WorldWideScience

Sample records for calmodulin link brain-derived

  1. Differential inhibition of calmodulin-sensitive phosphodiesterase and Ca++-adenosine triphosphatase by chlorpromazine-linked calmodulin

    International Nuclear Information System (INIS)

    Prozialeck, W.C.; Wallace, T.L.; Weiss, B.

    1987-01-01

    Upon irradiation with UV light, chlorpromazine binds irreversibly to calmodulin and inactivates it. To determine whether this chlorpromazine-calmodulin (CPZ-CaM) complex can inhibit the actions of native calmodulin, we examined its effects on the activity of calmodulin-sensitive cyclic nucleotide phosphodiesterase from rat brain and on the Ca++-adenosine triphosphatase (ATPase) of human erythrocyte membranes. The CPZ-CaM complex was prepared by irradiating purified bovine brain calmodulin in the presence of chlorpromazine and Ca++. The sample was then dialyzed extensively to remove reversibly bound chlorpromazine and then assayed for its ability to activate calmodulin-sensitive phosphodiesterase and Ca++-ATPase, and for its ability to block the stimulatory effects of native calmodulin on these enzymes. The CPZ-CaM complex had no effect on the basal activity of either enzyme; it neither activated nor inhibited the enzymes when assayed in the absence of calmodulin. However, it affected differentially the activation of the two enzymes by native calmodulin. The CPZ-CaM complex totally inhibited calmodulin-stimulated phosphodiesterase but had no effect on the activation of the ATPase by calmodulin. Other studies showed that CPZ-CaM increased the activation constant (Ka) for the interaction of calmodulin with phosphodiesterase but did not affect the maximal activation (Vmax) of the enzyme by calmodulin. Neither calmodulin nor CPZ-CaM altered the Km for the interaction between phosphodiesterase and cyclic AMP. These results suggest that CPZ-CaM inhibits the calmodulin-induced activation of phosphodiesterase by competing with calmodulin for regulatory sites on the enzyme and not by interacting with calmodulin itself or by blocking the interaction of cyclic AMP with the enzyme

  2. Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression.

    Science.gov (United States)

    Hashimoto, Kenji

    2013-01-01

    Epidemiological studies have demonstrated a close relationship between depression and cardiovascular disease (CVD). Although it is known that the central nervous system (CNS) contributes to this relationship, the detailed mechanisms involved in this process remain unclear. Recent studies suggest that the endoplasmic reticulum (ER) molecular chaperone sigma-1 receptor and brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of CVD and depression. Several meta-analysis studies have showed that levels of BDNF in the blood of patients with major depressive disorder (MDD) are lower than normal controls, indicating that blood BDNF might be a biomarker for depression. Furthermore, blood levels of BDNF in patients with CVD are also lower than normal controls. A recent study using conditional BDNF knock-out mice in animal models of myocardial infarction highlighted the role of CNS-mediated mechanisms in the cardioprotective effects of BDNF. In addition, a recent study shows that decreased levels of sigma-1 receptor in the mouse brain contribute to the association between heart failure and depression. Moreover, sigma-1 receptor agonists, including the endogenous neurosteroid dehydroepiandosterone (DHEA) and the selective serotonin reuptake inhibitor (SSRI) fluvoxamine, show potent cardioprotective and antidepressive effects in rodents, via sigma-1 receptor stimulation. Interestingly, agonist activation of sigma-1 receptors increased the secretion of mature BDNF from its precursor proBDNF via chaperone activity in the ER. Given the role of ER stress in the pathophysiology of CVD and MDD, the author will discuss the potential link between sigma-1 receptors and BDNF-TrkB pathway in the pathophysiology of these two diseases. Finally, the author will make a case for potent sigma-1 receptor agonists and TrkB agonists as new potential therapeutic drugs for depressive patients with CVD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  4. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  5. The Brain Derived Neurotrophic Factor and Personality

    OpenAIRE

    Christian Montag

    2014-01-01

    The study of the biological basis of personality is a timely research endeavor, with the aim of deepening our understanding of human nature. In recent years, a growing body of research has investigated the role of the brain derived neurotrophic factor (BDNF) in the context of individual differences across human beings, with a focus on personality traits. A large number of different approaches have been chosen to illuminate the role of BDNF for personality, ranging from the measurement of BDNF...

  6. Measurements of brain-derived neurotrophic factor

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Klein, Anders Bue; Vinberg, Maj

    2007-01-01

    Although numerous studies have dealt with changes in blood brain-derived neurotrophic factor (BDNF), methodological issues about BDNF measurements have only been incompletely resolved. We validated BDNF ELISA with respect to accuracy, reproducibility and the effect of storage and repeated freezing...... (18.6+/-1.3 ng/ml versus 16.5+/-1.4 ng/ml), and showed a right-skewed BDNF concentration distribution. No association between whole blood BDNF concentrations and thrombocyte count, age, or BDNF genotype was found. In conclusion, the BDNF ELISA assay determines whole blood BDNF accurately and with high...

  7. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  8. Genetic moderation of child maltreatment effects on depression and internalizing symptoms by serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter (NET), and corticotropin releasing hormone receptor 1 (CRHR1) genes in African American children.

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A

    2014-11-01

    Genetic moderation of the effects of child maltreatment on depression and internalizing symptoms was investigated in a sample of low-income maltreated and nonmaltreated African American children (N = 1,096). Lifetime child maltreatment experiences were independently coded from Child Protective Services records and maternal report. Child depression and internalizing problems were assessed in the context of a summer research camp by self-report on the Children's Depression Inventory and adult counselor report on the Teacher Report Form. DNA was obtained from buccal cell or saliva samples and genotyped for polymorphisms of the following genes: serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter, and corticotropin releasing hormone receptor 1. Analyses of covariance with age and gender as covariates were conducted, with maltreatment status and respective polymorphism as main effects and their Gene × Environment (G × E) interactions. Maltreatment consistently was associated with higher Children's Depression Inventory and Teacher Report Form symptoms. The results for child self-report symptoms indicated a G × E interaction for BDNF and maltreatment. In addition, BDNF and triallelic 5-HTTLPR interacted with child maltreatment in a G × G × E interaction. Analyses for counselor report of child anxiety/depression symptoms on the Teacher Report Form indicated moderation of child maltreatment effects by triallelic 5-HTTLPR. These effects were elaborated based on variation in developmental timing of maltreatment experiences. Norepinephrine transporter was found to further moderate the G × E interaction of 5-HTTLPR and maltreatment status, revealing a G × G × E interaction. This G × G × E was extended by consideration of variation in maltreatment subtype experiences. Finally, G × G × E effects were observed for the co-action of BDNF and the corticotropin releasing hormone receptor 1

  9. Edaravone Enhances Brain-Derived Neurotrophic Factor Production in the Ischemic Mouse Brain

    Directory of Open Access Journals (Sweden)

    Satoshi Okuyama

    2015-04-01

    Full Text Available Edaravone, a clinical drug used to treat strokes, protects against neuronal cell death and memory loss in the ischemic brains of animal models through its antioxidant activity. In the present study, we subcutaneously administrated edaravone to mice (3 mg/kg/day for three days immediately after bilateral common carotid artery occlusion, and revealed through an immunohistochemical analysis that edaravone (1 accelerated increases in the production of brain-derived neurotrophic factor (BDNF in the hippocampus; (2 increased the number of doublecortin-positive neuronal precursor cells in the dentate gyrus subgranular zone; and (3 suppressed the ischemia-induced inactivation of calcium-calmodulin-dependent protein kinase II in the hippocampus. We also revealed through a Western blotting analysis that edaravone (4 induced the phosphorylation of cAMP response element-binding (CREB, a transcription factor that regulates BDNF gene expression; and (5 induced the phosphorylation of extracellular signal-regulated kinases 1/2, an upstream signal factor of CREB. These results suggest that the neuroprotective effects of edaravone following brain ischemia were mediated not only by the elimination of oxidative stress, but also by the induction of BDNF production.

  10. Brain-derived neurotrophic factor: role in depression and suicide

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2009-08-01

    Full Text Available Yogesh DwivediPsychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USAAbstract: Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF, one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the “neurotrophin hypothesis of depression”. Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB and its splice variant (TrkB.T1 have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.Keywords: BDNF, neurotrophins, p75NTR, Trk receptor, depression, antidepressants, suicide, genetics, epigenetics

  11. Determinants of serum brain-derived neurotrophic factor

    NARCIS (Netherlands)

    Bus, B. A. A.; Molendijk, M. L.; Penninx, B. J. W. H.; Buitelaar, J. K.; Kenis, G.; Prickaerts, J.; Elzinga, B. M.; Voshaar, R. C. Oude

    Background: Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of growth factors and affects the survival and plasticity of neurons in the adult central nervous system. The high correlation between cortical and serum BDNF levels has led to many human studies on BDNF levels

  12. Brain-derived neurotrophic factor and early-life stress

    Indian Academy of Sciences (India)

    2016-10-24

    Oct 24, 2016 ... The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and ... forms are produced by splicing individual non-coding ..... VII and. IX m. RNA. ↑. mBDNF. ↓. (MS). 5. BDNF expression was unch;.

  13. Fesselin is a target protein for calmodulin in a calcium-dependent manner

    International Nuclear Information System (INIS)

    KoIakowski, Janusz; Wrzosek, Antoni; Dabrowska, Renata

    2004-01-01

    Fesselin is a basic protein isolated from smooth muscle which binds G-actin and accelerates its polymerization as well as cross-links assembled filaments [J. Muscle Res. Cell Motil. 20 (1999) 539; Biochemistry 40 (2001) 14252]. In this report experimental evidence is provided for the first time proving that fesselin can interact with calmodulin in a Ca 2+ -dependent manner in vitro. Using ion exchange, followed by calmodulin-affinity chromatography, enabled us to simplify and shorten the fesselin preparation procedure and increase its yield by about three times in comparison to the procedure described by Leinweber et al. [J. Muscle Res. Cell Motil. 20 (1999) 539]. Fesselin interaction with dansyl-labelled calmodulin causes a 2-fold increase in maximum fluorescence intensity of the fluorophore and a 21 nm blue shift of the spectrum. The transition of complex formation between fesselin and calmodulin occurs at submicromolar concentration of calcium ions. The dissociation constant of fesselin Ca 2+ /calmodulin complexes amounted to 10 -8 M. The results suggest the existence of a direct link between Ca 2+ /calmodulin and fesselin at the level of actin cytoskeleton dynamics in smooth muscle

  14. Electrically induced brain-derived neurotrophic factor release from Schwann cells.

    Science.gov (United States)

    Luo, Beier; Huang, Jinghui; Lu, Lei; Hu, Xueyu; Luo, Zhuojing; Li, Ming

    2014-07-01

    Regulating the production of brain-derived neurotrophic factor (BDNF) in Schwann cells (SCs) is critical for their application in traumatic nerve injury, neurodegenerative disorders, and demyelination disease in both central and peripheral nervous systems. The present study investigated the possibility of using electrical stimulation (ES) to activate SCs to release BDNF. We found that short-term ES was capable of promoting BDNF production from SCs, and the maximal BDNF release was achieved by ES at 6 V (3 Hz, 30 min). We further examined the involvement of intracellular calcium ions ([Ca2+]i) in the ES-induced BDNF production in SCs by pharmacological studies. We found that the ES-induced BDNF release required calcium influx through T-type voltage-gated calcium channel (VGCC) and calcium mobilization from internal calcium stores, including inositol triphosphate-sensitive stores and caffeine/ryanodine-sensitive stores. In addition, calcium-calmodulin dependent protein kinase IV (CaMK IV), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) were found to play important roles in the ES-induced BDNF release from SCs. In conclusion, ES is capable of activating SCs to secrete BDNF, which requires the involvement of calcium influx through T-type VGCC and calcium mobilization from internal calcium stores. In addition, activation of CaMK IV, MAPK, and CREB were also involved in the ES-induced BDNF release. The findings indicate that ES can improve the neurotrophic ability in SCs and raise the possibility of developing electrically stimulated SCs as a source of cell therapy for nerve injury in both peripheral and central nervous systems. Copyright © 2014 Wiley Periodicals, Inc.

  15. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation.

    Science.gov (United States)

    Gomez-Pinilla, F; Zhuang, Y; Feng, J; Ying, Z; Fan, G

    2011-02-01

    We have evaluated the possibility that the action of voluntary exercise on the regulation of brain-derived neurotrophic factor (BDNF), a molecule important for rat hippocampal learning, could involve mechanisms of epigenetic regulation. We focused the studies on the Bdnf promoter IV, as this region is highly responsive to neuronal activity. We have found that exercise stimulates DNA demethylation in Bdnf promoter IV, and elevates levels of activated methyl-CpG-binding protein 2, as well as BDNF mRNA and protein in the rat hippocampus. Chromatin immunoprecipitation assay showed that exercise increases acetylation of histone H3, and protein assessment showed that exercise elevates the ratio of acetylated :total for histone H3 but had no effects on histone H4 levels. Exercise also reduces levels of the histone deacetylase 5 mRNA and protein implicated in the regulation of the Bdnf gene [N.M. Tsankova et al. (2006)Nat. Neurosci., 9, 519-525], but did not affect histone deacetylase 9. Exercise elevated the phosphorylated forms of calcium/calmodulin-dependent protein kinase II and cAMP response element binding protein, implicated in the pathways by which neural activity influences the epigenetic regulation of gene transcription, i.e. Bdnf. These results showing the influence of exercise on the remodeling of chromatin containing the Bdnf gene emphasize the importance of exercise on the control of gene transcription in the context of brain function and plasticity. Reported information about the impact of a behavior, inherently involved in the daily human routine, on the epigenome opens exciting new directions and therapeutic opportunities in the war against neurological and psychiatric disorders. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump

    International Nuclear Information System (INIS)

    Vorherr, T.; James, P.; Krebs, J.; Carafoli, E.; McCormick, D.J.; Penniston, J.T.; Enyedi, A.

