WorldWideScience

Sample records for calmodulin link brain-derived

  1. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are...

  2. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  3. Calmodulin Binding Proteins and Alzheimer's Disease.

    Science.gov (United States)

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  4. MICrocephaly, disproportionate pontine and cerebellar hypoplasia syndrome: A clinico-radiologic phenotype linked to calcium/calmodulin-dependent serine protein kinase gene mutation

    Directory of Open Access Journals (Sweden)

    Rashid Saleem

    2013-01-01

    Full Text Available MICrocephaly, disproportionate pontine and cerebellar hypoplasia (MICPCH syndrome, a rare X-linked disorder, generally seen in girls, is characterized by neurodevelopmental delay, microcephaly, and disproportionate pontine and cerebellar hypoplasia. It is caused by inactivating calcium/calmodulin-dependent serine protein kinase (CASK gene mutations. We report a 2-year-old girl with severe neurodevelopmental delay, microcephaly, minimal pontine hypoplasia, cerebellar hypoplasia, and normal looking corpus callosum, with whom the conventional cytogenetic studies turned out to be normal, and an array-comparative genomic hybridization (a-CGH analysis showed CASK gene duplication at Xp11.4. Our case highlights the importance of using clinico-radiologic phenotype to guide genetic investigation and it also confirms the role of a-CGH analysis in establishing the genetic diagnosis of MICPCH syndrome, when conventional cytogenetic studies are inconclusive.

  5. Extending the cross-linking/mass spectrometry strategy: Facile incorporation of photo-activatable amino acids into the model protein calmodulin in Escherichia coli cells.

    Science.gov (United States)

    Piotrowski, Christine; Ihling, Christian H; Sinz, Andrea

    2015-11-01

    Photo-induced cross-linking is a highly promising technique to investigate protein conformations and protein-protein interactions in their natural cellular environment. One strategy relies on the non-directed incorporation of diazirine-containing photo-activatable amino acids into proteins and a subsequent cross-link formation induced by UV-A irradiation. The advantage of this photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can also be targeted, which is advantageous for investigating membrane proteins. Here, we present a simplified protocol that relies on the use of mineral salts medium without any special requirements for the incorporation of photo-methionines into proteins in Escherichia coli cells. The possibility to perform these experiments in E. coli is especially valuable as it is the major system for recombinant protein production. The method is exemplified for the Ca(2+) regulating protein calmodulin containing nine methionines, which were found to be replaced by their photo-activatable analogues. Our protocol allows the facile and stochastic incorporation of photo-methionines as the basis for conducting photo-cross-linking experiments in E. coli in an efficient manner. PMID:25726908

  6. Measurements of brain-derived neurotrophic factor

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Klein, Anders Bue; Vinberg, Maj;

    2007-01-01

    Although numerous studies have dealt with changes in blood brain-derived neurotrophic factor (BDNF), methodological issues about BDNF measurements have only been incompletely resolved. We validated BDNF ELISA with respect to accuracy, reproducibility and the effect of storage and repeated freezin...

  7. The serotonin transporter linked polymorphic region and brain-derived neurotrophic factor valine to methionine at position 66 polymorphisms and maternal history of depression: associations with cognitive vulnerability to depression in childhood.

    Science.gov (United States)

    Hayden, Elizabeth P; Olino, Thomas M; Bufferd, Sara J; Miller, Anna; Dougherty, Lea R; Sheikh, Haroon I; Singh, Shiva M; Klein, Daniel N

    2013-08-01

    Preliminary work indicates that cognitive vulnerability to depression may be associated with variants of the serotonin transporter promoter polymorphism (5-HTTLPR) and the valine to methionine at position 66 (val66met) polymorphism of the brain-derived neurotrophic factor (BDNF) gene; however, existing reports come from small samples. The present study sought to replicate and extend this research in a sample of 375 community-dwelling children and their parents. Following a negative mood induction, children completed a self-referent encoding task tapping memory for positive and negative self-descriptive traits. Consistent with previous work, we found that children with at least one short variant of the 5-HTTLPR had enhanced memory for negative self-descriptive traits. The BDNF val66met polymorphism had no main effect but was moderated by maternal depression, such that children with a BDNF methionine allele had a heightened memory for negative self-descriptive traits when mothers had experienced depression during children's lifetimes; in contrast, children with a methionine allele had low recall of negative traits when mothers had no depression history. The findings provide further support for the notion that the 5-HTTLPR is associated with cognitive markers of depression vulnerability and that the BDNF methionine allele moderates children's sensitivity to contextual factors. PMID:23880378

  8. Calmodulin Binding Proteins and Alzheimer’s Disease

    Science.gov (United States)

    O’Day, Danton H.; Eshak, Kristeen; Myre, Michael A.

    2015-01-01

    Abstract The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer’s disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer’s disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer’s disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  9. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells--The potential of JNX1001 as a therapeutic agent.

    Science.gov (United States)

    Kim, Helena K; Mendonça, Karina M; Howson, Patrick A; Brotchie, Jonathan M; Andreazza, Ana C

    2015-10-01

    Mitochondrial complex I, which is the first member of the electron transport chain responsible for producing ATP, can produce reactive oxygen species and oxidative stress when it becomes dysfunctional. Complex I dysfunction and oxidative stress are strongly implicated in bipolar disorder (BD), a debilitating psychiatric disease, as is decreased levels of brain derived neurotrophic factor (BDNF) found in patients with BD, which is related to complex I activity. JNX1001, a clinical trial ready brain penetrant sapogenin, increases BDNF levels in animal models. Hence, we aimed to examine if JNX1001 can prevent complex I dysfunction-induced alterations produced by rotenone treatment in human neuroblastoma cells (SH-SY5Y). Complex I dysfunction decreased cell viability and increased protein carbonylation and nitration, confirming previous findings. Complex I dysfunction also decreased intracellular and extracellular BDNF levels. JNX1001 pre-treatment prevented complex I dysfunction-induced protein carbonylation and nitration and improved cell viability at concentrations of 30 nM and 300 nM, but more robustly at 300 nM. JNX1001 was also able to prevent decreased intracellular and extracellular BDNF levels, where it produced a ten-fold increase in intracellular BDNF levels at a concentration of 300 nM. While further studies are required to examine the neuroprotective ability of JNX1001 against alterations produced by complex I defect in more complex systems, such as in animal models, the findings of this study demonstrate the potential of JNX1001 to be used as a therapeutic agent to protect against complex I dysfunction-induced alterations that may be highly relevant to BD. PMID:26164791

  10. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  11. Chronic amphetamine treatment increases striatal calmodulin in rats

    International Nuclear Information System (INIS)

    A radioimmunoassay was developed to measure calmodulin in striatum from rats treated with one dose or repeated injections of amphetamine. Chronic, but not acute, amphetamine treatment resulted in a significant increase in total calmodulin levels in striatal homogenates. This effect may be linked to the behavioral sensitization which develops after chronic amphetamine treatments. (Auth.)

  12. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  13. The Brain Derived Neurotrophic Factor and Personality

    Directory of Open Access Journals (Sweden)

    Christian Montag

    2014-01-01

    Full Text Available The study of the biological basis of personality is a timely research endeavor, with the aim of deepening our understanding of human nature. In recent years, a growing body of research has investigated the role of the brain derived neurotrophic factor (BDNF in the context of individual differences across human beings, with a focus on personality traits. A large number of different approaches have been chosen to illuminate the role of BDNF for personality, ranging from the measurement of BDNF in the serum/plasma to molecular genetics to (genetic brain imaging. The present review provides the reader with an overview of the current state of affairs in the context of BDNF and personality.

  14. Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat

    OpenAIRE

    Xinfeng Liu; Gelin Xu; Zhaoyao Chen; Tingting Lu; Ning Wei; Juehua Zhu; Yongjun Jiang

    2011-01-01

    This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobil...

  15. Brain-Derived Neurotrophic Factor Val66Met and Blood Glucose: A Synergistic Effect on Memory

    OpenAIRE

    Naftali Raz; Dahle, Cheryl L.; Rodrigue, Karen M.; Kennedy, Kristen M.; Land, Susan J.; Jacobs, Bradley S.

    2008-01-01

    Age-related declines in episodic memory performance are frequently reported, but their mechanisms remain poorly understood. Although several genetic variants and vascular risk factors have been linked to mnemonic performance in general and age differences therein, it is unknown whether and how they modify age-related memory declines. To address that question, we investigated the effect of Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism that affects secretion of BDNF, and fastin...

  16. Dopamine binds calmodulin during autoregulation of dopaminergic D2 receptor signaling through CaMKIIα-calmodulin complex.

    Science.gov (United States)

    Laoye, B J; Okurumeh, O A; Obagaye, O V; Olagunju, M O; Bankole, O O; Olubiyi, O O; Ogundele, O M

    2016-06-01

    The role of dopaminergic D2 receptor (D2R) autoregulation in dopamine (DA) neurotransmission cannot be overemphasized in cause and progression of disorders associated with complex behaviors. Although previous studies have shown that D2R is structurally and physiologically linked with calcium/calmodulin-dependent kinase II (CaMKIIα), however, the role of calmodulin in the CaMKIIα complex in D2R regulation remains elusive. In this study, using structural biology modeling softwares (iGEMDOCK and CueMol), we have shown the interaction between D2R, CaMKIIα, calmodulin, and DA under varying conditions. The outcomes of this study suggest that CaMKIIα causes a change in DA binding affinity to the D2R receptive site while the detached DA binds to calmodulin to stop the activity of D2R in the D2R-dopaminergic D1 receptor (D1R) heteromer. Ultimately, we concluded that D2R autoregulates to stop its heteromeric combination with D1R. D2R interacts with D1R to facilitate calcium movement that activates calmodulin, then CaMKIIα. The CaMKIIα-calmodulin complex changes the affinity of DA-D2R causing DA to break free and bind with calmodulin. PMID:26446938

  17. Brain-derived neurotrophic factor: role in depression and suicide

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2009-08-01

    Full Text Available Yogesh DwivediPsychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USAAbstract: Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF, one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the “neurotrophin hypothesis of depression”. Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB and its splice variant (TrkB.T1 have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.Keywords: BDNF, neurotrophins, p75NTR, Trk receptor, depression, antidepressants, suicide, genetics, epigenetics

  18. An Association Study of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Amphetamine Response

    OpenAIRE

    Brody A Flanagin; Cook, Edwin H.; de Wit, Harriet

    2006-01-01

    Although genetic factors are known to be important in addiction, no candidate genes have yet been consistently linked to drug use or abuse. Brain-derived neurotrophic factor (BDNF), which has been implicated in the behavioral response to psychomotor stimulants and potentiates neurotransmitters that are strongly linked to addiction, is a logical candidate gene to study. Using a drug challenge approach, we tested for association between BDNF G196A (val66met) genotype and subjective responses to...

  19. Brain-Derived Neurotrophic Factor in the Airways

    OpenAIRE

    Y S Prakash; Richard J Martin

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseas...

  20. Brain-derived neurotrophic factor and cocaine addiction

    OpenAIRE

    McGinty, Jacqueline F.; Whitfield, Timothy W.; Berglind, William J.

    2009-01-01

    The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefronta...

  1. Role of Calmodulin in Cell Proliferation

    Science.gov (United States)

    Chafouleas, J.

    1983-01-01

    Calmodulin levels were found to increase as cells enter plateau. The data suggest that the cells are exiting the cell cycle late in the G sub 1 phase, or that the calmodulin levels in plateau cells are uncoupled to progression into S phase in plateau cells. Upon release, calmodulin levels rapidly decrease. Following this decrease, there is a increase prior to S phase.

  2. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel;

    2014-01-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control desi......Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case......-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3...... were measured in 37 rapid cycling bipolar disorder patients and in 40 age- and gender matched healthy control subjects using enzyme-linked immunosorbent assay (ELISA). In a longitudinal design, repeated measurements of BDNF and NT-3 were evaluated in various affective states in bipolar disorder...

  3. Interaction Between Childhood Adversity, Brain-Derived Neurotrophic Factor val/met and Serotonin Transporter Promoter Polymorphism on Depression : The TRAILS Study

    NARCIS (Netherlands)

    Nederhof, E; Bouma, Esther; Oldehinkel, A.J.; Ormel, J.

    2010-01-01

    Background: The three-way interaction between the functional polymorphism in the serotonin transporter gene linked promoter region, the val66met polymorphism in the brain-derived neurotrophic factor gene, and childhood adversity in the prediction of depression in children, reported by Kaufman and co

  4. Peripheral blood brain-derived neurotrophic factor in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, K; Vinberg, M; Kessing, L V

    2016-01-01

    Peripheral blood brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in bipolar disorder, speculated to mirror alterations in brain expression of BDNF. The research area is rapidly evolving; however, recent...... investigations have yielded conflicting results with substantial variation in outcomes, highlighting the need to critically assess the state of current evidence. The aims of the study were to investigate differences in peripheral blood BDNF concentrations between bipolar disorder patients and healthy control...... subjects and between affective states in bipolar disorder patients, including assessment of the effect of treatment of acute episodes on BDNF levels. A systematic review of English language studies without considering publication status was conducted in PubMed (January 1950-November 2014), Embase (1974...

  5. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

    DEFF Research Database (Denmark)

    Krabbe, K. S.; Nielsen, A. R.; Krogh-Madsen, R.;

    2006-01-01

    Aims/hypothesis  Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer's disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore...... and a hyperinsulinaemic-euglycaemic clamp. Results  Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism...... and diabetes or obesity. In Study 2 an output of BDNF from the human brain was detected at basal conditions. This output was inhibited when blood glucose levels were elevated. In contrast, when plasma insulin was increased while maintaining normal blood glucose, the cerebral output of BDNF was not inhibited...

  6. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    OpenAIRE

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 ...

  7. Brain-derived neurotrophic factor, food intake regulation, and obesity.

    Science.gov (United States)

    Rosas-Vargas, Haydeé; Martínez-Ezquerro, José Darío; Bienvenu, Thierry

    2011-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a fundamental role in development and plasticity of the central nervous system (CNS). It is currently recognized as a major participant in the regulation of food intake. Multiple studies have shown that different regulators of appetite such as leptin, insulin and pancreatic polypeptide (PP) potentially exert anorexigenic effects through BDNF. Low circulating levels of BDNF are associated with a higher risk of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Strict food restriction reduces BDNF and may trigger binge-eating episodes and weight gain. The existence of mutations that cause haploinsufficiency of BDNF as well as some genetic variants, notably the BDNF p.Val66Met polymorphism, are also associated with the development of obese phenotypes and hyperphagia. However, association of the Met allele with AN and BN, which have different phenotypic characteristics, shows clearly the existence of other relevant factors that regulate eating behavior. This may, in part, be explained by the epigenetic regulation of BDNF through mechanisms like DNA methylation and histone acetylation. Environmental factors, primarily during early development, are crucial to the establishment of these stable but reversible changes that alter the transcriptional expression and are transgenerationally heritable, with potential concomitant effects on the development of eating disorders and body weight control. PMID:21945389

  8. Brain-Derived Neurotrophic Factor in Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Jôice Dias Corrêa

    2014-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a member of the neurotrophic factor family. Outside the nervous system, BDNF has been shown to be expressed in various nonneural tissues, such as periodontal ligament, dental pulp, and odontoblasts. Although a role for BDNF in periodontal regeneration has been suggested, a function for BDNF in periodontal disease has not yet been studied. The aim of this study was to analyze the BDNF levels in periodontal tissues of patients with chronic periodontitis (CP and periodontally healthy controls (HC. All subjects were genotyped for the rs4923463 and rs6265 BDNF polymorphisms. Periodontal tissues were collected for ELISA, myeloperoxidase (MPO, and microscopic analysis from 28 CP patients and 29 HC subjects. BDNF levels were increased in CP patients compared to HC subjects. A negative correlation was observed when analyzing concentration of BDNF and IL-10 in inflamed periodontium. No differences in frequencies of BDNF genotypes between CP and HC subjects were observed. However, BDNF genotype GG was associated with increased levels of BDNF, TNF-α, and CXCL10 in CP patients. In conclusion, BDNF seems to be associated with periodontal disease process, but the specific role of BDNF still needs to be clarified.

  9. Brain-derived neurotrophic factor and cocaine addiction

    Science.gov (United States)

    McGinty, Jacqueline F.; Whitfield, Timothy W.; Berglind, William J.

    2009-01-01

    The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefrontal cortex immediately following a final session of cocaine self-administration attenuates relapse to cocaine seeking after abstinence, as well as cue- and cocaine prime-induced reinstatement of cocaine-seeking following extinction. BDNF-induced alterations in the ERK-MAP kinase cascade and in prefronto-accumbens glutamatergic transmission are implicated in BDNF’s ability to alter cocaine seeking. Within 22 hr after infusion into the prefrontal cortex, BDNF increases BDNF protein in prefrontal cortical targets, including nucleus accumbens, and restores cocaine-mediated decreases in phospho-ERK expression in the nucleus accumbens. Furthermore, three weeks after BDNF infusion in animals with a cocaine self-administration history, suppressed basal levels of glutamate are normalized and a cocaine-prime-induced increase in extracellular glutamate levels in the nucleus accumbens is prevented. Thus, BDNF may have local effects at the site of infusion and distal effects in target areas that are critical to mediating or preventing cocaine-induced dysfunctional neuroadaptations. PMID:19732758

  10. Differential recognition of calmodulin-enzyme complexes by a conformation-specific anti-calmodulin monoclonal antibody

    International Nuclear Information System (INIS)

    An anti-calmodulin monoclonal antibody having an absolute requirement for Ca2+ has been produced from mice immunized with a mixture of calmodulin and calmodulin-binding proteins. Radioimmune assays were developed for the determination of its specificity. The epitope for this antibody resides on the COOH-terminal half of the mammalian protein. Plant calmodulin or toponin C had little reactivity. The apparent affinity of the antibody for calmodulin was increased approximately 60-fold in the presence of heart calmodulin-dependent phosphodiesterase. The presence of heart phosphodiesterase in the radioimmune assay greatly enhanced the sensitivity for calmodulin. The intrinsic calmodulin subunit of phosphorylase kinase and calmodulin which was bound to brain phosphodiesterases was also recognized with high affinity by the antibody. In direct binding experiments, most of the calmodulin-binding proteins studied were unreactive with the antibody. This selectivity allowed purification of heart and two brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes on immobilized antibody affinity columns. The data suggest that the binding of ligands to Ca2+/calmodulin induce conformation changes in calmodulin which alter reactivity with the anti-calmodulin monoclonal antibody. The differential antibody reactivity toward calmodulin-enzyme complexes indicates that target proteins either induce very different conformations in calmodulin and/or interact with different geometries relative to the antibody binding site. The anti-calmodulin monoclonal antibody should be useful for the purification of other calmodulin-dependent phosphodiesterases as well as isozymes of phosphorylase kinase

  11. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    Science.gov (United States)

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  12. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia***

    Institute of Scientific and Technical Information of China (English)

    Xiaoliang Shu; Yongsheng Zhang; Han Xu; Kai Kang; Donglian Cai

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance fol owing ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions fol owing cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the de-crease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpy-ruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor fol owing cerebral ischemia may be involved in the development of glucose intolerance.

  13. Brain derived neurotrophic factor in newly diagnosed diabetes and prediabetes.

    Science.gov (United States)

    Liu, Wei; Han, Xueyao; Zhou, Xianghai; Zhang, Simin; Cai, Xiaoling; Zhang, Lihua; Li, Yufeng; Li, Meng; Gong, Siqian; Ji, Linong

    2016-07-01

    Brain derived neurotrophic factor (BDNF) is thought to play an important role in glucose metabolism, but the exact mechanism has not been elucidated. The aim was to assess differences in serum BDNF levels across individuals with varying levels of glucose tolerance, and the association of serum BDNF levels with genetic variants and DNA methylation. Participants were selected from an ongoing population-based cohort study in rural China. In a randomly selected subsample of healthy participants (n = 33 males, n = 52 female), we assessed serum BDNF and in n = 50 of these, also DNA methylation. In a second subsample (all women; n = 28 with diabetes, n = 104 with prediabetes, and n = 105 age- and body mass index (BMI)-matched controls), we assessed serum BDNF and genetic variants. In a third subsample (all with diabetes; n = 7 normal BMI + low insulin level, n = 9 normal BMI + high insulin level, n = 9 obese + high insulin level), we assessed DNA methylation. Compared to age- and BMI-matched controls (24.71 (IQR, 20.44, 29.80) ng/ml), serum BDNF was higher in participants with prediabetes (27.38 (IQR, 20.64, 34.29) ng/ml), but lower in those with diabetes (23.40 (IQR, 18.12, 30.34) ng/ml) (P < 0.05). Two genetic variants near BDNF (rs4074134 and rs6265) were confirmed to be associated with BMI. BDNF CpG-6 methylation was positively associated with waist-to-hip ratio (P < 0.05). Furthermore, hyper-methylation in this site was found in participants with diabetes and high fasting insulin levels compared to those with diabetes and low fasting insulin levels, regardless of BMI status (P < 0.001 and P = 0.001, respectively). Observed differences in serum BDNF levels, genetic variants, and DNA methylation patterns across different glucose metabolic state suggest that BDNF may be involved in the pathophysiological process of insulin resistance and type 2 diabetes. PMID:27062899

  14. Tau regulates the subcellular localization of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Barreda, Elena Gomez de [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avila, Jesus, E-mail: javila@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); CIBER de Enfermedades Neurodegenerativas, 28031 Madrid (Spain)

    2011-05-13

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  15. Fetal Alcohol Spectrum Disorder-associated depression: evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model

    OpenAIRE

    Caldwell, Kevin K.; Sheema, S.; Paz, Rodrigo D.; Samudio-Ruiz, Sabrina L.; Laughlin, Mary H.; Spence, Nathan E.; Roehlk, Michael J; Alcon, Sara N.; Allan, Andrea M

    2008-01-01

    Prenatal ethanol exposure is associated with an increased incidence of depressive disorders in patient populations. However, the mechanisms that link prenatal ethanol exposure and depression are unknown. Several recent studies have implicated reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampal formation and frontal cortex as important contributors to the etiology of depression. In the present studies, we sought to determine whether prenatal ethanol exposure is associate...

  16. The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals With Schizophrenia: A Single-Blind, Randomized Clinical Trial

    OpenAIRE

    Kimhy, David; Vakhrusheva, Julia; Bartels, Matthew N.; Armstrong, Hilary F.; Ballon, Jacob S; Khan, Samira; Chang, Rachel W.; Hansen, Marie C.; Ayanruoh, Lindsey; Lister, Amanda; Castrén, Eero; Smith, Edward E.; Sloan, Richard P.

    2015-01-01

    Individuals with schizophrenia display substantial neurocognitive deficits for which available treatments offer only limited benefits. Yet, findings from studies of animals, clinical and nonclinical populations have linked neurocognitive improvements to increases in aerobic fitness (AF) via aerobic exercise training (AE). Such improvements have been attributed to up-regulation of brain-derived neurotrophic factor (BDNF). However, the impact of AE on neurocognition, and the putative role of BD...

  17. Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat

    Directory of Open Access Journals (Sweden)

    Yongjun Jiang

    2010-01-01

    Full Text Available This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobility shift assay, respectively. Exogenous BDNF significantly improved motor-sensory, sensorimotor function, and vestibulomotor function, while BDNF did not decrease the infarct volume. Exogenous BDNF increased the number of both activated and phagocytotic microglia in brain. BDNF upregulated interleukin10 and its mRNA expression, while downregulated tumor necrosis factor α and its mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B. BDNF antibody, which blocked the activity of endogenous BDNF, showed the opposite effect of exogenous BDNF. Our data indicated that BDNF may modulate local inflammation in ischemic brain tissues on the cellular, cytokine, and transcription factor levels.

  18. Regulation of brain adenylate cyclase by calmodulin

    International Nuclear Information System (INIS)

    This thesis examined the interaction between the Ca2+-binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-[125I]-CaM-diazopyruvamide (125I-CAM-DAP) behaved like native CaM with respect to Ca2+-enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca2+-dependent stimulation of adenylate cyclase. 125I-CaM-DAP cross-linked to CaM-binding proteins in a Ca2+-dependent, concentration-dependent, and CaM-specific manner. Photolysis of 125I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000

  19. Mechanical stretching of proteins: calmodulin and titin

    Science.gov (United States)

    Cieplak, Marek

    2005-07-01

    Mechanical unfolding of several domains of calmodulin and titin is studied using a Go-like model with a realistic contact map and Lennard-Jones contact interactions. It is shown that this simple model captures the experimentally observed difference between the two proteins: titin is a spring that is tough and strong whereas calmodulin acts like a weak spring with featureless force-displacement curves. The difference is related to the dominance of the α secondary structures in the native structure of calmodulin. The tandem arrangements of calmodulin unwind simultaneously in each domain whereas the domains in titin unravel in a serial fashion. The sequences of contact events during unravelling are correlated with the contact order, i.e., with the separation between contact making amino acids along the backbone in the native state. Temperature is found to affect stretching in a profound way.

  20. Human neutrophil calmodulin-binding proteins: identification of the calmodulin-dependent protein phosphatase

    International Nuclear Information System (INIS)

    The molecular events in linking neutrophil activation and ligand binding to specific membrane receptors are mediated in part by an increase in intracellular Ca2+. One mechanism by which Ca2+ may trigger neutrophil activation is through Ca2+/calmodulin (CaM)-regulated proteins and enzymes. To determine which Ca2+/CaM-regulated enzymes may be present in the neutrophil, they have used Western blotting techniques and 125I-CaM to identify neutrophil CaM-binding proteins. Eleven proteins with molecular weights ranging from 230K to 13.5K bound 125I-CaM in a Ca2+-dependent manner. One predominant region of 125I-Cam binding was to a 59K protein; a protein with an identical mobility was labeled by an antisera against brain CaM-dependent phosphatase. Ca2+-dependent phosphatase activity, which was inhibited by the CaM antagonist trifluoperazine, was detected in a neutrophil extract; a radioimmunoassay for the phosphatase indicated that it was present in the extract at approximately 0.2 μg/mg protein. Most of the CaM-binding proteins, including the 59K protein, were rapidly degraded upon lysis of the neutrophil. There was a close correlation between the degradation of the 59K protein and the loss of Ca2+-dependent phosphatase activity in the neutrophil extract. Thus, human neutrophils contain numerous CaM-binding proteins which are presumably Ca2+/calmodulin-regulated enzymes and proteins; the 59K protein is a CaM-dependent phosphatase

  1. Mechanical Stretching of Proteins: Calmodulin and Titin

    OpenAIRE

    Cieplak, Marek

    2004-01-01

    Mechanical unfolding of several domains of calmodulin and titin is studied using a Go-like model with a realistic contact map and Lennard-Jones contact interactions. It is shown that this simple model captures the experimentally observed difference between the two proteins: titin is a spring that is tough and strong whereas calmodulin acts like a weak spring with featureless force-displacement curves. The difference is related to the dominance of the alpha secondary structures in the native s...

  2. Developmental differences in posttranslational calmodulin methylation in pea plants

    International Nuclear Information System (INIS)

    A calmodulin-N-methyltransferase was used to analyze the degree of lysine-115 methylation of pea calmodulin. Calmodulin was isolated from segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by the calmodulin methyltransferase in the presence of 3H-methyl-S-adenosylmethionine. Calmodulin methylation levels were lower in apical root segments and in the young lateral roots compared with the mature, differentiated root tissues. The methylation of these calmodulin samples occurs specifically at lysine 115 since site-directed mutants of calmodulin with substitutions at this position were not methylated and competitively inhibited methylation. The present findings, combined with previous data showing differences in NAD kinase activation by methylated and unmethylated calmodulins, raise the possibility that posttranslational methylation could affect calmodulin action

  3. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    SUN; Daye(

    2001-01-01

    [1]Cheng. W. Y., Cyclic 3', 5'-nucleotide phosphodiestrase: demonstration of an activator, Biochm. Biophys. Res. Commun.,1970, 38: 533-538.[2]Boynton, A. L., Whitfield, J. F., MacManus, J. P., Calmodulin stimulates DNA synthesis by rat liver cells, BBRC.1980,95(2): 745-749.[3]Gorbacherskaya, L. V., Borovkova, T. V., Rybin, U. O. et al., Effect of exogenous calmodulin on lymphocyte proliferation in normal subjects, Bull Exp. Med. Biol., 1983, 95: 361-363.[4]Wong, P. Y.-K., Lee, W. H., Chao, PH.-W., The role of calmodulin in prostaglandin metabolism, Ann. NY Acad. Sci.,1980, 356: 179-189.[5]Mac Neil, S., Dawson, R. A., Crocker, G. et al., Effects of extracellular calmodulin and calmodulin antagonists on B16 melanoma cell growth, J. Invest. Dermatol., 1984, 83: 15-19.[6]Crocker, D. G., Dawson, R. A., Mac Neil, S. et al., An extracellular role for calmodulin-like activity in cell proliferation,Biochem. J., 1988, 253: 877-884.[7]Polito. V. S., Calmodulin and calmodulin inhibitors: effect on pollen germination and tube growth, in Pollen: Biology and Implications for Plant Breeding (eds. Mulvshy, D. L., Ottaviaro, E.), New York: Elsevier, 1983.53-60.[8]Biro, R. L., Sun, D. Y., Roux, S. J.et al., Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution, Plant Physiol., 1984,75: 382-386.[9]Terry, M. E., Bonner, B. A., An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of IAA-induced growth, Plant Physiol., 1980, 66: 321-325.[10]Josefina, H. N., Aldasars, J. J., Rodriguez, D., Localization of calmodulin on embryonic Cice aricium L, in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.), New York, London: Plenum Press, 1985, 313.[11]Dauwalder, M., Roux, S. J., Hardison, L., Distribution of calmodulin in pea seedling: immunocytochemical localization in plumules and root apices, Planta, 1986, 168: 461

  4. Cocaine-induced Psychosis and Brain-derived Neurothrophic Factor in Patients with Cocaine Dependence: Report of Two Cases.

    Science.gov (United States)

    Roncero, Carlos; Palma-Álvarez, Raul Felipe; Ros-Cucurull, Elena; Barral, Carmen; Gonzalvo, Begoña; Corominas-Roso, Margarida; Casas, Miguel; Grau-López, Lara

    2016-02-29

    Brain-derived neurotrophic factor (BDNF) is linked to numerous brain functions. In addition, BDNF alterations contribute to neurological, mental, and addictive disorders. Cocaine dependence has received much attention recently due to its prevalence and psychological effects. Symptoms of psychosis are one of the most serious adverse events precipitated by cocaine use. It is particularly important to identify patients at risk of developing cocaine-induced psychosis (CIP). We described two cases of patients with cocaine dependence who presented with CIP and had changes in their BDNF levels during the psychotic episode. BDNF levels were initially low in both patients, and then decreased by more than 50% in association with CIP. The relationship between BDNF and psychosis is described in the literature. These cases revealed that BDNF levels decreased during a CIP episode and, thus, it is necessary to investigate BDNF and its relationship with CIP further. PMID:26792050

  5. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    Science.gov (United States)

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. J. Cell. Physiol. 231: 1586-1592, 2016. © 2015 Wiley Periodicals, Inc. PMID:26566264

  6. Attenuated brain-derived neurotrophic factor and hypertrophic remodelling: the SABPA study.

    Science.gov (United States)

    Smith, A J; Malan, L; Uys, A S; Malan, N T; Harvey, B H; Ziemssen, T

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) has been linked to neurological pathologies, but its role in cardiometabolic disturbances is limited. We aimed to assess the association between serum BDNF levels and structural endothelial dysfunction (ED) as determined by cross-sectional wall area (CSWA) and albumin/creatinine ratio (ACR) in black Africans. Ambulatory blood pressure (BP) and ultrasound CSWA values were obtained from 82 males and 90 females. Fasting blood and 8 h overnight urine samples were collected to determine serum BDNF and cardiometabolic risk markers, that is, glycated haemoglobin (HbA1c), lipids, inflammation and ACR. BDNF median split × gender interaction effects for structural ED justified stratification of BDNF into low and high (⩽/>1.37 ng ml(-1)) gender groups. BDNF values (0.86-1.98 ng ml(-1)) were substantially lower than reference ranges (6.97-42.6 ng ml(-1)) in the African gender cohort, independent of age and body mass index. No relationship was revealed between BDNF and renal function and was opposed by an inverse relationship between BDNF and CSWA (r=-0.17; P=0.03) in the African cohort. Linear regression analyses revealed a positive relationship between systolic BP and structural remodelling in the total cohort and low-BDNF gender groups. In the high-BDNF females, HbA1C was associated with structural remodelling. Attenuated or possible downregulated BDNF levels were associated with hypertrophic remodelling, and may be a compensatory mechanism for the higher BP in Africans. In addition, metabolic risk and hypertrophic remodelling in women with high BDNF underpin different underlying mechanisms for impaired neurotrophin homeostasis in men and women. PMID:24898921

  7. Gender differences in platelet brain derived neurotrophic factor in patients with cardiovascular disease and depression.

    Science.gov (United States)

    Williams, Marlene S; Ngongang, Chelsea K; Ouyang, Pam; Betoudji, Fabrice; Harrer, Christine; Wang, Nae-Yuh; Ziegelstein, Roy C

    2016-07-01

    Women have a higher prevalence of depression compared to men. Serum levels of Brain-derived neurotrophic factor (BDNF) are decreased in depression. BDNF may also have a protective role in the pathogenesis of coronary artery disease (CAD) or events. We examined whether there are gender differences in BDNF levels in patients with stable CAD and comorbid depression. We enrolled 37 patients (17 women) with stable CAD with and without depression from a single medical center. All patients had depression assessment with the Beck Depression Inventory-II questionnaire. Both plasma and platelet BDNF were measured in all patients using a standard ELISA method. Platelet BDNF levels were higher than plasma BDNF levels in the entire group (5903.9 ± 1915.6 vs 848.5 ± 460.5 pg/ml, p depression (BDI-II depression (n = 8, 7382.8 ± 1633.1 vs 4811.7 ± 1642.3 pg/ml, p = 0.007). Women with no or minimal depression (BDI depression (n = 18, 6900.2 ± 1486.6 vs 4972.9 ± 1568.9 pg/ml, p = 0.001). The plasma BDNF levels were similar between men and women in all categories of depression. In conclusion, women with stable CAD have increased platelet BDNF levels when compared to men with stable CAD regardless of their level of depression. Sex specific differences in BDNF could possibly indicate differences in factors linking platelet activation and depression in men and women. PMID:27082490

  8. Functional in vitro test of calmodulin antagonism: effect of drugs on interaction between calmodulin and glycolytic enzymes.

    Science.gov (United States)

    Orosz, F; Christova, T Y; Ovádi, J

    1988-06-01

    A simple procedure has been elaborated to screen for the calmodulin antagonist effect of drugs. A covalently attached fluorescent probe was used to monitor the binding of enzymes known as target enzymes to calmodulin. Moreover, the probe made it possible to recognize a new target enzyme, aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13), for calmodulin among glycolytic enzymes. The calmodulin antagonist trifluoperazine prevented or eliminated the complex formation between calmodulin and enzymes studied in reconstituted systems; the Ca channel blockers had no effect. The functional consequences of the effect of drugs on calmodulin-phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) interaction were investigated as well. Whereas trifluoperazine suspended the calmodulin-mediated hysteretic inactivation of phosphofructokinase, Ca channel blockers (verapamil and nifedipine) were ineffective. Fendiline (regarded as a Ca channel blocker) seems to act as a functional calmodulin antagonist. Its binding to calmodulin does not prevent the complex formation of phosphofructokinase and calmodulin, but within this ternary complex phosphofructokinase preserves or recovers its original activity measured in the absence of calmodulin. The possible molecular effect of drugs on a calmodulin-enzyme complex is discussed. PMID:2837637

  9. Immunoelectron microscopic localization of calmodulin in corn root cells

    Institute of Scientific and Technical Information of China (English)

    LIJIAXU; JIEWENLIU; DAYESUN

    1993-01-01

    Methods for the localization of plant calmodulin by immuno-gold and immuno-peroxidase electron microscopy have been developed. In both corn root-cap cells and meristematic cells, calmodulin was found to be localized in the nucleus, cytoplasm, mitochondria as well as in the cell wall, In the meristematic cells, calmodulin was distinctly localized on the plasma membrane, cytoplasmic face of rough endoplasmic rcticulum and polyribosomes. Characteristically, calmodulin was present in the amyloplasts of root-cap cells. The widespread distribution of calmodulin may reflect its plciotropic functions in plant cellular activities.

  10. Decreased levels of brain-derived neurotrophic factor in the remitted state of unipolar depressive disorder

    DEFF Research Database (Denmark)

    Hasselbalch, Jacob; Knorr, U; Bennike, B;

    2012-01-01

    Decreased levels of peripheral brain-derived neurotrophic factor (BDNF) have been associated with depression. It is uncertain whether abnormally low levels of BDNF in blood are present beyond the depressive state and whether levels of BDNF are associated with the course of clinical illness....

  11. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Science.gov (United States)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  12. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  13. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    Science.gov (United States)

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  14. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Changwei Song; Shiqiang Fang; Gang Lv; Xifan Mei

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.

  15. Brain-derived neurotrophic factor and substantia nigra dopaminergic neurons in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Haixia Ding; Meijiang Feng; Xinsheng Ding

    2008-01-01

    BACKGROUND:Parkinson's disease (PD) is a chronic, progressive neurodegenerative central nervous system disease which occurs in the substantia nigra-corpus striatum system. The main pathological feature of PD is selective dopaminergic neuronal loss with distinctive Lewy bodies in populations of surviving dopaminergic neurons. In the clinical and neuropathological diagnosis of PD, brain-derived neurotrophic factor mRNA expression in the substantia nigra pars compacta is reduced by 70%, and surviving dopaminergic neurons in the PD substantia nigra pars compacta express less brain-derived neurotrophic factor (BDNF) mRNA (20%) than their normal counterparts. In recent years, knowledge surrounding the relationship between neurotrophic factors and PD has increased, and detailed pathogenesis of the role of neurotrophic factors in PD becomes more important.

  16. Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior

    OpenAIRE

    Martinowich Keri; Schloesser Robert J; Jimenez Dennisse V; Weinberger Daniel R; Lu Bai

    2011-01-01

    Abstract Background Sleep homeostasis is characterized by a positive correlation between sleep length and intensity with the duration of the prior waking period. A causal role for brain-derived neurotrophic factor (BDNF) in sleep homeostasis has been suggested, but the underlying mechanisms remain unclear. Cortistatin, a neuropeptide expressed primarily in a subset of cortical GABAergic interneurons, is another molecule implicated in sleep homeostasis. Results We confirmed that sleep deprivat...

  17. Decreased Plasma Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Concentrations during Military Training

    OpenAIRE

    Suzuki, Go; Tokuno, Shinichi; Nibuya, Masashi; Ishida, Toru; Yamamoto, Tetsuo; Mukai, Yasuo; Mitani, Keiji; Tsumatori, Gentaro; Scott, Daniel; Shimizu, Kunio

    2014-01-01

    Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF) and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to...

  18. Continuous Brain-derived Neurotrophic Factor (BDNF) Infusion After Methylprednisolone Treatment in Severe Spinal Cord Injury

    OpenAIRE

    Kim, Daniel H.; Jahng, Tae-Ahn

    2004-01-01

    Although methylprednisolone (MP) is the standard of care in acute spinal cord injury (SCI), its functional outcome varies in clinical situation. Recent report demonstrated that MP depresses the expression of growth-promoting neurotrophic factors after acute SCI. The present study was designed to investigate whether continuous infusion of brain-derived neurotrophic factor (BDNF) after MP treatment promotes functional recovery in severe SCI. Contusion injury was produced at the T10 vertebral le...

  19. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus

    OpenAIRE

    Greenwood, Benjamin N.; Strong, Paul V; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika

    2006-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against...

  20. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder

    OpenAIRE

    Kyoung-Sae Na; Eunsoo Won; June Kang; Hun Soo Chang; Ho-Kyoung Yoon; Woo Suk Tae; Yong-Ku Kim; Min-Soo Lee; Sook-Haeng Joe; Hyun Kim; Byung-Joo Ham

    2016-01-01

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the gr...

  1. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle

    OpenAIRE

    Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Y S Prakash

    2015-01-01

    Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in hu...

  2. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    OpenAIRE

    Wang, Qiong; Shao, Feng; Wang, Weiwen

    2015-01-01

    Early life adversity, such as postnatal maternal separation (MS), play a central role in the development of psychopathologies during individual ontogeny. In this study, we investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1–21) on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats...

  3. Endogenous Brain Derived Neurotrophic Factor in the Nucleus Tractus Solitarius Tonically Regulates Synaptic and Autonomic Function

    OpenAIRE

    Clark, Catharine G.; Hasser, Eileen M.; Kunze, Diana L.; Katz, David M.; Kline, David D.

    2011-01-01

    Brain derived neurotrophic factor (BDNF) and its receptor, TrkB, are highly expressed in the nucleus tractus solitarius (nTS), the principal target of cardiovascular primary afferent input to the brainstem. However, little is known about the role of BDNF signaling in nTS in cardiovascular homeostasis. We examined whether BDNF in nTS modulates cardiovascular function in vivo and regulates synaptic and/or neuronal activity in isolated brainstem slices. Microinjection of BDNF into the rat medial...

  4. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    OpenAIRE

    Rini Rossanti; Dida Akhmad Gurnida; Eddy Fadlyana

    2015-01-01

    Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brain-derived neurotrophic factor (BDNF), a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This com...

  5. Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo.

    OpenAIRE

    Altar, C A; Boylan, C B; Jackson, C; Hershenson, S; Miller, J.; Wiegand, S. J.; Lindsay, R M; Hyman, C.

    1992-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor (NGF)-related family of neutrophins, promotes the survival and differentiation of cultured nigral dopamine neurons. Two-week infusions of BDNF were made above the right pars compacta of the substantia nigra in adult rats. Systemic injection of these animals with (+)-amphetamine, a dopamine-releasing drug, induced 3 or 4 body rotations per minute directed away from the nigral infusion site. Neither supranigral NGF no...

  6. The effect of regular aerobic exercise on urinary brain-derived neurotrophic factor in children

    OpenAIRE

    Yunita Fediani; Masayu Rita Dewi; Muhammad Irfannuddin; Masagus Irsan Saleh; Safri Dhaini

    2014-01-01

    Background Nervous system development in early life influences the quality of cognitive ability during adulthood. Neuronal development and neurogenesis are highly influenced by neurotrophins. The most active neurotrophin is brain-derived neurotrophic factor (BDNF). Physical activity has a positive effect on cognitive function. However, few experimental studies have been done on children to assess the effect of aerobic regular exercise on BDNF levels. Objective To assess the effect of regu...

  7. Decreased Cerebrovascular Brain-Derived Neurotrophic Factor–Mediated Neuroprotection in the Diabetic Brain

    OpenAIRE

    Hayakawa, Kazhuhide; Navaratna, Deepti; Guo, Shu-Zhen; WANG, XIAOYING; Gerhardinger, Chiara; Lo, Eng H.

    2011-01-01

    Objective: Diabetes is an independent risk factor for stroke. However, the underlying mechanism of how diabetes confers that this risk is not fully understood. We hypothesize that secretion of neurotrophic factors by the cerebral endothelium, such as brain-derived neurotrophic factor (BDNF), is suppressed in diabetes. Consequently, such accrued neuroprotective deficits make neurons more vulnerable to injury. Research Design and Methods: We examined BDNF protein levels in a streptozotocin-indu...

  8. Association study between brain-derived neurotrophic factor gene polymorphisms and methamphetamine abusers in Japan

    OpenAIRE

    Itoh, Kanako; Hashimoto, Kenji; Shimizu, Eiji; Sekine, Yoshimoto; Ozaki, Norio; Inada, Toshiya; Harano, Mutsuo; Iwata, Nakao; Komiyama, Tokutaro; Yamada, Mitsuhiko; Sora,Ichiro; Nakata, Kenji; Ujike, Hiroshi; Iyo, Masaomi

    2005-01-01

    Several lines of evidence suggest that genetic factors might contribute to drug abuse vulnerability. Recent genomic scans for association demonstrated that the brain-derived neurotrophic factor (BDNF) gene was associated with drug abuse vulnerability. In this study, we analyzed association of two BDNF gene single nucleotide polymorphisms (SNPs), 132C>T (C270T named formerly) in the noncoding region of exon V and 196G >A (val66met) in the coding region of exon XIIIA, with methamphetamine (MAP)...

  9. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    OpenAIRE

    Song, Changwei; Fang, Shiqiang; Gang LV; Mei, Xifan

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin t...

  10. Brain-Derived Neurotrophic Factor as a Biomarker in Children with Attention Deficit-Hyperactivity Disorder

    OpenAIRE

    Farshid Saadat; Maryam Kosha; Ali Amiry; Gholamreza Torabi

    2015-01-01

    Background: Evidence suggests that Brain-Derived Neurotrophic Factor (BDNF) is involved in the pathogenesis of Attention-Deficit Hyperactivity Disorder (ADHD), although experimental data regarding the contribution of BDNF concentration to this psychiatric disorder are controversial. Aim: To evaluate the plasma levels of BDNF in patients with ADHD. Material and Methods: In this cross sectional study, ADHD and controls were recruited from the outpatient clinic of the ...

  11. Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression

    OpenAIRE

    Dwivedi, Yogesh

    2013-01-01

    Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hy...

  12. Secretion of nerve growth factor, brain-derived neurotrophic factor, and glial cell-line derived neurotrophic factor in co-culture of four cell types in cerebrospinal fluid-containing medium

    Institute of Scientific and Technical Information of China (English)

    Sanjiang Feng; Minghua Zhuang; Rui Wu

    2012-01-01

    The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7–10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion. Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.

  13. Structural basis for activation of calcineurin by calmodulin

    OpenAIRE

    Rumi-Masante, Julie; Rusinga, Farai I.; Lester, Terrence E.; Dunlap, Tori B.; Williams, Todd D.; Dunker, A. Keith; Weis, David D.; Trevor P Creamer

    2011-01-01

    The highly conserved phosphatase calcineurin plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin. Calmodulin binds to a regulatory domain within calcineurin, causing a conformational change that displaces an autoinhibitory domain from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which calmodulin acti...

  14. Brain-derived neurotrophic factor expression is higher in brain tissue from patients with refractory epilepsy than in normal controls

    Institute of Scientific and Technical Information of China (English)

    Yudan Lv; Jiqing Qiu; Zan Wang; Li Cui; Hongmei Meng; Weihong Lin

    2011-01-01

    The role of the brain-derived neurotrophic factor in epilepsy remains controversial. The present study utilized light and electron microscopy to investigate pathological and ultrastructural changes in brain tissue obtained from the seizure foci of 24 patients with temporal epilepsy. We found that epileptic tissue showed neuronal degeneration, glial cell proliferation, nuclear vacuolization, and neural cell tropism. Immunoelectron microscopy and immunohistochemistry showed that brain-derived neurotrophic factor was expressed at significantly higher levels in patients with refractory temporal epilepsy compared with normal controls, demonstrating that the pathological changes within seizure foci in patients with refractory epilepsy are associated with brain-derived neurotrophic factor expression alterations.

  15. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors

    Directory of Open Access Journals (Sweden)

    Latha eMukunda

    2016-02-01

    Full Text Available Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs, occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX and a highly conserved co-receptor protein (Orco. The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs expressing Or22a inside the fly’s antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native

  16. Correlation between hedgehog (hh) protein family and brain-derived neurotrophic factor (bdnf) in autism spectrum disorder (asd)

    International Nuclear Information System (INIS)

    To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). Study Design: An observational, comparative study. Place and Duration of Study: Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Methodology: Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient-r was determined. Results: The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. Conclusion: The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism. (author)

  17. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    Directory of Open Access Journals (Sweden)

    Tirassa P

    2015-10-01

    Full Text Available Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR, Institute of Cell Biology and Neurobiology (IBCN, 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI, Rome, Italy; 4International Psychoanalytical Association (IPA, London, UKAbstract: The light information pathways and their relationship with the body rhythms have generated a new insight into the neurobiology and the neurobehavioral sciences, as well as into the clinical approaches to human diseases associated with disruption of circadian cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely been used in psychiatric patients characterized by mood-related disorders, but the timing and dosage use of the various treatments, although based on international guidelines, are mainly dependent on the psychiatric experiences. Further, many efforts have been made to identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and brain-derived neurotrophic factor show anatomical and functional link with the circadian system and mediate some of light-induced effects in brain. In addition, in humans, both nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, which correlate with the morningness–eveningness dimensions, and are influenced by light, suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The evidences of the relationship between the diverse mood-related disorders

  18. Calmodulin-binding domains in Alzheimer's disease proteins: extending the calcium hypothesis.

    Science.gov (United States)

    O'Day, Danton H; Myre, Michael A

    2004-08-01

    The calcium hypothesis of Alzheimer's disease (AD) invokes the disruption of calcium signaling as the underlying cause of neuronal dysfunction and ultimately apoptosis. As a primary calcium signal transducer, calmodulin (CaM) responds to cytosolic calcium fluxes by binding to and regulating the activity of target CaM-binding proteins (CaMBPs). Ca(2+)-dependent CaMBPs primarily contain domains (CaMBDs) that can be classified into motifs based upon variations on the basic amphiphilic alpha-helix domain involving conserved hydrophobic residues at positions 1-10, 1-14 or 1-16. In contrast, an IQ or IQ-like domain often mediates Ca(2+)-independent CaM-binding. Based on these attributes, a search for CaMBDs reveals that many of the proteins intimately linked to AD may be calmodulin-binding proteins, opening new avenues for research on this devastating disease. PMID:15249195

  19. Selective carboxyl methylation of structurally altered calmodulins in Xenopus oocytes

    International Nuclear Information System (INIS)

    The eucaryotic protein carboxyl methyltransferase specifically modifies atypical D-aspartyl and L-isoaspartyl residues which are generated spontaneously as proteins age. The selectivity of the enzyme for altered proteins in intact cells was explored by co-injecting Xenopus laevis oocytes with S-adenosyl-L-[methyl-3H]methionine and structurally altered calmodulins generated during a 14-day preincubation in vitro. Control experiments indicated that the oocyte protein carboxyl methyltransferase was not saturated with endogenous substrates, since protein carboxyl methylation rates could be stimulated up to 8-fold by increasing concentrations of injected calmodulin. The oocyte protein carboxyl methyltransferase showed strong selectivities for bovine brain and bacterially synthesized calmodulins which had been preincubated in the presence of 1 mM EDTA relative to calmodulins which had been preincubated with 1 mM CaCl2. Radioactive methyl groups were incorporated into base-stable linkages with recombinant calmodulin as well as into carboxyl methyl esters following its microinjection into oocytes. This base-stable radioactivity most likely represents the trimethylation of lysine 115, a highly conserved post-translational modification which is present in bovine and Xenopus but not in bacterially synthesized calmodulin. Endogenous oocyte calmodulin incorporates radioactivity into both carboxyl methyl esters and into base-stable linkages following microinjection of oocytes with S-adenosyl-[methyl-3H]methionine alone. The rate of oocyte calmodulin carboxyl methylation in injected oocytes is calculated to be similar to that of lysine 115 trimethylation, suggesting that the rate of calmodulin carboxyl methylation is similar to that of calmodulin synthesis. At steady state, oocyte calmodulin contains approximately 0.0002 esters/mol of protein, which turn over rapidly

  20. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Correia

    2010-01-01

    Full Text Available OBJECTIVE: Blood neurotrophins, such as the brain-derived neurotrophic factor, are considered to be of great importance in mediating the benefits of physical exercise. In this study, the effect of acute strength exercise and the involvement of small versus large muscle mass on the levels of plasma brain-derived neurotrophic factor were evaluated in healthy individuals. METHODS: The concentric strengths of knee (large and elbow (small flexor and extensor muscles were measured on two separate days. Venous blood samples were obtained from 16 healthy subjects before and after exercise. RESULTS: The levels of brain-derived neurotrophic factor in the plasma did not significantly increase after both arm and leg exercise. There was no significant difference in the plasma levels of the brain-derived neurotrophic factor in the arms and legs. CONCLUSION: The present results demonstrate that acute strength exercise does not induce significant alterations in the levels of brain-derived neurotrophic factor plasma concentrations in healthy individuals. Considering that its levels may be affected by various factors, such as exercise, these findings suggest that the type of exercise program may be a decisive factor in altering peripheral brain-derived neurotrophic factor.

  1. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms

    Science.gov (United States)

    Liu, Z.; Xia, M.; Poovaiah, B. W.

    1998-01-01

    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  2. The Effect of Calcium on the Binding of Calmodulin to Calcium/Calmodulin Protein Kinase II.

    Science.gov (United States)

    Porta, Angela R.

    2000-01-01

    Introduces a follow-up laboratory experiment demonstrating the formation change when calcium binds to calmodulin. This conformation change allows this complex to bind to a target protein. Presents the necessary information to conduct the experiment and discusses the results. (YDS)

  3. Molecular mechanisms underlying the regulation of brain-derived neurotrophic factor (BDNF) translation in dendrites

    OpenAIRE

    Pinheiro, Vera Lúcia Margarido

    2010-01-01

    A especificidade espacial e temporal subjacente à diversidade de processos de plasticidade sináptica que ocorrem no sistema nervoso central está profundamente relacionada com a disponibilidade da proteína brain-derived neurotrophic factor (BDNF) em domínios sub-celulares distintos, especialmente na área pós-sináptica. Contudo, os mecanismos moleculares que regulam a síntese proteica de BDNF nas dendrites estão ainda por desvendar. Assim, o principal objectivo deste trabalho foi...

  4. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy

    DEFF Research Database (Denmark)

    Klein, Anders B; Jennum, Poul; Knudsen, Stine;

    2013-01-01

    Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction in...... hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesised that...

  5. Calmodulin binds to and inhibits the activity of phosphoglycerate kinase.

    Science.gov (United States)

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Phosphoglycerate kinase (PGK) functions as a cytoplasmic ATP-generating glycolytic enzyme, a nuclear mediator in DNA replication and repair, a stimulator of Sendai virus transcription and an extracellular disulfide reductase in angiogenesis. Probing of a developmental expression library from Dictyostelium discoideum with radiolabelled calmodulin led to the isolation of a cDNA encoding a putative calmodulin-binding protein (DdPGK) with 68% sequence similarity to human PGK. Dictyostelium, rabbit and yeast PGKs bound to calmodulin-agarose in a calcium-dependent manner while DdPGK constructs lacking the calmodulin-binding domain (209KPFLAILGGAKVSDKIKLIE228) failed to bind. The calmodulin-binding domain shows 80% identity between diverse organisms and is situated beside the hinge and within the ATP binding domain adjacent to nine mutations associated with PGK deficiency. Calmodulin addition inhibits yeast PGK activity in vitro while the calmodulin antagonist W-7 abrogates this inhibition. Together, these data suggest that PGK activity may be negatively regulated by calcium and calmodulin signalling in eukaryotic cells. PMID:15363631

  6. Acidic/IQ Motif Regulator of Calmodulin*

    OpenAIRE

    Putkey, John A.; Waxham, M. Neal; Gaertner, Tara R.; Brewer, Kari J.; Goldsmith, Michael; Kubota, Yoshihisa; Kleerekoper, Quinn K.

    2007-01-01

    The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca2+ binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca2+ binding to sites III and IV, and we present a model showing that this could increase Ca2+ binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ ...

