various blockers of Ca(2+) signaling. PCR and Western blotting were used to measure gene expression and protein levels, respectively. We found that Ca(2+) pulses in the absence of TGFβ increased ECM gene expression in a pulse frequency-dependent manner, and that blocking Ca(2+) signaling and the CamK II pathway significantly reduced TGFβ-mediated ECM gene expression, without having any effects on other kinase pathways (Smad, PI3 kinase, or MAP kinase). We also found that TGFβ elevated the expression of CamK IIβ and CamK IIδ, while siRNA silencing of those two subtypes significantly reduced TGFβ-mediated expression of collagen A1 and fibronectin 1. Our data suggest that TGFβ induces the expression of CamK IIβ and CamK IIδ, which in turn are activated by TGFβ-evoked Ca(2+) waves in a frequency-dependent manner, leading to increased expression of ECM proteins. Copyright © 2017 the American Physiological Society.

  4. Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

    Science.gov (United States)

    Razavinikoo, Hadi; Soleimanjahi, Hoorieh; Haqshenas, Gholamreza; Bamdad, Taravat; Teimoori, Ali; Goodarzi, Zahra

    2015-01-01

    Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family such as calcium/calmodulin-dependent kinase II, which plays a crucial role in replication and pathogenesis of the virus. The aim of this study was to expression bovine rotavirus NSP4 gene in HEK293 cell and evaluation of its biological effect related to activation of calcium/calmodulin-dependent kinase II in cell culture. Materials and Methods: MA104 cells was used as a sensitive cell for propagation of virus and defined as a positive control. The NSP4 gene was amplified and inserted into an expression vector, and introduced as a recombinant plasmid into HEK293T cells. Western blot analysis was performed as a confirmation test for both expression of NSP4 protein and activation of calcium/calmodulin-dependent kinase II. Results: Expression of NSP4 and activated form of calcium/calmodulin-dependent kinase II were demonstrated by western blotting. Conclusion: It was shown that the expression of biologically active full- length NSP4 protein in HEK293T cells may be associated with some biological properties such as calcium calmodulin kinase II activation, which was indicator of rotaviruses replication and pathogenesis. PMID:26019803

  5. Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

    Directory of Open Access Journals (Sweden)

    Hadi Razavinikoo

    2015-04-01

    Full Text Available Objective(s: The rotavirus nonstructural protein 4 (NSP4 is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family such as calcium/calmodulin-dependent kinase II, which plays a crucial role in replication and pathogenesis of the virus. The aim of this study was to expression bovine rotavirus NSP4 gene in HEK293 cell and evaluation of its biological effect related to activation of calcium/calmodulin-dependent kinase II in cell culture. Materials and Methods: MA104 cells was used as a sensitive cell for propagation of virus and defined as a positive control. The NSP4 gene was amplified and inserted into an expression vector, and introduced as a recombinant plasmid into HEK293T cells. Western blot analysis was performed as a confirmation test for both expression of NSP4 protein and activation of calcium/calmodulin-dependent kinase II. Results:Expression of NSP4 and activated form of calcium/calmodulin-dependent kinase II were demonstrated by western blotting. Conclusion: It was shown that the expression of biologically active full- length NSP4 protein in HEK293T cells may be associated with some biological properties such as calcium calmodulin kinase II activation, which was indicator of rotaviruses replication and pathogenesis

  6. Age-dependent targeting of protein phosphatase 1 to Ca2+/calmodulin-dependent protein kinase II by spinophilin in mouse striatum.

    Directory of Open Access Journals (Sweden)

    Anthony J Baucum

    Full Text Available Mechanisms underlying age-dependent changes of dendritic spines on striatal medium spiny neurons are poorly understood. Spinophilin is an F-actin- and protein phosphatase 1 (PP1-binding protein that targets PP1 to multiple downstream effectors to modulate dendritic spine morphology and function. We found that calcium/calmodulin-dependent protein kinase II (CaMKII directly and indirectly associates with N- and C-terminal domains of spinophilin, but F-actin can displace CaMKII from the N-terminal domain. Spinophilin co-localizes PP1 with CaMKII on the F-actin cytoskeleton in heterologous cells, and spinophilin co-localizes with synaptic CaMKII in neuronal cultures. Thr286 autophosphorylation enhances the binding of CaMKII to spinophilin in vitro and in vivo. Although there is no change in total levels of Thr286 autophosphorylation, maturation from postnatal day 21 into adulthood robustly enhances the levels of CaMKII that co-immunoprecipitate with spinophilin from mouse striatal extracts. Moreover, N- and C-terminal domain fragments of spinophilin bind more CaMKII from adult vs. postnatal day 21 striatal lysates. Total levels of other proteins that interact with C-terminal domains of spinophilin decrease during maturation, perhaps reducing competition for CaMKII binding to the C-terminal domain. In contrast, total levels of α-internexin and binding of α-internexin to the spinophilin N-terminal domain increases with maturation, perhaps bridging an indirect interaction with CaMKII. Moreover, there is an increase in the levels of myosin Va, α-internexin, spinophilin, and PP1 in striatal CaMKII immune complexes isolated from adult and aged mice compared to those from postnatal day 21. These changes in spinophilin/CaMKII interactomes may contribute to changes in striatal dendritic spine density, morphology, and function during normal postnatal maturation and aging.

  7. Novel Ca2+/calmodulin-dependent protein kinase expressed in actively growing mycelia of the basidiomycetous mushroom Coprinus cinereus.

    Science.gov (United States)

    Kaneko, Keisuke; Yamada, Yusuke; Sueyoshi, Noriyuki; Watanabe, Akira; Asada, Yasuhiko; Kameshita, Isamu

    2009-01-01

    We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth.

  8. Calcium/Calmodulin-Dependent Protein Kinase is Involved in the Release of High Mobility Group Box 1 Via the Interferon-β Signaling Pathway

    Science.gov (United States)

    Ma, Lijuan; Kim, Seon-Ju

    2012-01-01

    Previously, we have reported that high mobility group box 1 (HMGB1), a proinflammatory mediator in sepsis, is released via the IFN-β-mediated JAK/STAT pathway. However, detailed mechanisms are still unclear. In this study, we dissected upstream signaling pathways of HMGB1 release using various molecular biology methods. Here, we found that calcium/calmodulin-dependent protein kinase (CaM kinase, CaMK) is involved in HMGB1 release by regulating IFN-β production. CaMK inhibitor, STO609, treatment inhibits LPS-induced IFN-β production, which is correlated with the phosphorylation of interferon regulatory factor 3 (IRF3). Additionally, we show that CaMK-I plays a major role in IFN-β production although other CaMK members also seem to contribute to this event. Furthermore, the CaMK inhibitor treatment reduced IFN-β production in a murine endotoxemia. Our results suggest CaMKs contribute to HMGB1 release by enhancing IFN-β production in sepsis. PMID:23091438

  9. Aldosterone producing adrenal adenomas are characterized by activation of calcium/calmodulin-dependent protein kinase (CaMK) dependent pathways.

    Science.gov (United States)

    Sackmann, S; Lichtenauer, U; Shapiro, I; Reincke, M; Beuschlein, F

    2011-02-01

    Primary aldosteronism is the most prevalent cause of secondary hypertension. However, insights in pathophysiological mechanisms resulting in autonomous aldosterone secretion are limited. Although transcriptional regulators of aldosterone synthase (CYP11B2) including calcium-binding calmodulin kinase (CaMK) dependent pathways have been defined in vitro, it remains uncertain whether these mechanisms play a role in the context of dysregulated steroidogenesis in aldosterone producing adrenadenomas. Thus, we compared expression and activation of key components of CaMK pathways in aldosterone producing adenomas (APAs) with normal adrenals glands (NAGs). As expected, aldosterone synthase expression in APAs was significantly higher in comparison to NAGs, suggesting transcriptional activation as a contributing factor of aldosterone excess. Along the same line, CaMKI was significantly upregulated in APAs on the mRNA and protein level. Furthermore, immunohistochemistry revealed nuclear localization of CaMKI in these tumors. The phosphorylation of CREB, a target protein for CaMKI was increased, which could represent a further stimulation of aldosterone synthase transcription. In summary, this study provides indirect evidence for a causative involvement of the CaM kinase signaling pathway in human aldosterone producing adenomas. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    Directory of Open Access Journals (Sweden)

    Cong Haolong

    Full Text Available Enterovirus 71 (EV71 is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  11. Enterovirus 71 VP1 Activates Calmodulin-Dependent Protein Kinase II and Results in the Rearrangement of Vimentin in Human Astrocyte Cells

    Science.gov (United States)

    Haolong, Cong; Du, Ning; Hongchao, Tian; Yang, Yang; Wei, Zhang; Hua, Zhang; Wenliang, Zhang; Lei, Song; Po, Tien

    2013-01-01

    Enterovirus 71 (EV71) is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II) which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human. PMID:24073199

  12. Cellular localization of CoPK12, a Ca(2+)/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea, is regulated by N-myristoylation.

    Science.gov (United States)

    Kaneko, Keisuke; Tabuchi, Mitsuaki; Sueyoshi, Noriyuki; Ishida, Atsuhiko; Utsumi, Toshihiko; Kameshita, Isamu

    2014-07-01

    Multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) have been extensively studied in mammals, whereas fungus CaMKs still remain largely uncharacterized. We previously obtained CaMK homolog in Coprinopsis cinerea, designated CoPK12, and revealed its unique catalytic properties in comparison with the mammalian CaMKs. To further clarify the regulatory mechanisms of CoPK12, we investigated post-translational modification and subcellular localization of CoPK12 in this study. In C. cinerea, full-length CoPK12 (65 kDa) was fractionated in the membrane fraction, while the catalytically active fragment (46 kDa) of CoPK12 was solely detected in the soluble fraction by differential centrifugation. Expressed CoPK12-GFP was localized on the cytoplasmic and vacuolar membranes as visualized by green fluorescence in yeast cells. In vitro N-myristoylation assay revealed that CoPK12 is N-myristoylated at Gly-2 in the N-terminal position. Furthermore, calmodulin could bind not only to CaM-binding domain but also to the N-terminal myristoyl moiety of CoPK12. These results, taken together, suggest that the cellular localization and function of CoPK12 are regulated by protein N-myristoylation and limited proteolysis. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  13. Calmodulin-Dependent Protein Kinase mediates Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    Science.gov (United States)

    Love, Felisha D.; Melhado, Caroline; Bosah, Francis; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1997-01-01

    A number of basic cellular functions, e.g., electrolyte concentration cell growth rate, glucose utilization, bone formation, response to growth stimulation and exocytosis are modified by microgravity or during spaceflight. Studies with intact animal during spaceflights have found lipid accumulations within the lumen of the vasculature and degeneration of the vascular wall. Capillary alterations with extensive endothelial invaginations were also seen. Hemodynamic studies have shown that there is a redistribution of blood from the lower extremities to the upper part of the body; this will alter vascular permeability, resulting in leakage into surrounding tissues. These studies indicate that changes in gravity will affect a number of physiological systems, including the vasculature. However, few studies have addressed the effect of microgravity on vascular cell function and metabolism. A major problem with ground based studies is that achieving a true microgravity hand, environment for prolonged period is not possible. On the other increasing gravity (i.e., hypergravity) is easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell limes (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies suggest that hypergravity will alter the behavior of most cells. Several investigators have shown that hypergravity affects the expression of the early response genes (c-fos and c-myc) and the activation of several protein kinases (PK's) in cells (10,11). In this study we investigated whether hypergravity alters the expression of f-actin by aortic endothelial cells, and the possible role of protein kinases (calmodulin(II)-dependent and PKA) as mediators of these effects.

  14. Calcium/calmodulin-dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages.

    Science.gov (United States)

    Zhang, Xianghong; Wheeler, David; Tang, Ying; Guo, Lanping; Shapiro, Richard A; Ribar, Thomas J; Means, Anthony R; Billiar, Timothy R; Angus, Derek C; Rosengart, Matthew R

    2008-10-01

    The chromatin-binding factor high-mobility group box 1 (HMGB1) functions as a proinflammatory cytokine and late mediator of mortality in murine endotoxemia. Although serine phosphorylation of HMGB1 is necessary for nucleocytoplasmic shuttling before its cellular release, the protein kinases involved have not been identified. To investigate if calcium/calmodulin-dependent protein kinase (CaMK) IV serine phosphorylates and mediates the release of HMGB1 from macrophages (Mphi) stimulated with LPS, RAW 264.7 cells or murine primary peritoneal Mphi were incubated with either STO609 (a CaMKIV kinase inhibitor), KN93 (a CaMKIV inhibitor), or we utilized cells from which CaMKIV was depleted by RNA interference (RNAi) before stimulation with LPS. We also compared the LPS response of primary Mphi isolated from CaMKIV(+/+) and CaMKIV(-/-) mice. In both cell types LPS induced activation and nuclear translocation of CaMKIV, which preceded HMGB1 nucleocytoplasmic shuttling. However, Mphi treated with KN93, STO609, or CaMKIV RNAi before LPS showed reduced nucleocytoplasmic shuttling of HMGB1 and release of HMGB1 into the supernatant. Additionally, LPS induced serine phosphorylation of HMGB1, which correlated with an interaction between CaMKIV and HMGB1 and with CaMKIV phosphorylation of HMGB1 in vitro. In cells, both HMGB1 phosphorylation and interaction with CaMKIV were inhibited by STO609 or CaMKIV RNAi. Similarly, whereas CaMKIV(+/+) Mphi showed serine phosphorylation of HMGB1 in response to LPS, this phosphorylation was attenuated in CaMKIV(-/-) Mphi. Collectively, our results demonstrate that CaMKIV promotes the nucleocytoplasmic shuttling of HMGB1 and suggest that the process may be mediated through CaMKIV-dependent serine phosphorylation of HMGB1.

  15. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca²⁺/calmodulin-dependent protein kinase II.

    Science.gov (United States)

    Meng, Zhipeng; Li, Tao; Ma, Xiaoxiao; Wang, Xiaoqiong; Van Ness, Carl; Gan, Yichao; Zhou, Hong; Tang, Jinfen; Lou, Guiyu; Wang, Yafan; Wu, Jun; Yen, Yun; Xu, Rongzhen; Huang, Wendong

    2013-10-01

    Liver cancer is the third leading cause of cancer deaths worldwide but no effective treatment toward liver cancer is available so far. Therefore, there is an unmet medical need to identify novel therapies to efficiently treat liver cancer and improve the prognosis of this disease. Here, we report that berbamine and one of its derivatives, bbd24, potently suppressed liver cancer cell proliferation and induced cancer cell death by targeting Ca(2+)/calmodulin-dependent protein kinase II (CAMKII). Furthermore, berbamine inhibited the in vivo tumorigenicity of liver cancer cells in NOD/SCID mice and downregulated the self-renewal abilities of liver cancer-initiating cells. Chemical inhibition or short hairpin RNA-mediated knockdown of CAMKII recapitulated the effects of berbamine, whereas overexpression of CAMKII promoted cancer cell proliferation and increased the resistance of liver cancer cells to berbamine treatments. Western blot analyses of human liver cancer specimens showed that CAMKII was hyperphosphorylated in liver tumors compared with the paired peritumor tissues, which supports a role of CAMKII in promoting human liver cancer progression and the potential clinical use of berbamine for liver cancer therapies. Our data suggest that berbamine and its derivatives are promising agents to suppress liver cancer growth by targeting CAMKII. Mol Cancer Ther; 12(10); 2067-77. ©2013 AACR.

  16. Identification of peptides in wheat germ hydrolysate that demonstrate calmodulin-dependent protein kinase II inhibitory activity.

    Science.gov (United States)

    Kumrungsee, Thanutchaporn; Akiyama, Sayaka; Guo, Jian; Tanaka, Mitsuru; Matsui, Toshiro

    2016-12-15

    Hydrolysis of wheat germ by proteases resulted in bioactive peptides that demonstrated an inhibitory effect against the vasoconstrictive Ca(2+)-calmodulin (CaM)-dependent protein kinase II (CaMK II). The hydrolysate by thermolysin (1.0wt%, 5h) showed a particularly potent CaMK II inhibition. As a result of mixed mode high-performance liquid chromatography of thermolysin hydrolysate with pH elution gradient ranging between 4.8 and 8.9, the fraction eluted at pH 8.9 was the most potent CaMK II inhibitor. From this fraction, Trp-Val and Trp-Ile were identified as CaMK II inhibitors. In Sprague-Dawley rats, an enhanced aortic CaMK II activity by 1μM phenylephrine was significantly (pCaMK II activity assays, it was concluded that Trp-Val and Trp-Ile competed with Ca(2+)-CaM complex to bind to CaMK II with Ki values of 5.4 and 3.6μM, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cloning and quantitative determination of the human Ca2+/calmodulin-dependent protein kinase II (CaMK II) isoforms in human beta cells.

    Science.gov (United States)

    Rochlitz, H; Voigt, A; Lankat-Buttgereit, B; Göke, B; Heimberg, H; Nauck, M A; Schiemann, U; Schatz, H; Pfeiffer, A F

    2000-04-01

    The Ca2+/calmodulin-dependent protein kinase II (CaMK II) is highly expressed in pancreatic islets and associated with insulin secretion vesicles. The suppression of CaMK II disturbs insulin secretion and insulin gene expression. There are four isoforms of CaMK II, alpha to delta, that are expressed from different genes in mammals. Our aim was to identify the isoforms of CaMK II expressed in human beta cells by molecular cloning from a human insulinoma cDNA library and to assess its distribution in humans. The previously unknown complete coding sequences of human CaMK IIbeta and the kinase domain of CaMK IIdelta were cloned from a human insulinoma cDNA library. Quantitative determination of CaMK II isoform mRNA was carried out in several tissues and beta cells purified by fluorescence activated cell sorting and compared to the housekeeping enzyme pyruvate dehydrogenase. We found CaMK IIbeta occurred in three splice variants and was highly expressed in endocrine tissues such as adrenals, pituitary and beta cells. Liver showed moderate expression but adipose tissue or lymphocytes had very low levels of CaMK IIbeta-mRNA. In human beta cells CaMK IIbeta and delta were expressed equally with pyruvate dehydrogenase whereas tenfold lower expression of CaMK IIgamma and no expression of CaMK IIalpha were found. Although CaMK IIdelta is ubiquitously expressed, CaMK IIbeta shows preferential expression in neuroendocrine tissues. In comparison with the expression of a key regulatory enzyme in glucose oxidation, pyruvate dehydrogenase, two of the four CaM kinases investigated are expressed at equally high levels, which supports an important role in beta-cell physiology. These results provide the basis for exploring the pathophysiological relevance of CaMK IIbeta in human diabetes.

  18. Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) interacts with neurofilament L and inhibits its filament association

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Hana [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Katoh, Tsuyoshi [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Nakagawa, Ryoko; Ishihara, Yasuhiro [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Sueyoshi, Noriyuki; Kameshita, Isamu [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795 (Japan); Taniguchi, Takanobu [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Hirano, Tetsuo; Yamazaki, Takeshi [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Ishida, Atsuhiko, E-mail: aishida@hiroshima-u.ac.jp [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan)

    2016-09-02

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nM (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.

  19. CART peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient overexpression of α-Ca2+/Calmodulin-dependent Protein Kinase II.

    Science.gov (United States)

    Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhen Zhen

    2018-01-04

    Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. The present study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-overexpressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-overexpressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-overexpressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Antipsychotic drugs up-regulate tryptophan hydroxylase in ADF neurons of Caenorhabditis elegans: role of calcium-calmodulin-dependent protein kinase II and transient receptor potential vanilloid channel.

    Science.gov (United States)

    Donohoe, Dallas R; Phan, Thang; Weeks, Kathrine; Aamodt, Eric J; Dwyer, Donard S

    2008-08-15

    Antipsychotic drugs produce acute behavioral effects through antagonism of dopamine and serotonin receptors, and long-term adaptive responses that are not well understood. The goal of the study presented here was to use Caenorhabditis elegans to investigate the molecular mechanism or mechanisms that contribute to adaptive responses produced by antipsychotic drugs. First-generation antipsychotics, trifluoperazine and fluphenazine, and second-generation drugs, clozapine and olanzapine, increased the expression of tryptophan hydroxylase-1::green fluorescent protein (TPH-1::GFP) and serotonin in the ADF neurons of C. elegans. This response was absent or diminished in mutant strains lacking the transient receptor potential vanilloid channel (TRPV; osm-9) or calcium/calmodulin-dependent protein kinase II (CaMKII; unc-43). The role of calcium signaling was further implicated by the finding that a selective antagonist of calmodulin and a calcineurin inhibitor also enhanced TPH-1::GFP expression. The ADF neurons modulate foraging behavior (turns/reversals off food) through serotonin production. We found that short-term exposure to the antipsychotic drugs altered the frequency of turns/reversals off food. This response was mediated through dopamine and serotonin receptors and was abolished in serotonin-deficient mutants (tph-1) and strains lacking the SER-1 and MOD-1 serotonin receptors. Consistent with the increase in serotonin in the ADF neurons induced by the drugs, drug withdrawal after 24-hr treatment was accompanied by a rebound in the number of turns/reversals, which demonstrates behavioral adaptation in serotonergic systems. Characterization of the cellular, molecular, and behavioral adaptations to continuous exposure to antipsychotic drugs may provide insight into the long-term clinical effects of these medications.

  1. Genetic variation in the calcium/calmodulin-dependent protein kinase (CaMK) pathway is associated with antidepressant response in females.

    Science.gov (United States)

    Shi, Yanyan; Yuan, Yonggui; Xu, Zhi; Pu, Mengjia; Wang, Congjie; Zhang, Yumei; Liu, Zhening; Wang, Chuanyue; Li, Lingjiang; Zhang, Zhijun

    2012-02-01

    Antidepressant effects on monoamine neurotransmission may be influenced by genetic variation in intracellular signal transduction pathways, such as the cyclic adenosine monophosphate (cAMP)--protein kinase A (PKA) pathway, Ras-mitogen activated protein kinase (MAPK) pathway and calcium/calmodulin-dependent protein kinase (CaMK) pathway. The aims of this study were to examine the association of polymorphisms in candidate genes of these three signal transduction pathways with response to antidepressant treatment, and to determine the effects of, and interactions with, environment factors. We recruited 412 patients who met diagnosis criteria for major depressive disorder (MDD) (DSM-IV Axis I). 284 patients completed 8 weeks treatment with selective serotonin reuptake inhibitors (SSRIs) or serotonin and noradrenergic reuptake inhibitors (SNRIs). Severity of depression was measured with the Hamilton Depression Rating Scale (HDRS) before and after 8 weeks antidepressant treatment. 209 patients completed the Childhood Trauma Questionnaire, 28 item Short Form (CTQ-SF) which was used to evaluate childhood adverse events. 218 patients completed the Life Events Scale (LES) which were used to evaluate life stress before onset. 155 SNPs in 66 candidate genes were genotyping by Illumina GoldenGate, including 28 SNPs in 15 genes of cAMP-PKA pathway, 37 SNPs in 17 genes of Ras-MAPK pathway and 90 SNPs in 34 genes of CaMK pathway. The remission criterion was HDRS score equal to or less than 7. Single SNP and haplotype associations were analyzed by UNPHASED 3.3.13. Gene-environment interactions were analyzed by binary logistic regression with SPSS 11.0 software. The rs2230372 SNP in ITPR2, rs2280272 in PRKCZ, rs17109671, and rs17109674 in PLCE1 were significant associated with remission, as were haplotypes in PRKCZ and PLCE1. All these positive associations were found in genes of the CaMK pathway, but not the cAMP-PKA or Ras-MAPK pathways. There were no significant differences in

  2. Calcium/calmodulin-dependent protein kinase (CaMK) Ialpha mediates the macrophage inflammatory response to sepsis.

    Science.gov (United States)

    Zhang, Xianghong; Guo, Lanping; Collage, Richard D; Stripay, Jennifer L; Tsung, Allan; Lee, Janet S; Rosengart, Matthew R

    2011-08-01

    Dysregulated Ca(2+) handling is prevalent during sepsis and postulated to perpetuate the aberrant inflammation underlying subsequent organ dysfunction and death. The signal transduction cascades mediating these processes are unknown. Here, we identify that CaMKIα mediates the Mϕ response to LPS in vitro and the inflammation and organ dysfunction of sepsis in vivo. We show that LPS induced active pThr(177)-CaMKIα in RAW 264.7 cells and murine peritoneal Mϕ, which if inhibited biochemically with STO609 (CaMKK inhibitor) or by RNAi, reduces LPS-induced production of IL-10. Transfection of constitutively active CaMKIα (CaMKI293), but not a kinase-deficient mutant (CaMKI293(K49A)), induces IL-10 release. This production of IL-10 is mediated by CaMKIα-dependent regulation of p38 MAPK activation. CaMKIα activity also mediates the cellular release of HMGB1 by colocalizing with and regulating the packaging of HMGB1 into secretory lysosomes. During endotoxemia, mice receiving in vivo CaMKIα(RNAi) display reduced systemic concentrations of IL-10 and HMGB1 in comparison with mice receiving NT(RNAi). These data support the biological relevance of CaMKIα-dependent IL-10 production and HMGB1 secretion. In a CLP model of sepsis, CaMKIα(RNAi) mice display reduced systemic concentrations of IL-10, IL-6, TNF-α, and HMGB1 in comparison with NT(RNAi) mice, which correlate with reductions in the development of renal dysfunction. These data support that CaMKIα signaling is integral to the Mϕ responding to LPS and may also be operant in vivo in regulating the inflammation and organ dysfunction consequent to sepsis.

  3. The role of Ca{sup 2+}/calmodulin-dependent protein kinase II and calcineurin in TNF-α-induced myocardial hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gui-Jun [Department of Infectious Diseases, First Affiliated Hospital, China Medical University, Shenyang Liaoning Province (China); Liaoning Medical College, Jinzhou (China); Wang, Hong-Xin; Yao, Yu-Sheng; Guo, Lian-Yi [Liaoning Medical College, Jinzhou (China); Liu, Pei [Department of Infectious Diseases, First Affiliated Hospital, China Medical University, Shenyang Liaoning Province (China)

    2012-07-27

    We investigated whether Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 µg/L), and Ca{sup 2+} signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca{sup 2+}]{sub i} transients, CaMKIIδ{sub B} and CaN were evaluated by the Lowry method, [{sup 3}H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 µg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 µg/L) significantly increased the amplitude of spontaneous [Ca{sup 2+}]{sub i} transients, the total protein content, cell size, and [{sup 3}H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca{sup 2+} chelator. The increases in protein content, cell size and [{sup 3}H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδ{sub B} by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca{sup 2+}]{sub i}, CaMKIIδ{sub B} and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca{sup 2+}/CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α.

  4. Ca2+/Calmodulin-Dependent Protein Kinase II and Androgen Signaling Pathways Modulate MEF2 Activity in Testosterone-Induced Cardiac Myocyte Hypertrophy

    Directory of Open Access Journals (Sweden)

    Javier Duran

    2017-09-01

    Full Text Available Testosterone is known to induce cardiac hypertrophy through androgen receptor (AR-dependent and -independent pathways, but the molecular underpinnings of the androgen action remain poorly understood. Previous work has shown that Ca2+/calmodulin-dependent protein kinase II (CaMKII and myocyte-enhancer factor 2 (MEF2 play key roles in promoting cardiac myocyte growth. In order to gain mechanistic insights into the action of androgens on the heart, we investigated how testosterone affects CaMKII and MEF2 in cardiac myocyte hypertrophy by performing studies on cultured rat cardiac myocytes and hearts obtained from adult male orchiectomized (ORX rats. In cardiac myocytes, MEF2 activity was monitored using a luciferase reporter plasmid, and the effects of CaMKII and AR signaling pathways on MEF2C were examined by using siRNAs and pharmacological inhibitors targeting these two pathways. In the in vivo studies, ORX rats were randomly assigned to groups that were administered vehicle or testosterone (125 mg⋅kg-1⋅week-1 for 5 weeks, and plasma testosterone concentrations were determined using ELISA. Cardiac hypertrophy was evaluated by measuring well-characterized hypertrophy markers. Moreover, western blotting was used to assess CaMKII and phospholamban (PLN phosphorylation, and MEF2C and AR protein levels in extracts of left-ventricle tissue from control and testosterone-treated ORX rats. Whereas testosterone treatment increased the phosphorylation levels of CaMKII (Thr286 and phospholambam (PLN (Thr17 in cardiac myocytes in a time- and concentration-dependent manner, testosterone-induced MEF2 activity and cardiac myocyte hypertrophy were prevented upon inhibition of CaMKII, MEF2C, and AR signaling pathways. Notably, in the hypertrophied hearts obtained from testosterone-administered ORX rats, both CaMKII and PLN phosphorylation levels and AR and MEF2 protein levels were increased. Thus, this study presents the first evidence indicating that

  5. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II.

    Directory of Open Access Journals (Sweden)

    Shirley Pepke

    2010-02-01

    Full Text Available During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,including Ca2+/calmodulin-dependent protein kinase II (CaMKII, are regulated by calmodulin, a small protein that can bindup to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic

  6. Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy.

    Science.gov (United States)

    Pfisterer, Simon G; Mauthe, Mario; Codogno, Patrice; Proikas-Cezanne, Tassula

    2011-12-01

    Autophagy is initiated by multimembrane vesicle (autophagosome) formation upon mammalian target of rapamycin inhibition and phosphatidylinositol 3-phosphate [PtdIns(3)P] generation. Upstream of microtubule-associated protein 1 light chain 3 (LC3), WD-repeat proteins interacting with phosphoinositides (WIPI proteins) specifically bind PtdIns(3)P at forming autophagosomal membranes and become membrane-bound proteins of generated autophagosomes. Here, we applied automated high-throughput WIPI-1 puncta analysis, paralleled with LC3 lipidation assays, to investigate Ca(2+)-mediated autophagy modulation. We imposed cellular stress by starvation or administration of etoposide (0.5-50 μM), sorafenib (1-40 μM), staurosporine (20-500 nM), or thapsigargin (20-500 nM) (1, 2, or 3 h) and measured the formation of WIPI-1 positive autophagosomal membranes. Automated analysis of up to 5000 individual cells/treatment demonstrated that Ca(2+) chelation by BAPTA-AM (10 and 30 μM) counteracted starvation or pharmacological compound-induced WIPI-1 puncta formation and LC3 lipidation. Application of selective Ca(2+)/calmodulin-dependent kinase kinase (CaMKK) α/β and calmodulin-dependent kinase (CaMK) I/II/IV inhibitors 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid acetate (STO-609; 10-30 μg/ml) and 2-(N-[2-hydroxyethyl])-N-(4-methoxybenzenesulfonyl)amino-N-(4-chlorocinnamyl)-N-methylamine (KN-93; 1-10 μM), respectively, significantly reduced starvation-induced autophagosomal membrane formation, suggesting that Ca(2+) mobilization upon autophagy induction involves CaMKI/IV. By small interefering RNA (siRNA)-mediated down-regulation of CaMKI or CaMKIV, we demonstrate that CaMKI contributes to stimulation of WIPI-1. In line, WIPI-1 positive autophagosomal membranes were formed in AMP-activated protein kinase (AMPK) α(1)/α(2)-deficient mouse embryonic fibroblasts upon nutrient starvation, whereas basal autophagy was prominently reduced. However, transient down

  7. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia.

    Science.gov (United States)

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2016-12-21

    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  8. Interaction of LDL receptor-related protein 4 (LRP4) with postsynaptic scaffold proteins via its C-terminal PDZ domain-binding motif, and its regulation by Ca/calmodulin-dependent protein kinase II.

    Science.gov (United States)

    Tian, Qing-Bao; Suzuki, Tatsuo; Yamauchi, Takashi; Sakagami, Hiroyuki; Yoshimura, Yoshiyuki; Miyazawa, Shoko; Nakayama, Kohzo; Saitoh, Fuminori; Zhang, Jing-Ping; Lu, Yonghao; Kondo, Hisatake; Endo, Shogo

    2006-06-01

    We cloned here a full-length cDNA of Dem26[Tian et al. (1999)Mol. Brain Res., 72, 147-157], a member of the low-density lipoprotein (LDL) receptor gene family from the rat brain. We originally named the corresponding protein synaptic LDL receptor-related protein (synLRP) [Tian et al. (2002) Soc. Neurosci. Abstr., 28, 405] and have renamed it LRP4 to accord it systematic nomenclature (GenBank(TM) accession no. AB073317). LRP4 protein interacted with postsynaptic scaffold proteins such as postsynaptic density (PSD)-95 via its C-terminal tail sequence, and associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor subunit. The mRNA of LRP4 was localized to dendrites, as well as somas, of neuronal cells, and the full-length protein of 250 kDa was highly concentrated in the brain and localized to various subcellular compartments in the brain, including synaptic fractions. Immunocytochemical study using cultured cortical neurons suggested surface localization in the neuronal cells both in somas and dendrites. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylated the C-terminal cytoplasmic region of LRP4 at Ser1887 and Ser1900, and the phosphorylation at the latter site suppressed the interaction of the protein with PSD-95 and synapse-associated protein 97 (SAP97). These findings suggest a postsynaptic role for LRP4, a putative endocytic multiligand receptor, and a mechanism in which CaMKII regulates PDZ-dependent protein-protein interactions and receptor dynamics.

  9. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat.

    Science.gov (United States)

    Zhou, Keren; Enkhjargal, Budbazar; Xie, Zhiyi; Sun, Chengmei; Wu, Lingyun; Malaguit, Jay; Chen, Sheng; Tang, Jiping; Zhang, Jianmin; Zhang, John H

    2018-01-01

    The NLRP3 (nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome is a crucial component of the inflammatory response in early brain injury after subarachnoid hemorrhage (SAH). In this study, we investigated a role of dihydrolipoic acid (DHLA) in lysosomal rupture, NLRP3 activation, and determined the underlying pathway. SAH was induced by endovascular perforation in male Sprague-Dawley rats. DHLA was administered intraperitoneally 1 hour after SAH. Small interfering RNA for lysosome-associated membrane protein-1 and CaMKIIα (calcium/calmodulin-dependent protein kinase II α) was administered through intracerebroventricular 48 hours before SAH induction. SAH grade evaluation, short- and long-term neurological function testing, Western blot, and immunofluorescence staining experiments were performed. DHLA treatment increased the expression of lysosome-associated membrane protein-1 and decreased phosphorylated CaMKIIα and NLRP3 inflammasome, thereby alleviating neurological deficits after SAH. Lysosome-associated membrane protein-1 small interfering RNA abolished the neuroprotective effects of DHLA and increased the level of phosphorylated CaMKIIα, p-TAK1 (phosphorylated transforming growth factor-β-activated kinase), p-JNK (phosphorylated c-Jun-N-terminal kinase), and NLRP3 inflammasome. CaMKIIα small interfering RNA downregulated the expression of p-TAK1, p-JNK, and NLRP3 and improved the neurobehavior after SAH. DHLA treatment improved neurofunction and alleviated inflammation through the lysosome-associated membrane protein-1/CaMKII/TAK1 pathway in early brain injury after SAH. DHLA may provide a promising treatment to alleviate early brain injury after SAH. © 2017 American Heart Association, Inc.

  10. Calmodulin-dependent Protein Kinase II/cAMP Response Element-binding Protein/Wnt/β-Catenin Signaling Cascade Regulates Angiotensin II-induced Podocyte Injury and Albuminuria*

    Science.gov (United States)

    Jiang, Lei; Xu, Lingling; Song, Yuxian; Li, Jianzhong; Mao, Junhua; Zhao, Allan Zijian; He, Weichun; Yang, Junwei; Dai, Chunsun

    2013-01-01

    Angiotensin II (Ang II) plays a pivotal role in promoting podocyte dysfunction and albuminuria, however, the underlying mechanisms have not been fully delineated. In this study, we found that Ang II induced Wnt1 expression and β-catenin nuclear translocation in cultured mouse podocytes. Blocking Wnt signaling with Dickkopf-1 (Dkk1) or β-catenin siRNA attenuated Ang II-induced podocyte injury. Ang II could also induce the phosphorylation of calmodulin-dependent protein kinase (CaMK) II and cAMP response element-binding protein (CREB) in cultured podocytes. Blockade of this pathway with CK59 or CREB siRNA could significantly inhibit Ang II-induced Wnt/β-catenin signaling and podocyte injury. In in vivo studies, administration of Ang II promoted Wnt/β-catenin signaling, aggregated podocyte damage, and albuminuria in mice. CK59 could remarkably ameliorate Ang II-induced podocyte injury and albuminuria. Furthermore, ectopic expression of exogenous Dkk1 also attenuated Ang II-induced podocytopathy in mice. Taken together, this study demonstrates that the CaMK II/CREB/Wnt/β-catenin signaling cascade plays an important role in regulating Ang II-induced podocytopathy. Targeting this signaling pathway may offer renal protection against the development of proteinuric kidney diseases. PMID:23803607

  11. Functional processing of nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N): evidence for a critical role of proteolytic processing in the regulation of its catalytic activity, subcellular localization and substrate targeting in vivo.

    Science.gov (United States)

    Sueyoshi, Noriyuki; Nimura, Takaki; Onouchi, Takashi; Baba, Hiromi; Takenaka, Shinobu; Ishida, Atsuhiko; Kameshita, Isamu

    2012-01-01

    Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear homolog CaMKP-N are Ser/Thr protein phosphatases that belong to the PPM family. These phosphatases are highly specific for multifunctional CaM kinases and negatively regulate their activities. CaMKP-N is only expressed in the brain and specifically localized in the nucleus. In this study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing in both the zebrafish brain and Neuro2a cells. In Neuro2a cells, the proteolytic processing was effectively inhibited by the proteasome inhibitors MG-132, Epoxomicin, and Lactacystin, suggesting that the ubiquitin-proteasome pathway was involved in this processing. Using MG-132, we found that the proteolytic processing changed the subcellular localization of zCaMKP-N from the nucleus to the cytosol. Accompanying this change, the cellular targets of zCaMKP-N in Neuro2a cells were significantly altered. Furthermore, we obtained evidence that the zCaMKP-N activity was markedly activated when the C-terminal domain was removed by the processing. Thus, the proteolytic processing of zCaMKP-N at the C-terminal region regulates its catalytic activity, subcellular localization and substrate targeting in vivo. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Regulation of microtubule dynamics by Ca2+/calmodulin-dependent kinase IV/Gr-dependent phosphorylation of oncoprotein 18.

    OpenAIRE

    Melander Gradin, H; Marklund, U; Larsson, N; Chatila, T A; Gullberg, M.

    1997-01-01

    Oncoprotein 18 (Op18; also termed p19, 19K, p18, prosolin, and stathmin) is a regulator of microtubule (MT) dynamics and is phosphorylated by multiple kinase systems on four Ser residues. In addition to cell cycle-regulated phosphorylation, external signals induce phosphorylation of Op18 on Ser-25 by the mitogen-activated protein kinase and on Ser-16 by the Ca2+/calmodulin-dependent kinase IV/Gr (CaMK IV/Gr). Here we show that induced expression of a constitutively active mutant of CaMK IV/Gr...

  13. Afamin stimulates osteoclastogenesis and bone resorption via Gi-coupled receptor and Ca2+/calmodulin-dependent protein kinase (CaMK) pathways.

    Science.gov (United States)

    Kim, B J; Lee, Y S; Lee, S Y; Park, S Y; Dieplinger, H; Yea, K; Lee, S H; Koh, J M; Kim, G S

    2013-11-01

    Afamin was recently identified as a novel osteoclast-derived coupling factor that can stimulate the in vitro and in vivo migration of preosteoblasts. In order to understand in more detail the biological roles of afamin in bone metabolism, we investigated its effects on osteoclastic differentiation and bone resorption. Osteoclasts were differentiated from mouse bone marrow cells. Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were considered as osteoclasts, and the resorption area was determined by incubating the cells on dentine discs. The intracellular cAMP level was determined using a direct enzyme immunoassay. Signaling pathways were investigated using western blot and RT-PCR. Recombinant afamin was administered exogenously to bone cell cultures. Afamin stimulated both osteoclastogenesis and in vitro bone resorption. Consistently, the expressions of osteoclast differentiation markers were significantly increased by afamin. Although afamin mainly affected the late-differentiation stages of osteoclastogenesis, the expression levels of receptor activator of nuclear factor-κB ligand (RANKL)-dependent signals were not changed. Afamin markedly decreased the levels of intracellular cAMP with reversal by pretreatment with pertussis toxin (PTX), a specific inhibitor of Gi-coupled receptor signaling. In addition, PTX almost completely blocked afamin-stimulated osteoclastogenesis. Furthermore, pretreatment with KN93 and STO609 - Ca2+/cal - mo dulin-dependent protein kinase (CaMK) and CaMK kinase inhibitors, respectively - significantly prevented decreases in the intracellular cAMP level by afamin while attenuating afamin-stimulated osteoclastogenesis. Afamin enhances osteoclastogenesis by decreasing intracellular cAMP levels via Gi-coupled receptor and CaMK pathways.

  14. Sex differences in pain-related behavior and expression of calcium/calmodulin-dependent protein kinase II in dorsal root ganglia of rats with diabetes type 1 and type 2.

    Science.gov (United States)

    Ferhatovic, Lejla; Banozic, Adriana; Kostic, Sandra; Sapunar, Damir; Puljak, Livia

    2013-06-01

    Sex differences in pain-related behavior and expression of calcium/calmodulin dependent protein kinase II (CaMKII) in dorsal root ganglia were studied in rat models of Diabetes mellitus type 1 (DM1) and type 2 (DM2). DM1 was induced with 55mg/kg streptozotocin, and DM2 with a combination of high-fat diet and 35mg/kg of streptozotocin. Pain-related behavior was analyzed using thermal and mechanical stimuli. The expression of CaMKII was analyzed with immunofluorescence. Sexual dimorphism in glycemia, and expression of CaMKII was observed in the rat model of DM1, but not in DM2 animals. Increased expression of total CaMKII (tCaMKII) in small-diameter dorsal root ganglia neurons, which are associated with nociception, was found only in male DM1 rats. None of the animals showed increased expression of the phosphorylated alpha CaMKII isoform in small-diameter neurons. The expression of gamma and delta isoforms of CaMKII remained unchanged in all analyzed animal groups. Different patterns of glycemia and tCaMKII expression in male and female model of DM1 were not associated with sexual dimorphism in pain-related behavior. The present findings do not suggest sex-related differences in diabetic painful peripheral neuropathy in male and female diabetic rats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. A novel mechanism for Ca2+/calmodulin-dependent protein kinase II targeting to L-type Ca2+channels that initiates long-range signaling to the nucleus.

    Science.gov (United States)

    Wang, Xiaohan; Marks, Christian R; Perfitt, Tyler L; Nakagawa, Terunaga; Lee, Amy; Jacobson, David A; Colbran, Roger J

    2017-10-20

    Neuronal excitation can induce new mRNA transcription, a phenomenon called excitation-transcription (E-T) coupling. Among several pathways implicated in E-T coupling, activation of voltage-gated L-type Ca 2+ channels (LTCCs) in the plasma membrane can initiate a signaling pathway that ultimately increases nuclear CREB phosphorylation and, in most cases, expression of immediate early genes. Initiation of this long-range pathway has been shown to require recruitment of Ca 2+ -sensitive enzymes to a nanodomain in the immediate vicinity of the LTCC by an unknown mechanism. Here, we show that activated Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) strongly interacts with a novel binding motif in the N-terminal domain of Ca V 1 LTCC α1 subunits that is not conserved in Ca V 2 or Ca V 3 voltage-gated Ca 2+ channel subunits. Mutations in the Ca V 1.3 α1 subunit N-terminal domain or in the CaMKII catalytic domain that largely prevent the in vitro interaction also disrupt CaMKII association with intact LTCC complexes isolated by immunoprecipitation. Furthermore, these same mutations interfere with E-T coupling in cultured hippocampal neurons. Taken together, our findings define a novel molecular interaction with the neuronal LTCC that is required for the initiation of a long-range signal to the nucleus that is critical for learning and memory. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Ca(2+)/calmodulin-dependent protein kinase IIα (αCaMKII) controls the activity of the dopamine transporter: implications for Angelman syndrome.