    1990-01-01

    Peptides corresponding to the calmodulin binding domain of the plasma membrane Ca 2+ pump were synthesized, and their interaction with calmodulin was studied with circular dichroism, infrared spectroscopy, nuclear magnetic resonance, and fluorescence techniques. They corresponded to the complete calmodulin binding domain (28 residues), to its first 15 or 20 amino acids, and to its C-terminal 14 amino acids. The first three peptides interacted with calmodulin. The K value was similar to that of the intact enzyme in the 28 and 20 amino acid peptides, but increased substantially in the shorter 15 amino acid peptide. The 14 amino acid peptide corresponding to the C-terminal portion of the domain failed to bind calmodulin. 2D NMR experiments on the 20 amino acid peptides have indicated that the interaction occurred with the C-terminal half of calmodulin. A tryptophan that is conserved in most calmodulin binding domains of proteins was replaced by other amino acids, giving rise to modified peptides which had lower affinity for calmodulin. An 18 amino acid peptide corresponding to an acidic sequence immediately N-terminal to the calmodulin binding domain which is likely to be a Ca 2+ binding site in the pump was also synthesized. Circular dichroism experiments have shown that it interacted with calmodulin binding domain, supporting the suggestion that the latter, or a portion of it, may act as a natural inhibitor of the pump

  17. Tau regulates the subcellular localization of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Barreda, Elena Gomez de [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avila, Jesus, E-mail: javila@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); CIBER de Enfermedades Neurodegenerativas, 28031 Madrid (Spain)

    2011-05-13

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  18. Tau regulates the subcellular localization of calmodulin

    International Nuclear Information System (INIS)

    Barreda, Elena Gomez de; Avila, Jesus

    2011-01-01

    Highlights: → In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  19. Peripheral blood brain-derived neurotrophic factor in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, K; Vinberg, M; Kessing, L V

    2016-01-01

    Peripheral blood brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in bipolar disorder, speculated to mirror alterations in brain expression of BDNF. The research area is rapidly evolving; however, recent...... investigations have yielded conflicting results with substantial variation in outcomes, highlighting the need to critically assess the state of current evidence. The aims of the study were to investigate differences in peripheral blood BDNF concentrations between bipolar disorder patients and healthy control...... subjects and between affective states in bipolar disorder patients, including assessment of the effect of treatment of acute episodes on BDNF levels. A systematic review of English language studies without considering publication status was conducted in PubMed (January 1950-November 2014), Embase (1974...

  20. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

    DEFF Research Database (Denmark)

    Krabbe, K. S.; Nielsen, A. R.; Krogh-Madsen, R.

    2006-01-01

    Aims/hypothesis  Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer's disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore...... explored whether BDNF plays a role in human glucose metabolism. Subjects and methods  We included (Study 1) 233 humans divided into four groups depending on presence or absence of type 2 diabetes and presence or absence of obesity; and (Study 2) seven healthy volunteers who underwent both a hyperglycaemic...... and a hyperinsulinaemic-euglycaemic clamp. Results  Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism...

  1. Regulation of brain adenylate cyclase by calmodulin

    International Nuclear Information System (INIS)

    Harrison, J.K.

    1988-01-01

    This thesis examined the interaction between the Ca 2+ -binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-[ 125 I]-CaM-diazopyruvamide ( 125 I-CAM-DAP) behaved like native CaM with respect to Ca 2+ -enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca 2+ -dependent stimulation of adenylate cyclase. 125 I-CaM-DAP cross-linked to CaM-binding proteins in a Ca 2+ -dependent, concentration-dependent, and CaM-specific manner. Photolysis of 125 I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000

  2. Developmental differences in posttranslational calmodulin methylation in pea plants

    International Nuclear Information System (INIS)

    Oh, Sukheung; Roberts, D.M.

    1990-01-01

    A calmodulin-N-methyltransferase was used to analyze the degree of lysine-115 methylation of pea calmodulin. Calmodulin was isolated from segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by the calmodulin methyltransferase in the presence of 3 H-methyl-S-adenosylmethionine. Calmodulin methylation levels were lower in apical root segments and in the young lateral roots compared with the mature, differentiated root tissues. The methylation of these calmodulin samples occurs specifically at lysine 115 since site-directed mutants of calmodulin with substitutions at this position were not methylated and competitively inhibited methylation. The present findings, combined with previous data showing differences in NAD kinase activation by methylated and unmethylated calmodulins, raise the possibility that posttranslational methylation could affect calmodulin action

  3. Brain-derived neurotrophic factor enhances conditioned taste aversion retention.

    Science.gov (United States)

    Castillo, Diana V; Figueroa-Guzmán, Yazmín; Escobar, Martha L

    2006-01-05

    Brain-derived neurotrophic factor (BDNF) has recently emerged as one of the most potent molecular mediators of not only central synaptic plasticity, but also behavioral interactions between an organism and its environment. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that induction of long-term potentiation (LTP) in the projection from the basolateral nucleus of the amygdala (Bla) to the IC, previous to CTA training, enhances the retention of this task. Recently, we found that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the Bla-IC projection of adult rats in vivo. In this work, we present experimental data showing that intracortical microinfusion of BDNF previous to CTA training enhances the retention of this task. These findings support the concept that BDNF may contribute to memory-related functions performed by a neocortical area, playing a critical role in long-term synaptic plasticity.

  4. dependent/calmodulin- stimulated protein kinase from moss

    Indian Academy of Sciences (India)

    Unknown

    stimulated protein kinase; CDPK, calmodulin domain-like protein kinase; KM14, 14 amino acid synthetic peptide; .... used were obtained from Sigma Chemical Company, USA, ..... Plant chimeric Ca2+/Calmodulin-dependent protein kinase.

  5. Calmodulin-lanthanide ion exchange kinetics

    International Nuclear Information System (INIS)

    Buccigross, J.; O'Donnell, C.; Nelson, D.

    1985-01-01

    A flow dialysis apparatus suitable for the study of high affinity metal binding proteins has been utilized to study calmodulin-metal exchange kinetics. Calmodulin labeled with Eu-155 and Gd-153 was dialyzed against buffer containing various competing metal ions. The rate of metal exchange was monitored by a gamma-ray scintillation detector. The kinetics of exchange are first order, and the rates fall into two categories: Ca (II) and CD (II) in one, and the lanthanides Eu (III), Gd (III), and La (III) in the other

  6. Calmodulin-regulated adenylyl cyclases and neuromodulation.

    Science.gov (United States)

    Xia, Z; Storm, D R

    1997-06-01

    Coincidence detection and crosstalk between signal transduction systems play very important regulatory roles in the nervous system, particularly in the regulation of transcription. Coupling of the Ca2+ and cAMP regulatory systems by calmodulin-regulated adenylyl cyclases is hypothesized to be important for some forms of synaptic plasticity, neuroendocrine function, and olfactory detection. Recent studies of a mutant mouse deficient in type I calmodulin-sensitive adenylyl cyclase have provided the first evidence that adenylyl cyclases are important for synaptic plasticity, as well as for learning and memory in vertebrates.

  7. Repeated forced swimming impairs prepulse inhibition and alters brain-derived neurotrophic factor and astroglial parameters in rats.

    Science.gov (United States)

    Borsoi, Milene; Antonio, Camila Boque; Müller, Liz Girardi; Viana, Alice Fialho; Hertzfeldt, Vivian; Lunardi, Paula Santana; Zanotto, Caroline; Nardin, Patrícia; Ravazzolo, Ana Paula; Rates, Stela Maris Kuze; Gonçalves, Carlos-Alberto

    2015-01-01

    Glutamate perturbations and altered neurotrophin levels have been strongly associated with the neurobiology of neuropsychiatric disorders. Environmental stress is a risk factor for mood disorders, disrupting glutamatergic activity in astrocytes in addition to cognitive behaviours. Despite the negative impact of stress-induced neuropsychiatric disorders on public health, the molecular mechanisms underlying the response of the brain to stress has yet to be fully elucidated. Exposure to repeated swimming has proven useful for evaluating the loss of cognitive function after pharmacological and behavioural interventions, but its effect on glutamate function has yet to be fully explored. In the present study, rats previously exposed to repeated forced swimming were evaluated using the novel object recognition test, object location test and prepulse inhibition (PPI) test. In addition, quantification of brain-derived neurotrophic factor (BDNF) mRNA expression and protein levels, glutamate uptake, glutathione, S100B, GluN1 subunit of N-methyl-D-aspartate receptor and calmodulin were evaluated in the frontal cortex and hippocampus after various swimming time points. We found that swimming stress selectively impaired PPI but did not affect memory recognition. Swimming stress altered the frontal cortical and hippocampal BDNF expression and the activity of hippocampal astrocytes by reducing hippocampal glutamate uptake and enhancing glutathione content in a time-dependent manner. In conclusion, these data support the assumption that astrocytes may regulate the activity of brain structures related to cognition in a manner that alters complex behaviours. Moreover, they provide new insight regarding the dynamics immediately after an aversive experience, such as after behavioural despair induction, and suggest that forced swimming can be employed to study altered glutamatergic activity and PPI disruption in rodents. Copyright © 2014. Published by Elsevier Inc.

  8. Urinary brain-derived neurotrophic factor as a biomarker of executive functioning.

    Science.gov (United States)

    Koven, Nancy S; Collins, Larisa R

    2014-01-01

    Neurotrophins such as brain-derived neurotrophic factor (BDNF) are vital for neuronal survival and adaptive plasticity. With high BDNF gene expression in the prefrontal cortex, BDNF is a potential regulatory factor for building and maintaining cognitive reserves. Recent studies suggest that individual differences in executive functioning, a broad cognitive domain reliant upon frontal lobe structure and function, are governed in part by variance in BDNF polymorphisms. However, as neurogenetic data are not necessarily indicative of in vivo neurochemistry, this study examines the relationship between executive functioning and the neurotransmitter by measuring peripheral BDNF levels. Fifty-two healthy young adults completed a battery of standardized executive function tests. BDNF levels, adjusted for creatinine, were quantified with enzyme-linked immunosorbent assay of urine samples taken at the time of testing. BDNF concentration was positively associated with cognitive flexibility but had no relationship with working memory, abstract reasoning/planning, self-monitoring/response inhibition, or fluency. These results individuate cognitive flexibility as the specific facet of executive functioning associated with in vivo BDNF levels. This study also validates urinary BDNF as a peripheral biomarker of cognition in healthy adults. © 2014 S. Karger AG, Basel.

  9. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  10. Brain-derived neurotrophic factor (BDNF) plasma concentration in patients diagnosed with premature ovarian insufficiency (POI).

    Science.gov (United States)

    Czyzyk, Adam; Filipowicz, Dorota; Podfigurna, Agnieszka; Ptas, Paula; Piestrzynska, Malgorzata; Smolarczyk, Roman; Genazzani, Andrea R; Meczekalski, Blazej

    2017-05-01

    Premature ovarian insufficiency (POI) is defined as a cessation of function of ovaries in women younger than 40 years old. Brain-derived neurotrophic factor (BDNF) is a protein critically involved in neuronal growth and metabolism. BDNF also has been shown to be important regulator of oocyte maturation. Recent data show that BDNF can be potentially involved in POI pathology. The aim of the study was to assess the BDNF plasma concentrations in patients diagnosed with idiopathic POI. 23 women diagnosed with POI (age 31 ± 7 years) and 18 (age 31 ± 3) controls were included to the study, matched according to age and body mass index. The BDNF concentrations were measured using competitive enzyme-linked immunosorbent assay (ELISA). Hormonal and metabolic parameters were measured in all individuals, in controls in late follicular phase. The POI group demonstrated lower mean plasma concentrations of BDNF (429.25 ± 65.52 pg/ml) in comparison to healthy controls (479.75 ± 34.75 pg/ml, p = 0.0345). The BDNF plasma concentration correlated negatively (R = -0.79, p BDNF and progesterone in controls. In conclusion, POI patients show significantly lower BDNF plasma concentration and it correlates with the duration of amenorrhea. This observation brings important potential insights to the pathology of POI.

  11. Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men.