  7. Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain-derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress

    Institute of Scientific and Technical Information of China (English)

    Shuang Liang; Renbin Huang; Xing Lin; Jianchun Huang; Zhongshi Huang; Huagang Liu

    2012-01-01

    The present study established a mouse model of depression induced by unpredictable chronic mild stress. The model mice were treated with Yulangsan polysaccharide (YLSPS; 150, 300 and 600 mg/kg) for 21 days, and compared with fluoxetine-treated and normal control groups. Enzyme-linked immunosorbent assay, radioimmunity and immunohistochemical staining showed that following treatment with YLSPS (300 and 600 mg/kg), monoamine neurotransmitter levels, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression were significantly elevated, and depression-like behaviors were improved. Open-field and novelty-suppressed feeding tests showed that mouse activity levels were increased and feeding latency was shortened following treatment. Our results indicate that YLSPS inhibits depression by upregulating monoamine neurotransmitters, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression.

  8. Melittin binding causes a large calcium-dependent conformational change in calmodulin.

    OpenAIRE

    Kataoka, M.(LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France); Head, J F; Seaton, B A; Engelman, D M

    1989-01-01

    The interaction between calmodulin and its target protein is a key step in many calcium-regulated cellular functions. Melittin binds tightly to calmodulin in the presence of calcium and is a competitive inhibitor of calmodulin function. Using melittin as a model for the target peptide of calmodulin, we have found a large Ca2+-dependent conformational change of calmodulin in solution induced by peptide binding. Mg2+ does not substitute for Ca2+ in producing the conformation change. Small-angle...

  9. Mediation of flowering by a calmodulin-dependent proteinkinase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A calmodulin-dependent protein kinase (MCK1) appeared important in regulating flowering in tobacco. The expression of modified MCK1 that lacks the C-terminal including calmodulin-binding domain upsets the flowering developmental program, leading to the abortion of flower primordia initiated on the main axis of the plant and, as well, caused the prolongation of the vegetative phase in axillary buds. The abortion process of flowers began first in the developing anthers and subsequently the entire flower senesces. In axillary buds the prolonged vegetative phase was characterized by atypical elongated, narrow, twisted leaves. These results suggested a role for calmodulin-dependent protein kinase homologs in mediating flowering.

  10. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    Science.gov (United States)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  11. Is serum brain-derived neurotrophic factor related to craving for or use of alcohol, cocaine, or methamphetamine?

    Directory of Open Access Journals (Sweden)

    Gangwani P

    2011-06-01

    Full Text Available Craig Hilburn, Vicki A Nejtek, Wendy A Underwood, Meharvan Singh, Gauravkumar Patel, Pooja Gangwani, Michael J ForsterUniversity of North Texas Health Science Center at Fort Worth, TX, USABackground: Data suggests that brain-derived neurotropic factor (BDNF plays a neuroadaptive role in addiction. Whether serum BDNF levels are different in alcohol or psychostimulants as a function of craving is unknown. Here, we examined craving and serum BDNF levels in persons with alcohol versus psychostimulant dependence. Our goals were to explore BDNF as an objective biomarker for 1 craving 2 abstinence, and 3 years of chronic substance use.Methods: An exploratory, cross-sectional study was designed. Men and women between 20–65 years old with alcohol, cocaine, or methamphetamine dependence were eligible. A craving questionnaire was used to measure alcohol, cocaine and methamphetamine cravings. Serum levels of BDNF were measured using enzyme linked immunoassay. Analysis of variance, chi-square, and correlations were performed using a 95% confidence interval and a significance level of P < 0.05.Results: We found a significant difference in the mean craving score among alcohol, cocaine and methamphetamine dependent subjects. There were no significant influences of race, gender, psychiatric disorder or psychotropic medication on serum BDNF levels. We found that among psychostimulant users BDNF levels were significantly higher in men than in women when the number of abstinent days was statistically controlled. Further, a significant correlation between serum BDNF levels and the number of abstinent days since last psychostimulant use was found.Conclusion: These data suggest that BDNF may be a biomarker of abstinence in psychostimulant dependent subjects and inform clinicians about treatment initiatives. The results are interpreted with caution due to small sample size and lack of a control group.Keywords: BDNF, alcohol, cocaine, methamphetamine, craving

  12. Localization of calmodulin and calmodulin-like protein and their functions in biomineralization in P. fucata

    Institute of Scientific and Technical Information of China (English)

    Zi Fang; Zhenguang Yan; Shuo Li; Qin Wang; Weizhong Cao; Guangrui Xu; Xunhao Xiong; Liping Xie; Rongqing Zhang

    2008-01-01

    Calmodulin (CaM) and calmodulin-like protein (CaLP) are two proteins involved in biomineralization. Their localizations in Pinct-ada fucata mantle epithelia were studied by Western blot (WB) analysis of the nuclear/cytosol fraction of primary cultured P. fucata mantle cells and immunogold electron microscopy. The results showed a completely different distribution of these two proteins at the subcellular level. CaM was distributed throughout both the nucleus and cytoplasm of the mantle epithelium but CaLP was distributed only in the cytoplasm. The functions of these two proteins in biomineralization were investigated by shell regeneration. During this process, the expressions of CaM and CaLP were greatly enhanced in different organelles of the mantle epithelium. Overexpression of these two proteins and a mutant of calmodulin-like protein (M-CaLP) that lacks an extra C-terminal tail in MC3T3-E1 promoted the mRNA expression of osteopontin, a biomineralization marker for osteoblasts. All of the results indicated that CaM and CaLP have completely different distributions in the mantle epithelium and affect the biomineralization process at different levels. The extra C-terminal tail of CaLP is important for its functions in biomineralization in P. fucata.

  13. Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2011-03-01

    Full Text Available Abstract Background Sleep homeostasis is characterized by a positive correlation between sleep length and intensity with the duration of the prior waking period. A causal role for brain-derived neurotrophic factor (BDNF in sleep homeostasis has been suggested, but the underlying mechanisms remain unclear. Cortistatin, a neuropeptide expressed primarily in a subset of cortical GABAergic interneurons, is another molecule implicated in sleep homeostasis. Results We confirmed that sleep deprivation leads to an increase in cortical cortistatin mRNA expression. Disruption of activity-dependent BDNF expression in a genetically modified mouse line impairs both baseline levels of cortistatin mRNA as well as its levels following sleep deprivation. Disruption of activity-dependent BDNF also leads to a decrease in sleep time during the active (dark phase. Conclusion Our studies suggest that regulation of cortistatin-expressing interneurons by activity-dependent BDNF expression may contribute to regulation of sleep behavior.

  14. Serum brain-derived neurotrophic factor (BDNF) is not regulated by testosterone in transmen.

    Science.gov (United States)

    Auer, Matthias K; Hellweg, Rainer; Briken, Peer; Stalla, Günter K; T'Sjoen, Guy; Fuss, Johannes

    2016-01-01

    Brain morphology significantly differs between the sexes. It has been shown before that some of these differences are attributable to the sex-specific hormonal milieu. Brain-derived neurotrophic factor (BDNF) is involved in myriads of neuroplastic processes and shows a sexual dimorphism. Transsexual persons may serve as a model to study sex steroid-mediated effects on brain plasticity. We have recently demonstrated that serum levels of BDNF are reduced in transwomen following 12 months of cross-sex hormone treatment. We now wanted to look at the effects of testosterone treatment on BDNF in transmen. In contrast to our initial hypothesis, BDNF levels did not significantly change, despite dramatic changes in the sex-hormonal milieu. Our data indicate that testosterone does not seem to play a major role in the regulation of BDNF in females. PMID:26753091

  15. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity

    Directory of Open Access Journals (Sweden)

    Francesca eCalabrese

    2014-12-01

    Full Text Available Cytokines are key regulatory mediators involved in the host response to immunological challenges, but also play a critical role in the communication between the immune and the central nervous system. For this, their expression in both systems is under a tight regulatory control. However, pathological conditions may lead to an overproduction of pro-inflammatory cytokines that may have a detrimental impact on central nervous system. In particular, they may damage neuronal structure and function leading to deficits of neuroplasticity, the ability of nervous system to perceive, respond and adapt to external or internal stimuli.In search of the mechanisms by which pro-inflammatory cytokines may affect this crucial brain capability, we will discuss one of the most interesting hypotheses: the involvement of the neurotrophin brain-derived neurotrophic factor, which represents one of the major mediators of neuroplasticity.

  16. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans

    DEFF Research Database (Denmark)

    Huang, T; Larsen, K T; Ried-Larsen, M;

    2014-01-01

    The purpose of this study was to summarize the effects of physical activity and exercise on peripheral brain-derived neurotrophic factor (BDNF) in healthy humans. Experimental and observational studies were identified from PubMed, Web of Knowledge, Scopus, and SPORT Discus. A total of 32 articles...... studies suggested an inverse relationship between the peripheral BDNF level and habitual physical activity or cardiorespiratory fitness. More research is needed to confirm the findings from the observational studies....... met the inclusion criteria. Evidence from experimental studies suggested that peripheral BDNF concentrations were elevated by acute and chronic aerobic exercise. The majority of the studies suggested that strength training had no influence on peripheral BDNF. The results from most observational...

  17. Brain-derived neurotrophic factor and neural plasticity in a rat model of spinal cord transection

    Institute of Scientific and Technical Information of China (English)

    Ruxin Xing; Jia Liu; Hua Jin; Ping Dai; Tinghua Wang

    2011-01-01

    The present study employed a rat model of T10 spinal cord transection. Western blot analyses revealed increased brain-derived neurotrophic factor (BDNF) expression in spinal cord segments caudal to the transection site following injection of replication incompetent herpes simplex virus vector (HSV-BDNF) into the subarachnoid space. In addition, hindlimb locomotor functions were improved. In contrast, BDNF levels decreased following treatment with replication defective herpes simplex virus vector construct small interference BDNF (HSV-siBDNF). Moreover, hindlimb locomotor functions gradually worsened. Compared with the replication incompetent herpes simplex virus vector control group, extracellular signal regulated kinase1/2 expression increased in the HSV-BDNF group on days 14 and 28 after spinal cord transection, but expression was reduced in the HSV-siBDNF group. These results suggested that BDNF plays an important role in neural plasticity via extracellular signal regulated kinase1/2 signaling pathway in a rat model of adult spinal cord transection.

  18. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Brassard, Patrice; Adser, Helle; Pedersen, Martin V; Leick, Lotte; Hart, Emma; Secher, Niels H; Pedersen, Bente K; Pilegaard, Henriette

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) has an important role in regulating maintenance, growth and survival of neurons. However, the main source of circulating BDNF in response to exercise is unknown. To identify whether the brain is a source of BDNF during exercise, eight volunteers rowed for 4...... h while simultaneous blood samples were obtained from the radial artery and the internal jugular vein. To further identify putative cerebral region(s) responsible for BDNF release, mouse brains were dissected and analysed for BDNF mRNA expression following treadmill exercise. In humans, a BDNF...... release from the brain was observed at rest (P < 0.05), and increased two- to threefold during exercise (P < 0.05). Both at rest and during exercise, the brain contributed 70-80% of circulating BDNF, while that contribution decreased following 1 h of recovery. In mice, exercise induced a three- to...

  19. No effect of escitalopram versus placebo on brain-derived neurotrophic factor in healthy individuals

    DEFF Research Database (Denmark)

    Knorr, Ulla; Koefoed, Pernille; Soendergaard, Mia H Greisen;

    2016-01-01

    OBJECTIVE: Brain-derived neurotrophic factor (BDNF) seems to play an important role in the course of depression including the response to antidepressants in patients with depression. We aimed to study the effect of an antidepressant intervention on peripheral BDNF in healthy individuals with a...... family history of depression. METHODS: We measured changes in BDNF messenger RNA (mRNA) expression and whole-blood BDNF levels in 80 healthy first-degree relatives of patients with depression randomly allocated to receive daily tablets of escitalopram 10 mg versus placebo for 4 weeks. RESULTS: We found...... no statistically significant difference between the escitalopram and the placebo group in the change in BDNF mRNA expression and whole-blood BDNF levels. Post hoc analyses showed a statistically significant negative correlation between plasma escitalopram concentration and change in whole-blood BDNF...

  20. Effect of Brain-derived Neurotrophic Factor (BDNF in Organotypic Retinal Cultures

    Directory of Open Access Journals (Sweden)

    N.A. Gavrilova

    2009-02-01

    Full Text Available ABSTRACT Purpose To study the influence of recombinant brain-derived neurotrophic factor (BDNF on organotypic retinal cultures. Material and methods Experiments were performed in human and rat retinal explants cultured in culture dishes, flasks and flasks for roller cultivation. BDNF was added at the concentration of 100 ng⁄ml. Cultures were tested for viability and stained immunohistochemically for neuronal markers. Culture conditions and results of cultivation were controlled using phase contrast and fluorescent microscopes. Conclusions Results of the study showed that cultivation of organotypic cultures of the human and rat retina in the presence of BDNF at the concentration of 100 ng⁄ml increases viability of retinal cells. Active cell migration and outgrowth of β-III-tubulin-positive axon-like processes of neuronal origin outside the borders of explants were observed.

  1. Possible Role of Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder: Current Status

    International Nuclear Information System (INIS)

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays a vital role in the growth, development, maintenance, and function of several neuronal systems. The purpose of this review is to document the support for the involvement of this molecule in the maintenance of normal cognitive, emotional functioning, and to outline recent developments in the content of Autism spectrum disorder (ASD). Current and future treatment development can be guided by developing understanding of this molecules actions in the brain and the ways the expression of BDNF can be planned. Over the years, research findings suggested a critical role played by BDNF in the development of autism including increased serum concentrations of BDNF in children with autism and identification of different forms of BDNF in families of autistic individuals. (author)

  2. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness

    Directory of Open Access Journals (Sweden)

    Khalin I

    2015-04-01

    Full Text Available Igor Khalin,1 Renad Alyautdin,2 Ganna Kocherga,3 Muhamad Abu Bakar1 1Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia; 2Scientific Centre for Expertise of Medical Application Products, Moscow, Russia; 3Ophthalmic Microsurgery Department, International Medical Center Oftalmika, Kharkiv, UkraineAbstract: Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration. Keywords: brain-derived neurotrophic factor, neurodegeneration, posterior eye segment

  3. Unbiased simulation of structural transitions in calmodulin

    CERN Document Server

    Zuckerman, D M

    2003-01-01

    We introduce an approach for performing "very long" computer simulations of the dynamics of simplified, folded proteins. Using an alpha-carbon protein model and a fine grid to mimic continuum computations at increased speed, we perform unbiased simulations which exhibit many large-scale conformational transitions at low cost. In the case of the 72-residue N-terminal domain of calmodulin, the approach yields structural transitions between the calcium-free and calcium-bound structures at a rate of roughly one per day on a single Intel processor. Stable intermediates can be clearly characterized. The model employs Go-like interactions to stabilize two (or more) experimentally-determined structures. The approach is trivially parallelizable and readily generalizes to more complex potentials at minimal cost.

  4. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding

    OpenAIRE

    Bonache de Marcos, María Ángeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario

    2014-01-01

    The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenien...

  5. Brain-Derived Neurotrophic Factor Transgenic Mice Exhibit Passive Avoidance Deficits, Increased Seizure Severity and In Vitro Hyperexcitability in the Hippocampus and Entorhinal Cortex

    OpenAIRE

    Croll, S. D.; Suri, C; Compton, D. L.; Simmons, M. V.; Yancopoulos, G D; Lindsay, R M; Wiegand, S. J.; RUDGE, J. S.; Scharfman, H. E.

    1999-01-01

    Transgenic mice overexpressing brain-derived neurotrophic factor from the β-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a si...

  6. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health

    OpenAIRE

    Rothman, Sarah M.; Kathleen J Griffioen; Wan, Ruiqian; Mattson, Mark P.

    2012-01-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor...

  7. Association analysis of the brain-derived neurotrophic factor gene polymorphisms with early-onset schizophrenia in the Chinese population

    Institute of Scientific and Technical Information of China (English)

    易正辉

    2012-01-01

    Objective To investigate the relationship between the brain-derived neurotrophic factor (BDNF) gene Tag SNPs(rs 11030101 and rs6265) and early-onset schizophrenia in the Chinese Han population. Methods The tag single nucleotide polymorphisms (tag SNPs) rs11030101 and rs6265 in the BDNF gene were genotyped

  8. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    Zhong-jun Zhang

    2015-01-01

    Full Text Available Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10 6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.

  9. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury:a biomechanical evaluation

    Institute of Scientific and Technical Information of China (English)

    Zhong-jun Zhang; Ya-jun Li; Xiao-guang Liu; Feng-xiao Huang; Tie-jun Liu; Dong-mei Jiang; Xue-man Lv; Min Luo

    2015-01-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood stem cells. After 30 days, the maximum load, max-imum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neu-rotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These ifndings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, im-prove biomechanical properties, and contribute to the recovery after injury.

  10. Brain-Derived Neurotrophic Factor Gene Expression in Pediatric Bipolar Disorder: Effects of Treatment and Clinical Response

    Science.gov (United States)

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Dwivedi, Yogesh; Pavuluri, Mani N.

    2008-01-01

    The study determines the gene expression of brain-derived neurotrophic factor (BDNF) in the lymphocytes of subjects with pediatric bipolar disorder (PBD) before and during treatment with mood stabilizers and in drug-free normal control subjects. Results indicate the potential of BDNF levels as a biomarker for PBD and as a treatment predictor and…

  11. Calmodulin binding to recombinant myosin-1c and myosin-1c IQ peptides

    Directory of Open Access Journals (Sweden)

    Cyr Janet L

    2002-11-01

    Full Text Available Abstract Background Bullfrog myosin-1c contains three previously recognized calmodulin-binding IQ domains (IQ1, IQ2, and IQ3 in its neck region; we identified a fourth IQ domain (IQ4, located immediately adjacent to IQ3. How calmodulin binds to these IQ domains is the subject of this report. Results In the presence of EGTA, calmodulin bound to synthetic peptides corresponding to IQ1, IQ2, and IQ3 with Kd values of 2–4 μM at normal ionic strength; the interaction with an IQ4 peptide was much weaker. Ca2+ substantially weakened the calmodulin-peptide affinity for all of the IQ peptides except IQ3. To reveal how calmodulin bound to the linearly arranged IQ domains of the myosin-1c neck, we used hydrodynamic measurements to determine the stoichiometry of complexes of calmodulin and myosin-1c. Purified myosin-1c and T701-Myo1c (a myosin-1c fragment with all four IQ domains and the C-terminal tail each bound 2–3 calmodulin molecules. At a physiologically relevant temperature (25°C and under low-Ca2+ conditions, T701-Myo1c bound two calmodulins in the absence and three calmodulins in the presence of 5 μM free calmodulin. Ca2+ dissociated nearly all calmodulins from T701-Myo1c at 25°C; one calmodulin was retained if 5 μM free calmodulin was present. Conclusions We inferred from these data that at 25°C and normal cellular concentrations of calmodulin, calmodulin is bound to IQ1, IQ2, and IQ3 of myosin-1c when Ca2+ is low. The calmodulin bound to one of these IQ domains, probably IQ2, is only weakly associated. Upon Ca2+ elevation, all calmodulin except that bound to IQ3 should dissociate.

  12. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  13. Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training.

    Directory of Open Access Journals (Sweden)

    Go Suzuki

    Full Text Available Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep.

  14. Brain derived neurotrophic factor (BDNF contributes to the pain hypersensitivity following surgical incision in the rats

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Yi

    2008-07-01

    Full Text Available Abstract Background The pathogenic role of brain derived neurotrophic factor (BDNF in the incisional pain is poorly understood. The present study explores the role of the BDNF in the incision-induced pain hypersensitivity. Methods A longitudinal incision was made in one plantar hind paw of isoflurane-anesthetized rats. Dorsal root ganglias (DRG and spinal cords were removed at various postoperative times (1–72 h. Expression pattern of BDNF was determined by immunohistochemistry and double-labeling immunofluorescence. Lidocaine-induced blockade of sciatic nerve function was used to determine the importance of afferent nerve activity on BDNF expression in the DRG and spinal cord after incision. BDNF antibody was administered intrathecally (IT or intraperitoneal (IP to modulate the spinal BDNF or peripheral BDNF after incision. Results After hind-paw incision, the BDNF was upregulated in the ipsilateral lumbar DRG and spinal cord whereas thoracic BDNF remained unchanged in response to incision. The upregulated BDNF was mainly expressed in the large-sized neurons in DRG and the neurons and the primary nerve terminals in the spinal cord. Sciatic nerve blockade prevented the increase of BDNF in the DRG and spinal cord. IT injection of BDNF antibody greatly inhibited the mechanical allodynia induced by incision whereas IP administration had only marginal effect. Conclusion The present study showed that incision induced the segmental upregulation of BDNF in the DRG and spinal cord through somatic afferent nerve transmission, and the upregulated BDNF contributed to the pain hypersensitivity induced by surgical incision.

  15. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression

    Institute of Scientific and Technical Information of China (English)

    Hao-hao Chen; Ning Zhang; Wei-yun Li; Ma-rong Fang; Hui Zhang; Yuan-shu Fang; Ming-xing Ding; Xiao-yan Fu

    2015-01-01

    Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. ABDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippo-campus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open ifeld test in these rats as well. These ifndings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.

  16. An Overview of Brain-Derived Neurotrophic Factor and Implications for Excitotoxic Vulnerability in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Patrick S. Murray

    2011-01-01

    Full Text Available The present paper examines the nature and function of brain-derived neurotrophic factor (BDNF in the hippocampal formation and the consequences of changes in its expression. The paper focuses on literature describing the role of BDNF in hippocampal development and neuroplasticity. BDNF expression is highly sensitive to developmental and environmental factors, and increased BDNF signaling enhances neurogenesis, neurite sprouting, electrophysiological activity, and other processes reflective of a general enhancement of hippocampal function. Such increases in activity may mediate beneficial effects such as enhanced learning and memory. However, the increased activity also comes at a cost: BDNF plasticity renders the hippocampus more vulnerable to hyperexcitability and/or excitotoxic damage. Exercise dramatically increases hippocampal BDNF levels and produces behavioral effects consistent with this phenomenon. In analyzing the literature regarding exercise-induced regulation of BDNF, this paper provides a theoretical model for how the potentially deleterious consequences of BDNF plasticity may be modulated by other endogenous factors. The peptide galanin may play such a role by regulating hippocampal excitability.

  17. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. PMID:26433146

  18. Role of Stress-Related Brain-Derived Neurotrophic Factor (BDNF) in the Rat Submandibular Gland

    International Nuclear Information System (INIS)

    The nerve growth factor (NGF) family comprises NGF, brain-derived neurotrophic factor (BDNF) and neurotrophins (NTs)-3, -4/5, -6 and -7, all of which are collectively referred to as neurotrophins. However, the expression of neurotrophins other than NGF in the salivary gland has not been described in detail. Through interaction with the TrkB receptor, BDNF plays an important role in long-term potentiation. We found that BDNF expression increased within submandibular gland tissue in response to stress, suggesting that the salivary glands are sensitive to stress. In addition, stress caused increases in plasma BDNF derived from the submandibular gland and in TrkB receptor mRNA in the adrenal medulla. Plasma BDNF might activate TrkB receptors in the adrenal medulla during acute stress. The salivary glands are likely to influence not only oral health, but also systemic organs. This review addressed the relationship between hormone-like effects and stress-related BDNF expression in the rat submandibular gland

  19. EXPRESSING HUMAN MATURED BRAIN-DERIVED NEUROTROPHIC FACTOR GENE IN E. Coli AND DETERMINING ITS BIOACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Expressing the human matured brain-derived neurotrophic factor (mBDNF) gene in E.Coli and determining its bioactivity. Methods The resulting gene of mBDNF was subcloned into the EcoRI-BamHI site of the expression vector plasmid pBV220. The ligation products were used to transform the competent E. Coli DH5α. The proteins of mBDNF were experessed by temperature inducing. The expression products were dealed with solubilizing inclusion bodies and refolding protein. It was introduced into the embryonic chicken DRG to test whether the expressed mBDNF is a biologically active protein. Results The recombinant plasmid pBV/mBDNF was successfully constructed. By temperature inducing,under the control of the bacteriophage λ PL promoter, the experessed mBDNF protein was a 14Kd non-fusion protein,which existed in E. Coli as inclusion bodies. The size of expressed mBDNF is identical to the prediction. Bioactivity of the products was proved that it could support the cell survival and neurite growth in the primary cultures of embryonic 8-day-old chicken DRG neurons as compared to control.Conclusion The mBDNF gene can be expressed bioactively in E. Coli.

  20. Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons.

    Science.gov (United States)

    Graves, A R; Moore, S J; Spruston, N; Tryba, A K; Kaczorowski, C C

    2016-08-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampus-dependent learning and memory. Canonically, this has been ascribed to an enhancing effect on neuronal excitability and synaptic plasticity in the CA1 region. However, it is the pyramidal neurons in the subiculum that form the primary efferent pathways conveying hippocampal information to other areas of the brain, and yet the effect of BDNF on these neurons has remained unexplored. We present new data that BDNF regulates neuronal excitability and cellular plasticity in a much more complex manner than previously suggested. Subicular pyramidal neurons can be divided into two major classes, which have different electrophysiological and morphological properties, different requirements for the induction of plasticity, and different extrahippocampal projections. We found that BDNF increases excitability in one class of subicular pyramidal neurons yet decreases excitability in the other class. Furthermore, while endogenous BDNF was necessary for the induction of synaptic plasticity in both cell types, BDNF enhanced intrinsic plasticity in one class of pyramidal neurons yet suppressed intrinsic plasticity in the other. Taken together, these data suggest a novel role for BDNF signaling, as it appears to dynamically and bidirectionally regulate the output of hippocampal information to different regions of the brain. PMID:27146982

  1. Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome

    Science.gov (United States)

    Akyol, Esra Soydaş; Albayrak, Yakup; Beyazyüz, Murat; Aksoy, Nurkan; Kuloglu, Murat; Hashimoto, Kenji

    2015-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a well-established neurotrophin that plays a role in the pathophysiology of numerous psychiatric disorders. Many studies have investigated the serum BDNF levels in patients with schizophrenia. However, there are restricted data in the literature that compare the serum BDNF levels in patients with deficit and nondeficit syndromes. In this study, we aimed to compare the serum BDNF levels between schizophrenic patients with deficit or nondeficit syndrome and healthy controls. Methods After fulfilling the inclusion and exclusion criteria, 58 patients with schizophrenia and 36 healthy controls were included in the study. The patients were grouped as deficit syndrome (N=23) and nondeficit syndrome (N=35) according to the Schedule for the Deficit Syndrome. Three groups were compared in terms of the sociodemographic and clinical variants and serum BDNF levels. Results The groups were similar in terms of age, sex, body mass index, and smoking status. The serum BDNF levels in patients with deficit syndrome were significantly lower than those in healthy controls. In contrast, the serum BDNF levels in patients with nondeficit syndrome were similar to those in healthy controls. Conclusion This study suggests that decreased BDNF levels may play a role in the pathophysiology of schizophrenic patients with deficit syndrome. Nonetheless, additional studies using a larger patient sample size are needed to investigate the serum BDNF levels in schizophrenic patients with deficit syndrome. PMID:25848285

  2. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    Directory of Open Access Journals (Sweden)

    Qiong eWang

    2015-09-01

    Full Text Available Early postnatal maternal separation (MS can play an important role in the development of psychopathologies during ontogeny. In the present study, we investigated the effects of repeated MS (4 h per day from postnatal day [PND] 1–21 on the brain-derived neurotrophic factor (BDNF expression in the medial prefrontal cortex (mPFC, the nucleus accumbens (NAc and the hippocampus of male and female juvenile (PND 21, adolescent (PND 35 and young adult (PND 56 Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and socially reared rats. However, in the mPFC, the BDNF expression was increased with age in the socially reared rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male NMS rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The

  3. Conformational heterogeneity of the calmodulin binding interface

    Science.gov (United States)

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-04-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention.

  4. Calmodulin modulation of ion channels and receptors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.

  5. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    孙大业; 唐文强; 马力耕

    2001-01-01

    Traditionally, calmodulin (CaM) was thought to be a multi-functional receptor for intracellular Ca2+ signals. But in the last ten years, it was found that CaM also exists and acts extracellularly in animal and plant cells to regulate many important physiological functions. Laboratory studies by the authors showed that extracellular CaM in plant cells can stimulate the proliferation of suspension cultured cell and protoplast; regulate pollen germination and pollen tube elongation,and stimulate the light-independent gene expression of Rubisco small subunit (rbcS). Furthermore,we defined the trans-membrane and intracellular signal transduction pathways for extracellular CaM by using a pollen system. The components in this pathway include heterotrimeric G-protein,phospholipase C, IP3, calcium signal and protein phosphorylation etc. Based on our findings, we suggest that extracellular CaM is a polypeptide signal in plants. This idea strongly argues against the traditional concept that there is no intercellular polypeptide signal in plants.

  6. The chemosensitizing agent lubeluzole binds calmodulin and inhibits Ca(2+)/calmodulin-dependent kinase II.

    Science.gov (United States)

    Bruno, Claudio; Cavalluzzi, Maria Maddalena; Rusciano, Maria Rosaria; Lovece, Angelo; Carrieri, Antonio; Pracella, Riccardo; Giannuzzi, Giulia; Polimeno, Lorenzo; Viale, Maurizio; Illario, Maddalena; Franchini, Carlo; Lentini, Giovanni

    2016-06-30

    An affinity capillary electrophoresis (ACE) method to estimate apparent dissociation constants between bovine brain calmodulin (CaM) and non-peptidic ligands was developed. The method was validated reproducing the dissociation constants of a number of well-known CaM ligands. In particular, the potent antagonist 125-C9 was ad hoc synthesized through an improved synthetic procedure. The ACE method was successfully applied to verify CaM affinity for lubeluzole, a well-known neuroprotective agent recently proved useful to potentiate the activity of anti-cancer drugs. Lubeluzole was slightly less potent than 125-C9 (Kd = 2.9 ± 0.7 and 0.47 ± 0.06 μM, respectively) and displayed Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibition (IC50 = 40 ± 1 μM). Possible binding modes of lubeluzole to CaM were explored by docking studies based on the X-ray crystal structures of several trifluoperazine-CaM complexes. An estimated dissociation constant in good agreement with the experimental one was found and the main aminoacidic residues and interactions contributing to complex formation were highlighted. The possibility that interference with Ca(2+) pathways may contribute to the previously observed chemosensitizing effects of lubeluzole on human ovarian adenocarcinoma and lung carcinoma cells are discussed. PMID:27043269

  7. Mediation of flowering by a calmodulin-dependent proteinkinase

    Institute of Scientific and Technical Information of China (English)

    LIANG; Shuping(

    2001-01-01

    [1]Roberts. D. M., Harmon, A. C., Calcium-modulated proteins: Targets of the intracellular signals in higher plants, Ann. Rev.Plant Physiol. Plant Mol. Biol., 1992, 43: 375-414.[2]Sun. D. Y.. Bian, Y. Q., Zhao, B. H. et al., The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division, Plant Cell Physiol., 1995, 36: 133-138.[3]Hrabak, E M., Dickmann, L. J., Satterlee, J. S. et al., Characterization of eight new members of the calmodulin-like domain protein kinase gene family from A rabidopsis thaliana, Plant Mol. Biol., 1996, 31:405-412.[4]Huang, J. F., Teyton, L., Harper, J, F., Activation of a Ca2+-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain, Biochemistry, 1996, 35: 13222-13234.[5]Yoo, B. C., Harmon, A. C., Intramolecular binding contributes to the activation of CDPK, a protein kinase with a calmodulin-like domain, Biochem., 1996, 35: 12029-12037.[6]Saijo, Y., Hata, S., Sheen, J. et al., cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases,Biochem. Biophys. Acta, 1997, 1350: 109-114.[7]Neuhaus. G., Bowler, C., Kern, R. et al., Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways, Cell, 1993, 73: 937-952.[8]Yang, T., Poovaiah, B. W., Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action, J. Biol. Chem., 2000, 275(5): 3137-3143.[9]Watillon, B., Kettmenn, R., Boxus, P. et al., Calcium/calmodulin-binding serine/threonine protein kinase homologous to mammalian type II calcium/calmodulin-dependent protein kinase is expressed in plant cells, Plant Physiol., 1993, 101:1381-1384.[10]Baum, G., Lev-Yadun, S., Fridmann, Y. et al., Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants, EMBO J, 1996, 15: 2988-2996.[11]Lu, Y. T., Dharmasiri, M. A. N., Harrington

  8. Studies on a novel macrophage-specific calmodulin binding glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Orlow, S.J.

    1986-01-01

    The murine macrophage-like cell line J774 and peritoneal exudate cells elicited with thioglycollate or starch contain a major calmodulin-binding protein which is absent in trifluoperazine-resistant variants of J774, resident peritoneal macrophages and these elicited with concanavalin A, lipopolysaccharide, proteose peptone or Bacillus Clamette Guerin. Resident murine peritoneal cells maintained in tissue culture for 3 days begin to accumulate this protein as do human peripheral blood monocytes after 7 days of culture. A specific competitive displacement radioimmunoassay was developed using a rabbit antiserum raised to the partially purified calmodulin binding protein and (/sup 125/I) calmodulin covalently crosslinked to the principal calmodulin binding protein in the preparation. The radioimmunoassay confirmed the unique cellular distribution of this protein suggesting that it may be a marker for certain stages of macrophage differentiation. Monoclonal antibodies were prepared and one of these was used to further purify the protein by immunoaffinity chromatography. A protein of molecular weight 50,000 to 60,000 was isolated. It could be selectively adsorbed to wheat germ agglutinin agarose and subsequently eluted with N-acetyl glucosamine. This property plus its sensitivity to endoglycosidase F led to the conclusion that it is a glycoprotein. The cellular distribution, subcellular localization and evidence of glycosylation suggest that this protein may be a macrophage-specific receptor with a high affinity for calcium-calmodulin.

  9. Studies on a novel macrophage-specific calmodulin binding glycoprotein

    International Nuclear Information System (INIS)

    The murine macrophage-like cell line J774 and peritoneal exudate cells elicited with thioglycollate or starch contain a major calmodulin-binding protein which is absent in trifluoperazine-resistant variants of J774, resident peritoneal macrophages and these elicited with concanavalin A, lipopolysaccharide, proteose peptone or Bacillus Clamette Guerin. Resident murine peritoneal cells maintained in tissue culture for 3 days begin to accumulate this protein as do human peripheral blood monocytes after 7 days of culture. A specific competitive displacement radioimmunoassay was developed using a rabbit antiserum raised to the partially purified calmodulin binding protein and (125I) calmodulin covalently crosslinked to the principal calmodulin binding protein in the preparation. The radioimmunoassay confirmed the unique cellular distribution of this protein suggesting that it may be a marker for certain stages of macrophage differentiation. Monoclonal antibodies were prepared and one of these was used to further purify the protein by immunoaffinity chromatography. A protein of molecular weight 50,000 to 60,000 was isolated. It could be selectively adsorbed to wheat germ agglutinin agarose and subsequently eluted with N-acetyl glucosamine. This property plus its sensitivity to endoglycosidase F led to the conclusion that it is a glycoprotein. The cellular distribution, subcellular localization and evidence of glycosylation suggest that this protein may be a macrophage-specific receptor with a high affinity for calcium-calmodulin

  10. Activation of constitutive nitric oxide synthases by oxidized calmodulin mutants.

    Science.gov (United States)

    Montgomery, Heather J; Bartlett, Ryan; Perdicakis, Basil; Jervis, Eric; Squier, Thomas C; Guillemette, J Guy

    2003-07-01

    Several calmodulin (CaM) mutants were engineered in an effort to identify the functional implications of the oxidation of individual methionines in CaM on the activity of the constitutive isoforms of nitric oxide synthase (NOS). Site-directed mutagenesis was used to substitute the majority of methionines with leucines. Substitution of all nine methionine residues in CaM with leucines had minimal effects on the binding affinity or maximal enzyme activation for either the neuronal (nNOS) or endothelial (eNOS) isoform. Selective substitution permitted determination of the functional consequences of the site-specific oxidation of Met(144) and Met(145) on the regulation of electron transfer within nNOS and eNOS. Site-specific oxidation of Met(144) and Met(145) resulted in changes in the CaM concentration necessary for half-maximal activation of nNOS and eNOS, suggesting that these side chains are involved in stabilizing the productive association between CaM and NOS. However, the site-specific oxidation of Met(144) and Met(145) had essentially no effect on the maximal extent of eNOS activation in the presence of saturating concentrations of CaM. In contrast, the site-specific oxidation of Met(144) (but not Met(145)) resulted in a reduction in the level of nNOS activation that was associated with decreased rates of electron transfer within the reductase domain. Thus, nNOS and eNOS exhibit different functional sensitivities to conditions of oxidative stress that are expected to oxidize CaM. This may underlie some aspects of the observed differences in the sensitivities of proteins in vasculature and neuronal tissues to nitration that are linked to NOS activation and the associated generation of peroxynitrite. PMID:12820885

  11. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    Directory of Open Access Journals (Sweden)

    Rini Rossanti

    2015-09-01

    Full Text Available Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brain-derived neurotrophic factor (BDNF, a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This comparative, cross-sectional, analytic study was carried out on 40 elementary and high school students in Bandung, West Java, who were recruited by stratified random sampling. Short term memory was assessed by a psychologist using the Wechsler Intelligence Scale for Children-III Digit Span test (WISC-III Digit Span. Physical fitness was assessed by a clinical exercise physiologist using the Asian Committee on the Standardization of Physical Fitness Test (ACSPFT. Serum BDNF levels were measured by ELISA test in a certified laboratory. ANOVA test was used to assess for a correlation between serum BDNF concentration and short term memory, as well as between physical fitness level and short term memory. Pearson’s correlation test was used to analyze for a correlation between serum BDNF and physical fitness levels. Results The majority of subjects were in the physical fitness categories of moderate or poor. Subjects had a mean BDNF level of 44,227.8 (SD 10,359 pg/mL. There was no statistically significant difference in physical fitness with either serum BDNF or with short term memory levels (P=0.139 and P=0.383, respectively. Also, no correlation was determined between serum BDNF and physical fitness levels (r=0.222; P=0.169. Conclusion In obese adolescents, short term memory levels are not significantly different between physical fitness levels nor between serum BDNF levels.

  12. Brain-derived neurotrophic factor modulates auditory function in the hearing cochlea.

    Science.gov (United States)

    Sly, David J; Hampson, Amy J; Minter, Ricki L; Heffer, Leon F; Li, Jack; Millard, Rodney E; Winata, Leon; Niasari, Allen; O'Leary, Stephen J

    2012-02-01

    Neurotrophins prevent spiral ganglion neuron (SGN) degeneration in animal models of ototoxin-induced deafness and may be used in the future to improve the hearing of cochlear implant patients. It is increasingly common for patients with residual hearing to undergo cochlear implantation. However, the effect of neurotrophin treatment on acoustic hearing is not known. In this study, brain-derived neurotrophic factor (BDNF) was applied to the round window membrane of adult guinea pigs for 4 weeks using a cannula attached to a mini-osmotic pump. SGN survival was first assessed in ototoxically deafened guinea pigs to establish that the delivery method was effective. Increased survival of SGNs was observed in the basal and middle cochlear turns of deafened guinea pigs treated with BDNF, confirming that delivery to the cochlea was successful. The effects of BDNF treatment in animals with normal hearing were then assessed using distortion product otoacoustic emissions (DPOAEs), pure tone, and click-evoked auditory brainstem responses (ABRs). DPOAE assessment indicated a mild deficit of 5 dB SPL in treated and control groups at 1 and 4 weeks after cannula placement. In contrast, ABR evaluation showed that BDNF lowered thresholds at specific frequencies (8 and 16 kHz) after 1 and 4 weeks posttreatment when compared to the control cohort receiving Ringer's solution. Longer treatment for 4 weeks not only widened the range of frequencies ameliorated from 2 to 32 kHz but also lowered the threshold by at least 28 dB SPL at frequencies ≥16 kHz. BDNF treatment for 4 weeks also increased the amplitude of the ABR response when compared to either the control cohort or prior to treatment. We show that BDNF applied to the round window reduces auditory thresholds and could potentially be used clinically to protect residual hearing following cochlear implantation. PMID:22086147

  13. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  14. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice.

    Science.gov (United States)

    Zunino, G; Messina, A; Sgadò, P; Baj, G; Casarosa, S; Bozzi, Y

    2016-06-01

    Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD. PMID:26987954

  15. Both 5' and 3' flanks regulate Zebrafish brain-derived neurotrophic factor gene expression

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2004-05-01

    Full Text Available Abstract Background Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood. Results Comparison of pufferfish and zebrafish BDNF gene sequences as well as 5' RACE revealed three additional 5' exons and associated promoters. RT-PCR with exon-specific primers showed differential developmental and organ-specific expression. Two exons were detected in the embryo before transcription starts. Of the adult organs examined, the heart expressed a single 5' exon whereas the brain, liver and eyes expressed four of the seven 5' exons. Three of the seven 5' exons were not detectable by RT-PCR. Injection of promoter/GFP constructs into embryos revealed distinct expression patterns. The 3' flank profoundly affected expression in a position-dependent manner and a highly conserved sequence (HCS1 present in 5' exon 1c in a dehancer-like manner. Conclusions The zebrafish BDNF gene is as complex in its promoter structure and patterns of differential promoter expression as is its murine counterpart. The expression of two of the promoters appears to be regulated in a temporally and/or spatially highly circumscribed fashion. The 3' flank has a position-dependent effect on expression, either by affecting transcription termination or post-transcriptional steps. HCS1, a highly conserved sequence in 5' exon 1c, restricts expression to primary sensory neurons. The tools are now available for detailed genetic and molecular analyses of zebrafish BDNF gene expression.

  16. The effect of regular aerobic exercise on urinary brain-derived neurotrophic factor in children

    Directory of Open Access Journals (Sweden)

    Yunita Fediani

    2014-11-01

    Full Text Available Background Nervous system development in early life influences the quality of cognitive ability during adulthood. Neuronal development and neurogenesis are highly influenced by neurotrophins. The most active neurotrophin is brain-derived neurotrophic factor (BDNF. Physical activity has a positive effect on cognitive function. However, few experimental studies have been done on children to assess the effect of aerobic regular exercise on BDNF levels. Objective To assess the effect of regular aerobic exercise on urinary BDNF levels in children. Methods This clinical study was performed in 67 children aged 6-8 years in Palembang. The intervention group (n=34 engaged in aerobic gymnastics three times per week for 8 weeks, while the control group (n=33 engaged in gymnastic only once per week. Measurements of urinary BDNF were performed on both groups before and after intervention. Mann-Whitney and Wilcoxon rank tests were used to analyze the differences between groups. Results There was no difference in urinary BDNF levels between the two groups prior to the intervention. After intervention, the mean urinary BDNF levels were significantly higher in the intervention group than in the control group, 230.2 (SD 264.4 pg/mL vs. 88.0 (SD 35.4 pg/mL, respectively (P=0.027. We also found that engaging in aerobic gymnastics significantly increased urinary BDNF levels from baseline in both groups (P=0.001. Conclusion Regular aerobic exercise can increase urinary BDNF levels and potentially improve cognitive function. Aerobic exercise should be a routine activity in school curriculums in combination with the learning process to improve children’s cognitive ability.[Paediatr Indones. 2014;54:351-7.].

  17. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    Science.gov (United States)

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity. PMID:24164734

  18. Brain-derived neurotrophic factor Val66Met polymorphism and alcohol-related phenotypes.

    Science.gov (United States)

    Nedic, Gordana; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2013-01-10

    Alcoholism is a chronic psychiatric disorder affecting neural pathways that regulate motivation, stress, reward and arousal. Brain-derived neurotrophic factor (BDNF) regulates mood, response to stress and interacts with neurotransmitters and stress systems involved in reward pathways and addiction. Aim of the study was to evaluate the association between a single nucleotide polymorphism (BDNF Val66Met or rs6265) and alcohol related phenotypes in Caucasian patients. In ethnically homogenous Caucasian subjects of the Croatian origin, the BDNF Val66Met genotype distribution was determined in 549 male and 126 female patients with alcohol dependence and in 655 male and 259 female healthy non-alcoholic control subjects. Based on the structured clinical interview, additional detailed clinical interview, the Brown-Goodwin Scale, the Hamilton Rating Scale for Depression and the Clinical Global Impression scores, alcoholic patients were subdivided into those with or without comorbid depression, aggression, delirium tremens, withdrawal syndrome, early/late onset of alcohol abuse, prior suicidal attempt during lifetime, current suicidal behavior, and severity of alcohol dependence. The results showed no significant association between BDNF Val66Met variants and alcohol dependence and/or any of the alcohol related phenotypes in either Caucasian women, or men, with alcohol dependence. There are few limitations of the study. The overall study sample size was large (N=1589) but not well-powered to detect differences in BDNF Val66Met genotype distribution between studied groups. Healthy control women were older than female alcoholic patients. Only one BDNF polymorphism (rs6265) was studied. In conclusion, these data do not support the view that BDNF Val66Met polymorphism correlates with the specific alcohol related phenotypes in ethnically homogenous medication-free Caucasian subjects with alcohol dependence. PMID:23023098

  19. Brain-derived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory relay neurons.

    Science.gov (United States)

    Balkowiec, A; Kunze, D L; Katz, D M

    2000-03-01

    Brain-derived neurotrophic factor (BDNF) is expressed by many primary sensory neurons that no longer require neurotrophins for survival, indicating that BDNF may be used as a signaling molecule by the afferents themselves. Because many primary afferents also express glutamate, we investigated the possibility that BDNF modulates glutamatergic AMPA responses of newborn second-order sensory relay neurons. Perforated-patch, voltage-clamp recordings were made from dissociated neurons of the brainstem nucleus tractus solitarius (nTS), a region that receives massive primary afferent input from BDNF-containing neurons in the nodose and petrosal cranial sensory ganglia. Electrophysiological analysis was combined in some experiments with anterograde labeling of primary afferent terminals to specifically analyze responses of identified second-order neurons. Our data demonstrate that BDNF strongly inhibits AMPA-mediated currents in a large subset of nTS cells. Specifically, AMPA responses were either completely abolished or markedly inhibited by BDNF in 73% of postnatal day (P0) cells and in 82% of identified P5 second-order sensory relay neurons. This effect of BDNF is mimicked by NT-4, but not NGF, and blocked by the Trk tyrosine kinase inhibitor K252a, consistent with a requirement for TrkB receptor activation. Moreover, analysis of TrkB expression in culture revealed a close correlation between the percentage of nTS neurons in which BDNF inhibits AMPA currents and the percentage of neurons that exhibit TrkB immunoreactivity. These data document a previously undefined mechanism of acute modulation of AMPA responses by BDNF and indicate that BDNF may regulate glutamatergic transmission at primary afferent synapses. PMID:10684891

  20. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Sondergaard, M.T.; Vranas, Marta; Behr, Elijah R.; Hildebrandt, L.L.; Lund, J.; Hedley, Paula L.; Camm, A. John; Wettrell, Göran; Fosdal, Inger; Christiansen, Michael; Borglum, Anders D.

    2012-01-01

    substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe......Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a...... calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac...

  1. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine ☆

    OpenAIRE

    Savignac, Helene M.; Corona, Giulia; Mills, Henrietta; Chen, Li; Spencer, Jeremy P.E.; Tzortzis, George; Burnet, Philip W. J.

    2013-01-01

    The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we exami...

  2. Association of decreased serum brain-derived neurotrophic factor (BDNF) concentrations in early pregnancy with antepartum depression

    OpenAIRE

    Fung, Jenny; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Barrios, Yasmin V; Hevner, Karin; Qiu, Chunfang; Williams, Michelle A.

    2015-01-01

    Background Antepartum depression is one of the leading causes of maternal morbidity and mortality in the prenatal period. There is accumulating evidence for the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression. The present study examines the extent to which maternal early pregnancy serum BDNF levels are associated with antepartum depression. Method A total of 968 women were recruited and interviewed in early pregnancy. Antepartum depression prevalence and ...

  3. Association of decreased serum brain-derived neurotrophic factor (BDNF) concentrations in early pregnancy with antepartum depression

    OpenAIRE

    Fung, Jenny; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Barrios, Yasmin V; Hevner, Karin; Qiu, Chunfang; Williams, Michelle A.

    2015-01-01

    Background: Antepartum depression is one of the leading causes of maternal morbidity and mortality in the prenatal period. There is accumulating evidence for the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression. The present study examines the extent to which maternal early pregnancy serum BDNF levels are associated with antepartum depression. Method A total of 968 women were recruited and interviewed in early pregnancy. Antepartum depression prevalence and...

  4. Chronic Unpredictable Stress Decreases Expression of Brain-Derived Neurotrophic Factor (BDNF) in Mouse Ovaries: Relationship to Oocytes Developmental Potential

    OpenAIRE

    Li-Min Wu; Mei-Hong Hu; Xian-Hong Tong; Hui Han; Ni Shen; Ren-Tao Jin; Wei Wang; Gui-Xiang Zhou; Guo-Ping He; Yu-Sheng Liu

    2012-01-01

    BACKGROUND: Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chroni...

  5. Brain-Derived Neurotrophic Factor Inhibits Calcium Channel Activation, Exocytosis, and Endocytosis at a Central Nerve Terminal

    OpenAIRE

    Baydyuk, Maryna; Wu, Xin-sheng; He, Liming; Wu, Ling-Gang

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we re...

  6. Effects of chronic aluminum exposure on learning and memory and brain-derived nerve growth factor in rats

    Institute of Scientific and Technical Information of China (English)

    潘宝龙

    2013-01-01

    Objective To investigate the effects of chronic aluminum exposure on the learning and memory abilities and brain-derived nerve growth factor (BDNF) in SpragueDawley (SD) rats.Methods Thirty-two male SD rats were randomly and equally divided into 4 groups:control group and high-,middle-,and low-dose exposure groups.The rats in high-,middle-,and low-dose expo-

  7. Brain-derived neurotrophic factor and its receptor in the human and the sand rat intervertebral disc

    OpenAIRE

    Gruber, Helen E.; Ingram, Jane A; Hoelscher, Gretchen; Zinchenko, Natalia; Norton, H. James; Hanley, Edward N

    2008-01-01

    Introduction Brain-derived neurotrophic factor (BDNF) was first identified in the intervertebral disc (IVD) when its molecular upregulation was observed in sections of nucleus pulposus cultured under conditions of increased osmolarity. BDNF is now known to be involved in a number of biologic functions, including regulation of differentiation/survival of sensory neurons, regulation of nociceptive function and central pain modulation, and modulation of inflammatory pain hypersensitivity. In add...

  8. Effects of the Brain Derived Neurotrophic Growth Factor Val66Met Variation on Hippocampus Morphology in Bipolar Disorder

    OpenAIRE

    Chepenik, Lara G.; Fredericks, Carolyn; Papademetris, Xenophon; Spencer, Linda; Lacadie, Cheryl; Wang, Fei; Pittman, Brian; Duncan, James S.; Staib, Lawrence H.; Duman, Ronald S.; Gelernter, Joel; Blumberg, Hilary P.

    2008-01-01

    Histological and behavioral research in bipolar disorder (BD) implicates structural abnormalities in the hippocampus. Brain-derived neurotrophic growth factor (BDNF) protein is associated with hippocampal development and plasticity, and in mood disorder pathophysiology. We tested the hypotheses both the BDNF val66met polymorphism and BD diagnosis are associated with decreased hippocampus volume, and individuals with BD who carry the met allele have the smallest hippocampus volumes compared to...

  9. The Effect of Exercise Training Modality on Serum Brain Derived Neurotrophic Factor Levels in Individuals with Type 2 Diabetes

    OpenAIRE

    Swift, Damon L.; Johannsen, Neil M.; Myers, Valerie H.; Earnest, Conrad P.; Smits, Jasper A. J.; Blair, Steven N.; Church, Timothy S.

    2012-01-01

    INTRODUCTION: Brain derived neurotrophic factor (BDNF) has been implicated in memory, learning, and neurodegenerative diseases. However, the relationship of BDNF with cardiometabolic risk factors is unclear, and the effect of exercise training on BDNF has not been previously explored in individuals with type 2 diabetes. METHODS: Men and women (N = 150) with type 2 diabetes were randomized to an aerobic exercise (aerobic), resistance exercise (resistance), or a combination of both (combination...

  10. The association between brain-derived neurotrophic factor Val66Met variants and psychotic symptoms in posttraumatic stress disorder

    OpenAIRE

    Pivac, Nela; Kozarić-Kovačić, Dragica; Grubišić-Ilić, Mirjana; Nedić, Gordana; Rakoš, Iva; Nikolac, Matea; Blažev, Martina; Muck-Šeler, Dorotea

    2012-01-01

    Objective: Psychotic symptoms frequently occur in veterans with combat-related posttraumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) plays a major role in neurodevelopment, neuro-regeneration, neurotransmission, learning, regulation of mood and stress responses. The Met allele of the functional polymorphism, BDNF Val66Met, is associated with psychotic disorders. This study intended to assess whether the Met allele is overrepresented in unrelated Caucasian male veteran...

  11. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition

    OpenAIRE

    Gomez-Pinilla, Fernando; Vaynman, Shoshanna; Ying, Zhe

    2008-01-01

    Brain-derived neurotrophic factor (BDNF) has been shown to mediate the effects of exercise on synaptic plasticity and cognitive function, in a process in which energy metabolism probably plays an important role. The purpose of the present study was to examine the influence of exercise on rat hippocampal expression of molecules involved in the regulation of energy management and cognitive function, and to determine the role of BDNF in these events. One week of voluntary exercise that enhanced ...

  12. The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Moderates an Effect of Physical Activity on Working Memory Performance

    OpenAIRE

    Erickson, Kirk I.; Banducci, Sarah E.; Weinstein, Andrea M.; MacDonald, Angus W.; Ferrell, Robert E.; Halder, Indrani; Flory, Janine D.; Manuck, Stephen B.

    2013-01-01

    Physical activity enhances cognitive performance, yet individual variability in its effectiveness limits its widespread therapeutic application. Genetic differences might be one source of this variation. For example, carriers of the methionine-specifying (Met) allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have reduced secretion of BDNF and poorer memory, yet physical activity increases BDNF levels. To determine whether the BDNF polymorphism moderated an associat...

  13. Brain-Derived Neurotrophic Factor Serum Levels and Genotype: Association with Depression during Interferon-α Treatment

    OpenAIRE

    Lotrich, Francis E.; Albusaysi, Salwa; Ferrell, Robert E.

    2013-01-01

    Depression has been associated with inflammation, and inflammation may both influence and interact with growth factors such as brain-derived neurotrophic factor (BDNF). Both the functional Val66Met BDNF polymorphism (rs6265) and BDNF levels have been associated with depression. It is thus plausible that decreased BDNF could mediate and/or moderate cytokine-induced depression. We therefore prospectively employed the Beck Depression Inventory-II (BDI-II), the Hospital Anxiety and Depression Sca...

  14. Effects of Music Aerobic Exercise on Depression and Brain-Derived Neurotrophic Factor Levels in Community Dwelling Women

    OpenAIRE

    2015-01-01

    A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE gr...

  15. The effect of regular Taekwondo exercise on Brain-derived neurotrophic factor and Stroop test in undergraduate student

    OpenAIRE

    Kim, Youngil

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effect of Taekwondo exercise on Brain-derived neurotrophic factor and the Stroop test in undergraduate students. [Methods] Fourteen male subjects participated in this study. They were separated into a Control group (N = 7) and an Exercise group (N = 7). Subjects participated in Taekwondo exercise training for 8 weeks. They underwent to Taekwondo exercise training for 85 minutes per day, 5 times a week at RPE of 11~15. The taekwondo ex...