    Science.gov (United States)

    Steinkellner, Thomas; Yang, Jae-Won; Montgomery, Therese R; Chen, Wei-Qiang; Winkler, Marie-Therese; Sucic, Sonja; Lubec, Gert; Freissmuth, Michael; Elgersma, Ype; Sitte, Harald H; Kudlacek, Oliver

    2012-08-24

    The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are both used clinically in the treatment of attention-deficit hyperactivity disorder and narcolepsy. The action of amphetamines, which induce transport reversal, relies primarily on the ionic composition of the intra- and extracellular milieus. Recent findings suggest that DAT interacting proteins may also play a significant role in the modulation of reverse dopamine transport. The pharmacological inhibition of the serine/threonine kinase αCaMKII attenuates amphetamine-triggered DAT-mediated 1-methyl-4-phenylpyridinium (MPP(+)) efflux. More importantly, αCaMKII has also been shown to bind DAT in vitro and is therefore believed to be an important player within the DAT interactome. Herein, we show that αCaMKII co-immunoprecipitates with DAT in mouse striatal synaptosomes. Mice, which lack αCaMKII or which express a permanently self-inhibited αCaMKII (αCaMKII(T305D)), exhibit significantly reduced amphetamine-triggered DAT-mediated MPP(+) efflux. Additionally, we investigated mice that mimic a neurogenetic disease known as Angelman syndrome. These mice possess reduced αCaMKII activity. Angelman syndrome mice demonstrated an impaired DAT efflux function, which was comparable with that of the αCaMKII mutant mice, indicating that DAT-mediated dopaminergic signaling is affected in Angelman syndrome.

  17. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.

    Science.gov (United States)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Intracellular translocation of calmodulin and Ca{sup 2+}/calmodulin-dependent protein kinase II during the development of hypertrophy in neonatal cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, Jaya Pal, E-mail: jaya@bbri.org [Boston Biomedical Research Institute, Watertown, MA 02472 (United States); Ikemoto, Noriaki [Boston Biomedical Research Institute, Watertown, MA 02472 (United States); Department of Neurology, Harvard Medical School, Boston, MA 02115 (United States)

    2010-05-28

    We have recently shown that stimulation of cultured neonatal cardiomyocytes with endothelin-1 (ET-1) first produces conformational disorder within the ryanodine receptor (RyR2) and diastolic Ca{sup 2+} leak from the sarcoplasmic reticulum (SR), then develops hypertrophy (HT) in the cardiomyocytes (Hamada et al., 2009 ). The present paper addresses the following question. By what mechanism does crosstalk between defective operation of RyR2 and activation of the HT gene program occur? Here we show that the immuno-stain of calmodulin (CaM) is localized chiefly in the cytoplasmic area in the control cells; whereas, in the ET-1-treated/hypertrophied cells, major immuno-staining is localized in the nuclear region. In addition, fluorescently labeled CaM that has been introduced into the cardiomyocytes using the BioPORTER system moves from the cytoplasm to the nucleus with the development of HT. The immuno-confocal imaging of Ca{sup 2+}/CaM-dependent protein kinase II (CaMKII) also shows cytoplasm-to-nucleus shift of the immuno-staining pattern in the hypertrophied cells. In an early phase of hypertrophic growth, the frequency of spontaneous Ca{sup 2+} transients increases, which accompanies with cytoplasm-to-nucleus translocation of CaM. In a later phase of hypertrophic growth, further increase in the frequency of spontaneous Ca{sup 2+} transients results in the appearance of trains of Ca{sup 2+} spikes, which accompanies with nuclear translocation of CaMKII. The cardio-protective reagent dantrolene (the reagent that corrects the de-stabilized inter-domain interaction within the RyR2 to a normal mode) ameliorates aberrant intracellular Ca{sup 2+} events and prevents nuclear translocation of both CaM and CaMKII, then prevents the development of HT. These results suggest that translocation of CaM and CaMKII from the cytoplasm to the nucleus serves as messengers to transmit the pathogenic signal elicited in the surface membrane and in the RyR2 to the nuclear transcriptional

  19. Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell.

    Science.gov (United States)

    Robison, Alfred J; Vialou, Vincent; Mazei-Robison, Michelle; Feng, Jian; Kourrich, Saïd; Collins, Miles; Wee, Sunmee; Koob, George; Turecki, Gustavo; Neve, Rachael; Thomas, Mark; Nestler, Eric J

    2013-03-06

    The transcription factor ΔFosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKIIα) are induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse, in which the two proteins mediate sensitized drug responses. Although ΔFosB and CaMKIIα both regulate AMPA glutamate receptor expression and function in NAc, dendritic spine formation on NAc medium spiny neurons (MSNs), and locomotor sensitization to cocaine, no direct link between these molecules has to date been explored. Here, we demonstrate that ΔFosB is phosphorylated by CaMKIIα at the protein-stabilizing Ser27 and that CaMKII is required for the cocaine-mediated accumulation of ΔFosB in rat NAc. Conversely, we show that ΔFosB is both necessary and sufficient for cocaine induction of CaMKIIα gene expression in vivo, an effect selective for D1-type MSNs in the NAc shell subregion. Furthermore, induction of dendritic spines on NAc MSNs and increased behavioral responsiveness to cocaine after NAc overexpression of ΔFosB are both CaMKII dependent. Importantly, we demonstrate for the first time induction of ΔFosB and CaMKII in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These data establish that ΔFosB and CaMKII engage in a cell-type- and brain-region-specific positive feedforward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.

  20. Inhibitory effects of KN-93, an inhibitor of Ca2+ calmodulin-dependent protein kinase II, on light-regulated root gravitropism in maize

    Science.gov (United States)

    Feldman, L. J.; Hidaka, H.

    1993-01-01

    Light is essential for root gravitropism in Zea mays L., cultivar Merit. It is hypothesized that calcium mediates this light-regulated response. KN-93, an inhibitor of calcium/calmodulin kinase II (CaMK II), inhibits light-regulated root gravitropism but does not affect light perception. We hypothesize that CaMK II, or a homologue, operates late in the light/gravity signal transduction chain. Here we provide evidence suggesting a possible physiological involvement of CaMK II in root gravitropism in plants.

  1. In Vivo Post-Cardiac Arrest Myocardial Dysfunction Is Supported by Ca2+/Calmodulin-Dependent Protein Kinase II-Mediated Calcium Long-Term Potentiation and Mitigated by Alda-1, an Agonist of Aldehyde Dehydrogenase Type 2.

    Science.gov (United States)

    Woods, Christopher; Shang, Ching; Taghavi, Fouad; Downey, Peter; Zalewski, Adrian; Rubio, Gabriel R; Liu, Jing; Homburger, Julian R; Grunwald, Zachary; Qi, Wei; Bollensdorff, Christian; Thanaporn, Porama; Ali, Ayyaz; Riemer, Kirk; Kohl, Peter; Mochly-Rosen, Daria; Gerstenfeld, Edward; Large, Stephen; Ali, Ziad; Ashley, Euan

    2016-09-27

    Survival after sudden cardiac arrest is limited by postarrest myocardial dysfunction, but understanding of this phenomenon is constrained by a lack of data from a physiological model of disease. In this study, we established an in vivo model of cardiac arrest and resuscitation, characterized the biology of the associated myocardial dysfunction, and tested novel therapeutic strategies. We developed rodent models of in vivo postarrest myocardial dysfunction using extracorporeal membrane oxygenation resuscitation followed by invasive hemodynamics measurement. In postarrest isolated cardiomyocytes, we assessed mechanical load and Ca(2) (+)-induced Ca(2+) release (CICR) simultaneously using the microcarbon fiber technique and observed reduced function and myofilament calcium sensitivity. We used a novel fiberoptic catheter imaging system and a genetically encoded calcium sensor, GCaMP6f, to image CICR in vivo. We found potentiation of CICR in isolated cells from this extracorporeal membrane oxygenation model and in cells isolated from an ischemia/reperfusion Langendorff model perfused with oxygenated blood from an arrested animal but not when reperfused in saline. We established that CICR potentiation begins in vivo. The augmented CICR observed after arrest was mediated by the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Increased phosphorylation of CaMKII, phospholamban, and ryanodine receptor 2 was detected in the postarrest period. Exogenous adrenergic activation in vivo recapitulated Ca(2+) potentiation but was associated with lesser CaMKII activation. Because oxidative stress and aldehydic adduct formation were high after arrest, we tested a small-molecule activator of aldehyde dehydrogenase type 2, Alda-1, which reduced oxidative stress, restored calcium and CaMKII homeostasis, and improved cardiac function and postarrest outcome in vivo. Cardiac arrest and reperfusion lead to CaMKII activation and calcium long-term potentiation, which

  2. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  3. Distribution of calcium/calmodulin-dependent kinase 2 in the brain of Apteronotus leptorhynchus.

    Science.gov (United States)

    Maler, L; Hincke, M T

    1999-05-31

    Antibodies directed against the mammalian alpha and beta subunits of calcium/calmodulin-dependent kinase 2 (CaMK2) and brain dissection were used for immunoblot analysis of these proteins in various brain regions of Apteronotus leptorhynchus. Western blots revealed that the CaMK2alpha antibody labeled a single band of the expected molecular mass (approximately 50 kDa) for this enzyme in rat cortex and electric fish brain. CaMK2alpha was enriched in fish forebrain and hypothalamus and also strongly expressed in midbrain sensory areas. Western blots revealed that CaMK2beta antibodies labeled bands in an appropriate molecular mass range (approximately 58-64 kDa) for this enzyme in mammalian cortex and electric fish brain. However, a higher molecular mass band (approximately 80 kDa) was also labeled; because all these bands were eliminated by preadsorbtion with the CaMK2-derived peptide antigen, they may all represent CaMK2beta-like isoforms. We mapped the brain distribution of CaMK2 isoforms with emphasis on the electrosensory system. CaMK2alpha was present at high density in dorsal forebrain, hypothalamic nuclei, torus semicircularis, and tectum. It was also enriched in discrete fiber tracts in forebrain, diencephalon, and rhombencephalon. CaMK2beta-like isoforms were enriched in ventral forebrain, hypothalamic nuclei, torus semicircularis and the reticular formation. Unlike CaMK2alpha, CaMK2beta -like isoforms were predominantly present in cell bodies and rarely found in fiber tracts or neuropil. In the electrosensory lateral line lobe, CaMK2alpha was restricted to specific feedback fibers, i.e., tractus stratum fibrosum and its terminal field in the ventral molecular layer. In contrast, CaMK2beta-like isoforms were enriched in somata and dendrites of pyramidal cells and granular interneurons.

  4. Stereological analysis of Ca(2+)/calmodulin-dependent protein kinase II alpha -containing dorsal root ganglion neurons in the rat: colocalization with isolectin Griffonia simplicifolia, calcitonin gene-related peptide, or vanilloid receptor 1.

    Science.gov (United States)

    Carlton, Susan M; Hargett, Gregory L

    2002-06-17

    The enzyme Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is widely distributed in the nervous system. A previous report describes immunostaining for CaMKII alpha in dorsal root ganglion (DRG) neurons. In this study, CaMKII alpha is colocalized in the rat with three putative markers of nociceptive DRG neurons, isolectin Griffonia simplicifolia (I-B4), identifying small-diameter, "peptide-poor" neurons; calcitonin gene-related peptide (CGRP), identifying " peptide-rich" neurons; or the vanilloid receptor 1 (VR1), identifying neurons activated by heat, acid, and capsaicin. Lumbar 4 and 5 DRG sections were labeled using immunofluorescence or lectin binding histochemistry, and percentages of single and double-labeled CaMKIIalpha neurons were determined. Stereological estimates of total neuron number in the L4 DRG were 13,815 +/- 2,798 and in the L5 DRG were 14,111 +/- 4,043. Percentages of single-labeled L4 DRG neurons were 41% +/- 2% CaMKII alpha, 38% +/- 3% I-B4, 44% +/- 3% CGRP, and 32% +/- 6% VR1. Percentages of single-labeled L5 DRG neurons were 44% +/- 5% CaMKII alpha, 48% +/- 2% I-B4, 41% +/- 7% CGRP, and 39% +/- 14% VR1. For L4 and L5, respectively, estimates of double-labeled CaMKII alpha neurons showed 34% +/- 2% and 38% +/- 17% labeled for I-B4, 25% +/- 14% and 19% +/- 10% labeled for CGRP, and 37% +/- 7% and 38% +/- 5% labeled for VR1. Conversely, for L4 and L5, respectively, 39% +/- 14% and 38% +/- 7% I-B4 binding neurons, 24% +/- 12% and 23% +/- 10% CGRP neurons, and 42% +/- 7% and 35% +/- 7% VR1 neurons labeled for CaMKIIalpha. The mean diameter of CaMKII alpha - labeled neurons was approximately 27 microm, confirming that this enzyme was preferentially localized in small DRG neurons. The results indicate that subpopulations of DRG neurons containing CaMKII alpha are likely to be involved in the processing of nociceptive information. Thus, this enzyme may play a critical role in the modulation of nociceptor activity and plasticity of primary

  5. Calcium/calmodulin-dependent kinases are involved in growth, thermotolerance, oxidative stress survival, and fertility in Neurospora crassa.

    Science.gov (United States)

    Kumar, Ravi; Tamuli, Ranjan

    2014-04-01

    Calcium/calmodulin-dependent kinases (Ca(2+)/CaMKs) are Ser/Thr protein kinases that respond to change in cytosolic free Ca(2+) ([Ca(2+)]c) and play multiple cellular roles in organisms ranging from fungi to humans. In the filamentous fungus Neurospora crassa, four Ca(2+)/CaM-dependent kinases, Ca(2+)/CaMK-1 to 4, are encoded by the genes NCU09123, NCU02283, NCU06177, and NCU09212, respectively. We found that camk-1 and camk-2 are essential for full fertility in N. crassa. The survival of ∆camk-2 mutant was increased in induced thermotolerance and oxidative stress conditions. In addition, the ∆camk-1 ∆camk-2, ∆camk-4 ∆camk-2, and ∆camk-3 ∆camk-2 double mutants display slow growth phenotype, reduced aerial hyphae, decreased thermotolerance, and increased sensitivity to oxidative stress, revealing the genetic interactions among these kinases. Therefore, Ca(2+)/CaMKs are involved in growth, thermotolerance, oxidative stress tolerance, and fertility in N. crassa.

  6. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    Science.gov (United States)

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS. © 2015 Wiley Periodicals, Inc.

  7. Differential roles of Ca2+/calmodulin-dependent kinases in posttetanic potentiation at input selective glutamatergic pathways.

    Science.gov (United States)

    Wang, D; Maler, L

    1998-06-09

    The electrosensory lateral line lobe (ELL) of the electric fish Apteronotus leptorhynchus is a layered medullary region receiving electroreceptor input that terminates on basal dendrites of interneurons and projection (pyramidal) cells. The molecular layer of the ELL contains two distinct glutamatergic feedback pathways that terminate on the proximal (ventral molecular layer, VML) and distal (dorsal molecular layer) apical dendrites of pyramidal cells. Western blot analysis with an antibody directed against mammalian Ca2+/calmodulin-dependent kinase 2, alpha subunit (CaMK2alpha) recognized a protein of identical size in the brain of A. leptorhynchus. Immunohistochemistry demonstrated that CaMK2 alpha expression in the ELL was restricted to fibers and terminals in the VML. Posttetanic potentiation (PTP) could be readily elicited in pyramidal cells by stimulation of either VML or DML in brain slices of the ELL. PTP in the VML was blocked by extracellular application of a CaMK2 antagonist (KN62) while intracellular application of KN62 or a CaMK2 inhibitory peptide had no effect, consistent with the presynaptic localization of CaMK2 alpha in VML. PTP in the dorsal molecular layer was not affected by extracellular application of KN62. Anti-Hebbian plasticity has also been demonstrated in the VML, but was not affected by KN62. These results demonstrate that, while PTP can occur independent of CaMK2, it is, in some synapses, dependent on this kinase.

  8. Kainic acid (KA)-induced Ca2+/calmodulin-dependent protein kinase II (CaMK II) expression in the neurons, astrocytes and microglia of the mouse hippocampal CA3 region, and the phosphorylated CaMK II only in the hippocampal neurons.

    Science.gov (United States)

    Suh, Hong-Won; Lee, Han-Kyu; Seo, Young-Jun; Kwon, Min-Soo; Shim, Eon-Jeong; Lee, Jin-Young; Choi, Seong-Soo; Lee, Jong-Ho

    2005-06-24

    In the present study, we investigated the role of Ca2+/calmodulin-dependent protein kinase II (CaMK II) and which types of neuronal cells contain CaMK II and phosphorylated CaMK II (p-CaMK II) in the CA3 hippocampal region of mice using confocal immunofluorescence study. KA increased the CaMK II, p-CaMK II, glial fibrillary acidic protein (GFAP) and complement receptor type 3 (OX-42) immunoreactivities (IR) at 30 min after KA treatment in mouse hippocampal area. In studies, nevertheless KA-induced CaMK II is expressed in neurons or astrocytes or microglia, p-CaMK II is expressed only in neurons. Thus, our results suggest that the activated CaMK II in early time may be performed important roles only in neurons but not in the astrocytes and microglia.

  9. Conditioned taste aversion and Ca/calmodulin-dependent kinase II in the parabrachial nucleus of rats.

    Science.gov (United States)

    Krivanek, J

    2001-07-01

    Bielavska and colleagues (Bielavska, Sacchetti, Baldi, & Tassoni, 1999) have recently shown that KN-62, an inhibitor of calcium/calmodulin-dependent kinase II (CaCMK), induces conditioned taste aversion (CTA) when introduced into the parabrachial nucleus (PBN) of rats. The aim of the present report was to assess whether activity of CaCMK in the PBN is changed during CTA. We induced CTA in one group of rats by pairing saccharin consumption with an ip injection of lithium chloride. Another group of rats received lithium alone (without being paired with saccharin consumption) to test whether lithium has an effect on CaCMK in the PBN, independent of those effects due to training. In animals receiving CTA training, CaCMK activity in extracts of PBN was reduced by approximately 30% at the postacquisition intervals of 12, 24, and 48 h, compared to control animals receiving saccharin with saline injection. By 120 h after CTA training, no effect on CaCMK was present. At those postacquisition intervals showing CaCMK activity effects due to CTA, there were no effects attributable to lithium alone. Lithium alone produced only a short-lasting reduction in CaCMK activity (at 20 min a 30% decrease, at 60 min a 23% decrease; and at 6, 12, and 24 h no decrease). The time course of lithium-induced effects differed markedly from that of CTA training. All changes were Ca2+/- -dependent; we did not observe any changes in Ca-independent activity. CTA effects on CaCMK were selective for PBN, insofar as we did not observe any CTA effects on CaCMK in the visual cortex, a brain region unrelated to taste pathways. Since CTA produces a relatively long-lasting reduction in CaCMK activity (lasting 2 days or more) specifically in the PBN, which is critical a relay for taste information, the reduction of CaCMK activity may enable the consolidation of taste memory in an aversive situation.

  10. Identification and characterization of CKLiK, a novel granulocyteCa^(++)/calmodulin-dependent kinase

    NARCIS (Netherlands)

    Verploegen, Sandra; Lammers, J.W.J.; Koenderman, L.; Coffer, P.J.

    2000-01-01

    Human granulocytes are characterized by a variety of specific effector functions involved in host defense. Several widely expressed protein kinases have been implicated in the regulation of these effector functions. A polymerase chain reaction- based strategy was used to identify

  11. Biophysical analysis of the dynamics of calmodulin interactions with neurogranin and Ca(2+) /calmodulin-dependent kinase II.

    Science.gov (United States)

    Seeger, Christian; Talibov, Vladimir O; Danielson, U Helena

    2017-08-01

    Calmodulin (CaM) functions depend on interactions with CaM-binding proteins, regulated by Ca2+. Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM-binding region of Ca2+/calmodulin-dependent kinase II (CaMKII290-309 ) have been studied using biophysical methods. These proteins have opposite Ca2+ dependencies for CaM binding. Surface plasmon resonance biosensor analysis confirmed that Ca2+ and CaM interact very rapidly, and with moderate affinity ( KDSPR=3μM). Calmodulin-CaMKII290-309 interactions were only detected in the presence of Ca2+, exhibiting fast kinetics and nanomolar affinity ( KDSPR=7.1nM). The CaM-Ng interaction had higher affinity under Ca2+-depleted ( KDSPR=480nM,k1=3.4×105M-1s-1 and k-1 = 1.6 × 10(-1) s(-1) ) than Ca2+-saturated conditions ( KDSPR=19μM). The IQ motif of Ng (Ng27-50 ) had similar affinity for CaM as Ng under Ca2+-saturated conditions ( KDSPR=14μM), but no interaction was seen under Ca2+-depleted conditions. Microscale thermophoresis using fluorescently labeled CaM confirmed the surface plasmon resonance results qualitatively, but estimated lower affinities for the Ng ( KDMST=890nM) and CaMKII290-309 ( KDMST=190nM) interactions. Although CaMKII290-309 showed expected interaction characteristics, they may be different for full-length CaMKII. The data for full-length Ng, but not Ng27-50 , agree with the current model on Ng regulation of Ca2+/CaM signaling. © 2017 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.

  12. Age-related decline in activation of calcium/calmodulin-dependent phosphatase calcineurin and kinase CaMK-IV in rat T cells.

    Science.gov (United States)

    Pahlavani, M A; Vargas, D M

    1999-12-07

    We have previously shown that the DNA binding activity of the transcription factor NFAT which plays a predominant role in IL-2 transcription decreases with age. Because the transactivation (dephosphorylation and nuclear translocation) of the NFAT-c (cytoplasmic component of the NFAT complex) is mediated by the calcium/calmodulin-dependent phosphatase, calcineurin (CaN), and because Ca2+/calmodulin-dependent kinases (CaMK-II and IV/Gr) have been shown to play a critical role in calcium signaling in T cells, it was of interest to determine what effect aging has on the activation and the levels of these calcium regulating enzymes. The induction of calcineurin phosphatase activity, and CaMK-II and IV/Gr activities, were studied in splenic T cells isolated from Fischer 344 rats at 6, 15, and 24 months of age. In addition, the changes in the protein levels of these enzymes were measured by Western blot. The calcineurin phosphatase activity and CaMK-II and IV kinase activities were at a maximum after the cells were incubated with anti-CD3 antibody for 5-10 minutes. The induction of calcineurin activity by anti-CD3 and by calcium ionophore (A23187) declined 65 and 55%, respectively, between 6 and 24 months of age. The induction of CaMK-IV activity, but not CaMK-II activity by anti-CD3, was significantly less (by 54%) in T cells from old rats compared to T cells from young rats. The decline in the activation of these enzymes with age was not associated with changes in their corresponding protein levels. These results demonstrate that alterations in calcineurin phosphatase activity and CaMK-IV activity may contribute to the well-documented age-related decline in T cell function.

  13. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets.

    Directory of Open Access Journals (Sweden)

    Makoto Mizunami

    Full Text Available Ca(2+/calmodulin (CaM-dependent protein kinase II (CaMKII is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca(2+/CaM and cAMP signaling participates in long-term memory (LTM formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM. Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca(2+ influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca(2+ signaling and cAMP signaling for LTM formation, a new role of Ca

  14. Molecular determinants for cardiovascular TRPC6 channel regulation by Ca2+/calmodulin-dependent kinase II

    DEFF Research Database (Denmark)

    Shi, Juan; Geshi, Naomi; Takahashi, Shinichi

    2013-01-01

    and distribution of TRPC6 channels did not significantly change with these mutations. Electrophysiological and immunocytochemical data with the Myc-tagged TRPC6 channel indicated that Thr487 is most likely located at the intracellular side of the cell membrane. Overexpression of T487A caused significant reduction......The molecular mechanism underlying Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII)-mediated regulation of the mouse transient receptor potential channel TRPC6 was explored by chimera, deletion and site-directed mutagenesis approaches. Induction of currents (ICCh) in TRPC6-expressing HEK293 cells...... of the TRPC6 channel by receptor stimulation. The abrogating effect of the alanine mutation of Thr487 (T487A) was reproduced with other non-polar amino acids, namely glutamine or asparagine, while being partially rescued by phosphomimetic mutations with glutamate or aspartate. The cellular expression...

  15. Effects of Wenxin Keli on Cardiac Hypertrophy and Arrhythmia via Regulation of the Calcium/Calmodulin Dependent Kinase II Signaling Pathway

    Science.gov (United States)

    Yang, Xinyu; Chen, Yu; Li, Yanda; Ren, Xiaomeng

    2017-01-01

    We investigated the effects of Wenxin Keli (WXKL) on the Calcium/Calmodulin dependent kinase II (CaMK II) signal transduction pathway with transverse aortic constriction (TAC) rats. Echocardiographic measurements were obtained 3 and 9 weeks after the surgery. Meanwhile, the action potentials (APDs) were recorded using the whole-cell patch clamp technique, and western blotting was used to assess components of the CaMK II signal transduction pathway. At both 3 and 9 weeks after treatment, the fractional shortening (FS%) increased in the WXKL group compared with the TAC group. The APD90 of the TAC group was longer than that of the Sham group and was markedly shortened by WXKL treatment. Western blotting results showed that the protein expressions of CaMK II, phospholamban (PLB), and ryanodine receptor 2 (RYR2) were not statistically significant among the different groups at both treatment time points. However, WXKL treatment decreased the protein level and phosphorylation of CaMK II (Thr-286) and increased the protein level and phosphorylation of PLB (Thr-17) and the phosphorylation of RYR2 (Ser-2814). WXKL also decreased the accumulation of type III collagen fibers. In conclusion, WXKL may improve cardiac function and inhibit the arrhythmia by regulating the CaMK II signal transduction pathway. PMID:28573136

  16. Effects of Wenxin Keli on Cardiac Hypertrophy and Arrhythmia via Regulation of the Calcium/Calmodulin Dependent Kinase II Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xinyu Yang

    2017-01-01

    Full Text Available We investigated the effects of Wenxin Keli (WXKL on the Calcium/Calmodulin dependent kinase II (CaMK II signal transduction pathway with transverse aortic constriction (TAC rats. Echocardiographic measurements were obtained 3 and 9 weeks after the surgery. Meanwhile, the action potentials (APDs were recorded using the whole-cell patch clamp technique, and western blotting was used to assess components of the CaMK II signal transduction pathway. At both 3 and 9 weeks after treatment, the fractional shortening (FS% increased in the WXKL group compared with the TAC group. The APD90 of the TAC group was longer than that of the Sham group and was markedly shortened by WXKL treatment. Western blotting results showed that the protein expressions of CaMK II, phospholamban (PLB, and ryanodine receptor 2 (RYR2 were not statistically significant among the different groups at both treatment time points. However, WXKL treatment decreased the protein level and phosphorylation of CaMK II (Thr-286 and increased the protein level and phosphorylation of PLB (Thr-17 and the phosphorylation of RYR2 (Ser-2814. WXKL also decreased the accumulation of type III collagen fibers. In conclusion, WXKL may improve cardiac function and inhibit the arrhythmia by regulating the CaMK II signal transduction pathway.

  17. Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2δ6

    Science.gov (United States)

    Chew, Catherine S.; Chen, Xunsheng; Zhang, Hanfang; Berg, Eric A.; Zhang, Han

    2008-01-01

    Tumor protein D52 is expressed at relatively high levels in cells within the gastrointestinal tract that undergo classical exocytosis and is overexpressed in several cancers. Current evidence supports a role for D52 in the regulation of vesicular trafficking. D52 function(s) are regulated by calcium-dependent phosphorylation; however, the intracellular mechanisms that mediate this process are not well characterized. The goal of this study was to identify the calcium-dependent phosphorylation site(s) in D52 and to characterize the protein kinase(s) that mediate this phosphorylation. Using mass spectrometry and site-directed mutagenesis, we identified a single amino acid residue, S136, that undergoes increased phosphorylation upon elevation of intracellular Ca2+ concentration. A phosphospecific antibody (pS136) was produced and used to characterize D52 kinase activity in gastric mucosal, colonic T84, and HEK293 cells. By using D52 as a substrate, a protein kinase with a molecular weight (Mr) of ∼50 kDa was identified with “in gel” assays. This kinase comigrated with rat brain calcium/calmodulin-dependent protein kinase (CAMK2)α cross-reacted with pan-specific CAMK2 antibodies as well as with anti-active CAMK2 (pT286/287) antibody when activated. Carbachol-stimulated phosphorylation of S136 was inhibited by the CAMK2 inhibitor KN93 (IC50 38 μM) and by the calmodulin antagonist W7 (IC50 3.3 nM). A previously uncharacterized CAMK2 isoform, CAMK2δ6, which has the same domain structure and Mr as CAM2α, was identified in gastric mucosa by RT-PCR. The cloned, expressed protein comigrated with D52 kinase and colocalized with D52 protein in T84 and HEK293 cells. These findings support a role for CAMK2δ6 in the mediation of D52 phosphorylation. PMID:18832449

  18. Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2delta6.

    Science.gov (United States)

    Chew, Catherine S; Chen, Xunsheng; Zhang, Hanfang; Berg, Eric A; Zhang, Han

    2008-12-01

    Tumor protein D52 is expressed at relatively high levels in cells within the gastrointestinal tract that undergo classical exocytosis and is overexpressed in several cancers. Current evidence supports a role for D52 in the regulation of vesicular trafficking. D52 function(s) are regulated by calcium-dependent phosphorylation; however, the intracellular mechanisms that mediate this process are not well characterized. The goal of this study was to identify the calcium-dependent phosphorylation site(s) in D52 and to characterize the protein kinase(s) that mediate this phosphorylation. Using mass spectrometry and site-directed mutagenesis, we identified a single amino acid residue, S(136), that undergoes increased phosphorylation upon elevation of intracellular Ca(2+) concentration. A phosphospecific antibody (pS(136)) was produced and used to characterize D52 kinase activity in gastric mucosal, colonic T84, and HEK293 cells. By using D52 as a substrate, a protein kinase with a molecular weight (M(r)) of approximately 50 kDa was identified with "in gel" assays. This kinase comigrated with rat brain calcium/calmodulin-dependent protein kinase (CAMK2)alpha cross-reacted with pan-specific CAMK2 antibodies as well as with anti-active CAMK2 (pT(286/287)) antibody when activated. Carbachol-stimulated phosphorylation of S(136) was inhibited by the CAMK2 inhibitor KN93 (IC(50) 38 microM) and by the calmodulin antagonist W7 (IC(50) 3.3 nM). A previously uncharacterized CAMK2 isoform, CAMK2delta6, which has the same domain structure and M(r) as CAM2alpha, was identified in gastric mucosa by RT-PCR. The cloned, expressed protein comigrated with D52 kinase and colocalized with D52 protein in T84 and HEK293 cells. These findings support a role for CAMK2delta6 in the mediation of D52 phosphorylation.

  19. The Anthocyanin Delphinidin 3-Rutinoside Stimulates Glucagon-Like Peptide-1 Secretion in Murine GLUTag Cell Line via the Ca2+/Calmodulin-Dependent Kinase II Pathway.

    Directory of Open Access Journals (Sweden)

    Masaki Kato

    Full Text Available Glucagon-like peptide-1 (GLP-1 is an incretin hormone secreted from enteroendocrine L-cells. Although several nutrients induce GLP-1 secretion, there is little evidence to suggest that non-nutritive compounds directly increase GLP-1 secretion. Here, we hypothesized that anthocyanins induce GLP-1 secretion and thereby significantly contribute to the prevention and treatment of diabetes. Delphinidin 3-rutinoside (D3R was shown to increase GLP-1 secretion in GLUTag L cells. The results suggested that three hydroxyl or two methoxyl moieties on the aromatic ring are essential for the stimulation of GLP-1 secretion. Notably, the rutinose moiety was shown to be a potent enhancer of GLP-1 secretion, but only in conjunction with three hydroxyl moieties on the aromatic ring (D3R. Receptor antagonist studies revealed that D3R-stimulates GLP-1 secretion involving inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca2+ mobilization. Treatment of GLUTag cells with a Ca2+/calmodulin-dependent kinaseII (CaMKII inhibitor (KN-93 abolished D3R-stimulated GLP-1 secretion. In addition, treatment of GLUTag cells with D3R resulted in activation of CaMKII. Pre-treatment of cells with a G protein-coupled receptor (GPR 40/120 antagonist (GW1100 also significantly decreased D3R-stimulated GLP-1 secretion. These observations suggest that D3R stimulates GLP-1 secretion in GLUTag cells, and that stimulation of GLP-1 secretion by D3R is mediated via Ca2+-CaMKII pathway, which may possibly be mediated by GPR40/120. These findings provide a possible molecular mechanism of GLP-1 secretion in intestinal L-cells mediated by foods or drugs and demonstrate a novel biological function of anthocyanins in regards to GLP-1 secretion.

  20. Heparin inhibits Ca2+/calmodulin-dependent kinase II activation and c-fos induction in mesangial cells.

    OpenAIRE

    Miralem, T; Templeton, D M

    1998-01-01

    Like vascular smooth-muscle cells, rat mesangial cells (RMCs) display an anti-mitogenic response to heparin. In particular, heparin partially suppresses the ability of quiescent RMCs to enter the cell cycle and induce c-fos expression. When the mitogenic stimulus is serum, phorbol ester or platelet-derived growth factor, this response appears to result from the ability of heparin to suppress activation of the extracellular-signal-regulated kinase family of mitogen-activated protein kinases. H...

  1. Calmodulin-dependent kinase 1beta is expressed in the epiphyseal growth plate and regulates proliferation of mouse calvarial osteoblasts in vitro.

    Science.gov (United States)

    Pedersen, Mona E; Fortunati, Dario; Nielsen, Marit; Brorson, Sverre-Henning; Lekva, Tove; Nissen-Meyer, Lise Sofie H; Gautvik, Vigdis T; Shahdadfar, Aboulghassem; Gautvik, Kaare M; Jemtland, Rune

    2008-10-01

    The Ca(2+)/Calmodulin-dependent protein kinase (CaMK) family is activated in response to elevation of intracellular Ca(2+), and includes CaMK1 (as well as CaMK2 and CaMK4), which exists as different isoforms (alpha, beta, gamma and delta). CaMK1 is present in several cell types and may be involved in various cellular processes, but its role in bone is unknown. In situ hybridization was used to determine the spatial and temporal expression of CaMK1beta during endochondral bone development in mouse embryos and newborn pups. The cellular and subcellular distribution of CaMK1 was assessed by quantitative immunogold electron microscopy (EM). The role of CaMK1beta in mouse calvarial osteoblasts was investigated by using small interfering RNA (siRNA) to silence its expression, while in parallel monitoring cell proliferation and levels of skeletogenic transcripts. cRNA in situ hybridization and EM studies show that CaMK1beta is mainly located in developing long bones and vertebrae (from ED14.5 until day 10 after birth), with highest expression in epiphyseal growth plate hypertrophic chondrocytes. By RT-PCR, we show that CaMK1beta2 (but not beta1) is expressed in mouse hind limbs (in vivo) and mouse calvarial osteoblasts (in vitro), and also in primary human articular chondrocyte cultures. Silencing of CaMK1beta in mouse calvarial osteoblasts by siRNA significantly decreases osteoblast proliferation and c-Fos gene expression (approx. 50%), without affecting skeletogenic markers for more differentiated osteoblasts (i.e. Cbfa1/Runx2, Osterix (Osx), Osteocalcin (Oc), Alkaline phosphatase (Alp) and Osteopontin (Opn)). These results identify CaMK1beta as a novel regulator of osteoblast proliferation, via mechanisms that may at least in part involve c-Fos, thus implicating CaMK1beta in the regulation of bone and cartilage development.

  2. Gonadotropin-releasing hormone stimulation of gonadotropin subunit transcription: evidence for the involvement of calcium/calmodulin-dependent kinase II (Ca/CAMK II) activation in rat pituitaries.

    Science.gov (United States)

    Haisenleder, D J; Burger, L L; Aylor, K W; Dalkin, A C; Marshall, J C

    2003-07-01

    The intracellular pathways mediating GnRH regulation of gonadotropin subunit transcription remain to be fully characterized, and the present study examined whether calcium/calmodulin-dependent kinase II (Ca/CAMK II) plays a role in the rat pituitary. Preliminary studies demonstrated that a single pulse of GnRH given to adult rats stimulated a transient 2.5-fold rise in Ca/CAMK II activity (as determined by an increase in Ca/CAMK II phosphorylation), with peak values at 5 min, returning to basal 45 min after the pulse. Further studies examined the alpha, LHbeta, and FSHbeta transcriptional responses to GnRH or Bay K 8644+KCl (BK+KCl) pulses in vitro in the absence or presence of the Ca/CAMK II-specific inhibitor, KN-93. Gonadotropin subunit transcription was assessed by measuring primary transcripts (PTs) by quantitative RT-PCR. In time-course studies, both GnRH and BK+KCl pulses given alone increased all three subunit PTs after 6 h (2- to 4-fold). PT responses to GnRH increased over time (3- to 8-fold over basal at 24 h), although BK+KCl was ineffective after 24 h. KN-93 reduced the LHbeta and FSHbeta transcriptional responses to GnRH by 50-60% and completely suppressed the alphaPT response. In contrast, KN-93 showed no inhibitory effects on basal transcriptional activity or LH or FSH secretion. In fact, KN-93 tended to increase basal alpha, LHbeta, and FSHbeta PT levels and enhance LH secretory responses to GnRH. These results reveal that Ca/CAMK II plays a central role in the transmission of pulsatile GnRH signals from the plasma membrane to the rat alpha, LHbeta, and FSHbeta subunit genes.

  3. dependent/calmodulin- stimulated protein kinase from moss ...

    Indian Academy of Sciences (India)

    Unknown

    lin-dependent protein kinase homolog; Planta 203 S91–. S97. Lu Y-T, Hidaka H and Feldman L J 1996 Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism; Planta. 199 18–24. Mitra D and Johri M M 2000 Enhanced expression of a cal-.

  4. Moderate Alcohol Drinking and the Amygdala Proteome: Identification and Validation of Calcium/Calmodulin Dependent Kinase II and AMPA Receptor Activity as Novel Molecular Mechanisms of the Positive Reinforcing Effects of Alcohol.

    Science.gov (United States)

    Salling, Michael C; Faccidomo, Sara P; Li, Chia; Psilos, Kelly; Galunas, Christina; Spanos, Marina; Agoglia, Abigail E; Kash, Thomas L; Hodge, Clyde W

    2016-03-15

    Despite worldwide consumption of moderate amounts of alcohol, the neural mechanisms that mediate the transition from use to abuse are not fully understood. Here, we conducted a high-throughput screen of the amygdala proteome in mice after moderate alcohol drinking (n = 12/group) followed by behavioral studies (n = 6-8/group) to uncover novel molecular mechanisms of the positive reinforcing properties of alcohol that strongly influence the development of addiction. Two-dimensional difference in-gel electrophoresis with matrix assisted laser desorption ionization tandem time-of-flight identified 29 differentially expressed proteins in the amygdala of nondependent C57BL/6J mice following 24 days of alcohol drinking. Alcohol-sensitive proteins included calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) and a network of functionally linked proteins that regulate neural plasticity and glutamate-mediated synaptic activity. Accordingly, alcohol drinking increased α-amino-3-hydroxy-5-methyl-4-isooxazole receptor (AMPAR) in central amygdala (CeA) and phosphorylation of AMPAR GluA1 subunit at a CaMKII locus (GluA1-Ser831) in CeA and lateral amygdala. Further, CaMKIIα-Thr286 and GluA1-Ser831 phosphorylation was increased in CeA and lateral amygdala of mice that lever-pressed for alcohol versus the nondrug reinforcer sucrose. Mechanistic studies showed that targeted pharmacologic inhibition of amygdala CaMKII or AMPAR activity specifically inhibited the positive reinforcing properties of alcohol but not sucrose. Moderate alcohol drinking increases the activity and function of plasticity-linked protein networks in the amygdala that regulate the positive reinforcing effects of the drug. Given the prominence of positive reinforcement in the etiology of addiction, we propose that alcohol-induced adaptations in CaMKIIα and AMPAR signaling in the amygdala may serve as a molecular gateway from use to abuse. Copyright © 2016 Society of Biological Psychiatry. Published

  5. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses

    NARCIS (Netherlands)

    Lévy, J.; Bres, C.; Geurts, R.; Chalhoub, B.; Kulikova, O.; Duc, G.; Journet, E.P.; Ané, J.M.; Lauber, E.; Bisseling, T.; Dénarié, J.; Rosenberg, C.; Debellé, F.

    2004-01-01

    Legumes can enter into symbiotic relationships with both nitrogen-fixing bacteria ( rhizobia) and mycorrhizal fungi. Nodulation by rhizobia results from a signal transduction pathway induced in legume roots by rhizobial Nod factors. DMI3, a Medicago truncatula gene that acts immediately downstream

  6. Phosphorylation at Ser²⁶ in the ATP-binding site of Ca²⁺/calmodulin-dependent kinase II as a mechanism for switching off the kinase activity.

    Science.gov (United States)

    Yilmaz, Mehtap; Gangopadhyay, Samudra S; Leavis, Paul; Grabarek, Zenon; Morgan, Kathleen G

    2013-02-07

    CaMKII (Ca²⁺/calmodulin-dependent kinase II) is a serine/threonine phosphotransferase that is capable of long-term retention of activity due to autophosphorylation at a specific threonine residue within each subunit of its oligomeric structure. The γ isoform of CaMKII is a significant regulator of vascular contractility. Here, we show that phosphorylation of CaMKII γ at Ser²⁶, a residue located within the ATP-binding site, terminates the sustained activity of the enzyme. To test the physiological importance of phosphorylation at Ser²⁶, we generated a phosphospecific Ser²⁶ antibody and demonstrated an increase in Ser²⁶ phosphorylation upon depolarization and contraction of blood vessels. To determine if the phosphorylation of Ser²⁶ affects the kinase activity, we mutated Ser²⁶ to alanine or aspartic acid. The S26D mutation mimicking the phosphorylated state of CaMKII causes a dramatic decrease in Thr²⁸⁷ autophosphorylation levels and greatly reduces the catalytic activity towards an exogenous substrate (autocamtide-3), whereas the S26A mutation has no effect. These data combined with molecular modelling indicate that a negative charge at Ser²⁶ of CaMKII γ inhibits the catalytic activity of the enzyme towards its autophosphorylation site at Thr²⁸⁷ most probably by blocking ATP binding. We propose that Ser²⁶ phosphorylation constitutes an important mechanism for switching off CaMKII activity.

  7. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development.