    Science.gov (United States)

    Safari, Hassan; Khanlarkhani, Neda; Sobhani, Aligholi; Najafi, Atefeh; Amidi, Fardin

    2017-07-05

    The neurotrophin family of proteins and their receptors act as important proliferative and pro-survival factors in differentiation of nerve cells and are thought to play key roles in the development of reproductive tissues and normal function of spermatozoa. The objective of the present study was to evaluate the effect of Brain-Derived Neurotrophic Factor (BDNF) on the sperm viability and motility, lipid peroxidation (LPO), mitochondrial activity and concentration of leptin, nitric oxide (NO) and insulin in normozoospermic men. Semen samples from 20 normozoospermic men were divided into three groups: (i) control, (ii) BDNF and (iii) BDNF + K252a. BDNF and K252a were added in the dose of 0.133 and 0.1 nM, respectively. Viability was assessed by eosin-nigrosin staining technique, and motility was observed by microscopy. NO concentration and mitochondrial activity were measured with flow cytometry, and LPO was analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Results showed that exogenous BDNF at 0.133 nM could significantly (p < 0.05) influence viability, motility, NO concentration, mitochondrial activity and LPO content. Secretions of insulin and leptin by human sperm were increased in cells exposed to the exogenous BDNF, whereas viability, mitochondrial activity and insulin and leptin secretions were decreased in cells exposed to the K252.

  12. The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies.

    Science.gov (United States)

    Zoladz, J A; Pilc, A

    2010-10-01

    It is well documented that physical activity can induce a number of various stimuli which are able to enhance the strength and endurance performance of muscles. Moreover, regular physical activity can preserve or delay the appearance of several metabolic disorders in the human body. Physical exercise is also known to enhance the mood and cognitive functions of active people, although the physiological backgrounds of these effects remain unclear. In recent years, since the pioneering study in the past showed that physical activity increases the expression of the brain derived neurothophic factor (BDNF) in the rat brain, a number of studies were undertaken in order to establish the link between that neurothrophin and post-exercise enhancement of mood and cognitive functions in humans. It was recently demonstrated that physical exercise can increase plasma and/or serum BDNF concentration in humans. It was also reported that physical exercise or electrical stimulation can increase the BDNF expression in the skeletal muscles. In the present review, we report the current state of research concerning the effect of a single bout of exercise and training on the BDNF expression in the brain, in both the working muscles as well as on its concentrations in the blood. We have concluded that there may be potential benefits of the exercise-induced enhancement of the BDNF expression and release in the brain as well as in the peripheral tissues, resulting in the improvement of the functioning of the body, although this effect, especially in humans, requires more research.

  13. Human Obesity Associated with an Intronic SNP in the Brain-Derived Neurotrophic Factor Locus

    Directory of Open Access Journals (Sweden)

    Zongyang Mou

    2015-11-01

    Full Text Available Brain-derived neurotrophic factor (BDNF plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs. We observed that the minor C allele of rs12291063 is associated with lower human ventromedial hypothalamic BDNF expression (p < 0.001 and greater adiposity in both adult and pediatric cohorts (p values < 0.05. We further demonstrated that the major T allele for rs12291063 possesses a binding capacity for the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, knockdown of which disrupts transactivation by the T allele. Binding and transactivation functions are both disrupted by substituting C for T. These findings provide a rationale for BDNF augmentation as a targeted treatment for obesity in individuals who have the rs12291063 CC genotype.

  14. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology.

    Science.gov (United States)

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-05-31

    Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current

  15. Complete spinal cord injury (SCI) transforms how brain derived neurotrophic factor (BDNF) affects nociceptive sensitization.

    Science.gov (United States)

    Huang, Yung-Jen; Lee, Kuan H; Grau, James W

    2017-02-01

    Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABA A agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  17. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors

    Directory of Open Access Journals (Sweden)

    Latha eMukunda

    2016-02-01

    Full Text Available Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs, occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX and a highly conserved co-receptor protein (Orco. The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs expressing Or22a inside the fly’s antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native

  18. Placental and cord blood brain derived neurotrophic factor levels are decreased in nondiabetic macrosomia.

    Science.gov (United States)

    Cai, Qian-Ying; Zhang, Heng-Xin; Wang, Chen-Chen; Sun, Hao; Sun, Shu-Qiang; Wang, Yu-Huan; Yan, Hong-Tao; Yang, Xin-Jun

    2017-08-01

    To measure levels of placental brain derived neurotrophic factor (BDNF) gene expression and umbilical cord blood BDNF in neonates with nondiabetic macrosomia and determine associations between these levels and macrosomia. This case-control study included 58 nondiabetic macrosomic and 59 normal birth weight mother-infant pairs. Data were collected from interviews and our hospital's database. BDNF gene expression was quantified in placental tissues using quantitative real-time polymerase chain reaction (n = 117). Umbilical cord blood BDNF levels were measured by enzyme-linked immunosorbent assay (n = 90). Multivariate logistic regression models were used to evaluate associations between BDNF levels and macrosomia. Placental BDNF gene expression (P = 0.026) and cord blood BDNF (P = 0.008) were lower in neonates with nondiabetic macrosomia than in normal birth weight controls. Cord blood BDNF was significantly lower in vaginally delivered macrosomic neonates than vaginally delivered controls (P = 0.014), but cord BDNF did not differ between vaginal and cesarean section delivery modes in macrosomic neonates. Cord blood BDNF was positively associated with gestational age in control neonates (r = 0.496, P BDNF was positively associated with placental BDNF relative expression (r s  = 0.245, P = 0.02) in the total group. Higher cord blood BDNF levels were independently associated with protection against nondiabetic macrosomia (adjusted odds ratio 0.992; 95% confidence interval 0.986-0.998). Both placental BDNF gene expression and cord blood BDNF were downregulated in neonates with nondiabetic macrosomia compared with normal birth weight neonates. Cord BDNF may partly derive from BDNF secreted by the placenta. Higher cord plasma BDNF levels protected against nondiabetic macrosomia.

  19. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Bianca Pfaffenseller

    2018-02-01

    Full Text Available Bipolar disorder (BD is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3 of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.

  20. Decreased plasma concentrations of brain-derived neurotrophic factor (BDNF) in patients with functional hypothalamic amenorrhea.

    Science.gov (United States)

    Podfigurna-Stopa, Agnieszka; Casarosa, Elena; Luisi, Michele; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Andrea Riccardo

    2013-09-01

    Functional hypothalamic amenorrhea (FHA) is a non organic, secondary amenorrhea related to gonadotropin-releasing hormone pulsatile secretion impairment. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays an important role in the growth, development, maintenance and function of several neuronal systems. The aim of the study was the evaluation of plasma BDNF concentrations in patients with the diagnosis of FHA. We studied 85 subjects diagnosed with FHA who were compared with 10 healthy, eumenorrheic controls with normal body mass index. Plasma BDNF and serum luteinizing hormone, follicle-stimulating hormone and estradiol (E2) concentrations were measured by immunoenzymatic method (enzyme-linked immunosorbent assay). Significantly lower concentration of plasma BDNF was found in FHA patients (196.31 ± 35.26 pg/ml) in comparison to healthy controls (407.20 ± 25.71 pg/ml; p < 0.0001). In the control group, there was a strong positive correlation between plasma BDNF and serum E2 concentrations (r = 0.92, p = 0.0001) but in FHA group it was not found. Role of BDNF in FHA is not yet fully understood. There could be found studies concerning plasma BDNF concentrations in humans and animals in the literature. However, our study is one of the first projects which describes decreased plasma BDNF concentration in patients with diagnosed FHA. Therefore, further studies on BDNF in FHA should clarify the role of this peptide.

  1. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    NARCIS (Netherlands)

    van Velzen, Laura S.; Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the

  2. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Science.gov (United States)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  3. Brain-derived neurotrophic factor and addiction: Pathological versus therapeutic effects on drug seeking

    NARCIS (Netherlands)

    Barker, J.M.; Taylor, J.R.; de Vries, T.J.; Peters, J.

    2015-01-01

    Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural

  4. Brain-Derived Neurotrophic Factor Predicts Mortality Risk in Older Women

    DEFF Research Database (Denmark)

    Krabbe, K.S.; Mortensen, E.L.; Avlund, K.

    2009-01-01

    OBJECTIVES To test the hypothesis that low circulating brain-derived neurotrophic factor (BDNF), a secretory member of the neurotrophin family that has a protective role in neurodegeneration and stress responses and a regulatory role in metabolism, predicts risk of all-cause mortality in 85-year...

  5. Decreased levels of brain-derived neurotrophic factor in the remitted state of unipolar depressive disorder

    DEFF Research Database (Denmark)

    Hasselbalch, Jacob; Knorr, U; Bennike, B

    2012-01-01

    Decreased levels of peripheral brain-derived neurotrophic factor (BDNF) have been associated with depression. It is uncertain whether abnormally low levels of BDNF in blood are present beyond the depressive state and whether levels of BDNF are associated with the course of clinical illness....

  6. Exploring Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor Across Glaucoma Stages.

    Directory of Open Access Journals (Sweden)

    Francesco Oddone

    Full Text Available To investigate the serum levels of Brain Derived Neurotrophic Factor (BDNF and Nerve Growth Factor (NGF in patients affected by primary open angle glaucoma with a wide spectrum of disease severity compared to healthy controls and to explore their relationship with morphological and functional glaucoma parameters.45 patients affected by glaucoma at different stages and 15 age-matched healthy control subjects underwent visual field testing, peripapillary retinal nerve fibre layer thickness measurement using Spectral Domain Optical Coherence Tomography and blood collection for both neurotrophins detection by Enzyme-Linked Immunosorbent Assay. Statistical analysis and association between biostrumental and biochemical data were investigated.Serum levels of BDNF in glaucoma patients were significantly lower than those measured in healthy controls (261.2±75.0 pg/ml vs 313.6±79.6 pg/ml, p = 0.03. Subgroups analysis showed that serum levels of BDNF were significantly lower in early (253.8±40.7 pg/ml, p = 0.019 and moderate glaucoma (231.3±54.3 pg/ml, p = 0.04 but not in advanced glaucoma (296.2±103.1 pg/ml, p = 0.06 compared to healthy controls. Serum levels of NGF in glaucoma patients were significantly lower than those measured in the healthy controls (4.1±1 pg/mL vs 5.5±1.2 pg/mL, p = 0.01. Subgroups analysis showed that serum levels of NGF were significantly lower in early (3.5±0.9 pg/mL, p = 0.0008 and moderate glaucoma (3.8±0.7 pg/ml, p<0.0001 but not in advanced glaucoma (5.0±0.7 pg/ml, p = 0.32 compared to healthy controls. BDNF serum levels were not related to age, visual field mean deviation or retinal nerve fibre layer thickness either in glaucoma or in controls while NGF levels were significantly related to visual field mean deviation in the glaucoma group (r2 = 0.26, p = 0.004.BDNF and NGF serum levels are reduced in the early and moderate glaucoma stages, suggesting the possibility that both factors could be further investigated

  7. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis.

    Science.gov (United States)

    Xu, Danfeng; Lian, Di; Wu, Jing; Liu, Ying; Zhu, Mingjie; Sun, Jiaming; He, Dake; Li, Ling

    2017-08-04

    Streptococcus pneumoniae meningitis is a serious inflammatory disease of the central nervous system (CNS) and is associated with high morbidity and mortality rates. The inflammatory processes initiated by recognition of bacterial components contribute to apoptosis in the hippocampal dentate gyrus. Brain-derived neurotrophic factor (BDNF) has long been recommended for the treatment of CNS diseases due to its powerful neuro-survival properties, as well as its recently reported anti-inflammatory and anti-apoptotic effects in vitro and in vivo. In this study, we investigated the effects of BDNF-related signaling on the inflammatory response and hippocampal apoptosis in experimental models of pneumococcal meningitis. Pretreatment with exogenous BDNF or the tropomyosin-receptor kinase B (TrkB) inhibitor k252a was performed to assess the activation or inhibition of the BDNF/TrkB-signaling axis prior to intracisternal infection with live S. pneumoniae. At 24 h post-infection, rats were assessed for clinical severity and sacrificed to harvest the brains. Paraffin-embedded brain sections underwent hematoxylin and eosin staining to evaluate pathological severity, and cytokine and chemokine levels in the hippocampus and cortex were evaluated by enzyme-linked immunosorbent assay. Additionally, apoptotic neurons were detected in the hippocampal dentate gyrus by terminal deoxynucleotidyl transferase dUTP-nick-end labeling, key molecules associated with the related signaling pathway were analyzed by real-time polymerase chain reaction and western blot, and the DNA-binding activity of nuclear factor kappa B (NF-κB) was measured by electrophoretic mobility shift assay. Rats administered BDNF exhibited reduced clinical impairment, pathological severity, and hippocampal apoptosis. Furthermore, BDNF pretreatment suppressed the expression of inflammatory factors, including tumor necrosis factor α, interleukin (IL)-1β, and IL-6, and increased the expression of the anti

  8. Plasma Brain-Derived Neurotrophic Factor Levels in Newborn Infants with Neonatal Abstinence Syndrome.

    Science.gov (United States)

    Subedi, Lochan; Huang, Hong; Pant, Amrita; Westgate, Philip M; Bada, Henrietta S; Bauer, John A; Giannone, Peter J; Sithisarn, Thitinart