  16. Brain-derived neurotrophic factor gene transfection promotes neuronal repair and neurite regeneration after diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    Yin Yu; Chao Du; Xingli Zhao; Jiajia Shao; Qiang Shen; Tao Jiang; Wei Wu; Dong Zhu; Yu Tian; Yongchuan Guo

    2011-01-01

    This study sought to assess the potential of brain-derived neurotrophic factor (BDNF) to promote neuronal repair and regeneration in rats with diffuse axonal injury, and to examine the accompanying neurobiological changes. BDNF gene transfection reduced the severity of the pathological changes associated with diffuse axonal injury in cortical neurons of the frontal lobe and increased neurofilament protein expression. These findings demonstrate that BDNF can effectively promote neuronal repair and neurite regeneration after diffuse axonal injury.

  17. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease

    OpenAIRE

    Nagahara, Alan H.; Merrill, David A.; Coppola, Giovanni; Tsukada, Shingo; Schroeder, Brock E; Shaked, Gideon M.; Wang, Ling; Blesch, Armin; Kim, Albert; Conner, James M; Rockenstein, Edward; Chao, Moses V.; Koo, Edward H.; Geschwind, Daniel; Masliah, Eliezer

    2009-01-01

    Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer’s disease1–3. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer’s disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes a...

  18. Identification of calmodulin released by osmotic shock of maize roots

    International Nuclear Information System (INIS)

    Exogenously applied calcium at low concentrations (10 mM and less) stimulates, while higher concentrations (greater than 20 mM) inhibit maize root growth. The phenothiazine calmodulin inhibitors chlorpromazine and trifluoperzine inhibit maize root growth and are reversible by calcium. The loss of acid-inducible growth after osmotic shock indicates that at least part of the complex associated the acid-induced growth is released. Since calmodulin (CaM) is a small protein (mol wt about 17 kD) found to play a pivotal role in Ca+2 regulated mechanisms, the material released from maize roots by osmotic shock was examined for the presence of CaM

  19. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.

    Science.gov (United States)

    Lv, Xue-Man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-04-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  20. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  1. Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome

    Directory of Open Access Journals (Sweden)

    Akyol ES

    2015-03-01

    Full Text Available Esra Soydas Akyol,1 Yakup Albayrak,2 Murat Beyazyüz,3 Nurkan Aksoy,4 Murat Kuloglu,5 Kenji Hashimoto6 1Deparment of Psychiatry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 2Department of Psychiatry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 3Department of Psychiatry, Biga State Hospital, Çanakkale, Turkey; 4Department of Biochemistry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 5Department of Psychiatry, Faculty of Medicine, Akdeniz University, Antalya, Turkey; 6Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan Background: Brain-derived neurotrophic factor (BDNF is a well-established neurotrophin that plays a role in the pathophysiology of numerous psychiatric disorders. Many studies have investigated the serum BDNF levels in patients with schizophrenia. However, there are restricted data in the literature that compare the serum BDNF levels in patients with deficit and nondeficit syndromes. In this study, we aimed to compare the serum BDNF levels between schizophrenic patients with deficit or nondeficit syndrome and healthy controls.Methods: After fulfilling the inclusion and exclusion criteria, 58 patients with schizophrenia and 36 healthy controls were included in the study. The patients were grouped as deficit syndrome (N=23 and nondeficit syndrome (N=35 according to the Schedule for the Deficit Syndrome. Three groups were compared in terms of the sociodemographic and clinical variants and serum BDNF levels.Results: The groups were similar in terms of age, sex, body mass index, and smoking status. The serum BDNF levels in patients with deficit syndrome were significantly lower than those in healthy controls. In contrast, the serum BDNF levels in patients with nondeficit syndrome were similar to those in healthy controls.Conclusion: This study suggests that decreased BDNF levels may play a role in the pathophysio­logy of schizophrenic

  2. Brain-derived neurotrophic factor inducing angiogenesis through modulation of matrix-degrading proteases

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Recent studies have proved that brain-derived neurotrophic factor (BDNF) possesses angiogenic activity in vitro and in vivo. However, the proangiogenic mechanism of BDNF has not yet been provided with enough information. To explore the proangiogenic mechanism of BDNF, we investigated the effects of BDNF on extracellular proteolytic enzymes, including matrix metalloproteinases (MMPs) and serine proteases, particularly the urokinase-type plasminogen activator (uPA)-plasmin system in human umbilical vein endothelial cells (HUVECs) model. Methods Tube formation assay was performed in vitro to evaluate the effects of BDNF on angiogenesis. The HUVECs were treated with various concentrations of BDNF (25-400 ng/ml) for different (6-48 hours), reverse transcriptase-polymerase chain reaction (RT-PCR) was used to assay MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA in HUVECs, and the conditioned medium was analyzed for MMP and uPA activity by gelatin zymography and fibrin zymography, respectively. uPA, plasminogen activator inhibitor (PAI)-1, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-2 were quantified by western blotting analysis. Results BDNF elicited robust and elongated angiogeneis in two-dimensional cultures of HUVECs in comparison with control. The stimulation of serum-starved HUVECs with BDNF caused obvious increase in MMP-2 and MMP-9 mRNA expression and induced the pro-MMP-2 and pro-MMP-9 activation without significant differences in proliferation. However, BDNF had no effect on TIMP-1 and TIMP-2 production. BDNF increased uPA and PAI-1 production in a dose-dependent manner. Maximal activation of uPA and PAI-1 expression in HUVECs was induced by 100 ng/ml BDNF, while effects of 200 ng/ml and 400 ng/ml BDNF were slightly reduced in comparison with with those of 100 ng/ml. Protease activity for uPA was also increased by BDNF in a dose-dependent manner. BDNF also stimulated uPA and PAI-1 production beyond that in control cultures in a time

  3. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  4. Tooth pulp inflammation increases brain-derived neurotrophic factor expression in rodent trigeminal ganglion neurons.

    Science.gov (United States)

    Tarsa, L; Bałkowiec-Iskra, E; Kratochvil, F J; Jenkins, V K; McLean, A; Brown, A L; Smith, J A; Baumgartner, J C; Balkowiec, A

    2010-06-01

    Nociceptive pathways with first-order neurons located in the trigeminal ganglion (TG) provide sensory innervation to the head, and are responsible for a number of common chronic pain conditions, including migraines, temporomandibular disorders and trigeminal neuralgias. Many of those conditions are associated with inflammation. Yet, the mechanisms of chronic inflammatory pain remain poorly understood. Our previous studies show that the neurotrophin brain-derived neurotrophic factor (BDNF) is expressed by adult rat TG neurons, and released from cultured newborn rat TG neurons by electrical stimulation and calcitonin gene-related peptide (CGRP), a well-established mediator of trigeminal inflammatory pain. These data suggest that BDNF plays a role in activity-dependent plasticity at first-order trigeminal synapses, including functional changes that take place in trigeminal nociceptive pathways during chronic inflammation. The present study was designed to determine the effects of peripheral inflammation, using tooth pulp inflammation as a model, on regulation of BDNF expression in TG neurons of juvenile rats and mice. Cavities were prepared in right-side maxillary first and second molars of 4-week-old animals, and left open to oral microflora. BDNF expression in right TG was compared with contralateral TG of the same animal, and with right TG of sham-operated controls, 7 and 28 days after cavity preparation. Our ELISA data indicate that exposing the tooth pulp for 28 days, with confirmed inflammation, leads to a significant upregulation of BDNF in the TG ipsilateral to the affected teeth. Double-immunohistochemistry with antibodies against BDNF combined with one of nociceptor markers, CGRP or transient receptor potential vanilloid type 1 (TRPV1), revealed that BDNF is significantly upregulated in TRPV1-immunoreactive (IR) neurons in both rats and mice, and CGRP-IR neurons in mice, but not rats. Overall, the inflammation-induced upregulation of BDNF is stronger in mice

  5. Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer

    Directory of Open Access Journals (Sweden)

    Mokbel Kefah

    2011-07-01

    Full Text Available Abstract Introduction Brain-derived neurotrophic factor (BDNF has established physiological roles in the development and function of the vertebrate nervous system. BDNF has also been implicated in several human malignancies, including breast cancer (BC. However, the precise biological role of BDNF and its utility as a novel biomarker have yet to be determined. The objective of this study was to determine the mRNA and protein expression of BDNF in a cohort of women with BC. Expression levels were compared with normal background tissues and evaluated against established pathological parameters and clinical outcome over a 10 year follow-up period. Methods BC tissues (n = 127 and normal tissues (n = 33 underwent RNA extraction and reverse transcription, BDNF transcript levels were determined using real-time quantitative PCR. BDNF protein expression in mammary tissues was assessed with standard immuno-histochemical methodology. Expression levels were analyzed against tumour size, grade, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI and clinical outcome over a 10 year follow-up period. Results Immuno-histochemical staining revealed substantially greater BDNF expression within neoplastic cells, compared to normal mammary epithelial cells. Significantly higher mRNA transcript levels were found in the BC specimens compared to background tissues (p = 0.007. The expression of BDNF mRNA was demonstrated to increase with increasing NPI; NPI-1 vs. NPI-2 (p = 0.009. Increased BDNF transcript levels were found to be significantly associated with nodal positivity (p = 0.047. Compared to patients who remained disease free, higher BDNF expression was significantly associated with local recurrence (LR (p = 0.0014, death from BC (p = 0.018 and poor prognosis overall (p = 0.013. After a median follow up of 10 years, higher BDNF expression levels were significantly associated with reduced overall survival (OS (106 vs. 136 months, p = 0.006. BDNF

  6. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  7. Bending of the calmodulin central helix : A theoretical study

    NARCIS (Netherlands)

    VanderSpoel, D; DeGroot, BL; Hayward, S; Berendsen, HJC; Vogel, HJ

    1996-01-01

    The crystal structure of calcium-calmodulin (CaM) reveals a protein with a typical dumbbell structure. Various spectroscopic studies have suggested that the central linker region of CaM, which is alpha-helical in the crystal structure, is flexible in solution. In particular, NMR studies have indicat

  8. Intracellular levels of calmodulin are increased in transformed cells

    Institute of Scientific and Technical Information of China (English)

    WANG; HONGQINGZHANG; 等

    1992-01-01

    By using Hoechst 33342,rabbit anti calmodulin antibody,FITC-labeled goat anti rabbit IgG and SR101(sulfo rhodamine 101)simultaneously to stain individual normal and transformed cells,the microspectrophotometric analysis demonstrated that 3 markers which represented the nucleus,calmodulin and total protein respectively,could be recognized in individualj cells without interference,The phase of the cell cycle was determined by DNA content(Hoechst 33342),We found that in transformed cells(NIH3T3) tsRSV-LA90,cultured at 33℃ and transformed C3H10T1/2 Cells),the ration of calmodulin to total protein (based on the phases of cell cycle)was higher than that in normal cells (NIH3T3 tsRSV-LA90 cells,cultured at 39℃ and C3H10T1/2 cells)in every cell cycle phase,This ration increased obviously only from G1 to S phase in either normal or transformed cells.The results showed that calmodulinreally increased during the transformation,and its increase was specific.In the meantime when cells proceeded from G1 to S.the intraceollular calmodulin content also increased specifically.

  9. The Chinese herbal formula Tongluo Jiunao promotes expression of brain-derived neurotrophic factor/tropomyosin-related kinase B pathways in a rat model of ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Peiman Alesheikh; Yangyang Yan; Huiling Tang; Pengtao Li; Wei Zhang; Yanshu Pan; Arezou Mashoufi; Liyun Zhao; Runjun Wang; Bo Di

    2011-01-01

    The neurotrophin-Trk receptor pathway is an intrinsic pathway to relieve damage to the central nervous system. The present study observed the effects of Tongluo Jiunao (TLJN), which comprises Panax Notoginseng and Gardenia Jasminoides, on expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in a rat model of focal cerebral ischemic injury. Xue Sai Tong (XST), comprising Panax Notoginseng, served as the positive control. Mechanisms of neuroprotection were analyzed following TLJN injection. Following establishment of the middle cerebral artery occlusion models, TLJN and XST were intraperitoneally injected, and 2, 3, 5-triphenyltetrazolium chloride staining results revealed that TLJN injection reduced infarct volume, suggesting that TLJN exerted a neuroprotective effect. Enzyme-linked immunosorbent assay results showed that TLJN elevated BDNF and growth associated protein-43 expression in ischemic brain tissues, as well as serum BDNF levels. Reverse-transcription polymerase chain reaction and western blot results showed that TLJN injection did not affect TrkB expression in the ischemic brain tissues of rats. These results suggested that TLJN injection reduced damage to ischemic brain tissues and increased BDNF expression. In addition, TLJN injection resulted in better promoting effects on neurotrophic factor expression compared with XST.

  10. Stem cells modified by brain-derived neurotrophic fac-tor to promote stem cells differentiation into neurons and enhance neuromotor function after brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sai; LIU Xiao-zhi; LIU Zhen-lin; WANG Yan-min; HU Qun-liang; MA Tie-zhu; SUN Shi-zhong

    2009-01-01

    Objective: To promote stem cells differentiation into neurons and enhance neuromotor function after brain in-jury through brain-derived neurotrophic factor (BDNF) induction.Methods: Recombinant adenovirus vector was ap-plied to the transfection of BDNF into human-derived um-bilical cord mesenchymal stem cells (UCMSCs). Enzyme linked immunosorbent assay (ELISA) was used to deter-mine the secretion phase of BDNF. The brain injury model of athymic mice induced by hydraulic pressure percussion was established for transplantation of stem cells into the edge of injury site. Nerve function scores were obtained, and the expression level of transfected and non-transfected BDNF, proportion of neuron specific enolase (NSE) andglial fibrillary acidic protein (GFAP), and the number of apoptosis cells were compared respectively. Results: The BDNF expression achieved its stabiliza-tion at a high level 72 hours after gene transfection. The mouse obtained a better score of nerve function, and the proportion of the NSE-positive cells increased significantly (P<0.05), but GFAP-positive cells decreased in BDNF-UCMSCs group compared with the other two groups (P<0.05). At the site of high expression of BDNF, the number of apoptosis cells decreased markedly.Conclusion: BDNF gene can promote the differentia-tion of the stem cells into neurons rather than gliai cells, and enhance neuromotor function after brain injury.

  11. Possible Involvement of Standardized Bacopa monniera Extract (CDRI-08) in Epigenetic Regulation of reelin and Brain-Derived Neurotrophic Factor to Enhance Memory

    Science.gov (United States)

    Preethi, Jayakumar; Singh, Hemant K.; Rajan, Koilmani E.

    2016-01-01

    Bacopa monniera extract (CDRI-08; BME) has been known to improve learning and memory, and understanding the molecular mechanisms may help to know its specificity. We investigated whether the BME treatment alters the methylation status of reelin and brain-derived neurotropic factor (BDNF) to enhance the memory through the interaction of N-methyl-D-aspartate receptor (NMDAR) with synaptic proteins. Rat pups were subjected to novel object recognition test following daily oral administration of BME (80 mg/kg) in 0.5% gum acacia (per-orally, p.o.; PND 15–29)/three doses of 5-azacytidine (5-azaC; 3.2 mg/kg) in 0.9% saline (intraperitoneally, i.p.) on PND-30. After the behavioral test, methylation status of reelin, BDNF and activation of NMDAR, and its interactions with synaptic proteins were tested. Rat pups treated with BME/5-azaC showed higher discrimination towards novel objects than with old objects during testing. Further, we observed an elevated level of unmethylated DNA in reelin and BDNF promoter region. Up-regulated reelin along with the splice variant of apolipoprotein E receptor 2 (ApoER 2, ex 19) form a cluster and activate NMDAR through disabled adopter protein-1 (DAB1) to enhance BDNF. Observed results suggest that BME regulate reelin epigenetically, which might enhance NMDAR interactions with synaptic proteins and induction of BDNF. These changes may be linked with improved novel object recognition memory.

  12. Can low brain-derived neurotrophic factor levels be a marker of the presence of depression in obese women?

    Directory of Open Access Journals (Sweden)

    Celik Guzel E

    2014-11-01

    Full Text Available Eda Celik Guzel,1 Esra Bakkal,1 Savas Guzel,2 Hasan Emre Eroglu,3 Ayse Acar,2 Volkan Kuçukyalcin,2 Birol Topcu4 1Department of Family Physician, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 2Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 3Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 4Department of Biostatistics, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey Objective: Depression is a common condition in obese women that can result in severe impairment of their physical and social functioning. A deficiency of brain-derived neurotrophic factor (BDNF is involved in the mechanism of depression. The aim of this study is to investigate whether BDNF levels differ between obese female patients and healthy controls and whether BDNF levels alter with affective states in depressive obese women.Methods: The study group included 40 obese, 40 preobese, and 40 normal weight women. BDNF levels were measured with an enzyme-linked immunosorbent assay in patient and control groups. For identifying the depression and anxiety status, Beck Depression/Anxiety Inventories were used; and for the evaluation of cognitive functions, the mini-mental state examination was used.Results: BDNF levels were significantly lower in obese patients compared to the control group (P<0.01. BDNF levels were significantly lower in obese patients with depression compared to the obese patients without depression (P<0.05. The Beck Depression Inventory showed a negative correlation with BDNF (r=−0.044; P<0.01 and a positive correlation with the Beck Anxiety Inventory (r=0.643; P<0.001, vitamin B12 levels (r=0.023; P<0.001, and insulin levels (r=0.257; P<0.05 in obese patients. When receiver operating characteristic curve analysis was used to analyze the suitability of BDNF to identify depression in obese women, the area under the curve for BDNF, 0.756, was found to be significant (P=0.025. BDNF

  13. Expression of calmodulin and calmodulin binding proteins in rat fibroblasts stably transfected with protein kinase C and oncogenes

    DEFF Research Database (Denmark)

    Ye, Q; Wei, Y; Fischer, R;

    1997-01-01

    Molecular mechanisms leading to elevated calmodulin (CaM) expression in cancer have not yet been discovered. We have quantitated the levels of transcripts derived from all three CaM genes in a variety of the same origin rat fibroblasts transformed with oncogenes in combination with gene for protein...

  14. Combining acellular nerve allografts with brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone

    OpenAIRE

    Zhang, Yanru; Zhang, Hui; Zhang, Gechen; Ka, Ka; Huang, Wenhua

    2014-01-01

    In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone...

  15. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Institute of Scientific and Technical Information of China (English)

    Hyung Ho Yoon; Joongkee Min; Nari Shin; Yong Hwan Kim; Jin-Mo Kim; Yu-Shik Hwang; Jun-Kyo Francis Suh; Onyou Hwang; Sang Ryong Jeon

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18 F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  16. Analysis of the state of posttranslational calmodulin methylation in developing pea plants

    International Nuclear Information System (INIS)

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of [3H]methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated and green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity

  17. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brainrelated diseases

    Institute of Scientific and Technical Information of China (English)

    Naoki; Adachi; Tadahiro; Numakawa; Misty; Richards; Shingo; Nakajima; Hiroshi; Kunugi

    2014-01-01

    Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.

  18. Effects of maternal smoking and exposure to methylmercury on brain-derived neurotrophic factor concentrations in umbilical cord serum

    DEFF Research Database (Denmark)

    Spulber, Stefan; Rantamäki, Tomi; Nikkilä, Outi;

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal survival and differentiation. We examined the concentration of BDNF in cord serum from newborns exposed to methylmercury (MeHg) and polychlorinated biphenyls (PCB) in utero by maternal consumption of whale meat. The...... decrease in serum BDNF induced by MeHg exposure. Cord blood BDNF has been reported to increase in association with perinatal brain injuries and has been proposed as a possible predictive marker of neurodevelopmental outcomes. The negative effect that MeHg seems to exert on cord blood BDNF concentration...

  19. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla; Hoejman, Pernille;

    2015-01-01

    UNLABELLED: The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant...... depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU) or...

  20. Calcium/calmodulin-dependent protein kinase II is a ubiquitous molecule in human long-term memory synaptic plasticity: A systematic review

    Directory of Open Access Journals (Sweden)

    Negar Ataei

    2015-01-01

    Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory.

  1. The brain-derived neurotrophic factor Val66Met polymorphism moderates early deprivation effects on attention problems.

    Science.gov (United States)

    Gunnar, Megan R; Wenner, Jennifer A; Thomas, Kathleen M; Glatt, Charles E; McKenna, Morgan C; Clark, Andrew G

    2012-11-01

    Adverse early care is associated with attention regulatory problems, but not all so exposed develop attention problems. In a sample of 612 youth (girls = 432, M = 11.82 years, SD = 1.5) adopted from institutions (e.g., orphanages) in 25 countries, we examined whether the Val66Met polymorphism of the brain-derived neurotrophic factor gene moderates attention problems associated with the duration of institutional care. Parent-reported attention problem symptoms were collected using the MacArthur Health and Behavior Questionnaire. DNA was genotyped for the brain-derived neurotrophic factor Val66Met (rs6265) single nucleotide polymorphism. Among youth from Southeast (SE) Asia, the predominant genotype was valine/methionine (Val/Met), whereas among youth from Russia/Europe and Caribbean/South America, the predominant genotype was Val/Val. For analysis, youth were grouped as carrying Val/Val or Met/Met alleles. Being female, being from SE Asia, and being younger when adopted were associated with fewer attention regulatory problem symptoms. Youth carrying at least one copy of the Met allele were more sensitive to the duration of deprivation, yielding an interaction that followed a differential susceptibility pattern. Thus, youth with Val/Met or Met/Met genotypes exhibited fewer symptoms than Val/Val genotypes when adoption was very early and more symptoms when adoption occurred later in development. Similar patterns were observed when SE Asian youth and youth from other parts of the world were analyzed separately. PMID:23062292

  2. Fluorescence Spectra Studies on the Interaction between Lanthanides and Calmodulin

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The conformation of Calmodulin(CaM) induced by lanthanides has been examined using fluorescence methods.With the addition of lanthanide (Ln3+), the intrinsic fluorescence intensity of CaM without calcium ions (Apo-CaM) first increases and then decreases.Ln3+ causes the decrease of intrinsic fluorescence intensity of calcium saturated CaM (Ca2+4-CaM) only at high concentrations.At low concentrations, Ln3+ results not only in the enhancement of fluorescence intensity of Apo-CaM, but also in a blue shift of the maximum emission wavelengh of dansyl labeled calmodulin(Apo-D-CaM).The molecular mechanism of the interaction between Ln3+ and CaM has been discussed in the light of the fluorescence spectra.

  3. Blockade by calmodulin inhibitors of Ca2+ channels in smooth muscle from rat vas deferens.

    OpenAIRE

    Nakazawa, K; Higo, K.; Abe, K; Tanaka, Y.; Saito, H; Matsuki, N.

    1993-01-01

    1. Effects of three compounds which are used as calmodulin inhibitors (trifluoperazine, W-7 and calmidazolium) on Ca2+ channels were investigated in smooth muscle from rat vas deferens. 2. All three calmodulin inhibitors relaxed the smooth muscle precontracted by a high concentration of KCl (63.7 mM). The order of potency for the relaxation was trifluoperazine > W-7 > calmidazolium. 3. In binding studies using a microsomal fraction of vas deferens, all these calmodulin inhibitors displaced sp...

  4. Calmodulin and calmodulin-binding proteins in cystic fibrosis and normal human fibroblasts

    International Nuclear Information System (INIS)

    The authors have investigated the possibility that a lesion in a calmodulin (CaM)-dependent regulatory mechanism may be involved in cystic fibrosis (CF). The level of CaM, CaM-binding proteins (CaM-BP) and a CaM-dependent phosphatase (CaM-Ptase) have been compared in cultured fibroblasts from CF patients versus age- and sex-matched control subjects. The CaM concentration, measured by radioimmunoassay, ranged from 0.20 to 0.76 μg/mg protein (n=8); there was no significant difference in the average CaM concentration from CF patients vs controls. Using Western blotting techniques with 125I-CaM, they detected at least ten distinct CaM-BPs in fibroblasts with molecular weights ranging from 230K to 37K; the only consistent difference between control and CF cell lines was in a 46.5K CaM-BP, which was depressed in all three CF samples. The 46.5 K CaM-BP was found only in the particulate fraction. A 59K CaM-BP was identified as a CaM-Ptase by its crossreactivity with an antibody against a brain CaM-Ptase. There was no significant difference in CaM-Ptase activity or in the amount of the phosphatase as determined by radioimmunoassay in CF vs. normal samples (n=8). Thus, the level of CaM as well as its various enzymes and proteins do not appear to be altered in CF fibroblasts except for a CaM-BP of 46.5K, the identity of which is currently being investigated

  5. Serum brain-derived neurotrophic factor (BDNF) levels in patients with panic disorder: as a biological predictor of response to group cognitive behavioral therapy.

    Science.gov (United States)

    Kobayashi, Keisuke; Shimizu, Eiji; Hashimoto, Kenji; Mitsumori, Makoto; Koike, Kaori; Okamura, Naoe; Koizumi, Hiroki; Ohgake, Shintaro; Matsuzawa, Daisuke; Zhang, Lin; Nakazato, Michiko; Iyo, Masaomi

    2005-06-01

    Little is known about biological predictors of treatment response in panic disorder. Our previous studies show that the brain-derived neurotrophic factor (BDNF) may play a role in the pathophysiology of major depressive disorders and eating disorders. Assuming that BDNF may be implicated in the putative common etiologies of depression and anxiety, the authors examined serum BDNF levels of the patients with panic disorder, and its correlation with therapeutic response to group cognitive behavioral therapy (CBT). Group CBT (10 consecutive 1 h weekly sessions) was administered to the patients with panic disorder after consulting the panic outpatient special service. Before treatment, serum concentrations of BDNF and total cholesterol were measured. After treatment, we defined response to therapy as a 40% reduction from baseline on Panic Disorder Severity Scale (PDSS) score as described by [Barlow, D.H., Gorman, J.M., Shear, M.K., Woods, S.W., 2000. Cognitive-behavioral therapy, imipramine, or their combination for panic disorder: A randomized controlled trial. JAMA. 283, 2529-2536]. There were 26 good responders and 16 poor responders. 31 age- and sex-matched healthy normal control subjects were also recruited in this study. The serum BDNF levels of the patients with poor response (25.9 ng/ml [S.D. 8.7]) were significantly lower than those of the patients with good response (33.7 ng/ml [S.D. 7.5]). However, there were no significant differences in both groups of the patients, compared to the normal controls (29.1 ng/ml [S.D. 7.1]). No significant differences of other variables including total cholesterol levels before treatment were detected between good responders and poor responders. These results suggested that BDNF might contribute to therapeutic response of panic disorder. A potential link between an increased risk of secondary depression and BDNF remains to be investigated in the future. PMID:15905010

  6. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson’s disease patients with mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Alberto eCosta

    2015-09-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a trophic factor regulating cell survival and synaptic plasticity. Recent findings indicate that BDNF could be a potential regulatory factor for cognitive functioning in normal and/or neuropathological conditions. With regard to neurological disorders, recent data suggest that individuals with Parkinson’s disease (PD may be affected by cognitive deficits and that they have altered BDNF production. Therefore, the hypothesis can be advanced that BDNF levels are associated with the cognitive state of these patients. With this in mind, the present study was aimed at exploring the relationship between BDNF serum levels and cognitive functioning in PD patients with mild cognitive impairment (MCI. Thirteen PD patients with MCI were included in the study. They were administered an extensive neuropsychological test battery that investigated executive, episodic memory, attention, visual-spatial and language domains. A single score was obtained for each cognitive domain by averaging z-scores on tests belonging to that specific domain. BDNF serum levels were measured by enzyme-linked immunoassay (ELISA. Pearson’s correlation analyses were performed between BDNF serum levels and cognitive performance. Results showed a significant positive correlation between BDNF serum levels and both attention (p<0.05 and executive (p<0.05 domains. Moreover, in the executive domain we found a significant correlation between BDNF levels and scores on tests assessing working memory and self-monitoring/inhibition. These preliminary data suggest that BDNF serum levels are associated with cognitive state in PD patients with MCI. Given the role of BDNF in regulating synaptic plasticity, the present findings give further support to the hypothesis that this trophic factor may be a potential biomarker for evaluating cognitive changes in PD and other neurological syndromes associated with cognitive decline.

  7. The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals With Schizophrenia: A Single-Blind, Randomized Clinical Trial.

    Science.gov (United States)

    Kimhy, David; Vakhrusheva, Julia; Bartels, Matthew N; Armstrong, Hilary F; Ballon, Jacob S; Khan, Samira; Chang, Rachel W; Hansen, Marie C; Ayanruoh, Lindsey; Lister, Amanda; Castrén, Eero; Smith, Edward E; Sloan, Richard P

    2015-07-01

    Individuals with schizophrenia display substantial neurocognitive deficits for which available treatments offer only limited benefits. Yet, findings from studies of animals, clinical and nonclinical populations have linked neurocognitive improvements to increases in aerobic fitness (AF) via aerobic exercise training (AE). Such improvements have been attributed to up-regulation of brain-derived neurotrophic factor (BDNF). However, the impact of AE on neurocognition, and the putative role of BDNF, have not been investigated in schizophrenia. Employing a proof-of-concept, single-blind, randomized clinical trial design, 33 individuals with schizophrenia were randomized to receive standard psychiatric treatment (n = 17; "treatment as usual"; TAU) or attend a 12-week AE program (n = 16) utilizing active-play video games (Xbox 360 Kinect) and traditional AE equipment. Participants completed assessments of AF (indexed by VO2 peak ml/kg/min), neurocognition (MATRICS Consensus Cognitive Battery), and serum-BDNF before and after and 12-week period. Twenty-six participants (79%) completed the study. At follow-up, the AE participants improved their AF by 18.0% vs a -0.5% decline in the TAU group (P = .002) and improved their neurocognition by 15.1% vs -2.0% decline in the TAU group (P = .031). Hierarchical multiple regression analyses indicated that enhancement in AF and increases in BDNF predicted 25.4% and 14.6% of the neurocognitive improvement variance, respectively. The results indicate AE is effective in enhancing neurocognitive functioning in people with schizophrenia and provide preliminary support for the impact of AE-related BDNF up-regulation on neurocognition in this population. Poor AF represents a modifiable risk factor for neurocognitive dysfunction in schizophrenia for which AE training offer a safe, nonstigmatizing, and side-effect-free intervention. PMID:25805886

  8. Dual Regulation of a Chimeric Plant Serine/Threonine Kinase by Calcium and Calcium/Calmodulin

    Science.gov (United States)

    Takezawa, D.; Ramachandiran, S.; Paranjape, V.; Poovaiah, B. W.

    1996-01-01

    A chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain was recently cloned from plants. The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substrates in a Ca(2+)/calmodulin-dependent manner. The calmodulin-binding region of CCAMK has similarity to the calmodulin-binding region of the alpha-subunit of multifunctional Ca(2+)/calmodulin-dependent protein kinase (CaMKII). CCaMK exhibits basal autophosphorylation at the threonine residue(s) (0.098 mol of P-32/mol) that is stimulated 3.4-fold by Ca(2+) (0.339 mol of P-32/mol), while calmodulin inhibits Ca(2+)-stimulated autophosphorylation to the basal level. A deletion mutant lacking the visinin-like domain did not show Ca(2+)-simulated autophosphorylation activity but retained Ca(2+)/calmodulin-dependent protein kinase activity at a reduced level. Ca(2+)-dependent mobility shift assays using E.coli-expressed protein from residues 358-520 revealed that Ca(2+) binds to the visinin-like domain. Studies with site-directed mutants of the visinin-like domain indicated that EF-hands II and III are crucial for Ca(2+)-induced conformational changes in the visinin-like domain. Autophosphorylation of CCaMK increases Ca(2+)/calmodulin-dependent protein kinase activity by about 5-fold, whereas it did not affect its C(2+)-independent activity. This report provides evidence for the existence of a protein kinase in plants that is modulated by Ca(2+) and Ca(2+)/calmodulin. The presence of a visinin-like Ca(2+)-binding domain in CCaMK adds an additional Ca(2+)-sensing mechanism not previously known to exist in the Ca(2+)/calmodulin-mediated signaling cascade in plants.

  9. Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder - Results from a prospective study

    DEFF Research Database (Denmark)

    Jacoby, Anne Sophie; Munkholm, Klaus; Vinberg, Maj;

    2016-01-01

    . Further, 69 blood samples were drawn from 35 healthy control subjects with three months apart. In unadjusted mixed-model analysis, levels of IL-6 and IL-8 were increased 64% (b=1.64, 95% CI: 1.31-2.05, p=<0.0001) and 24% (b=1.24, 95% CI: 1.05-1.47, p=0.013), respectively in patients with bipolar disorder......BACKGROUND: Peripheral blood brain-derived neurotrophic factor (BDNF) and inflammatory markers may reflect key pathophysiological mechanisms in bipolar disorder in relation to disease activity and neuroprogression. AIMS: To investigate whether neutrophins and inflammatory marker vary with mood...... states and are increased in patients with bipolar disorder type I during euthymia as well as in all affective states as a group, compared to levels in healthy control subjects. METHODS: In a prospective 6-12 months follow-up study, we investigated state specific, intra-individual alterations in levels of...

  10. Gender and brain regions specific differences in brain derived neurotrophic factor protein levels of depressed individuals who died through suicide.

    Science.gov (United States)

    Hayley, Shawn; Du, Lisheng; Litteljohn, Darcy; Palkovits, Miklós; Faludi, Gábor; Merali, Zul; Poulter, Michael O; Anisman, Hymie

    2015-07-23

    Considerable evidence supports the view that depressive illness and suicidal behaviour stem from perturbations of neuroplasticity. Presently, we assessed whether depressed individuals who died by suicide displayed brain region-specific changes in brain derived neurotrophic factor (BDNF) and whether such effects varied by gender. Using postmortem samples from non-psychiatric controls and depressed individuals who died by suicide, BDNF protein levels were assessed within the hippocampus and frontopolar prefrontal cortex using Western blot. As expected, BDNF levels were reduced within the frontopolar prefrontal cortex among female depressed suicides; however, males showed no such effect. Contrastingly, within the hippocampus, depressed male but not female suicides displayed significant reductions of BDNF protein levels. Although the mechanisms driving the gender and brain region specific BDNF changes are unclear, our data do support the notion that complex alterations of neuroplasticity may be fundamentally involved in the illness. PMID:26033186

  11. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke.

    Science.gov (United States)

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Martínez-Sánchez, Patricia; Barahona-Sanz, Inés; Navarro-Hernanz, Teresa; Gómez-de Frutos, María Del Carmen; Díez-Tejedor, Exuperio; Gutiérrez-Fernández, María

    2016-09-01

    Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising tool to deliver proteins to select body areas. This study aimed to analyze whether UTMD was able to deliver brain-derived neurotrophic factor (BDNF) to the brain, enhancing functional recovery and white matter repair, in an animal model of subcortical stroke induced by endothelin (ET)-1. UTMD was used to deliver BDNF to the brain 24 h after stroke. This technique was shown to be safe, given there were no cases of hemorrhagic transformation or blood brain barrier (BBB) leakage. UTMD treatment was associated with increased brain BDNF levels at 4 h after administration. Targeted ultrasound delivery of BDNF improved functional recovery associated with fiber tract connectivity restoration, increasing oligodendrocyte markers and remyelination compared to BDNF alone administration in an experimental animal model of white matter injury. PMID:27240161

  12. Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor

    Institute of Scientific and Technical Information of China (English)

    Hui XIE; Wing-ho YUNG

    2012-01-01

    Obstructive sleep apnea (OSA) is well known for its metabolic as well as neurobehavioral consequences.Chronic intermittent hypoxia (IH) is a major component of OSA.In recent years,substantial advances have been made in elucidating the cellular and molecular mechanisms underlying the effect of chronic IH on neurocognitive functions,many of which are based on studies in animal models.A number of hypotheses have been put forward to explain chronic IH-induced neurological dysfunctions.Among these,the roles of oxidative stress and apoptosis-related neural injury are widely accepted.Here,focusing on results derived from animal studies,we highlight a possible role of reduced expression of brain-derived neurotrophic factor (BDNF) in causing impairment in long-term synaptic plasticity and neurocognitive functions during chronic IH.The possible relationship between BDNF and previous findings on this subject will be elucidated.

  13. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signaltransduction pathway in depressive disorder

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wang; Yingquan Zhang; Mingqi Qiao

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  14. Association study of a brain-derived neurotrophic factor polymorphism and short-term antidepressant response in major depressive disorders

    Directory of Open Access Journals (Sweden)

    Lung-Cheng Huang

    2008-10-01

    Full Text Available Eugene Lin1,7, Po See Chen2,6,7, Lung-Cheng Huang3,4, Sen-Yen Hsu51Vita Genomics, Inc., Wugu Shiang, Taipei, Taiwan; 2Department of Psychiatry, Hospital and College of Medicine, National Cheng Kung University, Tainan, Taiwan; 3Department of Psychiatry, National Taiwan University Hospital Yun-Lin Branch, Taiwan; 4Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Psychiatry, Chi Mei Medical Center, Liouying, Tainan, Taiwan; 6Department of Psychiatry, National Cheng Kung University Hospital, Dou-liou Branch, Yunlin, Taiwan; 7These authors contributed equally to this workAbstract: Major depressive disorder (MDD is one of the most common mental disorders worldwide. Single nucleotide polymorphisms (SNPs can be used in clinical association studies to determine the contribution of genes to drug efficacy. A common SNP in the brain-derived neurotrophic factor (BDNF gene, a methionine (Met substitution for valine (Val at codon 66 (Val66Met, is a candidate SNP for influencing antidepressant treatment outcome. In this study, our goal was to determine the relationship between the Val66Met polymorphism in the BDNF gene and the rapid antidepressant response to venlafaxine in a Taiwanese population with MDD. Overall, the BDNF Val66Met polymorphism was found not to be associated with short-term venlafaxine treatment outcome. However, the BDNF Val66Met polymorphism showed a trend to be associated with rapid venlafaxine treatment response in female patients. Future research with independent replication in large sample sizes is needed to confirm the role of the BDNF Val66Met polymorphism identified in this study.Keywords: antidepressant response, brain-derived neurotrophic factor, major depressive disorder, serotonin and norepinephrine reuptake inhibitor, single nucleotide polymorphisms

  15. A new potent calmodulin antagonist with arylalkylamine structure: crystallographic, spectroscopic and functional studies.

    Science.gov (United States)

    Harmat, V; Böcskei, Z; Náray-Szabó, G; Bata, I; Csutor, A S; Hermecz, I; Arányi, P; Szabó, B; Liliom, K; Vértessy, B G; Ovádi, J

    2000-03-31

    An arylalkylamine-type calmodulin antagonist, N-(3, 3-diphenylpropyl)-N'-[1-R-(3, 4-bis-butoxyphenyl)ethyl]-propylene-diamine (AAA) is presented and its complexes with calmodulin are characterized in solution and in the crystal. Near-UV circular dichroism spectra show that AAA binds to calmodulin with 2:1 stoichiometry in a Ca(2+)-dependent manner. The crystal structure with 2:1 stoichiometry is determined to 2.64 A resolution. The binding of AAA causes domain closure of calmodulin similar to that obtained with trifluoperazine. Solution and crystal data indicate that each of the two AAA molecules anchors in the hydrophobic pockets of calmodulin, overlapping with two trifluoperazine sites, i.e. at a hydrophobic pocket and an interdomain site. The two AAA molecules also interact with each other by hydrophobic forces. A competition enzymatic assay has revealed that AAA inhibits calmodulin-activated phosphodiesterase activity at two orders of magnitude lower concentration than trifluoperazine. The apparent dissociation constant of AAA to calmodulin is 18 nM, which is commensurable with that of target peptides. On the basis of the crystal structure, we propose that the high-affinity binding is mainly due to a favorable entropy term, as the AAA molecule makes multiple contacts in its complex with calmodulin. PMID:10731425

  16. Calmodulin gene expression in response to mechanical wounding and Botrytis cinerea infection in tomato fruit

    Science.gov (United States)

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding the stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various physiological responses in plants. To determine the functional significance of calmodulin in fl...

  17. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin

    DEFF Research Database (Denmark)

    Perrier, J F; Mejia-Gervacio, S; Hounsgaard, J

    2000-01-01

    1. The involvement of intracellular calcium and calmodulin in the modulation of plateau potentials in motoneurones was investigated using intracellular recordings from a spinal cord slice preparation. 2. Chelation of intracellular calcium with BAPTA-AM or inactivation of calmodulin with W-7 or tr...

  18. Variants in doublecortin- and calmodulin kinase like 1, a gene up-regulated by BDNF, are associated with memory and general cognitive abilities.

    Directory of Open Access Journals (Sweden)

    Stéphanie Le Hellard

    Full Text Available BACKGROUND: Human memory and general cognitive abilities are complex functions of high heritability and wide variability in the population. The brain-derived neurotrophic factor (BDNF plays an important role in mammalian memory formation. METHODOLOGY / PRINCIPAL FINDING: Based on the identification of genes markedly up-regulated during BDNF-induced synaptic consolidation in the hippocampus, we selected genetic variants that were tested in three independent samples, from Norway and Scotland, of adult individuals examined for cognitive abilities. In all samples, we show that markers in the doublecortin- and calmodulin kinase like 1 (DCLK1 gene, are significantly associated with general cognition (IQ scores and verbal memory function, resisting multiple testing. DCLK1 is a complex gene with multiple transcripts which vary in expression and function. We show that the short variants are all up-regulated after BDNF treatment in the rat hippocampus, and that they are expressed in the adult human brain (mostly in cortices and hippocampus. We demonstrate that several of the associated variants are located in potential alternative promoter- and cis-regulatory elements of the gene and that they affect BDNF-mediated expression of short DCLK1 transcripts in a reporter system. CONCLUSION: These data present DCLK1 as a functionally pertinent gene involved in human memory and cognitive functions.

  19. Modulation of phosphofructokinase action by macromolecular interactions. Quantitative analysis of the phosphofructokinase-aldolase-calmodulin system.

    Science.gov (United States)

    Orosz, F; Christova, T Y; Ovádi, J

    1988-11-23

    The simultaneous effect of calmodulin and aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) on the concentration-dependent behaviour of muscle phosphofructokinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) has been analysed by means of a covalently attached fluorescent probe, gel penetration experiments, and using a kinetic approach. We found that calmodulin-induced inactivation of phosphofructokinase is suspended by addition of an equimolar amount of aldolase. This effect was attributed to an apparent competition of calmodulin and aldolase for the dimeric forms of kinase. Moreover, the direct binding of aldolase to calmodulin has also been demonstrated, which resulted in a significant decrease in the kcat value of the enzyme. The quantitative analysis of these interactions in the system phosphofructokinase-calmodulin-aldolase is presented. A possible molecular model for the modulation of phosphofructokinase action by macromolecular interactions is envisaged. PMID:2973356

  20. Characterization of a calmodulin binding protein kinase from Arabidopsis thalian

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A full-length calmodulin binding protein kinase cDNA, AtCBK1, from Arabidopsis has been isolated by screening of an Arabidopsis cDNA library and by 5′-RACE. Northern blot and in situ hybridization indicated that the expression of AtCBK1 was more abundant in the vascular bundles and the meristems than in other tissues. The phylogenetic analyses reveal that AtCBK1 is different from animal CaMKs and it falls into CRK subgroup, indicating that they may come from different ancestors. The result suggests that AtCBK1 encodes a CaM-binding serine/threonine protein kinase.

  1. Identification of spectrin as a calmodulin-binding component in the pituitary gonadotrope

    International Nuclear Information System (INIS)

    Gonadotropin releasing hormone (GnRH) is a hypothalamic decapeptide which stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) from the pituitary. Ca2+ fulfills the requirements of a second messenger for this system. Inhibition of calmodulin will inhibit GnRH stimulated LH release. The aim of the present studies has been to identify the locus of action of calmodulin within the pituitary. By use of an 125I-calmodulin gel overlayer assay, five major Ca2+-dependent 125I-calmodulin labelled components of subunit Mr > 205,000; 200,000; 135,000; 60,000; and 52,000 have been identified. This labeling was found to be phenothiazine-sensitive. Ca2+-independent binding that was observed appears to be due to hydrophobic interactions of calmodulin with acid-soluble proteins, principally histones. Subcellular fractionation revealed that the Ca2+-dependent calmodulin-binding components are localized primarily in the cytosolic fraction. Separation of dispersed anterior pituitary cells through a linear Metrizamide gradient yielded gonadotrope-enriched fractions, which were found to contain all five 125I-calmodulin binding components corresponding to the major bands in the pituitary homogenate. The calmodulin-binding component levels do not appear to be differentially regulated by steroids. The calmodulin binding component with a Mr > 205,000 has been identified as spectrin. Spectrin-like immunoreactivity and 125I-calmodulin-binding activity in pituitary tissue homogenates co-migrated in various percentage acrylamide gels with avian erythrocyte spectrin. Spectrin was detected in a gonadotrope-enriched fraction by immunoblotting, and confirmed in gonadotropes by indirect immunofluorescence of cultured pituitary cells in which spectrin- and LH-immunoreactivity co-localized

  2. Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training.

    Science.gov (United States)

    Enge, Sören; Fleischhauer, Monika; Gärtner, Anne; Reif, Andreas; Lesch, Klaus-Peter; Kliegel, Matthias; Strobel, Alexander

    2016-01-01

    Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged

  3. Influence of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhengrong Peng; Sue Wang; Pingtian Xiao

    2009-01-01

    BACKGROUND: It has been previously shown that hyperbaric oxygen may promote proliferation of neural stem cells and reduce death of endogenous neural stem cells (NSCs).OBJECTIVE: To explore the effects of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived NSCs into neuron-like cells and compare with high-concentration oxygen and high pressure.DESIGN, TIME AND SETTING: An in vitro contrast study, performed at Laboratory of Neurology,Central South University between January and May 2006.MATERIALS: A hyperbaric oxygen chamber (YLC 0.5/1A) was provided by Wuhan Shipping Design Research Institute; mouse anti-rat microtubute-associated protein 2 monoclonal antibody by Jingmei Company, Beijing; mouse anti-rat glial fibrillary acidic protein monoclonal antibody by Neo Markers,USA; mouse anti-rat galactocerebroside monoclonal antibody by Santa Cruz Biotechnology Inc.,USA; and goat anti-mouse fluorescein isothiocyanate-labeled secondary antibody by Wuhan Boster Bioengineering Co., Ltd., China.METHODS: Brain-derived NSCs isolated from brain tissues of neonatal Sprague Dawiey rats werecloned and passaged, and assigned into five groups: normal control, model, high-concentration oxygen, high pressure, and hyperbaric oxygen groups. Cells in the four groups, excluding the normal control group, were incubated in serum-containing DMEM/F12 culture medium. Hypoxic/ischemic models of NSCs were established in an incubator comprising 93% N2, 5% CO2, and 2% O2.Thereafter, cells were continuously cultured as follows: compressed air (0.2 MPa, 1 hour, once a day)in the high pressure group, compressed air+a minimum of 80% O2 in the hyperbaric oxygen group,and a minimum of 80% O2 in the high-concentration oxygen group. Cells in the normal control and model groups were cultured as normal.MAIN OUTCOME MEASURES: At day 7 after culture, glial fibrillary acidic protein,microtubule-associated protein 2, and galactocerebroside immunofluorescence staining were examined to

  4. Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-Derived Neurotrophic Factor

    OpenAIRE

    Mang, Cameron S.; Campbell, Kristin L.; Ross, Colin J.D.; Boyd, Lara A

    2013-01-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategie...

  5. Brain Derived Neurotrophic Factor (BDNF) levels as a possible predictor of psychopathology in healthy twins at high and low risk for affective disorder

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla; Kessing, Lars Vedel

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a potential biomarker of affective disorder. However, longitudinal studies evaluating a potential predictive role of BDNF on subsequent psychopathology are lacking. The aim of this study was to investigate whether BDNF alone or in interaction with the...

  6. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    Science.gov (United States)

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  7. Brain-derived neurotrophic factor expression in dorsal root ganglion neurons in response to reanastomosis of the distal stoma after nerve grafting

    Institute of Scientific and Technical Information of China (English)

    Wei Yu; Jian Wang; Mingzhu Xu; Hanjiao Qin; Shusen Cui

    2012-01-01

    Studies have shown that retreatment of the distal stoma after nerve grafting can stimulate nerve regeneration. The present study attempted to verify the effects of reanastomosis of the distal stoma, after nerve grafting, on nerve regeneration by assessing brain-derived neurotrophic factor expression in 2-month-old rats. Results showed that brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia began to increase 3 days after autologous nerve grafting post sciatic nerve injury, peaked at 14 days, decreased at 28 days, and reached similar levels to the sham-surgery group at 56 days. Brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia began to increase 3 days after reanastomosis of the distal stoma, 59 days after autologous nerve grafting post sciatic nerve injury, significantly increased at 63 days, peaked at 70 days, and gradually decreased thereafter, but remained higher compared with the sham-surgery group up to 112 days. The results of this study indicate that reanastomosis of the distal stoma after orthotopic nerve grafting stimulated brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia.

  8. Effect of brain-derived neurotropic factor released from hypoxic astrocytes on gamma-aminobutyric acid type A receptor function in normal hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai

    2011-01-01

    Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects γ-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that γ-aminobutyric acid at 100 μmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by γ-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a. Γ-aminobutyric acid type A-gated current induced by 100 μmol/L γ-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 Mv, which could be inhibited by k252a and Na+-K+-Cl- cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of γ-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-Cl- cotransporter, and caused γ-aminobutyric acid to exert an excitatory effect by activating γ-aminobutyric acid type A receptor.

  9. Diagnostic value of serum brain-derived neurotrophic factor in bipolar disorder%血清脑源性神经营养因子对双相障碍诊断价值研究

    Institute of Scientific and Technical Information of China (English)

    谢筱颖; 蒋健昌; 李永生; 蓝燕玲

    2016-01-01

    Objective To investigate the diagnostic value of serum levels of brain-derived neurotrophic factor (BDNF) in bipo-lar disorder. Methods One hundred cases with bipolar disorder in our hospital from January 2013 to January 2016 were assessed using the manic scale (YMRS),functional assessment table (GAF) and depression table (MADRS),consisting of bipolar depression group(n=50) and bipolar mania group(n=50). In addition,50 cases with pure depression and 50 healthy participants were studied as controls. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum level of brain-derived neurotrophic factor. Results ⑴After treatment,there was no significant difference on BDNF between individual depression group and normal group(P>0.05);⑵After treatment,serum level of BDNF in bipolar depression group were significantly lower than that in normal group(P0.05);⑵治疗后,双相障碍抑郁组BDNF水平显著低于正常组,组间数据对比差异有统计学意义(P<0.05);⑶治疗后,双相障碍狂躁组BDNF水平显著低于正常组,组间数据对比差异有统计学意义(P<0.05)。结论双相障碍躁狂和抑郁与血清脑源性神经营养因子水平有关。

  10. Tracking and localization of calmodulin in live cells.

    Science.gov (United States)

    Johnson, Carey K; Harms, Gregory S

    2016-08-01

    The calcium signaling protein calmodulin (CaM) interacts with many target proteins inside the cell to regulate a wide range of biological signals. CaM's availability to propagate signals depends on its mobility, which may be regulated by interactions with multiple target proteins. We detected single molecules of CaM labeled with a fluorescent dye and injected into living HEK 293 cells, and we used high-speed, wide-field, single-molecule imaging to track single CaM molecules. Single-molecule trajectories were analyzed to characterize the motions of individual CaM molecules. Single-molecule localization resolved CaM positions with a position accuracy of tracking demonstrated the presence of a wide range of mobilities of individual calmodulin molecules in a cell, with diffusion coefficients ranging from 10μm(2)s(-1). For molecules confined to small regions of the cell, super-resolved images of presumed signaling complexes were recovered. Individual trajectories were classified as normal diffusion, confined diffusion, or directed motion, and could suggest how the individual CaM molecules were bound in the cell. The results show that interactions of CaM with target proteins result in decreased translational mobilities of a significant fraction of CaM molecules inside cells. The work presented here illustrates methods that can characterize location, mobilities, and the availability of signaling molecules in live cells. PMID:27113857

  11. Heparin blocks /sup 125/I-calmodulin internalization by isolated rat renal brush border membrane vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Meezan, E.; Elgavish, A.; Roden, L.; Wallace, R.W.

    1986-03-05

    /sup 125/I-Calmodulin is internalized by isolated rat renal brush border membrane vesicles (BBV) in a time, temperature and calcium dependent manner. Internalization of /sup 125/I-calmodulin into the osmotically sensitive space of BBV was distinguished from binding of the ligand to the outer BBV surface by examining the interaction of ligand and BBV at different medium osmolarities (300-1100 mosm), uptake was inversely proportional to medium osmolarity. Internalized /sup 125/I-calmodulin was intact and Western blots of solubilized BBV with /sup 125/I-calmodulin demonstrated the presence of several calmodulin-binding proteins of 143, 118, 50, 47.5, 46.5 and 35 kilodaltons which could represent potential intravesicular binding sites for the ligand. Heparin and the related glycosaminoglycan heparin sulfate both showed a dose-dependent inhibition (0.5-50 ..mu..g/ml) of /sup 125/I-calmodulin uptake by BBV, but other sulfated and nonsulfated glycosaminoglycans including chondroitin sulfates, keratan sulfate and hyaluronic acid showed little or no inhibitory effect. Desulfation of heparin virtually abolished the inhibition of uptake while depolymerization reduced it. Heparin did not block the binding of /sup 125/I-calmodulin to BBV proteins as assessed by Western blotting technique suggesting its effect was on internalization of the ligand rather than on its association with internal membrane proteins.

  12. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    Science.gov (United States)

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. PMID:25934485

  13. Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects.

    Science.gov (United States)

    Reyes-Izquierdo, Tania; Nemzer, Boris; Shu, Cynthia; Huynh, Lan; Argumedo, Ruby; Keller, Robert; Pietrzkowski, Zb

    2013-08-28

    The present single-dose study was performed to assess the effect of whole coffee fruit concentrate powder (WCFC), green coffee caffeine powder (N677), grape seed extract powder (N31) and green coffee bean extract powder (N625) on blood levels of brain-derived neurotrophic factor (BDNF). Randomly assorted groups of fasted subjects consumed a single, 100mg dose of each material. Plasma samples were collected at time zero (T0) and at 30 min intervals afterwards, up to 120 min. A total of two control groups were included: subjects treated with silica dioxide (as placebo) or with no treatment. The collected data revealed that treatments with N31 and N677 increased levels of plasma BDNF by about 31% under these experimental conditions, whereas treatment with WCFC increased it by 143% (n 10), compared with baseline. These results indicate that WCFC could be used for modulation of BDNF-dependent health conditions. However, larger clinical studies are needed to support this possibility. PMID:23312069

  14. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF in mouse ovaries: relationship to oocytes developmental potential.