    Science.gov (United States)

    Al-Shanti, Nasser; Stewart, Claire E

    2009-11-01

    The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases

  8. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability

    NARCIS (Netherlands)

    Küry, Sébastien; van Woerden, Geeske M; Besnard, Thomas; Proietti Onori, Martina; Latypova, Xénia; Towne, Meghan C; Cho, Megan T.; Prescott, Trine E; Ploeg, Melissa A; Sanders, Jan-Stephan; Stessman, Holly A F; Pujol, Aurora; Distel, Ben; Robak, Laurie A; Bernstein, Jonathan A; Denommé-Pichon, Anne-Sophie; Lesca, Gaëtan; Sellars, Elizabeth A; Berg, Jonathan; Carré, Wilfrid; Busk, Øyvind Løvold; van Bon, Bregje W M; Waugh, Jeff L; Deardorff, Matthew; Hoganson, George E; Bosanko, Katherine B; Johnson, Diana S; Dabir, Tabib; Holla, Øystein Lunde; Sarkar, Ajoy; Tveten, Kristian; de Bellescize, Julitta; Braathen, Geir J; Terhal, Paulien A|info:eu-repo/dai/nl/304815861; Grange, Dorothy K; van Haeringen, Arie; Lam, Christina; Mirzaa, Ghayda; Burton, Jennifer; Bhoj, Elizabeth J.; Douglas, Jessica; Santani, Avni B; Nesbitt, Addie I; Helbig, Katherine L; Andrews, Marisa V; Begtrup, Amber; Tang, Sha; van Gassen, Koen L I|info:eu-repo/dai/nl/304819417; Juusola, Jane; Foss, Kimberly; Enns, Gregory M; Moog, Ute; Hinderhofer, Katrin; Paramasivam, Nagarajan; Lincoln, Sharyn; Kusako, Brandon H; Lindenbaum, Pierre; Charpentier, Eric; Nowak, Catherine B; Cherot, Elouan; Simonet, Thomas; Ruivenkamp, Claudia A L; Hahn, Sihoun; Brownstein, Catherine A; Xia, Fan; Schmitt, Sébastien; Deb, Wallid; Bonneau, Dominique; Nizon, Mathilde; Quinquis, Delphine; Chelly, Jamel; Rudolf, Gabrielle; Sanlaville, Damien; Parent, Philippe; Gilbert-Dussardier, Brigitte; Toutain, Annick; Sutton, Vernon R; Thies, Jenny; Peart-Vissers, Lisenka E L M; Boisseau, Pierre; Vincent, Marie; Grabrucker, Andreas M; Dubourg, Christèle; Tan, Wen-Hann; Verbeek, Nienke E|info:eu-repo/dai/nl/304816310; Granzow, Martin; Santen, Gijs W E; Shendure, Jay; Isidor, Bertrand; Pasquier, Laurent; Redon, Richard; Yang, Yaping; State, Matthew W; Kleefstra, Tjitske; Cogné, Benjamin; Petrovski, Slavé; Retterer, Kyle; Eichler, Evan E.; Rosenfeld, Jill A; Agrawal, Pankaj B; Bézieau, Stéphane; Odent, Sylvie; Elgersma, Ype; Mercier, Sandra

    2017-01-01

    Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a

  9. Protein (Cyanobacteria): 352974 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ociation-domain protein Synechococcus sp. CB0101 MALSDRDQEILSINQAMLDSVVNGDWSRYATFCA...ZP_07974427.1 1117:14446 1118:14646 1129:7054 232348:1931 Calcium/calmodulin dependent protein kinase II ass

  10. Protein (Cyanobacteria): 96875 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ZP_07971664.1 1117:1835 1118:7281 1129:6957 232363:1974 Calcium/calmodulin dependent protein kinase II assoc...iation-domain protein Synechococcus sp. CB0205 MAVFCVGVNSAWAADSTSCQTLTDPQVAALFDRWNA

  11. Protein (Cyanobacteria): 352975 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ciation-domain protein Synechococcus sp. CB0205 MAFSERDQEILRLNQAMLNSVASGDWQAYSAVCAD...ZP_07970261.1 1117:14446 1118:14646 1129:7054 232363:890 Calcium/calmodulin dependent protein kinase II asso

  12. Protein Kinases as Drug Development Targets for Heart Disease Therapy

    Directory of Open Access Journals (Sweden)

    Alison L. Müller

    2010-07-01

    Full Text Available Protein kinases are intimately integrated in different signal transduction pathways for the regulation of cardiac function in both health and disease. Protein kinase A (PKA, Ca2+-calmodulin-dependent protein kinase (CaMK, protein kinase C (PKC, phosphoinositide 3-kinase (PI3K and mitogen-activated protein kinase (MAPK are not only involved in the control of subcellular activities for maintaining cardiac function, but also participate in the development of cardiac dysfunction in cardiac hypertrophy, diabetic cardiomyopathy, myocardial infarction, and heart failure. Although all these kinases serve as signal transducing proteins by phosphorylating different sites in cardiomyocytes, some of their effects are cardioprotective whereas others are detrimental. Such opposing effects of each signal transduction pathway seem to depend upon the duration and intensity of stimulus as well as the type of kinase isoform for each kinase. In view of the fact that most of these kinases are activated in heart disease and their inhibition has been shown to improve cardiac function, it is suggested that these kinases form excellent targets for drug development for therapy of heart disease.

  13. Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2δ6

    OpenAIRE

    Chew, Catherine S.; Chen, Xunsheng; Zhang, Hanfang; Berg, Eric A.; Zhang, Han

    2008-01-01

    Tumor protein D52 is expressed at relatively high levels in cells within the gastrointestinal tract that undergo classical exocytosis and is overexpressed in several cancers. Current evidence supports a role for D52 in the regulation of vesicular trafficking. D52 function(s) are regulated by calcium-dependent phosphorylation; however, the intracellular mechanisms that mediate this process are not well characterized. The goal of this study was to identify the calcium-dependent phosphorylation ...

  14. 70-kDa Heat Shock Cognate Protein hsc70 Mediates Calmodulin-dependent Nuclear Import of the Sex-determining Factor SRY*

    Science.gov (United States)

    Kaur, Gurpreet; Lieu, Kim G.; Jans, David A.

    2013-01-01

    We recently showed that the developmentally important family of SOX (SRY (sex determining region on the Y chromosome)-related high mobility group (HMG) box) proteins require the calcium-binding protein calmodulin (CaM) for optimal nuclear accumulation, with clinical mutations in SRY that specifically impair nuclear accumulation via this pathway resulting in XY sex reversal. However, the mechanism by which CaM facilitates nuclear accumulation is unknown. Here, we show, for the first time, that the 70-kDa heat shock cognate protein hsc70 plays a key role in CaM-dependent nuclear import of SRY. Using a reconstituted nuclear import assay, we show that antibodies to hsc70 significantly reduce nuclear accumulation of wild type SRY and mutant derivatives thereof that retain CaM-dependent nuclear import, with an increased rate of nuclear accumulation upon addition of both CaM and hsc70, in contrast to an SRY mutant derivative with impaired CaM binding. siRNA knockdown of hsc70 in intact cells showed similar results, indicating clear dependence upon hsc70 for CaM-dependent nuclear import. Analysis using the technique of fluorescence recovery after photobleaching indicated that hsc70 is required for the maximal rate of SRY nuclear import in living cells but has no impact upon SRY nuclear retention/nuclear dynamics. Finally, we demonstrate direct binding of hsc70 to the SRY·CaM complex, with immunoprecipitation experiments from cell extracts showing association of hsc70 with wild type SRY, but not with a mutant derivative with impaired CaM binding, dependent on Ca2+. Our novel findings strongly implicate hsc70 in CaM-dependent nuclear import of SRY. PMID:23235156

  15. Protein (Cyanobacteria): 96882 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ent protein kinase II, association-domain Arthrospira sp. PCC 8005 MIKKLFCSTLSASFLAATMSGCAPVAETGEVACAEVTEAEI...ZP_09781165.1 1117:1835 1150:12908 35823:2083 376219:1678 Calcium/calmodulin depend

  16. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  17. Ca2+/calmodulin-dependent protein kinase IIα (αCaMKII) controls the activity of the dopamine transporter: Implications for angelman syndrome

    NARCIS (Netherlands)

    T. Steinkellner (Thomas); J.-W. Yang (Jae-Won); T.R. Montgomery (Therese); W.-Q. Chen (Wei-Qiang); M.-T. Winkler (Marie-Therese); S. Sucic (Sonja); G. Lubec (Gert); M. Freissmuth (Michael); Y. Elgersma (Ype); H.H. Sitte (Harald); O. Kudlacek (Oliver)

    2012-01-01

    textabstractThe dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are

  18. JAK protein kinase inhibitors.

    Science.gov (United States)

    Thompson, James E

    2005-06-01

    In humans, the Janus protein tyrosine kinase family (JAKs) contains four members: JAK1, JAK2, JAK3 and TYK2. JAKs phosphorylate signal transducers and activators of transcription (STATs) simultaneously with other phosphorylations required for activation, and there are several cellular mechanisms in place to inhibit JAK/STAT signaling. That one might be able to modulate selected JAK/STAT-mediated cellular signals by inhibiting JAK kinase activity to effect a positive therapeutic outcome is a tantalizing prospect, as yet incompletely realized. While current data suggest no therapeutic use for JAK1 and TYK2 inhibition, JAK2 inhibition seems a promising but not definitively tested mechanism for treatment of leukemia. More promising, however, are data indicating a possible therapeutic use of JAK3 inhibition. The restriction of the JAK3-deficient phenotype to the hematopoietic system and the resulting profound immune suppression suggest that JAK3 could be a target for immunosuppressive therapies used to prevent organ transplant rejection.

  19. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    enzymes that are unique in exploiting the ATP/GTP-binding Walker motif to catalyze phosphorylation of protein tyrosine residues. Characterized for the first time only a decade ago, BY-kinases have now come to the fore. Important regulatory roles have been linked with these enzymes, via their involvement......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine...

  20. Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256.

    Science.gov (United States)

    Bradford, Davis; Raghuram, Viswanathan; Wilson, Justin L L; Chou, Chung-Lin; Hoffert, Jason D; Knepper, Mark A; Pisitkun, Trairak

    2014-07-15

    In the renal collecting duct, binding of AVP to the V2 receptor triggers signaling changes that regulate osmotic water transport. Short-term regulation of water transport is dependent on vasopressin-induced phosphorylation of aquaporin-2 (AQP2) at Ser256. The protein kinase that phosphorylates this site is not known. We use Bayes' theorem to rank all 521 rat protein kinases with regard to the likelihood of a role in Ser256 phosphorylation on the basis of prior data and new experimental data. First, prior probabilities were estimated from previous transcriptomic and proteomic profiling data, kinase substrate specificity data, and evidence for kinase regulation by vasopressin. This ranking was updated using new experimental data describing the effects of several small-molecule kinase inhibitors with known inhibitory spectra (H-89, KN-62, KN-93, and GSK-650394) on AQP2 phosphorylation at Ser256 in inner medullary collecting duct suspensions. The top-ranked kinase was Ca2+/calmodulin-dependent protein kinase II (CAMK2), followed by protein kinase A (PKA) and protein kinase B (AKT). Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based in vitro phosphorylation studies compared the ability of three highly ranked kinases to phosphorylate AQP2 and other inner medullary collecting duct proteins, PKA, CAMK2, and serum/glucocorticoid-regulated kinase (SGK). All three proved capable of phosphorylating AQP2 at Ser256, although CAMK2 and PKA were more potent than SGK. The in vitro phosphorylation experiments also identified candidate protein kinases for several additional phosphoproteins with likely roles in collecting duct regulation, including Nedd4-2, Map4k4, and 3-phosphoinositide-dependent protein kinase 1. We conclude that Bayes' theorem is an effective means of integrating data from multiple data sets in physiology.

  1. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H. [de Duve Institute, Universite catholique de Louvain, Avenue Hippocrate, B-1200 Brussels (Belgium); Horman, Sandrine, E-mail: sandrine.horman@uclouvain.be [Institute of Experimental and Clinical Research - Pole of Cardiovascular Research, Universite catholique de Louvain, Avenue Hippocrate, B-1200 Brussels (Belgium)

    2010-06-04

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca{sup 2+}-dependent AMPK activation via calmodulin-dependent protein kinase kinase-{beta}(CaMKK{beta}), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKK{beta} inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  2. Serine 77 in the PDZ domain of PICK1 is a protein kinase Cα phosphorylation site regulated by lipid membrane binding

    DEFF Research Database (Denmark)

    Ammendrup-Johnsen, Ina; Thorsen, Thor Seneca; Gether, Ulrik

    2012-01-01

    PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing...... the activity of PICK1 itself. Here we show that PICK1 is a substrate in vitro both for PKCα (protein kinase Cα), as previously shown, and for CaMKIIα (Ca(2+)-calmodulin-dependent protein kinase IIα). By mutation of predicted phosphorylation sites, we identify Ser77 in the PDZ domain as a major phosphorylation...... for optimal phosphorylation. Binding of PKCα to the PICK1 PDZ domain was not required for phosphorylation, but a PDZ domain peptide ligand reduced the overall level of phosphorylation ~30%. The phosphomimic S77D reduced the extent of cytosolic clustering of eYFP-PICK1 in COS7 cells and thereby conceivably its...

  3. Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eucaryotic cells.

    Science.gov (United States)

    Leppla, S H

    1984-01-01

    Studies on the mechanism of action of anthrax toxin have led to the discovery that the edema factor component is a calmodulin-dependent adenylate cyclase. This enzyme can be obtained in milligram amounts at high purity from culture supernatants of avirulent B. anthracis strains. The cyclase binds to and probably enters eucaryotic cells to cause large, unregulated increases in cyclic AMP concentrations, an effect that may decrease an animal's ability to limit B. anthracis infection. The similarity of this bacterial adenylate cyclase to calmodulin-dependent eucaryotic adenylate cyclases suggests that EF may have originated as a eucaryotic enzyme. Such a relationship may eventually be established through comparison of the antigenic and genetic properties of the enzymes or by demonstrating that the genes have related DNA sequences. Even if such a relationship is not found, the edema factor cyclase will be a useful model for study of the properties of calmodulin-dependent enzymes.

  4. AMP-activated protein kinase-mediated feedback phosphorylation controls the Ca(2+)/calmodulin (CaM) dependence of Ca(2+)/CaM-dependent protein kinase kinase β.

    Science.gov (United States)

    Nakanishi, Akihiro; Hatano, Naoya; Fujiwara, Yuya; Bin Shari, Arian; Takabatake, Shota; Akano, Hiroki; Kanayama, Naoki; Magari, Masaki; Nozaki, Naohito; Tokumitsu, Hiroshi

    2017-10-03

    The Ca(2+)/calmodulin-dependent protein kinase kinase β(CaMKKβ)/5'AMP-activated protein kinase (AMPK) phosphorylation cascade affects various Ca(2+)-dependent metabolic pathways and cancer growth. Unlike recombinant CaMKKβ that exhibits higher basal activity (autonomous activity), activation of the CaMKKβ/AMPK signaling pathway requires increased intracellular Ca(2+) concentrations. Moreover, the Ca(2+)/CaM dependence of CaMKKβ appears to arise from multiple phosphorylation events, including autophosphorylation and activities furnished by other protein kinases. However, the effects of proximal downstream kinases on CaMKKβ activity have not yet been evaluated. Here, we demonstrate feedback phosphorylation of CaMKKβ at multiple residues by CaMKKβ-activated AMPK in addition to autophosphorylation in vitro, leading to reduced autonomous, but not Ca(2+)/CaM-activated, CaMKKβ activity. MS analysis and site-directed mutagenesis of AMPK phosphorylation sites in CaMKKβ indicated that Thr144 phosphorylation by activated AMPK converts CaMKKβ into a Ca(2+)/CaM-dependent enzyme, as shown by completely Ca(2+)/CaM-dependent CaMKK activity of a phosphomimetic Thr144Glu CaMKKβ mutant. CaMKKβ mutant analysis indicated that the C-terminal domain (residues 471-587) including the autoinhibitory region plays an important role in stabilizing an inactive conformation in a Thr144 phosphorylation-dependent manner. Furthermore, immunoblot analysis with antiphospho-Thr144 antibody revealed phosphorylation of Thr144 in CaMKKβ in transfected COS-7 cells that was further enhanced by exogenous expression of AMPKα. These results indicate that AMPK-mediated feedback phosphorylation of CaMKKβ regulates the CaMKKβ/AMPK signaling cascade and may be physiologically important for intracellular maintenance of Ca(2+)-dependent AMPK activation by CaMKKβ. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  5. Induction of Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK Signaling and Activation of MAP3K7 (TAK1) Protein Kinase.

    Science.gov (United States)

    Richter, Erik; Ventz, Katharina; Harms, Manuela; Mostertz, Jörg; Hochgräfe, Falko

    2016-01-01

    Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cyclin-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1) acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease.

  6. Induction of Macrophage Function in Human THP-1 Cells is Associated with MAPK Signaling and Activation of MAP3K7 (TAK1 Protein Kinase

    Directory of Open Access Journals (Sweden)

    Erik eRichter

    2016-03-01

    Full Text Available Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cycline-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1 acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease.

  7. A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein

    KAUST Repository

    Smirnova, Ekaterina

    2016-08-22

    Background: CASKIN2 is a homolog of CASKIN1, a scaffolding protein that participates in a signaling network with CASK (calcium/calmodulin-dependent serine kinase). Despite a high level of homology between CASKIN2 and CASKIN1, CASKIN2 cannot bind CASK due to the absence of a CASK Interaction Domain and consequently, may have evolved undiscovered structural and functional distinctions.

  8. Intramolecular activation of a Ca(2+)-dependent protein kinase is disrupted by insertions in the tether that connects the calmodulin-like domain to the kinase

    Science.gov (United States)

    Vitart, V.; Christodoulou, J.; Huang, J. F.; Chazin, W. J.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Ca(2+)-dependent protein kinases (CDPK) have a calmodulin-like domain (CaM-LD) tethered to the C-terminal end of the kinase. Activation is proposed to involve intramolecular binding of the CaM-LD to a junction sequence that connects the CaM-LD to the kinase domain. Consistent with this model, a truncated CDPK (DeltaNC) in which the CaM-LD has been deleted can be activated in a bimolecular interaction with an isolated CaM-LD or calmodulin, similar to the activation of a calmodulin-dependent protein kinase (CaMK) by calmodulin. Here we provide genetic evidence that this bimolecular activation requires a nine-residue binding segment from F436 to I444 (numbers correspond to CPK-1 accession number L14771). Two mutations at either end of this core segment (F436/A and VI444/AA) severely disrupted bimolecular activation, whereas flanking mutations had only minor effects. Intramolecular activation of a full-length kinase was also disrupted by a VI444/AA mutation, but surprisingly not by a F436/A mutation (at the N-terminal end of the binding site). Interestingly, intramolecular but not bimolecular activation was disrupted by insertion mutations placed immediately downstream of I444. To show that mutant enzymes were not misfolded, latent kinase activity was stimulated through binding of an antijunction antibody. Results here support a model of intramolecular activation in which the tether (A445 to G455) that connects the CaM-LD to the kinase provides an important structural constraint and is not just a simple flexible connection.

  9. Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells.

    Science.gov (United States)

    Cook, Natasha; Fraser, Scott A; Katerelos, Marina; Katsis, Frosa; Gleich, Kurt; Mount, Peter F; Steinberg, Gregory R; Levidiotis, Vicki; Kemp, Bruce E; Power, David A

    2009-04-01

    The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.

  10. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts.

    Science.gov (United States)

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2016-12-01

    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca(2+) influx via a mechanosensitive L-type Ca(2+) channel, which subsequently raises intracellular Ca(2+) and activates AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca(2+)-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  11. [Effect of calmodulin and 3':5'-AMP-dependent protein kinases on calcium transport by sarcoplasmic reticulum of normal rabbit myocardium and in toxico-allergic myocarditis].

    Science.gov (United States)

    Karsanov, N V; Khugashvili, Z G

    1983-08-01

    It was demonstrated that under normal conditions calmodulin and exogenous 3':5'-AMP-dependent protein kinase considerably active Ca2+ transport by sarcoplasmic reticulum of rabbit myocardium; a combined action of these compounds produces an additive effect. The protein-inhibitor of 3':5'-AMP-dependent protein kinase and trifluoroperazine eliminate the activating effect of 3':5'-AMP-dependent protein kinase; in addition, trifluoroperazine decreases significantly the basal level of Ca2+ uptake. The 3':5'-AMP-dependent activation of Ca2+ transport becomes apparent after Ca2+-calmodulin-dependent phosphorylation of FSR membrane proteins. In toxico-allergic myocarditis calmodulin and 3':5'-AMP-dependent protein kinase do not activate the low level of Ca2+ uptake. No differences were observed between the action of calmodulin and 3':5'-AMP-dependent protein kinase isolated from normal and pathological rabbit heart. A conclusion is drawn that the decrease of Ca2+ transport is due to the impairment of Ca2+-calmodulin and 3':5'-AMP-dependent phosphorylation in sarcoplasmic reticulum membranes.

  12. Dibenzoylmethane exerts metabolic activity through regulation of AMP-activated protein kinase (AMPK-mediated glucose uptake and adipogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Nami Kim

    Full Text Available Dibenzoylmethane (DBM has been shown to exert a variety of beneficial effects on human health. However, the mechanism of action is poorly understood. In this study, DBM increased phosphorylation of AMP-activated protein kinase (AMPK and stimulated glucose uptake in a skeletal muscle cell line. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor blocked DBM-induced glucose uptake. DBM increased the concentration of intracellular calcium and glucose uptake due to DBM was abolished by STO-609 (a calcium/calmodulin-dependent protein kinase inhibitor. DBM stimulated phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK, which was blocked by pretreatment with compound C, an AMPK inhibitor. The expression of glucose transporter type 4 (GLUT4 was increased by DBM. The translocation of GLUT4 to the plasma membrane was also increased by DBM in AMPK dependently. In addition, DBM suppressed weight gain and prevented fat accumulation in the liver and abdomen in mice fed a high-fat diet. In pre-adipocyte cells, DBM decreased the activity of acetyl-CoA carboxylase (ACC, the rate-limiting enzyme of fatty acid synthesis. Expression of the adipogenic gene, fatty acid synthase (FAS, was suppressed by DBM in an AMPK-dependent manner. These results showed that the beneficial metabolic effects of DBM might be due to regulation of glucose uptake via AMPK in skeletal muscle and inhibition of adipogenesis in pre-adipocytes.

  13. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases

    Directory of Open Access Journals (Sweden)

    Laurent Meijer

    2008-10-01

    Full Text Available Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dualspecificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.

  14. Mesenchymal Stromal Cells Accelerate Epithelial Tight Junction Assembly via the AMP-Activated Protein Kinase Pathway, Independently of Liver Kinase B1

    Directory of Open Access Journals (Sweden)

    P. Rowart

    2017-01-01

    Full Text Available Background. Mesenchymal stromal cells (MSC are fibroblast-like multipotent cells capable of tissue-repair properties. Given the essentiality of tight junctions (TJ in epithelial integrity, we hypothesized that MSC modulate TJ formation, via the AMP-activated kinase (AMPK pathway. Liver kinase-β1 (LKB1 and Ca2+-calmodulin-dependent protein kinase kinase (CaMKK represent the main kinases that activate AMPK. Methods. The in vitro Ca2+ switch from 5 μM to 1.8 mM was performed using epithelial Madin-Darby canine kidney (MDCK cells cultured alone or cocultured with rat bone marrow-derived MSC or preexposed to MSC-conditioned medium. TJ assembly was measured by assessing ZO-1 relocation to cell-cell contacts. Experiments were conducted using MDCK stably expressing short-hairpin-RNA (shRNA against LKB1 or luciferase (LUC, as controls. Compound STO-609 (50 μM was used as CaMKK inhibitor. Results. Following Ca2+ switch, ZO-1 relocation and phosphorylation/activation of AMPK were significantly higher in MDCK/MSC compared to MDCK. No difference in AMPK phosphorylation was observed between LKB1-shRNA and Luc-shRNA MDCK following Ca2+ switch. Conversely, incubation with STO-609 prior to Ca2+ switch prevented AMPK phosphorylation and ZO-1 relocation. MSC-conditioned medium slightly but significantly increased AMPK activation and accelerated TJ-associated distribution of ZO-1 post Ca2+ switch in comparison to regular medium. Conclusions. MSC modulate the assembly of epithelial TJ, via the CaMKK/AMPK pathway independently of LKB1.

  15. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    Science.gov (United States)

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  16. Cyclic AMP-dependent protein kinase A regulates the alternative splicing of CaMKIIδ.

    Directory of Open Access Journals (Sweden)

    Qingqing Gu

    Full Text Available Ca(2+/calmodulin-dependent protein kinase (CaMK IIδ is predominantly expressed in the heart. There are three isoforms of CaMKIIδ resulting from the alternative splicing of exons 14, 15, and 16 of its pre-mRNA, which is regulated by the splicing factor SF2/ASF. Inclusion of exons 15 and 16 or of exon 14 generates δA or δB isoform. The exclusion of all three exons gives rise to δC isoform, which is selectively increased in pressure-overload-induced hypertrophy. Overexpression of either δB or δC induces hypertrophy and heart failure, suggesting their specific role in the pathogenesis of hypertrophy and heart failure. It is well known that the β-adrenergic-cyclic AMP-dependent protein kinase A (PKA pathway is implicated in heart failure. To determine the role of PKA in the alternative splicing of CaMKIIδ, we constructed mini-CaMKIIδ genes and used these genes to investigate the regulation of the alternative splicing of CaMKIIδ by PKA in cultured cells. We found that PKA promoted the exclusion of exons 14, 15, and 16 of CaMKIIδ, resulting in an increase in δC isoform. PKA interacted with and phosphorylated SF2/ASF, and enhanced SF2/ASF's activity to promote the exclusion of exons 14, 15, and 16 of CaMKIIδ, leading to a further increase in the expression of δC isoform. These findings suggest that abnormality in β-adrenergic-PKA signaling may contribute to cardiomyopathy and heart failure through dysregulation in the alternative splicing of CaMKIIδ exons 14, 15, and 16 and up-regulation of CaMKIIδC.

  17. A PEF/Y substrate recognition and signature motif plays a critical role in DAPK-related kinase activity.

    Science.gov (United States)

    Temmerman, Koen; de Diego, Iñaki; Pogenberg, Vivian; Simon, Bertrand; Jonko, Weronika; Li, Xun; Wilmanns, Matthias

    2014-02-20

    Knowledge about protein kinase substrate preferences is biased toward residues immediately adjacent to the site of phosphorylation. By a combined structural, biochemical, and cellular approach, we have discovered an unexpected substrate recognition element with the consensus sequence PEF/Y in the tumor suppressor death-associated protein kinase 1. This motif can be effectively blocked by a specific pseudosubstrate-type interaction with an autoregulatory domain of this kinase. In this arrangement, the central PEF/Y glutamate interacts with a conserved arginine distant to the phosphorylation site in sequence and structure. We also demonstrate that the element is crucial for kinase activity regulation and substrate recognition. The PEF/Y motif distinguishes close death-associated protein kinase relatives from canonical calcium/calmodulin-dependent protein kinases. Insight into this signature and mode of action offers new opportunities to identify specific small molecule inhibitors in PEF/Y-containing protein kinases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Protein Kinase A Modulation by Dietary Phytochemicals

    OpenAIRE

    Fagervoll, Anne Marthe

    2007-01-01

    Abstract Evidence from epidemiologic studies has shown that diets rich in fruit and vegetables are associated with reduced risk of chronic and degenerative diseases. Plants contain phytochemicals, which are believed to account for some of the positive effects through interactions with protein kinases. The present work is a screening of dietary phytochemicals for their ability to modulate the activity of the intracellular protein kinase A (PKA) using a novel PKA-sensitive luciferase. Som...

  19. Oncoprotein protein kinase antibody kit

    Science.gov (United States)

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  20. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  1. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability.

    Science.gov (United States)

    Küry, Sébastien; van Woerden, Geeske M; Besnard, Thomas; Proietti Onori, Martina; Latypova, Xénia; Towne, Meghan C; Cho, Megan T; Prescott, Trine E; Ploeg, Melissa A; Sanders, Stephan; Stessman, Holly A F; Pujol, Aurora; Distel, Ben; Robak, Laurie A; Bernstein, Jonathan A; Denommé-Pichon, Anne-Sophie; Lesca, Gaëtan; Sellars, Elizabeth A; Berg, Jonathan; Carré, Wilfrid; Busk, Øyvind Løvold; van Bon, Bregje W M; Waugh, Jeff L; Deardorff, Matthew; Hoganson, George E; Bosanko, Katherine B; Johnson, Diana S; Dabir, Tabib; Holla, Øystein Lunde; Sarkar, Ajoy; Tveten, Kristian; de Bellescize, Julitta; Braathen, Geir J; Terhal, Paulien A; Grange, Dorothy K; van Haeringen, Arie; Lam, Christina; Mirzaa, Ghayda; Burton, Jennifer; Bhoj, Elizabeth J; Douglas, Jessica; Santani, Avni B; Nesbitt, Addie I; Helbig, Katherine L; Andrews, Marisa V; Begtrup, Amber; Tang, Sha; van Gassen, Koen L I; Juusola, Jane; Foss, Kimberly; Enns, Gregory M; Moog, Ute; Hinderhofer, Katrin; Paramasivam, Nagarajan; Lincoln, Sharyn; Kusako, Brandon H; Lindenbaum, Pierre; Charpentier, Eric; Nowak, Catherine B; Cherot, Elouan; Simonet, Thomas; Ruivenkamp, Claudia A L; Hahn, Sihoun; Brownstein, Catherine A; Xia, Fan; Schmitt, Sébastien; Deb, Wallid; Bonneau, Dominique; Nizon, Mathilde; Quinquis, Delphine; Chelly, Jamel; Rudolf, Gabrielle; Sanlaville, Damien; Parent, Philippe; Gilbert-Dussardier, Brigitte; Toutain, Annick; Sutton, Vernon R; Thies, Jenny; Peart-Vissers, Lisenka E L M; Boisseau, Pierre; Vincent, Marie; Grabrucker, Andreas M; Dubourg, Christèle; Tan, Wen-Hann; Verbeek, Nienke E; Granzow, Martin; Santen, Gijs W E; Shendure, Jay; Isidor, Bertrand; Pasquier, Laurent; Redon, Richard; Yang, Yaping; State, Matthew W; Kleefstra, Tjitske; Cogné, Benjamin; Petrovski, Slavé; Retterer, Kyle; Eichler, Evan E; Rosenfeld, Jill A; Agrawal, Pankaj B; Bézieau, Stéphane; Odent, Sylvie; Elgersma, Ype; Mercier, Sandra

    2017-11-02

    Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Protein Kinases in Shaping Plant Architecture.

    Science.gov (United States)

    Wu, Juan; Wang, Bo; Xin, Xiaoyun; Ren, Dongtao

    2018-02-13

    Plant architecture, the three-dimensional organization of the plant body, includes the branching pattern and the size, shape, and position of organs. Plant architecture is genetically controlled and is influenced by environmental conditions. The regulations occur at most of the stages from the first division of the fertilized eggs to the final establishment of plant architecture. Among the various endogenous regulators, protein kinases and their associated signaling pathways have been shown to play important roles in regulating the process of plant architecture establishment. In this review, we summarize recent progress in the understanding of the mechanisms by which plant architecture formation is regulated by protein kinases, especially mitogen-activated protein kinase (MAPK). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The alpha-kinase family: an exceptional branch on the protein kinase tree.

    NARCIS (Netherlands)

    Middelbeek, J.A.J.; Clark, K.; Venselaar, H.; Huynen, M.A.; Leeuwen, F.N. van

    2010-01-01

    The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in

  4. Production of Protein Kinases in E. coli.

    Science.gov (United States)

    Dodson, Charlotte A

    2017-01-01

    Recombinant protein expression is widely used to generate milligram quantities of protein kinases for crystallographic, enzymatic, or other biophysical assays in vitro. Expression in E. coli is fast, cheap, and reliable. Here I present a detailed protocol for the production of human Aurora-A kinase. I begin with transformation of a suitable plasmid into an expression strain of E. coli, followed by growth and harvesting of bacterial cell cultures. Finally, I describe the purification of Aurora-A to homogeneity using immobilized metal affinity and size exclusion chromatographies.

  5. Rational design of protein kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Yarmoluk S. M.

    2013-07-01

    Full Text Available Modern methodological approaches to rational design of low molecular weight compounds with specific activity in relation to predetermined biomolecular targets are considered by example of development of high effective protein kinase inhibitors. The application of new computational methods that allow to significantly improve the quality of computational experiments (in, particular, accuracy of low molecular weight compounds activity prediction without increase of computational and time costs are highlighted. The effectiveness of strategy of rational design is demonstrated by examples of several own investigations devoted to development of new inhibitors that are high effective and selective towards protein kinases CK2, FGFR1 and ASK1.

  6. Mitogen-activated protein kinases mediate Mycobacterium ...

    Indian Academy of Sciences (India)

    DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific ...

  7. L-Glutamine Enhances Tight Junction Integrity by Activating CaMK Kinase 2-AMP-Activated Protein Kinase Signaling in Intestinal Porcine Epithelial Cells.

    Science.gov (United States)

    Wang, Bin; Wu, Zhenlong; Ji, Yun; Sun, Kaiji; Dai, Zhaolai; Wu, Guoyao

    2016-03-01

    The tight junctions (TJs) are essential for maintenance of the intestinal mucosal barrier integrity. Results of our recent work show that dietary l-glutamine (Gln) supplementation enhances the protein abundance of TJ proteins in the small intestine of piglets. However, the underlying mechanisms remain largely unknown. This study was conducted to test the hypothesis that Gln regulates TJ integrity through calcium/calmodulin-dependent kinase 2 (CaMKK2)-AMP-activated protein kinase (AMPK) signaling which, in turn, contributes to improved intestinal mucosal barrier function. Jejunal enterocytes isolated from a newborn pig were cultured in the presence of 0-2.0 mmol Gln/L for indicated time points. Cell proliferation, monolayer transepithelial electrical resistance (TEER), paracellular permeability, expression and distribution of TJ proteins, and phosphorylated AMPK were determined. Compared with 0 mmol Gln/L, 2.0 mmol Gln/L enhanced (P < 0.05) cell growth (by 31.9% at 48 h and 11.1% at 60 h). Cells treated with 2 mmol Gln/L increased TEER by 32.2% at 60 h, and decreased (P < 0.05) TJ permeability by 20.3-40.0% at 36-60 h. In addition, 2.0 mmol Gln/L increased (P < 0.05) the abundance of transmembrane proteins, such as occludin, claudin-4, junction adhesion molecule (JAM)-A, and the plaque proteins zonula occludens (ZO)-1, ZO-2, and ZO-3 by 1.8-6 times. In contrast, 0.5 mmol Gln/L had a moderate effect on TJ protein abundance (20.2-70.5%; P < 0.05) of occludin, claudin-3, claudin-4, JAM-A, and ZO-1. 2.0 mmol Gln/L treatment led to a greater distribution of claudin-1, claudin-4, and ZO-1 at plasma membranes compared with 0 mmol Gln/L. This effect of Gln was mediated by the activation of CaMKK2-AMPK signaling, because either depletion of calcium from the medium or the presence of an inhibitor of CaMKK2 abrogated the effect of Gln on epithelial integrity. Our findings indicate that activation of CaMKK2-AMPK signaling by Gln is associated with improved intestinal mucosal

  8. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  9. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    DEFF Research Database (Denmark)

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...... the critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP...

  10. A Framework for Classification of Prokaryotic Protein Kinases

    OpenAIRE

    Nidhi Tyagi; Krishanpal Anamika; Narayanaswamy Srinivasan

    2010-01-01

    BACKGROUND: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of pro...

  11. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas

    2009-01-01

    of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites......, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found...... that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do...

  12. CaMKKβ is involved in AMP-activated protein kinase activation by baicalin in LKB1 deficient cell lines.

    Directory of Open Access Journals (Sweden)

    Ying Ma

    Full Text Available AMP-activated protein kinase (AMPK plays an important role in mediating energy metabolism and is controlled mainly by two upstream kinases, LKB1 or Ca(2+/calmodulin-dependent protein kinase kinase-β (CaMKKβ. Previously, we found that baicalin, one of the major flavonoids in a traditional Chinese herb medicine, Scutellaria baicalensis, protects against the development of hepatic steatosis in rats feeding with a high-fat diet by the activation of AMPK, but, the underlying mechanism for AMPK activation is unknown. Here we show that in two LKB1-deficient cells, HeLa and A549 cells, baicalin activates AMPK by α Thr-172 phosphorylation and subsequent phosphorylation of its downstream target, acetyl CoA carboxylase, at Ser-79, to a similar degree as does in HepG2 cells (that express LKB1. Pharmacologic inhibition of CaMKKβ by its selective inhibitor STO-609 markedly inhibits baicalin-induced AMPK activation in both HeLa and HepG2 cells, indicating that CaMKKβ is the responsible AMPK kinase. We also show that treatment of baicalin causes a larger increase in intracellular Ca(2+ concentration ([Ca(2+](i, although the maximal level of [Ca(2+](i is lower in HepG2 cells compared to HeLa cells. Chelation of intracellular free Ca(2+ by EDTA and EGTA, or depletion of intracellular Ca(2+ stores by the endoplasmic reticulum Ca(2+-ATPase inhibitor thapsigargin abrogates baicalin-induced activation of AMPK in HeLa cells. Neither cellular ATP nor the production of reactive oxygen species is altered by baicalin. Finally, in HeLa cells, baicalin treatment no longer decreases intracellular lipid accumulation caused by oleic acid after inhibition of CaMKKβ by STO-609. These results demonstrate that a potential Ca(2+/CaMKKβ dependent pathway is involved in the activation of AMPK by baicalin and suggest that CaMKKβ likely acts as an upstream kinase of AMPK in response to baicalin.

  13. The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1

    NARCIS (Netherlands)

    Shah, K.; Russinova, E.; Gadella, T.W.J.; Willemse, J.; Vries, de S.C.

    2002-01-01

    The AtSERK1 protein is a plasma membrane-located LRR receptor-like serine threonine kinase that is transiently expressed during plant embryogenesis. Our results show that AtSERK1 interacts with the kinase-associated protein phosphatase (KAPP) in vitro. The kinase interaction (KI) domain of KAPP does

  14. CK2: a protein kinase in need of control

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Sarno, S

    1999-01-01

    Protein kinase CK2 is a heterotetrameric alpha2beta2 Ser/Thr protein kinase with some features unusual among the eukaryotic protein kinases: (1) CK2 recognizes phosphoacceptor sites specified by several acidic determinants; (2) CK2 can use both ATP and GTP as phosphoryl donors; and (3) the regula...... response to nucleotide analogs. The increasing knowledge of CK2 structure-function relationships will allow the design of highly selective inhibitors of this pleiotropic kinase with oncogenic potential....

  15. A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis.

    Science.gov (United States)

    Nakagami, Hirofumi; Soukupová, Hanka; Schikora, Adam; Zárský, Viktor; Hirt, Heribert

    2006-12-15

    Mitogen-activated protein kinase kinase kinases (MAPKKKs) play key roles in intra- and extracellular signaling in eukaryotes. Here we report that the MAPKKK MEKK1 regulates redox homeostasis in Arabidopsis. We show that MEKK1-deficient plants are misregulated in the expression of a number of genes involved in cellular redox control and accumulate reactive oxygen species (ROS). Most strikingly, homozygous mekk1 mutant plants exhibit a lethal phenotype when developing true leaves. MEKK1 kinase activity and protein stability was regulated by H(2)O(2) in a proteasome-dependent manner and mekk1 plants were compromised in ROS-induced MAPK MPK4 activation. Whereas mpk3 and mpk6 knock out plants showed no defects in development or changes in redox control genes, mpk4 null mutant shared several phenotypic and transcript profile features with mekk1 plants. In agreement with the concept that ROS negatively regulates auxin responses in plants, mekk1 and mpk4 mutants show reduced expression of several auxin-inducible marker genes. Overall, our data defines MPK4 as downstream target of MEKK1 and show that MEKK1 functions in integrating ROS homeostasis with plant development and hormone signaling.

  16. Exceptional disfavor for proline at the P + 1 position among AGC and CAMK kinases establishes reciprocal specificity between them and the proline-directed kinases.

    Science.gov (United States)

    Zhu, Guozhi; Fujii, Koichi; Belkina, Natalya; Liu, Yin; James, Michael; Herrero, Juan; Shaw, Stephen

    2005-03-18

    To precisely regulate critical signaling pathways, two kinases that phosphorylate distinct sites on the same protein substrate must have mutually exclusive specificity. Evolution could assure this by designing families of kinase such as basophilic kinases and proline-directed kinase with distinct peptide specificity; their reciprocal peptide specificity would have to be very complete, since recruitment of substrate allows phosphorylation of even rather poor phosphorylation sites in a protein. Here we report a powerful evolutionary strategy that assures distinct substrates for basophilic kinases (PKA, PKG and PKC (AGC) and calmodulin-dependent protein kinase (CAMK)) and proline-directed kinase, namely by the presence or absence of proline at the P + 1 position in substrates. Analysis of degenerate and non-degenerate peptides by in vitro kinase assays reveals that proline at the P + 1 position in substrates functions as a "veto" residue in substrate recognition by AGC and CAMK kinases. Furthermore, analysis of reported substrates of two typical basophilic kinases, protein kinase C and protein kinase A, shows the lowest occurrence of proline at the P + 1 position. Analysis of crystal structures and sequence conservation provides a molecular basis for this disfavor and illustrate its generality.

  17. Basidiomycete-specific PsCaMKL1 encoding a CaMK-like protein kinase is required for full virulence of Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Jiao, Min; Yu, Dan; Tan, Chenglong; Guo, Jia; Lan, Dingyun; Han, Ershang; Qi, Tuo; Voegele, Ralf Thomas; Kang, Zhensheng; Guo, Jun

    2017-10-01

    Calcium/calmodulin-dependent kinases (CaMKs) are Ser/Thr protein kinases (PKs) that respond to changes in cytosolic free Ca(2+) and play diverse roles in eukaryotes. In fungi, CAMKs are generally classified into four families CAMK1, CAMKL, RAD53 and CAMK-Unique. Among these, CAMKL constitutes the largest family. In some fungal plant pathogens, members of the CaMKL family have been shown to be responsible for pathogenesis. However, little is known about their role(s) in rust fungi. In this study, we functionally characterized a novel PK gene, PsCaMKL1, from Puccinia striiformis f. sp. tritici (Pst). PsCaMKL1 belongs to a group of PKs that is evolutionarily specific to basidiomyceteous fungi. PsCaMKL1 shows little intra-species polymorphism between Pst isolates. PsCaMKL1 transcripts are highly elevated at early infection stages, whereas gene expression is downregulated in barely germinated urediospores under KN93 treatment. Overexpression of PsCaMKL1 in fission yeast increased resistance to environmental stresses. Knock down of PsCaMKL1 using host-induced gene silencing (HIGS) reduced the virulence of Pst accompanied by reactive oxygen species (ROS) accumulation and a hypersensitive response. These results suggest that PsCaMKL1 is a novel pathogenicity factor that exerts it virulence function by regulating ROS production in wheat. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Side-effects of protein kinase inhibitors on ion channels

    Indian Academy of Sciences (India)

    Protein kinases are one of the largest gene families and have regulatory roles in all aspects of eukaryotic cell function. Modulation of protein kinase activity is a desirable therapeutic approach for a number of human diseases associated with aberrant kinase activity, including cancers, arthritis and cardiovascular disorders.

  19. Photoinduced structural changes to protein kinase A

    Science.gov (United States)

    Rozinek, Sarah C.; Thomas, Robert J.; Brancaleon, Lorenzo

    2014-03-01

    The importance of porphyrins in organisms is underscored by the ubiquitous biological and biochemical functions that are mediated by these compounds and by their potential biomedical and biotechnological applications. Protoporphyrin IX (PPIX) is the precursor to heme and has biomedical applications such as its use as a photosensitizer in phototherapy and photodetection of cancer. Among other applications, our group has demonstrated that low-irradiance exposure to laser irradiation of PPIX, Fe-PPIX, or meso-tetrakis (4-sulfonatophenyl) porphyrin (TSPP) non-covalently docked to a protein causes conformational changes in the polypeptide. Such approach can have remarkable consequences in the study of protein structure/function relationship and can be used to prompt non-native protein properties. Therefore we have investigated protein kinase A (PKA), a more relevant protein model towards the photo-treatment of cancer. PKA's enzymatic functions are regulated by the presence of cyclic adenosine monophosphate for intracellular signal transduction involved in, among other things, stimulation of transcription, tumorigenesis in Carney complex and migration of breast carcinoma cells. Since phosphorylation is a necessary step in some cancers and inflammatory diseases, inhibiting the protein kinase, and therefore phosphorylation, may serve to treat these diseases. Changes in absorption, steady-state fluorescence, and fluorescence lifetime indicate: 1) both TSPP and PPIX non-covalently bind to PKA where they maintain photoreactivity; 2) absorptive photoproduct formation occurs only when PKA is bound to TSPP and irradiated; and 3) PKA undergoes secondary structural changes after irradiation with either porphyrin bound. These photoinduced changes could affect the protein's enzymatic and signaling capabilities.