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a type of growth factor that promotes growth and survival of neurons. Fetal exposure to opiates can lead to postnatal withdrawal syndrome, which is referred as neonatal abstinence syndrome (NAS). Preclinical and clinical studies have shown an association between opiates exposure and alteration in BDNF expression in the brain and serum levels in adult. However, to date, there are no data available on the effects of opiate exposure on BDNF levels in infant who are exposed to opiates in utero and whether BDNF level may correlate with the severity of NAS. To compare plasma BDNF levels among NAS and non-NAS infants and to determine the correlation of BDNF levels and the severity of NAS. This is a prospective cohort study with no intervention involved. Infants ≥35 weeks of gestation were enrolled. BDNF level was measured using enzyme-linked immunosorbent assay technique from blood samples drawn within 48 h of life. The severity of NAS was determined by the length of hospital stay, number of medications required to treat NAS. 67 infants were enrolled, 34 NAS and 33 non-NAS. Mean gestational age did not differ between the two groups. Mean birth weight of NAS infants was significantly lower than the non-NAS infants (3,070 ± 523 vs. 3,340 ± 459 g, p  = 0.028). Mean BDNF level in NAS group was 252.2 ± 91.6 ng/ml, significantly higher than 211.3 ± 66.3 ng/ml in the non-NAS group ( p  = 0.04). There were no differences in BDNF levels between NAS infants that required one medication vs. more than one medication (254 ± 91 vs. 218 ± 106 ng/ml, p  = 0.47). There was no correlation between the BDNF levels and length of hospital stay ( p  = 0.68) among NAS infants. Overall, there were no significant correlations between BDNF levels and NAS scores except at around 15 h after admission (correlation 0.35, p  = 0.045). Plasma BDNF level was significantly increased in NAS infants

  9. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  10. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel

    2014-01-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control desi......Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case......-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3......, levels of BDNF were significantly elevated in bipolar disorder patients in euthymic- (pdifference in BDNF levels...

  11. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans

    DEFF Research Database (Denmark)

    Huang, T; Larsen, K T; Ried-Larsen, M

    2014-01-01

    The purpose of this study was to summarize the effects of physical activity and exercise on peripheral brain-derived neurotrophic factor (BDNF) in healthy humans. Experimental and observational studies were identified from PubMed, Web of Knowledge, Scopus, and SPORT Discus. A total of 32 articles...... studies suggested an inverse relationship between the peripheral BDNF level and habitual physical activity or cardiorespiratory fitness. More research is needed to confirm the findings from the observational studies....

  12. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder

    OpenAIRE

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-01-01

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the gr...

  13. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice

    OpenAIRE

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and m...

  14. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor

    OpenAIRE

    Szuhany, Kristin L.; Bugatti, Matteo; Otto, Michael W.

    2014-01-01

    Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1,111 participants) examining the effect of exercise on BDNF levels in three e...

  15. Nonenzymatic glucosylation of neuronal calmodulin and its functional consequences

    International Nuclear Information System (INIS)

    Kowluru, R.A.; Kowluru, A.; Bitensky, M.W.

    1986-01-01

    Glucosylation (NEG) (nonenzymatic) of proteins is a posttranslational protein modification that occurs readily in the diabetic environment. As a consequence of NEG some proteins are known to undergo a change in function. Their studies of red blood cell (RBC) cytoskeletal proteins indicate that calmodulin is glucosylated in the diabetic RBC and this is followed by a change in function. Here they present new data in support of their earlier findings. Purified bovine brain calmodulin was glucosylated in vitro in the presence of 28 mM glucose. After six days of incubation at room temperature 2.75 moles of glucose were incorporated per mole of calmodulin. Glucosylated calmodulin exhibited a marked reduction in calcium dependent functions. Its ability to stimulate neuronal phosphodiesterase (PDE) and adenylate cyclase was reduced by 65 and 80% respectively. Its ability to stimulate rat brain protein kinase was reduced by 40%. Glucosylated calmodulin exhibited a 56% drop in its 45 Ca binding as compared with unmodified calmodulin. These data provide an additional example in which NEG markedly alters protein function

  16. Correlation Between Hedgehog (Hh) Protein Family and Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Halepoto, Dost Muhammad; Bashir, Shahid; Zeina, Rana; Al-Ayadhi, Laila Y

    2015-12-01

    To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). An observational, comparative study. Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age-matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient 'r' was determined. The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p autism.

  17. The brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects memory performance in older adults.

    Science.gov (United States)

    Azeredo, Lucas A de; De Nardi, Tatiana; Levandowski, Mateus L; Tractenberg, Saulo G; Kommers-Molina, Julia; Wieck, Andrea; Irigaray, Tatiana Q; Silva, Irênio G da; Grassi-Oliveira, Rodrigo

    2017-01-01

    Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF) is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cognitive aging remains unclear. The purpose of this study was to investigate the effects of the BDNF Val66Met polymorphism on memory performance in a sample of elderly adults. Eighty-seven subjects aged > 55 years were recruited using a community-based convenience sampling strategy in Porto Alegre, Brazil. The logical memory subset of the Wechsler Memory Scale-Revised was used to assess immediate verbal recall (IVR), delayed verbal recall (DVR), and memory retention rate. BDNF Met allele carriers had lower DVR scores (p = 0.004) and a decline in memory retention (p = 0.017) when compared to Val/Val homozygotes. However, we found no significant differences in IVR between the two groups (p = 0.088). These results support the hypothesis of the BDNF Val66Met polymorphism as a risk factor associated with cognitive impairment, corroborating previous findings in young and older adults.

  18. Serum concentrations of brain-derived neurotrophic factor in patients diagnosed with gender dysphoria undergoing sex reassignment surgery

    Directory of Open Access Journals (Sweden)

    Maiko A. Schneider

    Full Text Available Abstract Introduction: Transsexualism (ICD-10 is a condition characterized by a strong and persistent dissociation with one's assigned gender. Sex reassignment surgery (SRS and hormone therapy provide a means of allowing transsexual individuals to feel more congruent with their gender and have played a major role in treatment over the past 70 years. Brain-derived neurotrophic factor (BDNF appears to play a key role in recovery from acute surgical trauma and environmentally mediated vulnerability to psychopathology. We hypothesize that BDNF may be a biomarker of alleviation of gender incongruence suffering. Objectives: To measure preoperative and postoperative serum BDNF levels in transsexual individuals as a biomarker of alleviation of stress related to gender incongruence after SRS. Methods: Thirty-two male-to-female transsexual people who underwent both surgery and hormonal treatment were selected from our initial sample. BDNF serum levels were assessed before and after SRS with sandwich enzyme linked immunosorbent assay (ELISA. The time elapsed between the pre-SRS and post-SRS blood collections was also measured. Results: No significant difference was found in pre-SRS or post-SRS BDNF levels or with relation to the time elapsed after SRS when BDNF levels were measured. Conclusion: Alleviation of the suffering related to gender incongruence after SRS cannot be assessed by BDNF alone. Surgical solutions may not provide a quick fix for psychological distress associated with transsexualism and SRS may serve as one step toward, rather than as the conclusion of, construction of a person's gender identity.

  19. Effect of controlled release of brain-derived neurotrophic factor and neurotrophin-3 from collagen gel on neural stem cells.

    Science.gov (United States)

    Huang, Fei; Wu, Yunfeng; Wang, Hao; Chang, Jun; Ma, Guangwen; Yin, Zongsheng

    2016-01-20

    This study aimed to examine the effect of controlled release of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from collagen gel on rat neural stem cells (NSCs). With three groups of collagen gel, BDNF/collagen gel, and NT-3/collagen gel as controls, BDNF and NT-3 were tested in the BDNF-NT-3/collagen gel group at different time points. The enzyme-linked immunosorbent assay results showed that BDNF and NT-3 were steadily released from collagen gels for 10 days. The cell viability test and the bromodeoxyuridine incorporation assay showed that BDNF-NT-3/collagen gel supported the survival and proliferation of NSCs. The results also showed that the length of processes was markedly longer and differentiation percentage from NSCs into neurons was much higher in the BDNF-NT-3/collagen gel group than those in the collagen gel, BDNF/collagen gel, and NT-3/collagen gel groups. These findings suggest that BDNF-NT-3/collagen gel could significantly improve the ability of NSCs proliferation and differentiation.

  20. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.

    Science.gov (United States)

    Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-12-18

    It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.

  1. Cross-sectional associations of objectively measured physical activity with brain-derived neurotrophic factor in adolescents.

    Science.gov (United States)

    Huang, Tao; Gejl, Anne Kær; Tarp, Jakob; Andersen, Lars Bo; Peijs, Lone; Bugge, Anna

    2017-03-15

    The purpose of this study was to examine the associations between objectively measured physical activity and serum brain-derived neurotrophic factor (BDNF) in adolescents. Cross-sectional analyses were performed using data from 415 adolescents who participated in the 2015 follow-up of the Childhood Health Activity and Motor Performance School Study Denmark (the CHAMPS-study DK). Physical activity was objectively measured by accelerometry monitors. Serum BDNF levels were analyzed using the Enzyme-linked immunosorbent assay (ELISA). Anthropometrics and pubertal status were measured using standardized procedures. With adjustment for age, pubertal status and body mass index, mean physical activity (counts per minute) was negatively associated with serum BDNF in boys (P=0.013). Similarly, moderate-to-vigorous physical activity (MVPA) was negatively associated with serum BDNF in boys (P=0.035). In girls, mean physical activity and MVPA were not associated with serum BDNF. Without adjustment for wear time, sedentary time was not associated with serum BDNF in either sex. These findings indicate that higher physical activity is associated with lower serum BDNF in boys, but not in girls. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The brain-derived neurotrophic factor (BDNF gene Val66Met polymorphism affects memory performance in older adults

    Directory of Open Access Journals (Sweden)

    Lucas A. de Azeredo

    Full Text Available Objective: Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cognitive aging remains unclear. The purpose of this study was to investigate the effects of the BDNF Val66Met polymorphism on memory performance in a sample of elderly adults. Methods: Eighty-seven subjects aged > 55 years were recruited using a community-based convenience sampling strategy in Porto Alegre, Brazil. The logical memory subset of the Wechsler Memory Scale-Revised was used to assess immediate verbal recall (IVR, delayed verbal recall (DVR, and memory retention rate. Results: BDNF Met allele carriers had lower DVR scores (p = 0.004 and a decline in memory retention (p = 0.017 when compared to Val/Val homozygotes. However, we found no significant differences in IVR between the two groups (p = 0.088. Conclusion: These results support the hypothesis of the BDNF Val66Met polymorphism as a risk factor associated with cognitive impairment, corroborating previous findings in young and older adults.

  3. Correlation between hedgehog (hh) protein family and brain-derived neurotrophic factor (bdnf) in autism spectrum disorder (asd)

    International Nuclear Information System (INIS)

    Halepoto, D.M.; Bashir, S.

    2015-01-01

    To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). Study Design: An observational, comparative study. Place and Duration of Study: Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Methodology: Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient-r was determined. Results: The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. Conclusion: The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism. (author)

  4. Plasma Brain-Derived Neurotrophic Factor Levels in Newborn Infants with Neonatal Abstinence Syndrome

    Directory of Open Access Journals (Sweden)

    Lochan Subedi

    2017-11-01

    Full Text Available BackgroundBrain-derived neurotrophic factor (BDNF is a type of growth factor that promotes growth and survival of neurons. Fetal exposure to opiates can lead to postnatal withdrawal syndrome, which is referred as neonatal abstinence syndrome (NAS. Preclinical and clinical studies have shown an association between opiates exposure and alteration in BDNF expression in the brain and serum levels in adult. However, to date, there are no data available on the effects of opiate exposure on BDNF levels in infant who are exposed to opiates in utero and whether BDNF level may correlate with the severity of NAS.ObjectiveTo compare plasma BDNF levels among NAS and non-NAS infants and to determine the correlation of BDNF levels and the severity of NAS.MethodsThis is a prospective cohort study with no intervention involved. Infants ≥35 weeks of gestation were enrolled. BDNF level was measured using enzyme-linked immunosorbent assay technique from blood samples drawn within 48 h of life. The severity of NAS was determined by the length of hospital stay, number of medications required to treat NAS.Results67 infants were enrolled, 34 NAS and 33 non-NAS. Mean gestational age did not differ between the two groups. Mean birth weight of NAS infants was significantly lower than the non-NAS infants (3,070 ± 523 vs. 3,340 ± 459 g, p = 0.028. Mean BDNF level in NAS group was 252.2 ± 91.6 ng/ml, significantly higher than 211.3 ± 66.3 ng/ml in the non-NAS group (p = 0.04. There were no differences in BDNF levels between NAS infants that required one medication vs. more than one medication (254 ± 91 vs. 218 ± 106 ng/ml, p = 0.47. There was no correlation between the BDNF levels and length of hospital stay (p = 0.68 among NAS infants. Overall, there were no significant correlations between BDNF levels and NAS scores except at around 15 h after admission (correlation 0.35, p = 0.045.ConclusionPlasma BDNF