    Directory of Open Access Journals (Sweden)

    Li-Min Wu

    Full Text Available BACKGROUND: Brain-derived neurotropic factor (BDNF was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. METHODS: Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. RESULTS: Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. CONCLUSION: BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  15. Expression and Localization of Brain-Derived Neurotrophic Factor (BDNF) mRNA and Protein in Human Submandibular Gland

    International Nuclear Information System (INIS)

    Brain-derived neurotrophic factor (BDNF) promotes cell survival and differentiation in the central and peripheral nervous systems. Previously, we reported that BDNF is produced by salivary glands under acute immobilization stress in rats. However, expression of BDNF is poorly understood in humans, although salivary gland localization of BDNF in rodents has been demonstrated. In the present study, we investigated the expression and localization of BDNF in the human submandibular gland (HSG) using reverse transcription-polymerase chain reaction, western blot analysis, in situ hybridization (ISH), immunohistochemistry (IHC), and ELISA. BDNF was consistently localized in HSG serous and ductal cells, as detected by ISH and IHC, with reactivity being stronger in serous cells. In addition, immunoreactivity for BDNF was observed in the saliva matrix of ductal cavities. Western blotting detected one significant immunoreactive 14 kDa band in the HSG and saliva. Immunoreactivities for salivary BDNF measured by ELISA in humans were 40.76±4.83 pg/mL and 52.64±8.42 pg/mL, in men and women, respectively. Although salivary BDNF concentrations in females tended to be higher than in males, the concentrations were not significantly different. In conclusion, human salivary BDNF may originate from salivary glands, as the HSG appears to produce BDNF

  16. Plasma brain-derived neurotrophic factor levels, learning capacity and cognition in patients with first episode psychosis

    Directory of Open Access Journals (Sweden)

    de Azua Sonia Ruiz

    2013-01-01

    Full Text Available Abstract Background Cognitive impairments are seen in first psychotic episode (FEP patients. The neurobiological underpinnings that might underlie these changes remain unknown. The aim of this study is to investigate whether Brain Derived Neurotrophic Factor (BDNF levels are associated with cognitive impairment in FEP patients compared with healthy controls. Methods 45 FEP patients and 45 healthy controls matched by age, gender and educational level were selected from the Basque Country area of Spain. Plasma BDNF levels were assessed in healthy controls and in patients. A battery of cognitive tests was applied to both groups, with the patients being assessed at 6 months after the acute episode and only in those with a clinical response to treatment. Results Plasma BDNF levels were altered in patients compared with the control group. In FEP patients, we observed a positive association between BDNF levels at six months and five cognitive domains (learning ability, immediate and delayed memory, abstract thinking and processing speed which persisted after controlling for medications prescribed, drug use, intelligence quotient (IQ and negative symptoms. In the healthy control group, BDNF levels were not associated with cognitive test scores. Conclusion Our results suggest that BDNF is associated with the cognitive impairment seen after a FEP. Further investigations of the role of this neurotrophin in the symptoms associated with psychosis onset are warranted.

  17. Effectiveness of the Viet Nam produced, mouse brain-derived, inactivated Japanese encephalitis vaccine in Northern Viet Nam.

    Directory of Open Access Journals (Sweden)

    Florian Marks

    Full Text Available BACKGROUND: Japanese encephalitis (JE is a flaviviral disease of public health concern in many parts of Asia. JE often occurs in large epidemics, has a high case-fatality ratio and, among survivors, frequently causes persistent neurological sequelae and mental disabilities. In 1997, the Vietnamese government initiated immunization campaigns targeting all children aged 1-5 years. Three doses of a locally-produced, mouse brain-derived, inactivated JE vaccine (MBV were given. This study aims at evaluating the effectiveness of Viet Nam's MBV. METHODOLOGY: A matched case-control study was conducted in Northern Viet Nam. Cases were identified through an ongoing hospital-based surveillance. Each case was matched to four healthy controls for age, gender, and neighborhood. The vaccination history was ascertained through JE immunization logbooks maintained at local health centers. PRINCIPAL FINDINGS: Thirty cases and 120 controls were enrolled. The effectiveness of the JE vaccine was 92.9% [95% CI: 66.6-98.5]. Confounding effects of other risk variables were not observed. CONCLUSIONS: Our results strongly suggest that the locally-produced JE-MBV given to 1-5 years old Vietnamese children was efficacious.

  18. Serum levels of brain-derived neurotrophic factor in alcohol-dependent patients receiving high-dose baclofen.

    Science.gov (United States)

    Geisel, Olga; Hellweg, Rainer; Müller, Christian A

    2016-06-30

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the development and maintenance of addictive and other psychiatric disorders. Also, interactions of γ-aminobutyric acid (GABA)-ergic compounds and BDNF have been reported. The objective of this study was to investigate serum levels of BDNF over time in alcohol-dependent patients receiving individually titrated high-dose treatment (30-270mg/d) with the GABA-B receptor agonist baclofen or placebo for up to 20 weeks. Serum levels of BDNF were measured in patients of the baclofen/placebo group at baseline (t0), 2 weeks after reaching individual high-dose of baclofen/placebo treatment (t1) and after termination of study medication (t2) in comparison to carefully matched healthy controls. No significant differences in serum levels of BDNF between the baclofen and the placebo group or healthy controls were found at t0, t1, or at t2. Based on these findings, it seems unlikely that baclofen exerts a direct effect on serum levels of BDNF in alcohol-dependent patients. Future studies are needed to further explore the mechanism of action of baclofen and its possible relationship to BDNF in alcohol use disorders. PMID:27107672

  19. DIFFERENT CIRCULATING BRAIN-DERIVED NEUROTROPHIC FACTOR RESPONSES TO ACUTE EXERCISE BETWEEN PHYSICALLY ACTIVE AND SEDENTARY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Yu Nofuji

    2012-03-01

    Full Text Available Although circulating brain-derived neurotrophic factor (BDNF level is affected by both acute and chronic physical activity, the interaction of acute and chronic physical activity was still unclear. In this study, we compared the serum and plasma BDNF responses to maximal and submaximal acute exercises between physically active and sedentary subjects. Eight active and 8 sedentary female subjects participated in the present study. Both groups performed 3 exercise tests with different intensities, i.e. 100% (maximal, 60% (moderate and 40% (low of their peak oxygen uptake. In each exercise test, blood samples were taken at the baseline and immediately, 30 and 60 min after the test. The serum BDNF concentration was found to significantly increase immediately after maximal and moderate exercise tests in both groups. In maximal exercise test, the pattern of change in the serum BDNF concentration was different between the groups. While the serum BDNF level for the sedentary group returned to the baseline level during the recovery phase, the BDNF levels for the active group decreased below the baseline level after the maximal exercise test. No group differences were observed in the pattern of plasma BDNF change for all exercise tests. These findings suggest that regular exercise facilitates the utilization of circulating BDNF during and/or after acute exercise with maximal intensity

  20. Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia.

    Science.gov (United States)

    Song, Juhyun; Cheon, So Yeong; Jung, Wonsug; Lee, Won Taek; Lee, Jong Eun

    2014-01-01

    Microglia are the resident macrophages of the central nervous system (CNS) and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF) in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury. PMID:25184950

  1. Resveratrol Induces the Expression of Interleukin-10 and Brain-Derived Neurotrophic Factor in BV2 Microglia under Hypoxia

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2014-09-01

    Full Text Available Microglia are the resident macrophages of the central nervous system (CNS and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB, which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury.

  2. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment.

    Science.gov (United States)

    Rossi, Chiara; Angelucci, Andrea; Costantin, Laura; Braschi, Chiara; Mazzantini, Mario; Babbini, Francesco; Fabbri, Maria Elena; Tessarollo, Lino; Maffei, Lamberto; Berardi, Nicoletta; Caleo, Matteo

    2006-10-01

    Neurogenesis continues to occur in the adult mammalian hippocampus and is regulated by both genetic and environmental factors. It is known that exposure to an enriched environment enhances the number of newly generated neurons in the dentate gyrus. However, the mechanisms by which enriched housing produces these effects are poorly understood. To test a role for neurotrophins, we used heterozygous knockout mice for brain-derived neurotrophic factor (BDNF+/-) and mice lacking neurotrophin-4 (NT-4-/-) together with their wild-type littermates. Mice were either reared in standard laboratory conditions or placed in an enriched environment for 8 weeks. Animals received injections of the mitotic marker bromodeoxyuridine (BrdU) to label newborn cells. Enriched wild-type and enriched NT-4-/- mice showed a two-fold increase in hippocampal neurogenesis as assessed by stereological counting of BrdU-positive cells in the dentate gyrus and double labelling for BrdU and the neuronal marker NeuN. Remarkably, this enhancement of hippocampal neurogenesis was not seen in enriched BDNF+/- mice. Failure to up-regulate BDNF accompanied the lack of a neurogenic response in enriched BDNF heterozygous mice. We conclude that BDNF but not NT-4 is required for the environmental induction of neurogenesis. PMID:17040481

  3. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    DEFF Research Database (Denmark)

    Mastroeni, Claudia; Bergmann, Til Ole; Rizzo, Vincenzo;

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual......Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter......-individual variability which has been partially attributed to the val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val(66)met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in...... effects was modulated by the BDNF val(66)met polymorphism, our results do not support the notion that the BDNF val(66)met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND....

  4. Effects of brain-derived neurotrophic factor on synapsin expression in rat spinal cord anterior horn neurons cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhifei Wang; Daguang Liao; Changqi Li

    2010-01-01

    Brain-derived neurotrophic factor(BDNF)promotes synaptic formation and functional maturation by upregulating synapsin expression in cortical and hippocampal neurons.However,it remains controversial whether BDNF affects synapsin expression in spinal cord anterior horn neurons.Wistar rat spinal cord anterior hom neurons were cultured in serum-supplemented medium containing BDNF,BDNF antibody,and Hank's solution for 3 days,and then synapsin I and synaptophysin protein and mRNA expression was detected.Under serum-supplemented conditions,the number of surviving neurons in the spinal cord anterior horn was similar among BDNF,anti-BDNF,and control groups(P > 0.05).Synapsin I and synaptophysin protein and mRNA expressions were increased in BDNF-treated neurons,but decreased in BDNF antibody-treated neurons(P< 0.01).These results indicated that BDNF significantly promotes synapsin I and synaptophysin expression in in vitro-cultured rat spinal cord anterior horn neurons.

  5. Fingolimod phosphate attenuates oligomeric amyloid β-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons.

    Directory of Open Access Journals (Sweden)

    Yukiko Doi

    Full Text Available The neurodegenerative processes that underlie Alzheimer's disease are mediated, in part, by soluble oligomeric amyloid β, a neurotoxic protein that inhibits hippocampal long-term potentiation, disrupts synaptic plasticity, and induces the production of reactive oxygen species. Here we show that the sphingosine-1-phosphate (S1P receptor (S1PR agonist fingolimod phosphate (FTY720-P-a new oral drug for multiple sclerosis-protects neurons against oligomeric amyloid β-induced neurotoxicity. We confirmed that primary mouse cortical neurons express all of the S1P receptor subtypes and FTY720-P directly affects the neurons. Treatment with FTY720-P enhanced the expression of brain-derived neurotrophic factor (BDNF in neurons. Moreover, blocking BDNF-TrkB signaling with a BDNF scavenger, TrkB inhibitor, or ERK1/2 inhibitor almost completely ablated these neuroprotective effects. These results suggested that the neuroprotective effects of FTY720-P are mediated by upregulated neuronal BDNF levels. Therefore, FTY720-P may be a promising therapeutic agent for neurodegenerative diseases, such as Alzheimer's disease.

  6. Mesenchymal Stem Cells Expressing Brain-Derived Neurotrophic Factor Enhance Endogenous Neurogenesis in an Ischemic Stroke Model

    Directory of Open Access Journals (Sweden)

    Chang Hyun Jeong

    2014-01-01

    Full Text Available Numerous studies have reported that mesenchymal stem cells (MSCs can ameliorate neurological deficits in ischemic stroke models. Among the various hypotheses that have been suggested to explain the therapeutic mechanism underlying these observations, neurogenesis is thought to be critical. To enhance the therapeutic benefits of human bone marrow-derived MSCs (hBM-MSCs, we efficiently modified hBM-MSCs by introduction of the brain-derived neurotrophic factor (BDNF gene via adenoviral transduction mediated by cell-permeable peptides and investigated whether BDNF-modified hBM-MSCs (MSCs-BDNF contributed to functional recovery and endogenous neurogenesis in a rat model of middle cerebral artery occlusion (MCAO. Transplantation of MSCs induced the proliferation of 5-bromo-2′-deoxyuridine (BrdU- positive cells in the subventricular zone. Transplantation of MSCs-BDNF enhanced the proliferation of endogenous neural stem cells more significantly, while suppressing cell death. Newborn cells differentiated into doublecortin (DCX- positive neuroblasts and Neuronal Nuclei (NeuN- positive mature neurons in the subventricular zone and ischemic boundary at higher rates in animals with MSCs-BDNF compared with treatment using solely phosphate buffered saline (PBS or MSCs. Triphenyltetrazolium chloride staining and behavioral analysis revealed greater functional recovery in animals with MSCs-BDNF compared with the other groups. MSCs-BDNF exhibited effective therapeutic potential by protecting cell from apoptotic death and enhancing endogenous neurogenesis.

  7. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Lin PY

    2015-10-01

    Full Text Available Pao-Yen Lin1,2 1Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 2Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan Abstract: Evidence has supported the role of brain-derived neurotrophic factor (BDNF in antidepressant effect. The precursor of BDNF (proBDNF often exerts opposing biological effects on mature BDNF (mBDNF. Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms. Keywords: antidepressant, mature BDNF, neurotrophic effect, proBDNF cleavage 

  8. An Antioxidant Dietary Supplement Improves Brain-Derived Neurotrophic Factor Levels in Serum of Aged Dogs: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Sara Sechi

    2015-01-01

    Full Text Available Biological aging is characterized by a progressive accumulation of oxidative damage and decreased endogenous antioxidant defense mechanisms. The production of oxidants by normal metabolism damages proteins, lipids, and nucleotides, which may contribute to cognitive impairment. In this study 36 dogs were randomly divided into four groups and fed croquettes of different compositions for 6 months. We monitored derivatives of reactive oxygen metabolites (dROMs and biological antioxidant potential (BAP levels in dogs’ plasma samples as well as brain-derived neurotrophic factor (BDNF serum levels at the beginning and at the end of the dietary regime. Our results showed that a dietary regime, enriched with antioxidants, induced a significant decrease of plasma levels of dROMs (p<0.005 and a significant increase in BDNF serum levels (p<0.005 after six months. Thus, we hypothesized a possible role of the diet in modulating pro- and antioxidant species as well as BDNF levels in plasma and serum, respectively. In conclusion the proposed diet enriched with antioxidants might be considered a valid alternative and a valuable strategy to counteract aging-related cognitive decline in elderly dogs.

  9. Dopaminergic and brain-derived neurotrophic factor signalling in inbred mice exposed to a restricted feeding schedule.

    Science.gov (United States)

    Gelegen, C; van den Heuvel, J; Collier, D A; Campbell, I C; Oppelaar, H; Hessel, E; Kas, M J H

    2008-07-01

    Increased physical activity and decreased motivation to eat are common features in anorexia nervosa. We investigated the development of these features and the potential implication of brain-derived neurotrophic factor (BDNF) and dopaminergic signalling in their development in C57BL/6J and A/J inbred mice, using the 'activity-based anorexia' model. In this model, mice on a restricted-feeding schedule are given unlimited access to running wheels. We measured dopamine receptor D2 and BDNF expression levels in the caudate putamen and the hippocampus, respectively, using in situ hybridization. We found that in response to scheduled feeding, C57BL/6J mice reduced their running wheel activity and displayed food anticipatory activity prior to food intake from day 2 of scheduled feeding as an indication of motivation to eat. In contrast, A/J mice increased running wheel activity during scheduled feeding and lacked food anticipatory activity. These were accompanied by increased dopamine receptor D2 expression in the caudate putamen and reduced BDNF expression in the hippocampus. Consistent with human linkage and association studies on BDNF and dopamine receptor D2 in anorexia nervosa, our study shows that dopaminergic and BDNF signalling are altered as a function of susceptibility to activity-based anorexia. Differences in gene expression and behaviour between A/J and C57BL/6J mice indicate that mouse genetic mapping populations based on these progenitor lines are valuable for identifying molecular determinants of anorexia-related traits. PMID:18363853

  10. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex.

    Science.gov (United States)

    Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E

    2015-01-01

    Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence. PMID:25132151

  11. Exogenous brain-derived neurotrophic factor relieves pain symptoms of diabetic rats by reducing excitability of dorsal root ganglion neurons.

    Science.gov (United States)

    Li, Lei; Yu, Ting; Yu, Liling; Li, Haijun; Liu, Yongjuan; Wang, Dongqin

    2016-08-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes lacking of effective treatments. Enhanced excitability of dorsal root ganglion (DRG) neuron plays a crucial role in the progression of diabetic neuropathic hyperalgesia. Brain-derived neurotrophic factor (BDNF) is known as a neuromodulator of nociception, but whether and how BDNF modulates the excitability of DRG neurons in the development of DPN remain to be clarified. This study investigated the role of exogenous BDNF and its high-affinity tropomyosin receptor kinase B (TrkB) in rats with streptozotocin-induced diabetic neuropathic pain. The results showed that continued intrathecal administration of BDNF to diabetic rats dramatically alleviated mechanical and thermal hyperalgesia, as well as inhibited hyperexcitability of DRG neurons. These effects were blocked by pretreatment with TrkB Fc (a synthetic fusion protein consisting of the extracellular ligand-binding domain of the TrkB receptor). The expression of BDNF and TrkB was upregulated in the DRG of diabetic rats. Intrathecal administration of BDNF did not affect this upregulation. These data provide novel information that exogenous BDNF relieved pain symptoms of diabetic rats by reducing hyperexcitability of DRG neurons and might be the potential treatment of painful diabetic neuropathy. PMID:26441011

  12. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?

    Indian Academy of Sciences (India)

    A Nair; V A Vaidya

    2006-09-01

    Depression is the major psychiatric ailment of our times, afflicting ∼20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to limbic regions is thought to contribute to the etiology of depression and antidepressants have been reported to reverse such damage and promote adaptive plasticity. The molecular pathways that contribute to the damage associated with depression and antidepressant-mediated plasticity are a major focus of scientific enquiry. The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood. The purpose of this review is to discuss the role of CREB and BDNF in depression and as targets/mediators of antidepressant action.

  13. Plasma brain-derived neurotrophic factor levels are increased in patients with tinnitus and correlated with therapeutic effects.

    Science.gov (United States)

    Xiong, Hao; Yang, Haidi; Liang, Maojin; Ou, Yongkang; Huang, Xiayin; Cai, Yuexin; Lai, Lan; Pang, Jiaqi; Zheng, Yiqing

    2016-05-27

    Tinnitus is the perception of sound without an external source and is known to be associated with altered neuronal excitability in the auditory system. Tinnitus severity can be assessed by various psychometric instruments and there is no objective measures developed to evaluate tinnitus severity and therapeutic effects so far. Brain-derived nerve growth factor (BDNF) is believed in playing a key role in regulating neuronal excitability in the brain. To determine whether BDNF correlates with tinnitus induction and severity, we described plasma BDNF levels in patients with tinnitus and healthy controls and evaluated the correlation between plasma BDNF levels and tinnitus severity measured by Tinnitus Handicap Inventory (THI) and Visual Analog Scale (VAS). Moreover, alteration of plasma BDNF levels before and after tinnitus retraining therapy (TRT) in patients with severe tinnitus was also analyzed. We found plasma BDNF levels were elevated in patients with tinnitus compared with healthy controls. In addition, plasma BDNF levels in patients with severe tinnitus were decreased significantly after effective TRT. However, plasma BDNF levels were not correlated with tinnitus loudness and tinnitus severity measured by THI and VAS. These findings support plasma BDNF as a marker for activity changes in the auditory system and could possibly evaluate therapeutic effects in patients with tinnitus. PMID:27095590

  14. Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Aron K Barbey

    Full Text Available Brain-derived neurotrophic factor (BDNF promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI. In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156 consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points, verbal comprehension (6 IQ points, perceptual organization (6 IQ points, working memory (8 IQ points, and processing speed (8 IQ points after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI.

  15. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  16. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF levels in a pharmacological model of mania

    Directory of Open Access Journals (Sweden)

    Laura Stertz

    2014-03-01

    Full Text Available Objective: In the present study, we aimed to examine the effects of repeated D-amphetamine (AMPH exposure, a well-accepted animal model of acute mania in bipolar disorder (BD, and histone deacetylase (HDAC inhibitors on locomotor behavior and HDAC activity in the prefrontal cortex (PFC and peripheral blood mononuclear cells (PBMCs of rats. Moreover, we aimed to assess brain-derived neurotrophic factor (BDNF protein and mRNA levels in these samples. Methods: We treated adult male Wistar rats with 2 mg/kg AMPH or saline intraperitoneally for 14 days. Between the 8th and 14th days, rats also received 47.5 mg/kg lithium (Li, 200 mg/kg sodium valproate (VPT, 2 mg/kg sodium butyrate (SB, or saline. We evaluated locomotor activity in the open-field task and assessed HDAC activity in the PFC and PBMCs, and BDNF levels in the PFC and plasma. Results: AMPH significantly increased locomotor activity, which was reversed by all drugs. This hyperactivity was associated with increased HDAC activity in the PFC, which was partially reversed by Li, VPT, and SB. No differences were found in BDNF levels. Conclusion: Repeated AMPH administration increases HDAC activity in the PFC without altering BDNF levels. The partial reversal of HDAC increase by Li, VPT, and SB may account for their ability to reverse AMPH-induced hyperactivity.

  17. Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS

  18. A Lack of Correlation between Brain-Derived Neurotrophic Factor Serum Level and Verbal Memory Performance in Healthy Polish Population

    Science.gov (United States)

    Wilkosc, Monika; Markowska, Anita; Zajac-Lamparska, Ludmila; Skibinska, Maria; Szalkowska, Agnieszka; Araszkiewicz, Aleksander

    2016-01-01

    Brain derived neurotrophic factor (BDNF) is considered to be connected with memory and learning through the processes of long term synaptic potentiation and synaptic plasticity. The aim of the study was to examine the relationship between precursor BDNF (proBNDF) and mature BDNF (mBDNF) serum levels and performance on Rey Auditory-Verbal Learning Test (RAVLT) in 150 healthy volunteers. In addition, we have verified the relationships between serum concentration of both forms of BDNF and RAVLT with sociodemographic and lifestyle factors.We found no strong evidence for the correlation of proBDNF and mBDNF serum levels with performance on RAVLT in healthy Polish population in early and middle adulthood. We observed the mBDNF serum concentration to be higher in women compared with men. Moreover, we revealed higher mBDNF level to be connected with lower body mass index (BMI). In turn, the results of RAVLT correlated with sociodemographic and lifestyle factors, such as: age, education, gender, BMI and smoking. PMID:27242447

  19. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier

    Institute of Scientific and Technical Information of China (English)

    Ying Xing; Chun-yan Wen; Song-tao Li; Zong-xin Xia

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in the repair of central nervous system injury, but cannot directly tra-verse the blood-brain barrier. Liposomes are a new type of non-viral vector, able to carry macromolecules across the blood-brain barrier and into the brain. Here, we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of lipo-somes conjugated to transferrin (Tf) and polyethylene glycol (PEG), and carrying BDNF modiifed with cytomegalovirus promoter (pCMV) or glial ifbrillary acidic protein promoter (pGFAP) (Tf-pCMV-BDNF-PEG and Tf-pGFAP-BDNF-PEG, respectively). Both liposomes were able to traverse the blood-brain barrier, and BDNF was mainly expressed in the cerebral cortex. BDNF expression in the cerebral cortex was higher in the Tf-pGFAP-BDNF-PEG group than in the Tf-pCMV-BDNF-PEG group. This study demonstrates the successful construction of a non-virus targeted liposome, Tf-pGFAP-BDNF-PEG, which crosses the blood-brain barrier and is distributed in the cerebral cortex. Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.

  20. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    Science.gov (United States)

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise. PMID:27450438

  1. Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice.

    Science.gov (United States)

    Balkowiec, A; Katz, D M

    1998-07-15

    1. Molecular mechanisms underlying maturation of the central respiratory rhythm are largely unknown. Previously, we found that brain-derived neurotrophic factor (BDNF) is required for expression of normal breathing behaviour in newborn mice, raising the possibility that maturation of central respiratory output is dependent on BDNF. 2. Respiratory activity was recorded in vitro from cervical ventral roots (C1 or C4) using the isolated brainstem-spinal cord preparation from postnatal day (P) 0.5-2.0 and P4.5 wild-type mice and mice lacking functional bdnf alleles. 3. Loss of one or both bdnf alleles resulted in an approximately 50% depression of central respiratory frequency compared with wild-type controls. In addition, respiratory cycle length variability was 214% higher in bdnf null (bdnf-/-) animals compared with controls at P4.5. In contrast, respiratory burst duration was unaffected by bdnf gene mutation. 4. These derangements of central respiratory rhythm paralleled the ventilatory depression and irregular breathing characteristic of bdnf mutants in vivo, indicating that central deficits can largely account for the abnormalities in resting ventilation produced by genetic loss of BDNF. BDNF is thus the first growth factor identified that is required for normal development of the central respiratory rhythm, including the stabilization of central respiratory output that occurs after birth. PMID:9706001

  2. Brain-derived neurotrophic factor in arterial baroreceptor pathways: implications for activity-dependent plasticity at baroafferent synapses.

    Science.gov (United States)

    Martin, Jessica L; Jenkins, Victoria K; Hsieh, Hui-ya; Balkowiec, Agnieszka

    2009-01-01

    Functional characteristics of the arterial baroreceptor reflex change throughout ontogenesis, including perinatal adjustments of the reflex gain and adult resetting during hypertension. However, the cellular mechanisms that underlie these functional changes are not completely understood. Here, we provide evidence that brain-derived neurotrophic factor (BDNF), a neurotrophin with a well-established role in activity-dependent neuronal plasticity, is abundantly expressed in vivo by a large subset of developing and adult rat baroreceptor afferents. Immunoreactivity to BDNF is present in the cell bodies of baroafferent neurons in the nodose ganglion, their central projections in the solitary tract, and terminal-like structures in the lower brainstem nucleus tractus solitarius. Using ELISA in situ combined with electrical field stimulation, we show that native BDNF is released from cultured newborn nodose ganglion neurons in response to patterns that mimic the in vivo activity of baroreceptor afferents. In particular, high-frequency bursting patterns of baroreceptor firing, which are known to evoke plastic changes at baroreceptor synapses, are significantly more effective at releasing BDNF than tonic patterns of the same average frequency. Together, our study indicates that BDNF expressed by first-order baroreceptor neurons is a likely mediator of both developmental and post-developmental modifications at first-order synapses in arterial baroreceptor pathways. PMID:19054281

  3. Calcitonin gene-related peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons.

    Science.gov (United States)

    Buldyrev, Ilya; Tanner, Nathan M; Hsieh, Hui-ya; Dodd, Emily G; Nguyen, Loi T; Balkowiec, Agnieszka

    2006-12-01

    Activity-dependent plasticity in nociceptive pathways has been implicated in pathomechanisms of chronic pain syndromes. Calcitonin gene-related peptide (CGRP), which is expressed by trigeminal nociceptors, has recently been identified as a key player in the mechanism of migraine headaches. Here we show that CGRP is coexpressed with brain-derived neurotrophic factor (BDNF) in a large subset of adult rat trigeminal ganglion neurons in vivo. Using ELISA in situ, we show that CGRP (1-1000 nM) potently enhances BDNF release from cultured trigeminal neurons. The effect of CGRP is dose-dependent and abolished by pretreatment with CGRP receptor antagonist, CGRP(8-37). Intriguingly, CGRP-mediated BDNF release, unlike BDNF release evoked by physiological patterns of electrical stimulation, is independent of extracellular calcium. Depletion of intracellular calcium stores with thapsigargin blocks the CGRP-mediated BDNF release. Using transmission electron microscopy, our study also shows that BDNF-immunoreactivity is present in dense core vesicles of unmyelinated axons and axon terminals in the subnucleus caudalis of the spinal trigeminal nucleus, the primary central target of trigeminal nociceptors. Together, these results reveal a previously unknown role for CGRP in regulating BDNF availability, and point to BDNF as a candidate mediator of trigeminal nociceptive plasticity. PMID:17064360

  4. Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Comini-Frota, E.R. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, D.H. [Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Miranda, E.C. [Ecoar Diagnostic Center, Belo Horizonte, MG (Brazil); Brum, D.G. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Kaimen-Maciel, D.R. [Unidade de Neurologia, Hospital Universitário, Universidade Estadual de Londrina, Londrina, PR (Brazil); Donadi, E.A. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Teixeira, A.L. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2011-11-23

    The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.

  5. High-Mobility Group Box-1 Induces Decreased Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in the Diabetic Retina

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu El-Asrar

    2013-01-01

    Full Text Available To test the hypothesis that brain-derived neurotrophic factor-(BDNF- mediated neuroprotection is reduced by high-mobility group box-1 (HMGB1 in diabetic retina, paired vitreous and serum samples from 46 proliferative diabetic retinopathy and 34 nondiabetic patients were assayed for BDNF, HMGB1, soluble receptor for advanced glycation end products (sRAGE, soluble intercellular adhesion molecule-1 (sICAM-1, monocyte chemoattractant protein-1 (MCP-1, and TBARS. We also examined retinas of diabetic and HMGB1 intravitreally injected rats. The effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced changes in retinal BDNF expressions was studied. Western blot, ELISA, and TBARS assays were used. BDNF was not detected in vitreous samples. BDNF levels were significantly lower in serum samples from diabetic patients compared with nondiabetics, whereas HMGB1, sRAGE, sICAM-1, and TBARS levels were significantly higher in diabetic serum samples. MCP-1 levels did not differ significantly. There was significant inverse correlation between serum levels of BDNF and HMGB1. Diabetes and intravitreal administration of HMGB1 induced significant upregulation of the expression of HMGB1, TBARS, and cleaved caspase-3, whereas the expression of BDNF and synaptophysin was significantly downregulated in rat retinas. Glycyrrhizin significantly attenuated diabetes-induced downregulation of BDNF. Our results suggest that HMGB1-induced downregulation of BDNF might be involved in pathogenesis of diabetic retinal neurodegeneration.

  6. A putative model of overeating and obesity based on brain-derived neurotrophic factor: direct and indirect effects.

    Science.gov (United States)

    Ooi, Cara L; Kennedy, James L; Levitan, Robert D

    2012-08-01

    Increased food intake is a major contributor to the obesity epidemic in all age groups. Elucidating brain systems that drive overeating and that might serve as targets for novel prevention and treatment interventions is thus a high priority for obesity research. The authors consider 2 major pathways by which decreased activity of brain-derived neurotrophic factor (BDNF) may confer vulnerability to overeating and weight gain in an obesogenic environment. The first "direct" pathway focuses on the specific role of BDNF as a mediator of food intake control at brain areas rich in BDNF receptors, including the hypothalamus and hindbrain. It is proposed that low BDNF activity limited to this direct pathway may best explain overeating and obesity outside the context of major neuropsychiatric disturbance. A second "indirect" pathway considers the broad neurotrophic effects of BDNF on key monoamine systems that mediate mood dysregulation, impulsivity, and executive dysfunction as well as feeding behavior per se. Disruption in this pathway may best explain overeating and obesity in the context of various neuropsychiatric disturbances including mood disorders, attention-deficit disorder, and/or binge eating disorders. An integrative model that considers these potential roles of BDNF in promoting obesity is presented. The implications of this model for the early prevention and treatment of obesity are also considered. PMID:22687148

  7. Plant chimeric Ca2+/Calmodulin-dependent protein kinase. Role of the neural visinin-like domain in regulating autophosphorylation and calmodulin affinity

    Science.gov (United States)

    Sathyanarayanan, P. V.; Cremo, C. R.; Poovaiah, B. W.

    2000-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.

  8. Simultaneous binding of drugs with different chemical structures to Ca2+-calmodulin: crystallographic and spectroscopic studies.

    Science.gov (United States)

    Vertessy, B G; Harmat, V; Böcskei, Z; Náray-Szabó, G; Orosz, F; Ovádi, J

    1998-11-01

    The modulatory action of Ca2+-calmodulin on multiple targets is inhibited by trifluoperazine, which competes with target proteins for calmodulin binding. The structure of calmodulin crystallized with two trifluoperazine molecules is determined by X-ray crystallography at 2.74 A resolution. The X-ray data together with the characteristic and distinct signals obtained by circular dichroism in solution allowed us to identify the binding domains as well as the order of the binding of two trifluoperazine molecules to calmodulin. Accordingly, the binding of trifluperazine to the C-terminal hydrophobic pocket is followed by the interaction of the second drug molecule with an interdomain site. Recently, we demonstrated that the two bisindole derivatives, vinblastine and KAR-2 [3"-(beta-chloroethyl)-2",4"-dioxo-3, 5"-spirooxazolidino-4-deacetoxyvinblastine], interact with calmodulin with comparable affinity; however, they display different functional effects [Orosz et al. (1997) British J. Pharmacol. 121, 955-962]. The structural basis responsible for these effects were investigated by circular dichroism and fluorescence spectroscopy. The data provide evidence that calmodulin can simultaneously accommodate trifluoperazine and KAR-2 as well as vinblastine and KAR-2, but not trifluoperazine and vinblastine. The combination of the binding and structural data suggests that distinct binding sites exist on calmodulin for vinblastine and KAR-2 which correspond, at least partly, to that of trifluoperazine at the C-terminal hydrophobic pocket and at an interdomain site, respectively. This structural arrangement can explain why these drugs display different anticalmodulin activities. Calmodulin complexed with melittin is also able to bind two trifluoperazine molecules, the binding of which appears to be cooperative. Results obtained with intact and proteolytically cleaved calmodulin reveal that the central linker region of the protein is indispensable for simultanous interactions

  9. Barium can replace calcium in calmodulin-dependent contractions of skinned renal arteries of the rabbit.

    Science.gov (United States)

    Kreye, V A; Hofmann, F; Mühleisen, M

    1986-03-01

    Renal arteries of the rabbit were chemically skinned using Triton X-100. In EGTA-buffered solutions containing calmodulin and ATP, small strips of the skinned preparations were found to develop contractile force which was dependent on the concentrations of either free calcium or of free barium. However, a 220 times greater concentration of barium than of calcium was necessary for comparable effects. Quantitatively, the response to barium was dependent on the concentration of calmodulin added to the test solutions. The contractile effect of barium was partly antagonized by the calmodulin antagonist, trifluoperazine. PMID:3960707

  10. Localization of calmodulin in epidermis and skin glands: a comparative immunohistological investigation in different vertebrate species.

    Science.gov (United States)

    Wollina, U; Wevers, A; Mahrle, G

    1991-01-01

    The study deals with the immunolocalization of calmodulin-reactive epithelial cells in different vertebrates (Tinca tinca, Ambystoma mexicanum, Xenopus laevis, Rana ridibunda, Columba domestica, Sus scrofa domestica, Homo sapiens sapiens). The immunoperoxidase technique was performed on acetone fixed frozen sections using monoclonal (BF8) and polyclonal (ACAM) anti-calmodulin antibodies. We were able to differentiate 2 major types of staining patterns: 1. A more superficial epidermal staining in species adapted to an aqueous environment and 2. a staining along the epidermal-dermal junction in species adapted to a terrestrial environment. It seems most likely that epithelial cells immunoreactive for calmodulin are involved in skin permeability control. PMID:1718122

  11. Calmodulin binding to recombinant myosin-1c and myosin-1c IQ peptides

    OpenAIRE

    Cyr Janet L; Gillespie Peter G

    2002-01-01

    Abstract Background Bullfrog myosin-1c contains three previously recognized calmodulin-binding IQ domains (IQ1, IQ2, and IQ3) in its neck region; we identified a fourth IQ domain (IQ4), located immediately adjacent to IQ3. How calmodulin binds to these IQ domains is the subject of this report. Results In the presence of EGTA, calmodulin bound to synthetic peptides corresponding to IQ1, IQ2, and IQ3 with Kd values of 2–4 μM at normal ionic strength; the interaction with an IQ4 peptide was much...

  12. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc

    Directory of Open Access Journals (Sweden)

    Marks David R

    2009-01-01

    Full Text Available Abstract Background Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF activation of neurotrophin receptor tyrosine kinase B (TrkB suppresses the Shaker voltage-gated potassium channel (Kv1.3 via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. Results We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc and growth factor receptor-binding protein 10 (Grb10, with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293. nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2 domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111–113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein

  13. Physico-chemical pathways in radioprotective action of calmodulin antagonists

    International Nuclear Information System (INIS)

    Ghost membranes prepared from erythrocytes of Swiss albino mice were irradiated with gamma rays at a dose rate of 0.9 Gy/s. The fluidity of membrane decreased with radiation dose and in the presence of calmodulin antagonists (CA) like chlorpromazine (CPZ), promethazine (PMZ), and trimeprazone (TMZ) it increased. Radiation induced release of Ca2+ from membranes. This release was inhibited by CA mainly by CPZ and PMZ. Being Ca2+ dependent, the changes in the activity of acetylcholine estrase (AchE) following irradiation was also studied. Radiation decreased the activity of AchE in dose dependent manner. Presence of CPZ and PMZ diminished the radiation induced inhibition of AchE but not in the presence of TMZ at the lower concentration tested. It is suggested that apart from scavenging of free radicals, CA perhaps exert their euxoic radioprotective effect through Ca2+ dependent processes. (author)

  14. Photounbinding of calmodulin from a family of CaM binding peptides.

    Directory of Open Access Journals (Sweden)

    Klaus G Neumüller

    Full Text Available BACKGROUND: Recent studies have shown that fluorescently labeled antibodies can be dissociated from their antigen by illumination with laser light. The mechanism responsible for the photounbinding effect, however, remains elusive. Here, we give important insights into the mechanism of photounbinding and show that the effect is not restricted to antibody/antigen binding. METHODOLOGY/PRINCIPAL FINDINGS: We present studies of the photounbinding of labeled calmodulin (CaM from a set of CaM-binding peptides with different affinities to CaM after one- and two-photon excitation. We found that the photounbinding effect becomes stronger with increasing binding affinity. Our observation that photounbinding can be influenced by using free radical scavengers, that it does not occur with either unlabeled protein or non-fluorescent quencher dyes, and that it becomes evident shortly after or with photobleaching suggest that photounbinding and photobleaching are closely linked. CONCLUSIONS/SIGNIFICANCE: The experimental results exclude surface effects, or heating by laser irradiation as potential causes of photounbinding. Our data suggest that free radicals formed through photobleaching may cause a conformational change of the CaM which lowers their binding affinity with the peptide or its respective binding partner.

  15. A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats

    Science.gov (United States)

    Safadi, F.; Reddy, V. S.; Reddy, A. S.

    2000-01-01

    Calcium is essential for pollen germination and pollen tube growth. A large body of information has established a link between elevation of cytosolic Ca(2+) at the pollen tube tip and its growth. Since the action of Ca(2+) is primarily mediated by Ca(2+)-binding proteins such as calmodulin (CaM), identification of CaM-binding proteins in pollen should provide insights into the mechanisms by which Ca(2+) regulates pollen germination and tube growth. In this study, a CaM-binding protein from maize pollen (maize pollen calmodulin-binding protein, MPCBP) was isolated in a protein-protein interaction-based screening using (35)S-labeled CaM as a probe. MPCBP has a molecular mass of about 72 kDa and contains three tetratricopeptide repeats (TPR) suggesting that it is a member of the TPR family of proteins. MPCBP protein shares a high sequence identity with two hypothetical TPR-containing proteins from Arabidopsis. Using gel overlay assays and CaM-Sepharose binding, we show that the bacterially expressed MPCBP binds to bovine CaM and three CaM isoforms from Arabidopsis in a Ca(2+)-dependent manner. To map the CaM-binding domain several truncated versions of the MPCBP were expressed in bacteria and tested for their ability to bind CaM. Based on these studies, the CaM-binding domain was mapped to an 18-amino acid stretch between the first and second TPR regions. Gel and fluorescence shift assays performed with CaM and a CaM-binding synthetic peptide further confirmed MPCBP binding to CaM. Western, Northern, and reverse transcriptase-polymerase chain reaction analysis have shown that MPCBP expression is specific to pollen. MPCBP was detected in both soluble and microsomal proteins. Immunoblots showed the presence of MPCBP in mature and germinating pollen. Pollen-specific expression of MPCBP, its CaM-binding properties, and the presence of TPR motifs suggest a role for this protein in Ca(2+)-regulated events during pollen germination and growth.

  16. Solution structure of the calmodulin-like C-terminal domain of Entamoeba α-actinin2.

    Science.gov (United States)

    Karlsson, Göran; Persson, Cecilia; Mayzel, Maxim; Hedenström, Mattias; Backman, Lars

    2016-04-01

    Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross-links, or caps the filament ends have been identified and the actin cross-linker α-actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α-actinin is believed to be required for infection. To better understand the role of α-actinin in the infectious process we have determined the solution structure of the C-terminal calmodulin-like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium-binding EF-hand motifs, connected with a mobile linker. PMID:26800385

  17. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    Science.gov (United States)

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  18. Differential brain-derived neurotrophic factor expression in limbic brain regions following social defeat or territorial aggression.

    Science.gov (United States)

    Taylor, Stacie L; Stanek, Lisa M; Ressler, Kerry J; Huhman, Kim L

    2011-12-01

    Syrian hamsters readily form dominant-subordinate relationships under laboratory conditions. Winning or losing in agonistic encounters can have striking, long-term effects on social behavior, but the mechanisms underlying this experience-induced behavioral plasticity are unclear. The present study tested the hypothesis that changes in brain-derived neurotrophic factor (BDNF) may at least in part mediate this plasticity. Male hamsters were paired for 15-min using a resident-intruder model, and individuals were identified as winners or losers on the basis of their behavior. BDNF was examined with in situ hybridization 2 hr after treatment during the consolidation period of emotional learning. Losing animals had significantly more BDNF mRNA in the basolateral (BLA) and medial (MeA) nuclei of the amygdala when compared with winning animals as well as novel cage and home cage controls. Interestingly, winning animals had significantly more BDNF mRNA in the dentate gyrus of the dorsal hippocampus than did losing animals, novel, and home cage controls. No conflict-related changes in BDNF mRNA were observed in several other regions including the bed nucleus of the stria terminalis and central amygdala. Next, we demonstrated that K252a, a Trk receptor antagonist, significantly reduced the acquisition of conditioned defeat when administered within the BLA. These data support a model in which BDNF-mediated plasticity within the BLA supports learning of submission or subordinate social status in losing animals, whereas BDNF-mediated plasticity within the hippocampus may instantiate aspects of winning such as control of a territory in dominant animals. PMID:22122152

  19. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania.

    Science.gov (United States)

    Fries, Gabriel R; Valvassori, Samira S; Bock, Hugo; Stertz, Laura; Magalhães, Pedro Vieira da Silva; Mariot, Edimilson; Varela, Roger B; Kauer-Sant'Anna, Marcia; Quevedo, João; Kapczinski, Flávio; Saraiva-Pereira, Maria Luiza

    2015-09-01

    Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala. PMID:26026487

  20. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    Science.gov (United States)

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  1. Role of Serum Brain Derived Neurotrophic Factor and Central N-Acetylaspartate for Clinical Response under Antidepressive Pharmacotherapy

    Directory of Open Access Journals (Sweden)

    Sarah Nase

    2016-02-01

    Full Text Available Background: The predictive therapeutic value of brain derived neurotrophic factor (BDNF and its changes associated with the use of specific antidepressants are still unclear. In this study, we examined BDNF as a peripheral and NAA as a central biomarker over the time course of antidepressant treatment to specify both of their roles in the response to the medication and clinical outcome. Methods: We examined serum BDNF (ELISA kit in a sample of 76 (47 female and 29 male depressed patients in a naturalistic setting. BDNF was assessed before medication and subsequently after two, four and six weeks of antidepressant treatment. Additionally, in fifteen patients, N-acetylaspartate (NAA was measured in the anterior cingulate cortex (ACC with magnetic resonance spectroscopy (MRS. Over a time course of six weeks BDNF and NAA were also examined in a group of 41 healthy controls. Results: We found significant lower serum BDNF concentrations in depressed patients compared to the sample of healthy volunteers before and after medication. BDNF and clinical symptoms decreased significantly in the patients over the time course of antidepressant treatment. Serum BDNF levels at baseline predicted the symptom outcome after eight weeks. Specifically, responders and remitters had lower serum BDNF at baseline than the nonresponders and nonremitters. NAA was slightly decreased but not significantly lower in depressed patients when compared with healthy controls. During treatment period, NAA showed a tendency to increase. Limitations: A relative high drop-out rate and possibly, a suboptimal observation period for BDNF. Conclusion: Our data confirm serum BDNF as a biomarker of depression with a possible role in response prediction. However, our findings argue against serum BDNF increase being a prerequisite to depressive symptom reduction.

  2. High levels of brain-derived neurotrophic factor are associated with treatment adherence among crack-cocaine users.

    Science.gov (United States)

    Scherer, Juliana N; Schuch, Silvia; Ornell, Felipe; Sordi, Anne O; Bristot, Giovana; Pfaffenseller, Bianca; Kapczinski, Flávio; Kessler, Felix H P; Fumagalli, Fabio; Pechansky, Flavio; von Diemen, Lisia

    2016-09-01

    Due to the complexity of crack -cocaine addiction treatment, the identification of biological markers that could help determining the impact or outcome of drug use has become a major subject of study. Therefore, we aim to evaluate the association of Brain-Derived Neurotrophic Factor (BDNF) and Thiobarbituric Acid Reactive Substances (TBARS) levels in crack -cocaine users with treatment adherence and with drug addiction severity. A sample of 47 male inpatient crack- cocaine users were recruited in a treatment unit, and blood samples were collected at admission and discharge in order to measure BDNF and TBARS serum levels. Subjects were split into 2 groups: treatment non-completers (n=23) and treatment completers (n=24). The completer group had a tendency of higher levels of BDNF than non-completers at admission (16.85±3.24 vs. 14.65±5.45, p=0.10), and significant higher levels at discharge (18.10±4.88 vs. 13.91±4.77, p=0.001). A negative correlation between BDNF levels at admission and years of crack use was observed. We did not find significant changes in TBARS levels during inpatient treatment, although the completer group tended to decrease these levels while non-completers tend to increase it. These findings suggest an association between higher levels of BDNF and better clinical outcomes in crack- cocaine users after detoxification. We believe that the variation in BDNF and TBARS found here add evidence to literature data that propose that such biomarkers could be used to better understand the physiopathology of crack- cocaine addiction. PMID:27473943

  3. Relationship between Levels of Brain-Derived Neurotrophic Factor and Metabolic Parameters in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Banu Boyuk

    2014-01-01

    Full Text Available Background and Aim. Studies have suggested that brain-derived neurotrophic factor (BDNF plays a role in glucose and lipid metabolism and inflammation. The aim of this study was to evaluate the relationship between serum BDNF levels and various metabolic parameters and inflammatory markers in patients with type 2 diabetes mellitus (T2DM. Materials and Methods. The study included 88 T2DM patients and 33 healthy controls. Fasting blood samples were obtained from the patients and the control group. The serum levels of BDNF were measured with an ELISA kit. The current paper introduces a receiver-operating characteristic (ROC generalization curve to identify cut-off for the BDNF values in type 2 diabetes patients. Results. The serum levels of BDNF were significantly higher in T2DM patients than in the healthy controls (206.81 ± 107.32 pg/mL versus 130.84 ± 59.81 pg/mL; P<0.001. They showed a positive correlation with the homeostasis model assessment of insulin resistance (HOMA-IR (r=0.28; P<0.05, the triglyceride level (r=0.265; P<0.05, and white blood cell (WBC count (r=0.35; P<0.001. In logistic regression analysis, age (P<0.05, body mass index (BMI (P<0.05, C-reactive protein (CRP (P<0.05, and BDNF (P<0.01 were independently associated with T2DM. In ROC curve analysis, BDNF cut-off was 137. Conclusion. The serum BDNF level was higher in patients with T2DM. The BDNF had a cut-off value of 137. The findings suggest that BDNF may contribute to glucose and lipid metabolism and inflammation.

  4. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2016-07-15

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. PMID:27113028

  5. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  6. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models.

    Science.gov (United States)

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-05-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  7. Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells

    Science.gov (United States)

    Lin, Guiting; Zhang, Haiyang; Sun, Fionna; Lu, Zhihua; Reed-Maldonado, Amanda; Lee, Yung-Chin; Wang, Guifang; Banie, Lia

    2016-01-01

    Background Radical prostatectomy (RP) carries the risk of erectile dysfunction (ED) due to cavernous nerve (CN) injury. Schwann cells are essential for the maintenance of integrity and function of peripheral nerves such as the CNs. We hypothesize that brain-derived neurotrophic factor (BDNF) activates the Janus kinase (JAK)/(signal transducer and activator of transcription) STAT pathway in Schwann cells, not in neuronal axonal fibers, with the resultant secretion of cytokines from Schwann cells to facilitate nerve recovery. Methods Using four different cell lines—human neuroblastoma BE(2)-C and SH-SY5Y, human Schwann cell (HSC), and rat Schwann cell (RSC) RT4-D6P2T—we assessed the effect of BDNF application on the activation of the JAK/STAT pathway. We also assessed the time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment. We then assayed cytokine release from HSCs as a response to BDNF treatment using oncostatin M and IL6 as markers. Results We showed extensive phosphorylation of STAT3/STAT1 by BDNF at high dose (100 pM) in RSCs, with no JAK/STAT pathway activation in human neuroblastoma cell lines. The time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment showed an initial peak at shortly after treatment and then a second higher peak at 24–48 hours. Cytokine release from HSCs increased progressively after BDNF application, reaching statistical significance for IL6. Conclusions We demonstrated for the first time the indirect mechanism of BDNF enhancement of nerve regeneration through the activation of JAK/STAT pathway in Schwann cells, rather than directly on neurons. As a result of BDNF application, Schwann cells produce cytokines that promote nerve regeneration.

  8. Influence of brain-derived neurotrophic factor (BDNF) on serotonin neurotransmission in the hippocampus of adult rodents.

    Science.gov (United States)

    Benmansour, Saloua; Deltheil, Thierry; Piotrowski, Jonathan; Nicolas, Lorelei; Reperant, Christelle; Gardier, Alain M; Frazer, Alan; David, Denis J

    2008-06-10

    Whereas SSRIs produce rapid blockade of the serotonin transporter (SERT) in vitro and in vivo, the onset of an observable clinical effect takes longer to occur and a variety of pharmacological effects caused by antidepressants have been speculated to be involved either in initiating antidepressant effects and/or enhancing their effects on serotonergic transmission so as to cause clinical improvement. Among such secondary factors is increased activity of brain-derived neurotrophic factor (BDNF), which requires the Tropomyosine-related kinase B receptor (TrkB) for its effects. To begin an analysis of the influence of BDNF on serotonergic activity, we studied the acute effects of BDNF on SERT activity. A single BDNF injection (either intracerebroventricularly or directly into the CA3 region of hippocampus) decreased the signal amplitude and clearance rate produced by exogenously applied 5-HT compared to what was measured in control rats, shown using in vivo chronoamperometry. It also reduced the ability of a locally applied SSRI to block the clearance of 5-HT. In awake freely moving mice, acute intrahippocampal injection of BDNF decreased extracellular levels of 5-HT in the hippocampus, as measured using microdialysis. In addition, perfusion with BDNF decreased KCl-evoked elevations of 5-HT. These effects of BDNF were blocked by the non-selective antagonist of TrkB receptors, K252a. Overall, it may be inferred that in the hippocampus, through TrkB activation, a single injection of BDNF enhances SERT function. Such acute effects of BDNF would be expected to counter early effects of SSRIs, which might, in part, account for some delay in therapeutic effect. PMID:18474368

  9. Expression of Brain-derived Neurotrophic Factor and Tyrosine Kinase B in Cerebellum of Poststroke Depression Rat Model

    Institute of Scientific and Technical Information of China (English)

    Yun Li; Chun Peng; Xu Guo; Jun-Jie You; Harishankar Prasad Yadav

    2015-01-01

    Background:The pathophysiology of poststroke depression (PSD) remains elusive because of its proposed multifactorial nature.Accumulating evidence suggests that brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of depression and PSD.And the cerebellar dysfunction may be important in the etiology of depression;it is not clear whether it also has a major effect on the risk of PSD.This study aimed to explore the expression of BDNF and high-affinity receptors tyrosine kinase B (TrkB) in the cerebellum of rats with PSD.Methods:The rat models with focal cerebral ischemic were made using a thread embolization method.PSD rat models were established with comprehensive separate breeding and unpredicted chronic mild stress (UCMS) on this basis.A normal control group,depression group,and a stroke group were used to compare with the PSD group.Thirteen rats were used in each group.Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) for detecting the expression of BDNF and TrkB protein and mRNA in the cerebellum were used at the 29th day following the UCMS.Results:Compared with the normal control group and the stroke group,the number ofBDNF immunoreactive (IR) positive neurons was less in the PSD group (P < 0.05).Furthermore,the number ofTrkB IR positive cells was significantly less in the PSD group than that in the normal control group (P < 0.05).The gene expression of BDNF and TrkB in the cerebellum of PSD rats also decreased compared to the normal control group (P < 0.05).Conclusions:These findings suggested a possible association between expression of BDNF and TrkB in the cerebellum and the pathogenesis of PSD.

  10. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist.

    Science.gov (United States)

    Katsurada, Kenichi; Yada, Toshihiko

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists. PMID:27186358

  11. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men.

    Science.gov (United States)

    Zembron-Lacny, A; Dziubek, W; Rynkiewicz, M; Morawin, B; Woźniewski, M

    2016-06-20

    Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF) and its relationship to oxidative damage and conventional cardiovascular disease (CVD) biomarkers, such as atherogenic index, C-reactive protein (hsCRP) and oxidized LDL (oxLDL), in active and inactive men. Seventeen elderly males (61-80 years) and 17 young males (20-24 years) participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001). In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL), hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men. PMID:27332774

  12. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men

    Directory of Open Access Journals (Sweden)

    A. Zembron-Lacny

    2016-01-01

    Full Text Available Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF and its relationship to oxidative damage and conventional cardiovascular disease (CVD biomarkers, such as atherogenic index, C-reactive protein (hsCRP and oxidized LDL (oxLDL, in active and inactive men. Seventeen elderly males (61-80 years and 17 young males (20-24 years participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001. In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL, hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men.

  13. The effect of exercise training modality on serum brain derived neurotrophic factor levels in individuals with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Damon L Swift

    Full Text Available INTRODUCTION: Brain derived neurotrophic factor (BDNF has been implicated in memory, learning, and neurodegenerative diseases. However, the relationship of BDNF with cardiometabolic risk factors is unclear, and the effect of exercise training on BDNF has not been previously explored in individuals with type 2 diabetes. METHODS: Men and women (N = 150 with type 2 diabetes were randomized to an aerobic exercise (aerobic, resistance exercise (resistance, or a combination of both (combination for 9 months. Serum BDNF levels were evaluated at baseline and follow-up from archived blood samples. RESULTS: Baseline serum BDNF was not associated with fitness, body composition, anthropometry, glucose control, or strength measures (all, p>0.05. Similarly, no significant change in serum BDNF levels was observed following exercise training in the aerobic (-1649.4 pg/ml, CI: -4768.9 to 1470.2, resistance (-2351.2 pg/ml, CI:-5290.7 to 588.3, or combination groups (-827.4 pg/ml, CI: -3533.3 to 1878.5 compared to the control group (-2320.0 pg/ml, CI: -5750.8 to 1110.8. However, reductions in waist circumference were directly associated with changes in serum BDNF following training (r = 0.25, p = 0.005. CONCLUSIONS: Serum BDNF was not associated with fitness, body composition, anthropometry, glucose control, or strength measures at baseline. Likewise, serum BDNF measures were not altered by 9 months of aerobic, resistance, or combination training. However, reductions in waist circumference were associated with decreased serum BDNF levels. Future studies should investigate the relevance of BDNF with measures of cognitive function specifically in individuals with type-2 diabetes.

  14. Brain-derived neurotrophic factor (BDNF as a potential mechanism of the effects of acute exercise on cognitive performance

    Directory of Open Access Journals (Sweden)

    Aaron T. Piepmeier

    2015-03-01

    Full Text Available The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings from both rodent and human studies suggest brain-derived neurotrophic factor (BDNF as a potential mechanism of the effect of acute exercise on memory. The molecular properties of BDNF allow this protein to be assessed in the periphery (pBDNF (i.e., blood serum, blood plasma, making measurements of acute exercise-induced changes in BDNF concentration relatively accessible. Studies exploring the acute exercise–pBDNF–cognitive performance relationship have had mixed findings, but this may be more reflective of methodological differences between studies than it is a statement about the role of BDNF. For example, significant associations have been observed between acute exercise-induced changes in pBDNF concentration and cognitive performance in studies assessing memory, and non-significant associations have been found in studies assessing non-memory cognitive domains. Three suggestions are made for future research aimed at understanding the role of BDNF as a biological mechanism of this relationship: 1 Assessments of cognitive performance may benefit from a focus on various types of memory (e.g., relational, spatial, long-term; 2 More fine-grained measurements of pBDNF will allow for the assessment of concentrations of specific isoforms of the BDNF protein (i.e., immature, mature; 3 Statistical techniques designed to test the mediating role of pBDNF in the acute exercise-cognitive performance relationship should be utilized in order to make causal inferences.