  20. Rat vas deferens SERCA2 is modulated by Ca{sup 2+}/calmodulin protein kinase II-mediated phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.B.R.; Muzi-Filho, H. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Valverde, R.H.F. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Quintas, L.E.M. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Noel, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Einicker-Lamas, M. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ (Brazil); Cunha, V.M.N. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-03-19

    Ca{sup 2+} pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca{sup 2+}-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca{sup 2+} (Ca{sub 0.5} = 780 nM) and a low sensitivity to vanadate (IC{sub 50} = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca{sup 2+} and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca{sup 2+} accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca{sup 2+} and CaM, possibly via CaMKII, in a process that results in stimulation of Ca{sup 2+} pumping activity.

  1. The ABC of protein kinase conformations.

    Science.gov (United States)

    Möbitz, Henrik

    2015-10-01

    Due to their involvement in human diseases, protein kinases are an important therapeutic target class. Conformation is a key concept for understanding how functional activity, inhibition and sequence are linked. We assemble and annotate the mammalian structural kinome from the Protein Data Bank on the basis of a universal residue nomenclature. We identify a torsion angle around the Gly of the DFG-motif whose sharp distribution profile corresponds to three eclipsed conformations. This allows the definition a small set of clusters whose distribution shows a bias for the active conformation. A common rationale links the active and inactive state: stabilization of the active conformation, as well as inactivation by displacement of helix-αC or the DFG-motif is governed by the interaction between helix-αC and the DFG motif. In particular, the conformation of the DFG-motif is tightly correlated with the propensity of helix-αC displacement. Our analysis reveals detailed mechanisms for the displacement of helix-αC and the DFG and improves our understanding of the role of individual residues. By pooling conformations from the whole structural kinome, the energetic contributions of sequence and extrinsic factors can be estimated in free energy analyses. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Structural Evolution of the Protein Kinase-Like Superfamily.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  3. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    Directory of Open Access Journals (Sweden)

    Inger Lindin

    2014-03-01

    Full Text Available The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD simulations of: (1 MK5 alone; (2 MK5 in complex with an inhibitor; and (3 MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.

  4. A framework for classification of prokaryotic protein kinases.

    Science.gov (United States)

    Tyagi, Nidhi; Anamika, Krishanpal; Srinivasan, Narayanaswamy

    2010-05-26

    Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the

  5. A framework for classification of prokaryotic protein kinases.

    Directory of Open Access Journals (Sweden)

    Nidhi Tyagi

    Full Text Available BACKGROUND: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular

  6. The Roles of Protein Kinases in Learning and Memory

    Science.gov (United States)

    Giese, Karl Peter; Mizuno, Keiko

    2013-01-01

    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  7. Mitogen-activated protein kinase cascades in Vitis vinifera.

    Science.gov (United States)

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera.

  8. Mitogen-activated protein kinase cascades in Vitis vinifera

    Science.gov (United States)

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  9. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  10. MAP kinase meets mitosis: A role for Raf Kinase Inhibitory Protein in spindle checkpoint regulation

    Directory of Open Access Journals (Sweden)

    Rosner Marsha

    2007-01-01

    Full Text Available Abstract Raf Kinase Inhibitory Protein (RKIP is an evolutionarily conserved protein that functions as a modulator of signaling by the MAP kinase cascade. Implicated as a metastasis suppressor, Raf Kinase Inhibitory Protein depletion correlates with poor prognosis for breast, prostate and melanoma tumors but the mechanism is unknown. Recent evidence indicates that Raf Kinase Inhibitory Protein regulates the mitotic spindle assembly checkpoint by controlling Aurora B Kinase activity, and the mechanism involves Raf/MEK/ERK signaling. In contrast to elevated MAP kinase signaling during the G1, S or G2 phases of the cell cycle that activates checkpoints and induces arrest or senescence, loss of RKIP during M phase leads to bypass of the spindle assembly checkpoint and the generation of chromosomal abnormalities. These results reveal a role for Raf Kinase Inhibitory Protein and the MAP kinase cascade in ensuring the fidelity of chromosome segregation prior to cell division. Furthermore, these data highlight the need for precise titration of the MAP kinase signal to ensure the integrity of the spindle assembly process and provide a mechanism for generating genomic instability in tumors. Finally, these results raise the possibility that RKIP status in tumors could influence the efficacy of treatments such as poisons that stimulate the Aurora B-dependent spindle assembly checkpoint.

  11. Role of exercise-induced calmodulin protein kinase (CAMK)II activation in the regulation of omega-6 fatty acids and lipid metabolism genes in rat skeletal muscle.

    Science.gov (United States)

    Joseph, J S; Ayeleso, A O; Mukwevho, E

    2017-09-22

    Activation of calmodulin dependent protein kinase (CaMK)II by exercise is beneficial in controlling membrane lipids associated with type 2 diabetes and obesity. Regulation of lipid metabolism is crucial in the improvement of type 2 diabetes and obesity associated symptoms. The role of CaMKII in membrane associated lipid metabolism was the focus of this study. Five to six weeks old male Wistar rats were used in this study. GC×GC-TOFMS technique was used to determine the levels of polyunsaturated fatty acids (linoleic acid, arachidonic acid and 11,14-eicosadienoic acid). Carnitine palmitoyltransferase (Cpt-1) and acetyl-CoA carboxylase (Acc-1) genes expression were assessed using quantitative real time PCR (qPCR). From the results, CaMKII activation by exercise increased the levels of arachidonic acid and 11, 14-eicosadienoic acid while a decrease in the level of linolenic acid was observed in the skeletal muscle. The results indicated that exercise-induced CaMKII activation increased CPT-1 expression and decreased ACC-1 expression in rat skeletal muscle. All the observed increases with activation of CaMKII by exercise were aborted when KN93, an inhibitor of CaMKII was injected in exercising rats. This study demonstrated that CaMKII activation by exercise regulated lipid metabolism. This study suggests that CaMKII can be a vital target of therapeutic approach in the management of diseases such as type 2 diabetes and obesity that have increased to epidemic proportions recently.

  12. Oral protein kinase c β inhibition using ruboxistaurin

    DEFF Research Database (Denmark)

    Aiello, Lloyd Paul; Vignati, Louis; Sheetz, Matthew J

    2011-01-01

    To evaluate efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with moderately severe to very severe nonproliferative diabetic retinopathy from the Protein Kinase C β Inhibitor-Diabetic Retinopathy Study and Protein Kinase C β Inhibitor-Diabetic Retinopathy Study 2 ruboxi...

  13. Inhibitors caveolin-1 and protein kinase G show differential ...

    African Journals Online (AJOL)

    protein interactions with caveolin-1 before extracellular activating signals release it for nitric oxide (NO) production. Smooth muscle protein kinase G (PKG) is a down-stream effector of NO signaling for relaxation of vascular smooth muscle cells ...

  14. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Directory of Open Access Journals (Sweden)

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  15. Effective identification of negative regulation patterns of protein kinases.

    Science.gov (United States)

    Chen, Qingfeng; Hu, Xiaoyan; Chen, Baoshan

    2013-06-01

    Recent studies point to the fact that protein kinases play an important role in the regulation of cellular pathways and show great potential in disease treatment. Thus, it is critical to discover characterized regulatory patterns of protein kinases in signaling pathway. There have been considerable efforts to explore the activities of protein kinases. However, the study of negative regulation patterns has been largely overlooked and undeveloped. This paper aims to identify inhibitory regulatory correlations of protein kinase according to negative association rule mining. Especially, mutual information is applied to sort out the items with strong dependency and the minimum support threshold is computed by support constraints to control rule generation. The obtained rules not only reveal the relationships between subunits of protein kinases and between subunits and stimuli, but also provide novel pharmacological insight into drug design for diseases.

  16. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism[S

    Science.gov (United States)

    Pinkosky, Stephen L.; Filippov, Sergey; Srivastava, Rai Ajit K.; Hanselman, Jeffrey C.; Bradshaw, Cheryl D.; Hurley, Timothy R.; Cramer, Clay T.; Spahr, Mark A.; Brant, Ashley F.; Houghton, Jacob L.; Baker, Chris; Naples, Mark; Adeli, Khosrow; Newton, Roger S.

    2013-01-01

    ETC-1002 (8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel investigational drug being developed for the treatment of dyslipidemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid β-oxidation. However, the molecular mechanism(s) mediating these activities remained undefined. Studies described here show that ETC-1002 free acid activates AMP-activated protein kinase in a Ca2+/calmodulin-dependent kinase β-independent and liver kinase β 1-dependent manner, without detectable changes in adenylate energy charge. Furthermore, ETC-1002 is shown to rapidly form a CoA thioester in liver, which directly inhibits ATP-citrate lyase. These distinct molecular mechanisms are complementary in their beneficial effects on lipid and carbohydrate metabolism in vitro and in vivo. Consistent with these mechanisms, ETC-1002 treatment reduced circulating proatherogenic lipoproteins, hepatic lipids, and body weight in a hamster model of hyperlipidemia, and it reduced body weight and improved glycemic control in a mouse model of diet-induced obesity. ETC-1002 offers promise as a novel therapeutic approach to improve multiple risk factors associated with metabolic syndrome and benefit patients with cardiovascular disease. PMID:23118444

  17. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Science.gov (United States)

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  18. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    African Journals Online (AJOL)

    2012-06-19

    Jun 19, 2012 ... Key words: Limb ischemic preconditioning, ischemia–reperfusion injury, phosphatidylinositol 3-kinase (PI3k), protein kinase (p-Akt), signal ... signaling pathways and certain cytokines (tumor necrosis factor-alpha, erythropoietin ... involved in the protecting cardiac muscle via the. ADP/PI3k/Akt signaling ...

  19. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    African Journals Online (AJOL)

    The adiponectin/phosphatidylinositol 3-kinase/protein kinase B (ADP/PI3k/Akt) signal transduction pathway has an important role in promoting cell survival. This study was designed to determine if the ADP/PI3K/Akt signaling pathway has a role in the mechanism of ischemia–reperfusion injury in vivo. Sprague–Dawley rats ...

  20. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Science.gov (United States)

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  1. Resolution of thylakoid polyphenol oxidase and a protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Race, H.L.; Davenport, J.W.; Hind, G.

    1995-12-31

    The predominant protein kinase activity in octylglucoside (OG) extracts of spinach thylakoids has been attributed to a 64-kDa protein, tp64. Recent work calls into question the relation between tp64 and protein kinase activity, which were fractionated apart using fluid phase IEF and hydroxylapatite chromatography. Hind et al. sequenced tp64 from the cDNA and showed it to be a polyphenol oxidase (PPO) homolog. Its transit peptide indicates a location for the mature protein within the thylakoid lumen, where there is presumably no ATP and where it is remote from the presumed kinase substrates: the stromally exposed regions of integral PS-II membrane proteins. Here the authors suggest that the kinase is a 64-kDa protein distinct from tp64.

  2. Auto-phosphorylation Represses Protein Kinase R Activity.

    Science.gov (United States)

    Wang, Die; de Weerd, Nicole A; Willard, Belinda; Polekhina, Galina; Williams, Bryan R G; Sadler, Anthony J

    2017-03-10

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

  3. Rationally designed peptide regulators of protein kinase C

    OpenAIRE

    Churchill, Eric N.; Qvit, Nir; Mochly-Rosen, Daria

    2008-01-01

    Protein-protein interactions sequester enzymes close to their substrates. Protein kinase C (PKC) is one example of a ubiquitous signaling molecule with effects that are dependent upon localization. Short peptides derived from interaction sites between each PKC isozyme and its receptor for activated C kinase act as highly specific inhibitors and have become available as selective drugs in basic research and animal models of human diseases, such as myocardial infarction and hyperglycemia. Where...

  4. A new regulatory switch in a JAK protein kinase.

    Science.gov (United States)

    Tsui, Vickie; Gibbons, Paul; Ultsch, Mark; Mortara, Kyle; Chang, Christine; Blair, Wade; Pulk, Rebecca; Stanley, Mark; Starovasnik, Melissa; Williams, David; Lamers, Maria; Leonard, Phillip; Magnuson, Steven; Liang, Jun; Eigenbrot, Charles

    2011-02-01

    Members of the JAK family of protein kinases mediate signal transduction from cytokine receptors to transcription factor activation. Over-stimulation of these pathways is causative in immune disorders like rheumatoid arthritis, psoriasis, lupus, and Crohn's disease. A search for selective inhibitors of a JAK kinase has led to our characterization of a previously unknown kinase conformation arising from presentation of Tyr962 of TYK2 to an inhibitory small molecule via an H-bonding interaction. A small minority of protein kinase domains has a Tyrosine residue in this position within the αC-β4 loop, and it is the only amino acid commonly seen here with H-bonding potential. These discoveries will aid design of inhibitors that discriminate among the JAK family and more widely among protein kinases. © 2010 Wiley-Liss, Inc.

  5. Electromagnetic fields as first messenger in biological signaling: Application to calmodulin-dependent signaling in tissue repair.

    Science.gov (United States)

    Pilla, Arthur; Fitzsimmons, Robert; Muehsam, David; Wu, June; Rohde, Christine; Casper, Diana

    2011-12-01

    The transduction mechanism for non-thermal electromagnetic field (EMF) bioeffects has not been fully elucidated. This study proposes that an EMF can act as a first messenger in the calmodulin-dependent signaling pathways that orchestrate the release of cytokines and growth factors in normal cellular responses to physical and/or chemical insults. Given knowledge of Ca(2+) binding kinetics to calmodulin (CaM), an EMF signal having pulse duration or carrier period shorter than bound Ca(2+) lifetime may be configured to accelerate binding, and be detectable above thermal noise. New EMF signals were configured to modulate calmodulin-dependent signaling and assessed for efficacy in cellular studies. Configured EMF signals modulated CaM-dependent enzyme kinetics, produced several-fold increases in key second messengers to include nitric oxide and cyclic guanosine monophosphate in chondrocyte and endothelial cultures and cyclic adenosine monophosphate in neuronal cultures. Calmodulin antagonists and downstream blockers annihilated these effects, providing strong support for the proposed mechanism. Knowledge of the kinetics of Ca(2+) binding to CaM, or for any ion binding specific to any signaling cascade, allows the use of an electrochemical model by which the ability of any EMF signal to modulate CaM-dependent signaling can be assessed a priori or a posteriori. Results are consistent with the proposed mechanism, and strongly support the Ca/CaM/NO pathway as a primary EMF transduction pathway. The predictions of the proposed model open a host of significant possibilities for configuration of non-thermal EMF signals for clinical and wellness applications that can reach far beyond fracture repair and wound healing. 2011 Elsevier B.V. All rights reserved.

  6. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region....... These results suggest that the compartmentalization of PKC isoforms in neurons may contribute to their function, with the location of PKMzeta prominent in areas notable for long-term synaptic plasticity....

  7. Enhanced expression of a calcium-dependent protein kinase from ...

    Indian Academy of Sciences (India)

    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss ...

  8. RAF protein-serine/threonine kinases: Structure and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Roskoski, Robert, E-mail: rrj@brimr.org [Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742 (United States)

    2010-08-27

    Research highlights: {yields} The formation of unique side-to-side RAF dimers is required for full kinase activity. {yields} RAF kinase inhibitors block MEK activation in cells containing oncogenic B-RAF. {yields} RAF kinase inhibitors can lead to the paradoxical increase in RAF kinase activity. -- Abstract: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.

  9. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  10. Recent Developments of Protein Kinase Inhibitors as Potential AD Therapeutics

    Directory of Open Access Journals (Sweden)

    Andreas eHilgeroth

    2013-11-01

    Full Text Available Present AD therapies suffer from inefficient effects on AD symptoms like memory or cognition, especially in later states of the disease. Used acteylcholine esterase (ACE inhibitors or the NMDA receptor antagonist memantine address one target structure which is involved in a complex, multifactorial disease progression. So the benefit for patients is presently poor. A more close insight in the AD progression identified more suggested target structures for drug development. Strategies of AD drug development concentrate on novel target structures combined with the established ones dedicated for combined therapy regimes, preferably by the use of one drug which may address two target structures. Protein kinases have been identified as promising target structures because they are involved in AD progression pathways like pathophysiological tau protein phosphorylations and amyloid β toxicity. The review article will shortly view early inhibitors of single protein kinases like glycogen synthase kinase (gsk3 β and cyclin dependent kinase 5. Novel inhibitors will be discussed which address novel AD relevant protein kinases like dual-specifity tyrosine phosphorylation regulated kinase 1A (DYRK1A. Moreover, multitargeting inhibitors will be presented which target several protein kinases and those which are suspected in influencing other AD relevant processes. Such a multitargeting is the most promising strategy to effectively hamper the multifactorial disease progression and thus gives perspective hopes for a future better patient benefit.

  11. Emerging roles of protein kinases in microglia-mediated neuroinflammation.

    Science.gov (United States)

    Lee, Sun-Hwa; Suk, Kyoungho

    2017-12-15

    Neuroinflammation is mediated by resident central nervous system glia, neurons, peripherally derived immune cells, blood-brain barrier, and inflammatory mediators secreted from these cells. Neuroinflammation has been implicated in stroke and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Protein kinases have been one of the most exploited therapeutic targets in the current pharmacological research, especially in studies on cancer and inflammation. To date, 32 small-molecule protein kinase inhibitors have been approved by the United States Food and Drug Administration for the treatment of cancer and inflammation. However, there is no drug effectively targeting neuroinflammation and/or neurodegenerative diseases. Recent studies have advanced several protein kinases as important drug targets in neuroinflammation and/or neurodegenerative diseases. Here, we review emerging protein kinases potentially involved in neuroinflammation and subsequent neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Protein tyrosine kinase but not protein kinase C inhibition blocks receptor induced alveolar macrophage activation

    Directory of Open Access Journals (Sweden)

    K. Pollock

    1993-01-01

    Full Text Available The selective enzyme inhibitors genistein and Ro 31-8220 were used to assess the importance of protein tyrosine kinase (PTK and protein kinase C (PKC, respectively, in N-formyl-methionyl-leucyl-phenylalanine (FMLP induced generation of superoxide anion and thromboxane B2 (TXB2 in guinea-pig alveolar macrophages (AM. Genistein (3–100 μM dose dependently inhibited FMLP (3 nM induced superoxide generation in non-primed AM and TXB2 release in non-primed or in lipopolysaccharide (LPS (10 ng/ml primed AM to a level > 80% but had litle effect up to 100 μM on phorbol myristate acetate (PMA (10 nM induced superoxide release. Ro 31-8220 inhibited PMA induced superoxide generation (IC50 0.21 ± 0.10 μM but had no effect on or potentiated (at 3 and 10 μM FMLP responses in non-primed AM. In contrast, when present during LPS priming as well as during FMLP challenge Ro 31-8220 (10 μM inhibited primed TXB2 release by > 80%. The results indicate that PTK activation is required for the generation of these inflammatory mediators by FMLP in AM. PKC activation appears to be required for LPS priming but not for transducing the FMLP signal; rather, PKC activation may modulate the signal by a negative feedback mechanism.

  13. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    Science.gov (United States)

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês CR; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the—in many cells—asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant. DOI: http://dx.doi.org/10.7554/eLife.02860.001 PMID:24948515

  14. Conservation, variability and the modeling of active protein kinases.

    Directory of Open Access Journals (Sweden)

    James D R Knight

    2007-10-01

    Full Text Available The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.

  15. EST Table: DC544291 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available sphorylation) 10/09/28 80 %/204 aa ref|XP_001661659.1| calcium/calmodulin-dependent protein kinase type 1 (camk...i) [Aedes aegypti] gb|EAT36480.1| calcium/calmodulin-dependent protein kinase type 1 (camk...lar to calcium/calmodulin-dependent protein kinase type 1 (camki) [Tribolium castaneum] DC544291 dpe- ...

  16. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa

    Directory of Open Access Journals (Sweden)

    Talevich Eric

    2011-11-01

    Full Text Available Abstract Background The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. Results We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK, calcium-dependent protein kinase (CDPK and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. Conclusions We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and

  17. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs

    Science.gov (United States)

    Gurevich, Eugenia V.; Tesmer, John J. G.; Mushegian, Arcady; Gurevich, Vsevolod V.

    2011-01-01

    G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson’s disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson’s disease. PMID:21903131

  18. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  19. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S

    2000-01-01

    in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears......Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... to be an allosteric mechanism. Furthermore, we demonstrate that anisomycin- and tumor necrosis factor-alpha-induced phosphorylation of p53 at Ser-392, which is important for the transcriptional activity of this growth suppressor protein, requires p38 MAP kinase and CK2 activities....

  20. Calmodulin Kinase II Interacts with the Dopamine Transporter C Terminus to Regulate Amphetamine-Induced Reverse Transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion

    2006-01-01

    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d......Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound...... to the distal C terminus of DAT and colocalized with DAT in dopaminergic neurons. CaMKIIalpha stimulated dopamine efflux via DAT in response to amphetamine in heterologous cells and in dopaminergic neurons. CaMKIIalpha phosphorylated serines in the distal N terminus of DAT in vitro, and mutation...... of these serines eliminated the stimulatory effects of CaMKIIalpha. A mutation of the DAT C terminus impairing CaMKIIalpha binding also impaired amphetamine-induced dopamine efflux. An in vivo role for CaMKII was supported by chronoamperometry measurements showing reduced amphetamine-induced dopamine efflux...

  1. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion

    2006-01-01

    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d......Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound...... to the distal C terminus of DAT and colocalized with DAT in dopaminergic neurons. CaMKIIalpha stimulated dopamine efflux via DAT in response to amphetamine in heterologous cells and in dopaminergic neurons. CaMKIIalpha phosphorylated serines in the distal N terminus of DAT in vitro, and mutation...... of these serines eliminated the stimulatory effects of CaMKIIalpha. A mutation of the DAT C terminus impairing CaMKIIalpha binding also impaired amphetamine-induced dopamine efflux. An in vivo role for CaMKII was supported by chronoamperometry measurements showing reduced amphetamine-induced dopamine efflux...

  2. Apelin attenuates postburn sepsis via a phosphatidylinositol 3-kinase/protein kinase B dependent mechanism: A randomized animal study

    National Research Council Canada - National Science Library

    Luo, Keqin; Long, Huibao; Xu, Bincan; Luo, Yanling

    2015-01-01

    This study aims to investigate whether apelin would regulate inflammatory response and promote survival in an experimental burn sepsis model through a phosphatidylinositol 3-kinase/protein kinase B dependent pathway...

  3. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    (ALDH1) and Raf kinase inhibitor protein (RKIP) as cervical cancer stem cell markers. Methods: To evaluate the cancer ... ALDH1, a protein that positively regulates stem cells shows mild expression in low grade cervical tumour, but positive signals are ... cancer cells or cancer stem cells that still remain after treatment gets.

  4. Diverse role of CBL-interacting protein kinases in plant

    Indian Academy of Sciences (India)

    admin

    Debasis Chattopadhyay, NIPGR, New Delhi. Diverse role of CBL-interacting protein kinases in plant. Most of the extracellular and intrinsic signals elicit changes in cellular calcium ion. (Ca2+) in plants and animals. Ca2+ sensor proteins transmit signals in Ca2+-dependent manner. In addition to several such Ca2+ sensors, ...

  5. Heart 6-phosphofructo-2-kinase activation by insulin requires PKB (protein kinase B), but not SGK3 (serum- and glucocorticoid-induced protein kinase 3).

    OpenAIRE

    Mouton, Veronique; Toussaint, Louise; Vertommen, Didier; Gueuning, Marie-Agnes; Maisin, Liliane; Havaux, Xavier; Sanchez-Canedo, Cossette; Bertrand, Luc; Dequiedt, Franck; Hemmings, Brian A; Hue, Louis; Rider, Mark H

    2010-01-01

    On the basis of transfection experiments using a dominant-negative approach, our previous studies suggested that PKB (protein kinase B) was not involved in heart PFK-2 (6-phosphofructo2-kinase) activation by insulin. Therefore we first tested whether SGK3 (serum- and glucocorticoid-induced protein kinase 3) might be involved in this effect. Treatment of recombinant heart PFK-2 with [gamma-32P]ATP and SGK3 in vitro led to PFK-2 activation and phosphorylation at Ser466 and Ser483. However, in H...

  6. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases.

    Science.gov (United States)

    Li, S; Kim, M; Hu, Y L; Jalali, S; Schlaepfer, D D; Hunter, T; Chien, S; Shyy, J Y

    1997-11-28

    Shear stress, the tangential component of hemodynamic forces, activates the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) signal transduction pathways in cultured vascular endothelial cells to induce the transcriptional activation of many immediate early genes. It appears that integrins, protein-tyrosine kinases, and the structural integrity of actin are important factors involved in these shear stress-induced responses. The underlying molecular events were investigated by the application of a shear stress of 12 dyn/cm2 on bovine aortic endothelial cells (BAEC). We found that such a shear stress increased the tyrosine phosphorylation and the kinase activity of focal adhesion kinase (FAK) and its association with growth factor receptor binding protein 2 (Grb2) in a rapid and transient manner, suggesting that FAK may be linked to these mitogen-activated protein kinase signaling pathways through a Grb2. Son of sevenless (Sos) complex. FAK(F397Y), which encodes a dominant negative mutant of FAK, attenuated the shear stress-induced kinase activity of Myc epitope-tagged ERK2 and hemagglutinin epitope-tagged JNK1. DeltamSos1, encoding a dominant negative mutant of Sos in which the guanine nucleotide exchange domain has been deleted, also attenuated shear stress activation of Myc-ERK2 and hemagglutinin-JNK1. Pretreating the confluent BAEC monolayers with a blocking type anti-vitronectin receptor monoclonal antibody had similar inhibitory effects in these shear stress-activated ERKs and JNKs. Confocal microscopic observation further demonstrated that FAK tended to cluster with vitronectin receptor near the abluminal side of the sheared BAEC. These results demonstrate that FAK signaling is critical in the shear stress-induced dual activation of ERK and JNK.

  7. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞

    Science.gov (United States)

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2008-01-01

    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  8. Cadmium affects focal adhesion kinase (FAK) in mesangial cells: involvement of CaMK-II and the actin cytoskeleton.

    Science.gov (United States)

    Choong, Grace; Liu, Ying; Templeton, Douglas M

    2013-08-01

    The toxic metal ion cadmium (Cd(2+)) induces pleiotropic effects on cell death and survival, in part through effects on cell signaling mechanisms and cytoskeletal dynamics. Linking these phenomena appears to be calmodulin-dependent activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II). Here we show that interference with the dynamics of the filamentous actin cytoskeleton, either by stabilization or destabilization, results in disruption of focal adhesions at the ends of organized actin structures, and in particular the loss of vinculin and focal adhesion kinase (FAK) from the contacts is a result. Low-level exposure of renal mesangial cells to CdCl2 disrupts the actin cytoskeleton and recapitulates the effects of manipulation of cytoskeletal dynamics with biological agents. Specifically, Cd(2+) treatment causes loss of vinculin and FAK from focal contacts, concomitant with cytoskeletal disruption, and preservation of cytoskeletal integrity with either a calmodulin antagonist or a CaMK-II inhibitor abrogates these effects of Cd(2+). Notably, inhibition of CaMK-II decreases the migration of FAK-phosphoTyr925 to a membrane-associated compartment where it is otherwise sequestered from focal adhesions in a Cd(2+)-dependent manner. These results add further insight into the mechanism of the CaMK-II-dependent effects of Cd(2+) on cellular function. Copyright © 2013 Wiley Periodicals, Inc.

  9. TTBK2: A Tau Protein Kinase beyond Tau Phosphorylation

    Directory of Open Access Journals (Sweden)

    Jung-Chi Liao

    2015-01-01

    Full Text Available Tau tubulin kinase 2 (TTBK2 is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1 kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.

  10. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    DEFF Research Database (Denmark)

    Götz, C; Koenig, M G; Issinger, O G

    1995-01-01

    The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... of T antigen by the associated kinase is reduced whereas a p34cdc2-kinase-specific peptide has no influence. In addition, the T-antigen-associated protein kinase can use GTP and ATP as phosphate donors. These properties together with the observation that immunopurified T antigen can be phosphorylated...

  11. Unveiling Protein Kinase A Targets in Cryptococcus neoformans Capsule Formation

    Directory of Open Access Journals (Sweden)

    J. Andrew Alspaugh

    2016-03-01

    Full Text Available The protein kinase A (PKA signal transduction pathway has been associated with pathogenesis in many fungal species. Geddes and colleagues [mBio 7(1:e01862-15, 2016, doi:10.1128/mBio.01862-15] used quantitative proteomics approaches to define proteins with altered abundance during protein kinase A (PKA activation and repression in the opportunistic human fungal pathogen Cryptococcus neoformans. They observed an association between microbial PKA signaling and ubiquitin-proteasome regulation of protein homeostasis. Additionally, they correlated these processes with expression of polysaccharide capsule on the fungal cell surface, the main virulence-associated phenotype in this organism. Not only are their findings important for microbial pathogenesis, but they also support similar associations between human PKA signaling and ubiquitinated protein accumulation in neurodegenerative diseases.

  12. Marine sponge polyketide inhibitors of protein tyrosine kinase.

    Science.gov (United States)

    Lee, R H; Slate, D L; Moretti, R; Alvi, K A; Crews, P

    1992-04-30

    The marine polyketide natural product, halenaquinone, was shown to be an irreversible inhibitor of pp60v-src, the oncogenic protein tyrosine kinase encoded by the Rous sarcoma virus. This compound had an IC50 of approximately 1.5 microM against pp60v-src and also inhibited the ligand-stimulated kinase activity of the human epidermal growth factor receptor with an IC50 of approximately 19 microM. Halenaquinone blocked the proliferation of a number of cultured cell lines, including several transformed by oncogenic protein tyrosine kinases. Halenaquinol, xestoquinone, halenaquinol sulfate, and several simple synthetic quinone analogs were also shown to inhibit pp60v-src.

  13. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    Science.gov (United States)

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  14. Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Zhongtao Zhao

    Full Text Available Tyrosine kinases (TKs specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematically identified possible TKs across the fungal kingdom by using the profile hidden Markov Models searches and phylogenetic analyses. Our results confirmed that fungi lack the orthologs of animal TKs. We identified a fungi-specific lineage of protein kinases (FslK that appears to be a sister group closely related to TKs. Sequence analysis revealed that members of the FslK clade contain all the conserved protein kinase sub-domains and thus are likely enzymatically active. However, they lack key amino acid residues that determine TK-specific activities, indicating that they are not true TKs. Phylogenetic analysis indicated that the last common ancestor of fungi may have possessed numerous members of FslK. The ancestral FslK genes were lost in Ascomycota and Ustilaginomycotina and Pucciniomycotina of Basidiomycota during evolution. Most of these ancestral genes, however, were retained and expanded in Agaricomycetes. The discovery of the fungi-specific lineage of protein kinases closely related to TKs helps shed light on the origin and evolution of TKs and also has potential implications for the importance of these kinases in mushroom fungi.

  15. Kinase activity ranking using phosphoproteomics data (KARP) quantifies the contribution of protein kinases to the regulation of cell viability.

    Science.gov (United States)

    Wilkes, Edmund H; Casado, Pedro; Rajeeve, Vinothini; Cutillas, Pedro R

    2017-09-01

    Cell survival is regulated by a signaling network driven by the activity of protein kinases; however, determining the contribution that each kinase in the network makes to such regulation remains challenging. Here, we report a computational approach that uses mass spectrometry-based phosphoproteomics data to rank protein kinases based on their contribution to cell regulation. We found that the scores returned by this algorithm, which we have termed kinase activity ranking using phosphoproteomics data (KARP), were a quantitative measure of the contribution that individual kinases make to the signaling output. Application of KARP to the analysis of eight hematological cell lines revealed that cyclin-dependent kinase (CDK) 1/2, casein kinase (CK) 2, extracellular signal-related kinase (ERK), and p21-activated kinase (PAK) were the most frequently highly ranked kinases in these cell models. The patterns of kinase activation were cell-line specific yet showed a significant association with cell viability as a function of kinase inhibitor treatment. Thus, our study exemplifies KARP as an untargeted approach to empirically and systematically identify regulatory kinases within signaling networks. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Circadian and pharmacological regulation of casein kinase I in the ...

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... Agostino P. V., Ferreyra G. A., Murad A. D., Watanabe Y. and. Golombek D. A. 2004 Diurnal, circadian and photic regulation of calcium/calmodulin-dependent kinase II and neuronal nitric ox- ide synthase in the hamster suprachiasmatic nuclei. Neurochem. Int. 44, 617–625. Agostino P. V., Harrington M. E., ...

  17. Protein kinase CK2 structure-function relationship

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Pinna, L A

    1994-01-01

    Protein kinase CK2 subunits alpha and beta were expressed either separately or together in a bacterial expression system (pT7-7/BL21(DE3)) and purified to homogeneity. After mixing the subunits, a CK2 holoenzyme (alpha 2 beta 2) was spontaneously reconstituted, which displays identical features a...

  18. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy

    Science.gov (United States)

    Tscheschner, Henrike; Gao, Erhe; Schumacher, Sarah M.; Yuan, Ancai; Backs, Johannes; Most, Patrick; Wieland, Thomas; Koch, Walter J.; Katus, Hugo A.; Raake, Philip W.

    2017-01-01

    The increase in protein activity and upregulation of G-protein coupled receptor kinase 2 (GRK2) is a hallmark of cardiac stress and heart failure. Inhibition of GRK2 improved cardiac function and survival and diminished cardiac remodeling in various animal heart failure models. The aim of the present study was to investigate the effects of GRK2 on cardiac hypertrophy and dissect potential molecular mechanisms. In mice we observed increased GRK2 mRNA and protein levels following transverse aortic constriction (TAC). Conditional GRK2 knockout mice showed attenuated hypertrophic response with preserved ventricular geometry 6 weeks after TAC operation compared to wild-type animals. In isolated neonatal rat ventricular cardiac myocytes stimulation with angiotensin II and phenylephrine enhanced GRK2 expression leading to enhanced signaling via protein kinase B (PKB or Akt), consecutively inhibiting glycogen synthase kinase 3 beta (GSK3β), such promoting nuclear accumulation and activation of nuclear factor of activated T-cells (NFAT). Cardiac myocyte hypertrophy induced by in vitro GRK2 overexpression increased the cytosolic interaction of GRK2 and phosphoinositide 3-kinase γ (PI3Kγ). Moreover, inhibition of PI3Kγ as well as GRK2 knock down prevented Akt activation resulting in halted NFAT activity and reduced cardiac myocyte hypertrophy. Our data show that enhanced GRK2 expression triggers cardiac hypertrophy by GRK2-PI3Kγ mediated Akt phosphorylation and subsequent inactivation of GSK3β, resulting in enhanced NFAT activity. PMID:28759639

  19. VHH Activators and Inhibitors for Protein Kinase C Epsilon

    NARCIS (Netherlands)

    Summanen, M.M.I.

    2012-01-01

    Protein kinase C epsilon (PKCε), which is one of the novel PKC isozymes, is widely expressed throughout the body and has important roles in the function of the nervous, cardiovascular and immune systems. In order to better understand PKCε regulated pathways, isozyme specific activity modulators are

  20. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    Science.gov (United States)

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  1. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Rodriguez-del Valle Nuri

    2007-11-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  2. Integrin-linked kinase is a functional Mn2+-dependent protein kinase that regulates glycogen synthase kinase-3β (GSK-3beta phosphorylation.

    Directory of Open Access Journals (Sweden)

    Mykola Maydan

    2010-08-01

    Full Text Available Integrin-linked kinase (ILK is a highly evolutionarily conserved, multi-domain signaling protein that localizes to focal adhesions, myofilaments and centrosomes where it forms distinct multi-protein complexes to regulate cell adhesion, cell contraction, actin cytoskeletal organization and mitotic spindle assembly. Numerous studies have demonstrated that ILK can regulate the phosphorylation of various protein and peptide substrates in vitro, as well as the phosphorylation of potential substrates and various signaling pathways in cultured cell systems. Nevertheless, the ability of ILK to function as a protein kinase has been questioned because of its atypical kinase domain.Here, we have expressed full-length recombinant ILK, purified it to >94% homogeneity, and characterized its kinase activity. Recombinant ILK readily phosphorylates glycogen synthase kinase-3 (GSK-3 peptide and the 20-kDa regulatory light chains of myosin (LC(20. Phosphorylation kinetics are similar to those of other active kinases, and mutation of the ATP-binding lysine (K220 within subdomain 2 causes marked reduction in enzymatic activity. We show that ILK is a Mn-dependent kinase (the K(m for MnATP is approximately 150-fold less than that for MgATP.Taken together, our data demonstrate that ILK is a bona fide protein kinase with enzyme kinetic properties similar to other active protein kinases.

  3. Protein Kinase C δ: a Gatekeeper of Immune Homeostasis.

    Science.gov (United States)

    Salzer, Elisabeth; Santos-Valente, Elisangela; Keller, Bärbel; Warnatz, Klaus; Boztug, Kaan

    2016-10-01

    Human autoimmune disorders present in various forms and are associated with a life-long burden of high morbidity and mortality. Many different circumstances lead to the loss of immune tolerance and often the origin is suspected to be multifactorial. Recently, patients with autosomal recessive mutations in PRKCD encoding protein kinase c delta (PKCδ) have been identified, representing a monogenic prototype for one of the most prominent forms of humoral systemic autoimmune diseases, systemic lupus erythematosus (SLE). PKCδ is a signaling kinase with multiple downstream target proteins and with functions in various signaling pathways. Interestingly, mouse models have indicated a special role of the ubiquitously expressed protein in the control of B-cell tolerance revealed by the severe autoimmunity in Prkcd (-/-) knockout mice as the major phenotype. As such, the study of PKCδ deficiency in humans has tremendous potential in enhancing our knowledge on the mechanisms of B-cell tolerance.

  4. G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation.

    Science.gov (United States)

    Gavi, Shai; Shumay, Elena; Wang, Hsien-yu; Malbon, Craig C

    2006-03-01

    G-protein-coupled receptors and protein tyrosine kinases represent two prominent pathways for cellular signaling. As our knowledge of cell signaling pathways mediated by the superfamily of G-protein-coupled receptors and the smaller family of receptor tyrosine kinases expands, so does our appreciation of how these two major signaling platforms share information and modulate each other, otherwise termed "cross-talk". Cross-talk between G-protein-coupled receptors and tyrosine kinases can occur at several levels, including the receptor-to-receptor level, and at crucial downstream points (e.g. phosphatidylinositol-3-kinase, Akt/protein kinase B and the mitogen-activated protein kinase cascade). Regulation of G-protein-coupled receptors by non-receptor tyrosine kinases, such as Src family members, also operates in signaling. A broader understanding of how G-protein-coupled receptors and tyrosine kinases cross-talk reveals new insights into signaling modalities in both health and disease.

  5. Septin-associated protein kinases in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jeremy THORNER

    2016-11-01

    Full Text Available Septins are a family of eukaryotic GTP-binding proteins that associate into linear rods, which, in turn, polymerize end-on-end into filaments and further assemble into other, more elaborate super-structures at discrete subcellular locations. Hence, septin-based ensembles are considered elements of the cytoskeleton. One function of these structures that has been well-documented in studies conducted in budding yeast Saccharomyces cerevisiae is to serve as a scaffold that recruits regulatory proteins, which dictate the spatial and temporal control of certain aspects of the cell division cycle. In particular, septin-associated protein kinases couple cell cycle progression with cellular morphogenesis. Thus, septin-containing structures serve as signaling platforms that integrate a multitude of signals and coordinate key downstream networks required for cell cycle passage. This review summarizes what we currently understand about how the action of septin-associated protein kinases and their substrates control information flow to drive the cell cycle into and out of mitosis, to regulate bud growth, and especially to direct timely and efficient execution of cytokinesis and cell abscission. Thus, septin structures represent a regulatory node at the intersection of many signaling pathways. In addition, and importantly, the activities of certain septin-associated protein kinases also regulate the state of organization of the septins themselves, creating a complex feedback loop.

  6. Identification of a Fungi-Specific Lineage of Protein Kinases Closely Related to Tyrosine Kinases.

    OpenAIRE

    Zhongtao Zhao; Qiaojun Jin; Jin-Rong Xu; Huiquan Liu

    2014-01-01

    Tyrosine kinases (TKs) specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematical...

  7. Protein Tyrosine Kinase Signaling During Oocyte Maturation and Fertilization

    Science.gov (United States)

    McGinnis, Lynda K.; Carroll, David J.; Kinsey, William H.

    2011-01-01

    The oocyte is a highly specialized cell capable of accumulating and storing energy supplies as well as maternal transcripts and pre-positioned signal transduction components needed for zygotic development, undergoing meiosis under control of paracrine signals from the follicle, fusing with a single sperm during fertilization, and zygotic development. The oocyte accomplishes this diverse series of events by establishing an array of signal transduction pathway components that include a select collection of protein tyrosine kinases (PTKs) that are expressed at levels significantly higher than most other cell types. This array of PTKs includes cytosolic kinases such as SRC-family PTKs (FYN and YES), and FAK kinases, as well as FER. These kinases typically exhibit distinct patterns of localization and in some cases are translocated from one subcellular compartment to another during meiosis. Significant differences exist in the extent to which PTK-mediated pathways are used by oocytes from species that fertilize externally versus internally. The PTK activation profiles as well as calcium signaling pattern seems to correlate with the extent to which a rapid block to polyspermy is required by the biology of each species. Suppression of each of the SRC-family PTKs as well as FER kinase results in failure of meiotic maturation or zygote development, indicating that these PTKs are important for oocyte quality and developmental potential. Future studies will hopefully reveal the extent to which these factors impact clinical assisted reproductive techniques in domestic animals and humans. PMID:21681843

  8. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  9. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk.

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-10-01

    Full Text Available Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis.

  10. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Directory of Open Access Journals (Sweden)

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  11. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    Directory of Open Access Journals (Sweden)

    Koul Sweaty

    2004-06-01

    Full Text Available Abstract The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy.

  12. Expression of Raf Kinase Inhibitor Protein (RKIP) is a predictor of uveal melanoma metastasis.

    Science.gov (United States)

    Caltabiano, Rosario; Puzzo, Lidia; Barresi, Valeria; Cardile, Venera; Loreto, Carla; Ragusa, Marco; Russo, Andrea; Reibaldi, Michele; Longo, Antonio

    2014-10-01

    Melanoma arising from melanocytes within the choroid is the most frequent primary intraocular neoplasm in adults. It is biologically distinct from cutaneous melanoma by a very strong propensity to metastasize the liver. Raf kinase inhibitor protein is a member of an evolutionarily conserved group of proteins called phosphatidylethanolamine-binding proteins. It is an interacting partner of Raf-1 and a negative regulator of the mitogen-activated protein kinase cascade initiated by Raf-1. Raf kinase inhibitor protein expression is low in many human cancers and represents an indicator of poor prognosis and/or induction of metastasis. In the present study, we examined the immunohistochemical expression levels of Raf kinase inhibitor protein and phosphorylated Raf kinase inhibitor protein in primary uveal melanoma with and without metastasis, and evaluated their association with other high risk characteristics for metastasis in order to assess whether Raf kinase inhibitor protein and phosphorylated Raf kinase inhibitor protein can be used to predict metastasis. A significant low expression of Raf kinase inhibitor protein was seen in patients with metastasis but not in patients without metastasis. The latter more frequently had a high expression of Raf kinase inhibitor protein. No significant difference was seen in phosphorylated Raf kinase inhibitor protein expression between patients with and without metastasis. Raf kinase inhibitor protein expression is a suitable and easily determinable marker in the primary tumour that could predict the risk of uveal melanoma to metastasize, and hence guide strategies for monitoring and therapy.