  5. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    Directory of Open Access Journals (Sweden)

    Tirassa P

    2015-10-01

    Full Text Available Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR, Institute of Cell Biology and Neurobiology (IBCN, 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI, Rome, Italy; 4International Psychoanalytical Association (IPA, London, UKAbstract: The light information pathways and their relationship with the body rhythms have generated a new insight into the neurobiology and the neurobehavioral sciences, as well as into the clinical approaches to human diseases associated with disruption of circadian cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely been used in psychiatric patients characterized by mood-related disorders, but the timing and dosage use of the various treatments, although based on international guidelines, are mainly dependent on the psychiatric experiences. Further, many efforts have been made to identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and brain-derived neurotrophic factor show anatomical and functional link with the circadian system and mediate some of light-induced effects in brain. In addition, in humans, both nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, which correlate with the morningness–eveningness dimensions, and are influenced by light, suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The evidences of the relationship between the diverse mood-related disorders

  6. Characterization and functional analysis of Calmodulin and Calmodulin-like genes in Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2016-12-01

    Full Text Available Calcium is a universal messenger that is involved in the modulation of diverse developmental and adaptive processes in response to various stimuli. Calmodulin (CaM and calmodulin-like (CML proteins are major calcium sensors in all eukaryotes, and they have been extensively investigated for many years in plants and animals. However, little is known about CaMs and CMLs in woodland strawberry (Fragaria vesca. In this study, we performed a genome-wide analysis of the strawberry genome and identified 4 CaM and 36 CML genes. Bioinformatics analyses, including gene structure, phylogenetic tree, synteny and three-dimensional model assessments, revealed the conservation and divergence of FvCaMs and FvCMLs, thus providing insight regarding their functions. In addition, the transcript abundance of four FvCaM genes and the four most related FvCML genes were examined in different tissues and in response to multiple stress and hormone treatments. Moreover, we investigated the subcellular localization of several FvCaMs and FvCMLs, revealing their potential interactions based on the localizations and potential functions. Furthermore, overexpression of five FvCaM and FvCML genes could not induce a hypersensitive response, but four of the five genes could increase resistance to Agrobacterium tumefaciens in Nicotiana benthamiana leaves. This study provides evidence for the biological roles of FvCaM and CML genes, and the results lay the foundation for future functional studies of these genes.

  7. Pivoting between calmodulin lobes triggered by calcium in the Kv7.2/calmodulin complex.

    Science.gov (United States)

    Alaimo, Alessandro; Alberdi, Araitz; Gomis-Perez, Carolina; Fernández-Orth, Juncal; Bernardo-Seisdedos, Ganeko; Malo, Covadonga; Millet, Oscar; Areso, Pilar; Villarroel, Alvaro

    2014-01-01

    Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca(2+). First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using (15)N-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca(2+) the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca(2+) makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca(2+).

  8. Pivoting between calmodulin lobes triggered by calcium in the Kv7.2/calmodulin complex.

    Directory of Open Access Journals (Sweden)

    Alessandro Alaimo

    Full Text Available Kv7.2 (KCNQ2 is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca(2+. First, we performed a fluorometric assay using dansylated calmodulin (D-CaM to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB. Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using (15N-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca(2+ the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca(2+ makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca(2+.

  9. Brain-derived neurotrophic factor, impaired glucose metabolism, and bipolar disorder course

    DEFF Research Database (Denmark)

    Mansur, Rodrigo B; Santos, Camila M; Rizzo, Lucas B

    2016-01-01

    OBJECTIVES: The neurotrophin brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker in bipolar disorder (BD). However, current evidence is limited and results have been highly heterogeneous. This study aimed to assess the moderating effect of impaired glucose metabolism......, alcohol use, and IGM (P=.046). There was no effect of IGM (P=.860) and no interaction between BD diagnosis and IGM (P=.893). Peripheral BDNF levels were positively correlated with lifetime depressive episodes (Psuicide attempts (P=.021). IGM moderated...... the association between BDNF and the number of previous mood episodes (P

  10. Molecular mechanisms underlying the regulation of brain-derived neurotrophic factor (BDNF) translation in dendrites

    OpenAIRE

    Pinheiro, Vera Lúcia Margarido

    2010-01-01

    Dissertação de mestrado em Biologia Celular e Molecular apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra A especificidade espacial e temporal subjacente à diversidade de processos de plasticidade sináptica que ocorrem no sistema nervoso central está profundamente relacionada com a disponibilidade da proteína brain-derived neurotrophic factor (BDNF) em domínios sub-celulares distintos, especialmente na área pós-sinápti...

  11. The study on transport of brain-derived neurotrophic factor in facial nerve

    International Nuclear Information System (INIS)

    Li Yunchun; Li Lin; Wang Quanlin; Yang Xiaochuan; He Gang; Gao Bingqing; Lin Daicheng; Liang Chuanyu

    2000-01-01

    The transport information of brain-derived neurotrophic factor (BDNF) in facial nerve is studied using 125 I-BDNF or 131 I-BDNF. After one lateral facial nerve trunk of adult rabbit is transected, a silicone chamber is inserted between the stumps, and labelled compounds are administered into the chamber. Bilateral facial nerve trunk and facial nerve motor neurone of brain-stem of rabbits are collected and counted respectively, and imaged at coronary position of head in live rabbit. The results show that BDNF has a retrograde transport in facial nerve, and the transport of 131 I-BDNF is marked restrained by BDNF in facial nerve

  12. Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder

    DEFF Research Database (Denmark)

    Jacoby, Anne Sophie; Munkholm, Klaus; Vinberg, Maj

    2016-01-01

    BACKGROUND: Peripheral blood brain-derived neurotrophic factor (BDNF) and inflammatory markers may reflect key pathophysiological mechanisms in bipolar disorder in relation to disease activity and neuroprogression. AIMS: To investigate whether neutrophins and inflammatory marker vary with mood...... overall compared with healthy control subjects. However, in adjusted models, no statistically significant differences were found in any measure between patients and control individuals. Levels of hsCRP in depressive states were decreased with 40% (95% CI: 5-62%, p=0.029) compared with euthymia and with 48...

  13. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Sondergaard, M.T.

    2012-01-01

    a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe......Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause...... calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac...

  14. Engineering of a novel Ca2+-regulated kinesin molecular motor using a calmodulin dimer linker

    International Nuclear Information System (INIS)

    Shishido, Hideki; Maruta, Shinsaku

    2012-01-01

    Highlights: ► Engineered kinesin–M13 and calmodulin involving single cysteine were prepared. ► CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. ► Kinesin–M13 was dimerized via CaM dimer in the presence of calcium. ► Function of the engineered kinesin was regulated by a Ca 2+ -calmodulin dimer linker. -- Abstract: The kinesin–microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have “on–off” control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355–M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355–M13 dimerization with CaM dimers, we measured K355–M13 motility and found that it can be reversibly regulated in a Ca 2+ -dependent manner. We also found that velocities of K355–M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca 2+ -dependent dimerization of K355–M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.

  15. Calmodulin Mutations Associated with Recurrent Cardiac Arrest in Infants

    Science.gov (United States)

    Crotti, Lia; Johnson, Christopher N.; Graf, Elisabeth; De Ferrari, Gaetano M.; Cuneo, Bettina F.; Ovadia, Marc; Papagiannis, John; Feldkamp, Michael D.; Rathi, Subodh G.; Kunic, Jennifer D.; Pedrazzini, Matteo; Wieland, Thomas; Lichtner, Peter; Beckmann, Britt-Maria; Clark, Travis; Shaffer, Christian; Benson, D. Woodrow; Kääb, Stefan; Meitinger, Thomas; Strom, Tim M.; Chazin, Walter J.; Schwartz, Peter J.; George, Alfred L.

    2013-01-01

    Background Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on two unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. Methods and Results We ascertained two unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The two parent-child trios were investigated using exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in two genes encoding calmodulin. We discovered three heterozygous de novo mutations in either CALM1 or CALM2, two of the three human genes encoding calmodulin, in the two probands and in two additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several fold reductions in calcium binding affinity. Conclusions Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy. PMID:23388215

  16. Effect of Three Calmodulin Antagonists on Subpopulations of CD44 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical ... cancer stem cells. It is not known, however, whether targeting CD44 can alter the fate of cancer stem cells themselves. In this study, the effect of the calmodulin antagonists (N-(10-.

  17. 43. Calmodulin regulating calcium sensitivity of Na channels

    Directory of Open Access Journals (Sweden)

    R. Vegiraju

    2016-07-01

    Full Text Available By extrapolating information from existing research and observing previous assumptions regarding the structure of the Na Channel, this experiment was conducted under the hypothesis that the Na Channel is in part regulated by the calmodulin protein, as a result proving calcium sensitivity of the Na Channel. Furthermore, we assume that there is a one to one stoichiometry between the Na Channel and the Calmodulin. There has been extensive research into the functionality and structure of sodium ion channels (Na channels, as several diseases are associated with the lack of regulation of sodium ions, that is caused by the disfunction of these Na channels. However, one highly controversial matter in the field is the importance of the protein calmodulin (CaM and calcium in Na channel function. Calmodulin is a protein that is well known for its role as a calcium binding messenger protein, and that association is believed to play an indirect role in regulating the Na channel through the Na channel’s supposed calcium sensitivity. While there are proponents for both sides, there has been relatively little research that provides strong evidence for either case. In this experiment, the effect of calmodulin on NaV 1.5 is tested by preparing a set of cardiac cells (of the human specie with the NaV 1.5 C-Termini and CaM protein, which were then to be placed in solutions with varying concentrations of calcium. We took special care to test multiple concentrations of calcium, as previous studies have tested very low concentrations, with Manu Ben-Johny’s team from the John Hopkins laboratory in particular testing up to a meager 50 micromolar, despite producing a well-respected paper (By comparison, the average Na channel can naturally sustain a concentration of almost 1-2 millimolar and on some occasions, reaching even higher concentrations. After using light scattering and observing the signals given off by the calcium interacting with these Nav1.5/Ca

  18. Activation of AMP-activated protein kinase by kainic acid mediates brain-derived neurotrophic factor expression through a NF-kappaB dependent mechanism in C6 glioma cells

    International Nuclear Information System (INIS)

    Yoon, Hana; Oh, Young Taek; Lee, Jung Yeon; Choi, Ji Hyun; Lee, Ju Hie; Baik, Hyung Hwan; Kim, Sung Soo; Choe, Wonchae; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug

    2008-01-01

    AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis. Kainic acid (KA), a prototype excitotoxin is known to induce brain-derived neurotrophic factor (BDNF) in brain. In this study, we examined the role of AMPK in KA-induced BDNF expression in C6 glioma cells. We showed that KA and KA receptor agonist induced activation of AMPK and KA-induced AMPK activation was blocked by inhibition of Ca 2+ /calmodulin-dependent protein kinase kinase (CaMKK) β. We then showed that inhibition of AMPK by compound C, a selective inhibitor of AMPK, or small interfering RNA of AMPKα1 blocked KA-induced BDNF mRNA and protein expression. Inhibition of AMPK blocked KA-induced phosphorylation of CaMKII and I kappaB kinase (IKK) in C6 cells. Finally, we showed that inhibition of AMPK reduced DNA binding and transcriptional activation of nuclear factor-kappaB (NF-κB) in KA-treated cells. These results suggest that AMPK mediates KA-induced BDNF expression by regulating NF-κB activation

  19. Inhibition of Inwardly Rectifying Potassium (Kir 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF Expression in Astrocytes

    Directory of Open Access Journals (Sweden)

    Masato Kinboshi

    2017-12-01

    Full Text Available Inwardly rectifying potassium (Kir 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown on expression of brain-derived neurotrophic factor (BDNF, a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

  20. Evidence of associations between brain-derived neurotrophic factor (BDNF serum levels and gene polymorphisms with tinnitus

    Directory of Open Access Journals (Sweden)

    Aysun Coskunoglu

    2017-01-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. Materials and Methods: In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Results: Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. Conclusions: This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.

  1. Serum brain-derived neurotrophic factor (BDNF) across pregnancy and postpartum: Associations with race, depressive symptoms, and low birth weight.