  15. Relationship between brain-derived neurotrophic factor and cognitive function of obstructive sleep apnea/hypopnea syndrome patients

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong Wang; Guo-Ping He; Xu-Ping Xiao; Can Gu; Hua-Ying Chen

    2012-01-01

    Objective:To determine the relationship between the blood serum brain-derived neurotrophic factor (BDNF) level and cognitive function deterioration in patients with obstructive sleep apnea/hypopnea syndrome (OSAHS), and to explore the possible mechanism of cognitive impairment. Methods: Twenty-eight male OSAHS patients and 14 normal males (as controls) were enrolled in the study. Polysomnography and the Montreal cognitive assessment (MoCA) were conducted. The blood serum BDNF levels were measured using ELISA. Results: The OSAHS group had significantly decreased blood serum BDNF levels compared with the control group (t=-10.912, P= 0.000). The blood serum BDNF level of the subjects was significantly positively associated with the MoCA score (r= 0.544, P= 0.000), significantly negatively associated with the apnea-hypopnea index (AHI) and shallow sleep (S1+S2) (AHI:r=-0.607, P=0.000;S1+S2:r=-0.768, P=0.000), and significantly positively associated with the lowest SaO2 (LSO), slow wave sleep (S3+S4), and rapid eye movement sleep (REM) (LSO:r=0.566, P=0.000;S3+S4:r=0.778, P=0.000;REM:r= 0.575, P= 0.000). Conclusions: OSAHS patients have significantly decreased blood serum BDNF levels compared with the control. Nocturnal hypoxia as well as the deprivation of slow wave sleep and REM may lead to the decreased serum BDNF level of OSAHS patients. This decreased blood serum BDNF level may contribute to the cognitive impairment in OSAHS.

  16. Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats.

    Science.gov (United States)

    Leake, Patricia A; Hradek, Gary T; Hetherington, Alexander M; Stakhovskaya, Olga

    2011-06-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend on both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partially prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae, and this is the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a miniosmotic pump. In BDNF-treated cochleae, SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal, and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement of electrically evoked auditory brainstem response thresholds. BDNF may have potential therapeutic value in the developing auditory system, but many serious obstacles currently preclude clinical application. PMID:21452221

  17. Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ.

    Science.gov (United States)

    Balkowiec, A; Katz, D M

    2000-10-01

    To define activity-dependent release of endogenous brain-derived neurotrophic factor (BDNF), we developed an in vitro model using primary sensory neurons and a modified ELISA, termed ELISA in situ. Dissociate cultures of nodose-petrosal ganglion cells from newborn rats were grown in wells precoated with anti-BDNF antibody to capture released BDNF, which was subsequently detected using conventional ELISA. Conventional ELISA alone was unable to detect any increase in BDNF concentration above control values following chronic depolarization with 40 mM KCl for 72 hr. However, ELISA in situ demonstrated a highly significant increase in BDNF release, from 65 pg/ml in control to 228 pg/ml in KCl-treated cultures. The efficacy of the in situ assay appears to be related primarily to rapid capture of released BDNF that prevents BDNF binding to the cultured cells. We therefore used this approach to compare BDNF release from cultures exposed for 30 min to either continuous depolarization with elevated KCl or patterned electrical field stimulation (50 biphasic rectangular pulses of 25 msec, at 20 Hz, every 5 sec). Short-term KCl depolarization was completely ineffective at evoking any detectable release of BDNF, whereas patterned electrical stimulation increased extracellular BDNF levels by 20-fold. In addition, the magnitude of BDNF release was dependent on stimulus pattern, with high-frequency bursts being most effective. These data indicate that the optimal stimulus profile for BDNF release resembles that of other neuroactive peptides. Moreover, our findings demonstrate that BDNF release can encode temporal features of presynaptic neuronal activity. PMID:11007900

  18. Upregulation of brain-derived neurotrophic factor expression in nodose ganglia and the lower brainstem of hypertensive rats.

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Jenkins, Victoria K; Hsieh, Hui-ya; Brown, Alexandra L; Page, Mollie P; Brooks, Virginia L; Balkowiec, Agnieszka

    2013-02-01

    Hypertension leads to structural and functional changes at baroreceptor synapses in the medial nucleus tractus solitarius (NTS), but the underlying molecular mechanisms remain unknown. Our previous studies show that brain-derived neurotrophic factor (BDNF) is abundantly expressed by rat nodose ganglion (NG) neurons, including baroreceptor afferents and their central terminals in the medial NTS. We hypothesized that hypertension leads to upregulation of BDNF expression in NG neurons. To test this hypothesis, we used two mechanistically distinct models of hypertension, the spontaneously hypertensive rat (SHR) and the deoxycorticosterone acetate (DOCA)-salt rat. Young adult SHRs, whose blood pressure was significantly elevated compared with age-matched Wistar-Kyoto (WKY) control rats, exhibited dramatic upregulation of BDNF mRNA and protein in the NG. BDNF transcripts from exon 4, known to be regulated by activity, and exon 9 (protein-coding region) showed the largest increases. Electrical stimulation of dispersed NG neurons with patterns that mimic baroreceptor activity during blood pressure elevations led to increases in BDNF mRNA that were also mediated through promoter 4. The increase in BDNF content of the NG in vivo was associated with a significant increase in the percentage of BDNF-immunoreactive NG neurons. Moreover, upregulation of BDNF in cell bodies of NG neurons was accompanied by a significant increase in BDNF in the NTS region, the primary central target of NG afferents. A dramatic increase in BDNF in the NG was also detected in DOCA-salt hypertensive rats. Together, our study identifies BDNF as a candidate molecular mediator of activity-dependent changes at baroafferent synapses during hypertension. PMID:23172808

  19. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons.

    Science.gov (United States)

    Balkowiec, Agnieszka; Katz, David M

    2002-12-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in activity-dependent modifications of neuronal connectivity and synaptic strength, including establishment of hippocampal long-term potentiation (LTP). To shed light on mechanisms underlying BDNF-dependent synaptic plasticity, the present study was undertaken to characterize release of native BDNF from newborn rat hippocampal neurons in response to physiologically relevant patterns of electrical field stimulation in culture, including tonic stimulation at 5 Hz, bursting stimulation at 25 and 100 Hz, and theta-burst stimulation (TBS). Release was measured using the ELISA in situ technique, developed in our laboratory to quantify secretion of native BDNF without the need to first overexpress the protein to nonphysiological levels. Each stimulation protocol resulted in a significant increase in BDNF release that was tetrodotoxin sensitive and occurred in the absence of glutamate receptor activation. However, 100 Hz tetanus and TBS, stimulus patterns that are most effective in inducing hippocampal LTP, were significantly more effective in releasing native BDNF than lower-frequency stimulation. For all stimulation protocols tested, removal of extracellular calcium, or blockade of N-type calcium channels, prevented BDNF release. Similarly, depletion of intracellular calcium stores with thapsigargin and treatment with dantrolene, an inhibitor of calcium release from caffeine-ryanodine-sensitive stores, markedly inhibited activity-dependent BDNF release. Our results indicate that BDNF release can encode temporal features of hippocampal neuronal activity. The dual requirement for calcium influx through N-type calcium channels and calcium mobilization from intracellular stores strongly implicates a role for calcium-induced calcium release in activity-dependent BDNF secretion. PMID:12451139

  20. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine.

    Science.gov (United States)

    Savignac, Helene M; Corona, Giulia; Mills, Henrietta; Chen, Li; Spencer, Jeremy P E; Tzortzis, George; Burnet, Philip W J

    2013-12-01

    The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and

  1. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    International Nuclear Information System (INIS)

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations

  2. A Novel Kinesin-Like Protein with a Calmodulin-Binding Domain

    Science.gov (United States)

    Wang, W.; Takezawa, D.; Narasimhulu, S. B.; Reddy, A. S. N.; Poovaiah, B. W.

    1996-01-01

    Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with S-35-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca(2+)-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCKI is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca(2+)/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.

  3. Involvement of brain-derived neurotrophic factor (BDNF) on malathion induced depressive-like behavior in subacute exposure and protective effects of crocin

    OpenAIRE

    Somaye Ardebili Dorri; Hossein Hosseinzadeh; Khalil Abnous; Faezeh Vahdati Hasani; Rezvan Yazdian Robati; Bibi Marjan Razavi

    2015-01-01

    Objective(s): In this study the effect of crocin, a carotenoid isolated from saffron, on malathion (an organophosphate insecticide) induced depressive- like behavior in subacute exposure was investigated. Moreover the molecular mechanism of malathion induced depressive- like behavior and its decreasing effect on the level of brain derived neurotrophic factor (BDNF) in rat hippocampus and cerebral cortex were evaluated. Materials and Methods: Male Wistar rats were exposed to malathion (50 m...

  4. Chronic administration of brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reverses obesity induced by high-fat diet

    OpenAIRE

    Wang, Chuanfeng; Godar, Rebecca J.; Billington, Charles J.; Kotz, Catherine M.

    2010-01-01

    An acute injection of brain-derived neurotrophic factor (BDNF) in the hypothalamic paraventricular nucleus (PVN) reduces body weight by decreasing feeding and increasing energy expenditure (EE), in animals on standard laboratory chow. Animals have divergent responses to a high-fat diet (HFD) exposure, with some developing obesity and others remaining lean. In the current study, we tested two hypotheses: 1) BDNF in the PVN reverses HFD-induced obesity, and 2) animals with higher body fat have ...

  5. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?★

    OpenAIRE

    Yoon, Hyung Ho; Min, Joongkee; Shin, Nari; Kim, Yong Hwan; Kim, Jin-Mo; Hwang, Yu-Shik; Suh, Jun-Kyo Francis; Hwang, Onyou; Jeon, Sang Ryong

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-der...

  6. Brain-derived neurotrophic factor (BDNF) gene: a gender-specific role in cognitive function during normal cognitive aging of the MEMO-Study?

    OpenAIRE

    Laing, Katharine R.; Mitchell, David; Wersching, Heike; Czira, Maria E.; Berger, Klaus; Baune, Bernhard T

    2011-01-01

    Cognitive aging processes are underpinned by multiple processes including genetic factors. The brain-derived neurotrophic factor (BDNF) has been suggested to be involved in age-related cognitive decline in otherwise healthy individuals. The gender-specific role of the BDNF gene in cognitive aging remains unclear. The identification of genetic biomarkers might be a useful approach to identify individuals at risk of cognitive decline during healthy aging processes. The aim of this study was to ...

  7. Glycyrrhiza uralensis flavonoids inhibit brain microglial cell TNF-α secretion, p-IκB expression, and increase brain-derived neurotropic factor (BDNF) secretion

    OpenAIRE

    Patil, Sangita P; Changda Liu; Joseph Alban; Nan Yang; Xiu-Min Li

    2014-01-01

    Objective: Asthma sufferers exhibit high prevalence of anxiety/depression. Elevated tumor-necrosis factor-alpha (TNF-α) levels in peripheral system and central nervous system (CNS) are associated with anxiety/depression, whereas brain-derived neurotropic factor (BDNF) has anti-depressant effects. An anti-asthma herbal medicine intervention ASHMI inhibits peripheral TNF-α secretion in an animal model of asthma. We hypothesize that ASHMI and its compounds may have modulatory effects on CNS TNF-...

  8. Disruption of the brain-derived neurotrophic factor (BDNF) immunoreactivity in the human Kölliker-Fuse nucleus in victims of unexplained fetal and infant death

    OpenAIRE

    Anna Maria Lavezzi

    2014-01-01

    Experimental studies have demonstrated that the neurotrophin brain-derived neutrophic factor (BDNF) is required for the appropriate development of the central respiratory network, a neuronal complex in the brainstem of vital importance to sustaining life. The pontine Kölliker-Fuse nucleus (KFN) is a fundamental component of this circuitry with strong implications in the pre- and postnatal breathing control. This study provides detailed account for the cytoarchitecture, the physiology and the ...

  9. Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats

    OpenAIRE

    Jeong, Hye Im; Ji, Eun-Sang; Kim, Su-Hyun; Kim, Tae-Wook; BAEK, SANG-BIN; Choi, Seung Wook

    2014-01-01

    Attention-deficit/hyperactivity disorder (ADHD) patients show learning difficulty and impulsiveness. Exercise is known to improve learning ability and memory function. In the present study, we investigated the duration-dependence of the effect of treadmill exercise on spatial learning ability in relation with brain-derived neurotrophic factor (BDNF) expression in ADHD rats. For this study, radial 8-arm maze test and western blot for BDNF and tyrosine kinase B (TrkB) were performed. Spontaneou...

  10. The Effects of Antecedent Exercise on Motor Function Recovery and Brain-derived Neurotrophic Factor Expression after Focal Cerebral Ischemia in Rats

    OpenAIRE

    KIM, GYEYEOP; Kim, Eunjung

    2013-01-01

    [Purpose] In the present study, we investigated the effect of antecedent exercise on functional recovery and brain-derived neurotrophic factor (BDNF) expression following focal cerebral ischemia injury. [Subjects] The rat middle cerebral artery occlusion (MCAO) model was employed. Adult male Sprague-Dawley rats were randomly divided into 4 groups. Group I included untreated normal rats (n=10); Group II included untreated rats with focal cerebral ischemia (n=10); Group III included rats that p...

  11. Chronic Exercise Increases Plasma Brain-Derived Neurotrophic Factor Levels, Pancreatic Islet Size, and Insulin Tolerance in a TrkB-Dependent Manner

    OpenAIRE

    Alberto Jiménez-Maldonado; Elena Roces de Álvarez-Buylla; Sergio Montero; Valery Melnikov; Elena Castro-Rodríguez; Armando Gamboa-Domínguez; Alejandrina Rodríguez-Hernández; Mónica Lemus; Jesús Muñiz Murguía

    2014-01-01

    BACKGROUND: Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF) enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats. METHODS: Wistar rats were divided into five groups: control (sedentary, C); moderate- intensity training (MIT); ...

  12. Increase of plasma brain-derived neurotrophic factor levels in two psychotic depressed patients responding to lithium addition to paroxetine treatment

    OpenAIRE

    Yoshimura, Reiji; Tsuji, Koshiro; Ueda, Nobuhisa; Nakamura, Jun

    2007-01-01

    We report two patients with psychotic depression who were successfully treated with a lithium addition to ongoing paroxetine treatment. In both cases, plasma brain-derived neurotrophic factor (BDNF) levels increased about 2-fold after lithium augmentation to paroxetine, compared with paroxetine treatment alone. Plasma paroxetine levels did not change after lithium addition. These results suggest that the increases in plasma BDNF levels reflect recovery from depressive symptoms in psychotic de...

  13. The Effect of Recombinant Erythropoietin on Plasma Brain Derived Neurotrophic Factor Levels in Patients with Affective Disorders: A Randomised Controlled Study

    OpenAIRE

    Maj Vinberg; Kamilla Miskowiak; Pernille Hoejman; Maria Pedersen; Lars Vedel Kessing

    2015-01-01

    The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (...

  14. Expression of cFos and brain-derived neurotrophic factor in cortex and hippocampus of ethanol-withdrawn male and female rats

    OpenAIRE

    Alele, Paul E.; Devaud, Leslie L.

    2013-01-01

    Objective: To map areas of brain activation (cFos) alongside changes in levels of brain-derived neurotrophic factor (BDNF) to provide insights into neuronal mechanisms contributing to previously observed sex differences in behavioral measures of ethanol withdrawal (EW). Materials and Methods: Immunohistochemical analysis of cFos and BDNF levels using protein-specific antibodies and visualization with nickel-enhanced DAB staining in 3 cortical and 4 hippocampal regions was used to assess EW-in...

  15. AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin

    Directory of Open Access Journals (Sweden)

    Shapiro Mark S

    2011-05-01

    Full Text Available Abstract Background The transient receptor potential vanilloid type1 (TRPV1 is expressed in nociceptive sensory neurons and is sensitive to phosphorylation. A-Kinase Anchoring Protein 79/150 (AKAP150 mediates phosphorylation of TRPV1 by Protein Kinases A and C, modulating channel activity. However, few studies have focused on the regulatory mechanisms that control AKAP150 association with TRPV1. In the present study, we identify a role for calcium/calmodulin in controlling AKAP150 association with, and sensitization of, TRPV1. Results In trigeminal neurons, intracellular accumulation of calcium reduced AKAP150 association with TRPV1 in a manner sensitive to calmodulin antagonism. This was also observed in transfected Chinese hamster ovary (CHO cells, providing a model for conducting molecular analysis of the association. In CHO cells, the deletion of the C-terminal calmodulin-binding site of TRPV1 resulted in greater association with AKAP150, and increased channel activity. Furthermore, the co-expression of wild-type calmodulin in CHOs significantly reduced TRPV1 association with AKAP150, as evidenced by total internal reflective fluorescence-fluorescence resonance energy transfer (TIRF-FRET analysis and electrophysiology. Finally, dominant-negative calmodulin co-expression increased TRPV1 association with AKAP150 and increased basal and PKA-sensitized channel activity. Conclusions the results from these studies indicate that calcium/calmodulin interferes with the association of AKAP150 with TRPV1, potentially extending resensitization of the channel.

  16. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  17. Identification and Characterization of the Interaction Site between cFLIPL and Calmodulin.

    Directory of Open Access Journals (Sweden)

    Gabriel Gaidos

    Full Text Available Overexpression of the cellular FLICE-like inhibitory protein (cFLIP has been reported in a number of tumor types. As an inactive procaspase-8 homologue, cFLIP is recruited to the intracellular assembly known as the Death Inducing Signaling Complex (DISC where it inhibits apoptosis, leading to cancer cell proliferation. Here we characterize the molecular details of the interaction between cFLIPL and calmodulin, a ubiquitous calcium sensing protein. By expressing the individual domains of cFLIPL, we demonstrate that the interaction with calmodulin is mediated by the N-terminal death effector domain (DED1 of cFLIPL. Additionally, we mapped the interaction to a specific region of the C-terminus of DED1, referred to as DED1 R4. By designing DED1/DED2 chimeric constructs in which the homologous R4 regions of the two domains were swapped, calmodulin binding properties were transferred to DED2 and removed from DED1. Furthermore, we show that the isolated DED1 R4 peptide binds to calmodulin and solve the structure of the peptide-protein complex using NMR and computational refinement. Finally, we demonstrate an interaction between cFLIPL and calmodulin in cancer cell lysates. In summary, our data implicate calmodulin as a potential player in DISC-mediated apoptosis and provide evidence for a specific interaction with the DED1 of cFLIPL.

  18. The solution structure of the Mg2+ form of soybean calmodulin isoform 4 reveals unique features of plant calmodulins in resting cells

    OpenAIRE

    Huang, Hao; Ishida, Hiroaki; Vogel, Hans J.

    2010-01-01

    Soybean calmodulin isoform 4 (sCaM4) is a plant calcium-binding protein, regulating cellular responses to the second messenger Ca2+. We have found that the metal ion free (apo-) form of sCaM4 possesses a half unfolded structure, with the N-terminal domain unfolded and the C-terminal domain folded. This result was unexpected as the apo-forms of both soybean calmodulin isoform 1 (sCaM1) and mammalian CaM (mCaM) are fully folded. Because of the fact that free Mg2+ ions are always present at high...

  19. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  20. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine.

    Science.gov (United States)

    Coskun, Salih; Varol, Sefer; Ozdemir, Hasan H; Agacayak, Elif; Aydın, Birsen; Kapan, Oktay; Camkurt, Mehmet Akif; Tunc, Saban; Cevik, Mehmet Ugur

    2016-01-01

    Migraine is one of the most common neurological diseases worldwide. Migraine pathophysiology is very complex. Genetic factors play a major role in migraine. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), play an important role in central nervous system functioning, development, and modulation of pain. This study investigates whether polymorphisms in the BDNF and NGF genes are associated with migraine disease in a Turkish case-control population. Overall, 576 subjects were investigated (288 patients with migraine and 288 healthy controls) for the following polymorphisms: rs6265(G/A), rs8192466(C/T), rs925946(G/T), rs2049046(A/T), and rs12273363(T/C) in the BDNF gene, and rs6330(C/T), rs11466112(C/T), rs11102930(C/A), and rs4839435(G/A) in the NGF gene using 5'-exonuclease allelic discrimination assays. We found no differences in frequency of the analyzed eight polymorphisms between migraine and control groups. However, the frequency of minor A alleles of rs6265 in BDNF gene was borderline significant in the patients compared with the healthy controls (P=0.049; odds ratios [ORs] [95% confidence intervals {CIs}] =0.723 [0.523-0.999]). Moreover, when the migraine patients were divided into two subgroups, migraine with aura (MA) and migraine without aura (MO), the minor TT genotype of rs6330 in NGF was significantly higher in MA patients than in MO patients (P=0.036) or healthy controls (P=0.026), and this disappeared after correction for multiple testing. Also, the rs6330*T minor allele was more common in the MA group than in the MO group or controls (P=0.011, ORs [95% CIs] =1.626 [1.117-2.365] or P=0.007, ORs [95% CIs] =1.610 [1.140-2.274], respectively). In conclusion, this is the first clinical study to evaluate the association between BDNF and NGF polymorphisms in migraine patients compared with health controls. Our findings suggest that the NGF rs6330*T minor allele might be nominated as a risk factor for

  1. Characterization and functional analysis of the calmodulin-binding domain of Rac1 GTPase.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151-164 in Rac1 is essential for calmodulin binding. Within the 151-164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A, activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration.

  2. Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose.

    Science.gov (United States)

    Hellstern, Simon; Mutzel, Rupert

    2016-06-01

    We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established. PMID:26892535

  3. Impact of methionine oxidation on calmodulin structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States); Moen, Rebecca J. [Chemistry and Geology Department, Minnesota State University, Mankato, MN 56001 (United States); Olenek, Michael J. [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Klein, Jennifer C., E-mail: jklein@uwlax.edu [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Thomas, David D., E-mail: ddt@umn.edu [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States)

    2015-01-09

    Highlights: • We measured the distance distribution between two spin labels on calmodulin by DEER. • Two structural states, open and closed, were resolved at both low and high Ca. • Ca shifted the equilibrium toward the open state by a factor of 13. • Methionine oxidation, simulated by glutamine substitution, decreased the Ca effect. • These results have important implications for aging in muscle and other tissues. - Abstract: We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron–electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4 nm (closed) and another at ∼6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each

  4. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Danton H., E-mail: danton.oday@utoronto.ca [Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario, Canada M5S 3G5 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario, Canada L5L 1C6 (Canada); Huber, Robert J. [Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario, Canada M5S 3G5 (Canada); Suarez, Andres [Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario, Canada L5L 1C6 (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Extracellular calmodulin is present throughout growth and development in Dictyostelium. Black-Right-Pointing-Pointer Extracellular calmodulin localizes within the ECM during development. Black-Right-Pointing-Pointer Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. Black-Right-Pointing-Pointer Extracellular calmodulin exists in eukaryotic microbes. Black-Right-Pointing-Pointer Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca{sup 2+}/CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of the research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model amoebozoan.

  5. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response calmodulin-binding transcription factor AtSR1/CAMTA3

    Science.gov (United States)

    Calcium/calmodulin (Ca2+/CaM) has long been considered a crucial component in wound signaling pathway. However, no functional significance of Ca2+/CaM-binding proteins has been identified in plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca2+/CaM-bindi...

  6. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  7. Structural basis for activation of calcineurin by calmodulin.

    Science.gov (United States)

    Rumi-Masante, Julie; Rusinga, Farai I; Lester, Terrence E; Dunlap, Tori B; Williams, Todd D; Dunker, A Keith; Weis, David D; Creamer, Trevor P

    2012-01-13

    The highly conserved phosphatase calcineurin (CaN) plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin (CaM). CaM binds to a regulatory domain (RD) within CaN, causing a conformational change that displaces an autoinhibitory domain (AID) from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which CaM activates CaM-dependent protein kinases. Previously published data have hinted that the RD of CaN is intrinsically disordered. In this work, we demonstrate that the RD is unstructured and that it folds upon binding CaM, ousting the AID from the catalytic site. The RD is 95 residues long, with the AID attached to its C-terminal end and the 24-residue CaM binding region toward the N-terminal end. This is unlike the CaM-dependent protein kinases that have CaM binding sites and AIDs immediately adjacent in sequence. Our data demonstrate that not only does the CaM binding region folds but also an ∼25- to 30-residue region between it and the AID folds, resulting in over half of the RD adopting α-helical structure. This appears to be the first observation of CaM inducing folding of this scale outside of its binding site on a target protein. PMID:22100452

  8. Calmodulin stimulation of calcium transport in carrot microsomal vesicles

    International Nuclear Information System (INIS)

    ATP-dependent 45Ca2+ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca2+ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca2+ uptake (at 1.17 g/cc) was not affected by oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca2+. These results are consistent with the ER being an important site of intracellular Ca2+ regulation

  9. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-01-01

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  10. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-12-31

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  11. Human platelet calmodulin-binding proteins: identification and Ca/sup 2 +/-dependent proteolysis upon platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.W.; Tallant, E.A.; McManus, M.C.

    1987-05-19

    Calmodulin-binding proteins have been identified in human platelets by using Western blotting techniques and /sup 125/I-calmodulin. Ten distinct proteins of 245, 225, 175, 150, 90, 82 (2), 60, and 41 (2) kilodaltons (kDa) bound /sup 125/I-calmodulin in a Ca/sup 2 +/-dependent manner; the binding was blocked by ethylene glycol bis(..beta..-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), trifluoperazine, and nonradiolabeled calmodulin. Proteins of 225 and 90 kDa were labeled by antisera against myosin light chain kinase; 60- and 82-kDa proteins were labeled by antisera against the calmodulin-dependent phosphatase and caldesmon, respectively. The remaining calmodulin-binding proteins have not been identified. Calmodulin-binding proteins were degraded upon addition of Ca/sup 2 +/ to a platelet homogenate; the degradation could be blocked by either EGTA, leupeptin, or N-ethylmaleimide which suggests that the degradation was due to a Ca/sup 2 +/-dependent protease. Activation of intact platelets by thrombin, adenosine 5'-diphosphate, and collagen under conditions which promote platelet aggregation also resulted in limited proteolysis of calmodulin-binding proteins including those labeled with antisera against myosin light chain kinase and the calmodulin-dependent phosphatase. Activation by the Ca/sup 2 +/ ionophores A23187 and ionomycin also promoted degradation of the calmodulin-binding proteins in the presence of extracellular Ca/sup 2 +/. The data indicate that limited proteolysis of Ca/sup 2 +//calmodulin-regulated enzymes also occurs in the intact platelet and suggest that the proteolysis is triggered by an influx of extracellular Ca/sup 2 +/ associated with platelet aggregation.

  12. Role of brain-derived neurotrophic factor and neuronal nitric oxide synthase in stress-induced depression

    Institute of Scientific and Technical Information of China (English)

    Dan Wang; Shucheng An

    2008-01-01

    BACKGROUND: Accumulated evidence indicates an important role for hippocampal dendrite atrophy in development of depression, while brain-derived neurotrophic factor (BDNF) participates in hippocampal dendrite growth. OBJECTIVE: To discuss the role of BDNF and neuronal nitric oxide synthase (nNOS) in chronic and unpredictable stress-induced depression and the pathogenesis of depression.DESIGN, TIME AND SETTING: Randomized, controlled animal experiment. The experiment was carried out from October 2006 to May 2007 at the Department of Animal Physiology, College of Life Science, Shaanxi Normal University.MATERIALS: Thirty-seven male Sprague-Dawley rats weighing 250-300 g at the beginning of the experiment were obtained from Shaanxi Provincial Institute of Traditional Chinese Medicine (Xi'an, China). BDNF antibody and nNOS antibody were provided by Santa Cruz (USA). K252a (BDNF inhibitor) and 7-NI (nNOS inhibitor) were provided by Sigma (USA). METHODS: Animals were randomly divided into five groups: Control group, chronic unpredicted mild stress (CUMS) group, K252a group, K252a+7-NI group and 7-NI+CUMS group. While the Control, K252a and K252a+7-NI groups of rats not subjected to stress had free access to food and water, other groups of rats were subjected to nine stressors randomly applied for 21 days, with each stressor applied 2-3 times. On days 1, 7, 14 and 21 during CUMS, rats received microinjection of 1 μL of physiological saline in the Control and CUMS groups, 1 μL of K252a in the K252a group, 1 μL of K252a and 7-NI in the K252a+7-NI group, and 1 μL of 7-NI in the 7-NI+CUMS group. We observed a variety of alterations in sucrose preference, body weight change, open field test and forced swimming test, and observed the expression of BDNF and nNOS in rat hippocampus by immunohistochemistry;RESULTS: Compared with the Control group, the behavior of the CUMS rats was significantly depressed, the expression of BDNF decreased (P < 0.01) but the expression of n

  13. Ca2+/calmodulin dependent protein kinase from Mycobacterium smegmatis ATCC 607.

    Science.gov (United States)

    Sharma, S; Giri, S; Khuller, G K

    1998-06-01

    A soluble Ca2+/calmodulin dependent protein kinase has been partially purified (approximately 400 fold) from Mycobacterium smegmatis ATCC 607 using several purification steps like ammonium sulphate precipitation (30-60%), Sepharose CL-6B gel filtration, DEAE-cellulose and finally calmodulin-agarose affinity chromatography. On SDS-PAGE, this enzyme preparation showed a major protein band of molecular mass 35 kD and its activity was dependent on calcium, calmodulin and ATP when measured under saturating histone IIs (exogenous substrate) concentration. Phosphorylation of histone IIs was inhibited by W-7 (calmodulin inhibitor) and KN-62 (CaM-kinase inhibitor) with IC50 of 1.5 and 0.25 microm respectively, but was not affected by inhibitors of PKA (Sigma P5015) and PKC (H-7). All these results confirm that purified enzyme is Ca2+/calmodulin dependent protein kinase of M. smegmatis. The protein kinase of M. smegmatis demonstrated a narrow substrate specificity for both exogenous as well as endogenous substrates. These results suggest that purified CaM-kinase must be involved in regulating specific function(s) in this organism. PMID:9655195

  14. Effects of calmodulin and calmodulin inhibitors on Ca uptake by sarcoplasmic reticulum of saponin skinned caudal artery

    International Nuclear Information System (INIS)

    Calmodulin (CaM) stimulates plasma membrane transport in many cell types, however, its role in Ca regulation by the sarcoplasmic reticulum (SR) in smooth muscle has not been established. 45Ca uptake was studied in saponin skinned strips of rat caudal artery as a function of CaM and the CaM inhibitors, W-7, calmidazolium (CaMZ), and trifluoperazine (TFP). Although caudal artery strips lose approximately 30% of total tissue CaM during skinning, 0.3 - 2 μM CaM did not increase 45Ca uptake over a wide range of free Ca concentrations (10-8 - 10-6M). Neither W-7 nor CaMZ at concentration of 10-4 - 2 x 10-4M inhibited the MgATP-dependent Ca uptake. Ca uptake was not affected by 50 μM TFP but a significant inhibition was produced by 500 μM. Studies of the effects of TFP on 45Ca efflux indicated that TFP concentrations which inhibited Ca uptake also significantly increased the rate of Ca release. The results suggest that total Ca uptake in caudal artery depends mainly upon MgATP and is not modulated by exogenous CaM or affected by these CaM inhibitors. They cannot preclude that CaM may affect initial velocities or that the CaM inhibitors failed to reach active sites

  15. Purification and characterization of bovine lung calmodulin-dependent cyclic nucleotide phosphodiesterase in free and calmodulin-bound forms

    International Nuclear Information System (INIS)

    A rabbit lung Ca2+-stimulated cyclic nucleotide phosphodiesterase (PDE) prepared by successive chromatography in the presence of EGTA on DEAE-cellulose and G-200 Sephadex columns still responded to Ca2+ and contained calmodulin (CaM) suggesting that the enzyme exists as a stable CaM-PDE complex. A similar enzyme was demonstrated to exist in bovine lung extract. A monoclonal antibody Cl previously shown to react with the 60 kDa subunit of bovine brain PDE isozymes cross-reacted with the lung enzyme. Purification of the lung enzyme by Cl antibody immunoaffinity chromatography rendered the enzyme dependent of exogenously added CaM for Ca2+ stimulation. The enzyme was further purified by CaM affinity chromatography to near homogeneity. The purified enzyme could be reconstituted into PDE-CaM complex upon incubation with CaM in the presence of either Ca2+ or EGTA. When reconstitution was carried out in the presence of 45Ca2+, followed by isolation of the protein complex, no 45Ca2+ was found to be associated with the complex. CaM antagonists: trifluoroperazine, compound 48/80 and calcineurin at concentrations abolishing CaM-stimulation of bovine brain PDE had little effect on the bovine lung PDE-CaM complex

  16. Effects of calmodulin and calmodulin inhibitors on Ca uptake by sarcoplasmic reticulum of saponin skinned caudal artery

    Energy Technology Data Exchange (ETDEWEB)

    Stout, M.A.; Silver, P.J.

    1986-03-05

    Calmodulin (CaM) stimulates plasma membrane transport in many cell types, however, its role in Ca regulation by the sarcoplasmic reticulum (SR) in smooth muscle has not been established. /sup 45/Ca uptake was studied in saponin skinned strips of rat caudal artery as a function of CaM and the CaM inhibitors, W-7, calmidazolium (CaMZ), and trifluoperazine (TFP). Although caudal artery strips lose approximately 30% of total tissue CaM during skinning, 0.3 - 2 ..mu..M CaM did not increase /sup 45/Ca uptake over a wide range of free Ca concentrations (10/sup -8/ - 10/sup -6/M). Neither W-7 nor CaMZ at concentration of 10/sup -4/ - 2 x 10/sup -4/M inhibited the MgATP-dependent Ca uptake. Ca uptake was not affected by 50 ..mu..M TFP but a significant inhibition was produced by 500 ..mu..M. Studies of the effects of TFP on /sup 45/Ca efflux indicated that TFP concentrations which inhibited Ca uptake also significantly increased the rate of Ca release. The results suggest that total Ca uptake in caudal artery depends mainly upon MgATP and is not modulated by exogenous CaM or affected by these CaM inhibitors. They cannot preclude that CaM may affect initial velocities or that the CaM inhibitors failed to reach active sites.

  17. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II.

    Science.gov (United States)

    Hudmon, Andy; Schulman, Howard

    2002-06-15

    Ca2+/calmodulin (CaM)-dependent protein kinase (CaMKII) is a ubiquitous mediator of Ca2+-linked signalling that phosphorylates a wide range of substrates to co-ordinate and regulate Ca2+-mediated alterations in cellular function. The transmission of information by the kinase from extracellular stimuli and the intracellular Ca2+ rise is not passive. Rather, its multimeric structure and autoregulation enable this enzyme to participate actively in the sensitivity, timing and location of its action. CaMKII can: (i) be activated in a Ca2+-spike frequency-dependent manner; (ii) become independent of its initial Ca2+/CaM activators; and (iii) undergo a 'molecular switch-like' behaviour, which is crucial for certain forms of learning and memory. CaMKII is derived from a family of four homologous but distinct genes, with over 30 alternatively spliced isoforms described at present. These isoforms possess diverse developmental and anatomical expression patterns, as well as subcellular localization. Six independent catalytic/autoregulatory domains are connected by a narrow stalk-like appendage to each hexameric ring within the dodecameric structure. Ca2+/CaM binding activates the enzyme by disinhibiting the autoregulatory domain; this process initiates an intra-holoenzyme autophosphorylation reaction that induces complex changes in the enzyme's sensitivity to Ca2+/CaM, including the generation of Ca2+/CaM-independent (autonomous) activity and marked increase in affinity for CaM. The role of CaMKII in Ca2+ signal transduction is shaped by its autoregulation, isoenzymic type and subcellular localization. The molecular determinants and mechanisms producing these processes are discussed as they relate to the structure-function of this multifunctional protein kinase. PMID:11931644

  18. Targeting cell migration and the endoplasmic reticulum stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells

    International Nuclear Information System (INIS)

    Tumor cells benefit from their ability to avoid apoptosis and invade other tissues. The endoplasmic reticulum (ER) membrane protein Sec62 is a key player in these processes. Sec62 is essential for cell migration and protects tumor cells against thapsigargin-induced ER stress, which are both linked to cytosolic Ca2+. SEC62 silencing leads to elevated cytosolic Ca2+ and increased ER Ca2+ leakage after thapsigargin treatment. Sec62 protein levels are significantly increased in different tumors, including prostate, lung and thyroid cancer. In lung cancer, the influence of Sec62 protein levels on patient survival was analyzed using the Kaplan-Meier method and log-rank test. To elucidate the underlying pathophysiological functions of Sec62, Ca2+ imaging techniques, real-time cell analysis and cell migration assays were performed. The effects of treatment with the calmodulin antagonists, trifluoperazine (TFP) and ophiobolin A, on cellular Ca2+ homeostasis, cell growth and cell migration were compared with the effects of siRNA-mediated Sec62 depletion or the expression of a mutated SEC62 variant in vitro. Using Biacore analysis we examined the Ca2+-sensitive interaction of Sec62 with the Sec61 complex. Sec62 overproduction significantly correlated with reduced patient survival. Therefore, Sec62 is not only a predictive marker for this type of tumor, but also an interesting therapeutic target. The present study suggests a regulatory function for Sec62 in the major Ca2+ leakage channel in the ER, Sec61, by a direct and Ca2+-sensitive interaction. A Ca2+-binding motif in Sec62 is essential for its molecular function. Treatment of cells with calmodulin antagonists mimicked Sec62 depletion by inhibiting cell migration and rendering the cells sensitive to thapsigargin treatment. Targeting tumors that overproduce Sec62 with calmodulin antagonists in combination with targeted thapsigargin analogues may offer novel personalized therapeutic options

  19. Neonatal (+)-methamphetamine increases brain derived neurotrophic factor, but not nerve growth factor, during treatment and results in long-term spatial learning deficits

    OpenAIRE

    Skelton, Matthew R.; Williams, Michael T.; Schaefer, Tori L.; Vorhees, Charles V.

    2007-01-01

    In this study, brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were examined at five time points [postnatal day (P)11, 15, 20, 21, and 68 (the latter with or without behavioral testing)] during and after P11–20 (+)-methamphetamine (MA) (10 mg/ kg 4 × day) treatment. BDNF in MA-treated animals was elevated on P15 and P20 in the hippocampus but not in the hypothalamus and was unchanged on P11 and P21. On P68 (1 h after Morris water maze testing) MA-treated offspring showe...

  20. Effect of the Presence of Brain-Derived Neurotrophic Factor Val66Met Polymorphism on the Recovery in Patients With Acute Subcortical Stroke

    OpenAIRE

    Kim, Won-Seok; Lim, Jong Youb; Shin, Joon Ho; Park, Hye Kyung; Tan, Samuel Arnado; Park, Kyoung Un; Paik, Nam-Jong

    2013-01-01

    Objective To investigate the effect of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on the recovery after subcortical stroke, using the modified Rankin Scale (mRS). Methods Subcortical stroke patients with copies of BDNF Val66Met polymorphism (n=7) were compared to their controls (n=7) without a copy of BDNF Val66Met polymorphism after matching for initial severity, location and type of stroke. The mRS scores at 1 and 3 months after discharge from the neurorehabilitation uni...

  1. Association between brain-derived neurotrophic factor genetic polymorphism Val66Met and susceptibility to bipolar disorder: a meta-analysis

    OpenAIRE

    Wang, Zuowei; Li, Zezhi; Gao, Keming; Fang, Yiru

    2014-01-01

    Background In view of previous conflicting findings, this meta-analysis was performed to comprehensively determine the overall strength of associations between brain-derived neurotrophic factor (BDNF) genetic polymorphism Val66Met and susceptibility to bipolar disorders (BPD). Methods Literatures published and cited in Pubmed and Wanfang Data was searched with terms of ‘Val66Met’, ‘G196A’, ‘rs6265’, ‘BDNF’, ‘association’, and ‘bipolar disorder’ up to March 2014. All original case–control asso...

  2. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Matthews, V B; Åström, Maj-Brit; Chan, M H S;

    2009-01-01

    AIMS/HYPOTHESIS: Brain-derived neurotrophic factor (BDNF) is produced in skeletal muscle, but its functional significance is unknown. We aimed to determine the signalling processes and metabolic actions of BDNF. METHODS: We first examined whether exercise induced BDNF expression in humans. Next, C2......(79)) were analysed, as was fatty acid oxidation (FAO). Finally, we electroporated a Bdnf vector into the tibialis cranialis muscle of mice. RESULTS: BDNF mRNA and protein expression were increased in human skeletal muscle after exercise, but muscle-derived BDNF appeared not to be released...

  3. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury

    OpenAIRE

    Sheng Yi; Ying Yuan; Qianqian Chen; Xinghui Wang; Leilei Gong; Jie Liu; Xiaosong Gu; Shiying Li

    2016-01-01

    Peripheral nerve injury is a global problem that causes disability and severe socioeconomic burden. Brain-derived neurotrophic factor (BDNF) benefits peripheral nerve regeneration and becomes a promising therapeutic molecule. In the current study, we found that microRNA-1 (miR-1) directly targeted BDNF by binding to its 3′-UTR and caused both mRNA degradation and translation suppression of BDNF. Moreover, miR-1 induced BDNF mRNA degradation primarily through binding to target site 3 rather th...

  4. Upregulated gene expression of local brain-derived neurotrophic factor and nerve growth factor after intracisternal administration of marrow stromal cells in rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹; 毛颖; 吴雪海

    2005-01-01

    Objective: To examine the effects of rat marrow stromal cells (rMSCs) on gene expression of local brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) after injection of rMSCs into Cistern Magnum of adult rats subjected to traumatic brain injury(TBI).Results: Group cell transplantation had higher BDNF and NGF gene expressions than Group saline control during a period of less than 3 weeks (P<0.05).Conclusions: rMSCs transplantation via Cistern Magnum in rats subjected to traumatic brain injury can enhance expressions of local brain NGF and BDNF to a certain extent.

  5. Influence of phosphorylation of lymphocyte's plasma-membrane proteins and calmodulin on Ca2+, Mg2+ -ATPase activity under irradiation

    International Nuclear Information System (INIS)

    We establish that the regulation of Ca2+, Mg2+ - ATPase from plasma membranes of rat spleen lymphocytes is controlled by calmodulin and the Ca2+, calmodulin-dependent phosphorylation system. The mechanisms of regulation of this process are sensitive to the total X-ray irradiation in doses of 0.5 and 1 Gy

  6. Altered binding of 125I-labeled calmodulin to a 46.5-kilodalton protein in skin fibroblasts cultured from patients with cystic fibrosis

    International Nuclear Information System (INIS)

    The levels of calmodulin and calmodulin-binding proteins have been determined in cultured skin fibroblasts from patients with cystic fibrosis (CF) and age- and sex-matched controls. Calmodulin ranged from 0.20 to 0.76 microgram/mg protein; there was no difference between calmodulin concentration in fibroblasts from CF patients and controls. Calmodulin-binding proteins of 230, 212, 204, 164, 139, 70, 59, 46.5, and 41 kD were identified. A protein with a mobility identical to the 59-kD calmodulin-binding protein was labeled by antiserum against calmodulin-dependent phosphatase. Although Ca2+/calmodulin-dependent phosphatase activity was detected, there was no different in activity between control and CF fibroblasts or in the level of phosphatase protein as determined by radioimmunoassay. Lower amounts of 125I-calmodulin were bound to the 46.5-kD calmodulin-binding protein in CF fibroblasts as compared with controls. The 46.5-kD calmodulin-binding protein may be reduced in CF fibroblasts or its structure may be altered resulting in a reduced binding capacity and/or affinity for calmodulin and perhaps reflecting, either directly or indirectly, the genetic defect responsible for cystic fibrosis

  7. Matricellular signal transduction involving calmodulin in the social amoebozoan dictyostelium.

    Science.gov (United States)

    O'Day, Danton H; Huber, Robert J

    2013-01-01

    The social amoebozoan Dictyostelium discoideum undergoes a developmental sequence wherein an extracellular matrix (ECM) sheath surrounds a group of differentiating cells. This sheath is comprised of proteins and carbohydrates, like the ECM of mammalian tissues. One of the characterized ECM proteins is the cysteine-rich, EGF-like (EGFL) repeat-containing, calmodulin (CaM)-binding protein (CaMBP) CyrA. The first EGFL repeat of CyrA increases the rate of random cell motility and cyclic AMP-mediated chemotaxis. Processing of full-length CyrA (~63 kDa) releases two major EGFL repeat-containing fragments (~45 kDa and ~40 kDa) in an event that is developmentally regulated. Evidence for an EGFL repeat receptor also exists and downstream intracellular signaling pathways involving CaM, Ras, protein kinase A and vinculin B phosphorylation have been characterized. In total, these results identify CyrA as a true matricellular protein comparable in function to tenascin C and other matricellular proteins from mammalian cells. Insight into the regulation and processing of CyrA has also been revealed. CyrA is the first identified extracellular CaMBP in this eukaryotic microbe. In keeping with this, extracellular CaM (extCaM) has been shown to be present in the ECM sheath where it binds to CyrA and inhibits its cleavage to release the 45 kDa and 40 kDa EGFL repeat-containing fragments. The presence of extCaM and its role in regulating a matricellular protein during morphogenesis extends our understanding of CaM-mediated signal transduction in eukaryotes. PMID:24705101

  8. Matricellular Signal Transduction Involving Calmodulin in the Social Amoebozoan Dictyostelium

    Directory of Open Access Journals (Sweden)

    Danton H. O'Day

    2013-02-01

    Full Text Available The social amoebozoan Dictyostelium discoideum undergoes a developmental sequence wherein an extracellular matrix (ECM sheath surrounds a group of differentiating cells. This sheath is comprised of proteins and carbohydrates, like the ECM of mammalian tissues. One of the characterized ECM proteins is the cysteine-rich, EGF-like (EGFL repeat-containing, calmodulin (CaM-binding protein (CaMBP CyrA. The first EGFL repeat of CyrA increases the rate of random cell motility and cyclic AMP-mediated chemotaxis. Processing of full-length CyrA (~63 kDa releases two major EGFL repeat-containing fragments (~45 kDa and ~40 kDa in an event that is developmentally regulated. Evidence for an EGFL repeat receptor also exists and downstream intracellular signaling pathways involving CaM, Ras, protein kinase A and vinculin B phosphorylation have been characterized. In total, these results identify CyrA as a true matricellular protein comparable in function to tenascin C and other matricellular proteins from mammalian cells. Insight into the regulation and processing of CyrA has also been revealed. CyrA is the first identified extracellular CaMBP in this eukaryotic microbe. In keeping with this, extracellular CaM (extCaM has been shown to be present in the ECM sheath where it binds to CyrA and inhibits its cleavage to release the 45 kDa and 40 kDa EGFL repeat-containing fragments. The presence of extCaM and its role in regulating a matricellular protein during morphogenesis extends our understanding of CaM-mediated signal transduction in eukaryotes.

  9. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  10. Ca2+ binding sites in calmodulin and troponin C alter interhelical angle movements.

    Science.gov (United States)

    Goto, Kunihiko; Toyama, Akira; Takeuchi, Hideo; Takayama, Kazuyoshi; Saito, Tsutomu; Iwamoto, Masatoshi; Yeh, Jay Z; Narahashi, Toshio

    2004-03-12

    Molecular dynamics analyses were performed to examine conformational changes in the C-domain of calmodulin and the N-domain of troponin C induced by binding of Ca(2+) ions. Analyses of conformational changes in calmodulin and troponin C indicated that the shortening of the distance between Ca(2+) ions and Ca(2+) binding sites of helices caused widening of the distance between Ca(2+) binding sites of helices on opposite sides, while the hydrophobic side chains in the center of helices hardly moved due to their steric hindrance. This conformational change acts as the clothespin mechanism. PMID:15013750

  11. Expression of flounder Paralichthys olivaceus calmodulin gene in prokaryotic and eukaryotic cells

    OpenAIRE

    LÜ Ai-Jun; HU Xiu-Cai

    2008-01-01

    The primer was designed based on the sequence which was obtained from subtractive cDNA library, and then cloned the flounder Paralichthys olivaceus calmodulin gene(PoCaM) using SMART cDNA as the model. Computer-assisted analysis revealed the potential open reading frame encoded a protein of 149 amino acids with a predicted size of 17 kDa, the predicted theoretical isoelectric points (PI) is 3.93. Sequence alignment of PoCaM with other well known calmodulin proteins showed a significant homolo...

  12. Plasma level of brain-derived neurotrophic factor and the related analysis in depressive patients with suicide attempt

    Institute of Scientific and Technical Information of China (English)

    操军

    2014-01-01

    Objective To explore the association between brainderived neurotrophic factor(BDNF)and suicidal behavior through analyzing and detecting the alteration of plasma BDNF level in depressive patients with suicide attempt.Methods Using enzyme-linked immunosorbent analysis(ELISA)to test the plasma level of BDNF in 27suicidal depressed patients,33 non-suicidal depressed patients and 30 normal controls.Meanwhile,the Hamilton Depression Scale(HAMD)and Beck

  13. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions.

    Science.gov (United States)

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G; Módos, Károly; Kardos, József; Liliom, Károly

    2010-10-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic, and spectroscopic approaches using purified bovine calmodulin and bovine cerebral microsomal fraction to arrive at our conclusions. Here we present 1) a 1.6-Å resolution crystal structure of their complex, in which the sphingolipid occupies the conventional hydrophobic binding site on calmodulin; 2) a peculiar stoichiometry-dependent binding process: at low or high protein-to-lipid ratio calmodulin binds lipid micelles or a few lipid molecules in a compact globular conformation, respectively, and 3) evidence that the sphingolipid displaces calmodulin from its targets on cerebral microsomes. We have ascertained the specificity of the interaction using structurally related lipids as controls. Our observations reveal the structural basis of selective calmodulin inhibition by the sphingolipid. On the basis of the crystallographic and biophysical characterization of the calmodulin-sphingosylphosphorylcholine interaction, we propose a novel lipid-protein binding model, which might be applicable to other interactions as well. PMID:20522785

  14. Real—time Analysis of the Interaction between Calmodulin and Melittin by SPR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WeiGuoLI; XiaoQiangCUI; 等

    2002-01-01

    The dynamic interaction process of calmodulin with an immobilized peptide melittin was investigated in real time by surface plasmon resonance spectroscopy, and dissociation constant of the complex was calculated to be 3.37×10-6 mol/L.

  15. Effect of calmodulin antagonists on contraction and45Ca movements in rat aorta

    NARCIS (Netherlands)

    Wermelskirchen, D.; Koch, P.; Wilhelm, D.; Nebel, U.; Leidig, A.; Wilffert, B.; Peters, Thies

    1989-01-01

    To study the selectivity of calmodulin antagonists it was assumed that they should inhibit noradrenaline (NA)- and K+-induced contractions similarly without an accompanying inhibition of45Ca uptake. Therefore, in isolated rat aorta the effects of W-7, calmidazolium and trifluoperazine on contraction

  16. Role of calmodulin (δ-subunit) in activation of phosphorylase kinase from rabbit skeletal muscles

    International Nuclear Information System (INIS)

    The structure of the inactivated and activated forms of phospholyase kinase was compared. The enzyme was activated by incubation in an alkaline medium (pH 8.5), phosphorylation of the catalytic subunit of cAMP-dependent protein kinase, and limited proteolysis. Hydrophobic chromatography on phenyl-Sepharose and electrophoresis in a polyacrylamide gel density gradient were employed for a comparison of these forms of the enzyme. Activation of the enzyme was accompanied by the separation of a low-molecular-weight component (M/sub r/ about 17,000). The low-molecular-weight protein was obtained in a homogeneous state by chromatography on phenyl-Sepharose. It was established that its properties are similar to those of calmodulin. The presence of calmodulin in preparations of phosphorylase kinase was judged by the activation of the calmodulin-dependent form of phosphodiesterase. The boiled and subtilisin-treated kinase activates phosphodiesterase in much the same way as bovine brain calmodulin. The results obtained suggest that the δ-subunit is a protein inhibitor of the enzyme

  17. ACQUISITION AND LOSS OF NEURONAL CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE DURING NEURONAL DIFFERENTIATION

    Science.gov (United States)

    Neurons display characteristic schedules by which they acquire and lose the neuron-specific Ca2+/calmodulin-dependent protein Kinase-Gr (CaM Kinase-Gr) during differentiation. uch schedules are exemplified by patterns of expression of this kinase in the developing cerebellum and ...

  18. Real-time Analysis of the Interaction between Calmodulin and Melittin by SPR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The dynamic interaction process of calmodulin with an immobilized peptide melittin was investigated in real time by surface plasmon resonance spectroscopy, and dissociation constant of the complex was calculated to be 3.37′10-6 mol/L.

  19. Structural analysis of calmodulin binding to ion channels demonstrates the role of its plasticity in regulation.

    NARCIS (Netherlands)

    Kovalevskaya, N.V.; Waterbeemd, M. van de; Bokhovchuk, F.M.; Bate, N.; Bindels, R.J.M.; Hoenderop, J.G.J.; Vuister, G.W.

    2013-01-01

    The Ca2+-binding protein calmodulin (CaM) is a well-known regulator of ion-channel activity. Consequently, the Protein Data Bank contains many structures of CaM in complex with different fragments of ion channels that together display a variety of binding modes. In addition to the canonical interact

  20. The TRPV5/6 calcium channels contain multiple calmodulin binding sites with differential binding properties.

    NARCIS (Netherlands)

    Kovalevskaya, N.V.; Bokhovchuk, F.M.; Vuister, G.W.

    2012-01-01

    The epithelial Ca(2+) channels TRPV5/6 (transient receptor potential vanilloid 5/6) are thoroughly regulated in order to fine-tune the amount of Ca(2+) reabsorption. Calmodulin has been shown to be involved into calcium-dependent inactivation of TRPV5/6 channels by binding directly to the distal C-t

  1. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep;

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins. ...

  2. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II.

    Directory of Open Access Journals (Sweden)

    Shirley Pepke

    2010-02-01

    Full Text Available During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,including Ca2+/calmodulin-dependent protein kinase II (CaMKII, are regulated by calmodulin, a small protein that can bindup to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic

  3. Nucleomorphin. A novel, acidic, nuclear calmodulin-binding protein from dictyostelium that regulates nuclear number.

    Science.gov (United States)

    Myre, Michael A; O'Day, Danton H

    2002-05-31

    Probing of Dictyostelium discoideum cell extracts after SDS-PAGE using (35)S-recombinant calmodulin (CaM) as a probe has revealed approximately three-dozen Ca(2+)-dependent calmodulin binding proteins. Here, we report the molecular cloning, expression, and subcellular localization of a gene encoding a novel calmodulin-binding protein (CaMBP); we have called nucleomorphin, from D. discoideum. A lambdaZAP cDNA expression library of cells from multicellular development was screened using a recombinant calmodulin probe ((35)S-VU1-CaM). The open reading frame of 1119 nucleotides encodes a polypeptide of 340 amino acids with a calculated molecular mass of 38.7 kDa and is constitutively expressed throughout the Dictyostelium life cycle. Nucleomorphin contains a highly acidic glutamic/aspartic acid inverted repeat (DEED) with significant similarity to the conserved nucleoplasmin domain and a putative transmembrane domain in the carboxyl-terminal region. Southern blotting reveals that nucleomorphin exists as a single copy gene. Using gel overlay assays and CaM-agarose we show that bacterially expressed nucleomorphin binds to bovine CaM in a Ca(2+)-dependent manner. Amino-terminal fusion to the green fluorescence protein (GFP) showed that GFP-NumA localized to the nucleus as distinct arc-like patterns similar to heterochromatin regions. GFP-NumA lacking the acidic DEED repeat still showed arc-like accumulations at the nuclear periphery, but the number of nuclei in these cells was increased markedly compared with control cells. Cells expressing GFP-NumA lacking the transmembrane domain localized to the nuclear periphery but did not affect nuclear number or gross morphology. Nucleomorphin is the first nuclear CaMBP to be identified in Dictyostelium. Furthermore, these data present the first identification of a member of the nucleoplasmin family as a calmodulin-binding protein and suggest nucleomorphin has a role in nuclear structure in Dictyostelium. PMID:11919178

  4. Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+ ionophore A23187 and by calmodulin antagonists.