  13. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways

    OpenAIRE

    Wuwu Xu; Wenchao Huang

    2017-01-01

    Calcium-dependent protein kinases (CPKs/CDPKs) are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner i...

  14. Evolutionary conservation of the signaling proteins upstream of cyclic AMP-dependent kinase and protein kinase C in gastropod mollusks.

    Science.gov (United States)

    Sossin, Wayne S; Abrams, Thomas W

    2009-01-01

    The protein kinase C (PKC) and the cAMP-dependent kinase (protein kinase A; PKA) pathways are known to play important roles in behavioral plasticity and learning in the nervous systems of a wide variety of species across phyla. We briefly review the members of the PKC and PKA family and focus on the evolution of the immediate upstream activators of PKC and PKA i.e., phospholipase C (PLC) and adenylyl cyclase (AC), and their conservation in gastropod mollusks, taking advantage of the recent assembly of the Aplysiacalifornica and Lottia gigantea genomes. The diversity of PLC and AC family members present in mollusks suggests a multitude of possible mechanisms to activate PKA and PKC; we briefly discuss the relevance of these pathways to the known physiological activation of these kinases in Aplysia neurons during plasticity and learning. These multiple mechanisms of activation provide the gastropod nervous system with tremendous flexibility for implementing neuromodulatory responses to both neuronal activity and extracellular signals. Copyright 2009 S. Karger AG, Basel.

  15. Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera).

    Science.gov (United States)

    Wang, Gang; Lovato, Arianna; Polverari, Annalisa; Wang, Min; Liang, Ying-Hai; Ma, Yuan-Chun; Cheng, Zong-Ming

    2014-08-27

    Mitogen-activated protein kinase kinase kinases (MAPKKKs; MAP3Ks) are important components of MAPK cascades, which are highly conserved signal transduction pathways in animals, yeast and plants, play important roles in plant growth and development. MAPKKKs have been investigated on their evolution and expression patterns in limited plants including Arabidopsis, rice and maize. In this study, we performed a genome-wide survey and identified 45 MAPKKK genes in the grapevine genome. Chromosome location, phylogeny, gene structure and conserved protein motifs of MAPKKK family in grapevine have been analyzed to support the prediction of these genes. In the phylogenetic analysis, MAPKKK genes of grapevine have been classified into three subgroups as described for Arabidopsis, named MEKK, ZIK and RAF, also confirmed in grapevine by the analysis of conserved motifs and exon-intron organizations. By analyzing expression profiles of MAPKKK genes in grapevine microarray databases, we highlighted the modulation of different MAPKKKs in different organs and distinct developmental stages. Furthermore, we experimentally investigated the expression profiles of 45 grape MAPKKK genes in response to biotic (powdery mildew) and abiotic stress (drought), as well as to hormone (salicylic acid, ethylene) and hydrogen peroxide treatments, and identified several candidate MAPKKK genes that might play an important role in biotic and abiotic responses in grapevine, for further functional characterization. This is the first comprehensive experimental survey of the grapevine MAPKKK gene family, which provides insights into their potential roles in regulating responses to biotic and abiotic stresses, and the evolutionary expansion of MAPKKKs is associated with the diverse requirement in transducing external and internal signals into intracellular actions in MAPK cascade in grapevine.

  16. Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Knaap, E. van der; Sauter, M.; Kende, H. (Michigan State Univ., East Lansing, MI (United States). DOE Plant Research Lab.); Song, W.Y.; Ruan, D.L.; Ronald, P.C. (Univ. of California, Davis, CA (United States). Dept. of Plant Pathology)

    1999-06-01

    The authors identified in deepwater rice (Oryza sativa L.) a gene encoding a leucine-rich repeat receptor-like transmembrane protein kinase, OsTMK (O. sativa transmembrane kinase). The transcript levels of OsTMK increased in the rice internode in response to gibberellin. Expression of OsTMK was especially high in regions undergoing cell division and elongation. The kinase domain of OsTMK was enzymatically active autophosphorylating on serine and threonine residues. A cDNA encoding a rice ortholog of a kinase-associated type 2C protein phosphatase (OsKAPP) was cloned. KAPPs are putative downstream components in kinase-mediated signal transduction pathways. The kinase interaction domain of OsKAPP was phosphorylated in vitro by the kinase domain of OsTMK. RNA gel-blot analysis indicated that the expression of OsTMK and OsKAPP was similar in different tissues of the rice plant. In protein-binding assays, OsKAPP interacted with a receptor-like protein kinase, RLK5 of Arabidopsis, but not with the protein kinase domains of the rice and maize receptor-like protein kinases Xa21 and ZmPK1, respectively.

  17. Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy

    Directory of Open Access Journals (Sweden)

    Fengbao Luo

    2016-08-01

    Full Text Available Tissue hypoxia/ischemia is a pathological feature of many human disorders including stroke, myocardial infarction, hypoxic/ischemic nephropathy, as well as cancer. In the kidney, the combination of limited oxygen supply to the tissues and high oxygen demand is considered the main reason for the susceptibility of the kidney to hypoxic/ischemic injury. In recent years, increasing evidence has indicated that a reduction in renal oxygen tension/blood supply plays an important role in acute kidney injury, chronic kidney disease, and renal tumorigenesis. However, the underlying signaling mechanisms, whereby hypoxia alters cellular behaviors, remain poorly understood. Mitogen-activated protein kinases (MAPKs are key signal-transducing enzymes activated by a wide range of extracellular stimuli, including hypoxia/ischemia. There are four major family members of MAPKs: the extracellular signal-regulated kinases-1 and -2 (ERK1/2, the c-Jun N-terminal kinases (JNK, p38 MAPKs, and extracellular signal-regulated kinase-5 (ERK5/BMK1. Recent studies, including ours, suggest that these MAPKs are differentially involved in renal responses to hypoxic/ischemic stress. This review will discuss their changes in hypoxic/ischemic pathophysiology with acute kidney injury, chronic kidney diseases and renal carcinoma.

  18. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  19. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  20. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase.

    Directory of Open Access Journals (Sweden)

    Xiangpei Kong

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several plant species including Arabidopsis and rice, no systematic analysis has been conducted in maize. In this study, we performed a bioinformatics analysis of the entire maize genome and identified 74 MAPKKK genes. Phylogenetic analyses of MAPKKKs from maize, rice and Arabidopsis have classified them into three subgroups, which included Raf, ZIK and MEKK. Evolutionary relationships within subfamilies were also supported by exon-intron organizations and the conserved protein motifs. Further expression analysis of the MAPKKKs in microarray databases revealed that MAPKKKs were involved in important signaling pathways in maize different organs and developmental stages. Our genomics analysis of maize MAPKKK genes provides important information for evolutionary and functional characterization of this family in maize.

  1. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Lohr, Christian; Bergstein, Sandra; Hirnet, Daniela

    2007-01-01

    The antennal lobe (primary olfactory center of insects) is completely reorganized during metamorphosis. This reorganization is accompanied by changing patterns of calcium signaling in neurons and glial cells. In the present study, we investigated the developmental distribution of a major calcium-dependent protein, viz., calcium/calmodulin-dependent protein kinase II (CaM kinase II), in the antennal lobe of the sphinx moth Manduca sexta by using a monoclonal antibody. During synaptogenesis (developmental stages 6-10), we found a redistribution of CaM kinase II immunoreactivity, from a homogeneous distribution in the immature neuropil to an accumulation in the neuropil of the glomeruli. CaM kinase II immunoreactivity was less intense in olfactory receptor axons of the antennal nerve and antennal lobe glial cells. Western blot analysis revealed a growing content of CaM kinase II in antennal lobe tissue throughout metamorphosis. Injection of the CaM kinase inhibitor KN-93 into pupae resulted in a reduced number of antennal lobe glial cells migrating into the neuropil to form borders around glomeruli. The results suggest that CaM kinase II is involved in glial cell migration.

  2. Serous Retinopathy Associated with Mitogen-Activated Protein Kinase Kinase Inhibition (Binimetinib) for Metastatic Cutaneous and Uveal Melanoma

    NARCIS (Netherlands)

    Dijk, E.H. van; Herpen, C.M.L. van; Marinkovic, M.; Haanen, J.B.; Amundson, D.; Luyten, G.P.M.; Jager, M.J. de; Kapiteijn, E.H.; Keunen, J.E.E.; Adamus, G.; Boon, C.J.F.

    2015-01-01

    PURPOSE: To analyze the clinical characteristics of a serous retinopathy associated with mitogen-activated protein kinase kinase (MEK) inhibition with binimetinib treatment for metastatic cutaneous melanoma (CM) and uveal melanoma (UM), and to determine possible pathogenetic mechanisms that may lead

  3. Rice mitogen activated protein kinase kinase and mitogen activated protein kinase interaction network revealed by in-silico docking and yeast two-hybrid approaches.

    Directory of Open Access Journals (Sweden)

    Dhammaprakash Pandhari Wankhede

    Full Text Available Protein-protein interaction is one of the crucial ways to decipher the functions of proteins and to understand their role in complex pathways at cellular level. Such a protein-protein interaction network in many crop plants remains poorly defined owing largely to the involvement of high costs, requirement for state of the art laboratory, time and labour intensive techniques. Here, we employed computational docking using ZDOCK and RDOCK programmes to identify interaction network between members of Oryza sativa mitogen activated protein kinase kinase (MAPKK and mitogen activated protein kinase (MAPK. The 3-dimentional (3-D structures of five MAPKKs and eleven MAPKs were determined by homology modelling and were further used as input for docking studies. With the help of the results obtained from ZDOCK and RDOCK programmes, top six possible interacting MAPK proteins were predicted for each MAPKK. In order to assess the reliability of the computational prediction, yeast two-hybrid (Y2H analyses were performed using rice MAPKKs and MAPKs. A direct comparison of Y2H assay and computational prediction of protein interaction was made. With the exception of one, all the other MAPKK-MAPK pairs identified by Y2H screens were among the top predictions by computational dockings. Although, not all the predicted interacting partners could show interaction in Y2H, yet, the harmony between the two approaches suggests that the computational predictions in the present work are reliable. Moreover, the present Y2H analyses per se provide interaction network among MAPKKs and MAPKs which would shed more light on MAPK signalling network in rice.

  4. Benzoselendiazole-based responsive long-lifetime photoluminiscent probes for protein kinases

    DEFF Research Database (Denmark)

    Ekambaram, R; Enkvist, E; Manoharan, GB

    2014-01-01

    Benzoselenadiazole-containing inhibitors of protein kinases were constructed and their capability to emit phosphorescence in the kinase-bound state was established. Labelling of the inhibitors with a red fluorescent dye led to sensitive responsive photoluminescent probes for protein kinase CK2 th...

  5. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G

    OpenAIRE

    Abhisheka Bansal; Ojo, Kayode K.; Jianbing Mu; Maly, Dustin J.; Van Voorhis,Wesley C.; Miller, Louis H.

    2016-01-01

    ABSTRACT We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs). Here, we have used this approach to study Plasmodium?falciparum calcium-dependent protein kinase 1 (PfCDPK1). The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosph...

  6. Protein kinase C involvement in focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1992-01-01

    Matrix molecules such as fibronectin can promote cell attachment, spreading and focal adhesion formation. Although some interactions of fibronectin with cell surface receptors have now been identified, the consequent activation of intracellular messenger systems by cell/matrix interactions have...... still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form....... Fibroblasts spread within 1h on substrata composed of fibronectin and formed focal adhesions by 3h, as monitored by interference reflection microscopy (IRM) and by labeling for talin, vinculin and integrin beta 1 subunits. In addition, stress fibers were visible. When cells were allowed to spread for 1h...

  7. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Usaite, Renata

    2008-01-01

    In yeast, Saccharomyces cerevisiae, the Snf1 protein kinase is primarily known as a key component of the glucose repression regulatory cascade. The Snf1 kinase is highly conserved among eukaryotes and its mammalian homolog AMPK is responsible for energy homeostasis in cells, organs and whole bodies...... catabolism was SNF1 or SNF4 gene deletion specific. In comparison to the reference strain, growth delay on galactose was found to last 2.4 times (7 hours) longer for the Δsnf4, 3.1 times (10.5 hours) longer for the Δsnf1, and 9.6 times (43 hours) longer for the Δsnf1Δsnf4 strains. The maximum specific growth...

  8. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    Science.gov (United States)

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  9. Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Dikkers, Arne; Jurdzinski, Angelika; von Felden, Johann; Gaestel, Matthias; Bavendiek, Udo; Tietge, Uwe J. F.

    2014-01-01

    Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation,

  10. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    Science.gov (United States)

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  11. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    Science.gov (United States)

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  12. Stretch-Induced Mitogen-Activated Protein Kinase Activation in Lung Fibroblasts Is Independent of Receptor Tyrosine Kinases

    OpenAIRE

    Boudreault, Francis; Tschumperlin, Daniel J.

    2009-01-01

    Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cγ1 (PLCγ1) and activation of the small G-protein Ras. Human lung fibroblast...

  13. Functional diversity of human protein kinase splice variants marks significant expansion of human kinome

    Directory of Open Access Journals (Sweden)

    Anamika Krishanpal

    2009-12-01

    Full Text Available Abstract Background Protein kinases are involved in diverse spectrum of cellular processes. Availability of draft version of the human genomic data in the year 2001 enabled recognition of repertoire of protein kinases. However, over the years the human genomic data is being refined and the current release of human genomic data has helped us to recognize a larger repertoire of over 900 human protein kinases represented mainly by splice variants. Results Many of these identified protein kinases are alternatively spliced products. Interestingly, some of the human kinase splice variants appear to be significantly diverged in terms of their functional properties as represented by incorporation or absence of one or more domains. Many sets of protein kinase splice variants have substantially different domain organization and in a few sets of splice variants kinase domains belong to different subfamilies of kinases suggesting potential participation in different signal transduction pathways. Conclusions Addition or deletion of a domain between splice variants of multi-domain kinases appears to be a means of generating differences in the functional features of otherwise similar kinases. It is intriguing that marked sequence diversity within the catalytic regions of some of the splice variant kinases result in kinases belonging to different subfamilies. These human kinase splice variants with different functions might contribute to diversity of eukaryotic cellular signaling.

  14. Mitogen-activated protein kinase kinase 4 (MAP2K4 promotes human prostate cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Janet M Pavese

    Full Text Available Prostate cancer (PCa is the second leading cause of cancer death in the US. Death from PCa primarily results from metastasis. Mitogen-activated protein kinase kinase 4 (MAP2K4 is overexpressed in invasive PCa lesions in humans, and can be inhibited by small molecule therapeutics that demonstrate favorable activity in phase II studies. However, MAP2K4's role in regulating metastatic behavior is controversial and unknown. To investigate, we engineered human PCa cell lines which overexpress either wild type or constitutive active MAP2K4. Orthotopic implantation into mice demonstrated MAP2K4 increases formation of distant metastasis. Constitutive active MAP2K4, though not wild type, increases tumor size and circulating tumor cells in the blood and bone marrow. Complementary in vitro studies establish stable MAP2K4 overexpression promotes cell invasion, but does not affect cell growth or migration. MAP2K4 overexpression increases the expression of heat shock protein 27 (HSP27 protein and protease production, with the largest effect upon matrix metalloproteinase 2 (MMP-2, both in vitro and in mouse tumor samples. Further, MAP2K4-mediated increases in cell invasion are dependent upon heat shock protein 27 (HSP27 and MMP-2, but not upon MAP2K4's immediate downstream targets, p38 MAPK or JNK. We demonstrate that MAP2K4 increases human PCa metastasis, and prolonged over expression induces long term changes in cell signaling pathways leading to independence from p38 MAPK and JNK. These findings provide a mechanistic explanation for human studies linking increases in HSP27 and MMP-2 to progression to metastatic disease. MAP2K4 is validated as an important therapeutic target for inhibiting human PCa metastasis.

  15. EST Table: BP116132 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available ref|XP_001660485.1| calcium/calmodulin-dependent serine protein kinase membrane-associated guanylate kinase (cask...) [Aedes aegypti] gb|EAT38133.1| calcium/calmodulin-dependent serine protein kinase membrane-associated guanylate kinase (cask...otein kinase membrane-associated guanylate kinase (cask) [Tribolium castaneum] BP116132 brP- ...

  16. Protein Kinase C-Regulated Aβ Production and Clearance

    Directory of Open Access Journals (Sweden)

    Taehyun Kim

    2011-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia among the elderly population. AD, which is characterized as a disease of cognitive deficits, is mainly associated with an increase of amyloid β-peptide (Aβ in the brain. A growing body of recent studies suggests that protein kinase C (PKC promotes the production of the secretory form of amyloid precursor protein (sAPPα via the activation of α-secretase activity, which reduces the accumulation of pathogenic Aβ levels in the brain. Moreover, activation of PKCα and mitogen-activated protein kinase (MAPK is known to increase sAPPα. A novel type of PKC, PKCε, activates the Aβ degrading activity of endothelin converting enzyme type 1 (ECE-1, which might be mediated via the MAPK pathway as well. Furthermore, dysregulation of PKC-MAPK signaling is known to increase Aβ levels in the brain, which results in AD phenotypes. Here, we discuss roles of PKC in Aβ production and clearance and its implication in AD.

  17. Structure of the pseudokinase–kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition

    Science.gov (United States)

    Lupardus, Patrick J.; Ultsch, Mark; Wallweber, Heidi; Bir Kohli, Pawan; Johnson, Adam R.; Eigenbrot, Charles

    2014-01-01

    Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase–kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and “exon 12” JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state. PMID:24843152

  18. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition.

    Science.gov (United States)

    Lupardus, Patrick J; Ultsch, Mark; Wallweber, Heidi; Bir Kohli, Pawan; Johnson, Adam R; Eigenbrot, Charles

    2014-06-03

    Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase-kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and "exon 12" JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state.

  19. 5'-AMP-Activated Protein Kinase Signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Ahmadi, Moloud; Roy, Richard

    AMP-activated protein kinase (AMPK) is one of the central regulators of cellular and organismal metabolism in eukaryotes. Once activated by decreased energy levels, it induces ATP production by promoting catabolic pathways while conserving ATP by inhibiting anabolic pathways. AMPK plays a crucial role in various aspects of cellular function such as regulating growth, reprogramming metabolism, autophagy, and cell polarity. In this chapter, we focus on how recent breakthroughs made using the model organism Caenorhabditis elegans have contributed to our understanding of AMPK function and how it can be utilized in the future to elucidate hitherto unknown aspects of AMPK signaling.

  20. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1

    DEFF Research Database (Denmark)

    Jensen, Claus Antonio Juel; Buch, M B; Krag, T O

    1999-01-01

    90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of th...... of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways.......90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation...... involvement of ERK, leading to partial activation of RSK2. Similarly, two other members of the RSK family, RSK1 and RSK3, were partially activated by PDK1 in COS7 cells. Finally, our data indicate that full activation of RSK2 by growth factor requires the cooperation of ERK and PDK1 through phosphorylation...

  2. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin

    2015-10-09

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  3. Multi-PK antibodies: Powerful analytical tools to explore the protein kinase world

    Directory of Open Access Journals (Sweden)

    Yasunori Sugiyama

    2017-09-01

    Full Text Available Diverse biological events are regulated through protein phosphorylation mediated by protein kinases. Some of these protein kinases are known to be involved in the pathogenesis of various diseases. Although 518 protein kinase genes were identified in the human genome, it remains unclear how many and what kind of protein kinases are expressed and activated in cells and tissues under varying situations. To investigate cellular signaling by protein kinases, we developed monoclonal antibodies, designated as Multi-PK antibodies, that can recognize multiple protein kinases in various biological species. These Multi-PK antibodies can be used to profile the kinases expressed in cells and tissues, identify the kinases of special interest, and analyze protein kinase expression and phosphorylation state. Here we introduce some applications of Multi-PK antibodies to identify and characterize the protein kinases involved in epigenetics, glucotoxicity in type 2 diabetes, and pathogenesis of ulcerative colitis. In this review, we focus on the recently developed technologies for kinomics studies using the powerful analytical tools of Multi-PK antibodies.

  4. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki, E-mail: sueyoshi@ag.kagawa-u.ac.jp

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  5. Specificity of ATP-dependent and GTP-dependent protein kinases with respect to ribosomal proteins of Escherichia coli

    DEFF Research Database (Denmark)

    Issinger, O G; Kiefer, M C; Traut, R R

    1975-01-01

    of the small ribosomal subunit, and to a lesser extent proteins L7 and L12 or the large subunit. Evidence is presented showing different phosphorylation patterns when either whole subunits or the extracted proteins were used as substrate for the protein kinase. Kinetic studies showed proteins S1 and S4......Two protein kinases differing in substrate specificity were used to phosphorylate the 30-S and the 50-S ribosomal subunits of Escherichia coli. The catalytic subunit from the rabbit skeletal muscle protein kinase phosphorylates proteins S1, S4, S9, S13 and S18 of the 30-S subunit and proteins L2, L......4, L5, L16, L18 and L23 of the 50-S subunit with (gamma-32P)ATP as phosphoryl donor. A second protein kinase isolated from rabbit reticulocytes, formerly shown to phosphorylate preferentially acidic proteins and to use GTP as well as ATP, strongly phosphorylated protein S6, an acidic protein...

  6. Emerging Roles of AMP-Activated Protein Kinase

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel

    or has focused on specific physiological situations and tissues. The present PhD thesis has addressed the role of AMPK in regulation of: 1) substrate utilisation during and in recovery from exercise, 2) adipose tissue metabolism during weight loss, and 3) autophagy in skeletal muscle during exercise......The cellular energy sensor AMP-activated protein kinase (AMPK) is activated, when the energy balance of the cell decreases. AMPK has been proposed to regulate multiple metabolic processes. However, much of the evidence for these general effects of AMPK relies on investigations in cell systems...... be of importance for prioritising energy dissipation, inhibition of lipid storage pathways and regulation of mitochondrial and metabolic proteins, but this needs further investigations. In addition, we provide evidence that AMPK is regulating autophagic signalling in skeletal muscle. Thus, in skeletal muscle AMPK...

  7. Presenilin dependence of phospholipase C and protein kinase C signaling

    DEFF Research Database (Denmark)

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola

    2007-01-01

    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha...... and PKCgamma activations were significantly lower in PS1 and PS2 double knockout MEFs after PLC stimulation. Protein levels of PKCalpha and PKCgamma were lower in PS1 and PS2 double knockout MEFs. In contrast, PKCdelta levels were significantly elevated in PS1 and PS2 double knockout as well as in PS1 knockout......). These results show that PLC and PKC activations are modulated by PS and also that PSs differentially regulate the expression of PKC isoforms by both APP/AICD-dependent and independent mechanisms....

  8. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).

    Science.gov (United States)

    Sun, Yun; Wang, Chen; Yang, Bo; Wu, Feifei; Hao, Xueyu; Liang, Wanwan; Niu, Fangfang; Yan, Jingli; Zhang, Hanfeng; Wang, Boya; Deyholos, Michael K; Jiang, Yuan-Qing

    2014-05-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A-C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription-PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola.

  9. Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain.

    OpenAIRE

    Lohmann, S M; Walter, U; Miller, P E; Greengard, P; De Camilli, P

    1981-01-01

    The distribution of cyclic GMP-dependent protein kinase in rat brain has been studied by an immunological approach involving radioimmunoassay and fluorescence immunohistochemistry. Data obtained by radioimmunoassay indicate that cyclic GMP-dependent protein kinase is 20- to 40-fold more concentrated in cerebellum than in other brain regions. Immunohistochemical experiments demonstrate that the high concentration of immunoreactivity of the protein kinase in cerebellum is attributable to Purkin...

  10. p21WAF1/CIP1 interacts with protein kinase CK2

    DEFF Research Database (Denmark)

    Götz, C; Wagner, P; Issinger, O G

    1996-01-01

    p21WAF1/CIP1 which belongs to a class of regulatory proteins that interact with cyclin dependent kinases is a potent inhibitor of these kinases. The inhibition of the cyclin dependent kinases induces an arrest of cells in the G phase of the cell cycle. In addition p21WAF1/CIP1 associates with PCN...

  11. Overexpression of Populus trichocarpa Mitogen-Activated Protein Kinase Kinase4 Enhances Salt Tolerance in Tobacco

    Directory of Open Access Journals (Sweden)

    Chengjun Yang

    2017-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK is one of the factors of cascade reactions affecting responses to signal pathway of environmental stimuli. Throughout the life of plants, MAPK family members participate in signal transduction pathways and regulate various intracellular physiological and metabolic reactions. To gain insights into regulatory function of MAPK kinase (MAPKK in Populus trichocarpa under salt stress, we obtained full-length cDNA of PtMAPKK4 and analyzed different expression levels of PtMAPKK4 gene in leaves, stems, and root organs. The relationship between PtMAPKK4 and salt stress was studied by detecting expression characteristics of mRNA under 150 mM NaCl stress using real-time quantitative polymerase chain reaction. The results showed that expression of PtMAPKK4 increased under salt (NaCl stress in leaves but initially reduced and then increased in roots. Thus, salt stress failed to induce PtMAPKK4 expression in stems. PtMAPKK4 possibly participates in regulation of plant growth and metabolism, thereby improving its salt tolerance. We used Saccharomyces cerevisiae strain INVScI to verify subcellular localization of PtMAPKK4 kinase. The yeast strains containing pYES2-PtMAPKK4-GFP plasmid expressed GFP fusion proteins under the induction of d-galactose, and the products were located in nucleus. These results were consistent with network prediction and confirmed location of PtMAPKK4 enzyme in the nucleus. We tested NaCl tolerance in transgenic tobacco lines overexpressing PtMAPKK4 under the control of 35S promoter at germination stage to detect salt tolerance function of PtMAPKK4. Compared withK326 (a wild-type tobacco, lines overexpressing PtMAPKK4 showed a certain degree of improvement in tolerance, germination, and growth. NaCl inhibited growth of overexpressed line and K326 at the seedling stage. However, statistical analysis showed longer root length, higher fresh weight, and lower MDA content in transgenic lines in

  12. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen (Sanofi); (Michigan); (Texas)

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  13. Coiled-coil interactions modulate multimerization, mitochondrial binding and kinase activity of myotonic dystrophy protein kinase splice isoforms.

    NARCIS (Netherlands)

    Herpen, R.E.M.A. van; Tjeertes, J.V.; Mulders, S.A.M.; Oude Ophuis, R.J.A.; Wieringa, B.; Wansink, D.G.

    2006-01-01

    The myotonic dystrophy protein kinase polypeptide repertoire in mice and humans consists of six different splice isoforms that vary in the nature of their C-terminal tails and in the presence or absence of an internal Val-Ser-Gly-Gly-Gly motif. Here, we demonstrate that myotonic dystrophy protein

  14. Protein kinase D regulates cell death pathways in experimental pancreatitis

    Directory of Open Access Journals (Sweden)

    Jingzhen eYuan

    2012-03-01

    Full Text Available Inflammation and acinar cell necrosis are two major pathological responses of acute pancreatitis, a serious disorder with no current therapies directed to its molecular pathogenesis. Serine/threonine protein kinase D family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple physiological and pathophysiological effects. We recently reported that PKD/PKD1, the predominant PKD isoform expressed in rat pancreatic acinar cells, mediates early events of pancreatitis including NF-kappaB activation and inappropriate intracellular digestive enzyme activation. In current studies, we investigated the role and mechanisms of PKD/PKD1 in the regulation of necrosis in pancreatic acinar cells by using two novel small molecule PKD inhibitors CID755673 and CRT0066101 and molecular approaches in in vitro and in vivo experimental models of acute pancreatitis. Our results demonstrated that both CID755673 and CRT0066101 are PKD-specific inhibitors and that PKD/PKD1 inhibition by either the chemical inhibitors or specific PKD/PKD1 siRNAs attenuated necrosis while promoting apoptosis induced by pathological doses of cholecystokinin-octapeptide (CCK in pancreatic acinar cells. Conversely, upregulation of PKD expression in pancreatic acinar cells increased necrosis and decreased apoptosis. We further showed that PKD/PKD1 regulated several key cell death signals including inhibitors of apoptotic proteins (IAPs, caspases, receptor-interacting protein kinase 1 (RIP1 to promote necrosis. PKD/PKD1 inhibition by CID755673 significantly ameliorated necrosis and severity of pancreatitis in an in vivo experimental model of acute pancreatitis. Thus, our studies indicate that PKD/PKD1 is a key mediator of necrosis in acute pancreatitis and that PKD/PKD1 may represent a potential therapeutic target in acute pancreatitis.

  15. The MAP kinase cascade that includes MAPKKK-related protein kinase NPK1 controls a mitotic proces in plant cells.

    Science.gov (United States)

    Nishihama, R; Machida, Y

    2000-01-01

    The tobacco NPK1 cDNA was the first-isolated plant cDNA for a homolog of mitogen-activated protein kinase kinase kinases (MAPKKKs). The kinase domain of the NPK1 protein can replace the functions of MAPKKKs in yeasts, while the amino acid sequence of the kinase-unrelated region does not have any homology to those of MAPKKKs from other organisms. Transcription of the NPK1 gene takes place in meristematic tissues or immature organs in a tobacco plant. During a tobacco cell cycle, transcriptional and translational products of NPK1 are present from S to M phase and decrease after the M phase. Expression of the NACK1 gene, which is predicted to encode a novel kinesin-like microtubule-based motor protein capable of activating NPK1, is specific to M phase, suggesting that activation of NPK1 occurs in M phase. Characterization of cDNAs for a MAPKK and a MAPK which can act downstream of NPK1 makes a proposition that the MAP kinase pathway involving NPK1 regulates a mitotic process associated with microtubules.

  16. A single pair of acidic residues in the kinase major groove mediates strong substrate preference for P-2 or P-5 arginine in the AGC, CAMK, and STE kinase families.

    Science.gov (United States)

    Zhu, Guozhi; Fujii, Koichi; Liu, Yin; Codrea, Vlad; Herrero, Juan; Shaw, Stephen

    2005-10-28

    Most basophilic serine/threonine kinases preferentially phosphorylate substrates with Arg at P-3 but vary greatly in additional strong preference for Arg at P-2 or P-5. The structural basis for P-2 or P-5 preference is known for two AGC kinases (family of protein kinases A, G, and C) in which it is mediated by a single pair of acidic residues (PEN+1 and YEM+1). We sought a general understanding of P-2 and P-5 Arg preference. The strength of Arg preference at each position was assessed in 15 kinases using a new degenerate peptide library approach. Strong P-2 or P-5 Arg preference occurred not only in AGC kinases (7 of 8 studied) but also in calmodulin-dependent protein kinase (CAMK, 1 of 3) and Ste20 (STE) kinases (2 of 4). Analysis of sequence conservation demonstrated almost perfect correlation between (a) strong P-2 or P-5 Arg preference and (b) acidic residues at both PEN+1 and YEM+1. Mutation of two kinases (PKC-theta and p21-activated kinase 1 (PAK1)) confirmed critical roles of both PEN+1 and YEM+1 residues in determining strong R-2 Arg preference. PAK kinases were unique in having exceptionally strong Arg preference at P-2 but lacking strong Arg preference at P-3. Preference for Arg at P-2 was so critical to PAK recognition that PAK1 activity was virtually eliminated by mutating the PEN+1 or YEM+1 residues. The fact that this specific pair of acidic residues has been repeatedly and exclusively used by evolution for conferring strong Arg preference at two different substrate positions in three different kinase families implies it is uniquely well suited to mediate sufficiently good substrate binding without unduly restricting product release.

  17. Protein kinase and phosphatase activities of thylakoid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  18. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  19. How Do Protein Kinases Take a Selfie (Autophosphorylate)?

    Science.gov (United States)

    Beenstock, Jonah; Mooshayef, Navit; Engelberg, David

    2016-11-01

    Eukaryotic protein kinases (EPKs) control most biological processes and play central roles in many human diseases. To become catalytically active, EPKs undergo conversion from an inactive to an active conformation, an event that depends upon phosphorylation of their activation loop. Intriguingly, EPKs can use their own catalytic activity to achieve this critical phosphorylation. In other words, paradoxically, EPKs catalyze autophosphorylation when supposedly in their inactive state. This indicates the existence of another important conformation that specifically permits autophosphorylation at the activation loop, which in turn imposes adoption of the active conformation. This can be considered a prone-to-autophosphorylate conformation. Recent findings suggest that in prone-to-autophosphorylate conformations catalytic motifs are aligned allosterically, by dimerization or by regulators, and support autophosphorylation in cis or trans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Tensins: Bridging AMP-Activated Protein Kinase with Integrin Activation.

    Science.gov (United States)

    Georgiadou, Maria; Ivaska, Johanna

    2017-10-01

    Integrin activation is essential for cell adhesion and for connecting the extracellular matrix to the actin cytoskeleton. Thus, inappropriate integrin activation has been linked to several diseases, including cancer. Recent insights demonstrate that the main fibrillar adhesion component tensin maintains β1-integrin active in these mature adhesions. Depletion or silencing of AMP-activated protein kinase (AMPK), the energy sensor involved in maintaining the energy balance of the cell, enhances integrin activity by increasing the expression of tensin and thereby promoting cell adhesion, matrix formation, and mechanotransduction. Here, we discuss the role of tensin and AMPK in the regulation of integrin activity and integrin-dependent processes and their implication in diseases such as cancer and tissue fibrosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    The signal transduction pathways associated with neural cell adhesion molecule (NCAM)-induced neuritogenesis are only partially characterized. We here demonstrate that NCAM-induced neurite outgrowth depends on activation of p59(fyn), focal adhesion kinase (FAK), phospholipase Cgamma (PLCgamma......), protein kinase C (PKC), and the Ras-mitogen-activated protein (MAP) kinase pathway. This was done using a coculture system consisting of PC12-E2 cells grown on fibroblasts, with or without NCAM expression, allowing NCAM-NCAM interactions resulting in neurite outgrowth. PC12-E2 cells were transiently...... propose a model of NCAM signaling involving two pathways: NCAM-Ras-MAP kinase and NCAM-FGF receptor-PLCgamma-PKC, and we propose that PKC serves as the link between the two pathways activating Raf and thereby creating the sustained activity of the MAP kinases necessary for neuronal differentiation....

  2. Protein kinase C, focal adhesions and the regulation of cell migration

    DEFF Research Database (Denmark)

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components...... in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles...

  3. Protein kinase C signaling and cell cycle regulation

    Science.gov (United States)

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells. PMID

  4. 3D-QSAR and virtual screening studies of thiazolidine-2,4-dione analogs: Validation of experimental inhibitory potencies towards PIM-1 kinase

    Science.gov (United States)

    Asati, Vivek; Bharti, Sanjay Kumar; Budhwani, Ashok Kumar

    2017-04-01

    The proviral insertion site in moloney murine leukemia virus (PIM) is a family of serine/threonine kinase of Ca2+-calmodulin-dependent protein kinase (CAMK) group which is responsible for the activation and regulation of cellular transcription and translation. The three isoforms of PIM kinase (PIM-1, PIM-2 and PIM-3) share high homology and functional idleness are widely expressed and involved in a variety of biological processes including cell survival, proliferation, differentiation and apoptosis. Altered expression of PIM-1 kinase correlated with hematologic malignancies and solid tumors. In the present study, atom-based 3D-QSAR, docking and virtual screening studies have been performed on a series of thiazolidine-2,4-dione derivatives as PIM-1 kinase inhibitors. 3D-QSAR and docking approach has shortlisted the most active thiazolidine-2,4-dione derivatives such as 28, 31, 33 and 35 with the incorporation of more than one structural feature in a single molecule. External validations by various parameters and molecular docking studies at the active site of PIM-1 kinase have proved the reliability of the developed 3D-QSAR model. The generated pharmacophore (AADHR.33) from 3D-QSAR study was used for screening of drug like compounds from ZINC database, where ZINC15056464 and ZINC83292944 showed potential binding affinities at the active site amino acid residues (LYS67, GLU171, ASP128 and ASP186) of PIM-1 kinase (PDB ID: "pdb:4DTK").

  5. Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G Protein-coupled Receptor Kinase Activation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Puja; Wang, Benlian; Maeda, Tadao; Palczewski, Krzysztof; Tesmer, John J.G. (Case Western); (Michigan)

    2008-10-08

    G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1{center_dot}(Mg{sup 2+}){sub 2} {center_dot}ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

  6. Insights into cellular signalling by G protein coupled receptor transactivation of cell surface protein kinase receptors.

    Science.gov (United States)

    Chaplin, Rebecca; Thach, Lyna; Hollenberg, Morley D; Cao, Yingnan; Little, Peter J; Kamato, Danielle

    2017-06-01

    G protein coupled receptor (GPCR) signalling is mediated by transactivation independent and transactivation dependent pathways. GPCRs transactivate protein tyrosine kinase receptors (PTKRs) and protein serine/threonine kinase receptors (PS/TKR). Since the initial observations of transactivation dependent signalling, there has been an effort to understand the mechanisms behind this phenomena. GPCR signalling has evolved to include biased signalling. Biased signalling, whereby selected ligands can activate the same GPCR that can generate multiple signals, but drive only a unique response. To date, there has been no focus on the ability of biased agonists to activate the PTKR and PS/TKR transactivation pathways differentially. As such, this represents a novel direction for future research. This review will discuss the main mechanisms of GPCR mediated receptor transactivation and the pathways involved in intracellular responses.

  7. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases

    NARCIS (Netherlands)

    Beekmann, Karsten; Haan, De Laura H.J.; Actis-Goretta, Lucas; Bladeren, Van Peter J.; Rietjens, Ivonne M.C.M.

    2016-01-01

    To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the

  8. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); D.C. van Gent (Dik); J.H.J. Hoeijmakers (Jan)

    2003-01-01

    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks

  9. The role of the Drosophila LAMMER protein kinase DOA in somatic ...

    Indian Academy of Sciences (India)

    DOA kinase, the Drosophila member of the LAMMER/Clk protein kinase family, phosphorylates SR and SR-like proteins, including TRA, TRA2 and RBP1, which are responsible for the alternative splicing of transcripts encoding the key regulator of sex-specific expression in somatic cells of the fly, DOUBLESEX. Specific Doa ...

  10. Apelin attenuates postburn sepsis via a phosphatidylinositol 3-kinase/protein kinase B dependent mechanism: A randomized animal study.

    Science.gov (United States)

    Luo, Keqin; Long, Huibao; Xu, Bincan; Luo, Yanling

    2015-09-01

    This study aims to investigate whether apelin would regulate inflammatory response and promote survival in an experimental burn sepsis model through a phosphatidylinositol 3-kinase/protein kinase B dependent pathway. Male BALB/c mice were divided into the following groups: sham, burn, burn sepsis, burn sepsis treated with apelin, burn sepsis treated with apelin plus LY294002, and burn sepsis treated with LY294002 alone. Apelin level and inflammatory cytokines in serum were detected by enzyme-linked immuno sorbent assay. Apelin/APJ (apelin receptor, gene symbol APLNR) mRNA expression in spleen and adhesion molecules levels in lung was detected by real-time polymerase chain reaction. Neutrophil infiltration in lung was determined by myeloperoxidase assay. Phosphorylation of protein kinase B in lung was determined by western blot. Mortality rate was monitored. Burn sepsis induced decreased apelin/APJ mRNA expression in spleen and reduced apelin level in plasma, which were both restored by exogenous apelin treatment. Burn sepsis treated with apelin resulted in decreased interleukin-6, tumor-necrosis factor-alpha, interleukin -1β and monocyte chemotactic protein-1 levels in plasma. Mice with apelin treatment also showed decreased neutrophil infiltration and adhesion molecules expression, accompanied by a remarkable increased protein kinase B phosphorylation in lung tissue. The mortality rate in apelin treated animals was also significantly reduced. Importantly, the above effects of apelin were abolished by LY294002 treatment. Apelin regulates inflammatory response, diminishes inflammatory remote organ damage and improves survival in an experimental model of burn sepsis, which is at least partly mediated by a phosphatidylinositol 3-kinase/protein kinase B dependent pathway. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  11. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction...... of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant...... from basal but not from electrically stimulated muscle. In conclusion, in muscle, PKC can stimulate HSL through ERK. Contractions and adrenaline enhance muscle HSL activity by different signalling mechanisms. The effect of contractions is mediated by PKC, at least partly via the ERK pathway....

  12. Transcriptional regulation by protein kinase A in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Guanggan Hu

    2007-03-01

    Full Text Available A defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP-dependent protein kinase A (PKA is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between the pka1 and pkr1 mutants and a wild-type strain, and found that PKA influences transcript levels for genes involved in cell wall synthesis, transport functions such as iron uptake, the tricarboxylic acid cycle, and glycolysis. Among the myriad of transcriptional changes in the mutants, we also identified differential expression of ribosomal protein genes, genes encoding stress and chaperone functions, and genes for secretory pathway components and phospholipid synthesis. The transcriptional influence of PKA on these functions was reminiscent of the linkage between transcription, endoplasmic reticulum stress, and the unfolded protein response in Saccharomyces cerevisiae. Functional analyses confirmed that the PKA mutants have a differential response to temperature stress, caffeine, and lithium, and that secretion inhibitors block capsule production. Importantly, we also found that lithium treatment limits capsule size, thus reinforcing potential connections between this virulence trait and inositol and phospholipid metabolism. In addition, deletion of a PKA-regulated gene, OVA1, revealed an epistatic relationship with pka1 in the control of capsule size and melanin formation. OVA1 encodes a putative phosphatidylethanolamine-binding protein that appears to negatively influence capsule production and melanin accumulation. Overall, these findings support a role for PKA in regulating the delivery of virulence factors such as the capsular polysaccharide to the cell surface and serve to highlight the importance of secretion and phospholipid metabolism as potential

  13. Mammalian Hippo signalling: a kinase network regulated by protein-protein interactions

    Science.gov (United States)

    Hergovich, Alexander

    2012-01-01

    The Hippo signal transduction cascade controls cell growth, proliferation, and death, all of which are frequently deregulated in tumour cells. Since initial studies in Drosophila melanogaster were instrumental in defining Hippo signalling, the machinery was named after the central Ste20-like kinase Hippo. Moreover, given that loss of Hippo signalling components Hippo, Warts, and Mats resulted in uncontrolled tissue overgrowth, Hippo signalling was defined as a tumour suppressor cascade. Significantly, all core factors of Hippo signalling have mammalian orthologues that functionally compensate for loss of their counterparts in flies. Furthermore, studies in flies and mammalian cell systems showed that Hippo signalling represents a kinase cascade that is tightly regulated by protein-protein interactions (PPIs). Several Hippo signalling molecules contain SARAH domains that mediate specific PPIs, thereby influencing the activities of MST1/2 kinases, the human Hippo orthologues. Moreover, WW domains are present in several Hippo factors, and these domains also serve as interaction surfaces for regulatory PPIs in Hippo signalling. Finally, the kinase activities of LATS1/2, the human counterparts of Warts, are controlled by binding to hMOB1, the human Mats. Therefore, Hippo signalling is regulated by PPIs on several levels. Here we review our current understanding of how these regulatory PPIs are regulated and contribute to the functionality of Hippo signalling. PMID:22260677

  14. Stromal serine protein kinase activity in spinach chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, N.; Lucero, H.A.; Vallejos, R.H.