    Science.gov (United States)

    Christian, Lisa M; Mitchell, Amanda M; Gillespie, Shannon L; Palettas, Marilly

    2016-12-01

    Brain-derived neurotrophic factor (BDNF) is implicated as a causal factor in major depression and is critical to placental development during pregnancy. Longitudinal data on BDNF across the perinatal period are lacking. These data are of interest given the potential implications for maternal mood and fetal growth, particularly among Black women who show ∼2-fold greater risk for delivering low birth weight infants. Serum BDNF, serum cortisol, and depressive symptoms (per CES-D) were assessed during each trimester and 4-11 weeks postpartum among 139 women (77 Black, 62 White). Low birth weight (BDNF declined considerably from 1st through 3rd trimesters (ps≤0.008) and subsequently increased at postpartum (pBDNF during the 1st trimester, 2nd trimester, and postpartum (ps≤0.032) as well as lower serum cortisol during the 2nd and 3rd trimester (ps≤0.01). Higher serum cortisol was concurrently associated with lower serum BDNF in the 2nd trimester only (pBDNF at both the 2nd and 3rd trimester was negatively associated with 3rd trimester depressive symptoms (ps≤0.02). In addition, women delivering low versus healthy weight infants showed significantly lower serum BDNF in the 3rd trimester (p=0.004). Women delivering low versus healthy weight infants did not differ in depressive symptoms at any time point during pregnancy (ps≥0.34). Serum BDNF declines considerably across pregnancy in Black and White women, with overall higher levels in Blacks. Lower serum BDNF in late pregnancy corresponds with higher depressive symptoms and risk for low birth weight in Black and White women. However, the predictive value of serum BDNF in pregnancy is specific to within-race comparisons. Potential links between racial differences in serum BDNF and differential pregnancy-related cortisol adaptation require further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Evidence of associations between brain-derived neurotrophic factor (BDNF) serum levels and gene polymorphisms with tinnitus.

    Science.gov (United States)

    Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.

  3. Association of increased urine brain derived neurotrophic factor with lower urinary tract symptoms in men with benign prostatic hyperplasia.

    Science.gov (United States)

    Wang, Long-Wang; Li, Jian-Long; Yu, Yi; Xiao, Rui-Hai; Huang, Hong-Wei; Kuang, Ren-Rui; Hai, Bo

    2017-08-01

    Urinary brain-derived neurotrophic factor (BDNF), an ubiquitous neurotrophin, was found to rise in patients with benign prostatic hyperplasia (BPH). We hypothesized that the urinary level of BDNF could be a potential biomarker for lower urinary tract symptoms (LUTS) in patients with BPH. Totally, 76 patients with BPH-caused LUTS and 32 male control subjects without BPH were enrolled. International Prostate Symptom Score (IPSS) was applied to assess the symptom severity of LUTS. Urodynamic tests were performed for the diagnosis of underlying detrusor overactivity (DO) in the patients with BPH. Urine samples were collected from all subjects. Urinary BDNF levels were measured using enzyme-linked immunosorbent assays and normalized by urinary creatinine (Cr) levels. Seventy-six BPH patients were divided into moderate LUTS group (n=51, 720) according to the IPSS. Of the 76 BPH patients, DO was present in 34 (44.7%) according to the urodynamic test. The urinary BDNF/Cr levels were significantly higher in BPH patients with moderate LUTS (8.29±3.635, PBDNF/Cr levels than patients with moderate LUTS (11.8±6.44 vs. 8.29±3.635, P=0.000). The conditions of BPH with LUTS correlated with elevated urinary BDNF levels, and urinary BDNF levels were even higher in BPH-DO patients. The results of this study have provided evidence to suggest that urinary BDNF level test could evaluate the severity of LUTS in BPH patients, and BDNF level can be used as a biomarker for the diagnosis of DO in BPH patients.

  4. Serum brain-derived neurotrophic factor (BDNF) concentrations in pregnant women with post-traumatic stress disorder and comorbid depression.

    Science.gov (United States)

    Yang, Na; Gelaye, Bizu; Zhong, Qiuyue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A

    2016-12-01

    There is accumulating evidence for the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression. However, the role of BDNF in the pathophysiology of post-traumatic stress disorder (PTSD) remains controversial, and no study has assessed BDNF concentrations among pregnant women with PTSD. We examined early-pregnancy BDNF concentrations among women with PTSD with and without depression. A total of 2928 women attending prenatal care clinics in Lima, Peru, were recruited. Antepartum PTSD and depression were evaluated using PTSD Checklist-Civilian Version (PCL-C) and Patient Health Questionnaire-9 (PHQ-9) scales, respectively. BDNF concentrations were measured in a subset of the cohort (N = 944) using a competitive enzyme-linked immunosorbent assay (ELISA). Logistic regression procedures were used to estimate odds ratios (OR) and 95 % confidence intervals (95 % CI). Antepartum PTSD (37.4 %) and depression (27.6 %) were prevalent in this cohort of low-income pregnant Peruvian women. Approximately 19.9 % of participants had comorbid PTSD-depression. Median serum BDNF concentrations were lower among women with comorbid PTSD-depression as compared with women without either condition (median [interquartile range], 20.44 [16.97-24.30] vs. 21.35 [17.33-26.01] ng/ml; P = 0.06). Compared to the referent group (those without PTSD and depression), women with comorbid PTSD-depression were 1.52-fold more likely to have low (BDNF concentrations (OR = 1.52; 95 % CI 1.00-2.31). We observed no evidence of reduced BDNF concentrations among women with isolated PTSD. BDNF concentrations in early pregnancy were only minimally and non-significantly reduced among women with antepartum PTSD. Reductions in BDNF concentrations were more pronounced among women with comorbid PTSD-depression.

  5. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    Science.gov (United States)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  6. Cortisol and Brain-Derived Neurotrophic Factor Levels Prior to Treatment in Children With Obsessive-Compulsive Disorder.

    Science.gov (United States)

    Şimşek, Şeref; Gençoğlan, Salih; Yüksel, Tuğba; Kaplan, İbrahim; Alaca, Rümeysa

    2016-07-01

    In this study, we investigated serum brain-derived neurotrophic factor (BDNF), adrenocorticotropic hormone (ACTH), and cortisol levels between children with obsessive-compulsive disorder (OCD) prior to treatment and healthy controls. In addition, the study aimed to assess any correlations between OCD symptom severity and BDNF, ACTH, and cortisol levels. Twenty-nine children, aged from 7 to 17 years (male/female: 21/8) and diagnosed with OCD according to DSM-IV prior to treatment, were compared with 25 healthy control subjects (male/female: 16/9). The study was conducted between December 2012 and December 2013. The Kiddie Schedule for Affective Disorders and Schizophrenia, Present and Lifetime Version (K-SADS-PL), Children's Yale-Brown Obsessive Compulsive Scale, and Children's Depression Inventory (CDI) were administered to the children. BDNF, ACTH, and cortisol levels were detected using a prepared kit with the enzyme-linked immunosorbent assay method. BDNF, ACTH, and cortisol levels in the OCD group were significantly higher when compared with the control group (P = .02, P = .03, and P = .046, respectively). No association was detected between the severity and duration of OCD symptoms and BDNF, ACTH, and cortisol levels. CDI scores in both groups were similar. The mean (SD) duration of OCD symptoms was 17.9 (18.5) months. Our findings suggest that BDNF levels adaptively increase as a result of the damaging effects of the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity on brain tissue in the early stages of OCD. HPA axis abnormalities and BDNF may play a role in the pathogenesis of the disease. © Copyright 2016 Physicians Postgraduate Press, Inc.

  7. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy

    DEFF Research Database (Denmark)

    Klein, Anders B; Jennum, Poul; Knudsen, Stine

    2013-01-01

    in hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesised......Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction...... that serum levels of these factors are altered in patients with narcolepsy compared to healthy controls without sleep disturbances. Polysomnography data was obtained and serum BDNF and NGF levels measured using ELISA, while hypocretin was measured using RIA. Serum BDNF levels were significantly higher...

  8. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Brassard, Patrice; Adser, Helle

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) has an important role in regulating maintenance, growth and survival of neurons. However, the main source of circulating BDNF in response to exercise is unknown. To identify whether the brain is a source of BDNF during exercise, eight volunteers rowed for 4...... h while simultaneous blood samples were obtained from the radial artery and the internal jugular vein. To further identify putative cerebral region(s) responsible for BDNF release, mouse brains were dissected and analysed for BDNF mRNA expression following treadmill exercise. In humans, a BDNF...... release from the brain was observed at rest (P BDNF, while that contribution decreased following 1 h of recovery. In mice, exercise induced a three...

  9. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    Science.gov (United States)

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  10. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity

    Directory of Open Access Journals (Sweden)

    Francesca eCalabrese

    2014-12-01

    Full Text Available Cytokines are key regulatory mediators involved in the host response to immunological challenges, but also play a critical role in the communication between the immune and the central nervous system. For this, their expression in both systems is under a tight regulatory control. However, pathological conditions may lead to an overproduction of pro-inflammatory cytokines that may have a detrimental impact on central nervous system. In particular, they may damage neuronal structure and function leading to deficits of neuroplasticity, the ability of nervous system to perceive, respond and adapt to external or internal stimuli.In search of the mechanisms by which pro-inflammatory cytokines may affect this crucial brain capability, we will discuss one of the most interesting hypotheses: the involvement of the neurotrophin brain-derived neurotrophic factor, which represents one of the major mediators of neuroplasticity.

  11. Possible Role of Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder: Current Status

    International Nuclear Information System (INIS)

    Halepoto, D. M.; Bashir, S.; AL-Ayadhi, L.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays a vital role in the growth, development, maintenance, and function of several neuronal systems. The purpose of this review is to document the support for the involvement of this molecule in the maintenance of normal cognitive, emotional functioning, and to outline recent developments in the content of Autism spectrum disorder (ASD). Current and future treatment development can be guided by developing understanding of this molecules actions in the brain and the ways the expression of BDNF can be planned. Over the years, research findings suggested a critical role played by BDNF in the development of autism including increased serum concentrations of BDNF in children with autism and identification of different forms of BDNF in families of autistic individuals. (author)

  12. Possible Role of Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder: Current Status

    Energy Technology Data Exchange (ETDEWEB)

    Halepoto, D. M.; Bashir, S.; AL-Ayadhi, L. [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physiology

    2014-04-15

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays a vital role in the growth, development, maintenance, and function of several neuronal systems. The purpose of this review is to document the support for the involvement of this molecule in the maintenance of normal cognitive, emotional functioning, and to outline recent developments in the content of Autism spectrum disorder (ASD). Current and future treatment development can be guided by developing understanding of this molecules actions in the brain and the ways the expression of BDNF can be planned. Over the years, research findings suggested a critical role played by BDNF in the development of autism including increased serum concentrations of BDNF in children with autism and identification of different forms of BDNF in families of autistic individuals. (author)

  13. Downregulated Brain-Derived Neurotrophic Factor-Induced Oxidative Stress in the Pathophysiology of Diabetic Retinopathy.

    Science.gov (United States)

    Behl, Tapan; Kotwani, Anita

    2017-04-01

    Brain-derived neurotrophic factor (BDNF), a member of neurotrophin growth factor family, physiologically mediates induction of neurogenesis and neuronal differentiation, promotes neuronal growth and survival and maintains synaptic plasticity and neuronal interconnections. Unlike the central nervous system, its secretion in the peripheral nervous system occurs in an activity-dependent manner. BDNF improves neuronal mortality, growth, differentiation and maintenance. It also provides neuroprotection against several noxious stimuli, thereby preventing neuronal damage during pathologic conditions. However, in diabetic retinopathy (a neuromicrovascular disorder involving immense neuronal degeneration), BDNF fails to provide enough neuroprotection against oxidative stress-induced retinal neuronal apoptosis. This review describes the prime reasons for the downregulation of BDNF-mediated neuroprotective actions during hyperglycemia, which renders retinal neurons vulnerable to damaging stimuli, leading to diabetic retinopathy. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  14. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Pedersen, Maria; Krabbe, Karen S

    2009-01-01

    identifies BDNF as a player not only in central metabolism, but also in regulating energy metabolism in peripheral organs. Low levels of BDNF are found in patients with neurodegenerative diseases, including Alzheimer's disease and major depression. In addition, BDNF levels are low in obesity...... and independently so in patients with type 2 diabetes. Brain-derived neurotrophic factor is expressed in non-neurogenic tissues, including skeletal muscle, and exercise increases BDNF levels not only in the brain and in plasma, but in skeletal muscle as well. Brain-derived neurotrophic factor mRNA and protein...... diabetes may explain the clustering of these diseases. Brain-derived neurotrophic factor is likely to mediate some of the beneficial effects of exercise with regard to protection against dementia and type 2 diabetes....

  15. Effect of brain-derived neurotrophic factor on the formation of psycho-vegetative syndrome with brain injury

    Directory of Open Access Journals (Sweden)

    Selyanina N.V.

    2016-09-01

    Full Text Available Aim: to determine the role of brain-derived neurotrophic factor in the formation and forecasting of psycho-vegetative syndrome in patients with cerebral mild to moderate injury. Material and Methods. There have been 150 patients with contusion of the brain, examined. Indicators of neurological, psycho-vegetative status, quantitative content of brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in the serum were studied. Results. At patients with brain contusion neurological, psycho-vegetative disturbances and decrease neurotrophic factors are determined. It was found to depend of the content of BDNF and psycho-vegetative indicators. Conclusion. The level of brain-derived neurotrophic factor serum (less than 300 pg/ml is a predictor of psycho-vegetative syndrome in the long term of the brain injury.

  16. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    B W Poovaiah

    2015-08-01

    Full Text Available Transient changes in intracellular Ca2+ concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM and calmodulin-like proteins (CMLs are major Ca2+ sensors, playing critical roles in interpreting encrypted Ca2+ signals. Ca2+-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca2+ signal and overview of Ca2+ signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca2+/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca2+/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of ROS signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca2+/CaM-mediated signaling warrant further investigation. Ca2+/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca2+ signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca2+/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.