    OpenAIRE

    Serlin, B S; Roux, S J

    1984-01-01

    The Ca2+ ionophore A23187 can induce chloroplast rotation within a single nonirradiated Mougeotia cell. The induced turning was dependent on the position of ionophore application and Ca2+ in the external medium. The role of calmodulin in mediating light-induced chloroplast rotation in the alga Mougeotia was investigated by using the paired calmodulin-antagonist drugs W5-W7 and W12-W13. In each pair, the antagonist with the greater affinity for calmodulin had the greater inhibitor effect on...

  5. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans.

    Science.gov (United States)

    Caldwell Hooper, Ann E; Bryan, Angela D; Hagger, Martin S

    2014-12-01

    Individuals who are intrinsically motivated to exercise are more likely to do so consistently. In previous research, those with at least one copy of the methionine (met) allele in the brain-derived neurotrophic factor gene (BDNF; rs6265) had greater increases in positive mood and lower perceived exertion during exercise. This study examined whether genotype for BDNF is also related to intrinsic motivation, measured by self-report during a treadmill exercise session and a free-choice behavioral measure (continuing to exercise given the option to stop) among 89 regular exercisers (age M = 23.58, SD = 3.95). Those with at least one copy of the met allele reported greater increases in intrinsic motivation during exercise and were more likely to continue exercising when given the option to stop (55 vs. 33%). Results suggest that underlying genetic factors may partially influence perceptions of inherent rewards associated with exercise and might inform the development of individually targeted interventions. PMID:24805993

  6. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zongjun Guo; Lumin Wang

    2012-01-01

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  7. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor

    International Nuclear Information System (INIS)

    We previously described envelope glycoproteins of an HIV-1 isolate adapted in vitro for growth in microglia that acquired a highly fusogenic phenotype and lower CD4 dependence, as well as resistance to inhibition by anti-CD4 antibodies. Here, we investigated whether similar phenotypic changes are present in vivo. Envelope clones from the brain and spleen of an HIV-1-infected individual with neurological disease were amplified, cloned, and sequenced. Phylogenetic analysis demonstrated clustering of sequences according to the tissue of origin, as expected. Functional clones were then used in cell-to-cell fusion assays to test for CD4 and co-receptor utilization and for sensitivity to various antibodies and inhibitors. Both brain- and spleen-derived envelope clones mediated fusion in cells expressing both CD4 and CCR5 and brain envelopes also used CCR3 as co-receptor. We found that the brain envelopes had a lower CD4 dependence, since they efficiently mediated fusion in the presence of low levels of CD4 on the target cell membrane, and they were significantly more resistant to blocking by anti-CD4 antibodies than the spleen-derived envelopes. In contrast, we observed no difference in sensitivity to the CCR5 antagonist TAK-779. However, brain-derived envelopes were significantly more resistant than those from spleen to the fusion inhibitor T-1249 and concurrently showed slightly greater fusogenicity. Our results suggest an increased affinity for CD4 of brain-derived envelopes that may have originated from in vivo adaptation to replication in microglial cells. Interestingly, we note the presence of envelopes more resistant to a fusion inhibitor in the brain of an untreated, HIV-1-infected individual

  8. Calmodulin mediates sulfur mustard toxicity in human keratinocytes

    International Nuclear Information System (INIS)

    Sulfur mustard (SM) causes blisters in the skin through a series of cellular changes that we are beginning to identify. We earlier demonstrated that SM toxicity is the result of induction of both death receptor and mitochondrial pathways of apoptosis in human keratinocytes (KC). Because of its importance in apoptosis in the skin, we tested whether calmodulin (CaM) mediates the mitochondrial apoptotic pathway induced by SM. Of the three human CaM genes, the predominant form expressed in KC was CaM1. RT-PCR and immunoblot analysis revealed upregulation of CaM expression following SM treatment. To delineate the potential role of CaM1 in the regulation of SM-induced apoptosis, retroviral vectors expressing CaM1 RNA in the antisense (AS) orientation were used to transduce and derive stable CaM1 AS cells, which were then exposed to SM and subjected to immunoblot analysis for expression of apoptotic markers. Proteolytic activation of executioner caspases-3, -6, -7, and the upstream caspase-9, as well as caspase-mediated PARP cleavage were markedly inhibited by CaM1 AS expression. CaM1 AS depletion attenuated SM-induced, but not Fas-induced, proteolytic processing and activation of caspase-3. Whereas control KC exhibited a marked increase in apoptotic nuclear fragmentation after SM, CaM1 AS cells exhibited normal nuclear morphology up to 48 h after SM, indicating that suppression of apoptosis in CaM1 AS cells increases survival and does not shift to a necrotic death. CaM has been shown to activate the phosphatase calcineurin, which can induce apoptosis by Bad dephosphorylation. Interestingly, whereas SM-treated CaM1-depleted KC expressed the phosphorylated non-apoptotic sequestered form of Bad, Bad was present in the hypophosphorylated apoptotic form in SM-exposed control KC. To determine if pharmacological CaM inhibitors could attenuate SM-induced apoptosis via Bad dephosphorylation, KC were pretreated with the CaM-specific antagonist W-13 or its less active structural

  9. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure

    Directory of Open Access Journals (Sweden)

    Hayashi Nobuhiro

    2008-02-01

    Full Text Available Abstract Background The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. Results The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC in different temperatures, and Kd was observed to be in the low μM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Conclusion Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure

  10. Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation

    Directory of Open Access Journals (Sweden)

    Yulia Timofeeva

    2015-07-01

    Full Text Available Action potential-dependent release of synaptic vesicles and short-term synaptic plasticity are dynamically regulated by the endogenous Ca2+ buffers that shape [Ca2+] profiles within a presynaptic bouton. Calmodulin is one of the most abundant presynaptic proteins and it binds Ca2+ faster than any other characterized endogenous neuronal Ca2+ buffer. Direct effects of calmodulin on fast presynaptic Ca2+ dynamics and vesicular release however have not been studied in detail. Using experimentally constrained three-dimensional diffusion modeling of Ca2+ influx–exocytosis coupling at small excitatory synapses we show that, at physiologically relevant concentrations, Ca2+ buffering by calmodulin plays a dominant role in inhibiting vesicular release and in modulating short-term synaptic plasticity. We also propose a novel and potentially powerful mechanism for short-term facilitation based on Ca2+-dependent dynamic dislocation of calmodulin molecules from the plasma membrane within the active zone.

  11. Purification and characterization of a Ca2+ -dependent/calmodulin-stimulated protein kinase from moss chloronema cells

    Indian Academy of Sciences (India)

    Jacinta S D’souza; Man Mohan Johri

    2003-03-01

    We have demonstrated the presence of a Ca2+-dependent/calmodulin-stimulated protein kinase (PK) in chloronema cells of the moss Funaria hygrometrica. The kinase, with a molecular mass of 70,000 daltons (PK70), was purified to homogeneity using ammonium sulphate fractionation, DEAE-cellulose chromatography, and calmodulin (CaM)-agarose affinity chromatography. The kinase activity was stimulated at a concentration of 50 M free Ca2+, and was further enhanced 3–5-fold with exogenously added 3–1000 nm moss calmodulin (CaM). Autophosphorylation was also stimulated with Ca2+ and CaM. Under in vitro conditions, PK70 phosphorylated preferentially lysine-rich substrates such as HIIIS and HVS. This PK shares epitopes with the maize Ca2+-dependent/calmodulin-stimulated PK (CCaMK) and also exhibits biochemical properties similar to the maize, lily, and tobacco CCaMK. We have characterized it as a moss CCaMK.

  12. Calmodulin and the target size of the (Ca2+ + Mg2+)-ATPase of human red-cell ghosts.

    Science.gov (United States)

    Cavieres, J D

    1984-04-11

    An average target size of 251 kDa has been obtained for the (Ca2+ + Mg2+)-ATPase of calmodulin-depleted erythrocyte ghosts by radiation inactivation with 16 MeV electrons. This is close to twice the size of the purified calcium-pump polypeptide. When calmodulin was included during the ATPase assay, a component of about 1 MDa appeared in addition to the activated dimer. PMID:6142728

  13. Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation

    OpenAIRE

    Yulia Timofeeva; Kirill Volynski

    2015-01-01

    Action potential-dependent release of synaptic vesicles and short-term synaptic plasticity are dynamically regulated by the endogenous Ca(2+) buffers that shape [Ca(2+)] profiles within a presynaptic bouton. Calmodulin is one of the most abundant presynaptic proteins and it binds Ca(2+) faster than any other characterized endogenous neuronal Ca(2+) buffer. Direct effects of calmodulin on fast presynaptic Ca(2+) dynamics and vesicular release however have not been studied in detail. Using expe...

  14. Biosensor-Based Approach Identifies Four Distinct Calmodulin-Binding Domains in the G Protein-Coupled Estrogen Receptor 1

    OpenAIRE

    Tran, Quang-Kim; VerMeer, Mark

    2014-01-01

    The G protein-coupled estrogen receptor 1 (GPER) has been demonstrated to participate in many cellular functions, but its regulatory inputs are not clearly understood. Here we describe a new approach that identifies GPER as a calmodulin-binding protein, locates interaction sites, and characterizes their binding properties. GPER coimmunoprecipitates with calmodulin in primary vascular smooth muscle cells under resting conditions, which is enhanced upon acute treatment with either specific liga...

  15. Detection of ubiquityl-calmodulin conjugates with a novel high-molecular weight ubiquitylprotein-isopeptidase in rabbit tissues

    Directory of Open Access Journals (Sweden)

    Sixt SU

    2010-10-01

    Full Text Available Abstract The selective degradation of many proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved protein 1. Ubiquitylated proteins were degraded by the 26S protea-some in an ATP-depended manner. The degradation of ubiquitylated proteins were controlled by isopeptidase cleavage. A well characterised system of ubiquitylation and deubiquitylation is the calmodulin system in vitro 2. Detection of ubiquityl-calmodulin conjugtates in vivo have not been shown so far. In this article we discuss the detection of ubiquitin calmodulin conjugates in vivo by incubation with a novel high-molecular weight ubiquitylprotein-isopeptidase in rabbit tissues. Proteins with a molecular weight of ubiquityl-calmodulin conjugates could be detected in all organs tested. Incubation with ubiquitylprotein-isopeptidase showed clearly a decrease of ubiquitin calmodulin conjugates in vivo with an origination of unbounded ubiquitin. These results suggest that only few ubiquitin calmodulin conjugates exist in rabbit tissues.

  16. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: More evidence for oxidative stress in vitiligo

    International Nuclear Information System (INIS)

    Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10-3 M H2O2. One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10-3M H2O2 oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H2O2 utilising 45calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activities were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H2O2-mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo

  17. Death-Associated Protein Kinase Activity Is Regulated by Coupled Calcium/Calmodulin Binding to Two Distinct Sites.

    Science.gov (United States)

    Simon, Bertrand; Huart, Anne-Sophie; Temmerman, Koen; Vahokoski, Juha; Mertens, Haydyn D T; Komadina, Dana; Hoffmann, Jan-Erik; Yumerefendi, Hayretin; Svergun, Dmitri I; Kursula, Petri; Schultz, Carsten; McCarthy, Andrew A; Hart, Darren J; Wilmanns, Matthias

    2016-06-01

    The regulation of many protein kinases by binding to calcium/calmodulin connects two principal mechanisms in signaling processes: protein phosphorylation and responses to dose- and time-dependent calcium signals. We used the calcium/calmodulin-dependent members of the death-associated protein kinase (DAPK) family to investigate the role of a basic DAPK signature loop near the kinase active site. In DAPK2, this loop comprises a novel dimerization-regulated calcium/calmodulin-binding site, in addition to a well-established calcium/calmodulin site in the C-terminal autoregulatory domain. Unexpectedly, impairment of the basic loop interaction site completely abolishes calcium/calmodulin binding and DAPK2 activity is reduced to a residual level, indicative of coupled binding to the two sites. This contrasts with the generally accepted view that kinase calcium/calmodulin interactions are autonomous of the kinase catalytic domain. Our data establish an intricate model of multi-step kinase activation and expand our understanding of how calcium binding connects with other mechanisms involved in kinase activity regulation. PMID:27133022

  18. Distribution of calmodulin in corn seedlings - Immunocytochemical localization in coleoptiles and root apices

    Science.gov (United States)

    Dauwalder, M.; Roux, S. J.

    1986-01-01

    Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in etiolated corn (Zea mays, var. Bear Hybrid) seedlings. Uniform staining was seen in the background cytoplasm of most cell types. Cell walls and vacuoles were not stained. In coleoptile mesophyll cells the nucleoplasm of most nuclei was stained as was the stroma of most amyloplasts. The lumen border of mature tracheary elements in coleoptiles also stained. In the rootcap the most intensely stained regions were the cytoplasms of columella cells and of the outermost cells enmeshed in the layer of secreted slime. Nuclei in the rootcap cells did not stain distinctly, but those in all cell types of the root meristem did. Also in the root meristem, the cytoplasm of metaxylem elements stained brightly. These results are compared and contrasted with previous data on the localization of calmodulin in pea root apices and epicotyls and discussed in relation to current hypotheses on mechanisms of gravitropism.

  19. Cloning and Structural Analysis of Calmodulin Gene from the Mangrove Plant Sonneratia Paracaseolaris

    Institute of Scientific and Technical Information of China (English)

    Xiong Lingyuan; Lin Tao; Zhou Hantao; Xu Jinsen; Ge Yunsheng; Chen Muchuan; Chen Liang

    2002-01-01

    Calmodulin is a calcium binding protein that modulates the activity of diverse groups of protein including some protein kinase, adenylate cyclases and ATPase. Here we use the total DNA of Sonneratiaparacaseolaris as the template ofthe polymerase chain reaction (PCR). The PCR primers have been designed and synthesized according to the 5-and 3-terminal oligonucleotide sequences of Calmodulin gene of plants in Genbank and ligated with cloning vector pBsk(+).The recombinant clones have been obtained from the selected medium. The results of DNA sequences analysis show that the nucleotide sequences of ORF share more than 85% homologies as compared with those ofcalmodulin genes of several other plants. Similar to rice and apple, the ORF is interrupted by an intron behind the 75th nucleotide.

  20. Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels

    OpenAIRE

    Meissner, Gerhard; Pasek, Daniel A.; Yamaguchi, Naohiro; Ramachandran, Srinivas; Dokholyan, Nikolay V.; Tripathy, Ashutosh

    2009-01-01

    The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [35S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca2+ concentrations from

  1. AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin

    OpenAIRE

    Shapiro Mark S; Belugin Sergei; Bal Manjot; Chaudhury Sraboni; Jeske Nathaniel A

    2011-01-01

    Abstract Background The transient receptor potential vanilloid type1 (TRPV1) is expressed in nociceptive sensory neurons and is sensitive to phosphorylation. A-Kinase Anchoring Protein 79/150 (AKAP150) mediates phosphorylation of TRPV1 by Protein Kinases A and C, modulating channel activity. However, few studies have focused on the regulatory mechanisms that control AKAP150 association with TRPV1. In the present study, we identify a role for calcium/calmodulin in controlling AKAP150 associati...

  2. Calmodulin regulates dimerization, motility, and lipid binding of Leishmania myosin XXI

    OpenAIRE

    Batters, Christopher; Ellrich, Heike; Helbig, Constanze; Woodall, Katy Anna; Hundschell, Christian; Brack, Dario; Veigel, Claudia

    2013-01-01

    Myosin XXI is the only myosin isoform expressed in the Leishmania parasite. The myosin-XXI homozygous knockout is lethal, and a reduction in expression levels leads to loss of endocytosis and affects other intracellular trafficking processes. In this paper we show that myosin XXI can adopt a monomeric or dimeric state. The states are determined by calmodulin binding to an IQ motif that, when bound, prevents dimerization of a coiled-coil motif. In the monomeric state the motor binds phospholip...

  3. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain.

    Science.gov (United States)

    Harper, J F; Huang, J F; Lloyd, S J

    1994-06-14

    CDPKs are a family of calcium (Ca2+)-dependent protein kinases which are defined by a carboxyl-terminal calmodulin-like domain. Mutational analysis indicates that the junction domain, which joins the kinase and calmodulin-like domains, contains an autoinhibitor. CDPK isoform AK1 from Arabidopsis was expressed in Escherichia coli as a fusion protein sandwiched between glutathione S-transferase and six consecutive histidines at the N- and C-terminal ends, respectively. This fusion, called AK1-6H, was purified and displayed kinase activity which was stimulated up to 127-fold by Ca2+, with a typical specific activity of 2000 nmol min-1 mg-1, using syntide-2 as peptide substrate. A truncation which deletes the calmodulin-like domain, as in mutant delta C-6H, disrupts Ca2+ activation and leaves the enzyme with a basal level of activity. Delta C-6H could be activated 87-fold by preincubation with a purified polyclonal IgG which was raised against a junction domain fusion. A further deletion of the junction domain, as in mutant delta JC, results in a constitutively active enzyme. This indicates that the junction domain in delta C-6H can function as an autoinhibitor. Its function as an autoinhibitor in a full-length enzyme was confirmed by site-specific mutagenesis, as shown by mutant KJM23-6H, which had a six-residue substitution in the junction domain between A422 and A432. Both delta JC and KJM23-6H encoded Ca(2+)-independent enzymes which had specific activities greater than 70% that of a fully active AK1-6H and displayed equivalent Km values for ATP and syntide-2. Inhibition studies on delta JC, using peptides based on the autoinhibitory domains of Ca2+/calmodulin-dependent protein kinases, are consistent with a model where the junction domain contains a similar pseudosubstrate-type autoinhibitor. PMID:8003490

  4. Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons.

    OpenAIRE

    C. Yan; Zhao, A Z; Bentley, J K; Loughney, K; Ferguson, K; Beavo, J. A.

    1995-01-01

    The sensing of an odorant by an animal must be a rapid but transient process, requiring an instant response and also a speedy termination of the signal. Previous biochemical and electrophysiological studies suggest that one or more phosphodiesterases (PDEs) may play an essential role in the rapid termination of the odorant-induced cAMP signal. Here we report the molecular cloning, expression, and characterization of a cDNA from rat olfactory epithelium that encodes a member of the calmodulin-...

  5. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    OpenAIRE

    Nichols, Grant S.; DeBello, William M.

    2015-01-01

    Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII e...

  6. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy

    OpenAIRE

    Li, Hui; Li, Weiwei; Arun K Gupta; Mohler, Peter J.; Anderson, Mark E.; Grumbach, Isabella M.

    2009-01-01

    Despite our understanding that medial smooth muscle hypertrophy is a central feature of vascular remodeling, the molecular pathways underlying this pathology are still not well understood. Work over the past decade has illustrated a potential role for the multifunctional calmodulin-dependent kinase CaMKII in smooth muscle cell contraction, growth, and migration. Here we demonstrate that CaMKII is enriched in vascular smooth muscle (VSM) and that CaMKII inhibition blocks ANG II-dependent VSM c...

  7. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function

    OpenAIRE

    Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L.; Sheffield, Val C.; Golan, Hava; Parvari, Ruti

    2015-01-01

    Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion o...

  8. Comprehensive Behavioral Analysis of Calcium/Calmodulin-Dependent Protein Kinase IV Knockout Mice

    OpenAIRE

    Takao, Keizo; Tanda, Koichi; Nakamura, Kenji; Kasahara, Jiro; Nakao, Kazuki; Katsuki, Motoya; Nakanishi, Kazuo; Yamasaki, Nobuyuki; Toyama, Keiko; Adachi, Minami; UMEDA, MASAHIRO; Araki, Tsutomu; Fukunaga, Kohji; Kondo, Hisatake; Sakagami, Hiroyuki

    2010-01-01

    Calcium-calmodulin dependent protein kinase IV (CaMKIV) is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO) mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain...

  9. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S;

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairmen...

  10. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.

    Science.gov (United States)

    Tsai, Chia-Liang; Pan, Chien-Yu; Chen, Fu-Chen; Wang, Chun-Hao; Chou, Feng-Ying

    2016-07-01

    What is the central question of this study? Neurocognitive functions can be enhanced by acute aerobic exercise, which could be associated with changes in serum brain-derived neurotrophic factor (BDNF) concentrations. We aimed to explore acute exercise-induced changes in BDNF concentrations, neuropsychological and neurophysiological performances when individuals with different levels of cardiorespiratory fitness performed a cognitive task. What is the main finding and its importance? Only young adults with higher cardiorespiratory fitness could attain switching cost and neurophysiological benefits via acute aerobic exercise. The mechanisms might be fitness dependent. Although acute aerobic exercise could enhance serum BDNF concentrations, changes in peripheral BDNF concentrations could not be the potential factor involved in the beneficial effects on neurocognitive performance. This study investigated the effects of acute aerobic exercise on neuropsychological and neurophysiological performances in young adults with different cardiorespiratory fitness levels when performing a task-switching protocol and explored the potential associations between acute aerobic exercise-induced changes in serum brain-derived neurotrophic factor (BDNF) concentrations and various neurocognitive outcomes. Sixty young adults were categorized into one control group (i.e. non-exercise-intervention; n = 20) and two exercise-intervention (EI) groups [i.e. higher (EIH , n = 20) and lower (EIL , n = 20) cardiorespiratory fitness] according to their maximal oxygen consumption. At baseline and after either an acute bout of 30 min of moderate-intensity aerobic exercise or a control period, the neuropsychological and neurophysiological performances and serum BDNF concentrations were measured when the participants performed a task-switching protocol involving executive control and greater demands on working memory. The results revealed that although acute aerobic exercise decreased reaction

  11. Detachment of glycolytic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonists.

    Science.gov (United States)

    Glass-Marmor, L; Beitner, R

    1997-06-11

    Glycolysis, which is the primary energy source in cancer cells, is known to be controlled by allosteric regulators, as well as by reversible binding of glycolytic enzymes to cytoskeleton. We have previously found that different calmodulin antagonists decrease the levels of allosteric activators of glycolysis, and reduce ATP content and cell viability in B16 melanoma cells. Here we report of a novel, additional, mechanism of action of calmodulin antagonists in melanoma cells. We show that these drugs cause a detachment of the glycolytic enzymes, phosphofructokinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) and aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13), from cytoskeleton of B16 melanoma cells. This effect was dose- and time-dependent, and preceded the decrease in cell viability. The detachment of glycolytic enzymes from cytoskeleton would reduce the provision of local ATP, in the vicinity of the cytoskeleton-membrane and would affect cytoskeleton structure. Since the cytoskeleton is being recognized as an important modulator of cell function, proliferation, differentiation and neoplasia, detachment of the glycolytic enzymes from cytoskeleton induced by calmodulin antagonists, as well as their reported inhibitory action on cell proliferation, make these drugs most promising agents in treatment of cancer. PMID:9218707

  12. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein.

    Science.gov (United States)

    Chang, Szu-Wei; Tsao, Yeou-Ping; Lin, Chia-Yi; Chen, Show-Li

    2011-07-01

    Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression. PMID:21543494

  13. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize

    Science.gov (United States)

    Stinemetz, C. L.; Hasenstein, K. H.; Young, L. M.; Evans, M. L.

    1992-01-01

    We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 micromole) that did not affect root growth. Calmodulin antagonists (> or = 1 micromole) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip (> or = 1 micromole) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists > or = 1 micromole become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.

  14. Calmodulin-dependent protein kinases mediate calcium-induced slow motility of mammalian outer hair cells.

    Science.gov (United States)

    Puschner, B; Schacht, J

    1997-08-01

    Cochlear outer hair cells in vitro respond to elevation of intracellular calcium with slow shape changes over seconds to minutes ('slow motility'). This process is blocked by general calmodulin antagonists suggesting the participation of calcium/calmodulin-dependent enzymatic reactions. The present study proposes a mechanism for these reactions. Length changes of outer hair cells isolated from the guinea pig cochlea were induced by exposure to the calcium ionophore ionomycin. ATP levels remained unaffected by this treatment ruling out depletion of ATP (by activation of calcium-dependent ATPases) as a cause of the observed shape changes. Involvement of protein kinases was suggested by the inhibition of shape changes by K252a, a broad-spectrum inhibitor of protein kinase activity. Furthermore, the inhibitors ML-7 and ML-9 blocked the shape changes at concentrations compatible with inhibition of myosin light chain kinase (MLCK). KN-62, an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), also attenuated the length changes. Inhibitors with selectivity for cyclic nucleotide-dependent protein kinases (H-89, staurosporine) were tested to assess potential additional contributions by such enzymes. The dose dependence of their action supported the notion that the most likely mechanism of slow motility involves phosphorylation reactions catalyzed by MLCK or CaMKII or both. PMID:9282907

  15. Subcellular distribution of a membrane-bound calmodulin-stimulated protein kinase

    International Nuclear Information System (INIS)

    Incubation of subcellular fractions isolated from rat cerebral cortex with [gamma-32P]ATP results in the phosphorylation of a number of proteins including two with apparent molecular weights of approximately 50,000 and 60,000 daltons. These phosphoproteins were shown to be the autophosphorylated subunits of a calmodulin-stimulated protein kinase by a number of physicochemical criteria, including their mobility on non-equilibrium pH gradient electrophoresis, their phosphopeptide profiles and phosphorylation characteristics. When a crude membrane fraction obtained following osmotic lysis of a P2 fraction was labeled and subsequently fractionated on sucrose density gradients, approximately 80% of the autophosphorylated kinase was associated with fractions enriched in synaptic plasma membranes. Other substrates of calmodulin kinase(s) were similarly distributed. Detergent extraction of synaptic plasma membranes to produce synaptic junctions and post-synaptic densities indicated that the majority of the autophosphorylated kinase was solubilized, apparently as a holoenzyme. The major post synaptic density protein (mPSDp) was not readily extracted by detergents and was largely unlabeled under the conditions used for phosphorylation, and yet this protein is structurally closely related to the kinase subunit. It is possible that this lack of labeling is due to the mPSDp being attached to the PSD in a different way or being present there in a different isoenzymic form from that of the readily autophosphorylated enzyme subunit. Thus, the data suggest that, in vitro at least, a number of pools of calmodulin kinase exist in neuronal membranes

  16. Purification, crystallization and preliminary crystallographic studies of a calmodulin-OLFp hybrid molecule

    International Nuclear Information System (INIS)

    The hybrid moelcule of calmodulin and calmodulin-binding domain of olfactory nucleotide-gated ion-channel peptide (CaM-OLFp) was crystallized and preliminary analyzed using X-ray diffaction. A hybrid molecule consisting of calmodulin (CaM) and the CaM-binding domain of olfactory nucleotide-gated ion-channel peptide (CaM-OLFp) was purified and crystallized by the hanging-drop vapour-diffusion method at 298 K. The crystals diffracted to a maximum resolution of 1.85 Å at cryogenic temperature (100 K) using X-rays from a rotating anode (Cu, wavelength 1.54 Å). The crystal belongs to the monoclinic space group C2, with unit-cell parameters a = 64.76, b = 36.23, c = 70.96 Å, α = γ = 90, β = 109.4°. Analysis of the packing density shows that the asymmetric unit contains one CaM-OLFp hybrid molecule with a solvent content of 36.42%

  17. Integrin-linked Kinase is Essential for Environmental Enrichment Enhanced Hippocampal Neurogenesis and Memory

    OpenAIRE

    Xu, Xu-Feng; Li, Ting; Wang, Dong-Dong; Chen, Bing; Wang, Yue; Chen, Zhe-Yu

    2015-01-01

    Environment enrichment (EE) has a variety of effects on brain structure and function. Brain-derived neurotrophic factor (BDNF) is essential for EE-induced hippocampal neurogenesis and memory enhancement. However, the intracellular pathway downstream of BDNF to modulate EE effects is poorly understood. Here we show that integrin-linked kinase (ILK) levels are elevated upon EE stimuli in a BDNF-dependent manner. Using ILK-shRNA (siILK) lentivirus, we demonstrate that knockdown of ILK impairs EE...

  18. Circulating brain-derived neurotrophic factor and indices of metabolic and cardiovascular health: data from the Baltimore Longitudinal Study of Aging.

    Directory of Open Access Journals (Sweden)

    Erin Golden

    Full Text Available BACKGROUND: Besides its well-established role in nerve cell survival and adaptive plasticity, brain-derived neurotrophic factor (BDNF is also involved in energy homeostasis and cardiovascular regulation. Although BDNF is present in the systemic circulation, it is unknown whether plasma BDNF correlates with circulating markers of dysregulated metabolism and an adverse cardiovascular profile. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether circulating BDNF correlates with indices of metabolic and cardiovascular health, we measured plasma BDNF levels in 496 middle-age and elderly subjects (mean age approximately 70, in the Baltimore Longitudinal Study of Aging. Linear regression analysis revealed that plasma BDNF is associated with risk factors for cardiovascular disease and metabolic syndrome, regardless of age. In females, BDNF was positively correlated with BMI, fat mass, diastolic blood pressure, total cholesterol, and LDL-cholesterol, and inversely correlated with folate. In males, BDNF was positively correlated with diastolic blood pressure, triglycerides, free thiiodo-thyronine (FT3, and bioavailable testosterone, and inversely correlated with sex-hormone binding globulin, and adiponectin. CONCLUSION/SIGNIFICANCE: Plasma BDNF significantly correlates with multiple risk factors for metabolic syndrome and cardiovascular dysfunction. Whether BDNF contributes to the pathogenesis of these disorders or functions in adaptive responses to cellular stress (as occurs in the brain remains to be determined.

  19. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology

    Institute of Scientific and Technical Information of China (English)

    Heather Bowling; Aditi Bhattacharya; Eric Klann; Moses V Chao

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plas-ticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuitsin vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the ma-jority of studies on synaptic plasticity, learning and memory were performed in acute brain slices orin vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these ifndings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  20. Protection of dopamine neurons by vibration training and up-regulation of brain-derived neurotrophic factor in a MPTP mouse model of Parkinson's disease.

    Science.gov (United States)

    Zhao, L; He, L X; Huang, S N; Gong, L J; Li, L; Lv, Y Y; Qian, Z M

    2014-01-01

    It is unknown whether the longer duration of vibration training (VT) has a beneficial effect on Parkinson's disease (PD). And also, the mechanisms underlying the reported sensorimotor-improvement in PD induced by short-duration of VT has not been determined. Here, we investigated the effects of longer duration (4 weeks) of low amplitude vibration (LAV) training on the numbers of dopaminergic neurons in the substantia nigra by immunostaining and the levels of dopamine (DA) and brain-derived neurotrophic factor (BDNF) in the striatum by HPLC and ELISA in the chronic MPTP lesion mouse. We demonstrated for the first time that the longer duration of VT could significantly increase the numbers of nigrostriatal DA neurons and the contents of striatal DA and BDNF in the MPTP mice. Our findings implied that longer duration of VT could protect dopaminergic neurons from the MPTP-induced damage probably by upregulating BDNF and also provided evidence for the beneficial effect of longer duration of VT on PD at the cellular and molecular level. PMID:24908088

  1. Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat

    Directory of Open Access Journals (Sweden)

    Xia Chun-Mei

    2012-02-01

    Full Text Available Abstract Background In humans, inflammation of either the urinary bladder or the distal colon often results in sensory cross-sensitization between these organs. Limited information is known about the mechanisms underlying this clinical syndrome. Studies with animal models have demonstrated that activation of primary afferent pathways may have a role in mediating viscero-visceral cross-organ sensitization. Methods Colonic inflammation was induced by a single dose of tri-nitrobenzene sulfonic acid (TNBS instilled intracolonically. The histology of the colon and the urinary bladder was examined by hematoxylin and eosin (H&E stain. The protein expression of transient receptor potential (TRP ion channel of the vanilloid type 1 (TRPV1 and brain-derived neurotrophic factor (BDNF were examined by immunohistochemistry and/or western blot. The inter-micturition intervals and the quantity of urine voided were obtained from analysis of cystometrograms. Results At 3 days post TNBS treatment, the protein level of TRPV1 was increased by 2-fold (p Conclusion Acute colonic inflammation increases bladder activity without affecting bladder morphology. Primary afferent-mediated BDNF up-regulation in the sensory neurons regulates, at least in part, the bladder activity during colonic inflammation.

  2. Effect of vitamin E on cerebral cortical oxidative stress and brain-derived neurotrophic factor gene expression induced by hypoxia and exercise in rats.

    Science.gov (United States)

    Sakr, H F; Abbas, A M; El Samanoudy, A Z

    2015-04-01

    Brain-derived neurotrophic factor (BDNF) is involved in the proliferation of neurons, and its expression increases significantly with exercise. We aimed to investigate the effects of chronic exercise (swimming) and sustained hypoxia on cortical BDNF expression in both the presence and absence of vitamin E. Sixty four male Sprague-Dawley rats were divided into two equal groups; a normoxic group and a hypoxic group. Both groups were equally subdivided into four subgroups: sedentary, sedentary with vitamin E, chronic exercise either with or without vitamin E supplementation. Arterial PO(2), and the levels of cortical malondialdehyde (MDA), antioxidants (reduced glutathione GSH, superoxide dismutase (SOD), catalase (CAT) and vitamin E) and BDNF gene expression were investigated. Hypoxia significantly increased MDA production and BDNF gene expression and decreased the antioxidants compared to control rats. Chronic exercise in hypoxic and normoxic rats increased MDA level and BDNF gene expression and decreased the antioxidants. Providing vitamin E supplementation to the hypoxic and normoxic rats significantly reduced MDA and BDNF gene expression and increased antioxidants. We conclude that sustained hypoxia and chronic exercise increased BDNF gene expression and induced oxidative stress. Moreover, vitamin E attenuated the oxidative stress and decreased BDNF gene expression in sustained hypoxia and chronic exercise which confirms the oxidative stress-induced stimulation of BDNF gene expression. PMID:25903950

  3. Serum brain-derived neurotrophic factor and cognitive functioning in underweight, weight-recovered and partially weight-recovered females with anorexia nervosa.

    Science.gov (United States)

    Zwipp, Johannes; Hass, Johanna; Schober, Ilka; Geisler, Daniel; Ritschel, Franziska; Seidel, Maria; Weiss, Jessika; Roessner, Veit; Hellweg, Rainer; Ehrlich, Stefan

    2014-10-01

    Several studies support the assumption that the brain-derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of eating disorders. In the present cross-sectional and longitudinal study, we investigated BDNF levels in patients with anorexia nervosa (AN) at different stages of their illness and the association with cognitive functioning. We measured serum BDNF in 72 acutely underweight female AN patients (acAN), 23 female AN patients who successfully recovered from their illness (recAN), and 52 healthy control women (HCW). Longitudinally, 30 acAN patients were reassessed after short-term weight gain. The association between BDNF levels and psychomotor speed was investigated using the Trail Making Test. BDNF serum concentrations were significantly higher in recAN participants if compared to acAN patients and increased with short-term weight gain. In acAN patients, but not HCW, BDNF levels were inversely associated with psychomotor speed. AcAN patients with higher BDNF levels also had lower life time body mass indexes. Taken together, our results indicate that serum BDNF levels in patients with AN vary with the stage of illness. Based on the pleiotropic functions of BDNF, changing levels of this neurotrophin may have different context-dependent effects, one of which may be the modulation of cognitive functioning in acutely underweight patients. PMID:24859292

  4. Beyond the Hypothesis of Serum Anticholinergic Activity in Alzheimer's Disease: Acetylcholine Neuronal Activity Modulates Brain-Derived Neurotrophic Factor Production and Inflammation in the Brain.

    Science.gov (United States)

    Hachisu, Mitsugu; Konishi, Kimiko; Hosoi, Misa; Tani, Masayuki; Tomioka, Hiroi; Inamoto, Atsuko; Minami, Sousuke; Izuno, Takuji; Umezawa, Kaori; Horiuchi, Kentaro; Hori, Koji

    2015-01-01

    The brain of Alzheimer's disease (AD) patients is characterized by neurodegeneration, especially an acetylcholine (ACh) neuronal deficit with accumulation of β-amyloid protein, which leads to oxygen stress and inflammation. The active oxygen directly damages the neuron by increasing intracellular Ca(2+). The inflammation is due to activation of the microglia, thereby producing cytokines which inhibit the production of brain-derived neurotrophic factor (BDNF). As the BDNF acts by neuronal protection, synaptogenesis and neurogenesis, the reduction of BDNF in the brain of AD patients worsens the symptoms of AD. On the other hand, treatment of AD patients with a cholinesterase inhibitor enhances ACh activity and inhibits inflammation. Then the expression of BDNF is restored and neuroprotection reestablished. However, there are several reports which showed controversial results concerning the relationship between BDNF and AD. We speculate that BDNF is related to some neurocognitive process and reflects neuronal activity in other neurodegenerative and neuropsychiatric disorders and that in the mild cognitive impairment stage, BDNF and choline acetyltransferase (ChAT) activities are hyperactivated because of a compensatory mechanism of AD pathology. In contrast, in the mild stage of AD, BDNF and ChAT activity are downregulated. PMID:26138497

  5. Expression of gp120 in mice evokes anxiety behavior: Co-occurrence with increased dendritic spines and brain-derived neurotrophic factor in the amygdala.

    Science.gov (United States)

    Bachis, Alessia; Forcelli, Patrick; Masliah, Eliezer; Campbell, Lee; Mocchetti, Italo

    2016-05-01

    Human immunodeficiency virus type 1 (HIV) infection of the brain produces cognitive and motor disorders. In addition, HIV positive individuals exhibit behavioral alterations, such as apathy, and a decrease in spontaneity or emotional responses, typically seen in anxiety disorders. Anxiety can lead to psychological stress, which has been shown to influence HIV disease progression. These considerations underscore the importance of determining if anxiety in HIV is purely psychosocial, or if by contrast, there are the molecular cascades associated directly with HIV infection that may mediate anxiety. The present study had two goals: (1) to determine if chronic exposure to viral proteins would induce anxiety-like behavior in an animal model and (2) to determine if this exposure results in anatomical abnormalities that could explain increased anxiety. We have used gp120 transgenic mice, which display behavior and molecular deficiencies similar to HIV positive subjects with cognitive and motor impairments. In comparison to wild type mice, 6months old gp120 transgenic mice demonstrated an anxiety like behavior measured by open field, light/dark transition task, and prepulse inhibition tests. Moreover, gp120 transgenic mice have an increased number of spines in the amygdala, as well as higher levels of brain-derived neurotrophic factor and tissue plasminogen activator when compared to age-matched wild type. Our data support the hypothesis that HIV, through gp120, may cause structural changes in the amygdala that lead to maladaptive responses to anxiety. PMID:26845379

  6. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology.

    Science.gov (United States)

    Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A

    2016-01-01

    Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease. PMID:26950209

  7. Low-frequency electrical stimulation improves neurite outgrowth of dorsal root ganglion neurons in vitro via upregulating Ca2+-mediated brain-derived neurotrophic factor expression

    Institute of Scientific and Technical Information of China (English)

    Lidan Wan; Rong Xia; Wenlong Ding

    2010-01-01

    Short-term,low-frequency electrical stimulation of neural tissues significantly enhances axonal regeneration of peripheral nerves following injury.However,little is known about the mechanisms of electrical stimulation to induce neurite outgrowth.In the present study,short-term,low-frequency electrical stimulation,using identical stimulation parameters of in vivo experiments,was administered to in vitro dorsal root ganglion(DRG)neurons.Enhanced neurite outgrowth,as well as synthesis and release of brain-derived neurotrophic factor(BDNF),were examined in electrical stimulation-treated DRG neuronal cultures.Because the effects of electrical stimulation on neuronal intracellular signaling molecules are less reported,classic calcium intracellular signals are directly or indirectly involved in electrical stimulation effects on neurons.Cultured DRG neurons were pretreated with the calcium channel blocker nifedipine,followed by electrical stimulation.Results suggested that electrical stimulation not only promoted in vitro neurite outgrowth,but also enhanced BDNF expression.However,nifedipine reduced electrical stimulation-enhanced neurite outgrowth and BDNF biosynthesis.These results suggest that the promoting effects of electrical stimulation on DRG neurite outgrowth could be associated with altered calcium influx,which is involved induction of neuronal BDNF expression and secretion.

  8. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury

    Science.gov (United States)

    Yi, Sheng; Yuan, Ying; Chen, Qianqian; Wang, Xinghui; Gong, Leilei; Liu, Jie; Gu, Xiaosong; Li, Shiying

    2016-01-01

    Peripheral nerve injury is a global problem that causes disability and severe socioeconomic burden. Brain-derived neurotrophic factor (BDNF) benefits peripheral nerve regeneration and becomes a promising therapeutic molecule. In the current study, we found that microRNA-1 (miR-1) directly targeted BDNF by binding to its 3′-UTR and caused both mRNA degradation and translation suppression of BDNF. Moreover, miR-1 induced BDNF mRNA degradation primarily through binding to target site 3 rather than target site 1 or 2 of BDNF 3′-UTR. Following rat sciatic nerve injury, a rough inverse correlation was observed between temporal expression profiles of miR-1 and BDNF in the injured nerve. The overexpression or silencing of miR-1 in cultured Schwann cells (SCs) inhibited or enhanced BDNF secretion from the cells, respectively, and also suppressed or promoted SC proliferation and migration, respectively. Interestingly, BDNF knockdown could attenuate the enhancing effect of miR-1 inhibitor on SC proliferation and migration. These findings will contribute to the development of a novel therapeutic strategy for peripheral nerve injury, which overcomes the limitations of direct administration of exogenous BDNF by using miR-1 to regulate endogenous BDNF expression. PMID:27381812

  9. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    Science.gov (United States)

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. PMID:24636743

  10. Intermittent hypoxia with or without hypercapnia is associated with tumorigenesis by decreasing the expression of brain derived neurotrophic factor and miR-34a in rats

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing; Guo Xu; Shi Yanwei; Ma Jing; Wang Guangfa

    2014-01-01

    Background Very recent studies revealed that obstructive sleep apnoea (OSA) is a contributor of the increased incidence and mortality of cancer in humans,but mechanisms of how OSA promotes tumorigenesis remains largely unknown.We investigated whether intermittent hypoxia with and without hypercapnia plays a role in tumorigenesis.Methods First,Sprague-Dawley (SD) male rats (12 weeks old) were subjected to different hypoxia exposures:intermittent hypoxia and intermittent hypoxia with hypercapnia; continuous hypoxia and normal air.The systemic application of chronic fast rate hypoxia with or without hypercapnia mimicked severe OSA patients with apnoea/hypopnea index equivalent to 60 events per hour.Then routine blood tests were performed and the levels of brain derived neurotrophic factor (BDNF) and miR-34a were examined.Results In contrast to intermittent hypoxia with hypercapnia,both intermittent hypoxia and continuous hypoxia treatments caused significantly higher levels of haematology parameters than normoxia treatments.Compared to normoxia,intermittent hypoxia with hypercapnia exposure resulted in substantial decrease of serum BDNF and,miR-34a in the lower brainstem,while less pronounced results were found in intermittent hypoxia and continuous hypoxia exposure.Conclusions The exposure of intermittent hypoxia with or without hypercapnia,mimicking the situations in severe OSA patients,was associated with,or even promoted tumorigenesis.

  11. Brain-derived neurotrophic factor protects neurons from GdCl3-induced impairment in neuron-astrocyte co-cultures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Gadolinium (Gd3+) complexes are important contrast agents in medical magnetic resonance imaging (MRI) and of great potential value in brain research. In order to better understand the mechanisms of the action of Gd3+ on neurons in the complex central nervous system (CNS), the neurotoxic actions of GdCl3 have been investigated in both neuron monoculture and astrocyte-neuron co-culture systems. Measurements of lactate dehydrogenase release showed that GdCl3 causes significant cell death of monocultured neurons as a result of reactive oxygen species (ROS) generation and down-regulation of brain-derived neurotrophic factor (BDNF). However, GdCl3 does not affect the viability and BDNF expression of astrocytes. Both co-culturing of neurons with astrocytes and addition of BDNF ameliorated GdCl3-induced neurotoxicity by decreasing ROS generation and facilitating recovery of BDNF levels. The results obtained suggest that astrocytes in the CNS may protect neurons from GdCl3-induced impairment through secreting BDNF and thus up-regulating BDNF expression and interfering with Gd3+-induced cell signaling in neurons. A possible molecular mechanism is suggested which should be helpful in understand- ing the neurotoxic actions of gadolinium probes .

  12. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E

    2011-05-18

    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  13. Lack of association between brain-derived neurotrophic factor Val66Met polymorphism and body mass index change over time in healthy adults.

    Science.gov (United States)

    Nikolac Perkovic, Matea; Mustapic, Maja; Pavlovic, Mladen; Uzun, Suzana; Kozumplik, Oliver; Barisic, Ivan; Muck-Seler, Dorotea; Pivac, Nela

    2013-06-17

    Obesity is becoming the epidemic health problem worldwide with a very complex etiology. The interaction between diverse genetic and environmental factors contributes to development of obesity. Among myriad of functions in central and peripheral tissues, brain-derived neurotrophic factor (BDNF) also regulates energy homeostasis, food intake and feeding behavior, and has a role in obesity and increased body mass index (BMI). BDNF Val66Met (rs6265) polymorphism is associated with BMI gain, but both positive associations and non-replications are reported. Since BMI changes over time and since genetic influences on BMI vary with age, the aim of the study was to evaluate association between BDNF Val66Met polymorphism and BMI gain in healthy subjects with middle or old age. The study included a cohort of 339 adult healthy Caucasians of Croatian origin, free of eating and metabolic disorders, evaluated in three time periods in the year 1972, 1982 and 2006, when the subjects were around 40, 50 and 70 years old, respectively. The results revealed a significant effect of smoking on BMI, but a lack of significant association between BDNF Val66Met polymorphism and overweight or obesity, and no significant association between BDNF Val66Met and BMI changes over time. These results did not confirm the major role of BDNF Val66Met in the regulation of BMI changes in adult and old healthy subjects. PMID:23643991

  14. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    Science.gov (United States)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  15. Biosensor-based approach identifies four distinct calmodulin-binding domains in the G protein-coupled estrogen receptor 1.

    Directory of Open Access Journals (Sweden)

    Quang-Kim Tran

    Full Text Available The G protein-coupled estrogen receptor 1 (GPER has been demonstrated to participate in many cellular functions, but its regulatory inputs are not clearly understood. Here we describe a new approach that identifies GPER as a calmodulin-binding protein, locates interaction sites, and characterizes their binding properties. GPER coimmunoprecipitates with calmodulin in primary vascular smooth muscle cells under resting conditions, which is enhanced upon acute treatment with either specific ligands or a Ca(2+-elevating agent. To confirm direct interaction and locate the calmodulin-binding domain(s, we designed a series of FRET biosensors that consist of enhanced cyan and yellow fluorescent proteins flanking each of GPER's submembrane domains (SMDs. Responses of these biosensors showed that all four submembrane domains directly bind calmodulin. Modifications of biosensor linker identified domains that display the strongest calmodulin-binding affinities and largest biosensor dynamics, including a.a. 83-93, 150-175, 242-259, 330-351, corresponding respectively to SMDs 1, 2, 3, and the juxta-membranous section of SMD4. These biosensors bind calmodulin in a strictly Ca(2+-dependent fashion and with disparate affinities in the order SMD2>SMD4>SMD3>SMD1, apparent K d values being 0.44 ± 0.03, 1.40 ± 0.16, 8.01 ± 0.29, and 136.62 ± 6.56 µM, respectively. Interestingly, simultaneous determinations of biosensor responses and suitable Ca(2+ indicators identified separate Ca(2+ sensitivities for their interactions with calmodulin. SMD1-CaM complexes display a biphasic Ca(2+ response, representing two distinct species (SMD1 sp1 and SMD1 sp2 with drastically different Ca(2+ sensitivities. The Ca(2+ sensitivities of CaM-SMDs interactions follow the order SMD1sp1>SMD4>SMD2>SMD1sp2>SMD3, EC50(Ca(2+ values being 0.13 ± 0.02, 0.75 ± 0.05, 2.38 ± 0.13, 3.71 ± 0.13, and 5.15 ± 0.25 µM, respectively. These data indicate that calmodulin may regulate GPER

  16. Novel regulation of equlibrative nucleoside transporter 1 (ENT1) by receptor-stimulated Ca2+-dependent calmodulin binding.

    Science.gov (United States)

    Bicket, Alex; Mehrabi, Pedram; Naydenova, Zlatina; Wong, Victoria; Donaldson, Logan; Stagljar, Igor; Coe, Imogen R

    2016-05-15

    Equilibrative nucleoside transporters (ENTs) facilitate the flux of nucleosides, such as adenosine, and nucleoside analog (NA) drugs across cell membranes. A correlation between adenosine flux and calcium-dependent signaling has been previously reported; however, the mechanistic basis of these observations is not known. Here we report the identification of the calcium signaling transducer calmodulin (CaM) as an ENT1-interacting protein, via a conserved classic 1-5-10 motif in ENT1. Calcium-dependent human ENT1-CaM protein interactions were confirmed in human cell lines (HEK293, RT4, U-87 MG) using biochemical assays (HEK293) and the functional assays (HEK293, RT4), which confirmed modified nucleoside uptake that occurred in the presence of pharmacological manipulations of calcium levels and CaM function. Nucleoside and NA drug uptake was significantly decreased (∼12% and ∼39%, respectively) by chelating calcium (EGTA, 50 μM; BAPTA-AM, 25 μM), whereas increasing intracellular calcium (thapsigargin, 1.5 μM) led to increased nucleoside uptake (∼26%). Activation of N-methyl-d-aspartate (NMDA) receptors (in U-87 MG) by glutamate (1 mM) and glycine (100 μM) significantly increased nucleoside uptake (∼38%) except in the presence of the NMDA receptor antagonist, MK-801 (50 μM), or CaM antagonist, W7 (50 μM). These data support the existence of a previously unidentified novel receptor-dependent regulatory mechanism, whereby intracellular calcium modulates nucleoside and NA drug uptake via CaM-dependent interaction of ENT1. These findings suggest that ENT1 is regulated via receptor-dependent calcium-linked pathways resulting in an alteration of purine flux, which may modulate purinergic signaling and influence NA drug efficacy. PMID:27009875

  17. A New Versatile Immobilization Tag Based on the Ultra High Affinity and Reversibility of the Calmodulin-Calmodulin Binding Peptide Interaction.

    Science.gov (United States)

    Mukherjee, Somnath; Ura, Marcin; Hoey, Robert J; Kossiakoff, Anthony A

    2015-08-14

    Reversible, high-affinity immobilization tags are critical tools for myriad biological applications. However, inherent issues are associated with a number of the current methods of immobilization. Particularly, a critical element in phage display sorting is functional immobilization of target proteins. To circumvent these problems, we have used a mutant (N5A) of calmodulin binding peptide (CBP) as an immobilization tag in phage display sorting. The immobilization relies on the ultra high affinity of calmodulin to N5A mutant CBP (RWKKNFIAVSAANRFKKIS) in presence of calcium (KD~2 pM), which can be reversed by EDTA allowing controlled "capture and release" of the specific binders. To evaluate the capabilities of this system, we chose eight targets, some of which were difficult to overexpress and purify with other tags and some had failed in sorting experiments. In all cases, specific binders were generated using a Fab phage display library with CBP-fused constructs. KD values of the Fabs were in subnanomolar to low nanomolar (nM) ranges and were successfully used to selectively recognize antigens in cell-based experiments. Some of these targets were problematic even without any tag; thus, the fact that all led to successful selection endpoints means that borderline cases can be worked on with a high probability of a positive outcome. Taken together with examples of successful case specific, high-level applications like generation of conformation-, epitope- and domain-specific Fabs, we feel that the CBP tag embodies all the attributes of covalent immobilization tags but does not suffer from some of their well-documented drawbacks. PMID:26159704

  18. Association between obesity and the brain-derived neurotrophic factor gene polymorphism Val66Met in individuals with bipolar disorder in Mexican population

    Directory of Open Access Journals (Sweden)

    Morales-Marín ME

    2016-07-01

    Full Text Available Mirna Edith Morales-Marín,1 Alma Delia Genis-Mendoza,1,2 Carlos Alfonso Tovilla-Zarate,3 Nuria Lanzagorta,4 Michael Escamilla,5 Humberto Nicolini1,4 1Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN, CDMX, Mexico; 2Psychiatric Care Services, Child Psychiatric Hospital Dr Juan N Navarro, CDMX, Mexico; 3Genomics Research Center, Juarez Autonomous University of Tabasco, Comalcalco, Mexico; 4Carracci Medical Group, CDMX, Mexico; 5Department of Psychiatry, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso TX, USA Background: The brain-derived neurotrophic factor (BDNF has been considered as an important candidate gene in bipolar disorder (BD; this association has been derived from several genetic and genome-wide studies. A polymorphic variant of the BDNF (Val66Met confers some differences in the clinical presentation of affective disorders. In this study, we evaluated a sample population from Mexico City to determine whether the BDNF (rs6265 Val66Met polymorphism is associated with the body mass index (BMI of patients with BD.Methods: This association study included a sample population of 357 individuals recruited in Mexico City. A total of 139 participants were diagnosed with BD and 137 were classified as psychiatrically healthy controls (all individuals were interviewed and evaluated by the Diagnostic Interview for Genetic Studies. Genomic DNA was extracted from peripheral blood leukocytes. The quantitative polymerase chain reaction (qPCR assay was performed in 96-well plates using the TaqMan Universal Thermal Cycling Protocol. After the PCR end point was reached, fluorescence intensity was measured in a 7,500 real-time PCR system and evaluated using the SDS v2.1 software, results were analyzed with Finetti and SPSS software. Concerning BMI stratification, random groups were defined as follows: normal <25 kg/m2, overweight (Ow =25.1–29.9 kg/m2

  19. Decrease of urinary nerve growth factor but not brain-derived neurotrophic factor in patients with interstitial cystitis/bladder pain syndrome treated with hyaluronic acid.

    Directory of Open Access Journals (Sweden)

    Yuan-Hong Jiang

    Full Text Available To investigate urinary nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF levels in interstitial cystitis/bladder pain syndrome (IC/BPS patients after hyaluronic acid (HA therapy.Thirty-three patients with IC/BPS were prospectively studied; a group of 45 age-matched healthy subjects served as controls. All IC/BPS patients received nine intravesical HA instillations during the 6-month treatment regimen. Urine samples were collected for measuring urinary NGF and BDNF levels at baseline and 2 weeks after the last HA treatment. The clinical parameters including visual analog scale (VAS of pain, daily frequency nocturia episodes, functional bladder capacity (FBC and global response assessment (GRA were recorded. Urinary NGF and BDNF levels were compared between IC/BPS patients and controls at baseline and after HA treatment.Urinary NGF, NGF/Cr, BDNF, and BDNF/Cr levels were significantly higher in IC/BPS patients compared to controls. Both NGF and NGF/Cr levels significantly decreased after HA treatment. Urinary NGF and NGF/Cr levels significantly decreased in the responders with a VAS pain reduction by 2 (both p < 0.05 and the GRA improved by 2 (both p < 0.05, but not in non-responders. Urinary BDNF and BDNF/Cr did not decrease in responders or non-responders after HA therapy.Urinary NGF, but not BDNF, levels decreased significantly after HA therapy; both of these factors remained higher than in controls even after HA treatment. HA had a beneficial effect on IC/BPS, but it was limited. The reduction of urinary NGF levels was significant in responders, with a reduction of pain and improved GRA.