    1987-05-01

    At least twelve /sup 32/P-labeled stromal proteins were detected by electrophoresis under denaturing conditions when intact chloroplasts were incubated with /sup 32/Pi, in the light but only three were detected in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or in the dark. Incubation of isolated stroma with (gamma-/sup 32/P)ATP resulted in the preferential phosphorylation of one of them, a 70-kDa polypeptide, in serine residues. Thylakoid membranes in the dark promoted the phosphorylation of two additional stromal polypeptides of 55 and 40 kDa. Illumination during the phosphorylation of stroma in the presence of thylakoids stimulated severalfold the labeling of the 40-kDa polypeptide but not when DCMU was added. The protein kinase activity present in isolated stroma phosphorylated exogenous substrates like histone III, phosvitin, histone II, and casein with specific activities of 3, 1.8, 0.7, and 0.2 pmol X mg-1 X min-1. Histone III polypeptides were phosphorylated differently by stroma and by thylakoids in the dark. Moreover, histone III phosphorylated by thylakoids in the dark yielded a pattern of phosphopeptides after V8 protease treatment that was different from the pattern obtained when histone III was phosphorylated by stroma.

  15. ATM kinase: Much more than a DNA damage responsive protein.

    Science.gov (United States)

    Guleria, Ayushi; Chandna, Sudhir

    2016-03-01

    ATM, mutation of which causes Ataxia telangiectasia, has emerged as a cardinal multifunctional protein kinase during past two decades as evidenced by various studies from around the globe. Further to its well established and predominant role in DNA damage response, ATM has also been understood to help in maintaining overall functional integrity of cells; since its mutation, inactivation or deficiency results in a variety of pathological manifestations besides DNA damage. These include oxidative stress, metabolic syndrome, mitochondrial dysfunction as well as neurodegeneration. Recently, high throughput screening using proteomics, metabolomics and transcriptomic studies revealed several proteins which might be acting as substrates of ATM. Studies that can help in identifying effective regulatory controls within the ATM-mediated pathways/mechanisms can help in developing better therapeutics. In fact, more in-depth understanding of ATM-dependent cellular signals could also help in the treatment of variety of other disease conditions since these pathways seem to control many critical cellular functions. In this review, we have attempted to put together a detailed yet lucid picture of the present-day understanding of ATM's role in various pathophysiological conditions involving DNA damage and beyond. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Analysis of Kinase Gene Expression in the Frontal Cortex of Suicide Victims: Implications of Fear and Stress

    Directory of Open Access Journals (Sweden)

    Kwang eChoi

    2011-07-01

    Full Text Available Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database (www.stanleygenomics.org and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK, the cyclin-dependent kinase (CDK, the mitogen-activated protein kinase (MAPK, and the protein kinase C (PKC in the prefrontal cortex (PFC of mood disorder patients died with suicide (n=45 and without suicide (N=38. We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (n=46. The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (FDR-adjusted p < 0.05, fold change > 1.1. Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05. These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress-associated neural plasticity and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide.

  17. Overcoming Resistance to Inhibitors of the AKT Protein Kinase by Modulation of the Pim Kinase Pathway

    Science.gov (United States)

    2013-10-01

    receptor tyrosine kinase in invasion and metastasis. J Cell Physiol. 2007;213:316-25. 2. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting...eIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes. Cancer Res. 2013;73:4898-908. 9. van Gorp

  18. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Science.gov (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  19. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    Science.gov (United States)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-11-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp ( Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  20. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M

    1996-01-01

    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated...

  1. Interaction of connexin43 and protein kinase C-delta during FGF2 signaling

    Directory of Open Access Journals (Sweden)

    Stains Joseph P

    2010-03-01

    Full Text Available Abstract Background We have recently demonstrated that modulation of the gap junction protein, connexin43, can affect the response of osteoblasts to fibroblast growth factor 2 in a protein kinase C-delta-dependent manner. Others have shown that the C-terminal tail of connexin43 serves as a docking platform for signaling complexes. It is unknown whether protein kinase C-delta can physically interact with connexin43. Results In the present study, we investigate by immunofluorescent co-detection and biochemical examination the interaction between Cx43 and protein kinase C-delta. We establish that protein kinase C-delta physically interacts with connexin43 during fibroblast growth factor 2 signaling, and that protein kinase C delta preferentially co-precipitates phosphorylated connexin43. Further, we show by pull down assay that protein kinase C-delta associates with the C-terminal tail of connexin43. Conclusions Connexin43 can serve as a direct docking platform for the recruitment of protein kinase C-delta in order to affect fibroblast growth factor 2 signaling in osteoblasts. These data expand the list of signal molecules that assemble on the connexin43 C-terminal tail and provide a critical context to understand how gap junctions modify signal transduction cascades in order to impact cell function.

  2. Regulation of binding of lamin B receptor to chromatin by SR protein kinase and cdc2 kinase in Xenopus egg extracts.

    Science.gov (United States)

    Takano, Makoto; Koyama, Yuhei; Ito, Hiromi; Hoshino, Satomi; Onogi, Hiroshi; Hagiwara, Masatoshi; Furukawa, Kazuhiro; Horigome, Tsuneyoshi

    2004-03-26

    Participation of multiple kinases in regulation of the binding of lamin B receptor (LBR) to chromatin was suggested previously (Takano, M., Takeuchi, M., Ito, H., Furukawa, K., Sugimoto, K., Omata, S., and Horigome, T. (2002) Eur. J. Biochem. 269, 943-953). To identify these kinases, regulation of the binding of the nucleoplasmic region (NK, amino acid residues 1-211) of LBR to sperm chromatin was studied using a cell cycle-dependent Xenopus egg extract in vitro. The binding was stimulated on specific phosphorylation of the NK fragment by an S-phase egg extract. Protein depletion with beads bearing SF2/ASF, which binds SR protein kinases, abolished this stimulation, suggesting that an SR protein kinase(s) is responsible for the activation of LBR. This was confirmed by direct phosphorylation and activation with recombinant SR protein-specific kinase 1. The binding of the NK fragment to chromatin pretreated with an S-phase extract was suppressed by incubation with an M-phase extract. Enzyme inhibitor experiments revealed that multiple kinases participate in the suppression. One of these kinases was shown to be cdc2 kinase using a specific inhibitor, roscovitine, and protein depletion with beads bearing p13, which specifically binds cdc2 kinase. Experiments involving a mutant NK fragment showed that the phosphorylation of serine 71 by cdc2 kinase is responsible for the suppression.

  3. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Directory of Open Access Journals (Sweden)

    Catríona M. Dowling

    2015-07-01

    Full Text Available The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  4. Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, Catríona M., E-mail: Catriona.Dowling@ul.ie; Kiely, Patrick A., E-mail: Catriona.Dowling@ul.ie [Department of Life Sciences, Materials and Surface Science Institute and Stokes Institute, University of Limerick, Limerick 78666 (Ireland); Health Research Institute (HRI), University of Limerick, Limerick 78666 (Ireland)

    2015-07-15

    The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.

  5. The arrhythmogenic calmodulin mutation D129G dysregulates cell growth, calmodulin-dependent kinase II activity, and cardiac function in zebrafish

    DEFF Research Database (Denmark)

    Berchtold, Martin Werner; Zacharias, Triantafyllos; Kulej, Katarzyna

    2016-01-01

    viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT...

  6. Guanine derivatives modulate extracellular matrix proteins organization and improve neuron-astrocyte co-culture.

    Science.gov (United States)

    Decker, Helena; Francisco, Sheila S; Mendes-de-Aguiar, Cláudia B N; Romão, Luciana F; Boeck, Carina R; Trentin, Andréa G; Moura-Neto, Vivaldo; Tasca, Carla I

    2007-07-01

    Guanine derivatives (GD) have been shown to exert relevant extracellular effects as intercellular messengers, neuromodulators in the central nervous system, and trophic effects on astrocytes and neurons. Astrocytes have been pointed out as the major source of trophic factors in the nervous system, however, several trophic effects of astrocytic-released soluble factors are mediated through modulation of extracellular matrix (ECM) proteins. In this study, we investigated the effects of guanosine-5'-monophosphate (GMP) and guanosine (GUO) on the expression and organization of ECM proteins in cerebellar astrocytes. Moreover, to evaluate the effects of astrocytes pre-treated with GMP or GUO on cerebellar neurons we used a neuron-astrocyte coculture model. GMP or GUO alters laminin and fibronectin organization from a punctate to a fibrillar pattern, however, the expression levels of the ECM proteins were not altered. Guanine derivatives-induced alteration of ECM proteins organization is mediated by activation of mitogen activated protein kinases (MAPK), CA(2+)-calmodulin-dependent protein kinase II (CaMK-II), protein kinase C (PKC), and protein kinase A (PKA) pathways. Furthermore, astrocytes treated with GMP or GUO promoted an increased number of cerebellar neurons in coculture, without altering the neuritogenesis pattern. No proliferation of neurons or astrocytes was observed due to GMP or GUO treatment. Our results show that guanine derivatives promote a reorganization of the ECM proteins produced by astrocytes, which might be responsible for a better interaction with neurons in cocultures.

  7. Insight in taste alterations during treatment with protein kinase inhibitors.

    Science.gov (United States)

    van der Werf, A; Rovithi, M; Langius, J A E; de van der Schueren, M A E; Verheul, H M W

    2017-11-01

    The role of Protein Kinase Inhibitors (PKI) in the treatment of various types of cancer is increasingly prominent. Their clinical application is accompanied by the development of side effects, among which patient-reported taste alterations. These alterations are missed frequently, but impair nutritional intake, are associated with weight loss and often result in significant morbidity, especially in the context of chronic administration. Accurate reporting of taste alterations is hampered by lack of modules for symptom objectification and inadequate understanding on the underlying mechanisms. In this review we initially describe the physiology of taste and smell and the mechanism of action of PKIs. We proceed to summarize taste related side effects as reported in major clinical trials and describe possible causal factors. Lastly, an in-depth analysis is given on potential molecular pathways responsible for the PKI-induced taste alterations. Objectification of patient-reported symptoms and universal reporting, along with a better understanding of the underlying mechanisms, will lead to early recognition and optimized treatment, ultimately improving patient adherence and quality of life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  9. Perivascular fat, AMP-activated protein kinase and vascular diseases.

    Science.gov (United States)

    Almabrouk, T A M; Ewart, M A; Salt, I P; Kennedy, S

    2014-02-01

    Perivascular adipose tissue (PVAT) is an active endocrine and paracrine organ that modulates vascular function, with implications for the pathophysiology of cardiovascular disease (CVD). Adipocytes and stromal cells contained within PVAT produce mediators (adipokines, cytokines, reactive oxygen species and gaseous compounds) with a range of paracrine effects modulating vascular smooth muscle cell contraction, proliferation and migration. However, the modulatory effect of PVAT on the vascular system in diseases, such as obesity, hypertension and atherosclerosis, remains poorly characterized. AMP-activated protein kinase (AMPK) regulates adipocyte metabolism, adipose biology and vascular function, and hence may be a potential therapeutic target for metabolic disorders such as type 2 diabetes mellitus (T2DM) and the vascular complications associated with obesity and T2DM. The role of AMPK in PVAT or the actions of PVAT have yet to be established, however. Activation of AMPK by pharmacological agents, such as metformin and thiazolidinediones, may modulate the activity of PVAT surrounding blood vessels and thereby contribute to their beneficial effect in cardiometabolic diseases. This review will provide a current perspective on how PVAT may influence vascular function via AMPK. We will also attempt to demonstrate how modulating AMPK activity using pharmacological agents could be exploited therapeutically to treat cardiometabolic diseases. © 2013 The British Pharmacological Society.

  10. Adenosine monophosphate–activated protein kinase in diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Yaeni Kim

    2016-06-01

    Full Text Available Diabetic nephropathy (DN is the leading cause of end-stage renal disease, and its pathogenesis is complex and has not yet been fully elucidated. Abnormal glucose and lipid metabolism is key to understanding the pathogenesis of DN, which can develop in both type 1 and type 2 diabetes. A hallmark of this disease is the accumulation of glucose and lipids in renal cells, resulting in oxidative and endoplasmic reticulum stress, intracellular hypoxia, and inflammation, eventually leading to glomerulosclerosis and interstitial fibrosis. There is a growing body of evidence demonstrating that dysregulation of 5′ adenosine monophosphate–activated protein kinase (AMPK, an enzyme that plays a principal role in cell growth and cellular energy homeostasis, in relevant tissues is a key component of the development of metabolic syndrome and type 2 diabetes mellitus; thus, targeting this enzyme may ameliorate some pathologic features of this disease. AMPK regulates the coordination of anabolic processes, with its activation proven to improve glucose and lipid homeostasis in insulin-resistant animal models, as well as demonstrating mitochondrial biogenesis and antitumor activity. In this review, we discuss new findings regarding the role of AMPK in the pathogenesis of DN and offer suggestions for feasible clinical use and future studies of the role of AMPK activators in this disorder.

  11. Identification and characterization of Nek6 protein kinase, a potential human homolog of NIMA histone H3 kinase.

    Science.gov (United States)

    Hashimoto, Yoshihiro; Akita, Hidetoshi; Hibino, Mitsunobu; Kohri, Kenjiro; Nakanishi, Makoto

    2002-05-03

    In Aspergillus nidulans, the kinase activity of NIMA (never in mitosis, gene A) is critical for the initiation of mitosis. NIMA regulates mitotic chromatin condensation through phosphorylation of histone H3 at serine 10. In the present study, we identified human Nek6 (hNek6), a member of the mammalian NIMA-related kinases. The predicted hNek6 protein is comprised of 338 amino acids. Northern blot analysis revealed that hNek6 transcripts are ubiquitously expressed with the highest expression found in the heart and skeletal muscle. Lower cell cycle-dependent expression of hNek6 transcripts was observed in the early G1 phase. GFP-fused hNek6 protein showed both nuclear and cytoplasmic localizations in HeLa cells. Fluorescence in situ hybridization using full-length hNek6 cDNA as a probe showed that the hNek6 gene is localized to human chromosome 9q33-34, a region at which the loss of heterozygosity is associated with transitional cell carcinomas. Importantly, recombinant hNek6 protein produced in insect cells effectively phosphorylated histones H1 and H3, but not casein. Thus, these results suggest that, unlike other mammalian NIMA-related kinases, Nek6 is a mitotic histone kinase which regulates chromatin condensation in mammalian cells. Copyright 2002 Elsevier Science (USA).

  12. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases.

    Science.gov (United States)

    Martin, David M A; Miranda-Saavedra, Diego; Barton, Geoffrey J

    2009-01-01

    The regulation of protein function through reversible phosphorylation by protein kinases and phosphatases is a general mechanism controlling virtually every cellular activity. Eukaryotic protein kinases can be classified into distinct, well-characterized groups based on amino acid sequence similarity and function. We recently reported a highly sensitive and accurate hidden Markov model-based method for the automatic detection and classification of protein kinases into these specific groups. The Kinomer v. 1.0 database presented here contains annotated classifications for the protein kinase complements of 43 eukaryotic genomes. These span the taxonomic range and include fungi (16 species), plants (6), diatoms (1), amoebas (2), protists (1) and animals (17). The kinomes are stored in a relational database and are accessible through a web interface on the basis of species, kinase group or a combination of both. In addition, the Kinomer v. 1.0 HMM library is made available for users to perform classification on arbitrary sequences. The Kinomer v. 1.0 database is a continually updated resource where direct comparison of kinase sequences across kinase groups and across species can give insights into kinase function and evolution. Kinomer v. 1.0 is available at http://www.compbio.dundee.ac.uk/kinomer/.

  13. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes

    DEFF Research Database (Denmark)

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer

    2011-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes...... of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes....

  14. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  15. DMPD: Protein kinase C epsilon: a new target to control inflammation andimmune-mediated disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14643884 Protein kinase C epsilon: a new target to control inflammation andimmune-m...g) (.html) (.csml) Show Protein kinase C epsilon: a new target to control inflammation andimmune-mediated di...sorders. PubmedID 14643884 Title Protein kinase C epsilon: a new target to control inflammation

  16. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    Science.gov (United States)

    2017-01-01

    kills PSa cells. Cells were treated with the indicated doses of compounds for 48h and an MTS assay was done in triplicate. Dual treatment with...a Novartis compound BKM120, a broadly active PI -3Kinase inhibitor and AZD1208, a Pan-Pim kinase inhibitor (Fig. 18). Thus, this first...resolve them During this project period the PI moved from the Medical University of South Carolina to the University of Arizona Health Sciences

  17. Modulation of the Chromatin Phosphoproteome by the Haspin Protein Kinase

    DEFF Research Database (Denmark)

    Maiolica, Alessio; de Medina-Redondo, Maria; Schoof, Erwin

    2014-01-01

    Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr3 of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date,...

  18. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  19. AMP-activated protein kinase inhibits TREK channels.

    Science.gov (United States)

    Kréneisz, Orsolya; Benoit, Justin P; Bayliss, Douglas A; Mulkey, Daniel K

    2009-12-15

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated by conditions that increase the AMP : ATP ratio. In carotid body glomus cells, AMPK is thought to link changes in arterial O(2) with activation of glomus cells by inhibition of unidentified background K(+) channels. Modulation by AMPK of individual background K(+) channels has not been described. Here, we characterize effects of activated AMPK on recombinant TASK-1, TASK-3, TREK-1 and TREK-2 background K(+) channels expressed in HEK293 cells. We found that TREK-1 and TREK-2 channels but not TASK-1 or TASK-3 channels are inhibited by AMPK. AMPK-mediated inhibition of TREK involves key serine residues in the C-terminus that are also known to be important for PKA and PKC channel modulation; inhibition of TREK-1 requires Ser-300 and Ser-333 and inhibition of TREK-2 requires Ser-326 and Ser-359. Metabolic inhibition by sodium azide can also inhibit both TREK and TASK channels. The effects of azide on TREK occlude subsequent channel inhibition by AMPK and are attenuated by expression of a dominant negative catalytic subunit of AMPK (dnAMPK), suggesting that metabolic stress modulates TREK channels by an AMPK mechanism. By contrast, inhibition of TASK channels by azide was unaffected by expression of dnAMPK, suggesting an AMPK-independent mechanism. In addition, prolonged exposure (6-7 min) to hypoxia ( = 11 +/- 1 mmHg) inhibits TREK channels and this response was blocked by expression of dnAMPK. Our results identify a novel modulation of TREK channels by AMPK and indicate that select residues in the C-terminus of TREK are points of convergence for multiple signalling cascades including AMPK, PKA and PKC. To the extent that carotid body O(2) sensitivity is dependent on AMPK, our finding that TREK-1 and TREK-2 channels are inhibited by AMPK suggests that TREK channels may represent the AMPK-inhibited background K(+) channels that mediate activation of glomus cells by hypoxia.

  20. Priming the proteasome by protein kinase G: a novel cardioprotective mechanism of sildenafil

    OpenAIRE

    Zhang, Hanming; Wang, Xuejun

    2015-01-01

    The proteasome mediates the degradation of most cellular proteins including misfolded proteins, pivotal to intracellular protein hemostasis. Proteasome functional insufficiency is implicated in a large subset of human failing hearts. Experimental studies have established proteasome functional insufficiency as a major pathogenic factor, rationalizing proteasome enhancement as a potentially new therapeutic strategy for congestive heart failure. Protein kinase G activation known to be cardioprot...

  1. New directions in targeting protein kinases: focusing upon true allosteric and bivalent inhibitors.

    Science.gov (United States)

    Lamba, Vandana; Ghosh, Indraneel

    2012-01-01

    Over the past decade, therapeutics that target subsets of the 518 human protein kinases have played a vital role in the fight against cancer. Protein kinases are typically targeted at the adenosine triphosphate (ATP) binding cleft by type I and II inhibitors, however, the high sequence and structural homology shared by protein kinases, especially at the ATP binding site, inherently leads to polypharmacology. In order to discover or design truly selective protein kinase inhibitors as both pharmacological reagents and safer therapeutic leads, new efforts are needed to target kinases outside the ATP cleft. Recent advances include the serendipitous discovery of type III inhibitors that bind a site proximal to the ATP pocket as well as the truly allosteric type IV inhibitors that target protein kinases distal to the substrate binding pocket. These new classes of inhibitors are often selective but usually display moderate affinities. In this review we will discuss the different classes of inhibitors with an emphasis on bisubstrate and bivalent inhibitors (type V) that combine different inhibitor classes. These inhibitors have the potential to couple the high affinity and potency of traditional active site targeted small molecule inhibitors with the selectivity of inhibitors that target the protein kinase surface outside ATP cleft.

  2. Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics

    Directory of Open Access Journals (Sweden)

    Anthony John Walker

    2014-07-01

    Full Text Available Eukaryotic protein kinases are well conserved through evolution. The genome of Schistosoma mansoni, which causes intestinal schistosomiasis, encodes over 250 putative protein kinases with all of the main eukaryotic groups represented. However, unraveling functional roles for these kinases is a considerable endeavour, particularly as protein kinases regulate multiple and sometimes overlapping cell and tissue functions in organisms. In this article, elucidating protein kinase signal transduction and function in schistosomes is considered from the perspective of the state-of-the-art methodologies used and comparative organismal biology, with a focus on current advances and future directions. Using the free-living nematode Caenorhabditis elegans as a comparator we predict roles for various schistosome protein kinases in processes vital for host invasion and successful parasitism such as sensory behaviour, growth and development. It is anticipated that the characterization of schistosome protein kinases in the context of parasite function will catalyze cutting edge research into host-parasite interactions and will reveal new targets for developing drug interventions against human schistosomiasis.

  3. Identification of casein kinase 1, casein kinase 2, and cAMP-dependent protein kinase-like activities in Trypanosoma evansi

    Directory of Open Access Journals (Sweden)

    José Manuel Galán-Caridad

    2004-12-01

    Full Text Available Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA for casein kinase (CK1 and P2 (RRRADDSDDDDD for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22, a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II

  4. Ability of CK2beta to selectively regulate cellular protein kinases

    DEFF Research Database (Denmark)

    Olsen, Birgitte; Guerra, Barbara

    2008-01-01

    The Wee1 protein kinase plays a prominent role in keeping cyclin dependent kinase 1 (CDK1) inactive during the G2 phase of the cell cycle. At the onset of mitosis, Wee1 is ubiquitinated by the E3 ubiquitin ligase SCF(beta-TrCP) and subsequently degraded by the proteasome machinery. Previously, it...

  5. Structure of protein kinase CK2: dimerization of the human beta-subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Mietens, U; Issinger, O G

    1996-01-01

    Protein kinase CK2 has been shown to be elevated in all so far investigated solid tumors and its catalytic subunit has been shown to serve as an oncogene product. CK2 is a heterotetrameric serine-threonine kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta-subunits. Us...

  6. A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells.

    Science.gov (United States)

    Wang, X M; Zhai, Y; Ferrell, J E

    1997-04-21

    The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole-the chromosomes decondensed and the nuclear envelope re-formed-whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.

  7. Tv-RIO1 – an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus

    Directory of Open Access Journals (Sweden)

    Sternberg Paul W

    2008-09-01

    Full Text Available Abstract Background Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs and atypical protein kinases (aPKs; RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. Results A full-length cDNA (Tv-rio-1 encoding a RIO1 protein kinase (Tv-RIO1 was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida. The uninterrupted open reading frame (ORF of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3, and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1. Conclusion This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes.

  8. EST Table: FS933217 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available dulin-dependent protein kinase type 1 (camki) [Aedes aegypti] gb|EAT36480.1| calcium/calmodulin-dependent protein kinase type 1 (camk...EDICTED: similar to calcium/calmodulin-dependent protein kinase type 1 (camki) [Tribolium castaneum] DC544291 fwgP ...

  9. EST Table: DC543536 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available dulin-dependent protein kinase type 1 (camki) [Aedes aegypti] gb|EAT36480.1| calcium/calmodulin-dependent protein kinase type 1 (camk...EDICTED: similar to calcium/calmodulin-dependent protein kinase type 1 (camki) [Tribolium castaneum] DC544291 dpe- ...

  10. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Shuilin eHe

    2015-09-01

    Full Text Available The tripartite mitogen-activated protein kinase (MAPK signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK were performed in pepper. A total of 19 pepper MAPK (CaMAPKs genes and five MAPKK (CaMAPKKs genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper.

  11. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation....... Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA...

  12. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome.

    NARCIS (Netherlands)

    Mayr, J.A.; Haack, T.B.; Graf, E.; Zimmermann, F.A.; Wieland, T.; Haberberger, B.; Superti-Furga, A.; Kirschner, J.; Steinmann, B.; Baumgartner, M.R.; Moroni, I.; Lamantea, E.; Zeviani, M.; Rodenburg, R.J.T.; Smeitink, J.; Strom, T.M.; Meitinger, T.; Sperl, W.; Prokisch, H.

    2012-01-01

    Exome sequencing of an individual with congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis, all typical symptoms of Sengers syndrome, discovered two nonsense mutations in the gene encoding mitochondrial acylglycerol kinase (AGK). Mutation screening of AGK in

  13. Mitogen activated protein kinase signaling in the kidney: Target for intervention?

    NARCIS (Netherlands)

    de Borst, M.H.; Wassef, L.; Kelly, D.J.; van Goor, H.; Navis, Ger Jan

    2006-01-01

    Mitogen activated protein kinases (MAPKs) are intracellular signal transduction molecules, which connect cell-surface receptor signals to intracellular processes. MAPKs regulate a range of cellular activities including cell proliferation, gene expression, apoptosis, cell differentiation and cytokine

  14. RNA-dependent protein kinase (PKR) depletes nutrients, inducing phosphorylation of AMP-activated kinase in lung cancer.

    Science.gov (United States)

    Guo, Chengcheng; Hao, Chuncheng; Shao, RuPing; Fang, Bingliang; Correa, Arlene M; Hofstetter, Wayne L; Roth, Jack A; Behrens, Carmen; Kalhor, Neda; Wistuba, Ignacio I; Swisher, Stephen G; Pataer, Apar

    2015-05-10

    We have demonstrated that RNA-dependent protein kinase (PKR) and its downstream protein p-eIF2α are independent prognostic markers for overall survival in lung cancer. In the current study, we further investigate the interaction between PKR and AMPK in lung tumor tissue and cancer cell lines. We examined PKR protein expression in 55 frozen primary lung tumor tissues by Western blotting and analyzed the association between PKR expression and expression of 139 proteins on tissue samples examined previously by Reverse Phase Protein Array (RPPA) from the same 55 patients. We observed that biomarkers were either positively (phosphorylated AMP-activated kinase(T172) [p-AMPK]) or negatively (insulin receptor substrate 1, meiotic recombination 11, ATR interacting protein, telomerase, checkpoint kinase 1, and cyclin E1) correlated with PKR. We further confirmed that induction of PKR with expression vectors in lung cancer cells causes activation of the AMPK protein independent of the LKB1, TAK1, and CaMKKβ pathway. We found that PKR causes nutrient depletion, which increases AMP levels and decreases ATP levels, causing AMPK phosphorylation. We further demonstrated that inhibiting AMPK expression with compound C or siRNA enhanced PKR-mediated cell death. We next explored the combination of PKR and p-AMPK expression in NSCLC patients and observed that expression of p-AMPK predicted a poor outcome for adenocarcinoma patients with high PKR expression and a better prognosis for those with low PKR expression. These findings were consistent with our in vitro results. AMPK might rescue cells facing metabolic stresses, such as ATP depletion caused by PKR. Our data indicate that PKR causes nutrient depletion, which induces the phosphorylation of AMPK. AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation.

  15. Glc7/Protein Phosphatase 1 Regulatory Subunits Can Oppose the Ipl1/Aurora Protein Kinase by Redistributing Glc7

    OpenAIRE

    Pinsky, Benjamin A.; Kotwaliwale, Chitra V.; Tatsutani, Sean Y.; Breed, Christopher A.; Biggins, Sue

    2006-01-01

    Faithful chromosome segregation depends on the opposing activities of the budding yeast Glc7/PP1 protein phosphatase and Ipl1/Aurora protein kinase. We explored the relationship between Glc7 and Ipl1 and found that the phosphorylation of the Ipl1 substrate, Dam1, was altered by decreased Glc7 activity, whereas Ipl1 levels, localization, and kinase activity were not. These data strongly suggest that Glc7 ensures accurate chromosome segregation by dephosphorylating Ipl1 targets rather than regu...

  16. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A

    2010-01-01

    Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we...... activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast......, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases....

  17. Small-Molecule Allosteric Modulators of the Protein Kinase PDK1 from Structure-Based Docking

    Science.gov (United States)

    Karpiak, Joel; Doak, Allison; Sali, Andrej; Shoichet, Brian K.; Wells, James A.

    2016-01-01

    Finding small molecules that target allosteric sites remains a grand challenge for ligand discovery. In the protein kinase field, only a handful of highly selective allosteric modulators have been found. Thus, more general methods are needed to discover allosteric modulators for additional kinases. Here, we use virtual screening against an ensemble of both crystal structures and comparative models to identify ligands for an allosteric peptide-binding site on the protein kinase PDK1 (the PIF pocket). We optimized these ligands through an analog-by-catalog search that yielded compound 4, which binds to PDK1 with 8 μM affinity. We confirmed the docking poses by determining a crystal structure of PDK1 in complex with 4. Because the PIF pocket appears to be a recurring structural feature of the kinase fold, known generally as the helix αC patch, this approach may enable the discovery of allosteric modulators for other kinases. PMID:26443011

  18. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    the extracellular signal-regulated kinase (ERK) cascade to regulate GRK2 cellular levels. ERK activation by receptor stimulation elevated endogenous GRK2 while antagonist treatment decreased cellular GRK2. Activating ERK by overexpressing constitutive active MEK-1 or Ras elevated GRK2 protein levels while blocking...... ERK using PD98059 or dominant negative Ras abolished this effect. These data suggest ERK is a critical regulator of GRK2 levels....

  19. Fas-associated factor 1 interacts with protein kinase CK2 in vivo upon apoptosis induction

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Issinger, O G

    2001-01-01

    We show here that in several different cell lines protein kinase CK2 and Fas-associated factor 1 (FAF1) exist together in a complex which is stable to high monovalent salt concentration. The CK2/FAF1 complex formation is significantly increased after induction of apoptosis with various DNA damaging...... the view that protein kinase CK2 plays an important role in certain steps of apoptosis....

  20. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G

    Directory of Open Access Journals (Sweden)

    Abhisheka Bansal

    2016-12-01

    Full Text Available We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs. Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1. The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, was successfully introduced into the CDPK1 locus using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9. As methionine is a bulky residue, BKI 1294 had a 10-fold-greater effect in vitro on the wild-type enzyme than on the methionine mutant. However, in contrast to in vitro data with recombinant enzymes, BKI 1294 had a slightly greater inhibition of the growth of CDPK1 T145M parasites than the wild type. Moreover, the CDPK1 T145M parasites were more sensitive to the action of compound 2 (C2, a specific inhibitor of protein kinase G (PKG. These results suggest that a reduction in the activity of CDPK1 due to methionine substitution at the gatekeeper position is compensated through the direct action of PKG or of another kinase under the regulation of PKG. The transcript levels of CDPK5 and CDPK6 were significantly upregulated in the CDPK1 T145M parasites. The increase in CDPK6 or some other kinase may compensate for decrease in CDPK1 activity during invasion. This study suggests that targeting two kinases may be more effective in chemotherapy to treat malaria so as not to select for mutations in one of the enzymes.

  1. Apelin increases cardiac contractility via protein kinase Cε- and extracellular signal-regulated kinase-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Ábel Perjés

    Full Text Available BACKGROUND: Apelin, the endogenous ligand for the G protein-coupled apelin receptor, is an important regulator of the cardiovascular homoeostasis. We previously demonstrated that apelin is one of the most potent endogenous stimulators of cardiac contractility; however, its underlying signaling mechanisms remain largely elusive. In this study we characterized the contribution of protein kinase C (PKC, extracellular signal-regulated kinase 1/2 (ERK1/2 and myosin light chain kinase (MLCK to the positive inotropic effect of apelin. METHODS AND RESULTS: In isolated perfused rat hearts, apelin increased contractility in association with activation of prosurvival kinases PKC and ERK1/2. Apelin induced a transient increase in the translocation of PKCε, but not PKCα, from the cytosol to the particulate fraction, and a sustained increase in the phosphorylation of ERK1/2 in the left ventricle. Suppression of ERK1/2 activation diminished the apelin-induced increase in contractility. Although pharmacological inhibition of PKC attenuated the inotropic response to apelin, it had no effect on ERK1/2 phosphorylation. Moreover, the apelin-induced positive inotropic effect was significantly decreased by inhibition of MLCK, a kinase that increases myofilament Ca2+ sensitivity. CONCLUSIONS: Apelin increases cardiac contractility through parallel and independent activation of PKCε and ERK1/2 signaling in the adult rat heart. Additionally MLCK activation represents a downstream mechanism in apelin signaling. Our data suggest that, in addition to their role in cytoprotection, modest activation of PKCε and ERK1/2 signaling improve contractile function, therefore these pathways represent attractive possible targets in the treatment of heart failure.

  2. Functional and Structural Mimicry of Cellular Protein Kinase A Anchoring Proteins by a Viral Oncoprotein.

    Directory of Open Access Journals (Sweden)

    Cason R King

    2016-05-01

    Full Text Available The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP. E1A interacts with and relocalizes protein kinase A (PKA to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A's role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs.

  3. Interacting proteins of protein kinase A regulatory subunit in Saccharomyces cerevisiae.

    Science.gov (United States)

    Galello, F; Moreno, S; Rossi, S

    2014-09-23

    cAMP-dependent protein kinase mediates many extracellular signals in eukaryotes. The compartmentalization of PKA is an important level of control of the specificity of signal transduction mediated by cAMP. Unlike mammalian PKA for which proof insights in the mechanism that controls its localization through anchoring proteins (AKAPs) has been obtained, in the case of Saccharomyces cerevisiae PKA there was little information available. In this work, we present results that demonstrate the isolation and identification of yeast PKA regulatory subunit (Bcy1) associated proteins using a MS-based proteomic analysis and a bioinformatic approach. The verification of some of these interactions was assessed by immunoprecipitation, pull down and co-localization by subcellular fractionation. The key role of positively charged residues present in the interaction domain of the identified proteins was demonstrated. The defined interaction domain has therefore different molecular characteristics than conventional AKAP domains. Finally we assess initial experiments to visualize the physiological relevance of the interaction of both Ira2 and Hsp60 with Bcy1. Bcy1 interacts with Ira2 tethering PKA to the Ras complex and Hsp60 chaperone localizes PKA to mitochondria and has a role in the kinase stability. Our work has an important impact in the field of signal transduction especially of protein kinase A. Components of the cAMP signaling cascade are localized in the cell via scaffold proteins named AKAPs that contribute to the high level specific regulation of the cAMP-PKA-signaling pathway. In the unicellular eukaryote Saccharomyces cerevisiae PKA has a pleiotropic role in the cell and the compartmentalization therefore is key to achieve the specificity in the response. At present all AKAPs have been described in mammals and it is unknown whether functional homologs of mammalian AKAPs exist in yeast. Therefore, it is unknown which molecular features of the mammalian anchoring proteins

  4. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  5. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl...

  6. A dual-specificity isoform of the protein kinase inhibitor PKI produced by alternate gene splicing.

    Science.gov (United States)

    Kumar, Priyadarsini; Walsh, Donal A

    2002-03-15

    We have previously shown that the protein kinase inhibitor beta (PKIbeta) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011-20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.

  7. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases

    Directory of Open Access Journals (Sweden)

    Pierre eCrozet

    2014-05-01

    Full Text Available The SNF1-related protein kinases 1 (SnRK1s are the plant orthologs of the budding yeast SNF1 (Sucrose Non-Fermenting 1 and mammalian AMPK (AMP-activated protein kinase. These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprogramming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, posttranslational modifications, various metabolites, hormones and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.

  8. PKC- and ERK-dependent activation of IκB kinase by lipopolysaccharide in macrophages: enhancement by P2Y receptor-mediated CaMK activation

    Science.gov (United States)

    Chen, Bing-C; Lin, Wan-W

    2001-01-01

    Although accumulating studies have identified IκB kinase (IKK) to be essential for controlling NF-κB activity in response to several cytokines, the upstream kinases that control IKK activity are still not completely known. We have previously reported that G protein-coupled P2Y6 receptor activation by UTP potentiates lipopolysaccharide (LPS)-induced IκB phosphorylation and degradation, and NF-κB activation in J774 macrophages. In this study, we investigated the upstream kinases for IKK activation by UTP and LPS.In murine J774 macrophages, LPS-induced NF-κB activation was inhibited by the presence of PDTC, D609, Ro 31-8220, PD 098059 and SB 203580.Accompanying NF-κB activation, LPS induced IκB degradation and IKK activation were reduced by PDTC, D609, Ro 31-8220 and PD 098059, but not by SB 203580.Although UTP itself slightly induced IKK activation, this response was synergistic with LPS. BAPTA/AM and KN-93 (a calcium/calmodulin-dependent protein kinase (CaMK) inhibitor) attenuated UTP- but not LPS-stimulated IKK activity. Synergistic IKK activation between LPS and thapsigargin was further demonstrated in peritoneal macrophages.LPS and UTP co-stimulation additively increased p65 NF-κB phosphorylation. In vitro kinase assays revealed that LPS and UTP induced extracellular signal-regulated protein kinase (ERK) and p38 mitogen-activated protein kinase activation were respectively inhibited by PD098059 and SB 203580.Taken together, we demonstration that Gq protein-coupled P2Y6 receptor activation can potentiate LPS-stimulated IKK activity. While PKC and ERK participate in IKK activation by LPS and UTP, the phosphatidylinositide-phospholipase C-dependent activation of CaMK plays a major role in UTP potentiation of the LPS response. PMID:11682454

  9. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1)

    Czech Academy of Sciences Publication Activity Database

    Petrvalská, Olivia; Košek, Dalibor; Kukačka, Zdeněk; Tošner, Z.; Man, Petr; Večeř, J.; Herman, P.; Obšilová, Veronika; Obšil, Tomáš

    2016-01-01

    Roč. 291, č. 39 (2016), s. 20753-20765 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-10061S Institutional support: RVO:67985823 ; RVO:61388971 Keywords : 14-3-3 protein * apoptosis signal-regulating kinase 1 (ASK1) * fluorescence * nuclear magnetic resonance (NMR) * protein cross-linking * small-angle x-ray scattering (SAXS) Subject RIV: CE - Biochemistry Impact factor: 4.125, year: 2016

  10. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK activ...

  11. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C.

    Directory of Open Access Journals (Sweden)

    Ines Teichert

    2014-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1. We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems.

  12. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  13. Kinase-specific prediction of protein phosphorylation sites

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Blom, Nikolaj

    2009-01-01

    -substrate specificity. Here, we briefly describe the available resources for predicting kinase-specific phosphorylation from sequence properties. We address the strengths and weaknesses of these resources, which are based on methods ranging from simple consensus patterns to more advanced machine-learning algorithms...

  14. The protein kinase IKKepsilon regulates energy balance in obese mice

    NARCIS (Netherlands)

    Chiang, Shian-Huey; Bazuine, Merlijn; Lumeng, Carey N.; Geletka, Lynn M.; Mowers, Jonathan; White, Nicole M.; Ma, Jing-Tyan; Zhou, Jie; Qi, Nathan; Westcott, Dan; Delproposto, Jennifer B.; Blackwell, Timothy S.; Yull, Fiona E.; Saltiel, Alan R.

    2009-01-01

    Obesity is associated with chronic low-grade inflammation that negatively impacts insulin sensitivity. Here, we show that high-fat diet can increase NF-kappaB activation in mice, which leads to a sustained elevation in level of IkappaB kinase epsilon (IKKepsilon) in liver, adipocytes, and adipose

  15. Raf Kinase Inhibitor Protein Interacts with NF-κB-Inducing Kinase and TAK1 and Inhibits NF-κB Activation

    Science.gov (United States)

    Yeung, Kam C.; Rose, David W.; Dhillon, Amardeep S.; Yaros, Diane; Gustafsson, Marcus; Chatterjee, Devasis; McFerran, Brian; Wyche, James; Kolch, Walter; Sedivy, John M.

    2001-01-01

    The Raf kinase inhibitor protein (RKIP) acts as a negative regulator of the mitogen-activated protein (MAP) kinase (MAPK) cascade initiated by Raf-1. RKIP inhibits the phosphorylation of MAP/extracellular signal-regulated kinase 1 (MEK1) by Raf-1 by disrupting the interaction between these two kinases. We show here that RKIP also antagonizes the signal transduction pathways that mediate the activation of the transcription factor nuclear factor kappa B (NF-κB) in response to stimulation with tumor necrosis factor alpha (TNF-α) or interleukin 1 beta. Modulation of RKIP expression levels affected NF-κB signaling independent of the MAPK pathway. Genetic epistasis analysis involving the ectopic expression of kinases acting in the NF-κB pathway indicated that RKIP acts upstream of the kinase complex that mediates the phosphorylation and inactivation of the inhibitor of NF-κB (IκB). In vitro kinase assays showed that RKIP antagonizes the activation of the IκB kinase (IKK) activity elicited by TNF-α. RKIP physically interacted with four kinases of the NF-κB activation pathway, NF-κB-inducing kinase, transforming growth factor beta-activated kinase 1, IKKα, and IKKβ. This mode of action bears striking similarities to the interactions of RKIP with Raf-1 and MEK1 in the MAPK pathway. Emerging data from diverse organisms suggest that RKIP and RKIP-related proteins represent a new and evolutionarily highly conserved family of protein kinase regulators. Since the MAPK and NF-κB pathways have physiologically distinct roles, the function of RKIP may be, in part, to coordinate the regulation of these pathways. PMID:11585904

  16. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  17. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases

    Science.gov (United States)

    Boo, Yong Chool; Jo, Hanjoong

    2003-01-01

    Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases-protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases-are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation.

  18. Exploring some of the physico-chemical properties of the LAMMER protein kinase DOA of Drosophila.

    Science.gov (United States)

    Farkas, Robert; Kováciková, Michaela; Liszeková, Denisa; Beno, Milan; Danis, Peter; Rabinow, Leonard; Chase, Bruce A; Raska, Ivan

    2009-01-01

    Members of the highly conserved LAMMER family of protein kinases have been described in all eukaryotes. LAMMER kinases possess markedly similar peptide motifs in their kinase catalytic subdomains that are responsible for phosphotransfer and substrate interaction, suggesting that family members serve similar functions in widely diverged species. This hypothesis is supported by their phosphorylation of SR and SR-related proteins in diverged species. Here we describe a 3-dimensional homology model of the catalytic domain of DOA, a representative LAMMER kinase, encoded by the Drosophila locus Darkener of apricot (Doa). Homology modeling of DOA based on a Sky1p template revealed a highly conserved structural framework within conserved core regions. These adopt typical kinase folding like that of other protein kinases. However, in contrast to Sky1p, some structural features, such as those in helix alphaC suggest that the DOA kinase is not a constitutively active enzyme but requires activation. This may occur by phosphorylation within an activation loop that forms a broad turn and in which interactions between the side chains occur across the loop. The fold of the activation loop is stabilized through interactions with residues in the C-terminal tail, which is not part of the conserved kinase core and is variable among protein kinases. Immediately following the activation loop in the segment between the beta9 sheet and helix alphaF is a P + 1 loop. The electrostatic surface potential of the DOA substrate-binding groove is largely negative, as it is in other known SR protein kinases, suggesting that DOA substrates must be basic. All differences between D. melanogaster and other Drosophila species are single amino acid changes situated in regions outside of any alpha-helices or beta-sheets, and after modeling these had absolutely no visible effect on protein structure. The absence of evolved amino acid changes among 12 Drosophila species that would cause at least

  19. Molecular basis for activation of G protein-coupled receptor kinases

    Energy Technology Data Exchange (ETDEWEB)

    Boguth, Cassandra A.; Singh, Puja; Huang, Chih-chin; Tesmer, John J.G. (Michigan)

    2012-03-16

    G protein-coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N-terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N-terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs.