  17. Changes in the structure of calmodulin induced by a peptide based on the calmodulin-binding domain of myosin light chain kinase

    International Nuclear Information System (INIS)

    Heidorn, D.B.; Seeger, P.A.; Rokop, S.E.; Blumenthal, D.K.; Means, A.R.; Crespi, H.; Trewhella, J.

    1989-01-01

    Small-angle X-ray and neutron scattering data were used to study the solution structure of calmodulin complexed with a synthetic peptide corresponding to residues 577-603 of rabbit skeletal muscle myosin light chain kinase. The X-ray data indicate that, in the presence of Ca 2+ , the calmodulin-peptide complex has a structure that is considerably more compact than uncomplexed calmodulin. The radius of gyration, R g , for the complex is approximately 20% smaller than that of uncomplexed Ca 2+ ·calmodulin, and the maximum dimension, d max , for the complex is also about 20% smaller. The peptide-induced conformational rearrangement of calmodulin is [Ca 2+ ] dependent. The length distribution function for the complex is more symmetric than that for uncomplexed Ca 2+ ·calmodulin, indicating that more of the mass is distributed toward the center of mass for the complex, compared with the dumbbell-shaped Ca 2+ ·calmodulin. The solvent contrast dependence of R g for neutron scattering indicates that the peptide is located more toward the center of the complex, while the calmodulin is located more peripherally, and that the centers of mass of the calmodulin and the peptide are not coincident. The scattering data support the hypothesis that the interconnecting helix region observed in the crystal structure for calmodulin is quite flexible in solution, allowing the two lobes of calmodulin to form close contacts on binding the peptide. This flexibility of the central helix may play a critical role in activating target enzymes such as myosin light chain kinase

  18. Brain-derived neurotrophic factor (BDNF) -TrKB signaling modulates cancer-endothelial cells interaction and affects the outcomes of triple negative breast cancer.

    Science.gov (United States)

    Tsai, Yi-Fang; Tseng, Ling-Ming; Hsu, Chih-Yi; Yang, Muh-Hwa; Chiu, Jen-Hwey; Shyr, Yi-Ming

    2017-01-01

    There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism associated with early recurrence in

  19. Molecular and biochemical characterization of calmodulin from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Ning; Zhong, Xiuqin; Song, Xingju; Gu, Xiaobin; Lai, Weiming; Xie, Yue; Peng, Xuerong; Yang, Guangyou

    2017-12-04

    Echinococcus granulosus is a harmful cestode parasite that causes cystic echinococcosis in humans as well as various livestock species and wild animals. Calmodulin (CaM), a Ca 2+ sensor protein, is widely expressed in eukaryotes and mediates a variety of cellular signaling activities. In the present study, the cDNA encoding CaM in Echinococcus granulosus (rEgCaM) was successfully cloned and the molecular and biochemical characterizations carried out. The antigenicity and immunoreactivity of rEgCaM was detected and the preliminary enzyme-linked immunosorbent assay (ELISA)-based serodiagnostic potential of EgCaM was assessed. The locations of this protein in the adult worm and larval stage, and the mRNA expression in different states of E. granulosus protoscoleces (PSCs) were defined clearly. Moreover, the Ca 2+ -binding properties of EgCaM were measured. rEgCaM is a highly conserved calcium-binding protein, consisting of 149 amino acids. Immunoblotting analysis revealed that rEgCaM could be identified using E. granulosus infected sheep serum. The use of rEgCaM as an antigen was evaluated by indirect ELISA which exhibited a high sensitivity (90.3%), but low specificity (47.1%). rEgCaM was ubiquitously expressed in protoscoleces and adults of E. granulosus, as well as in the germinal layer of the cyst wall. The mRNA expression level of rEgCaM was increased from the start of H 2 O 2 exposure and then gradually decreased because of the increased apoptosis of PSCs. In electrophoretic mobility tests and 1-anilinonaphthalene-8-sulfonic acid assays, rEgCaM showed a typical characteristic of a calcium-binding protein. To our knowledge, this is the first report on CaM from E. granulosus and rEgCaM is likely to be involved in some important biological function of E. granulosus as a calcium-binding protein.

  20. Analysis of the state of posttranslational calmodulin methylation in developing pea plants

    International Nuclear Information System (INIS)

    Oh, Sukheung; Roberts, D.M.

    1990-01-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of [ 3 H]methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated and green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity

  1. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    Zhong-jun Zhang

    2015-01-01

    Full Text Available Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10 6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.

  2. Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factor over time

    NARCIS (Netherlands)

    Bus, B.A.A.; Molendijk, M.L.; Tendolkar, I.; Penninx, B.W.J.H.; Prickaerts, J.; Elzinga, B.M.; Voshaar, R.C.O.

    2015-01-01

    One of the leading neurobiological hypotheses on depression states that decreased expression of brain-derived neurotrophic factor (BDNF) contributes to depression. This is supported by consistent findings of low serum BDNF levels in depressed patients compared with non-depressed controls. Whereas it

  3. Developmental Thyroid Hormone Insufficiency Reduces Expression of Brain-Derived Neurotrophic Factor (BDNF) in Adults But Not in Neonates

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expressio...

  4. Antidepressant Effects of Pharmacopuncture on Behavior and Brain-Derived Neurotrophic Factor (BDNF Expression in Chronic Stress Model of Mice

    Directory of Open Access Journals (Sweden)

    Yunna Kim

    2017-12-01

    Conclusion: HJ11 improves depressive-like behaviors in the stress-induced mouse model of depression, and the results indicate that the neuroprotective effect of HJ11, identified by brain-derived neurotrophic factor expression, may play a critical role in its antidepressant effect.

  5. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: A role in depression

    NARCIS (Netherlands)

    Eisch, A.J.; Bolanos, C.A.; de Wit, J.; Simonak, R.D.; Pudiak, C.M.; Barrot, M.; Verhaagen, J.; Nestler, E.J.

    2003-01-01

    Background: Previous work has shown that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are involved in appetitive behavior. Here we show that BDNF in the ventral tegmental area-nucleus accumbens (VTA-NAc) pathway is also involved in the development of

  6. Fluorescence Spectra Studies on the Interaction between Lanthanides and Calmodulin

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The conformation of Calmodulin(CaM) induced by lanthanides has been examined using fluorescence methods.With the addition of lanthanide (Ln3+), the intrinsic fluorescence intensity of CaM without calcium ions (Apo-CaM) first increases and then decreases.Ln3+ causes the decrease of intrinsic fluorescence intensity of calcium saturated CaM (Ca2+4-CaM) only at high concentrations.At low concentrations, Ln3+ results not only in the enhancement of fluorescence intensity of Apo-CaM, but also in a blue shift of the maximum emission wavelengh of dansyl labeled calmodulin(Apo-D-CaM).The molecular mechanism of the interaction between Ln3+ and CaM has been discussed in the light of the fluorescence spectra.

  7. Cloning and expression of calmodulin gene in Scoparia dulcis.

    Science.gov (United States)

    Saitoh, Daisuke; Asakura, Yuki; Nkembo, Marguerite Kasidimoko; Shite, Masato; Sugiyama, Ryuji; Lee, Jung-Bum; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2007-06-01

    A homology-based cloning strategy yielded a cDNA clone, designated Sd-cam, encoding calmodulin protein from Scoparia dulcis. The restriction digests of genomic DNA of S. dulcis showed a single hybridized signal when probed with the fragment of this gene in Southern blot analyses, suggesting that Sd-cam occurs as a sole gene encoding calmodulin in the plant. The reverse-transcription polymerase chain reaction analysis revealed that Sd-cam was appreciably expressed in leaf, root and stem tissues. It appeared that transcription of this gene increased transiently when the leaf cultures of S. dulcis were treated with methyl jasmonate and calcium ionophore A23187. These results suggest that transcriptional activation of Sd-cam is one of the early cellular events of the methyl jasmonate-induced responses of S. dulcis.

  8. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    Science.gov (United States)

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Elevated expression of brain-derived neurotrophic factor facilitates visual imprinting in chicks.

    Science.gov (United States)

    Suzuki, Keiko; Maekawa, Fumihiko; Suzuki, Shingo; Nakamori, Tomoharu; Sugiyama, Hayato; Kanamatsu, Tomoyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2012-12-01

    With the aim of elucidating the neural mechanisms of early learning, we studied the role of brain-derived neurotrophic factor (BDNF) in visual imprinting in birds. The telencephalic neural circuit connecting the visual Wulst and intermediate medial mesopallium is critical for imprinting, and the core region of the hyperpallium densocellulare (HDCo), situated at the center of this circuit, has a key role in regulating the activity of the circuit. We found that the number of BDNF mRNA-positive cells in the HDCo was elevated during the critical period, particularly at its onset, on the day of hatching (P0). After imprinting training on P1, BDNF mRNA-positive cells in the HDCo increased in number, and tyrosine phosphorylation of TrkB was observed. BDNF infusion into the HDCo at P1 induced imprinting, even with a weak training protocol that does not normally induce imprinting. In contrast, K252a, an antagonist of Trk, inhibited imprinting. Injection of BDNF at P7, after the critical period, did not elicit imprinting. These results suggest that BDNF promotes the induction of imprinting through TrkB exclusively during the critical period. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  10. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. More inflammation but less brain-derived neurotrophic factor in antisocial personality disorder.

    Science.gov (United States)

    Wang, Tzu-Yun; Lee, Sheng-Yu; Hu, Ming-Chuan; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chu, Chun-Hsien; Lin, Shih-Hsien; Li, Chia-Ling; Wang, Liang-Jen; Chen, Po See; Chen, Shih-Heng; Huang, San-Yuan; Tzeng, Nian-Sheng; Lee, I Hui; Chen, Kao Chin; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2017-11-01

    Antisocial personality disorder (ASPD) is highly comorbid with substance use disorders (SUDs). We hypothesize that chronic neuroinflammation and the loss of neurotrophic factors prompts the pathogenesis of both disorders. We used ELISA to measure plasma levels of proinflammatory (tumor necrosis factor-α [TNF-α], C-reactive protein [CRP]) and anti-inflammatory factors (transforming growth factor-β1 [TGF-β1] and interleukin-10 [IL-10]), and brain-derived neurotrophic factor (BDNF) in male patients with ASPD (n=74), SUDs (n=168), ASPD comorbid with SUDs (ASPD+SUDs) (n=438), and Healthy Controls (HCs) (n=81). A multivariate analysis of covariance (MANCOVA) controlled for possible confounders was used to compare cytokines and BDNF levels between groups. The results of MANCOVA adjusted for age showed a significant (pdisorder (OUD) and other SUDs groups showed that the IL-10 levels were specifically higher in OUD and ASPD±OUD groups than other SUDs (P≤0.001). We conclude that uncontrolled inflammation and losing neurotrophic factors, with or without comorbid SUDs, underlies ASPD. IL-10 expression might be more specifically associated with OUD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation?

    Science.gov (United States)

    Serra-Millàs, Montserrat

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters. PMID:27014600

  13. Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism.

    Science.gov (United States)

    Genzer, Yoni; Chapnik, Nava; Froy, Oren

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).

    Science.gov (United States)

    Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie

    2016-08-01

    Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO 2max , Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.

  15. Correlates of early pregnancy serum brain-derived neurotrophic factor in a Peruvian population.

    Science.gov (United States)

    Yang, Na; Levey, Elizabeth; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A

    2017-12-01

    Knowledge about factors that influence serum brain-derived neurotrophic factor (BDNF) concentrations during early pregnancy is lacking. The aim of the study is to examine the correlates of early pregnancy serum BDNF concentrations. A total of 982 women attending prenatal care clinics in Lima, Peru, were recruited in early pregnancy. Pearson's correlation coefficient was calculated to evaluate the relation between BDNF concentrations and continuous covariates. Analysis of variance and generalized linear models were used to compare the unadjusted and adjusted BDNF concentrations according to categorical variables. Multivariable linear regression models were applied to determine the factors that influence early pregnancy serum BDNF concentrations. In bivariate analysis, early pregnancy serum BDNF concentrations were positively associated with maternal age (r = 0.16, P BDNF concentrations. Participants with moderate antepartum depressive symptoms (Patient Health Questionnaire-9 (PHQ-9) score ≥ 10) had lower serum BDNF concentrations compared with participants with no/mild antepartum depressive symptoms (PHQ-9 score BDNF concentrations in low-income Peruvian women. Biological changes of CRP during pregnancy may affect serum BDNF concentrations.