  20. Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways

    Directory of Open Access Journals (Sweden)

    Yenari Midori A

    2011-03-01

    Full Text Available Abstract Background We previously showed that microglia damage blood brain barrier (BBB components following ischemic brain insults, but the underlying mechanism(s is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4 activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs. Methods/Results In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC. However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO and inducible NO synthase (iNOS induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS also prevented injury in these cocultures. To assess the signaling pathway(s involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect. Conclusions We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection.

  1. Brain-derived neurotrophic factor, acting at the spinal cord level, participates in bladder hyperactivity and referred pain during chronic bladder inflammation.

    Science.gov (United States)

    Frias, B; Allen, S; Dawbarn, D; Charrua, A; Cruz, F; Cruz, C D

    2013-03-27

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) known to participate in chronic somatic pain. A recent study has indicated that BDNF may participate in chronic cystitis at the peripheral level. However, the principal site of action for this NT is the central nervous system, most notably the spinal cord. The effects of centrally-acting BDNF on bladder function in normal animals and its central role during chronic cystitis are presently unknown. The present study was undertaken to clarify this issue. For that purpose, control non-inflamed animals were intrathecally injected with BDNF, after which bladder function was evaluated. This treatment caused short-lasting bladder hyperactivity; whereas chronic intrathecal administration of BDNF did not elicit this effect. Cutaneous sensitivity was assessed by mechanical allodynia as an internal control of BDNF action. To ascertain the role of BDNF in bladder inflammation, animals with cyclophosphamide-induced cystitis received intrathecal injections of either a general Trk receptor antagonist or a BDNF scavenger. Blockade of Trk receptors or BDNF sequestration notably improved bladder function. In addition, these treatments also reduced referred pain, typically observed in rats with chronic cystitis. Reduction of referred pain was accompanied by a decrease in the spinal levels of extracellular signal-regulated kinase (ERK) phosphorylation, a marker of increased sensory barrage in the lumbosacral spinal cord, and spinal BDNF expression. Results obtained here indicate that BDNF, acting at the spinal cord level, contributes to bladder hyperactivity and referred pain, important hallmarks of chronic cystitis. In addition, these data also support the development of BDNF modulators as putative therapeutic options for the treatment of chronic bladder inflammation. PMID:23313710

  2. Gender-specific Associations of the Brain-derived Neurotrophic Factor Val66Met Polymorphism with Neurocognitive and Clinical Features in Schizophrenia

    Science.gov (United States)

    Kim, Sung-Wan; Lee, Ju-Yeon; Kang, Hee-Ju; Kim, Seon-Young; Bae, Kyung-Yeol; Kim, Jae-Min; Shin, Il-Seon; Yoon, Jin-Sang

    2016-01-01

    Objective To explore associations of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with cognitive functioning and psychopathology in patients with schizophrenia. Methods We included 133 subjects meeting the DSM-IV criteria for schizophrenia who were in the post-acute stage of the disease. BDNF Val66Met genotypes were identified via polymerase chain reaction. The computerized neurocognitive function battery, Positive and Negative Syndrome Scale (PANSS), Calgary Depression Scale for Schizophrenia (CDSS), Social and Occupational Functioning Scale (SOFAS), and the Subjective Well-being under Neuroleptic Treatment (SWN-K) were administered. Gender-stratified sub-analysis was also conducted to identify gender-specific patterns in the findings. Results In male patients, no significant difference in any measure by BDNF genotype was evident. In female patients, scores on the CDSS and total PANSS and all subscales were significantly higher in valine (Val) carriers. In addition, scores on the SOFAS and SWN-K were significantly lower in Val carriers. In terms of neurocognitive measures, female patients with the Val allele had significantly poorer reaction times and fewer correct responses on the Continuous Performance Test (CPT) and the Trail Making Test (Parts A and B). After adjustment of PANSS total scores and log-transformed CDSS scores, CPT outcomes were significantly poorer in female patients with than in those without the Val allele. Conclusion Gender-specific associations of the Val allele with poor neurocognitive function and more severe psychopathology were evident. Further studies are required to explore the mechanisms of these differences and the potential utility of the BDNF genotype as a predictor of outcome in patients with schizophrenia. PMID:27489381

  3. The Role of the Val66Met Polymorphism of the Brain Derived Neurotrophic Factor Gene in Coping Strategies Relevant to Depressive Symptoms.

    Science.gov (United States)

    Caldwell, Warren; McInnis, Opal A; McQuaid, Robyn J; Liu, Gele; Stead, John D; Anisman, Hymie; Hayley, Shawn

    2013-01-01

    Disturbances of brain derived neurotrophic factor (BDNF) signalling have been implicated in the evolution of depression, which likely arises, in part, as a result of diminished synaptic plasticity. Predictably, given stressor involvement in depression, BDNF is affected by recent stressors as well as stressors such as neglect experienced in early life. The effects of early life maltreatment in altering BDNF signalling may be particularly apparent among those individuals with specific BDNF polymorphisms. We examined whether polymorphisms of the Val66Met genotype might be influential in moderating how early-life events play out with respect to later coping styles, cognitive flexibility and depressive features. Among male and female undergraduate students (N = 124), childhood neglect was highly related to subsequent depressive symptoms. This outcome was moderated by the BDNF polymorphism in the sense that depressive symptoms appeared higher in Met carriers who reported low levels of neglect than in those with the Val/Val allele. However, under conditions of high neglect depressive symptoms only increased in the Val/Val individuals. In effect, the Met polymorphism was associated with depressive features, but did not interact with early life neglect in predicting later depressive features. It was further observed that among the Val/Val individuals, the relationship between neglect and depression was mediated by emotion-focused styles and diminished perceived control, whereas this mediation was not apparent in Met carriers. In contrast to the more typical view regarding this polymorphism, the data are consistent with the perspective that in the presence of synaptic plasticity presumably associated with the Val/Val genotype, neglect allows for the emergence of specific appraisal and coping styles, which are tied to depression. In the case of the reduced degree of neuroplasticity expected in the Met carriers, early life adverse experiences are not tied to coping styles

  4. The Role of the Val66Met Polymorphism of the Brain Derived Neurotrophic Factor Gene in Coping Strategies Relevant to Depressive Symptoms.

    Directory of Open Access Journals (Sweden)

    Warren Caldwell

    Full Text Available Disturbances of brain derived neurotrophic factor (BDNF signalling have been implicated in the evolution of depression, which likely arises, in part, as a result of diminished synaptic plasticity. Predictably, given stressor involvement in depression, BDNF is affected by recent stressors as well as stressors such as neglect experienced in early life. The effects of early life maltreatment in altering BDNF signalling may be particularly apparent among those individuals with specific BDNF polymorphisms. We examined whether polymorphisms of the Val66Met genotype might be influential in moderating how early-life events play out with respect to later coping styles, cognitive flexibility and depressive features. Among male and female undergraduate students (N = 124, childhood neglect was highly related to subsequent depressive symptoms. This outcome was moderated by the BDNF polymorphism in the sense that depressive symptoms appeared higher in Met carriers who reported low levels of neglect than in those with the Val/Val allele. However, under conditions of high neglect depressive symptoms only increased in the Val/Val individuals. In effect, the Met polymorphism was associated with depressive features, but did not interact with early life neglect in predicting later depressive features. It was further observed that among the Val/Val individuals, the relationship between neglect and depression was mediated by emotion-focused styles and diminished perceived control, whereas this mediation was not apparent in Met carriers. In contrast to the more typical view regarding this polymorphism, the data are consistent with the perspective that in the presence of synaptic plasticity presumably associated with the Val/Val genotype, neglect allows for the emergence of specific appraisal and coping styles, which are tied to depression. In the case of the reduced degree of neuroplasticity expected in the Met carriers, early life adverse experiences are not tied

  5. Brain-derived neurotrophic factor Val⁶⁶Met polymorphism affects resting regional cerebral blood flow and functional connectivity differentially in women versus men.

    Science.gov (United States)

    Wei, Shau-Ming; Eisenberg, Daniel P; Kohn, Philip D; Kippenhan, Jonathan S; Kolachana, Bhaskar S; Weinberger, Daniel R; Berman, Karen F

    2012-05-16

    The human Val⁶⁶Met single nucleotide polymorphism in the brain-derived neurotrophic factor (BDNF) gene impacts BDNF signaling at the cellular level. At the neural-systems level, it is associated with differences in prefrontal cortex (PFC) and hippocampal function during performance of cognitive and affective tasks. Because the impact of this variant on basal prefrontal and hippocampal activity is not known but may be relevant to understanding the function of this gene in health and disease, we studied 94 healthy individuals with H₂ ¹⁵O PET to assess regional cerebral blood flow (rCBF) during rest and tested for between-genotype differences. Because BDNF and gonadal steroid hormones conjointly influence neuronal growth, survival, and plasticity in hippocampus and PFC, we also tested for sex × genotype interactions. Finally, in light of the known impact of BDNF on plasticity and dendritic arborization, we complimented direct rCBF comparisons with connectivity analyses to determine how activity in hippocampal and prefrontal regions showing between-genotype group differences covaries with rCBF in other nodes throughout the brain in a genotype- or sex-dependent manner. Compared with Val homozygotes, Met carriers had higher rCBF in prefrontal (BA25 extending into BA10) and hippocampal/parahippocampal regions. Moreover, there were significant sex × genotype interactions in regions (including frontal, parahippocampal, and lateral temporal cortex) in which Val homozygotes showed higher rCBF in females than males, but Met carriers showed the opposite relationship. Functional connectivity analysis demonstrated that correlations of BA25, hippocampus, and parahippocampus with frontal and temporal networks were positive for Val homozygotes and negative for Met carriers. In addition, sex × genotype analysis of functional connectivity revealed that genotype affected directionality of the inter-regional correlations differentially in men versus women. Our data indicate

  6. Reduced brain-derived neurotrophic factor expression in cortex and hippocampus involved in the learning and memory deficit in molarless SAMP8 mice

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing-song; LIANG Zi-liang; WU Min-Jie; FENG Lin; LIU Li-li; ZHANG Jian-jun

    2011-01-01

    Background The molarless condition has been reported to compromise learning and memory functions. However, it remains unclear how the molarless condition directly affects the central nervous system, and the functional consequences on the brain cortex and hippocampus have not been described in detail. The aim of this study was to find the molecular mechanism related with learning and memory deficit after a bilateral molarless condition having been surgically induced in senescence-accelerated mice/prone8 (SAMP8) mice, which may ultimately provide an experimental basis for clinical prevention of senile dementia.Methods Mice were either sham-operated or subjected to complete molar removal. The animals' body weights were monitored every day. Learning ability and memory were measured in a water maze test at the end of the 1 st, 2nd, and 3rd months after surgery. As soon as significantly prolonged escape latency in the molarless group was detected, the locomotor activity was examined in an open field test. Subsequently, the animals were decapitated and the cortex and hippocampus were dissected for Western blotting to measure the expression levels of brain-derived neurotrophic factor (BDNF) and the tropomyosin related kinase B (TrkB), the high affinity receptor of BDNF.Results Slightly lower weights were consistently observed in the molarless group, but there was no significant difference in weights between the two groups (P>0.05). Compared with the sham group, the molarless group exhibited lengthened escape latency in the water maze test three months after surgery, whereas no difference in locomotor activity was observed. Meanwhile, in the cortex and hippocampus, BDNF levels were significantly decreased in the molarless group (P<0.05); but the expression of its receptor, TrkB, was not significantly affected.Conclusion These results suggested that the molarless condition impaired learning and memory abilities in SAMP8mice three months after teeth extraction, and this

  7. Up-regulation of brain-derived neurotrophic factor in the dorsal root ganglion of the rat bone cancer pain model

    Directory of Open Access Journals (Sweden)

    Tomotsuka N

    2014-07-01

    Full Text Available Naoto Tomotsuka,1 Ryuji Kaku,1 Norihiko Obata,1 Yoshikazu Matsuoka,1 Hirotaka Kanzaki,2 Arata Taniguchi,1 Noriko Muto,1 Hiroki Omiya,1 Yoshitaro Itano,1 Tadasu Sato,3 Hiroyuki Ichikawa,3 Satoshi Mizobuchi,1 Hiroshi Morimatsu1 1Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; 2Department of Pharmacy, Okayama University Hospital, Okayama, Japan; 3Department of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai, Japan Abstract: Metastatic bone cancer causes severe pain, but current treatments often provide insufficient pain relief. One of the reasons is that mechanisms underlying bone cancer pain are not solved completely. Our previous studies have shown that brain-derived neurotrophic factor (BDNF, known as a member of the neurotrophic family, is an important molecule in the pathological pain state in some pain models. We hypothesized that expression changes of BDNF may be one of the factors related to bone cancer pain; in this study, we investigated changes of BDNF expression in dorsal root ganglia in a rat bone cancer pain model. As we expected, BDNF mRNA (messenger ribonucleic acid and protein were significantly increased in L3 dorsal root ganglia after intra-tibial inoculation of MRMT-1 rat breast cancer cells. Among the eleven splice-variants of BDNF mRNA, exon 1–9 variant increased predominantly. Interestingly, the up-regulation of BDNF is localized in small neurons (mostly nociceptive neurons but not in medium or large neurons (non-nociceptive neurons. Further, expression of nerve growth factor (NGF, which is known as a specific promoter of BDNF exon 1–9 variant, was significantly increased in tibial bone marrow. Our findings suggest that BDNF is a key molecule in bone cancer pain, and NGF-BDNF cascade possibly develops bone cancer pain. Keywords: BDNF, bone cancer pain, chronic pain, nerve growth

  8. In vitro construction of a recombinant human embryonic brain-derived neurotrophin-4 gene and pEGFP-N1 vector

    Institute of Scientific and Technical Information of China (English)

    Jintao Li; Qi Yan; Xingbao Zhu; Dan Xu; Tinghua Wang; Huatang Zhang; Jia Liu

    2009-01-01

    BACKGROUND: Neurotrophin-4 (NT-4) can promote neuronal growth, development, differentiation, maturation, and survival. NT-4 can also improve recovery and regeneration of injured neurons, but cannot pass through the blood-brain barrier, which limits its activity in the central nervous system. Delivering NT-4 into the central nervous system via cells or vectors may have therapeutic benefit.OBJECTIVE: To construct a recombinant vector with a human embryonic brain-derived NT-4 gene and pEGFP-N1.DESIGN, TIME AND SETTING: Neural genetic engineering experiment. The study was performed at the Neuroscience Institute of Kunming Medical College between October 2007 and March 2008.MATERIALS: The pEGFP-N1 plasmid vector was provided by Kunming Institute of Zoology, Chinese Academy of Sciences; embryonic brain tissues were provided by the First Affiliated Hospital of Kunming Medical College. TRIzol RNA extraction Kit was purchased from Sigma (USA), One Step RNA PCR Kit (AMV) etc. were from Takara (Dalian, China).METHODS: Total RNA was extracted from human embryonic brain tissues using Trizol. The agarose gel electrophoresis showed two bands: 18 S and 28 S, which were essential subunits of total RNA. The human NT-4 DNA was obtained via RT-PCR and inserted into the pEGFP-N1 vector using ligation and transformation reaction.MAIN OUTCOME MEASURES: The sequencing results of the DNA in the recombinant of NT-4-pEGFP-N1.RESULTS: The NT-4-pEGFP-N1 vector was sequence-verified and showed the expected molecular weight.CONCLUSION: The recombinant of NT-4-pEGFP-N1 was constructed successfully in vitro.

  9. Scorpion venom heat-resistant peptide (SVHRP enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Scorpion venom heat-resistant peptide (SVHRP is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM-positive immature neurons in the subventricular zone (SVZ and subgranular zone (SGZ of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF but not nerve growth factor (NGF or glial cell line-derived neurotrophic factor (GDNF was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values

  10. Sex and age differences in brain-derived neurotrophic factor and vimentin in the zebra finch song system: Relationships to newly generated cells.

    Science.gov (United States)

    Tang, Yu Ping; Wade, Juli

    2016-04-01

    The neural song circuit is enhanced in male compared with female zebra finches due to differential rates of incorporation and survival of cells between the sexes. Two double-label immunohistochemical experiments were conducted to increase the understanding of relationships between newly generated cells (marked with bromodeoxyuridine [BrdU]) and those expressing brain-derived neurotrophic factor (BDNF) and vimentin, a marker for radial glia. The song systems of males and females were investigated at posthatching day 25 during a heightened period of sexual differentiation (following BrdU injections on days 6-10) and in adulthood (following a parallel injection paradigm). In both HVC (proper name) and the robust nucleus of the arcopallium (RA), about half of the BrdU-positive cells expressed BDNF across sexes and ages. Less than 10% of the BDNF-positive cells expressed BrdU, but this percentage was greater in juveniles than adults. Across both brain regions, more BDNF-positive cells were detected in males compared with females. In RA, the number of these cells was also greater in juveniles than adults. In HVC, the average cross-sectional area covered by the vimentin labeling was greater in males than females and in juveniles compared with adults. In RA, more vimentin was detected in juveniles than adults, and within adults it was greater in females. In juveniles only, BrdU-positive cells appeared in contact with vimentin-labeled fibers in HVC, RA, and Area X. Collectively, the results are consistent with roles of BDNF- and vimentin-labeled cells influencing sexually differentiated plasticity of the song circuit. PMID:26355496

  11. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.

    Science.gov (United States)

    Wallingford, J K; Deurveilher, S; Currie, R W; Fawcett, J P; Semba, K

    2014-09-26

    Chronic sleep restriction (CSR) has various negative consequences on cognitive performance and health. Using a rat model of CSR that uses alternating cycles of 3h of sleep deprivation (using slowly rotating activity wheels) and 1h of sleep opportunity continuously for 4 days ('3/1' protocol), we previously observed not only homeostatic but also allostatic (adaptive) sleep responses to CSR. In particular, non-rapid eye movement sleep (NREMS) electroencephalogram (EEG) delta power, an index of sleep intensity, increased initially and then declined gradually during CSR, with no rebound during a 2-day recovery period. To study underlying mechanisms of these allostatic responses, we examined the levels of brain-derived neurotrophic factor (BDNF), which is known to regulate NREMS EEG delta activity, during the same CSR protocol. Mature BDNF protein levels were measured in the frontal cortex and basal forebrain, two brain regions involved in sleep and EEG regulation, and the hippocampus, using Western blot analysis. Adult male Wistar rats were housed in motorized activity wheels, and underwent the 3/1 CSR protocol for 27 h, for 99 h, or for 99 h followed by 24h of recovery. Additional rats were housed in either locked wheels (locked wheel controls [LWCs]) or unlocked wheels that rats could rotate freely (wheel-running controls [WRCs]). BDNF levels did not differ between WRC and LWC groups. BDNF levels were increased, compared to the control levels, in all three brain regions after 27 h, and were increased less strongly after 99 h, of CSR. After 24h of recovery, BDNF levels were at the control levels. This time course of BDNF levels parallels the previously reported changes in NREMS delta power during the same CSR protocol. Changes in BDNF protein levels in the cortex and basal forebrain may be part of the molecular mechanisms underlying allostatic sleep responses to CSR. PMID:25010399

  12. Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner.

    Directory of Open Access Journals (Sweden)

    Alberto Jiménez-Maldonado

    Full Text Available BACKGROUND: Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats. METHODS: Wistar rats were divided into five groups: control (sedentary, C; moderate- intensity training (MIT; MIT plus K252A TrkB blocker (MITK; high-intensity training (HIT; and HIT plus K252a (HITK. Training comprised 8 weeks of treadmill running. Plasma BDNF levels (ELISA assay, glucose tolerance, insulin tolerance, and immunohistochemistry for insulin and the pancreatic islet area were evaluated in all groups. In addition, Bdnf mRNA expression in the skeletal muscle was measured. PRINCIPAL FINDINGS: Chronic treadmill exercise significantly increased plasma BDNF levels and insulin tolerance, and both effects were attenuated by TrkB blocking. In the MIT and HIT groups, a significant TrkB-dependent pancreatic islet enlargement was observed. MIT rats exhibited increased liver glycogen levels following insulin administration in a TrkB-independent manner. CONCLUSIONS/SIGNIFICANCE: Chronic physical exercise exerted remarkable effects on insulin regulation by inducing significant increases in the pancreatic islet size and insulin sensitivity in a TrkB-dependent manner. A threshold for the induction of BNDF in response to physical exercise exists in certain muscle groups. To the best of our knowledge, these are the first results to reveal a role for TrkB in the chronic exercise-mediated insulin regulation in healthy rats.

  13. Brain-derived neurotrophic factor enhances GABA release probability and nonuniform distribution of N- and P/Q-type channels on release sites of hippocampal inhibitory synapses.

    Science.gov (United States)

    Baldelli, Pietro; Hernandez-Guijo, Jesus-Miguel; Carabelli, Valentina; Carbone, Emilio

    2005-03-30

    Long-lasting exposures to brain-derived neurotrophic factor (BDNF) accelerate the functional maturation of GABAergic transmission in embryonic hippocampal neurons, but the molecular bases of this phenomenon are still debated. Evidence in favor of a postsynaptic site of action has been accumulated, but most of the data support a presynaptic site effect. A crucial issue is whether the enhancement of evoked IPSCs (eIPSCs) induced by BDNF is attributable to an increase in any of the elementary parameters controlling neurosecretion, namely the probability of release, the number of release sites, the readily releasable pool (RRP), and the quantal size. Here, using peak-scaled variance analysis of miniature IPSCs, multiple probability fluctuation analysis, and cumulative amplitude analysis of action potential-evoked postsynaptic currents, we show that BDNF increases release probability and vesicle replenishment with little or no effect on the quantal size, the number of release sites, the RRP, and the Ca2+ dependence of eIPSCs. BDNF treatment changes markedly the distribution of Ca2+ channels controlling neurotransmitter release. It enhances markedly the contribution of N- and P/Q-type channels, which summed to >100% ("supra-additivity"), and deletes the contribution of R-type channels. BDNF accelerates the switch of presynaptic Ca2+ channel distribution from "segregated" to "nonuniform" distribution. This maturation effect was accompanied by an uncovered increased control of N-type channels on paired-pulse depression, otherwise dominated by P/Q-type channels in untreated neurons. Nevertheless, BDNF preserved the fast recovery from depression associated with N-type channels. These novel presynaptic BDNF actions derive mostly from an enhanced overlapping and better colocalization of N- and P/Q-type channels to vesicle release sites. PMID:15800191

  14. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders: a randomised controlled study.

    Directory of Open Access Journals (Sweden)

    Maj Vinberg

    Full Text Available The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO on plasma brain derived neurotrophic factor (BDNF levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD (Hamilton Depression Rating Scale-17 items (HDRS-17 score >17 (study 1 and 43 patients with bipolar disorder (BD in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS ≤ 14 (study 2. In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU or saline (0.9% NaCl infusions in a double-blind, placebo-controlled, parallel--group design. Plasma BDNF levels were measured at baseline and at weeks 5, 9 and at follow up, week 14. In contrast with our hypothesis, EPO down regulated plasma BDNF levels in patients with TRD (mean reduction at week 9 (95% CI: EPO 10.94 ng/l (4.51-21.41 ng/l; mean increase at week 9: Saline 0.52 ng/l, p=0.04 (-5.88-4.48 ng/l p=0.04, partial ŋ2=0.12. No significant effects were found on BDNF levels in partially remitted patients with BD (p=0.35. The present effects of EPO on BDNF levels in patients with TRD point to a role of neurotrophic factors in the potential effects of EPO seen in TRD and BD. The neurobiological mechanisms underlying these effects and the interaction between EPO and peripheral levels on BDNF need to be further elucidated in human studies including a broad range of biomarkers.ClinicalTrials.gov: NCT00916552.

  15. Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibers on mature Purkinje cells.

    Science.gov (United States)

    Dixon, Kirsty J; Sherrard, Rachel M

    2006-11-01

    In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development, however, post-lesion plasticity may generate alternate paths providing models to investigate factors that promote reinnervation to appropriate targets. Following unilateral transection of the neonatal rat olivocerebellar pathway, axons from the remaining inferior olive reinnervate the denervated hemicerebellum and develop climbing fiber arbors on Purkinje cells. However, the capacity to recreate this accurate target reinnervation in a mature system remains unknown. In rats lesioned on day 15 (P15) or 30 and treated with intracerebellar injection of brain-derived neurotrophic factor (BDNF) or vehicle 24 h later, the morphology and organisation of transcommissural olivocerebellar reinnervation was examined using neuronal tracing and immunohistochemistry. In all animals BDNF, but not vehicle, induced transcommissural olivocerebellar axonal growth into the denervated hemicerebellum. The distribution of reinnervating climbing fibers was not confined to the injection sites but extended throughout the denervated hemivermis and, less densely, up to 3.5 mm into the hemisphere. Transcommissural olivocerebellar axons were organised into parasagittal microzones that were almost symmetrical to those in the right hemicerebellum. Reinnervating climbing fiber arbors were predominantly normal, but in the P30-lesioned group 10% were either branched within the molecular layer forming a smaller secondary arbor or were less branched, and in the P15 lesion group the reinnervating arbors extended their terminals almost to the pial surface and were larger than control arbors (P < 0.02). These results show that BDNF can induce transcommissural olivocerebellar reinnervation, which resembles developmental neuroplasticity to promote appropriate target reinnervation in a mature environment. PMID:16790241

  16. Tumor necrosis factor-α increases brain-derived neurotrophic factor expression in trigeminal ganglion neurons in an activity-dependent manner.

    Science.gov (United States)

    Bałkowiec-Iskra, E; Vermehren-Schmaedick, A; Balkowiec, A

    2011-04-28

    Many chronic trigeminal pain conditions, such as migraine or temporo-mandibular disorders, are associated with inflammation within peripheral endings of trigeminal ganglion (TG) sensory neurons. A critical role in mechanisms of neuroinflammation is attributed to proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α (TNFα) that also contribute to mechanisms of persistent neuropathic pain resulting from nerve injury. However, the mechanisms of cytokine-mediated synaptic plasticity and nociceptor sensitization are not completely understood. In the present study, we examined the effects of TNFα on neuronal expression of brain-derived neurotrophic factor (BDNF), whose role in synaptic plasticity and sensitization of nociceptive pathways is well documented. We show that 4- and 24-h treatment with TNFα increases BDNF mRNA and protein, respectively, in neuron-enriched dissociated cultures of rat TG. TNFα increases the phosphorylated form of the cyclic AMP-responsive element binding protein (CREB), a transcription factor involved in regulation of BDNF expression in neurons, and activates transcription of BDNF exon IV (former exon III) and, to a lesser extent, exon VI (former exon IV), but not exon I. TNFα-mediated increase in BDNF expression is accompanied by increase in calcitonin gene-related peptide (CGRP), which is consistent with previously published studies, and indicates that both peptides are similarly regulated in TG neurons by inflammatory mediators. The effect of TNFα on BDNF expression is dependent on sodium influx through TTX-sensitive channels and on p38-mitogen-activated protein kinase. Moreover, electrical stimulation and forskolin, known to increase intracellular cAMP, potentiate the TNFα-mediated upregulation of BDNF expression. This study provides new evidence for a direct action of proinflammatory cytokines on TG primary sensory neurons, and reveals a mechanism through which TNFα stimulates de novo synthesis of BDNF in

  17. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking.

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A; Vu, Tania Q

    2014-01-01

    Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide

  18. Acute intermittent hypoxia-induced expression of Brain-Derived Neurotrophic Factor is disrupted in the brainstem of mecp2 null mice

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Jenkins, Victoria K.; Knopp, Sharon J.; Balkowiec, Agnieszka; Bissonnette, John M.

    2012-01-01

    Rett syndrome is a neurodevelopmental disorder caused by loss of function mutations in the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2). One of its targets is the gene encoding brain-derived neurotrophic factor (bdnf). In vitro studies using cultured neurons have produced conflicting results with respect to the role of MeCP2 in BDNF expression. Acute intermittent hypoxia (AIH) induces plasticity in the respiratory system characterized by long-term facilitation of phrenic nerve amplitude. This paradigm induces an increase in BDNF protein. We hypothesized that AIH leads to augmentation of BDNF transcription in respiratory-related areas of the brainstem and that MeCP2 is necessary for this process. Wild-type and mecp2 null (mecp2−/y) mice were subjected to three 5-min episodes of exposure to 8% O2/4% CO2/88% N2, delivered at 5-min intervals. Normoxia control wild-type and mecp2 null mice were exposed to room air for the total length of time, i.e. 30 min. Following a recovery in room air, the pons and medulla were rapidly removed. Expression of BDNF protein and transcripts were determined by ELISA and quantitative PCR, respectively. AIH induced a significant increase in BDNF protein in the pons and medulla, and in mRNA transcript levels in the pons of wild-type animals. In contrast, there were no significant changes in either BDNF protein or transcripts in the pons or medulla of mice lacking Mecp2. The results indicate that Mecp2 is required for regulation of BDNF expression by acute intermittent hypoxia in vivo. PMID:22297041

  19. Acute intermittent hypoxia-induced expression of brain-derived neurotrophic factor is disrupted in the brainstem of methyl-CpG-binding protein 2 null mice.

    Science.gov (United States)

    Vermehren-Schmaedick, A; Jenkins, V K; Knopp, S J; Balkowiec, A; Bissonnette, J M

    2012-03-29

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2). One of its targets is the gene encoding brain-derived neurotrophic factor (bdnf). In vitro studies using cultured neurons have produced conflicting results with respect to the role of MeCP2 in BDNF expression. Acute intermittent hypoxia (AIH) induces plasticity in the respiratory system characterized by long-term facilitation of phrenic nerve amplitude. This paradigm induces an increase in BDNF protein. We hypothesized that AIH leads to augmentation of BDNF transcription in respiratory-related areas of the brainstem and that MeCP2 is necessary for this process. Wild-type and mecp2 null (mecp2(-/y)) mice were subjected to three 5-min episodes of exposure to 8% O(2)/4% CO(2)/88% N(2), delivered at 5-min intervals. Normoxia control wild-type and mecp2 null mice were exposed to room air for the total length of time, that is, 30 min. Following a recovery in room air, the pons and medulla were rapidly removed. Expression of BDNF protein and transcripts were determined by ELISA and quantitative PCR, respectively. AIH induced a significant increase in BDNF protein in the pons and medulla, and in mRNA transcript levels in the pons of wild-type animals. In contrast, there were no significant changes in either BDNF protein or transcripts in the pons or medulla of mice lacking MeCP2. The results indicate that MeCP2 is required for regulation of BDNF expression by acute intermittent hypoxia in vivo. PMID:22297041

  20. Glia determine the course of brain-derived neurotrophic factor-mediated dendritogenesis and provide a soluble inhibitory cue to dendritic growth in the brainstem.

    Science.gov (United States)

    Martin, J L; Brown, A L; Balkowiec, A

    2012-04-01

    Cardiorespiratory control neurons in the brainstem nucleus tractus solitarius (NTS) undergo dramatic expansion of dendritic arbors during the early postnatal period, when functional remodeling takes place within the NTS circuitry. However, the underlying molecular mechanisms of morphological maturation of NTS neurons are largely unknown. Our previous studies point to the neurotrophin brain-derived neurotrophic factor (BDNF), which is abundantly expressed by NTS-projecting primary sensory neurons, as a candidate mediator of NTS dendritogenesis. In the current study, we used neonatal rat NTS neurons in vitro to examine the role of BDNF in the dendritic development of neurochemically identified subpopulations of NTS neurons. In the presence of abundant glia, BDNF promoted NTS dendritic outgrowth and complexity, with the magnitude of the BDNF effect dependent on neuronal phenotype. Surprisingly, BDNF switched from promoting to inhibiting NTS dendritogenesis upon glia depletion. Moreover, glia depletion alone led to a significant increase in NTS dendritic outgrowth. Consistent with this result, astrocyte-conditioned medium (ACM), which promoted hippocampal dendritogenesis, inhibited dendritic growth of NTS neurons. The latter effect was abolished by heat-inactivation of ACM, pointing to a diffusible astrocyte-derived negative regulator of NTS dendritic growth. Together, these data demonstrate a role for BDNF in the postnatal development of NTS neurons, and reveal novel effects of glia on this process. Moreover, previously documented dramatic increases in NTS glial proliferation in victims of sudden infant death syndrome (SIDS) underscore the importance of our findings and the need to better understand the role of glia and their interactions with BDNF during NTS circuit maturation. Furthermore, while it has previously been demonstrated that the specific effects of BDNF on dendritic growth are context-dependent, the role of glia in this process is unknown. Thus, our data

  1. Distinction Between Cell Proliferation and Apoptosis Signals Regulated by Brain-Derived Neurotrophic Factor in Human Periodontal Ligament Cells and Gingival Epithelial Cells.

    Science.gov (United States)

    Kashiwai, Kei; Kajiya, Mikihito; Matsuda, Shinji; Ouhara, Kazuhisa; Takeda, Katsuhiro; Takata, Takashi; Kitagawa, Masae; Fujita, Tsuyoshi; Shiba, Hideki; Kurihara, Hidemi

    2016-07-01

    Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo. In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration, was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament (HPL) cells and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro. HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells upregulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. J. Cell. Biochem. 117: 1543-1555, 2016. © 2015 Wiley Periodicals, Inc. PMID:26581032

  2. Title: Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis

    Directory of Open Access Journals (Sweden)

    Gian David Greenberg

    2014-01-01

    Full Text Available Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus, a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF protein but not mRNA in the bed nucleus of the stria terminalis (BNST in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc. The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females.

  3. Associations of Cigarette Smoking and Polymorphisms in Brain-Derived Neurotrophic Factor and Catechol-O-Methyltransferase with Neurocognition in Alcohol Dependent Individuals during Early Abstinence

    Directory of Open Access Journals (Sweden)

    TimothyDurazzo

    2012-10-01

    Full Text Available Chronic cigarette smoking and polymorphisms in brain-derived neurotrophic factor (BDNF and catechol-o-methyltransferase (COMT are associated with neurocognition in normal controls and those with various neuropsychiatric conditions. The influence of these polymorphisms on neurocognition in alcohol dependence is unclear. The goal of this report was to investigate the associations of single nucleotide polymorphisms (SNP in BDNF Val66Met and COMT Val158Met with neurocognition in a treatment-seeking alcohol dependent cohort and determine if neurocognitive differences between non-smokers and smokers previously observed in this cohort persist when controlled for these functional SNPs. Genotyping was conducted on 70 primarily male treatment-seeking alcohol dependent participants (ALC who completed a comprehensive neuropsychological battery after 33 ± 9 days of monitored abstinence. Smoking ALC performed significantly worse than non-smoking ALC on the domains of auditory-verbal and visuospatial learning and memory, cognitive efficiency, general intelligence, processing speed and global neurocognition. In smoking ALC, greater number of years of smoking over lifetime was related to poorer performance on multiple domains. COMT Met homozygotes were superior to Val homozygotes on measures of executive skills and showed trends for higher general intelligence and visuospatial skills, while COMT Val/Met heterozygotes showed significantly better general intelligence than Val homozygotes. COMT Val homozygotes performed better than heterozygotes on auditory-verbal memory. BDNF genotype was not related to any neurocognitive domain. The findings are consistent with studies in normal controls and neuropsychiatric cohorts that observed COMT Met carriers showed better performance on measures of executive skills and general intelligence. Overall, the findings support to the expanding clinical movement to make smoking cessation programs available at the inception of

  4. Structural Studies of Soybean Calmodulin Isoform 4 Bound to the Calmodulin-binding Domain of Tobacco Mitogen-activated Protein Kinase Phosphatase-1 Provide Insights into a Sequential Target Binding Mode*

    OpenAIRE

    Ishida, Hiroaki; Rainaldi, Mario; Vogel, Hans J.

    2009-01-01

    The calcium regulatory protein calmodulin (CaM) binds in a calcium-dependent manner to numerous target proteins. The calmodulin-binding domain (CaMBD) region of Nicotiana tabacum MAPK phosphatase has an amino acid sequence that does not resemble the CaMBD of any other known Ca2+-CaM-binding proteins. Using a unique fusion protein strategy, we have been able to obtain a high resolution solution structure of the complex of soybean Ca2+-CaM4 (SCaM4) and this CaMBD. Complete isotope labeling of b...

  5. Light-regulated root gravitropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog

    Science.gov (United States)

    Lu, Y. T.; Feldman, L. J.

    1997-01-01

    Roots of many species grow downward (orthogravitropism) only when illuminated. Previous work suggests that this is a calcium-regulated response and that both calmodulin and calcium/calmodulin-dependent kinases participate in transducing gravity and light stimuli. A genomic sequence has been obtained for a calcium/calmodulin-dependent kinase homolog (MCK1) expressed in root caps, the site of perception for both light and gravity. This homolog consists of 7265 base pairs and contains 11 exons and 10 introns. Since MCK1 is expressed constitutively in both light and dark, it is unlikely that the light directly affects MCK1 expression, though the activity of the protein may be affected by light. In cultivars showing light-regulated gravitropism, we hypothesize that MCK1, or a homolog, functions in establishing the auxin asymmetry necessary for orthogravitropism.

  6. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Poovaiah, B. W.

    2002-01-01

    Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.

  7. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers

    Science.gov (United States)

    Poovaiah, B. W.; Xia, M.; Liu, Z.; Wang, W.; Yang, T.; Sathyanarayanan, P. V.; Franceschi, V. R.

    1999-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca(2+) and Ca(2+)/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the beta-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by beta-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca(2+) concentration in target cells, thereby controlling developmental events in the anther.

  8. Catalytic properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin

    International Nuclear Information System (INIS)

    Inositol 1,4,5-triphosphate (Ins-1,4,5-P3) is an important second-messenger molecule that mobilizes Ca2+ from intracellular stores in response to the occupancy of receptor by various Ca2+-mobilizing agonists. The fate of Ins-1,4,5-P3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P3 to Ins-1,3,4,5-P4, whereas the latter forms Ins-1,4-P2. Recent studies suggest that Ins-1,3,4,5-P4 might modulate the entry of Ca2+ from an extracellular source. In the current report, the authors describe the partial purification of the 3-kinase from the cytosolic fraction of bovine brain and studies of its catalytic properties. They found that the 3-kinase activity is significantly activated by the Ca2+/calmodulin complex. Therefore, they propose that Ca2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P3 forms a complex with calmodulin, and that the Ca2+/calmodulin complex stimulates the conversion of Ins-1,4,5-P3, and intracellular Ca2+ mobilizer, to Ins-1,3,4,5-P4, an extracellular Ca2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3-32P]Ins-1,3,4,5-P4 and [γ-32P]ATP by thin-layer chromatography. Using this new assay method, they evaluated kinetic parameters (K/sub m/ for ATP = 40 μM, K/sub m/ for Ins-1,4,5-P3 = 0.7 μM, K/sub i/ for ADP = 12 μM) and divalent cation specificity (Mg2+ > > Mn2+ > Ca2+) for the 3-kinase

  9. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses

    OpenAIRE

    Heo, Won Do; Lee, Sang Hyoung; Kim, Min Chul; Kim, Jong Cheol; Chung, Woo Sik; Chun, Hyun Jin; Lee, Kyoung Joo; Park, Chan Young; Park, Hyeong Cheol; Choi, Ji Young; Cho, Moo Je

    1999-01-01

    The Ca2+ signal is essential for the activation of plant defense responses, but downstream components of the signaling pathway are still poorly defined. Here we demonstrate that specific calmodulin (CaM) isoforms are activated by infection or pathogen-derived elicitors and participate in Ca2+-mediated induction of plant disease resistance responses. Soybean CaM (SCaM)-4 and SCaM-5 genes, which encode for divergent CaM isoforms, were induced within 30 min by a fungal elicitor or pathogen, wher...

  10. The Ca2+/Calmodulin-Dependent Protein Kinase Kinase, CaMKK2, Inhibits Preadipocyte Differentiation

    OpenAIRE

    Lin, Fumin; Ribar, Thomas J.; Means, Anthony R.

    2011-01-01

    When fed a standard chow diet, CaMKK2 null mice have increased adiposity and larger adipocytes than do wild-type mice, whereas energy balance is unchanged. Here, we show that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is expressed in preadipocytes, where it functions as an AMP-activated protein kinase (AMPK)α kinase. Acute inhibition or deletion of CaMKK2 in preadipocytes enhances their differentiation into mature adipocytes, which can be reversed by 5-aminoimidazole-4-carboxa...

  11. Role of calcium and calmodulin in reaction of gastric fundus contraction

    Directory of Open Access Journals (Sweden)

    Marta Gajdus

    2011-09-01

    Full Text Available Background:The subject of this study is determination of the influence of calmodulin and calcium on gastric fundus smooth muscle contraction. During experiments, the author tested the influence of a serotonin receptor agonist, serotonin (5-HT, causing smooth muscle contraction.Material/Methods:Testing was conducted on tissues isolated from rat’s stomach. Male Wistar rats with weight between 220 g and 360 g were anesthetized by intraperitoneal injection of urethane (120 mg/kg. The stomach was dissected, and later the gastric fundus was isolated. Tissue was placed in a dish for insulated organs with 20 ml in capacity, filled with Krebs fluid. Results contained in the study are average values ± SE. In order to determine statistical significance, the principles of receptor theory were used (Kenakin modification.Results:According to conducted tests, we can deduce that 8 Br cGMP stops the reaction of gastric fundus smooth muscle contraction induced by serotonin. The use of 8Br-cGMP in the range of concentrations between 10 and 300 µM leads to reduction of maximum effect from 100�0to 46�20Similar changes were obtained after the use of guanylate cyclase activator (CG – YC-1. Curves for the contractile activity of serotonin along with an increase of concentration YC-1 are shifted to the right, and the maximum effect of reaction decreases. Increasing concentrations of flunarizine, a calmodulin antagonist, in a concentration-dependent way blocks binding between calcium and calmodulin, and at the same time leads to the shift of concentration-effect curves for serotonin to the right and a decrease of maximum reaction.Increasing concentrations of ODQ, a guanylate cyclase inhibitor lead to statistically significant shift of the curves to the left, decrease of EC50 value and simultaneous increase of maximum reaction to serotonin.Conclusions:According to conducted testing, serotonin causes gastric fundus smooth muscle contraction dependent on

  12. Regulation of Calcium/Calmodulin-dependent Kinase IV by O-GlcNAc Modification*

    OpenAIRE

    Dias, Wagner B.; Cheung, Win D.; Wang, Zihao; Hart, Gerald W.

    2009-01-01

    Similar to phosphorylation, GlcNAcylation (the addition of O-GlcNAc to Ser(Thr) residues on polypeptides) is an abundant, dynamic, and inducible post-translational modification. GlcNAcylated proteins are crucial in regulating virtually all cellular processes, including signaling, cell cycle, and transcription. Here we show that calcium/calmodulin-dependent kinase IV (CaMKIV) is highly GlcNAcylated in vivo. In addition, we show that upon activation of HEK293 cells, hemagglutinin-tagged CaMKIV ...

  13. Characterization of Novel Calmodulin Binding Domains within IQ Motifs of IQGAP1

    OpenAIRE

    Jang, Deok-Jin; Ban, Byungkwan; Lee, Jin-A

    2011-01-01

    IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM bind...

  14. Calmodulin and S100A1 Protein Interact with N Terminus of TRPM3 Channel

    Czech Academy of Sciences Publication Activity Database

    Holakovská, Blanka; Gryčová, Lenka; Jirků, Michaela; Šulc, Miroslav; Bumba, Ladislav; Teisinger, Jan

    2012-01-01

    Roč. 287, č. 20 (2012), s. 16645-16655. ISSN 0021-9258 R&D Projects: GA ČR(CZ) GAP301/10/1159; GA ČR(CZ) GPP205/10/P308; GA ČR(CZ) GAP207/11/0717; GA ČR(CZ) GD305/03/H148 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : TRPM3 * calmodulin * S100A1 * surface plasmon resonance * fluorescence anisotropy Subject RIV: BO - Biophysics Impact factor: 4.651, year: 2012

  15. Phosphorylation of rat liver heterogeneous nuclear ribonucleoproteins A2 and C can be modulated by calmodulin.

    OpenAIRE

    Bosser, R; Faura, M; Serratosa, J; Renau-Piqueras, J; Pruschy, M; Bachs, O

    1995-01-01

    It was previously reported that the phosphorylation of three proteins of 36, 40 to 42, and 50 kDa by casein kinase 2 is inhibited by calmodulin in nuclear extracts from rat liver cells (R. Bosser, R. Aligué, D. Guerini, N. Agell, E. Carafoli, and O. Bachs, J. Biol. Chem. 268:15477-15483, 1993). By immunoblotting, peptide mapping, and endogenous phosphorylation experiments, the 36- and 40- to 42-kDa proteins have been identified as the A2 and C proteins, respectively, of the heterogeneous nucl...

  16. Protective effect of chronic caffeine intake on gene expression of brain derived neurotrophic factor signaling and the immunoreactivity of glial fibrillary acidic protein and Ki-67 in Alzheimer’s disease

    OpenAIRE

    Ghoneim, Fatma M; Khalaf, Hanaa A; Elsamanoudy, Ayman Z; Salwa M. Abo El-khair; Helaly, Ahmed MN; Mahmoud, El-Hassanin M; Elshafey, Saad H

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive degeneration of the hippocampal and cortical neurons. This study was designed to demonstrate the protective effect of caffeine on gene expression of brain derived neurotrophic factor (BDNF) and its receptor neural receptor protein-tyrosine kinase-β (TrkB) as well as glial fibrillary acidic protein (GFAP) and Ki-67 immunoreactivity in Aluminum chloride (AlCl3) induced animal model of AD. Fifty adult rats included in this...

  17. Postnatal Development of Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Protein Kinase B (TrkB) Receptor Immunoreactivity in Multiple Brain Stem Respiratory-Related Nuclei of the Rat

    OpenAIRE

    LIU, QIULI; Wong-Riley, Margaret T.T.

    2013-01-01

    Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12–13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmis...

  18. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal

    OpenAIRE

    Sun, Wei-Lun; Eisenstein, Sarah A.; Zelek-Molik, Agnieszka; McGinty, Jacqueline F.

    2015-01-01

    Background: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine pri...

  19. Brain-derived neurotrophic factor serum levels in genetically isolated populations: gender-specific association with anxiety disorder subtypes but not with anxiety levels or Val66Met polymorphism

    OpenAIRE

    Carlino, Davide; Francavilla, Ruggiero; Baj, Gabriele; Kulak, Karolina; d’Adamo, Pio; Ulivi, Sheila; Cappellani, Stefania; Gasparini, Paolo; Tongiorgi, Enrico

    2015-01-01

    Anxiety disorders (ADs) are disabling chronic disorders with exaggerated behavioral response to threats. This study was aimed at testing the hypothesis that ADs may be associated with reduced neurotrophic activity, particularly of Brain-derived neurotrophic factor (BDNF), and determining possible effects of genetics on serum BDNF concentrations. In 672 adult subjects from six isolated villages in North-Eastern Italy with high inbreeding, we determined serum BDNF levels and identified subjects...

  20. Retinoic acid inhibits calmodulin binding to human erythrocyte membranes and reduces membrane Ca2(+)-adenosine triphosphatase activity.

    OpenAIRE

    Davis, F B; Smith, T. J.; Deziel, M R; Davis, P J; Blas, S D

    1990-01-01

    Ca2(+)-ATPase activity in human red cell membranes is dependent on the presence of calmodulin. All trans-retinoic acid inhibited human red cell membrane Ca2(+)-ATPase activity in vitro in a concentration-dependent manner (10(-8) to 10(-4) M). In contrast, retinol, retinal, 13-cis-retinoic acid and the benzene ring analogue of retinoic acid did not alter enzyme activity. Purified calmodulin (up to 500 ng/ml, 3 X 10(-8) M) added to red cell membranes, in the presence of inhibitory concentration...

  1. Scandinavian links

    DEFF Research Database (Denmark)

    Matthiessen, Christian Wichmann; Knowles, Richard D.

    The European Round Table of Industrialists identified in the 1980ies 14 missing links in the transportation network of the continent. Three of them were found around the Danish island of Zealand. One link is within the nation, the other two are between nations. One link connects heavy economic ce...

  2. Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana.

    Science.gov (United States)

    Vallone, Rosario; La Verde, Valentina; D'Onofrio, Mariapina; Giorgetti, Alejandro; Dominici, Paola; Astegno, Alessandra

    2016-08-01

    In addition to the well-known Ca(2+) sensor calmodulin, plants possess many calmodulin-like proteins (CMLs) that are predicted to have specific roles in the cell. Herein, we described the biochemical and biophysical characterization of recombinant Arabidopsis thaliana CML14. We applied isothermal titration calorimetry to analyze the energetics of Ca(2+) and Mg(2+) binding to CML14, and nuclear magnetic resonance spectroscopy, together with intrinsic and ANS-based fluorescence, to evaluate the structural effects of metal binding and metal-induced conformational changes. Furthermore, differential scanning calorimetry and limited proteolysis were used to characterize protein thermal and local stability. Our data demonstrate that CML14 binds one Ca(2+) ion with micromolar affinity (Kd ∼ 12 µM) and the presence of 10 mM Mg(2+) decreases the Ca(2+) affinity by ∼5-fold. Although binding of Ca(2+) to CML14 increases protein stability, it does not result in a more hydrophobic protein surface and does not induce the large conformational rearrangement typical of Ca(2+) sensors, but causes only localized structural changes in the unique functional EF-hand. Our data, together with a molecular modelling prediction, provide interesting insights into the biochemical properties of Arabidopsis CML14 and may be useful to direct additional studies aimed at understanding its physiological role. PMID:27124620

  3. Isolation of Hybridomas for Golgi-associated Proteins and a Plant Calmodulin

    Science.gov (United States)

    Kuzmanoff, K. M.; Ray, P. M.

    1985-01-01

    The demonstration of a role for calcium in the mechanism of the gravitropic response indicates a role for calmodulin. Localization studies indicate that plant cell walls have a high content of calmodulin which suggests a regulatory role for CaM in both gravitropic curvature and auxin-induced growth. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the ctivity of Golgi-localized B-1,4-glucan synthase (GS), an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. In order to determine whether auxin stimulates GS activity either by modulation of existing enzyme or induces de novo formation of Golgi glucan synthase, a study was undertaken to isolate and quantitate glucan synthase. This enzyme appears to be an integral protein of the Golgi membrane and has resisted isolation with retention of activity. The production of monoclonal antibody for glucan synthase was undertaken due to the inability to isolate GS by standard detergent/liposome techniques.

  4. Influence of ginsenoside on expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in the medial septum of aged rats

    Institute of Scientific and Technical Information of China (English)

    Liang Zeng; Haihua Zhao; Yongli Lü; Wenbo Dai

    2008-01-01

    BACKGROUND: It has been shown that ginsenoside, the effective component of ginseng, can enhance expression of choline acetyl transferase, as well as brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB), in cholinergic neurons of the basal forebrain.OBJECTIVE: To qualitatively and quantitatively verify the influence of ginsenoside on expression of BDNF and its receptor, TrkB, in the medial septum of aged rats, and to provide a molecular basis for clinical application.DESIGN, TIME AND SETTING: A contrast study, which was performed in the Department of Anatomy, China Medical University, and the Department of Anatomy, Shenyang Medical College between December 2005 and May 2007.MATERIALS: Thirty-five, healthy, female, Sprague Dawley rats were selected for this study. Ginsenoside (81% purity) was provided by Jilin Ji'an Wantai Chinese Medicine Factory; anti-BDNF antibody, anti-TrkB antibody, and their kits were provided by Wuhan Boster Company.METHODS: A total of 35 rats were divided into three groups: young (four months old), aging (26 months old), and ginsenoside. Rats in the ginsenoside group were administered ginsenoside (25mg/kg/d) between 17 months and 26 months.MAIN OUTCOME MEASURES: Immunohistochemistry and in situ hybridization were used to measure expression of BDNF and TrkB in the medial septum of aged rats, and the detected results were expressed as gray values.RESULTS: ①Qualitative detection: using microscopy, degenerative neurons were visible in the medial septum in the aging group. However, neuronal morphology in the ginsenoside group was similar to neurons in the young group.②Quantitative detection: the mean gray value of BDNF-positive and TrkB-positive products in the aging group were significantly higher than in the young group (t=3.346,4.169, P<0.01); however, the mean gray value in the ginsenoside group was significantly lower than in the aging group (t=2.432,2.651, P<0.01).CONCLUSION: Ginsenoside can increase

  5. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    Directory of Open Access Journals (Sweden)

    Kohara Keigo

    2005-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF, which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP was compared with that of nerve growth factor (NGF tagged with yellow fluorescent protein (YFP, to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s. Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites.

  6. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats

    Institute of Scientific and Technical Information of China (English)

    LI Ying; JI Yong-juan; JIANG Hong; LIU De-xiang; ZHANG Qian; FAN Shu-jian; PAN Fang

    2009-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Methods Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Results Age and stress had different effects on the behavior of different aged animals (age: F=6.173, P <0.05, stress: F=6.056, P <0.05). Stress was the main factor affecting sucrose preference (F=123.608, P <0.05). Decreased sucrose preference and suppressed behavior emerged directly following stress, lasting to at least the eighth day after stress in young animals (P <0.05). The older stress rats showed a lower sucrose preference than young stress rats (P <0.05). Older control rats behaved differently from the younger control animals in the OF test, spending more time in the central square (P <0.05), exhibiting fewer vertical movements (P <0.05) and less grooming (P <0.05). Following exposure to stress, older-aged rats showed no obvious changes in vertical movement and grooming. This indicates that aged rats were in an unexcited state before the stress period, and responded less to stressful stimuli than younger rats. There was significantly lower BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress

  7. Effects of electroconvulsive therapy and repetitive transcranial magnetic stimulation on serum brain-derived neurotrophic factor levels in patients with depression

    Directory of Open Access Journals (Sweden)

    Laura eGedge

    2012-02-01

    Full Text Available Objective: Brain-derived neurotrophic factor (BDNF levels are decreased in individuals with depression and increase following antidepressant treatment. The objective of this study is to compare pre- and post-treatment serum BDNF levels in patients with drug-resistant major depressive disorder (MDD who received either electroconvulsive therapy (ECT or repetitive transcranial magnetic stimulation (rTMS. It is hypothesized that non-pharmacological treatments also increase serum BDNF levels.Methods: This was a prospective, single-blind study comparing pre- and post-treatment serum BDNF levels of twenty-nine patients with drug-resistant MDD who received ECT or rTMS treatment. Serum BDNF levels were measured one week prior to and one week after treatment using the sandwich ELISA technique. Depression severity was measured one week before and one week after treatment using the Hamilton Depression Rating Scale. Two-sided normal distribution paired t-test analysis was used to compare pre- and post-treatment BDNF concentration and illness severity. Bivariate correlations using Pearson's coefficient assessed the relationship between post-treatment BDNF levels and post-treatment depression severity.Results: There was no significant difference in serum BDNF levels before and after ECT, although concentrations tended to increase from a baseline mean of 9.95 ng/ml to 12.29 ng/ml after treatment (p= 0.137. Treatment with rTMS did not significantly alter BDNF concentrations (p= 0.282. Depression severity significantly decreased following both ECT (p= 0.003 and rTMS (p< 0.001. Post-treatment BDNF concentration was not significantly correlated with post-treatment depression severity in patients who received either ECT (r= -0.133, p= 0.697 or rTMS (r= 0.374, p= 0.126.Conclusion: This study suggests that ECT and rTMS may not exert their clinical effects by altering serum BDNF levels. Serum BDNF concentration may not be a biomarker of ECT or rTMS treatment response.