  20. Structural Basis for Noncanonical Substrate Recognition of Cofilin/ADF Proteins by LIM Kinases.

    Science.gov (United States)

    Hamill, Stephanie; Lou, Hua Jane; Turk, Benjamin E; Boggon, Titus J

    2016-05-05

    Cofilin/actin-depolymerizing factor (ADF) proteins are critical nodes that relay signals from protein kinase cascades to the actin cytoskeleton, in particular through site-specific phosphorylation at residue Ser3. This is important for regulation of the roles of cofilin in severing and stabilizing actin filaments. Consequently, cofilin/ADF Ser3 phosphorylation is tightly controlled as an almost exclusive substrate for LIM kinases. Here we determine the LIMK1:cofilin-1 co-crystal structure. We find an interface that is distinct from canonical kinase-substrate interactions. We validate this previously unobserved mechanism for high-fidelity kinase-substrate recognition by in vitro kinase assays, examination of cofilin phosphorylation in mammalian cells, and functional analysis in S. cerevisiae. The interface is conserved across all LIM kinases. Remarkably, we also observe both pre- and postphosphotransfer states in the same crystal lattice. This study therefore provides a molecular understanding of how kinase-substrate recognition acts as a gatekeeper to regulate actin cytoskeletal dynamics. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Structural basis for non-canonical substrate recognition of cofilin/ADF proteins by LIM kinases

    Science.gov (United States)

    Hamill, Stephanie; Lou, Hua Jane; Turk, Benjamin E.; Boggon, Titus J.

    2016-01-01

    SUMMARY Cofilin/actin-depolymerizing factor (ADF) proteins are critical nodes that relay signals from protein kinase cascades to the actin cytoskeleton, in particular through site-specific phosphorylation at residue Ser3. This is important for regulation of the roles of cofilin in severing and stabilizing actin filaments. Consequently, cofilin/ADF Ser3 phosphorylation is tightly controlled as an almost exclusive substrate for LIM kinases. Here we determine the LIMK1:cofilin-1 co-crystal structure. We find an interface that is distinct from canonical kinase-substrate interactions. We validate this previously unobserved mechanism for high fidelity kinase-substrate recognition by in vitro kinase assays, examination of cofilin phosphorylation in mammalian cells, and functional analysis in S. cerevisiae. The interface is conserved across all LIM kinases. Remarkably, we also observe both pre- and post-phosphotransfer states in the same crystal lattice. This study therefore provides a molecular understanding of how kinase-substrate recognition acts as a gatekeeper to regulate actin cytoskeletal dynamics. PMID:27153537

  2. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase.

    Science.gov (United States)

    Gallo, Eduardo F; Iadecola, Costantino

    2011-05-11

    Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway and gene expression. To address this issue, we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc, and brain-derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein kinase G (PKG) reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of cAMP response element-binding protein (CREB), a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS(-/-) mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect mediated through cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity.

  3. The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum.

    Science.gov (United States)

    Hegedus, Dwayne D; Gerbrandt, Kelsey; Coutu, Cathy

    2016-05-01

    Protein kinases have been implicated in the regulation of many processes that guide pathogen development throughout the course of infection. A survey of the Sclerotinia sclerotiorum genome for genes encoding proteins containing the highly conserved eukaryotic protein kinase (ePK) domain, the largest protein kinase superfamily, revealed 92 S. sclerotiorum ePKs. This review examines the composition of the S. sclerotiorum ePKs based on conserved motifs within the ePK domain family, and relates this to orthologues found in other filamentous fungi and yeasts. The ePKs are also discussed in terms of their proposed role(s) in aspects of host pathogenesis, including the coordination of mycelial growth/development and deployment of pathogenicity determinants in response to environmental stimuli, nutrients and stress. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  4. Role of AMP-activated protein kinase for regulating post-exercise insulin sensitivity

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Wojtaszewski, Jørgen; Treebak, Jonas Thue

    2016-01-01

    to increase glucose disposal in skeletal muscle in response to physiological insulin concentrations. While this effect is identified to be restricted to the previously exercised muscle, the molecular basis for an apparent convergence between exercise- and insulin-induced signaling pathways is incompletely...... known. In recent years, we and others have identified the Rab GTPase-activating protein, TBC1 domain family member 4 (TBC1D4) as a target of key protein kinases in the insulin- and exercise-activated signaling pathways. Our working hypothesis is that the AMP-activated protein kinase (AMPK) is important...

  5. Cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase activity in the somatic cells of the seminiferous tubules. II. Effect of retinol.

    Science.gov (United States)

    Galdieri, M; Pezzotti, R; Nisticò, L

    1991-01-01

    The effect of retinol on cyclic AMP dependent protein kinase activity of Sertoli cells and peritubular cells isolated from prepubertal rats has been investigated. Treatments longer than six hours induced a significant inhibition of type I protein kinase activity of Sertoli cells without appreciable variation of type II protein kinase. Short time treatments with the vitamin did not affect the Sertoli cell protein kinase activity. The vitamin A addition did not induce any appreciable variation of peritubular cell protein kinase activity.

  6. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    Science.gov (United States)

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  7. A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination

    DEFF Research Database (Denmark)

    Rudolf, Amalie Frederikke; Skovgaard, Tine; Knapp, Stefan

    2014-01-01

    Binding assays are increasingly used as a screening method for protein kinase inhibitors; however, as yet only a weak correlation with enzymatic activity-based assays has been demonstrated. We show that the correlation between the two types of assays can be improved using more precise screening...... conditions. Furthermore a marked improvement in the correlation was found by using kinase constructs containing the catalytic domain in presence of additional domains or subunits....

  8. wKinMut-2: Identification and Interpretation of Pathogenic Variants in Human Protein Kinases

    DEFF Research Database (Denmark)

    Vazquez, Miguel; Pons, Tirso; Brunak, Søren

    2016-01-01

    forest approach. To understand the biological mechanisms causative of human diseases and cancer, information from pertinent reference knowledgebases and the literature is automatically mined, digested and homogenized. Variants are visualized in their structural contexts and residues affecting catalytic...... is often scattered across different sources, which makes the integrative analysis complex and laborious. wKinMut-2 constitutes a solution to facilitate the interpretation of the consequences of human protein kinase variation. Nine methods predict their pathogenicity, including a kinase-specific random...

  9. Expression patterns of protein kinase D 3 during mouse development

    Directory of Open Access Journals (Sweden)

    Lutz Sylke

    2008-04-01

    Full Text Available Abstract Background The PKD family of serine/threonine kinases comprises a single member in Drosophila (dPKD, two isoforms in C. elegans (DKF-1 and 2 and three members, PKD1, PKD2 and PKD3 in mammals. PKD1 and PKD2 have been the focus of most studies up to date, which implicate these enzymes in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, immune responses, apoptosis and cell proliferation. Concerning PKD3, a role in the formation of vesicular transport carriers at the trans-Golgi network (TGN and in basal glucose transport has been inferred from in vitro studies. So far, however, the physiological functions of the kinase during development remain unknown. Results We have examined the expression pattern of PKD3 during the development of mouse embryos by immunohistochemistry. Using a PKD3 specific antibody we demonstrate that the kinase is differentially expressed during organogenesis. In the developing heart a strong PKD3 expression is constantly detected from E10 to E16.5. From E12.5 on PKD3 is increasingly expressed in neuronal as well as in the supporting connective tissue and in skeletal muscles. Conclusion The data presented support an important role for PKD3 during development of these tissues.

  10. Identification and phylogeny of a protein kinase gene of white spot syndrome virus

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Vlak, J.M.

    2001-01-01

    White spot syndrome virus (WSSV) is a virus infecting shrimp and other crustaceans, which is unclassified taxonomically. A 2193 bp long open reading frame, encoding a putative protein kinase (PK), was found on a 8.4 kb EcoRI fragment of WSSV proximal to the gene for the major envelope protein

  11. Expression, purification and crystallization of the catalytic subunit of protein kinase CK2 from Zea mays

    DEFF Research Database (Denmark)

    Guerra, B; Niefind, K; Pinna, L A

    1998-01-01

    The catalytic (alpha) subunit of protein kinase CK2 (CK2alpha) was originally cloned and overexpressed in the Escherichia coli strain pT7-7/BL21(DE3). The protein has been purified to homogeneity and crystallized. The crystals belong to the monoclinic space group C2, they have unit-cell parameter...

  12. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  13. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose

    Energy Technology Data Exchange (ETDEWEB)

    Craven, P.A.; DeRubertis, F.R.

    1989-05-01

    Glomerular inositol content and the turnover of polyphosphoinositides was reduced by 58% in 1-2 wk streptozotocin diabetic rats. Addition of inositol to the incubation medium increased polyphosphoinositide turnover in glomeruli from diabetic rats to control values. Despite the reduction in inositol content and polyphosphoinositide turnover, protein kinase C was activated in glomeruli from diabetic rats, as assessed by an increase in the percentage of enzyme activity associated with the particulate cell fraction. Total protein kinase C activity was not different between glomeruli from control and diabetic rats. Treatment of diabetic rats with insulin to achieve near euglycemia prevented the increase in particulate protein kinase C. Moreover, incubation of glomeruli from control rats with glucose (100-1,000 mg/dl) resulted in a progressive increase in labeled diacylglycerol production and in the percentage of protein kinase C activity which was associated with the particulate fraction. These results support a role for hyperglycemia per se in the enhanced state of activation of protein kinase C seen in glomeruli from diabetic rats. Glucose did not appear to increase diacylglycerol by stimulating inositol phospholipid hydrolysis in glomeruli. Other pathways for diacylglycerol production, including de novo synthesis and phospholipase C mediated hydrolysis of phosphatidylcholine or phosphatidyl-inositol-glycan are not excluded.

  14. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  15. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar

    2014-01-01

    proteins, SOCS1-7, and cytokine-inducible SH2-containing protein (CIS). A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS......-encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion, SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also...

  16. Thrombin-mediated Proteoglycan Synthesis Utilizes Both Protein-tyrosine Kinase and Serine/Threonine Kinase Receptor Transactivation in Vascular Smooth Muscle Cells*

    Science.gov (United States)

    Burch, Micah L.; Getachew, Robel; Osman, Narin; Febbraio, Mark A.; Little, Peter J.

    2013-01-01

    G protein-coupled receptor signaling is mediated by three main mechanisms of action; these are the classical pathway, β-arrestin scaffold signaling, and the transactivation of protein-tyrosine kinase receptors such as those for EGF and PDGF. Recently, it has been demonstrated that G protein-coupled receptors can also mediate signals via transactivation of serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Atherosclerosis is characterized by the development of lipid-laden plaques in blood vessel walls. Initiation of plaque development occurs via low density lipoprotein retention in the neointima of vessels due to binding with modified proteoglycans secreted by vascular smooth muscle cells. Here we show that transactivation of protein-tyrosine kinase receptors is mediated by matrix metalloproteinase triple membrane bypass signaling. In contrast, serine/threonine kinase receptor transactivation is mediated by a cytoskeletal rearrangement-Rho kinase-integrin system, and both protein-tyrosine kinase and serine/threonine kinase receptor transactivation concomitantly account for the total proteoglycan synthesis stimulated by thrombin in vascular smooth muscle. This work provides evidence of thrombin-mediated proteoglycan synthesis and paves the way for a potential therapeutic target for plaque development and atherosclerosis. PMID:23335513

  17. Phosphorylation in vitro of eukaryotic initiation factors IF-E2 and IF-E3 by protein kinases

    DEFF Research Database (Denmark)

    Issinger, O G; Benne, R; Hershey, J W

    1976-01-01

    Purified protein synthesis initiation factors IF-E2 and IF-E3 from rabbit reticulocytes were phosphorylated in vitro with protein kinases isolated from the same source. The highest levels of phosphorylation resulted from incubation of the factors with a cyclic nucleotide-independent protein kinase...

  18. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells.

    Science.gov (United States)

    Wei, Ping; Wong, Wilson W; Park, Jason S; Corcoran, Ethan E; Peisajovich, Sergio G; Onuffer, James J; Weiss, Arthur; Lim, Wendell A

    2012-08-16

    Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signalling pathways, provide a mechanism to evade immune responses during infection. Although these effectors contribute to pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behaviour. Here we exploit two effector proteins, the Shigella flexneri OspF protein and Yersinia pestis YopH protein, to rewire kinase-mediated responses systematically both in yeast and mammalian immune cells. Bacterial effector proteins can be directed to inhibit specific mitogen-activated protein kinase pathways selectively in yeast by artificially targeting them to pathway-specific complexes. Moreover, we show that unique properties of the effectors generate new pathway behaviours: OspF, which irreversibly inactivates mitogen-activated protein kinases, was used to construct a synthetic feedback circuit that shows novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to tune the T-cell response amplitude precisely, or as an inducible pause switch that can temporarily disable T-cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications.

  19. Partial purification of a spinach thylakoid protein kinase that can phosphorylate light-harvesting chlorophyll a/b proteins

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.D.; Hind, G.; Bennett, J.

    1985-01-01

    Protein phosphorylation in plant tissues is particularly marked in chloroplasts, protein kinase activity being associated with the outer envelope, the soluble stromal fraction, and the thylakoid membrane. Furthermore, thylakoid-bound activity probably includes several distinct kinases, as suggested by studies of divalent cation specificity and thermal lability carried out with intact thylakoids and by subfractionation of solubilized membranes. Illumination of thylakoids, particularly with red light, promotes the rapid and extensive phosphorylation of the light-harvesting chlorophyll a/b complex (LHCII) on a threonine residue near the amino terminus of the protein. This phosphorylation is thought to be involved in regulating the distribution of absorbed quanta between photosystems II and I and is modulated by the redox state of the thylakoid plastoquinone pool. Neither of the thylakoid kinases reported to date was capable of phosphorylating purified LHCII in vitro or of incorporating phosphate into threonyl residues of exogenous substrates, that some LHCII phosphorylation was catalyzed by a preliminary fraction led workers to suggest that at least one other kinase remained to be isolated. Here, the authors report the solubilization and partial purification of a protein kinase from spinach thylakoids that is capable of phosphorylating LHCII in vitro, and they show that the specific site of phosphorylation is very nearly the same as, if not identical with, the site phosphorylated in organello.

  20. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity.

    Science.gov (United States)

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-07-23

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity.

  1. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    Science.gov (United States)

    González-Vera, Juan A.; Morris, May C.

    2015-01-01

    Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes. PMID:28248276

  2. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    Directory of Open Access Journals (Sweden)

    Juan A. González-Vera

    2015-11-01

    Full Text Available Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.

  3. Role of Atypical Protein Kinases in Maintenance of Long-Term Memory and Synaptic Plasticity.

    Science.gov (United States)

    Borodinova, A A; Zuzina, A B; Balaban, P M

    2017-03-01

    Investigation of biochemical mechanisms underlying the long-term storage of information in nervous system is one of main problems of modern neurobiology. As a molecular basis of long-term memory, long-term changes in kinase activities, increase in the level and changes in the subunit composition of receptors in synaptic membranes, local activity of prion-like proteins, and epigenetic modifications of chromatin have been proposed. Perhaps a combination of all or of some of these factors underlies the storage of long-term memory in the brain. Many recent studies have shown an exclusively important role of atypical protein kinases (PKCζ, PKMζ, and PKCι/λ) in processes of learning, consolidation and maintenance of memory. The present review is devoted to consideration of mechanisms of transcriptional and translational control of atypical protein kinases and their roles in induction and maintenance of long-term synaptic plasticity and memory in vertebrates and invertebrates.

  4. Oxidative Stress-Associated Protein Tyrosine Kinases and Phosphatases in Fanconi Anemia

    Science.gov (United States)

    Pang, Qishen

    2014-01-01

    Abstract Significance: Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. Recent Advances: A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. Critical Issues: In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. Future Directions: Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting. Antioxid. Redox Signal. 20, 2290–2301. PMID:24206276

  5. Stretch-induced mitogen-activated protein kinase activation in lung fibroblasts is independent of receptor tyrosine kinases.

    Science.gov (United States)

    Boudreault, Francis; Tschumperlin, Daniel J

    2010-07-01

    Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cgamma1 (PLCgamma1) and activation of the small G-protein Ras. Human lung fibroblasts (LFs) were seeded on matrix-coated silicone membranes and exposed to equibiaxial 10 to 40% static stretch or 20% contraction. LFs were stimulated with EGF, FGF2, or PDGF-BB or exposed to stretch in the presence of inhibitors of EGFR (AG1478), FGFR (PD173074), and PDGFR (AG1296). Phospho-MAPK, phospho-RTK, and phospho-PLCgamma1 levels were measured by Western blotting. Active GTP-Ras was quantified by immunoblotting after pull-down with a glutathione S-transferase-Raf-RBD construct. Normalized p-ERK1/2, p-JNK, and p-p38 levels increased after stretch but not contraction. Ligands to RTKs broadly stimulated MAPKs, with the responses to EGF and PDGF most similar to stretch in terms of magnitude and rank order of MAPK responses. Stretching cells failed to elicit measurable activation of EGFR, FGFR (FRS2alpha phosphorylation), or PDGFR. Potent inhibitors of the kinase activity of each receptor failed to attenuate stretch-induced MAPK activation. PLCgamma1 and Ras, prominent effectors downstream of RTKs, were not activated by stretch. Our findings demonstrate that MAPKs are potently activated by stretch in lung fibroblasts, but, in contrast to stress responses observed in other cell types, RTKs are not necessary for stretch-induced MAPK activation in LFs.

  6. A novel protein kinase-like domain in a selenoprotein, widespread in the tree of life.

    Directory of Open Access Journals (Sweden)

    Małgorzata Dudkiewicz

    Full Text Available Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised.Here, the structural and functional prediction for the uncharacterised selenoprotein O (SELO is presented. Using bioinformatics tools, we predict that SELO protein adopts a three-dimensional fold similar to protein kinases. Furthermore, we argue that despite the lack of conservation of the "classic" catalytic aspartate residue of the archetypical His-Arg-Asp motif, SELO kinases might have retained catalytic phosphotransferase activity, albeit with an atypical active site. Lastly, the role of the selenocysteine residue is considered and the possibility of an oxidoreductase-regulated kinase function for SELO is discussed.The novel kinase prediction is discussed in the context of functional data on SELO orthologues in model organisms, FMP40 a.k.a.YPL222W (yeast, and ydiU (bacteria. Expression data from bacteria and yeast suggest a role in oxidative stress response. Analysis of genomic neighbourhoods of SELO homologues in the three domains of life points toward a role in regulation of ABC transport, in oxidative stress response, or in basic metabolism regulation. Among bacteria possessing SELO homologues, there is a significant over-representation of aquatic organisms, also of aerobic ones. The selenocysteine residue in SELO proteins occurs only in few members of this protein family, including proteins from Metazoa, and few small eukaryotes (Ostreococcus, stramenopiles. It is also demonstrated that enterobacterial mchC proteins involved in maturation of bactericidal antibiotics, microcins, form a distant subfamily of the SELO proteins.The new

  7. TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Roelants, Françoise M; Leskoske, Kristin L; Pedersen, Ross T A; Muir, Alexander; Liu, Jeffrey M-H; Finnigan, Gregory C; Thorner, Jeremy

    2017-04-01

    Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis. Copyright © 2017 Roelants et al.

  8. Mechanism of nuclear calcium signaling by inositol 1,4,5-trisphosphate produced in the nucleus, nuclear located protein kinase C and cyclic AMP-dependent protein kinase.

    Science.gov (United States)

    Klein, Christian; Malviya, Anant N

    2008-01-01

    Nuclear phospholipase C-gamma 1 can be phosphorylated by nuclear membrane located epidermal growth factor receptor sequel to epidermal growth factor-mediated signaling to the nucleus. The function of mouse liver phospholipase C-gamma 1 is attributed to a 120 kDa protein fragment which has been found to be a proteolytic product of the 150 kDa native nuclear enzyme. The tyrosine-phosphorylated 120 kDa protein band interacts with activated EGFR, binds phosphatidyl-3-OH kinase enhancer, and activates nuclear phosphatidylinositol-3-OH-kinase, and is capable of generating diacylglycerol in response to the epidermal growth factor signal to the nucleus in vivo. Thus a mechanism for nuclear production of inositol-1,4,5-trisphophate is unraveled. Nuclear generated inositol-1,4,5-trisphophate interacts with the inner membrane located inositol-1,4,5-trisphophate receptor and sequesters calcium into the nucleoplasm. Nuclear inositol-1,4,5-trisphophate receptor is phosphorylated by native nuclear protein kinase C which enhances the receptor-ligand interaction. Nuclear calcium-ATPase and inositol-1,3,4,5-tetrakisphophate receptor are located on the outer nuclear membrane, thus facilitating calcium transport into the nuclear envelope lumen either by ATP or inositol-1,3,4,5-tetrakisphophate depending upon the external free calcium concentrations. Nuclear calcium ATPase is phosphorylated by cyclic AMP-dependent protein kinase with enhanced calcium pumping activity. A holistic picture emerges here where tyrosine phosphorylation compliments serine phosphorylation of key moieties regulating nuclear calcium signaling. Evidence are forwarded in favor of proteolysis having a profound implications in nuclear calcium homeostasis in particular and signal transduction in general.

  9. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  10. Comprehensive Characterization of AMP-activated Protein Kinase Catalytic Domain by Top-down Mass Spectrometry

    Science.gov (United States)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2015-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410

  11. Protein kinase C activation in mixed micelles. Mechanistic implications of phospholipid, diacylglycerol, and calcium interdependencies.

    Science.gov (United States)

    Hannun, Y A; Loomis, C R; Bell, R M

    1986-06-05

    The phospholipid, sn-1,2-diacylglycerol, and calcium dependencies of rat brain protein kinase C were investigated with a mixed micellar assay (Hannun, Y., Loomis, C., and Bell, R.M. (1985) J. Biol. Chem. 260, 10039-10043). Protein kinase C activity was independent of the number of Triton X-100, phosphatidylserine (PS), and sn-1,2-dioleoylglycerol (diC18:1) mixed micelles. Activation was strongly dependent on the mole per cent of PS and diC18:1. Activity of protein kinase C was dependent on PS, diC18:1, and calcium in mixed micelles prepared from detergents other than Triton X-100. This is consistent with the micelle providing an inert surface into which the lipid cofactors partition. Molecular sieve chromatography provided direct evidence for the homogeneity of Triton X-100, PS, and diC18:1 mixed micelles. Mixing studies and surface dilution studies indicated that PS and diC18:1 rapidly equilibrate among the mixed micelles. At saturating calcium, the diC18:1 dependence was strongly dependent on the mole per cent PS present. At 10 mol % PS, 0.25 mol % diC18:1 gave maximal activity whereas 6 mol % PS and 6 mol % diC18:1 did not give maximal activity. diC18:1 dependencies were hyperbolic at all PS levels tested. The data support the conclusion that a single molecule of diC18:1/micelle is sufficient to activate monomeric protein kinase C. The mole per cent PS required for maximal activation was reduced markedly as the mole per cent diC18:1 increased. Under all conditions tested, the PS dependence of protein kinase C activation lagged until greater than 3 mol % PS was present. Then activation occurred in a cooperative manner with Hill numbers near 4. These data indicate that 4 or more molecules of PS are required to activate monomeric protein kinase C. PS was the most effective of all the phospholipids tested in the mixed micelle assay. diC18:1 was found to modulate the amount of calcium required for maximal activity. As the level of Ca2+ increased, the mole per cent PS

  12. A subnanomolar fluorescent probe for protein kinase CK2 interaction studies

    DEFF Research Database (Denmark)

    Enkvist, Erki; Viht, Kaido; Bischoff, Nils

    2012-01-01

    assay that used thin layer chromatography for the measurement of the rate of phosphorylation of fluorescently labelled peptide 5-TAMRA-RADDSDDDDD. The most potent inhibitor, ARC-1502 (K(i) = 0.5 nM), revealed high selectivity for CK2α in a panel of 140 protein kinases. Labelling of ARC-1502 with Promo......Up-regulation of an acidophilic protein kinase, CK2, has been established in several types of cancer. This cognition has made CK2 an important target for drug development for cancer chemotherapy. The characterization of potential drug candidates, determination of the structure and clarification...

  13. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells.

    Science.gov (United States)

    Taher, M M; Abd-Elfattah, A S; Sholley, M M

    1998-12-01

    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  14. Autophosphorylation and Cross-Phosphorylation of Protein Kinases from the Crenarchaeon Sulfolobus islandicus

    Directory of Open Access Journals (Sweden)

    Qihong Huang

    2017-11-01

    Full Text Available Protein phosphorylation, one of the most important post-translational modifications, regulates almost every cellular process. Although signal transduction by protein phosphorylation is extensively studied in Eukaryotes and Bacteria, the knowledge of this process in archaea is greatly lagging behind, especially for Ser/Thr/Tyr phosphorylation by eukaryotic-like protein kinases (ePKs. So far, only a few studies on archaeal ePKs have been reported, most of which focused on the phosphorylation activities in vitro, but their physiological functions and interacting network are still largely unknown. In this study, we systematically investigated the autophosphorylation and cross-phosphorylation activities of ePKs from Sulfolobus islandicus REY15A using proteins expressed in Escherichia coli or S. islandicus. In vitro kinase assay showed that 7 out of the 11 putative ePKs have autophosphorylation activity. A protein Ser/Thr phosphatase, SiRe_1009, was able to dephosphorylate various autophosphorylated ePKs, confirming that these proteins are Ser/Thr kinases. Two ePKs, SiRe_2030 and SiRe_2056, homologs of typical eukaryotic PKs involved in peptide synthesis in response to various cellular stresses, exhibit highly efficient phosphorylation activities on both themselves and other ePKs. Overexpression of the protein kinases in vivo revealed that elevated level of either SiRe_1531 or SiRe_2056 inhibited the cell growth of S. islandicus cells. Finally, a phosphorylation network of the protein kinases was proposed and their putative physiological roles were discussed.

  15. Identification of sites phosphorylated by the vaccinia virus B1R kinase in viral protein H5R

    Directory of Open Access Journals (Sweden)

    Hardie Grahame

    2000-09-01

    Full Text Available Abstract Background Vaccinia virus gene B1R encodes a serine/threonine protein kinase. In vitro this protein kinase phosphorylates ribosomal proteins Sa and S2 and vaccinia virus protein H5R, proteins that become phosphorylated during infection. Nothing is known about the sites phosphorylated on these proteins or the general substrate specificity of the kinase. The work described is the first to address these questions. Results Vaccinia virus protein H5R was phosphorylated by the B1R protein kinase in vitro, digested with V8 protease, and phosphopeptides separated by HPLC. The N-terminal sequence of one radioactively labelled phosphopeptide was determined and found to correspond to residues 81-87 of the protein, with Thr-84 and Thr-85 being phosphorylated. A synthetic peptide based on this region of the protein was shown to be a substrate for the B1R protein kinase, and the extent of phosphorylation was substantially decreased if either Thr residue was replaced by an Ala. Conclusions We have identified the first phosphorylation site for the vaccinia virus B1R protein kinase. This gives important information about the substrate-specificity of the enzyme, which differs from that of other known protein kinases. It remains to be seen whether the same site is phosphorylated in vivo.

  16. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching

    Directory of Open Access Journals (Sweden)

    Weatherford Wendy

    2005-05-01

    Full Text Available Abstract Background High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Results Using a modified QTL Lightspeed™ assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP, Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1. Phosphorylation of the proteins was detected by Protein Kinase Cα (PKCα and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4. Enzyme inhibition yielded IC50 values that were comparable to those obtained using

  17. NCBI nr-aa BLAST: CBRC-DDIS-02-0170 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DDIS-02-0170 pdb|2JC6|A Chain A, Crystal Structure Of Human Calmodulin-Depende...nt Protein Kinase 1d pdb|2JC6|C Chain C, Crystal Structure Of Human Calmodulin-Dependent Protein Kinase 1d 2JC6 9e-44 41% ...

  18. Fluorescent photoaffinity probes for mitotic protein kinase Aurora A.

    Science.gov (United States)

    Lavogina, Darja; Kisand, Katariina; Raidaru, Gerda; Uri, Asko

    2015-08-15

    We combined the advantages of the selective inhibitor VX689, the bisubstrate-analogue conjugate approach, and photoreactive amino acids to develop 8 photoaffinity probes for Aurora A. The most efficient compounds possessed one-digit nanomolar KD values in the equilibrium binding assay, inhibited Aurora A at elevated concentrations of ATP in the phosphorylation assay in the presence of TPX2, and formed covalent complexes with the recombinant kinase or Aurora A in HeLa cells upon UV-irradiation. The recognition of the correct target by the probes during formation of the covalent complex in the biochemical assay and in situ was demonstrated by competition experiments using the non-labelled inhibitors VX689 and MLN8237. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2009-06-01

    Full Text Available Raf Kinase Inhibitory Protein (RKIP, also PEBP1, a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function.We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/- mouse embryonic fibroblasts (MEFs to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/- MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle.These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  20. Cloning and Sequencing of Protein Kinase cDNA from Harbor Seal (Phoca vitulina Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2004-01-01

    Full Text Available Protein kinases (PKs play critical roles in signal transduction and activation of lymphocytes. The identification of PK genes provides a tool for understanding mechanisms of immunotoxic xenobiotics. As part of a larger study investigating persistent organic pollutants in the harbor seal and their possible immunomodulatory actions, we sequenced harbor seal cDNA fragments encoding PKs. The procedure, using degenerate primers based on conserved motifs of human protein tyrosine kinases (PTKs, successfully amplified nine phocid PK gene fragments with high homology to human and rodent orthologs. We identified eight PTKs and one dual (serine/threonine and tyrosine kinase. Among these were several PKs important in early signaling events through the B- and T-cell receptors (FYN, LYN, ITK and SYK and a MAP kinase involved in downstream signal transduction. V-FGR, RET and DDR2 were also expressed. Sequential activation of protein kinases ultimately induces gene transcription leading to the proliferation and differentiation of lymphocytes critical to adaptive immunity. PKs are potential targets of bioactive xenobiotics, including persistent organic pollutants of the marine environment; characterization of these molecules in the harbor seal provides a foundation for further research illuminating mechanisms of action of contaminants speculated to contribute to large-scale die-offs of marine mammals via immunosuppression.

  1. The sensitivity of memory consolidation and reconsolidation to inhibitors of protein synthesis and kinases: Computational analysis

    Science.gov (United States)

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2010-01-01

    Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and activation, we investigated the ways in which the dynamics of molecular positive-feedback loops may contribute to the time window for memory stabilization and memory maintenance. In the models, training triggered a transition in the amount of kinase between two stable states, which represented consolidation. Simulating protein synthesis inhibition (PSI) from before to 40 min after training blocked or delayed consolidation. Beyond 40 min, substantial (>95%) PSI had little effect despite the fact that the elevated amount of kinase was maintained by increased protein synthesis. However, PSI made established memories labile to perturbations. Simulations of kinase inhibition produced similar results. In addition, similar properties were found in several other models that also included positive-feedback loops. Even though our models are based on simplifications of the actual mechanisms of molecular consolidation, they illustrate the practical difficulty of empirically measuring “time windows” for consolidation. This is particularly true when consolidation and reconsolidation of memory depends, in part, on the dynamics of molecular positive-feedback loops. PMID:20736337

  2. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    Energy Technology Data Exchange (ETDEWEB)

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.

    1985-10-05

    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and)2numberSPO4/mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the TUPO4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro.

  3. Response Gene to Complement 32 Protein Promotes Macrophage Phagocytosis via Activation of Protein Kinase C Pathway*

    Science.gov (United States)

    Tang, Rui; Zhang, Gui; Chen, Shi-You

    2014-01-01

    Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis. PMID:24973210

  4. Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway.

    Science.gov (United States)

    Tang, Rui; Zhang, Gui; Chen, Shi-You

    2014-08-15

    Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2

    KAUST Repository

    Kovács, Krisztián A.

    2015-11-01

    CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis. © 2015 Elsevier Inc.

  6. Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose.

    Science.gov (United States)

    Hammerschmidt, Andreas; Chatterji, Bijon; Zeiser, Johannes; Schröder, Anke; Genieser, Hans-Gottfried; Pich, Andreas; Kaever, Volkhard; Schwede, Frank; Wolter, Sabine; Seifert, Roland

    2012-01-01

    The bacterial adenylyl cyclase toxins CyaA from Bordetella pertussis and edema factor from Bacillus anthracis as well as soluble guanylyl cyclase α(1)β(1) synthesize the cyclic pyrimidine nucleotide cCMP. These data raise the question to which effector proteins cCMP binds. Recently, we reported that cCMP activates the regulatory subunits RIα and RIIα of cAMP-dependent protein kinase. In this study, we used two cCMP agarose matrices as novel tools in combination with immunoblotting and mass spectrometry to identify cCMP-binding proteins. In agreement with our functional data, RIα and RIIα were identified as cCMP-binding proteins. These data corroborate the notion that cAMP-dependent protein kinase may serve as a cCMP target.

  7. Serotonin stimulates protein tyrosyl phosphorylation and vascular contraction via tyrosine kinase.

    Science.gov (United States)

    Watts, S W; Yeum, C H; Campbell, G; Webb, R C

    1996-01-01

    Serotonin (5-HT, 5-hydroxytryptamine) is a mitogen in vascular smooth muscle and vascular reactivity to 5-HT is significantly enhanced in hypertension and atherosclerosis. We have tested the hypothesis that tyrosine kinases, enzymes important for mitogenesis, may play a role in 5-HT-induced vascular smooth muscle contractility. Helical strips of rat carotid artery and aorta denuded of endothelium were mounted in tissue baths for measurement of contractile force. The tyrosine kinase inhibitor genistein (5 x 10(-6) M) decreased the potency of 5-HT approximately 4-fold and reduced maximal contraction to 5-HT in carotid arterial strips denuded of endothelium (58% control). Genistein's inactive congener daidzein (5 x 10(-6) M) did not reduce maximal contraction to 5-HT in carotid arteries but did shift the 5-HT concentration response curve 3-fold to the right. Tyrphostin 23 (5 x 10(-5) M), another tyrosine kinase inhibitor, decreased the potency of 5-HT 4-fold and reduced the maximal contraction to 5-HT in the carotid artery (10% control). Contractions induced by phorbol-12,13-dibutyrate (10(-9) to 10(-5) M) were not reduced or shifted by either tyrosine kinase inhibitor, indicating that phorbolester-sensitive protein kinase C isoforms were not affected. KCl-induced contraction was shifted 2-fold and the maximum significantly inhibited by tyrphostin 23 (38.6% control) but not genistein or daidzein, indicating that tyrphostin 23 but not genistein may inhibit voltage-gated calcium channels to reduce contractility. Western blot analysis using antiphosphotyrosine antibody confirmed that 5-HT produced a time- and concentration-dependent increase in the phosphotyrosine immunoreactivity of a 42-kD protein in cultured aortic smooth muscle cells. Lysate immunoprecipitation with an antimitogen-activated-protein (MAP)-kinase antibody indicated that the 42-kD protein was most likely a MAP kinase. 5-HT (10(-5) M) stimulated contraction and increased antiphosphotyrosine

  8. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  9. EST Table: FS924605 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available dulin-dependent serine protein kinase membrane-associated guanylate kinase (cask) [Aedes aegypti] gb|EAT3813...3.1| calcium/calmodulin-dependent serine protein kinase membrane-associated guanylate kinase (cask) [Aedes a...f|XP_972920.2| PREDICTED: similar to calcium/calmodulin-dependent serine protein kinase membrane-associated guanylate kinase (cask) [Tribolium castaneum] BP116132 fwgP ...

  10. Investigation of the Flexibility of Protein Kinases Implicated in the Pathology of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Michael P. Mazanetz

    2014-06-01

    Full Text Available The pathological characteristics of Alzheimer’s Disease (AD have been linked to the activity of three particular kinases—Glycogen Synthase Kinase 3β (GSK3β, Cyclin-Dependent Kinase 5 (CDK5 and Extracellular-signal Regulated Kinase 2 (ERK2. As a consequence, the design of selective, potent and drug-like inhibitors of these kinases is of particular interest. Structure-based design methods are well-established in the development of kinase inhibitors. However, progress in this field is limited by the difficulty in obtaining X-ray crystal structures suitable for drug design and by the inability of this method to resolve highly flexible regions of the protein that are crucial for ligand binding. To address this issue, we have undertaken a study of human protein kinases CDK5/p25, CDK5, ERK2 and GSK3β using both conventional molecular dynamics (MD and the new Active Site Pressurisation (ASP methodology, to look for kinase-specific patterns of flexibility that could be leveraged for the design of selective inhibitors. ASP was used to examine the intrinsic flexibility of the ATP-binding pocket for CDK5/p25, CDK5 and GSK3β where it is shown to be capable of inducing significant conformational changes when compared with X-ray crystal structures. The results from these experiments were used to quantify the dynamics of each protein, which supported the observations made from the conventional MD simulations. Additional information was also derived from the ASP simulations, including the shape of the ATP-binding site and the rigidity of the ATP-binding pocket. These observations may be exploited in the design of selective inhibitors of GSK3β, CDK5 and ERK2.

  11. RO0504985 is an inhibitor of CMGC kinase proteins and has anti-human cytomegalovirus activity.

    Science.gov (United States)

    Strang, Blair L

    2017-08-01

    Public-private partnerships allow many previously unavailable compounds to be screened for antiviral activity. Here a screening method was used to identify an oxindole compound, RO0504985, from a Roche kinase inhibitor library that inhibited human cytomegalovirus (HCMV) protein production. RO0504985 was previously described as an inhibitor of cyclin-dependent kinase 2 (CDK2). However, using kinase selectivity assays it was found that RO0504985 was an inhibitor of several CMGC group kinase proteins, including CDK2. Using virus yield reduction assays it was observed that RO0504985 inhibited replication of different HCMV strains at low micromolar concentrations. Western blotting was used to investigate how RO0504985 inhibited HCMV replication. Treatment of HCMV infected cells with RO0504985 inhibited production of the immediate early viral IE2 proteins and the late viral protein pp28. Thus, RO0504985 inhibited HCMV replication by preventing production of specific HCMV proteins necessary for virus replication. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Involvement of the mitogen-activated protein (MAP kinase signalling pathway in host cell invasion by Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Robert-Gangneux F.

    2000-06-01

    Full Text Available Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with AMP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, R031-8220 and PD098059, reduced tachyzoite infectivity by 38 ± 4.5 %, 85.5 ± 9 % and 56 ± 10 %, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 ± 37 % and 258 ± 14 %, respectively. These results suggest that signalling pathways involving PKC and AAAP kinases play a role in host cell invasion by Toxoplasma.

  13. Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways.

    Directory of Open Access Journals (Sweden)

    Waka Omata

    Full Text Available The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.

  14. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identifie...... for new therapeutic drugs against leishmaniasis....

  15. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States); Busenlehner, Laura [Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487 (United States); Marcus, Stevan, E-mail: smarcus@bama.ua.edu [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2010-08-20

    Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  16. Molecular cloning, characterization and functional analysis of a putative mitogen-activated protein kinase kinase kinase 4 (MEKK4) from blood clam Tegillarca granosa.

    Science.gov (United States)

    Liu, Guosheng; Chen, Mingliang; Yu, Chen; Wang, Wei; Yang, Lirong; Li, Zengpeng; Wang, Weiyi; Chen, Jianming

    2017-07-01

    The mitogen-activated protein kinase (MAPK) cascades stand for one of the most important signaling mechanisms in response to environmental stimuli. In the present study, we cloned and identified for the first time the full-length cDNA of MAPK kinase kinase 4 (TgMEKK4) from Blood clam Tegillarca granosa using rapid amplification of cDNA ends method. The full-length cDNA of TgMEKK4 was of 1605 bp in length, encoding a polypeptide of 364 amino acids with a predicted molecular mass of 41.22 kDa and theoretical isoelectric point of 6.29. The conserved MEKK4-domain was identified in TgMEKK4 by SMART program analysis. Homology analysis of the deduced amino acid sequence of TgMEKK4 with other known sequences revealed that TgMEKK4 shared 58%-80% identity to MEKK4s from other species. TgMEKK4 mRNA transcripts could be detected in all tissues examined with the highest expression level in the gill by qRT-PCR. The mRNA expression of TgMEKK4 was up-regulated significantly in hemocytes after Vibrio parahaemolyticus, Vibrio alginolyticus and Lipopolysaccharide (LPS) challenges. Overexpression of TgMEKK4 in HEK 293T cells resulted in the activation of JNK and ERK, but not p38. Consistently, In vivo study indicated that LPS stimulation enhanced JNK, ERK and p38 phosphorylation in blood clams. These results suggest that TgMEKK4 is a powerful factor in the regulation of genes that may be involved in innate immune response of blood clam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Altawashi, Azza

    2012-02-28

    Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Involvement of the mitogen-activated protein kinase kinase 2 in the induction of cell dissociation in pancreatic cancer.

    Science.gov (United States)

    Tan, Xiaodong; Egami, Hiroshi; Kamohara, Hidenobu; Ishikawa, Shinji; Kurizaki, Takashi; Yoshida, Naoya; Tamori, Yasuhiko; Takai, Eiji; Hirota, Masahiko; Ogawa, Michio

    2004-01-01

    In our previous investigation, mitogen-activated protein kinase kinase 2 (MEK2) was detected as a factor which was correlated to the potential of invasion-metastasis. In this study, the immunocytochemical, immunohistochemical and mRNA expressions of MEK2 were examined in pancreatic cancer cell lines and tissue samples, respectively. Constitutive expressions of MEK2 and phosphorylated MEK (p-MEK) were observed in PC-1.0 and ASPC-1 cells, which exhibited a growth pattern of single cells, whereas the relevant expressions were quite faint in PC-1 cells and CAPAN-2 cells, which exhibited a growth pattern of island-like clonies. Simultaneous inductions of MEK2 expressions and cell dissociation were observed after the treatment with a conditioned medium (CM) of PC-1.0 cells. The expression of MEK2 and p-MEK were reduced and the cell aggregation was found in PC-1.0 and ASPC-1 cells after U0126 (a MEK inhibitor) treatment. In vivo, both the MEK2 and p-MEK overexpressed in human pancreatic cancer tissues and p-MEK was found to be more strongly expressed in the invasive front than that in the center of tumor (Pcell dissociation. MEK2 activation is probably involved in the first step of the cascade in the invasion-metastasis of pancreatic cancer.

  19. Listeriolysin O activates mitogen-activated protein kinase in eucaryotic cells.

    Science.gov (United States)

    Tang, P; Rosenshine, I; Cossart, P; Finlay, B B

    1996-06-01

    Infection with Listeria monocytogenes induces the activation of mitogen-activated protein (MAP) kinase in several tissue culture cell lines (P.Tang, I. Rosenshine, and B. B. Finlay, Mol. Biol. Cell 5:455-464, 1994). After various mutants were examined, the bacterial factor responsible for MAP kinase activation was identified as listeriolysin O (LLO). Growth supernatant containing LLO or purified LLO alone can induce MAP kinase tyrosine phosphorylation in HeLa cells. Single-amino-acid mutations in LLO that do not affect its membrane binding capacity but reduce its cytolytic activity also reduced its ability to induce MAP kinase activity in HeLa cells. Streptolysin O, another sulfhydryl-activated hemolysin, and the detergent saponin are also able to activate MAP kinase in target cells. Thus, the increased MAP kinase activity observed in L. monocytogenes-infected cells is most likely a result of the permeabilization of the host cell membrane by LLO and may not be linked with invasion.

  20. A Chemical-Genetic Approach to Generate Selective Covalent Inhibitors of Protein Kinases.

    Science.gov (United States)

    Kung, Alvin; Schimpl, Marianne; Ekanayake, Arunika; Chen, Ying-Chu; Overman, Ross; Zhang, Chao

    2017-06-16

    Although a previously developed bump-hole approach has proven powerful in generating specific inhibitors for mapping functions of protein kinases, its application is limited by the intolerance of the large-to-small mutation by certain kinases and the inability to control two kinases separately in the same cells. Herein, we describe the development of an alternative chemical-genetic approach to overcome these limitations. Our approach features the use of an engineered cysteine residue at a particular position as a reactive feature to sensitize a kinase of interest to selective covalent blockade by electrophilic inhibitors and is thus termed the Ele-Cys approach. We successfully applied the Ele-Cys approach to identify selective covalent inhibitors of a receptor tyrosine kinase EphB1 and solved cocrystal structures to determine the mode of covalent binding. Importantly, the Ele-Cys and bump-hole approaches afforded orthogonal inhibition of two distinct kinases in the cell, opening the door to their combined use in the study of multikinase signaling pathways.

  1. Inhibition of PKA anchoring to A-kinase anchoring proteins impairs consolidation and facilitates extinction of contextual fear memories

    NARCIS (Netherlands)

    Nijholt, Ingrid M.; Ostroveanu, Anghelus; Scheper, Wouter A.; Penke, Botond; Luiten, Paul G. M.; Van der Zee, Eddy A.; Eisel, Ulrich L. M.

    Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial

  2. Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    DEFF Research Database (Denmark)

    Gesslein, Bodil; Håkansson, Gisela; Carpio, Ronald

    2010-01-01

    The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion.......The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion....

  3. A-kinase anchoring protein 150 in the mouse brain is concentrated in areas involved in learning and memory

    NARCIS (Netherlands)

    Ostroveanu, Anghelus; Van der Zee, Eddy A.; Dolga, Amalia M.; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Nijholt, Ingrid M.

    2007-01-01

    A-kinase anchoring proteins (AKAPs) form large macromolecular signaling complexes that specifically target cAMP-dependent protein kinase (PKA) to unique subcellular compartments and thus, provide high specificity to PKA signaling. For example, the AKAP79/150 family tethers PKA, PKC and PP2B to

  4. IL-1R-associated kinase-1 mediates protein kinase Cδ-induced IL-1β production in monocytes.

    Science.gov (United States)

    Tiwari, Rajiv Lochan; Singh, Vishal; Singh, Ankita; Barthwal, Manoj Kumar

    2011-09-01

    The role of IL-1R-associated kinase (IRAK)1 and its interaction with protein kinase C (PKC)δ in monocytes to regulate IL-1β production has not been reported so far. The present study thus investigates such mechanisms in the THP1 cell line and human monocytes. PMA treatment to THP1 cells induced CD11b, TLR2, TLR4, CD36, IRAK1, IRAK3, and IRAK4 expression, IRAK1 kinase activity, PKCδ and JNK phosphorylation, AP-1 and NF-κB activation, and secretory IL-1β production. Moreover, PMA-induced IL-1β production was significantly reduced in the presence of TLR2, TLR4, and CD11b Abs. Rottlerin, a PKCδ-specific inhibitor, significantly reduced PMA-induced IL-1β production as well as CD11b, TLR2 expression, and IRAK1-JNK activation. In PKCδ wild-type overexpressing THP1 cells, IRAK1 kinase activity and IL-1β production were significantly augmented, whereas recombinant inactive PKCδ and PKCδ small interfering RNA significantly inhibited basal and PMA-induced IRAK1 activation and IL-1β production. Endogenous PKCδ-IRAK1 interaction was observed in quiescent cells, and this interaction was regulated by PMA. IRAK1/4 inhibitors, their small interfering RNAs, and JNK inhibitor also attenuated PMA-induced IL-1β production. NF-κB activation inhibitor and SN50 peptide inhibitor, however, failed to affect PMA-induced IL-1β production. A similar role of IRAK1 in IL-1β production and its regulation by PKCδ was evident in the primary human monocytes, thus signifying the importance of our finding. To our knowledge, the results obtained demonstrate for the first time that IRAK1 and PKCδ functionally interact to regulate IL-1β production in monocytic cells. A novel mechanism of IL-1β production that involves TLR2, CD11b, and the PKCδ/IRAK1/JNK/AP-1 axis is thus being proposed.

  5. Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming

    NARCIS (Netherlands)

    Magnoni, L.J.; Palstra, A.P.; Planas, J.V.

    2014-01-01

    AMP-activated protein kinase (AMPK) is well known to be induced by exercise and to mediate important metabolic changes in the skeletal muscle of mammals. Despite the physiological importance of exercise as a modulator of energy use by locomotory muscle, the regulation of this enzyme by swimming has

  6. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  7. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically...

  8. Protein kinase C activity is a protective modifier of Purkinje neuron degeneration in cerebellar ataxia

    NARCIS (Netherlands)

    Chopra, Ravi; Wasserman, Aaron H; Pulst, Stefan M; De Zeeuw, Chris I; Shakkottai, Vikram G

    2018-01-01

    Among the many types of neurons expressing protein kinase C (PKC) enzymes, cerebellar Purkinje neurons are particularly reliant on appropriate PKC activity for maintaining homeostasis. The importance of PKC enzymes in Purkinje neuron health is apparent as mutations in PRKCG (encoding PKCγ) cause

  9. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. II. Protein kinases

    NARCIS (Netherlands)

    Fleichman, Marina; Schneider, Tim; Fetscher, Charlotte; Michel, Martin C.

    2004-01-01

    We have investigated the role of several protein kinases in carbachol-stimulated, M-3 muscarinic receptor-mediated contraction of rat urinary bladder. Concentration-response curves for the muscarinic receptor agonist carbachol were generated in the presence of multiple concentrations of inhibitors

  10. Nociceptive-induced Myocardial Remote Conditioning Is Mediated By Neuronal Gamma Protein Kinase C

    OpenAIRE

    Gross, Eric R.; Hsu, Anna K.; Urban, Travis J.; Mochly-Rosen, Daria; Gross, Garrett J.

    2013-01-01

    Deciphering the remote conditioning molecular mechanism may provide targets to develop therapeutics that can broaden the clinical application. To further investigate this, we tested whether two protein kinase C isozymes, the ubiquitously expressed epsilon PKC (εPKC) and the neuronal specific gamma PKC (γPKC), mediate nociceptive-induced remote myocardial conditioning.

  11. Modulation of protein kinase C by taurolithocholic acid in isolated rat hepatocytes

    NARCIS (Netherlands)

    Beuers, U.; Probst, I.; Soroka, C.; Boyer, J. L.; Kullak-Ublick, G. A.; Paumgartner, G.

    1999-01-01

    The protein kinase C (PKC) family of isoenzymes plays a key role in the regulation of hepatocellular secretion. The hydrophobic and cholestatic bile acid, taurolithocholic acid (TLCA), acts as a potent Ca++ agonist in isolated hepatocytes. However, its effect on PKC isoforms has not been elucidated.

  12. COLOCALIZATION OF MUSCARINIC ACETYLCHOLINE-RECEPTORS AND PROTEIN KINASE-C-GAMMA IN RAT PARIETAL CORTEX

    NARCIS (Netherlands)

    VANDERZEE, EA; STROSBERG, AD; BOHUS, B; LUITEN, PGM

    The present investigation analyzes the cellular distribution of muscarinic acetylcholine receptors (mAChRs) and the gamma isoform of protein kinase C (PKC) in the rat parietal cortex employing the monoclonal antibodies M35 and 36G9, respectively. Muscarinic cholinoceptive neurons were most present

  13. Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein

    NARCIS (Netherlands)

    Shah, K.; Gadella, T.W.J.; Erp, van H.; Hecht, V.; Vries, de S.C.

    2001-01-01

    The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene is expressed in developing ovules and early embryos. AtSERK1 is also transiently expressed during somatic embryogenesis. The predicted AtSERK1 protein contains an extracellular domain with a leucine zipper motif followed

  14. Subcellular localization and oligomerization of the Aradopsis thaliana somatic embryogenesis receptor kinase 1 protein

    NARCIS (Netherlands)

    Shah, K.; Gadella, Th.W.J.; van Erp, H.; Hecht, V.; de Vries, S.C.

    2001-01-01

    The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene is expressed in developing ovules and early embryos. AtSERK1 is also transiently expressed during somatic embryogenesis. The predicted AtSERK1 protein contains an extracellular domain with a leucine zipper motif followed

  15. Pim serine/threonine kinases regulate the stability of Socs-1 protein

    NARCIS (Netherlands)

    Chen, XP; Losman, JA; Cowan, S; Donahue, E; Fay, S; Vuong, BQ; Nawijn, MC; Capece, D; Cohan, VL; Rothman, P

    2002-01-01

    Studies of SOCS-1-deficient mice have implicated Socs-1 in the suppression of JAK-STAT (Janus tyrosine kinase-signal transducers and activators of transcription) signaling and T cell development. It has been suggested that the levels of Socs-1 protein may be regulated through the proteasome pathway.

  16. Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases.

    Science.gov (United States)

    Rapley, Joseph; Baxter, Joanne E; Blot, Joelle; Wattam, Samantha L; Casenghi, Martina; Meraldi, Patrick; Nigg, Erich A; Fry, Andrew M

    2005-02-01

    Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.

  17. Regulation of taurine homeostasis by protein kinase CK2 in mouse fibroblasts

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Guerra, Barbara; Jacobsen, Jack Hummeland

    2011-01-01

    Increased expression of the ubiquitous serine/threonine protein kinase CK2 has been associated with increased proliferative capacity and increased resistance towards apoptosis. Taurine is the primary organic osmolyte involved in cell volume control in mammalian cells, and shift in cell volume is ...

  18. A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases

    Directory of Open Access Journals (Sweden)

    Peineau Stéphane

    2009-07-01

    Full Text Available Abstract Background The signalling mechanisms involved in the induction of N-methyl-D-aspartate (NMDA receptor-dependent long-term depression (LTD in the hippocampus are poorly understood. Numerous studies have presented evidence both for and against a variety of second messengers systems being involved in LTD induction. Here we provide the first systematic investigation of the involvement of serine/threonine (ser/thr protein kinases in NMDAR-LTD, using whole-cell recordings from CA1 pyramidal neurons. Results Using a panel of 23 inhibitors individually loaded into the recorded neurons, we can discount the involvement of at least 57 kinases, including PKA, PKC, CaMKII, p38 MAPK and DYRK1A. However, we have been able to confirm a role for the ser/thr protein kinase, glycogen synthase kinase 3 (GSK-3. Conclusion The present study is the first to investigate the role of 58 ser/thr protein kinases in LTD in the same study. Of these 58 protein kinases, we have found evidence for the involvement of only one, GSK-3, in LTD.

  19. The Use of FRET/FLIM to Study Proteins Interacting with Plant Receptor Kinases.

    Science.gov (United States)

    Weidtkamp-Peters, Stefanie; Stahl, Yvonne

    2017-01-01

    The investigation of protein interactions in living plant tissue has become of increasing importance in recent years. A high spatial and temporal resolution for the observation of in vivo protein interaction is needed, e.g., in order to follow changes of plant receptor kinase interactions and complex formation over time. In vivo fluorescence or Förster resonance energy transfer (FRET) measurements allow for detailed analyses of interacting proteins in their natural environment at a subcellular level. Especially FRET-FLIM (fluorescence lifetime imaging microscopy) measurements provide an extremely powerful and reliable tool meeting the demands for investigating in vivo protein interaction quantitatively and with high precision. Here, we will describe in detail how to practically perform in vivo FRET measurements of receptor kinases in plants and discuss potential pitfalls and points of consideration.

  20. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    Science.gov (United States)

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  1. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole.

    OpenAIRE

    Stack, J H; Herman, P. K.; Schu, P V; Emr, S D

    1993-01-01

    The Vps15 protein kinase and the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) are required for the sorting of soluble hydrolases to the yeast vacuole. Over-production of Vps34p suppresses the growth and vacuolar protein sorting defects associated with vps15 kinase domain mutants, suggesting that Vps15p and Vps34p functionally interact. Subcellular fractionation and sucrose density gradients indicate that Vps15p is responsible for the association of Vps34p with an intracellular membrane f...

  2. Pharmacological Analyses of Protein Kinases Regulating Egg Maturation in Marine Nemertean Worms: A Review and Comparison with Mammalian Eggs

    Directory of Open Access Journals (Sweden)

    Alicia Marquardt

    2010-08-01

    Full Text Available For development to proceed normally, animal eggs must undergo a maturation process that ultimately depends on phosphorylations of key regulatory proteins. To analyze the kinases that mediate these phosphorylations, eggs of marine nemertean worms have been treated with pharmacological modulators of intracellular signaling pathways and subsequently probed with immunoblots employing phospho-specific antibodies. This article both reviews such analyses and compares them with those conducted on mammals, while focusing on how egg maturation in nemerteans is affected by signaling pathways involving cAMP, mitogen-activated protein kinases, Src-family kinases, protein kinase C isotypes, AMP-activated kinase, and the Cdc2 kinase of maturation-promoting factor.

  3. Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells.

    Science.gov (United States)

    Hsu, Hsien-Yeh; Hua, Kuo-Feng; Wu, Wei-Chi; Hsu, Jason; Weng, Shih-Ting; Lin, Tsai-Leng; Liu, Chun-Yi; Hseu, Ruey-Shyang; Huang, Ching-Tsan

    2008-04-01

    Ganoderma lucidum, a medicinal fungus is thought to possess and enhance a variety of human immune functions. An immuno-modulatory protein, Ling Zhi-8 (LZ-8) isolated from G. lucidum exhibited potent mitogenic effects upon human peripheral blood lymphocytes (PBL). However, LZ-8-mediated signal transduction in the regulation of interleukin-2 (IL-2) gene expression within human T cells is largely unknown. Here we cloned the LZ-8 gene of G. lucidum, and expressed the recombinant LZ-8 protein (rLZ-8) by means of a yeast Pichia pastoris protein expression system. We found that rLZ-8 induces IL-2 gene expression via the Src-family protein tyrosine kinase (PTK), via reactive oxygen species (ROS), and differential protein kinase-dependent pathways within human primary T cells and cultured Jurkat T cells. In essence, we have established the nature of the rLZ-8-mediated signal-transduction pathways, such as PTK/protein kinase C (PKC)/ROS, PTK/PLC/PKCalpha/ERK1/2, and PTK/PLC/PKCalpha/p38 pathways in the regulation of IL-2 gene expression within human T cells. Our current results of analyzing rLZ-8-mediated signal transduction in T cells might provide a potential application for rLZ-8 as a pharmacological immune-modulating agent. (c) 2008 Wiley-Liss, Inc.

  4. Mechanisms underlying the protein-kinase mediated regulation of the HERG potassium channel synthesis

    Science.gov (United States)

    Krishnan, Yamini; Li, Yan; Zheng, Renjian; Kanda, Vikram; McDonald, Thomas V.

    2012-01-01

    The HERG (human ether-a-go-go related gene) potassium channel aids in repolarization of the cardiomyocyte membrane at the end of each action potential. We have previously shown that sustained protein kinase A or C (PKA and PKC) activity specifically enhances channel synthesis over the course of hours to days in heterologous expression and cardiac myocytes. The kinase-mediated augmentation of the channel is post-transcriptional and occurs near or at the endoplasmic reticulum. Here we report our further investigations into the mechanisms of kinase-mediated augmentation of HERG channel protein. We show that HERG channel phosphorylation alone is not sufficient for the PKA-dependent increase to occur. In vitro translation studies indicate that an additional factor is required for the process. Pharmacologic inhibitors suggest that the channel augmentation is not due to kinase-mediated alteration in proteasome or lysosome activity. PKA activation had no effect on stability of HERG mRNA and polyribosomal profiling showed that kinase activity did not elevate translation from low to high rates. Transcriptional inhibition results suggest that the additional cellular factor is a PKA-regulated protein. Together, these findings suggest that PKA-mediated augmentation of HERG abundance is more complex than previously appreciated involving enhancement of already active translation rates, phosphorylation of the channel protein and at least one other cAMP/PKA-responsive protein. Further exploration of molecular components of this regulatory pathway will be necessary to determine exact mechanism and the biomedical impact of this process in vivo. PMID:22613764

  5. Mitogen-activated protein kinase-regulated AZI1 – an attractive candidate for genetic engineering

    Science.gov (United States)

    Pitzschke, Andrea; Datta, Sneha; Persak, Helene

    2014-01-01

    Mitogen-activated protein kinases and their targets have been in the limelight of plant stress research. Signaling pathways mediating the responses to multiple stresses deserve particular attention. In a recent study, we reported AZI1, a member of the lipid transfer protein family, to play a role in MPK3-mediated responses to salt stress in Arabidopsis thaliana. MPK3 controls AZI1 at the transcriptional and posttranslational level. The AZI1 protein has several properties that make it very attractive for genetic engineering. A model of multi-level control of AZI1 by MPK3 is proposed, and strategies toward optimizing AZI1 protein properties are briefly discussed. PMID:24518841

  6. Mitogen-activated protein kinase-regulated AZI1 - an attractive candidate for genetic engineering.

    Science.gov (United States)

    Pitzschke, Andrea; Datta, Sneha; Persak, Helene

    2014-01-01

    Mitogen-activated protein kinases and their targets have been in the limelight of plant stress research. Signaling pathways mediating the responses to multiple stresses deserve particular attention. In a recent study, we reported AZI1, a member of the lipid transfer protein family, to play a role in MPK3-mediated responses to salt stress in Arabidopsis thaliana. MPK3 controls AZI1 at the transcriptional and posttranslational level. The AZI1 protein has several properties that make it very attractive for genetic engineering. A model of multi-level control of AZI1 by MPK3 is proposed, and strategies toward optimizing AZI1 protein properties are briefly discussed.

  7. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    The results from immunohistochemistry show increased pattern of Sox2 expression as tumour progresses. Similarly, ALDH1, a protein that positively regulates stem cells shows mild expression in low grade cervical tumour, but positive signals are more amplified in an aggressive stage of tumour condition when compared ...

  8. Side-effects of protein kinase inhibitors on ion channels

    Indian Academy of Sciences (India)

    2013-11-06

    Nov 6, 2013 ... translocation of PKC to membrane vesicles and prevents its protein phosphorylation activity (Wolf and ..... rottlerin was reversed by both the depletion of extracellular. Ca2+ using the calcium chelator EGTA ... extracellular site in a PKA-independent manner (Choi et al. 2001). In rabbit coronary arterial SMCs, ...

  9. Characterization and enzymatic properties of protein kinase ACR4 from Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Yu; Liu, Xuehe; Xu, Ziyan; Yang, Hui; Li, Jixi

    2017-07-22

    Serine/threonine-protein kinase-like protein ARABIDOPSIS CRINKLY4 (ACR4), a transmembrane protein of Arabidopsis thaliana, plays important roles in cell division and differentiation. Although accumulating studies shed light on the function of ACR4, the structure and catalytic mechanism of ACR4 remain to be elucidated. Here, we report the purification and enzymatic properties of the intracellular kinase domain (residues 464-799) of ACR4 (ACR4IKD). Through Ni-affinity chromatography and gel filter chromatography methods, we successfully obtain high-purity ACR4IKD protein from Escherichia coli. Dynamic light scattering and gel-filtration methods reveal that ACR4IKD distributes with high homogeneity and exists as a monomer in solution. In addition, the ACR4IKD protein has typical kinase activity with myelin basic protein (MBP) as the substrate. Our study may lay the foundation for structure determination of ACR4IKD and further functional research, for example, screening significant substrates of ACR4 in Arabidopsis thaliana. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension

    NARCIS (Netherlands)

    Jarajapu, YPR; Knot, H.J.

    2005-01-01

    Arterial smooth muscle constriction in response to pressure, i.e., myogenic tone, may involve calcium-dependent and calcium-sensitization mechanisms. Calcium sensitization in vascular smooth muscle is regulated by kinases such as PKC and Rho kinase, and activity of these kinases is known to be

  11. Chapter Three - Ubiquitination and Protein Turnover of G-Protein-Coupled Receptor Kinases in GPCR Signaling and Cellular Regulation.

    Science.gov (United States)

    Penela, P

    2016-01-01

    G-protein-coupled receptors (GPCRs) are responsible for regulating a wide variety of physiological processes, and distinct mechanisms for GPCR inactivation exist to guarantee correct receptor functionality. One of the widely used mechanisms is receptor phosphorylation by specific G-protein-coupled receptor kinases (GRKs), leading to uncoupling from G proteins (desensitization) and receptor internalization. GRKs and β-arrestins also participate in the assembly of receptor-associated multimolecular complexes, thus initiating alternative G-protein-independent signaling events. In addition, the abundant GRK2 kinase has diverse "effector" functions in cellular migration, proliferation, and metabolism homeostasis by means of the phosphorylation or interaction with non-GPCR partners. Altered expression of GRKs (particularly of GRK2 and GRK5) occurs during pathological conditions characterized by impaired GPCR signaling including inflammatory syndromes, cardiovascular disease, and tumor contexts. It is increasingly appreciated that different pathways governing GRK protein stability play a role in the modulation of kinase levels in normal and pathological conditions. Thus, enhanced GRK2 degradation by the proteasome pathway occurs upon GPCR stimulation, what allows cellular adaptation to chronic stimulation in a physiological setting. β-arrestins participate in this process by facilitating GRK2 phosphorylation by different kinases and by recruiting diverse E3 ubiquitin ligase to the receptor complex. Different proteolytic systems (ubiquitin-proteasome, calpains), chaperone activities and signaling pathways influence the stability of GRKs in different ways, thus endowing specificity to GPCR regulation as protein turnover of GRKs can be differentially affected. Therefore, modulation of protein stability of GRKs emerges as a versatile mechanism for feedback regulation of GPCR signaling and basic cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Interaction between Yeast Cdc6 Protein and B-Type Cyclin/Cdc28 Kinases

    OpenAIRE

    Elsasser, S; Lou, F; Wang, B.; Campbell, J L; de Jong, A.

    1996-01-01

    During purification of recombinant Cdc6 expressed in yeast, we found that Cdc6 interacts with the critical cell cycle, cyclin-dependent protein kinase Cdc28. Cdc6 and Cdc28 can be coimmunoprecipitated from extracts, Cdc6 is retained on the Cdc28-binding matrix p13-agarose, and Cdc28 is retained on an affinity column charged with bacterially produced Cdc6. Cdc6, which is a phosphoprotein in vivo, contains five Cdc28 consensus sites and is a substrate of the Cdc28 kinase in vitro. Cdc6 also inh...

  13. Prioritization of charge over geometry in transition state analogues of a dual specificity protein kinase.

    Science.gov (United States)

    Xiaoxia, Liu; Marston, James P; Baxter, Nicola J; Hounslow, Andrea M; Yufen, Zhao; Blackburn, G Michael; Cliff, Matthew J; Waltho, Jonathan P

    2011-03-23

    The direct observation of a transition state analogue (TSA) complex for tyrosine phosphorylation by a signaling kinase has been achieved using (19)F NMR analysis of MEK6 in complex with tetrafluoroaluminate (AlF(4)(-)), ADP, and p38α MAP kinase (acceptor residue: Tyr182). Solvent-induced isotope shifts and chemical shifts for the AlF(4)(-) moiety indicate that two fluorine atoms are coordinated by the two catalytic magnesium ions of the kinase active site, while the two remaining fluorides are liganded by protein residues only. An equivalent, yet distinct, AlF(4)(-) complex involving the alternative acceptor residue in p38α (Thr180) is only observed when the Tyr182 is mutated to phenylalanine. The formation of octahedral AlF(4)(-) species for both acceptor residues, rather than the trigonal bipyramidal AlF(3)(0) previously identified in the only other metal fluoride complex with a protein kinase, shows the requirement of MEK6 for a TSA that is isoelectronic with the migrating phosphoryl group. This requirement has hitherto only been demonstrated for proteins having a single catalytic magnesium ion.

  14. The role of stress-activated protein kinase signaling in renal pathophysiology

    Directory of Open Access Journals (Sweden)

    F.Y. Ma

    2009-01-01

    Full Text Available Two major stress-activated protein kinases are the p38 mitogen-activated protein kinase (MAPK and the c-Jun amino terminal kinase (JNK. p38 and JNK are widely expressed in different cell types in various tissues and can be activated by a diverse range of stimuli. Signaling through p38 and JNK is critical for embryonic development. In adult kidney, p38 and JNK signaling is evident in a restricted pattern suggesting a normal physiological role. Marked activation of both p38 and JNK pathways occurs in human renal disease, including glomerulonephritis, diabetic nephropathy and acute renal failure. Administration of small molecule inhibitors of p38 and JNK has been shown to provide protection from renal injury in different types of experimental kidney disease through inhibition of renal inflammation, fibrosis, and apoptosis. In particular, a role for JNK signaling has been identified in macrophage activation resulting in up-regulation of pro-inflammatory mediators and the induction of renal injury. The ability to provide renal protection by blocking either p38 or JNK indicates a lack of redundancy for these two signaling pathways despite their activation by common stimuli. Therefore, the stress-activated protein kinases, p38 and JNK, are promising candidates for therapeutic intervention in human renal diseases.

  15. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development

    Directory of Open Access Journals (Sweden)

    Mohna Bandyopadhyay

    2016-12-01

    Full Text Available CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 “interaction map” and the eye-specific “transcriptome” databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.

  16. Structure-function study of deinococcal serine/threonine protein kinase implicates its kinase activity and DNA repair protein phosphorylation roles in radioresistance of Deinococcus radiodurans.

    Science.gov (United States)

    Rajpurohit, Yogendra S; Misra, Hari S

    2013-11-01

    The DR2518 (RqkA) a eukaryotic type serine/threonine protein kinase in Deinococcus radiodurans was characterized for its role in bacterial response to oxidative stress and DNA damage. The K42A, S162A, T169A and S171A mutation in RqkA differentially affected its kinase activity and functional complementation for γ radiation resistance in Δdr2518 mutant. For example, K42A mutant was completely inactive and showed no complementation while S171A, T169A and T169A/S171A mutants were less active and complemented proportionally to different levels as compared to wild type. Amongst, different DNA binding proteins that purified RqkA could phosphorylate, PprA a DNA repair protein, phosphorylation had improved its affinity to DNA by 4 fold and could enhance its supportive role in intermolecular ligation by T4 DNA ligase. RqkA phosphorylates PprA at threonine 72 (T72), serine 112 (S112) and threonine 144 (T144) in vitro with the majority of it goes to T72 site. Unlike wild type PprA and single mutants of T72, S112 and T144 residues, the T72AS112A double and T72AS112AT144A triple mutant derivatives of PprA did not phosphorylate in vivo and also failed to complement PprA loss in D. radiodurans. Deletion of rqkA in pprA::cat background enhanced radiosensitivity of pprA mutant, which became nearly similar to ΔrqkA resistance to γ radiation. These results suggested that K42 of RqkA is essential for catalytic functions and the kinase activity of RqkA as well as phosphorylation of PprA have roles in γ radiation resistance of D. radiodurans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Metformin action in human hepatocytes: coactivation of atypical protein kinase C alters 5'-AMP-activated protein kinase effects on lipogenic and gluconeogenic enzyme expression.

    Science.gov (United States)

    Sajan, Mini P; Ivey, Robert A; Farese, Robert V

    2013-11-01

    Atypical protein kinase C (aPKC) levels and activity are elevated in hepatocytes of individuals with type 2 diabetes and cause excessive increases in the levels of lipogenic and gluconeogenic enzymes; aPKC inhibitors largely correct these aberrations. Metformin improves hepatic gluconeogenesis by activating 5'-AMP-activated protein kinase (AMPK). However, metformin also activates aPKC in certain tissues; in the liver, this activation could amplify diabetic aberrations and offset the positive effects of AMPK. In this study, we examined whether metformin activates aPKC in human hepatocytes and the metabolic consequences of any such activation. We compared protein kinase activities and alterations in lipogenic and gluconeogenic enzyme levels during activity of the AMPK activators metformin and AICAR, relative to those of an aPKC-ι inhibitor, in hepatocytes from non-diabetic and type 2 diabetic human organ donors. Metformin and 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) activated aPKC at concentrations comparable with those required for AMPK activation. Moreover, both agents increased lipogenic enzyme levels by an aPKC-dependent mechanism. Thus, whereas insulin- and diabetes-dependent increases in lipogenic enzyme levels were reversed by aPKC inhibition, such levels were increased in hepatocytes from non-diabetic donors and remained elevated in hepatocytes from diabetic donors following metformin and AICAR treatment. In addition, whereas aPKC inhibition diminished gluconeogenic enzyme levels in the absence and presence of insulin in hepatocytes from both non-diabetic and diabetic donors, metformin and AICAR increased gluconeogenic enzyme levels in hepatocytes from non-diabetic individuals, but nevertheless diminished gluconeogenic enzyme levels in insulin-treated hepatocytes from diabetic donors. Metformin and AICAR activate aPKC together with AMPK in human hepatocytes. Activation of aPKC increases lipogenic enzyme levels and alters gluconeogenic

  18. Mechanical pressure-induced phosphorylation of p38 mitogen-activated protein kinase in epithelial cells via Src and protein kinase C.

    Science.gov (United States)

    Hofmann, Matthias; Zaper, Julijana; Bernd, August; Bereiter-Hahn, Jürgen; Kaufmann, Roland; Kippenberger, Stefan

    2004-04-09

    Mechanical stimulation is known to modulate cell physiology in a variety of different tissues. Particularly, epithelial cells are permanently exposed to mechanical stimulation generated by externally applied forces. The present in vitro study demonstrated mechanical pressure as a trigger-factor of the p38 mitogen-activated protein kinase (MAPK) pathway in epithelial cells. Mechanical pressure applied by teflon weights (1.02g/cm(2)) led to a rapid phosphorylation of p38 peaking between 5 and 10min. Furthermore, phosphorylation of the small heat shock protein 27 (HSP27) was shown in response to mechanical pressure. Suppression of p38 function by using specific inhibitors blocked the pressure-mediated phosphorylation of HSP27. In order to identify upstream regulators of p38, a contribution of Src and protein kinase C (PKC) in pressure-signaling was investigated. We could demonstrate that inhibition of Src or PKC suppressed the pressure-induced phosphorylation of p38. These findings suggest mechanical pressure as a new type of effector stimulus for the p38 pathway with implications to (patho-) physiological conditions.

  19. A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane.

    Science.gov (United States)

    Burgers, Pepijn P; Ma, Yuliang; Margarucci, Luigi; Mackey, Mason; van der Heyden, Marcel A G; Ellisman, Mark; Scholten, Arjen; Taylor, Susan S; Heck, Albert J R

    2012-12-21

    Protein kinase A-anchoring proteins (AKAPs) provide spatio-temporal specificity for the omnipotent cAMP-dependent protein kinase (PKA) via high affinity interactions with PKA regulatory subunits (PKA-RI, RII). Many PKA-RII-AKAP complexes are heavily tethered to cellular substructures, whereas PKA-RI-AKAP complexes have remained largely undiscovered. Here, using a cAMP affinity-based chemical proteomics strategy in human heart and platelets, we uncovered a novel, ubiquitously expressed AKAP, termed small membrane (sm)AKAP due to its specific localization at the plasma membrane via potential myristoylation/palmitoylation anchors. In vitro binding studies revealed specificity of smAKAP for PKA-RI (K(d) = 7 nM) over PKA-RII (K(d) = 53 nM) subunits, co-expression of smAKAP with the four PKA R subunits revealed an even more exclusive specificity of smAKAP for PKA-RIα/β in the cellular context. Applying the singlet oxygen-generating electron microscopy probe miniSOG indicated that smAKAP is tethered to the plasma membrane and is particularly dense at cell-cell junctions and within filopodia. Our preliminary functional characterization of smAKAP provides evidence that, like PKA-RII, PKA-RI can be tightly tethered by a novel repertoire of AKAPs, providing a new perspective on spatio-temporal control of cAMP signaling.

  20. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L

    2007-01-01

    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  1. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Nisha Durand

    2016-02-01

    Full Text Available The Protein Kinase D (PKD isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs and diacylglycerol (DAG. PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.

  2. First inactive conformation of CK2 alpha, the catalytic subunit of protein kinase CK2

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten

    2009-01-01

    The Ser/Thr kinase casein kinase 2 (CK2) is a heterotetrameric enzyme composed of two catalytic chains (CK2alpha, catalytic subunit of CK2) attached to a dimer of two noncatalytic subunits (CK2beta, noncatalytic subunit of CK2). CK2alpha belongs to the superfamily of eukaryotic protein kinases...... and Tyr50, the space required by the triphospho moiety. We discuss some factors that may support or disfavor this inactive conformation, among them coordination of small molecules at a remote cavity at the CK2alpha/CK2beta interaction region and binding of a CK2beta dimer. The latter stabilizes...... of catalytic key elements. For CK2alpha, however, no strict physiological control of activity is known. Accordingly, CK2alpha was found so far exclusively in the characteristic conformation of active EPKs, which is, in this case, additionally stabilized by a unique intramolecular contact between the N...

  3. Activation of the ATR kinase by the RPA-binding protein ETAA1

    DEFF Research Database (Denmark)

    Haahr, Peter; Hoffmann, Saskia; Tollenaere, Maxim A X

    2016-01-01

    Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway...... in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically......, this requires a conserved domain in ETAA1 that potently and directly stimulates ATR kinase activity independently of TopBP1. Simultaneous loss of ETAA1 and TopBP1 gives rise to synthetic lethality characterized by massive genome instability and abrogation of ATR-dependent signalling. Our findings demonstrate...

  4. Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition.

    Science.gov (United States)

    Shen, Congcong; Xia, Xiaodong; Hu, Shengqiang; Yang, Minghui; Wang, Jianxiu

    2015-01-06

    A simple and sensitive fluorescence method for monitoring the activity and inhibition of protein kinase (PKA) has been developed using polycytosine oligonucleotide (dC12)-templated silver nanoclusters (Ag NCs). Adenosine-5'-triphosphate (ATP) was found to enhance the fluorescence of Ag NCs, while the hydrolysis of ATP to adenosine diphosphate (ADP) by PKA decreased the fluorescence of Ag NCs. Compared to the existing methods for kinase activity assay, the developed method does not involve phosphorylation of the substrate peptides, which significantly simplifies the detection procedures. The method exhibits high sensitivity, good selectivity, and wide linear range toward PKA detection. The inhibition effect of kinase inhibitor H-89 on the activity of PKA was also studied. The sensing protocol was also applied to the assay of drug-stimulated activation of PKA in HeLa cell lysates.

  5. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhaohua, E-mail: ztang@jsd.claremont.edu [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Lin, Ren-Jang [Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Center, University of Sussex, Falmer, BN1 9RQ (United Kingdom)

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  6. Protein phosphorylation associated with epipodophyllotoxin-induced apoptosis of lymphoid cells: role of a serine/threonine protein kinase.

    Science.gov (United States)

    Ye, X; Mody, N S; Hingley, S T; Coffman, F D; Cohen, S; Fresa, K L

    1998-11-01

    We have previously shown that apoptosis induced in thymocytes by dexamethasone or teniposide (VM-26) could be inhibited by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) and sangivamycin, both relatively specific inhibitors for protein kinase C, but not by N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA1004), a more specific inhibitor for cAMP-dependent protein kinases. Apoptosis in this model system was not blocked by EGTA and no increase in cytosolic Ca2+ was observed during apoptosis induced by either dexamethasone or VM-26, suggesting that this kinase was Ca2+-independent. In the present study, we demonstrate that addition of 10 microM sangivamycin to thymocyte cultures up to 2 h after addition of either inducer resulted in virtually complete inhibition of apoptosis. Addition of 10 microM sangivamycin at 3 or 4 h after addition of inducer resulted in partial inhibition of apoptosis. Computerized image analysis of two-dimensional PAGE analyses of whole-cell lysates demonstrated that treatment of mouse thymocytes with VM-26 resulted in a limited number of de novo phosphorylation events within 1 h of treatment. The most prominent phosphorylation events associated with VM-26-induced apoptosis were that two intracellular protein species (Protein 1: m.w. = 22.9 kDa, pI, 5.11; and Protein 2: m.w. = 22.9 kDa, pI, 4.98). Similar phosphorylation events were seen in cells treated with dexamethasone. Finally, Western blot analysis suggests that de novo protein phosphorylation induced by VM-26 is on serine/threonine residues. These results provide further evidence that the mechanism of VM-26-induced apoptosis of murine thymocytes involves the action of one or more serine/threonine kinases. Copyright 1998 Academic Press.

  7. Cell-free expression of protein kinase a for rapid activity assays.

    Science.gov (United States)

    Leippe, Donna M; Zhao, Kate Qin; Hsiao, Kevin; Slater, Michael R

    2010-05-19

    Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag((R)) fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  8. Cell-Free Expression of Protein Kinase a for Rapid Activity Assays

    Directory of Open Access Journals (Sweden)

    Donna M. Leippe

    2010-01-01

    Full Text Available Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag ® fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  9. Cell-Free Expression of Protein Kinase A for Rapid Activity Assays

    Directory of Open Access Journals (Sweden)

    Donna M. Leippe

    2010-05-01

    Full Text Available Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag® fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  10. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Straarup, EM; Schousboe, P; Hansen, HQ

    1997-01-01

    Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein k...

  11. Protein kinase inhibitors CK59 and CID755673 alter primary human NK cell effector functions

    Directory of Open Access Journals (Sweden)

    Maxi eScheiter

    2013-03-01

    Full Text Available Natural killer (NK cells are part of the innate immune response and play a crucial role in the defense against tumors and virus-infected cells. Their effector functions include the specific killing of target cells, as well as the modulation of other immune cells by cytokine release. Kinases constitute a relevant part in signaling, are prime targets in drug research and the protein kinase inhibitor Dasatinib is already used for immune-modulatory theraphies. In this study, we have tested the effects of the kinase inhibitors CK59 and CID755673. These inhibitors are directed against CaMKII (CK59 and PKD family kinases (CID755673 that were previously suggested as novel components of NK activation pathways. Here, we use a multi-parameter, FACS-based assay to validate the influence of CK59 and CID755673 on the effector functions of primary NK cells. Dose dependent treatment with CK59 and CID755673 indeed results in a significant reduction of NK cell degranulation markers and cytokine release in freshly isolated PBMC populations from healthy blood donors. These results underline the importance of CaMKII for NK cell signaling and suggest PKD2 as a novel signaling component in NK cell activation. Notably, kinase inhibition studies on pure NK cell populations indicate significant donor variations.

  12. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G. (Sanofi); (Michigan)

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  13. MtnK, methylthioribose kinase, is a starvation-induced protein in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Tse Jane KS

    2001-08-01

    Full Text Available Abstract Background Methylthioadenosine, the main by-product of spermidine synthesis, is degraded in Bacillus subtilis as adenine and methylthioribose. The latter is an excellent sulfur source and the precursor of quorum-sensing signalling molecules. Nothing was known about methylthioribose recycling in this organism. Results Using trifluoromethylthioribose as a toxic analog to select for resistant mutants, we demonstrate that methylthioribose is first phosphorylated by MtnK, methylthioribose kinase, the product of gene mtnK (formerly ykrT, expressed as an operon with mtnS (formerly ykrS in an abundant transcript with a S-box leader sequence. Although participating in methylthioribose recycling, the function of mtnS remained elusive. We also show that MtnK synthesis is boosted under starvation condition, in the following decreasing order: carbon-, sulfur- and nitrogen-starvation. We finally show that this enzyme is part of the family Pfam 01633 (choline kinases which belongs to a large cluster of orthologs comprizing antibiotic aminoglycoside kinases and protein serine/threonine kinases. Conclusions The first step of methylthioribose recycling is phosphoryltaion by MTR kinase, coded by the mtnK (formerly ykrT gene. Analysis of the neighbourhood of mtnK demonstrates that genes located in its immediate vicinity (now named mtnUVWXYZ, formerly ykrUVWXYZ are also required for methylthioribose recycling.

  14. A Single Protein Kinase A or Calmodulin Kinase II Site Does Not Control the Cardiac Pacemaker Ca2+ Clock

    Science.gov (United States)

    Wu, Yuejin; Valdivia, Héctor H.; Wehrens, Xander H.T.; Anderson, Mark E.

    2016-01-01

    Background Fight or flight heart rate (HR) increases depend on protein kinase A (PKA) and calmodulin kinase II (CaMKII) mediated enhancement of Ca2+ uptake and release from sarcoplasmic reticulum (SR) in sinoatrial nodal cells (SANC). However, the impact of specific PKA and CaMKII phosphorylation sites on HR is unknown. Methods and Results We systematically evaluated validated PKA and CaMKII target sites on phospholamban (PLN) and the ryanodine receptor (RyR2) using genetically modified mice. We found that knockin alanine replacement of RyR2 PKA (S2808) or CaMKII (S2814) target sites failed to affect HR responses to isoproterenol or spontaneous activity in vivo or in SANC. Similarly, selective mutation of PLN amino acids critical for enhancing SR Ca2+ uptake by PKA (S16) or CaMKII (T17) to alanines did not affect HR in vivo or in SANC. In contrast, CaMKII inhibition by expression of AC3-I has been shown to slow SANC rate responses to isoproterenol and decrease SR Ca2+ content. PLN deficiency rescued SR Ca2+ content and SANC rate responses to isoproterenol in mice with AC3-I expression, suggesting CaMKII affects HR by modulation of SR Ca2+ content. Consistent with this, mice expressing a superinhibitory PLN mutant had low SR Ca2+ content and slow HR in vivo and in SANC. Conclusions SR Ca2+ depletion reduces HR and SR Ca2+ repletion restores physiological SANC rate responses despite CaMKII inhibition. PKA and CaMKII do not affect HR by a unique target site governing SR Ca2+ uptake or release. HR acceleration may require an SR Ca2+ content threshold. PMID:26857906

  15. Sphingosine kinase 1 dependent protein kinase C-δ activation plays an important role in acute liver failure in mice.

    Science.gov (United States)

    Lei, Yan-Chang; Yang, Ling-Ling; Li, Wen; Luo, Pan

    2015-12-28

    To investigate the role of protein kinase C (PKC)-δ activation in the pathogenesis of acute liver failure (ALF) in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF. BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1 (HMGB1), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 as well as nuclear factor (NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-GalN/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group (P liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1 (SphK1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF. SphK1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be a potential therapeutic strategy for this disease.

  16. Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Directory of Open Access Journals (Sweden)

    Gu Jenny

    2007-02-01

    Full Text Available Abstract Background The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2, a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. Results TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2. The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. Conclusion The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function.

  17. [Isolation and identification of proteins with anti-tumor and fibrinolysogen kinase activities from Eisenia foetida].

    Science.gov (United States)

    Zhao, Rui; Ji, Jian-Guo; Tong, Yuan-Peng; Chen, Qian; Pu, Hai; Ru, Bing-Gen

    2002-09-01

    Proteins from Eisenia foetida possess many biological activities. A group of proteins precipitated by ethanol were isolated and purified by Sephadex G-75 and HiPrep 16/60 DEAE columns, then identified by one- or two- dimensional electrophoresis and mass spectrometry. 2D gel experiments displayed that the pI of proteins from Eisenia foetida were mainly from 3.0 to 4.0. Anti-tumor and kinase activities were determined by in vitro experiments. The enthanol fraction D2(8) showed both of the activities. These ethanol-precipitated proteins were identified further by native polyacrylamide electrophoresis, the protein spots were cut off from gels and digested by trypsin, the peptide mass fingerprints (PMFs) were determined by mass spectrometry. PMF, molecular weight, amino acid composition and N-terminus of 6 proteins were characterized, and band 9 was identified as D2(8). The results suggested that there exist proteins in Eisenia foetida possessed both anti-tumor and fibrinolysogen kinase activities. These methods can be used for identification of the natural bioactive proteins.

  18. The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase

    Directory of Open Access Journals (Sweden)

    Macdonald Timothy L

    2007-09-01

    Full Text Available Abstract Background Dietary isothiocyanates (ITCs are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of "Phase 2" enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway. Methods The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases. Re