  8. Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers

    Directory of Open Access Journals (Sweden)

    Sulejczak Dorota

    2009-12-01

    Full Text Available Abstract Background It has been postulated that exercise-induced activation of brain-derived neurotrophic factor (BDNF may account for improvement of stepping ability in animals after complete spinal cord transection. As we have shown previously, treadmill locomotor exercise leads to up-regulation of BDNF protein and mRNA in the entire neuronal network of intact spinal cord. The questions arise: (i how the treadmill locomotor training, supplemented with tail stimulation, affects the expression of molecular correlates of synaptic plasticity in spinal rats, and (ii if a response is related to BDNF protein level and distribution. We investigated the effect of training in rats spinalized at low thoracic segments on the level and distribution of BDNF immunoreactivity (IR in ventral quadrants of the lumbar segments, in conjunction with markers of presynaptic terminals, synaptophysin and synaptic zinc. Results Training improved hindlimb stepping in spinal animals evaluated with modified Basso-Beattie-Bresnahan scale. Grades of spinal trained animals ranged between 5 and 11, whereas those of spinal were between 2 and 4. Functional improvement was associated with changes in presynaptic markers and BDNF distribution. Six weeks after transection, synaptophysin IR was reduced by 18% around the large neurons of lamina IX and training elevated its expression by over 30%. The level of synaptic zinc staining in the ventral horn was unaltered, whereas in ventral funiculi it was decreased by 26% postlesion and tended to normalize after the training. Overall BDNF IR levels in the ventral horn, which were higher by 22% postlesion, were unchanged after the training. However, training modified distribution of BDNF in the processes with its predominance in the longer and thicker ones. It also caused selective up-regulation of BDNF in two classes of cells (soma ranging between 100-400 μm2 and over 1000 μm2 of the ventrolateral and laterodorsal motor nuclei

  9. Ginsenoside Rg1 changes brain-derived neurotrophic factor expression in the facial nucleus of rats after ovariectomy:A semiquantitative analysis

    Institute of Scientific and Technical Information of China (English)

    Cuiying Zhou; Wenlong Luo; Dong Wang

    2009-01-01

    BACKGROUND: Estrogen is neuroprotective, but long-term estrogen treatment can induce side effects such as breast carcinoma, endometrial cancer, and stroke. However, phytoestrogen is neuroprotective without these side effects.OBJECTIVE: To study the effects of Ginsenoside Rg1 on facial neurons and brain-derived neurotrophic factor (BDNF) expression in the facial nucleus in ovariectomized rats.DESIGN, TIME AND SETTING: The randomized, controlled animal experiments were performed at the Ultrasonic Institute, Second Affiliated Hospital, Chongqing Medical University, China, from September 2007 to September 2008.MATERIALS: Ginsenoside Rg1 (Sigma, USA), rabbit anti-rat BDNF, Bcl-2, Bax antibodies, biotin-labeled goat anti-rabbit IgG (Boster, China), and a TUNEL kit (Roche, Germany) were used in this study.METHODS: A total of 48 adult Sprague Dawley rats undergoing ovariectomy were randomly assigned into sham operation (n=8), model (n=20), and Ginsenoside Rg1 (n=20) groups. Facial nerve damage was induced by bilateral clamping of the facial nerve trunk. The bilateral facial nerve trunk was exposed in the sham operation group, with no clamping. Rats in the Ginsenoside Rg1 group were intraperitoneally injected with 10 mg/kg per day Ginsenoside Rg1; other groups received 2 mL saline, once a day, for 14 days.MAIN OUTCOME MEASURES: Morphologic changes in neurons of the facial nucleus were observed following hematoxylin-eosin staining. Neuronal apoptosis was detected by TUNEL. Changes in ultrastructure of the facial nerve fibers were observed with a transmission electron microscope. Expression of BDNF, Bcl-2, and Bax protein was quantified by semiquantitative immunohistochemistry.RESULTS: At 3-14 days following facial nerve damage, Ginsenoside Rg1 increased BDNF expression and the number of regenerated nerve fibers, and produced thicker myelin sheaths (P< 0.05). Ginsenoside Rg1 also gradually increased Bcl-2 protein expression and decreased Bax protein expression (P < 0.05). By

  10. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions

    OpenAIRE

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G.; Módos, Károly; Kardos, József; Liliom, Károly

    2010-01-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic,...

  11. SPLICE VARIANT SPECIFIC UPREGULATIONOF CA+2/CALMODULIN DEPENDENT PROTEIN KINASE 1G BY PYRETHROID INSECTICIDES IN VIVO.

    Science.gov (United States)

    Pyrethroid insecticides induce neurotoxicity in mammals by interfering with ion channel function in excitable neuronal membranes. Previous work demonstrated dose-dependent increases in expression of Ca+2/calmodulin dependent protein kinase (Camk1g) mRNA following acute deltameth...

  12. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed...

  13. Intracellular transduction in the regulation of pheromone biosynthesis of the silkworm, Bombyx mori: suggested involvement of calmodulin and phosphoprotein phosphatase.

    Science.gov (United States)

    Matsumoto, S; Ozawa, R; Nagamine, T; Kim, G H; Uchiumi, K; Shono, T; Mitsui, T

    1995-03-01

    We have tested the effects of chemicals on bombykol production in vitro in the silkworm, Bombyx mori, to probe the biochemical steps as well as underlying mechanisms regulated by PBAN. These results suggest the involvement of calmodulin and phosphoprotein phosphatase in the intracellular signal transduction of PBAN action. PMID:7766202

  14. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    Science.gov (United States)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  15. Proteomic Analysis of Calcium- and Phosphorylation-dependentCalmodulin Complexes in Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Deok-Jin; Wang, Daojing

    2006-05-26

    Protein conformational changes due to cofactor binding (e.g. metal ions, heme) and/or posttranslational modifications (e.g. phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium (Ca{sup 2+}) signaling and homeostasis. No systematic approach on the identification of phosphorylation-dependent Ca{sup 2+}/CaM binding proteins has been published. Herein, we report a proteome-wide study of phosphorylation-dependent CaM binding proteins from mammalian cells. This method, termed 'Dynamic Phosphoprotein Complex Trapping', 'DPPC Trapping' for short, utilizes a combination of in vivo and in vitro assays. The basic strategy is to drastically shift the equilibrium towards endogenous phosphorylation of Ser, Thr, and Tyr at the global scale by inhibiting corresponding phosphatases in vivo. The phosphorylation-dependent calmodulin-binding proteins are then trapped in vitro in a Ca{sup 2+}-dependent manner by CaM-Sepharose chromatography. Finally, the isolated calmodulin-binding proteins are separated by SDS-PAGE and identified by LC/MS/MS. In parallel, the phosphorylation-dependent binding is visualized by silver staining and/or Western blotting. Using this method, we selectively identified over 120 CaM-associated proteins including many previously uncharacterized. We verified ubiquitin-protein ligase EDD1, inositol 1, 4, 5-triphosphate receptor type 1 (IP{sub 3}R1), and ATP-dependent RNA helicase DEAD box protein 3 (DDX3), as phosphorylation-dependent CaM binding proteins. To demonstrate the utilities of our method in understanding biological pathways, we showed that pSer/Thr of IP{sub 3}R1 in vivo by staurosporine-sensitive kinase(s), but not by PKA/PKG/PKC, significantly reduced the affinity of its Ca{sup 2+}-dependent CaM binding. However, pSer/Thr of IP{sub 3}R1 did not substantially affect its Ca{sup 2+}-independent CaM binding. We further showed that phosphatase PP1, but not PP2A or PP2B

  16. Facial nucleus up-regulation of brain-derived neurotrophic factor mRNA following electroacupuncture treatment in a rabbit model of facial nerve injury

    Institute of Scientific and Technical Information of China (English)

    Hong Gao; Bangyu Ju; Guohua Jiang

    2008-01-01

    BACKGROUND: The effect of acupuncture treatment on peripheral facial nerve injury is generally accepted. However, the mechanisms of action remain poorly understood. OBJECTIVE: To validate the effect of acupoint electro-stimulation on brain-derived neurotrophic factor (BDNF) mRNA expression in the facial nucleus of rabbits with facial nerve injury, with the hypothesis that acupuncture treatment efficacy is related to BDNE DESIGN, TIME AND SETTING: Peripheral facial nerve injury, in situ hybridization, and randomized, controlled, animal trial. The experiment was performed at the Laboratory of Anatomy, Heilongjiang University of Chinese Medicine from March to September 2005. MATERIALS: A total of 120 healthy, adult, Japanese rabbits, with an equal number of males and females were selected. Models of peripheral facial nerve injury were established using the facial nerve pressing method. METHODS: The rabbits were randomly divided into five groups (n = 24): sham operation, an incision to the left facial skin, followed by suture; model, no treatment following facial nerve model establishment; western medicine, 10 mg vitamin B1, 50 μg vitamin B12, and dexamethasone (2 mg/d, reduced to half every 7 days) intramuscular injection starting with the first day following lesion, once per day; traditional acupuncture, acupuncture at Yifeng, Quanliao, Dicang, Jiache, Sibai, and Yangbai acupoints using a acupuncture needle with needle twirling every 10 minutes, followed by needle retention for 30 minutes, for successive 5 days; electroacupuncture, similar to the traditional acupuncture group, the Yifeng (negative electrode), Jiache (positive electrode), Dicang (negative electrode), and Sibai (positive electrode) points were connected to an universal pulse electro-therapeutic apparatus for 30 minutes per day, with disperse-dense waves for successive 5 days, and resting for 2 days. MAIN OUTCOME MEASURES: Left hemisphere brain stem tissues were harvested on post-operative days 7, 14

  17. Changes in brain-derived neurotrophic factor expression after transplanting microencapsulated sciatic nerve cells of rabbits into injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Changes of brain-derived neurotrophic factor (BDNF) expression reflect function of nerve cells; meanwhile, they play a significant role in researching interventions on plerosis of nerve injury.OBJECTIVE: To observe and compare the effects on changes of BDNF expression in rats with spinal cord injury between microencapsulated sciatic nerve cells of rabbits and only transplanting sciatic nerve cells of rabbits.DESIGN: Randomized controlled animal study.SETTING: Medical School of Jiujiang College.MATERIALS: The experiment was carried out in the Medical Science Researching Center, Jiujiang College from May 2004 to May 2006. A total of 90 healthy adult SD rats, weighing 250 - 300 g, of either gender; and 10 rabbits, weighing 2.0 - 2.5 kg, of either gender, were provided by Jiangxi Experimental Animal Center.METHODS: Sciatic nerve tissue of rabbits was separated to make cell suspension. After centrifugation,suspension was mixed with 15 g/L alginate saline solution and ejaculated to 20 mmol/L barium chloride saline solution by double-cavity ejaculator. The obtained cell microcapsules were suspended in saline. Rats were randomly divided into microencapsulated group, only suspension group, and only injured group with 30 animals in each group. After anesthesia, T10 spinous process and vertebra lamina of rats in the former two groups were exposed. Spinal cord tissue in 2-mm length was removed from rats by spinal cord right hemi-section. The gelatin sponges with the size of 2 mm × 2 mm × 2 mm were grafted as filing cage,and absorbed 10 μμ L microencapsulated sciatic nerve cells of rabbit in the microencapsulated group and 10 μ L sciatic nerve cells of rabbits in the only suspension group; respectively. No graft was placed in the only injured group.MAIN OUTCOME MEASURES: On the 1st, 3rd, 7th, 14th and 28th days after operation,immunohistochemistry (SABC technique) was used to detect distribution and amount of positive-reactive neurons in BDNF of spinal cord

  18. Interventional effect of laser acupoint radiation on the expression of Nissl body and brain-derived neurotrophic factor in newborn rat models with ischemic/hypoxic cerebral injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:Some researches report that He-Ne laser can activate function of erythrocytes and increase content of blood and oxygen via bio-stimulating effect;therefore,it suspects that laser radiation at Baihui and Dazhui can partially increase blood circulation for oxygen-supplying content of brain and improve functional status of neurons.OBJECTIVE:To verify the effects of laser radiation at Baihui and Dazhui on the expression of Nissl body of brain tissue neurons and brain-derived neurotrophic factor (BDNF) in newborn rats with ischemic/hypoxic cerebral injury.DESIGN:Randomized controlled animal study.SETTING:Department of Neurological Histochemistry,Xianning University.MATERIALS:Forty Wistar rats of 7 - 8 days old,weighing 15 - 20 g and of both genders,were selected from Wuhan Experimental Animal Center.All the rats were randomly divided into sham operation group (n =8),model group (n =16) and radiation group (n =16).The experimental animals were disposed according to ethical criteria.BDNF kit was provided by Wuhan Boster Bioengineering Co.,Ltd.METHODS:The experiment was carried out in the Department of Neurological Histochemistry,Xianning University from April 2005 to October 2006.Rats in the radiation group and model group were performed with ligation of left common carotid artery,recovered at room temperature for 1-6 days,maintained in self-made hypoxic cabin under normal pressure and injected mixture gas (0.05 volume fraction of O2 and 0.92 volume fraction of N2) for 2 hours.In addition,rats in the sham operation group were treated with separation of left common carotid artery but not ligation and hypoxia.Rats in the model group were not given any treatment;while,rats in the radiation group were exposed with He-Ne laser of 63.28 nm in the wave length at Baihui and Dazhui acupoints on the second day after ischemia-hypoxia.The radiation was given for 10 minutes per day and once a day.Ten days were regarded as a course and the rats were exposed for 2 courses in

  19. Serum levels of brain-derived neurotrophic factor in acute and posttraumatic stress disorder: a case report study Nível sérico do fator neurotrófico derivado do cérebro no transtorno de estresse agudo e no transtorno de estresse pós-traumático: relato de casos

    OpenAIRE

    Simone Hauck; Fabiano Gomes; Érico de Moura Silveira Júnior; Ellen Almeida; Marianne Possa; Lúcia Helena Freitas Ceitlin

    2009-01-01

    OBJECTIVE: The aim of this study was to evaluate brain-derived neurotrophic factor levels in two patients, one with posttraumatic stress disorder and one with acute stress disorder, before and after treatment, and to compare those levels to those of healthy controls. METHOD: Brain-derived neurotrophic factor level, Davidson Trauma Scale, Beck Depression Inventory, Global Assessment of Functioning, and Clinical Global Impression were assessed before and after 6 weeks of treatment. RESULTS: Bra...

  20. Detection of calmodulin binding protein at 170 KDA in BALB, AKR, DON and chicken granulosa cells

    International Nuclear Information System (INIS)

    Calmodulin (CAM) has been shown to bind to the epidermal growth factor (EGF) receptor (170 kDa) and is phosphorylated in a EGF dependent manner in the A431 human epidermoid carcinoma cells. In the present study, they report 125I-CAM binding to a 170 kDa protein detected in cell membrane vesicles of Balb/3T3, AKR, DON and chicken granulosa cells. Purified plasma membranes from these cells were resolved via electrophoresis (without heat denaturation) and electroblotted onto nictrocellulose paper. Upon hybridizing against 125I-CAM, a distinct autoradiographic band occurred at 170 kDa for all the cells lines under study. The binding of CAM is specific and can be displaced with the addition of excess unlabeled CAM. The result suggest that 125I-CAM may bind to the 170 kDa EGF receptor in BALB, AKR, DON and chicken granulosa cells

  1. Immunohistochemical locali- zation of Ca2+/calmodulin- dependent kinase in tobacco

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The existence of Ca2+/calmodulin-dependent kinase (CaM kinase, CaMK) in tobacco is verified immuno- logically and its distribution in different tissues of tobacco is studied. It has been demonstrated that CaMK is mainly distributed in early developing anthers, developing ovules and embryos, lateral root primordium, apical meristem and leaf primordium of buds and mesophyll cells and developing vascular bundles of leaves. There is enormous CaM kinase distributed in leaf epidermis fair cells and guard cells of stomas too. Little kinase is found in mature stem or root cells. The distribution properties of CaM kinase in tobacco are consistent with those of CaM, suggesting that there exists the Ca2+ signal transduction pathway mediated by CaM kinase in tobacco and it plays an important role in the plant growth and development.

  2. Assembly and Calcium Binding Properties of Quantum Dot-Calmodulin Calcium Sensor.

    Science.gov (United States)

    Eun, Su-yong; Nguyen-ta, Kim; Yoo, Hoon; Silva, Gabriel A; Kim, Soon-jong

    2016-02-01

    We have developed the first nanoengineered quantum dot molecular complex designed to measure changes of calcium ion (Ca2+) concentration at high spatial and temporal resolutions in real time. The sensor is ratiometric and composed of three components: a quantum dot (QD) emitting at 620 nm as a fluorescence donor, an organic dye (Alexa Fluor 647) as a fluorescence acceptor, and a calmodulin-M13 (CaM-M13) protein part as a calcium sensing component. In this work, we have determined the maximal number of CaM-M13 required for saturating a single QD particle to be approximately 16. The dissociation constant, Kd of the QD-based calcium ion sensor was also estimated to be around 30 microM. PMID:27433729

  3. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

    2010-08-06

    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  4. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    International Nuclear Information System (INIS)

    Highlights: → Both Ca++-Calmodulin (CaM) and Ca++-free CaM bind to the C-terminal region of Nav1.1. → Ca++ and CaM have both opposite and convergent effects on INav1.1. → Ca++-CaM modulates INav1.1 amplitude. → CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. → Ca++ alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca++ depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca++ could bind the Nav1.1 C-terminal region with micromolar affinity.

  5. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  6. Calmodulin of the tropical sea cucumber: Gene structure, inducible expression and contribution to nitric oxide production and pathogen clearance during immune response.

    Science.gov (United States)

    Chen, Ting; Ren, Chunhua; Li, Wuhu; Jiang, Xiao; Xia, Jianjun; Wong, Nai-Kei; Hu, Chaoqun

    2015-08-01

    Calmodulin (CaM) is an essential second messenger protein that transduces calcium signals by binding calcium ions (Ca(2+)) and modulating its interactions with various target proteins. In contrast to vertebrates, where CaM is well established as a cofactor for Ca(2+)-dependent physiological and cellular functions including host defense, there is a paucity of understanding on CaM in invertebrates (such as echinoderms) in response to immune challenge or microbial infections. In this study, we obtained and described the gene sequence of CaM from the tropical sea cucumber Stichopus monotuberculatus, a promising yet poorly characterized aquacultural species. mRNA expression of StmCaM could be detected in the intestine and coelomic fluid after Vibrio alginolyticus injection. Transcriptional and translational expression of StmCaM was inducible in nature, as evidenced by the expression patterns in primary coelomocytes following Vibrio challenge. This response could be mimicked by the Vibrio cells membrane components or lipopolysaccharides (LPS), and blocked by co-treatment of the LPS-neutralizing agent polymyxin B (PMB). Furthermore, inhibition of CaM activity by incubation with its inhibitor trifluoroperazine dihydrochloride (TFP) blunted the production of Vibrio-induced nitric oxide (NO) and augmented the survival of invading Vibrio in coelomocytes. Collectively, our study here supplied the first evidence for echinoderm CaM participation in innate immunity, and provided a functional link between CaM expression and antibacterial NO production in sea cucumber. PMID:25913576

  7. P2X4-receptor mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation

    OpenAIRE

    Trang, Tuan; Beggs, Simon; Wan, Xiang; Salter, Michael W

    2009-01-01

    Microglia in the dorsal horn of the spinal cord are increasingly recognized as being crucial in the pathogenesis of pain hypersensitivity following injury to a peripheral nerve. It is known that P2X4 purinoceptors (P2X4Rs) cause the release of brain-derived neurotrophic factor (BDNF) from microglia, which is necessary for maintaining pain hypersensitivity after nerve injury. However, there is a critical gap in understanding how activation of microglial P2X4Rs leads to the release of BDNF. Her...

  8. Link Analysis

    Science.gov (United States)

    Donoho, Steve

    Link analysis is a collection of techniques that operate on data that can be represented as nodes and links. This chapter surveys a variety of techniques including subgraph matching, finding cliques and K-plexes, maximizing spread of influence, visualization, finding hubs and authorities, and combining with traditional techniques (classification, clustering, etc). It also surveys applications including social network analysis, viral marketing, Internet search, fraud detection, and crime prevention.

  9. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3.

    Science.gov (United States)

    Qiu, Yongjian; Xi, Jing; Du, Liqun; Suttle, Jeffrey C; Poovaiah, B W

    2012-05-01

    Calcium/calmodulin (Ca(2+)/CaM) has long been considered a crucial component in wound signaling pathway. However, very few Ca(2+)/CaM-binding proteins have been identified which regulate plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca(2+)/CaM-binding transcription factors designated as AtSRs (also known as AtCAMTAs) can respond differentially to wounding stress. Further studies revealed that AtSR1/CAMTA3 is a negative regulator of plant defense, and Ca(2+)/CaM-binding to AtSR1 is indispensable for the suppression of salicylic acid (SA) accumulation and disease resistance. Here we report that Ca(2+)/CaM-binding is also critical for AtSR1-mediated herbivore-induced wound response. Interestingly, atsr1 mutant plants are more susceptible to herbivore attack than wild-type plants. Complementation of atsr1 mutant plants by overexpressing wild-type AtSR1 protein can effectively restore plant resistance to herbivore attack. However, when mutants of AtSR1 with impaired CaM-binding ability were overexpressed in atsr1 mutant plants, plant resistance to herbivore attack was not restored, suggesting a key role for Ca(2+)/CaM-binding in wound signaling. Furthermore, it was observed that elevated SA levels in atsr1 mutant plants have a negative impact on both basal and induced biosynthesis of jasmonates (JA). These results revealed that Ca(2+)/CaM-mediated signaling regulates plant response to herbivore attack/wounding by modulating the SA-JA crosstalk through AtSR1. PMID:22371088

  10. 2,5-hexanedione (HD) treatment alters calmodulin, Ca2+/calmodulin-dependent protein kinase II, and protein kinase C in rats' nerve tissues

    International Nuclear Information System (INIS)

    Calcium-dependent mechanisms, particularly those mediated by Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), have been implicated in neurotoxicant-induced neuropathy. However, it is unknown whether similar mechanisms exist in 2,5-hexanedione (HD)-induced neuropathy. For that, we investigated the changes of CaM, CaMKII, protein kinase C (PKC) and polymerization ratios (PRs) of NF-L, NF-M and NF-H in cerebral cortex (CC, including total cortex and some gray), spinal cord (SC) and sciatic nerve (SN) of rats treated with HD at a dosage of 1.75 or 3.50 mmol/kg for 8 weeks (five times per week). The results showed that CaM contents in CC, SC and SN were significantly increased, which indicated elevation of Ca2+ concentrations in nerve tissues. CaMKII contents and activities were also increased in CC and were positively correlated with gait abnormality, but it could not be found in SC and SN. The increases of PKC contents and activities were also observed in SN and were positively correlated with gait abnormality. Except for that of NF-M in CC, the PRs of NF-L, NF-M and NF-H were also elevated in nerve tissues, which was consistent with the activation of protein kinases. The results suggested that CaMKII might be partly (in CC but not in SC and SN) involved in HD-induced neuropathy. CaMKII and PKC might mediate the HD neurotoxicity by altering the NF phosphorylation status and PRs

  11. Neutron and x-ray scattering studies of the interactions between Ca{sup 2+}-binding proteins and their regulatory targets: Comparisons of troponin C and calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Olah, G.A.

    1993-11-01

    The regulatory proteins calmodulin and troponin C share a strikingly unusual overall structure. Their crystal structures show each protein consists of two structurally homologous globular domains connected by an extended, solvent exposed alpha-helix of = 8 turns. Calmodulin regulates a variety of enzymes that show remarkable functional and structural diversity. This diversity extends to the amino acid sequences of the calmodulin-binding domains in the target enzymes. In contrast with calodulin, troponin C appears to have a single very specialized function. It is an integral part of the troponin complex, and Ca{sup 2+} binding to troponin c results in the release of the inhibitory function of troponin I, which eventually leads to actin-binding to myosin and the triggering of muscle contraction. Small-angle scattering has been particularly useful for studying the dumbbell shaped proteins because the technique is very sensitive to changes in the relative dispositions of the two globular domains. Small-angle scattering, using x-rays or neutrons, gives information on the overall shapes of proteins in solution. Small-angle scattering studies of calmodulin and its complexes with calmodulin-binding domains from various target enzymes have played an important role in helping us understand the functional role of its unusual solvent exposed helix. Likewise, small-angle scattering has been used to study troponin C with various peptides, to shed light on the similarities and differences between calmodulin and troponin C.

  12. Brain-derived neurotrophic factors increase the proliferation and differentiation of endogenous neural stem cells in mouse models of cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Dawei Zang; Juan Liu; Xianhua Zuo; Surindar Cheema

    2007-01-01

    BACKGROUND: It has been confirmed that brain-derived neurotrophic factor (BDNF) can promote the proliferation of neural stem cells (NSCs) and protect neuron-like cells in vitro. However, its effect on endogenous NSCs in vivo is still unclear.OBJECTIVE: To evaluate whether BDNF can induce the endogenous NSCs to proliferate and differentiate into the neurons in the mice model of cerebral infarction.DESIGN: A synchronal controlled observation.SETTINGS: Department of Neurology, Microbiology Division of the Department of Laboratory, Tianjin First Central Hospital; Howard Florey Institute, Medical College, the University of Melbourne.MATERIALS: Twenty-four pure breed C57BL/6J mice at the age of 10 weeks old (12 males and 12 females)were divided into saline control group and BDNF-treated group, 6 males and 6 females in each group.METHODS: The experiments were performed at the University of Melbourne from July 2004 to February 2005. ① The left middle cerebral artery (MCA) was ligated in both groups to establish models of cerebral infarction and the Matsushita measuring method was used to monitor the blood flow of the lesioned region supplied by MCA. 75% reduction of blood flow should be reached in the lesioned region. ② At 24 hours after infarction, mice in the BDNF-treated group were administrated with BDNF, which was slowly delivered using an ALZET osmium pump design. BDNF was dissolved in saline at the dosage of 500 mg/kg and injected into the pump, which could release the solution consistently in the following 28 days. The mice in the saline control group accepted the same volume of saline at 24 hours after infarction. ③ The Rotarod function test began at 1 week preoperatively, the time stayed on Rotarod was recorded. The mice were tested once a day till the end of the experiment. At 4 weeks post cerebral infarction, double labeling of Nestin and GFAP, BⅢ tubulin and CNPase immunostaining was performed to observe the differentiation directions of the re

  13. Operative links

    DEFF Research Database (Denmark)

    Wistoft, Karen

    2010-01-01

    as networks: second, a semantic perspective on discourses and concepts of health, and, third, a health pedagogical perspective on participation, intervention, and roles. This paper argues for the importance of 'operative links' between different levels in health strategies. It is proposed that such......The article combines a public management perspective with a pedagogical perspective on health promotion. Our aim is to look into recent reforms in Denmark on health promotion in order to see how managerial ideas have been combined with welfare professional ideals concerning broad, positive and...... links are supported by network structures, shared semantics and situated pedagogical means of intervention....

  14. Distinct Properties of \\(Ca^{2+}\\)-Calmodulin Binding to N- and C-Terminal Regulatory Regions of the TRPV1 Channel

    OpenAIRE

    Gaudet, Rachelle; Lau, Sze-Yi; Procko, Erik

    2012-01-01

    Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TR...

  15. Molecular determinants for cardiovascular TRPC6 channel regulation by Ca2+/calmodulin-dependent kinase II

    DEFF Research Database (Denmark)

    Shi, Juan; Geshi, Naomi; Takahashi, Shinichi;

    2013-01-01

    The molecular mechanism underlying Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII)-mediated regulation of the mouse transient receptor potential channel TRPC6 was explored by chimera, deletion and site-directed mutagenesis approaches. Induction of currents (ICCh) in TRPC6-expressing HEK293 cel...... essential for CaMKII-mediated regulation of TRPC6 channels. This mechanism may be of physiological significance in a native environment such as in vascular smooth muscle cells....

  16. Dendritic spine changes in the development of alcohol addiction regulated by α-calcium/calmodulin-dependent protein kinase II

    OpenAIRE

    Zofia Mijakowska

    2014-01-01

    Introduction Alcohol has many adverse effects on the brain. Among them are dendritic spine morphology alterations, which are believed to be the basis of alcohol addiction. Autophosphorylation of α-calcium/calmodulin-dependent protein kinase II (αCaMKII) has been shown to regulate spine morphology in vitro. Here we show that αCaMKII can also regulate addiction related behaviour and dendritic spine morphology changes caused by alcohol consumption in vivo. Method 12 αCaMKII-autophosphorylatio...

  17. Simulation of Ca-Calmodulin-Dependent Protein Kinase II on Rabbit Ventricular Myocyte Ion Currents and Action Potentials

    OpenAIRE

    Grandi, Eleonora; Puglisi, Jose L.; Wagner, Stefan; Maier, Lars S.; Severi, Stefano; Bers, Donald M.

    2007-01-01

    Ca-calmodulin-dependent protein kinase II (CaMKII) was recently shown to alter Na+ channel gating and recapitulate a human Na+ channel genetic mutation that causes an unusual combined arrhythmogenic phenotype in patients: simultaneous long QT syndrome and Brugada syndrome. CaMKII is upregulated in heart failure where arrhythmias are common, and CaMKII inhibition can reduce arrhythmias. Thus, CaMKII-dependent channel modulation may contribute to acquired arrhythmic disease. We developed a Mark...

  18. Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis.

    OpenAIRE

    Glaser, P; Elmaoglou-Lazaridou, A; Krin, E.; Ladant, D.; Bârzu, O; Danchin, A

    1989-01-01

    In order to identify molecular features of the calmodulin (CaM) activated adenylate cyclase of Bordetella pertussis, a truncated cya gene was fused after the 459th codon in frame with the alpha-lacZ' gene fragment and expressed in Escherichia coli. The recombinant, 604 residue long protein was purified to homogeneity by ion-exchange and affinity chromatography. The kinetic parameters of the recombinant protein are very similar to that of adenylate cyclase purified from B.pertussis culture sup...

  19. Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Cav1.3 channels

    OpenAIRE

    Tadross, Michael R.; Johny, Manu Ben; Yue, David T.

    2010-01-01

    Ca2+/calmodulin- and voltage-dependent inactivation (CDI and VDI) comprise vital prototypes of Ca2+ channel modulation, rich with biological consequences. Although the events initiating CDI and VDI are known, their downstream mechanisms have eluded consensus. Competing proposals include hinged-lid occlusion of channels, selectivity filter collapse, and allosteric inhibition of the activation gate. Here, novel theory predicts that perturbations of channel activation should alter inactivation i...

  20. Ocular dominance plasticity is stably maintained in the absence of α calcium calmodulin kinase II (αCaMKII) autophosphorylation

    OpenAIRE

    Sharif A Taha; Stryker, Michael P.

    2005-01-01

    The molecule α calcium calmodulin kinase II (αCaMKII) is known to play a fundamental role in the induction of many forms of synaptic plasticity. A major theory of αCaMKII function proposes that autophosphorylation of the molecule mediates not only the induction but also the maintenance of synaptic plasticity. To test this hypothesis, we assessed ocular dominance plasticity in genetically engineered mice that carry a mutation preventing autophosphorylation of αCaMKII. These mutant mice are def...

  1. Intracellular translocation of calmodulin and Ca2+/calmodulin-dependent protein kinase II during the development of hypertrophy in neonatal cardiomyocytes

    International Nuclear Information System (INIS)

    We have recently shown that stimulation of cultured neonatal cardiomyocytes with endothelin-1 (ET-1) first produces conformational disorder within the ryanodine receptor (RyR2) and diastolic Ca2+ leak from the sarcoplasmic reticulum (SR), then develops hypertrophy (HT) in the cardiomyocytes (Hamada et al., 2009 ). The present paper addresses the following question. By what mechanism does crosstalk between defective operation of RyR2 and activation of the HT gene program occur? Here we show that the immuno-stain of calmodulin (CaM) is localized chiefly in the cytoplasmic area in the control cells; whereas, in the ET-1-treated/hypertrophied cells, major immuno-staining is localized in the nuclear region. In addition, fluorescently labeled CaM that has been introduced into the cardiomyocytes using the BioPORTER system moves from the cytoplasm to the nucleus with the development of HT. The immuno-confocal imaging of Ca2+/CaM-dependent protein kinase II (CaMKII) also shows cytoplasm-to-nucleus shift of the immuno-staining pattern in the hypertrophied cells. In an early phase of hypertrophic growth, the frequency of spontaneous Ca2+ transients increases, which accompanies with cytoplasm-to-nucleus translocation of CaM. In a later phase of hypertrophic growth, further increase in the frequency of spontaneous Ca2+ transients results in the appearance of trains of Ca2+ spikes, which accompanies with nuclear translocation of CaMKII. The cardio-protective reagent dantrolene (the reagent that corrects the de-stabilized inter-domain interaction within the RyR2 to a normal mode) ameliorates aberrant intracellular Ca2+ events and prevents nuclear translocation of both CaM and CaMKII, then prevents the development of HT. These results suggest that translocation of CaM and CaMKII from the cytoplasm to the nucleus serves as messengers to transmit the pathogenic signal elicited in the surface membrane and in the RyR2 to the nuclear transcriptional sites to activate HT program.

  2. Isolation and characterization of a novel calmodulin-binding protein from potato

    Science.gov (United States)

    Reddy, Anireddy S N.; Day, Irene S.; Narasimhulu, S. B.; Safadi, Farida; Reddy, Vaka S.; Golovkin, Maxim; Harnly, Melissa J.

    2002-01-01

    Tuberization in potato is controlled by hormonal and environmental signals. Ca(2+), an important intracellular messenger, and calmodulin (CaM), one of the primary Ca(2+) sensors, have been implicated in controlling diverse cellular processes in plants including tuberization. The regulation of cellular processes by CaM involves its interaction with other proteins. To understand the role of Ca(2+)/CaM in tuberization, we have screened an expression library prepared from developing tubers with biotinylated CaM. This screening resulted in isolation of a cDNA encoding a novel CaM-binding protein (potato calmodulin-binding protein (PCBP)). Ca(2+)-dependent binding of the cDNA-encoded protein to CaM is confirmed by (35)S-labeled CaM. The full-length cDNA is 5 kb long and encodes a protein of 1309 amino acids. The deduced amino acid sequence showed significant similarity with a hypothetical protein from another plant, Arabidopsis. However, no homologs of PCBP are found in nonplant systems, suggesting that it is likely to be specific to plants. Using truncated versions of the protein and a synthetic peptide in CaM binding assays we mapped the CaM-binding region to a 20-amino acid stretch (residues 1216-1237). The bacterially expressed protein containing the CaM-binding domain interacted with three CaM isoforms (CaM2, CaM4, and CaM6). PCBP is encoded by a single gene and is expressed differentially in the tissues tested. The expression of CaM, PCBP, and another CaM-binding protein is similar in different tissues and organs. The predicted protein contained seven putative nuclear localization signals and several strong PEST motifs. Fusion of the N-terminal region of the protein containing six of the seven nuclear localization signals to the reporter gene beta-glucuronidase targeted the reporter gene to the nucleus, suggesting a nuclear role for PCBP.

  3. The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug.

    Science.gov (United States)

    Horváth, István; Harmat, Veronika; Perczel, András; Pálfi, Villo; Nyitray, László; Nagy, Attila; Hlavanda, Emma; Náray-Szabó, Gábor; Ovádi, Judit

    2005-03-01

    3'-(beta-Chloroethyl)-2',4'-dioxo-3,5'-spiro-oxazolidino-4-deacetoxyvinblastine (KAR-2) is a potent anti-microtubular agent that arrests mitosis in cancer cells without significant toxic side effects. In this study we demonstrate that in addition to targeting microtubules, KAR-2 also binds calmodulin, thereby countering the antagonistic effects of trifluoperazine. To determine the basis of both properties of KAR-2, the three-dimensional structure of its complex with Ca(2+)-calmodulin has been characterized both in solution using NMR and when crystallized using x-ray diffraction. Heterocorrelation ((1)H-(15)N heteronuclear single quantum coherence) spectra of (15)N-labeled calmodulin indicate a global conformation change (closure) of the protein upon its binding to KAR-2. The crystal structure at 2.12-A resolution reveals a more complete picture; KAR-2 binds to a novel structure created by amino acid residues of both the N- and C-terminal domains of calmodulin. Although first detected by x-ray diffraction of the crystallized ternary complex, this conformational change is consistent with its solution structure as characterized by NMR spectroscopy. It is noteworthy that a similar tertiary complex forms when calmodulin binds KAR-2 as when it binds trifluoperazine, even though the two ligands contact (for the most part) different amino acid residues. These observations explain the specificity of KAR-2 as an anti-microtubular agent; the drug interacts with a novel drug binding domain on calmodulin. Consequently, KAR-2 does not prevent calmodulin from binding most of its physiological targets. PMID:15596444

  4. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis

    Science.gov (United States)

    Hwang, I.; Sze, H.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The magnitude and duration of a cytosolic Ca(2+) release can potentially be altered by changing the rate of Ca(2+) efflux. In plant cells, Ca(2+) efflux from the cytoplasm is mediated by H(+)/Ca(2+)-antiporters and two types of Ca(2+)-ATPases. ACA2 was recently identified as a calmodulin-regulated Ca(2+)-pump located in the endoplasmic reticulum. Here, we show that phosphorylation of its N-terminal regulatory domain by a Ca(2+)-dependent protein kinase (CDPK isoform CPK1), inhibits both basal activity ( approximately 10%) and calmodulin stimulation ( approximately 75%), as shown by Ca(2+)-transport assays with recombinant enzyme expressed in yeast. A CDPK phosphorylation site was mapped to Ser(45) near a calmodulin binding site, using a fusion protein containing the N-terminal domain as an in vitro substrate for a recombinant CPK1. In a full-length enzyme, an Ala substitution for Ser(45) (S45/A) completely blocked the observed CDPK inhibition of both basal and calmodulin-stimulated activities. An Asp substitution (S45/D) mimicked phosphoinhibition, indicating that a negative charge at this position is sufficient to account for phosphoinhibition. Interestingly, prior binding of calmodulin blocked phosphorylation. This suggests that, once ACA2 binds calmodulin, its activation state becomes resistant to phosphoinhibition. These results support the hypothesis that ACA2 activity is regulated as the balance between the initial kinetics of calmodulin stimulation and CDPK inhibition, providing an example in plants for a potential point of crosstalk between two different Ca(2+)-signaling pathways.

  5. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane.

    Science.gov (United States)

    Alli, Abdel A; Bao, Hui-Fang; Liu, Bing-Chen; Yu, Ling; Aldrugh, Summer; Montgomery, Darrice S; Ma, He-Ping; Eaton, Douglas C

    2015-09-01

    Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane. PMID:26136560

  6. Operative Links

    DEFF Research Database (Denmark)

    Wistoft, Karen; Højlund, Holger

    2012-01-01

    The article combines a public management perspective with a pedagogical perspective on health promotion. Our aim is to look into recent reforms in Denmark on health promotion in order to see how managerial ideas have been combined with welfare professional ideals concerning broad, positive and...... framework has three positions: first, a policy perspective on public organisations as networks, second, a semantic perspective on discourses and concepts of health and, third, a health pedagogical perspective on participation, intervention, and roles. Conclusion: it is necessary to establish ‘operative...... links' that indicate cooperative levels which facilitate a creative and innovative effort in disease prevention and health promotion targeted at children and adolescents - across traditional professional boundaries. It is proposed that such links are supported by network structures, shared semantics and...

  7. Operative Links

    DEFF Research Database (Denmark)

    Wistoft, Karen; Højlund, Holger

    2012-01-01

    educational approaches. Methods: Mixed qualitative design: survey based on telephone interviews with health managers (n=72), personal and focus group interviews with health professionals (n=84) and pupils (n=108) from 18 school classes, and comparative case studies in five selected municipalities of various...... educational goals, learning content, or value clarification. Health pedagogy is often a matter of retrospective rationalization rather than the starting point of planning. Health and risk behaviour approaches override health educational approaches. Conclusions: Operational links between health education...

  8. Association between Serum Brain-derived Neurotrophic Factor Level and Cognitive Impairment in Patients with Mild Cognitive Impairment%轻度认知功能障碍患者认知损害与血清脑源性神经营养因子水平的相关性

    Institute of Scientific and Technical Information of China (English)

    张兰娥; 杨增云; 何冰; 范静波; 卢国华

    2013-01-01

    目的研究轻度认知功能障碍(mild cognitive impairment,MCI)患者认知损害与血清脑源性神经营养因子(brain derived neurotrophic factor,BDNF)水平的关系。方法从认知障碍门诊筛选MCI患者30例,正常对照老年人32例,采用酶联免疫吸附法(enzyme linked immunosorbent assay,ELISA)检测MCI患者的血清BDNF水平。结果 MCI的血清BDNF水平较正常对照组显著升高(P=0.025),MCI组中血清BDNF与简明精神状态量表(Mini-Mental State Examination Scale,MMSE)中的记忆力(r=-0.494,P=0.009)、语言能力(r=-0.399,P=0.039)呈负相关,与定向力、注意力和计算力、回忆能力无相关性;与临床痴呆量表(Clinical Dementia Rating Scale,CDR)总分呈正相关(r=0.476,P=0.012);与MMSE总分、全面衰退量表(Global Deterioration Scale,GDS)总分无相关性。结论 MCI患者的BDNF水平显著升高,提示BDNF可能参与MCI认知损害的病理生理过程。%Objective To investigate the relationship between cognitive function and brain-derived neurotrophic factor (BDNF) in mild cognitive impairment and healthy elders. Methods From the community society, we selected 30 samples of mild cognitive impairment (MCI) and 32 control samples. The cognitive function was evaluated by neuropsychological test and the level of BDNF was tested by enzyme-linked immunosorbent assay (ELISA). Results Compared to the control group, the level of BDNF in MCI patients was signiifcantly increased than healthy elders (P=0.025). Also, the level of BDNF in MCI patients was negatively correlated to memory (r=-0.494, P=0.009) and language (r=-0.399, P=0.039) of Mini-Mental State Examination Scale, and positively correlated to the scores of Clinical Dementia Rating Scale (r=0.476,P=0.012). Conclusion The increased level of BDNF in MCI patients showed that BDNF may be involved in the pathophysiology of cognitive impairment.

  9. Characterization and expression of calmodulin gene during larval settlement and metamorphosis of the polychaete Hydroides elegans

    KAUST Repository

    Chen, Zhangfan

    2012-08-01

    The polychaete . Hydroides elegans (Serpulidae, Lophotrochozoa) is a problematic marine fouling organism in most tropical and subtropical coastal environment. Competent larvae of . H. elegans undergo the transition from the swimming larval stage to the sessile juvenile stage with substantial morphological, physiological, and behavior changes. This transition is often referred to as larval settlement and metamorphosis. In this study, we examined the possible involvement of calmodulin (CaM) - a multifunctional calcium metabolism regulator, in the larval settlement and metamorphosis of . H. elegans. A full-length . CaM cDNA was successfully cloned from . H. elegans (. He-CaM) and it contained an open reading frame of 450. bp, encoding 149 amino acid residues. It was highly expressed in 12. h post-metamorphic juveniles, and remained high in adults. . In situ hybridization conducted in competent larvae and juveniles revealed that . He-CaM gene was continuously expressed in the putative growth zones, branchial rudiments, and collar region, suggesting that . He-CaM might be involved in tissue differentiation and development. Our subsequent bioassay revealed that the CaM inhibitor W7 could effectively inhibit larval settlement and metamorphosis, and cause some morphological defects of unsettled larvae. In conclusion, our results revealed that CaM has important functions in the larval settlement and metamorphosis of . H. elegans. © 2012 Elsevier Inc..

  10. Cloning and analysis of calmodulin gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta)

    Science.gov (United States)

    Wang, Mengqiang; Mao, Yunxiang; Zhuang, Yunyun; Kong, Fanna; Sui, Zhenghong

    2009-09-01

    In order to understand the mechanisms of signal transduction and anti-desiccation mechanisms of Porphyra yezoensis, cDNA and its genomic sequence of Calmodulin gene (CaM) was cloned by the technique of polymerase chain reaction (PCR) based on the analysis of P. yezoensis ESTs from dbEST database. The result shows that the full-length cDNA of CaM consists of 603 bps including an ORF encoding for 151 amino acids and a terminate codon UGA, while the length of genomic sequence is 1231 bps including 2 exons and 1 intron. The average GC content of the coding region is 58.77%, while the GC content of the third position of this gene is as high as 82.23%. Four Ca2+ binding sites (EF-hand) are found in this gene. The predicted molecular mass of the deduced peptide is 16688.72 Da and the pI is 4.222. By aligning with known CaM genes, the similarity of CaM gene sequence with homologous genes in Chlamydomonas incerta and Chlamydomonas reinhardtii is 72.7% and 72.2% respectively, and the similarity of the deduced amino acid sequence of CaM gene with homologous genes in C. incerta and C. reinhardtii are both 71.5%. This is the first report on CaM from a species of Rhodophyta.

  11. The ever changing moods of calmodulin: how structural plasticity entails transductional adaptability.

    Science.gov (United States)

    Villarroel, Alvaro; Taglialatela, Maurizio; Bernardo-Seisdedos, Ganeko; Alaimo, Alessandro; Agirre, Jon; Alberdi, Araitz; Gomis-Perez, Carolina; Soldovieri, Maria Virginia; Ambrosino, Paolo; Malo, Covadonga; Areso, Pilar

    2014-07-29

    The exceptional versatility of calmodulin (CaM) three-dimensional arrangement is reflected in the growing number of structural models of CaM/protein complexes currently available in the Protein Data Bank (PDB) database, revealing a great diversity of conformations, domain organization, and structural responses to Ca(2+). Understanding CaM binding is complicated by the diversity of target proteins sequences. Data mining of the structures shows that one face of each of the eight CaM helices can contribute to binding, with little overall difference between the Ca(2+) loaded N- and C-lobes and a clear prevalence of the C-lobe low Ca(2+) conditions. The structures reveal a remarkable variety of configurations where CaM binds its targets in a preferred orientation that can be reversed and where CaM rotates upon Ca(2+) binding, suggesting a highly dynamic metastable relation between CaM and its targets. Recent advances in structure-function studies and the discovery of CaM mutations being responsible for human diseases, besides expanding the role of CaM in human pathophysiology, are opening new exciting avenues for the understanding of the how CaM decodes Ca(2+)-dependent and Ca(2+)-independent signals. PMID:24857860

  12. Cllmodulin in tip-growing plant cells, visualized by fluorescing calmodulin-binding phenothiazines.

    Science.gov (United States)

    Haußer, I; Herth, W; Reiss, H D

    1984-09-01

    Calmodulin (CaM) was visualized light-microscopically by the fluorescent CaM inhibitors fluphenazine and chlorpromazine, both phenothiazines, during polar tip growth of pollen tubes of Lilium longiflorum, root hairs of Lepidium sativum, moss caulonema of Funaria hygrometrica, fungal hyphae of Achlya spec. and in the alga Acetabularia mediterranea, as well as during multipolar tip growth in Micrasterias denticulata. Young pollen tubes and root hairs showed tip fluorescence; at later stages and in the growing parts of the other subjects the fluorescence was almost uniform. After treatment with cytochalasin B, punctuate fluorescence occurred in the clear zone adjacent to the tip of pollen tubes. The observations indicate that there is CaM in all our tested systems detectable with this method. It may play a key role in starting polar growth. As in pollen tubes, CaM might be in part associated with the microfilament network at the tip, and thus regulate vesicle transport and cytoplasmic streaming. PMID:24253945

  13. Calmodulin binds a highly extended HIV-1 MA protein that refolds upon its release.

    Science.gov (United States)

    Taylor, James E; Chow, John Y H; Jeffries, Cy M; Kwan, Ann H; Duff, Anthony P; Hamilton, William A; Trewhella, Jill

    2012-08-01

    Calmodulin (CaM) expression is upregulated upon HIV-1 infection and interacts with proteins involved in viral processing, including the multifunctional HIV-1 MA protein. We present here the results of studies utilizing small-angle neutron scattering with contrast variation that, when considered in the light of earlier fluorescence and NMR data, show CaM binds MA in an extended open-clamp conformation via interactions with two tryptophans that are widely spaced in sequence and space. The interaction requires a disruption of the MA tertiary fold such that MA becomes highly extended in a long snakelike conformation. The CaM-MA interface is extensive, covering ~70% of the length of the MA such that regions known to be important in MA interactions with critical binding partners would be impacted. The CaM conformation is semiextended and as such is distinct from the classical CaM-collapse about short α-helical targets. NMR data show that upon dissociation of the CaM-MA complex, either by the removal of Ca(2+) or increasing ionic strength, MA reforms its native tertiary contacts. Thus, we observe a high level of structural plasticity in MA that may facilitate regulation of its activities via intracellular Ca(2+)-signaling during viral processing. PMID:22947870

  14. The Ca(2+ influence on calmodulin unfolding pathway: a steered molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    Full Text Available The force-induced unfolding of calmodulin (CaM was investigated at atomistic details with steered molecular dynamics. The two isolated CaM domains as well as the full-length CaM were simulated in N-C-terminal pulling scheme, and the isolated N-lobe of CaM was studied specially in two other pulling schemes to test the effect of pulling direction and compare with relevant experiments. Both Ca(2+-loaded CaM and Ca(2+-free CaM were considered in order to define the Ca(2+ influence to the CaM unfolding. The results reveal that the Ca(2+ significantly affects the stability and unfolding behaviors of both the isolated CaM domains and the full-length CaM. In Ca(2+-loaded CaM, N-terminal domain unfolds in priori to the C-terminal domain. But in Ca(2+-free CaM, the unfolding order changes, and C-terminal domain unfolds first. The force-extension curves of CaM unfolding indicate that the major unfolding barrier comes from conquering the interaction of two EF-hand motifs in both N- and C- terminal domains. Our results provide the atomistic-level insights in the force-induced CaM unfolding and explain the observation in recent AFM experiments.

  15. Subtle pH differences trigger single residue motions for moderating conformations of calmodulin

    CERN Document Server

    Atilgan, Ali Rana; Atilgan, Canan

    2011-01-01

    This study reveals the essence of ligand recognition mechanisms by which calmodulin (CaM) controls a variety of Ca2+ signaling processes. We study eight forms of calcium-loaded CaM each with distinct conformational states. Reducing the structure to two degrees of freedom conveniently describes main features of conformational changes of CaM via simultaneous twist-bend motions of the two lobes. We utilize perturbation-response scanning (PRS) technique, coupled with molecular dynamics simulations to analyze conformational preferences of calcium-loaded CaM, initially in extended form. PRS is comprised of sequential application of directed forces on residues followed by recording the resulting coordinates. We show that manipulation of a single residue, E31 located in one of the EF hand motifs, reproduces structural changes to compact forms, and the flexible linker acts as a transducer of binding information to distant parts of the protein. Independently, using four different pKa calculation strategies, we find E31...

  16. Calmodulin effects on steroids-regulated plasma membrane calcium pump activity.

    Science.gov (United States)

    Zylinska, Ludmila; Kowalska, Iwona; Ferenc, Bozena

    2009-03-01

    It is now generally accepted that non-genomic steroids action precedes their genomic effects by modulation of intracellular signaling pathways within seconds after application. Ca(2+) is a very potent and ubiquitous ion in all cells, and its concentration is precisely regulated. The most sensitive on Ca(2+) increase is ATP-consuming plasma membrane calcium pump (PMCA). The enzyme is coded by four genes, but isoforms diversity was detected in excitable and non-excitable cells. It is the only ion pump stimulated directly by calmodulin (CaM). We examined the role of PMCA isoforms composition and CaM effect in regulation of Ca(2+) uptake by estradiol, dehydroepiandrosterone (DHEA), pregnenolone (PREG), and their sulfates in a concentration range from 10(-9) to 10(-6) M, using the membranes from rat cortical synaptosomes, differentiated PC12 cells, and human erythrocytes. In excitable membranes with full set of PMCAs steroids apparently increased Ca(2+) uptake, although to a variable extent. In most of the cases, CaM decreased transport by 30-40% below controls. Erythrocyte PMCA was regulated by the steroids somewhat differently than excitable cells. CaM strongly increased the potency for Ca(2+) extrusion in membranes incubated with 17-beta-estradiol and PREG. Our results indicated that steroids may sufficiently control cytoplasmic calcium concentration within physiological and therapeutic range. The response depended on the cell type, PMCA isoforms expression profile, CaM presence, and the steroids structure. PMID:19226536

  17. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Daniel X Keller

    Full Text Available The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.

  18. Cloning and Analysis of Calmodulin Gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta)

    Institute of Scientific and Technical Information of China (English)

    WANG Mengqiang; MAO Yunxiang; ZHUANG Yunyun; KONG Fanna; SUI Zhenghong

    2009-01-01

    In order to understand the mechanisms of signal transduction and anti-desiccation mechanisms of Porphyra yezoensiss,cDNA and its genomic sequence of Calmodulin gene (CaM) was cloned by the technique of polymerase chain reaction (PCR) based on the analysis of P. yezoensis ESTs from dbEST database. The result shows that the full-length cDNA of CaM consists of 603 bps including an ORF encoding for 151 amino acids and a terminate codon UGA, while the length of genomic sequence is 1231 bps including 2 exous and 1 intron. The average GC content of the coding region is 58.77%, while the GC content of the third position of this gene is as high as 82.23%. Four Ca2+ binding sites (EF-hand) are found in this gene. The predicted molecular mass of the deduced peptide is 16688.72 Da and the pI is 4.222. By aligning with known CaM genes, the similarity of CaM gene sequence with homologous genes in Chlamydomonas incerta and Chlamydomonas reinhardtii is 72.7% and 72.2% respectively, and the similarity of the deduced amino acid sequence of CaM gene with homologous genes in C. incerta and C. reinhardtii are both 71.5%. This is the first report on CaM from a species of Rhodophyta.

  19. Responses of plant calmodulin to endocytosis induced by rare earth elements.

    Science.gov (United States)

    Wang, Lihong; Cheng, Mengzhu; Chu, Yunxia; Li, Xiaodong; Chen, David D Y; Huang, Xiaohua; Zhou, Qing

    2016-07-01

    The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells. PMID:27081794

  20. Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target.

    Science.gov (United States)

    Naz, Huma; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-05-01

    The calcium/calmodulin-dependent protein kinase IV (CAMKIV) belongs to the serine/threonine protein kinase family, and is primarily involved in transcriptional regulation in lymphocytes, neurons and male germ cells. CAMKIV operates the signaling cascade and regulates activity of several transcription activators by phosphorylation, which in turn plays pivotal roles in immune response, inflammation and memory consolidation. In this review, we tried to focus on different aspects of CAMKIV to understand the significance of this protein in the biological system. This enzyme is associated with varieties of disorders such as cerebral hypoxia, azoospermia, endometrial and ovarian cancer, systemic lupus, etc., and hence it is considered as a potential therapeutic target. Structure of CAMKIV is comprised of five distinct domains in which kinase domain is responsible for enzyme activity. CAMKIV is involved in varieties of cellular functions such as regulation of gene expression, T-cell maturation, regulation of survival phase of dendritic cells, bone growth and metabolism, memory consolidation, sperm motility, regulation of microtubule dynamics, cell-cycle progression and apoptosis. In this review, we performed an extensive analysis on structure, function and regulation of CAMKIV and associated diseases. PMID:26773169