  16. Brain-derived Neurotrophic Factor (BDNF) and gray matter volume in bipolar disorder.

    Science.gov (United States)

    Poletti, S; Aggio, V; Hoogenboezem, T A; Ambrée, O; de Wit, H; Wijkhuijs, A J M; Locatelli, C; Colombo, C; Arolt, V; Drexhage, H A; Benedetti, F

    2017-02-01

    Bipolar Disorder (BD) is a severe psychiatric condition characterized by grey matter (GM) volumes reduction. Neurotrophic factors have been suggested to play a role in the neuroprogressive changes during the illness course. In particular peripheral brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in BD. The aim of our study was to investigate if serum levels of BDNF are associated with GM volumes in BD patients and healthy controls (HC). We studied 36 inpatients affected by a major depressive episode in course of BD type I and 17 HC. Analysis of variance was performed to investigate the effect of diagnosis on GM volumes in the whole brain. Threshold for significance was PBDNF levels compared with HC. Reduced GM volumes in BD patients compared to HC were observed in several brain areas, encompassing the caudate head, superior temporal gyrus, insula, fusiform gyrus, parahippocampal gyrus, and anterior cingulate cortex. The interaction analysis between BDNF levels and diagnosis showed a significant effect in the middle frontal gyrus. HC reported higher BDNF levels associated with higher GM volumes, whereas no association between BDNF and GM volumes was observed in BD. Our study seems to suggest that although the production of BDNF is increased in BD possibly to prevent and repair neural damage, its effects could be hampered by underlying neuroinflammatory processes interfering with the neurodevelopmental role of BDNF. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    Science.gov (United States)

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  18. Effect of different anesthesia techniques on the serum brain-derived neurotrophic factor (BDNF) levels.

    Science.gov (United States)

    Ozer, A B; Demirel, I; Erhan, O L; Firdolas, F; Ustundag, B

    2015-10-01

    Serum Brain-Derived Neurotrophic Factor (BDNF) levels are associated with neurotransmission and cognitive functions. The goal of this study was to examine the effect of general anesthesia on BDNF levels. It was also to reveal whether this effect had a relationship with the surgical stress response or not. The study included 50 male patients, age 20-40, who were scheduled to have inguinoscrotal surgery, and who were in the ASA I-II risk group. The patients were divided into two groups according to the anesthesia techniques used: general (GA) and spinal (SA). In order to measure serum BDNF, cortisol, insulin and glucose levels, blood samples were taken at four different times: before and after anesthesia, end of the surgery, and before transferal from the recovery room. Serum BDNF levels were significantly low (p BDNF and the stress hormones. Our findings suggested that general anesthetics had an effect on serum BDNF levels independent of the stress response. In future, BDNF could be used as biochemical parameters of anesthesia levels, but studies with a greater scope should be carried out to present the relationship between anesthesia and neurotrophins.

  19. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor.

    Science.gov (United States)

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V

    2016-03-01

    Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met

    Science.gov (United States)

    Zhang, Lei; Li, Xiao-Xia; Hu, Xian-Zhang

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), which regulates neuronal survival, growth differentiation, and synapse formation, is known to be associated with depression and post-traumatic stress disorder (PTSD). However, the molecular mechanism for those mental disorders remains unknown. Studies have shown that BDNF is associated with PTSD risk and exaggerated startle reaction (a major arousal manifestation of PTSD) in United States military service members who were deployed during the wars in Iraq and Afghanistan. The frequency of the Met/Met in BDNF gene was greater among those with PTSD than those without PTSD. Among individuals who experienced fewer lifetime stressful events, the Met carriers have significantly higher total and startle scores on the PTSD Checklist than the Val/Val carriers. In addition, subjects with PTSD showed higher levels of BDNF in their peripheral blood plasma than the non-probable-PTSD controls. Increased BDNF levels and startle response were observed in both blood plasma and brain hippocampus by inescapable tail shock in rats. In this paper, we reviewed these data to discuss BDNF as a potential biomarker for PTSD risk and its possible roles in the onset of PTSD. PMID:27014593

  1. Role of Stress-Related Brain-Derived Neurotrophic Factor (BDNF) in the Rat Submandibular Gland

    International Nuclear Information System (INIS)

    Tsukinoki, Keiichi; Saruta, Juri

    2012-01-01

    The nerve growth factor (NGF) family comprises NGF, brain-derived neurotrophic factor (BDNF) and neurotrophins (NTs)-3, -4/5, -6 and -7, all of which are collectively referred to as neurotrophins. However, the expression of neurotrophins other than NGF in the salivary gland has not been described in detail. Through interaction with the TrkB receptor, BDNF plays an important role in long-term potentiation. We found that BDNF expression increased within submandibular gland tissue in response to stress, suggesting that the salivary glands are sensitive to stress. In addition, stress caused increases in plasma BDNF derived from the submandibular gland and in TrkB receptor mRNA in the adrenal medulla. Plasma BDNF might activate TrkB receptors in the adrenal medulla during acute stress. The salivary glands are likely to influence not only oral health, but also systemic organs. This review addressed the relationship between hormone-like effects and stress-related BDNF expression in the rat submandibular gland

  2. Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression.

    Science.gov (United States)

    Kunugi, Hiroshi; Hori, Hiroaki; Adachi, Naoki; Numakawa, Tadahiro

    2010-10-01

    Although the pathophysiology of depressive disorder remains elusive, two hypothetical frameworks seem to be promising: the involvement of hypothalamic pituitary-adrenal (HPA) axis abnormalities and brain-derived neurotrophic factor (BDNF) in the pathogenesis and in the mechanism of action of antidepressant treatments. In this review, we focused on research based on these two frameworks in relation to depression and related conditions and tried to formulate an integrated theory of the disorder. Hormonal challenge tests, such as the dexamethasone/corticotropin-releasing hormone test, have revealed elevated HPA activity (hypercortisolism) in at least a portion of patients with depression, although growing evidence has suggested that abnormally low HPA axis (hypocortisolism) has also been implicated in a variety of stress-related conditions. Several lines of evidence from postmortem studies, animal studies, blood levels, and genetic studies have suggested that BDNF is involved in the pathogenesis of depression and in the mechanism of action of biological treatments for depression. Considerable evidence has suggested that stress reduces the expression of BDNF and that antidepressant treatments increase it. Moreover, the glucocorticoid receptor interacts with the specific receptor of BDNF, TrkB, and excessive glucocorticoid interferes with BDNF signaling. Altered BDNF function is involved in the structural changes and possibly impaired neurogenesis in the brain of depressed patients. Based on these findings, an integrated schema of the pathological and recovery processes of depression is illustrated. © 2010 The Authors. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.

  3. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.

    Science.gov (United States)

    Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham

    2011-03-23

    Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.

  4. Different levels of brain-derived neurotrophic factor and cortisol in healthy heavy smokers

    Directory of Open Access Journals (Sweden)

    C.D.C. Neves

    2017-10-01

    Full Text Available Studies suggest that brain-derived neurotrophic factor (BDNF and the hypothalamic-pituitary-adrenal (HPA axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigated BDNF and cortisol levels in smokers ranked by daily cigarette consumption. Twenty-seven adult males (13 non-smokers and 14 smokers participated in the study. The smokers were divided in two groups: light (n=7 and heavy smokers (n=7. Anthropometric parameters and age were paired between the groups, and plasma BDNF and salivary cortisol levels were measured. Saliva samples were collected on awakening, 30 min after awakening, at 10:00 and 12:00 am, 5:00 and 10:00 pm. Additionally, cotinine serum levels were measured in smokers. Heavy smokers had higher mean values of BDNF compared to the control group (P=0.01, whereas no difference was observed in light smokers. Moreover, heavy smokers presented lower cortisol levels in the last collection (10:00 pm than the control group (P=0.02 and presented statically higher values of cotinine than the light smokers (P=0.002. In conclusion, changes in BDNF and cortisol levels (10:00 pm appear to be dependent on heavy cigarette smoking and can be involved in activation and in the relationship between the mesolimbic system and the HPA axis.

  5. Different levels of brain-derived neurotrophic factor and cortisol in healthy heavy smokers.

    Science.gov (United States)

    Neves, C D C; Lacerda, A C R; Lima, L P; Lage, V K S; Balthazar, C H; Leite, H R; Mendonça, V A

    2017-10-19

    Studies suggest that brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigated BDNF and cortisol levels in smokers ranked by daily cigarette consumption. Twenty-seven adult males (13 non-smokers and 14 smokers) participated in the study. The smokers were divided in two groups: light (n=7) and heavy smokers (n=7). Anthropometric parameters and age were paired between the groups, and plasma BDNF and salivary cortisol levels were measured. Saliva samples were collected on awakening, 30 min after awakening, at 10:00 and 12:00 am, 5:00 and 10:00 pm. Additionally, cotinine serum levels were measured in smokers. Heavy smokers had higher mean values of BDNF compared to the control group (P=0.01), whereas no difference was observed in light smokers. Moreover, heavy smokers presented lower cortisol levels in the last collection (10:00 pm) than the control group (P=0.02) and presented statically higher values of cotinine than the light smokers (P=0.002). In conclusion, changes in BDNF and cortisol levels (10:00 pm) appear to be dependent on heavy cigarette smoking and can be involved in activation and in the relationship between the mesolimbic system and the HPA axis.

  6. Serum Brain-Derived Neurotrophic Factor Levels in Different Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Mariacarla Ventriglia

    2013-01-01

    Full Text Available Consistent evidence indicates the involvement of the brain-derived neurotrophic factor (BDNF in neurodegenerative disorders such as Alzheimer's disease (AD and Parkinson’s disease (PD. In the present study, we compared serum BDNF in 624 subjects: 266 patients affected by AD, 28 by frontotemporal dementia (FTD, 40 by Lewy body dementia (LBD, 91 by vascular dementia (VAD, 30 by PD, and 169 controls. Our results evidenced lower BDNF serum levels in AD, FTD, LBD, and VAD patients (P<0.001 and a higher BDNF concentration in patients affected by PD (P=0.045. Analyses of effects of pharmacological treatments suggested significantly higher BDNF serum levels in patients taking mood stabilizers/antiepileptics (P=0.009 and L-DOPA (P<0.001 and significant reductions in patients taking benzodiazepines (P=0.020. In conclusion, our results support the role of BDNF alterations in neurodegenerative mechanisms common to different forms of neurological disorders and underline the importance of including drug treatment in the analyses to avoid confounding effects.

  7. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    Science.gov (United States)

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  8. Hemodialysis decreases serum brain-derived neurotrophic factor concentration in humans.

    Science.gov (United States)

    Zoladz, Jerzy A; Śmigielski, Michał; Majerczak, Joanna; Nowak, Łukasz R; Zapart-Bukowska, Justyna; Smoleński, Olgierd; Kulpa, Jan; Duda, Krzysztof; Drzewińska, Joanna; Bartosz, Grzegorz

    2012-12-01

    In the present study we have evaluated the effect of a single hemodialysis session on the brain-derived neurotrophic factor levels in plasma [BDNF](pl) and in serum [BDNF](s) as well as on the plasma isoprostanes concentration [F(2) isoprostanes](pl), plasma total antioxidant capacity (TAC) and plasma cortisol levels in chronic kidney disease patients. Twenty male patients (age 69.8 ± 2.9 years (mean ± SE)) with end-stage renal disease undergoing maintenance hemodialysis on regular dialysis treatment for 15-71 months participated in this study. A single hemodialysis session, lasting 4.2 ± 0.1 h, resulted in a decrease (P = 0.014) in [BDNF](s) by ~42 % (2,574 ± 322 vs. 1,492 ± 327 pg ml(-1)). This was accompanied by an increase (P 0.05) in [BDNF](pl) and the platelets count were observed after a single dialysis session. Furthermore, basal [BDNF](s) in the chronic kidney disease patients was significantly lower (P = 0.03) when compared to the age-matched control group (n = 23). We have concluded that the observed decrease in serum BDNF level after hemodialysis accompanied by elevated [F(2)-Isoprostanes](pl) and decreased plasma TAC might be caused by enhanced oxidative stress induced by hemodialysis.

  9. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing

    Directory of Open Access Journals (Sweden)

    Jessica K. Miller

    2017-11-01

    Full Text Available The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  10. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing.

    Science.gov (United States)

    Miller, Jessica K; McDougall, Siné; Thomas, Sarah; Wiener, Jan

    2017-11-27

    The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD) continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF) gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  11. Brain-derived neurotrophic factor Val66Met genotype modulates amygdala habituation.

    Science.gov (United States)

    Perez-Rodriguez, M Mercedes; New, Antonia S; Goldstein, Kim E; Rosell, Daniel; Yuan, Qiaoping; Zhou, Zhifeng; Hodgkinson, Colin; Goldman, David; Siever, Larry J; Hazlett, Erin A

    2017-05-30

    A deficit in amygdala habituation to repeated emotional stimuli may be an endophenotype of disorders characterized by emotion dysregulation, such as borderline personality disorder (BPD). Amygdala reactivity to emotional stimuli is genetically modulated by brain-derived neurotrophic factor (BDNF) variants. Whether amygdala habituation itself is also modulated by BDNF genotypes remains unknown. We used imaging-genetics to examine the effect of BDNF Val66Met genotypes on amygdala habituation to repeated emotional stimuli. We used functional magnetic resonance imaging (fMRI) in 57 subjects (19 BPD patients, 18 patients with schizotypal personality disorder [SPD] and 20 healthy controls [HC]) during a task involving viewing of unpleasant, neutral, and pleasant pictures, each presented twice to measure habituation. Amygdala responses across genotypes (Val66Met SNP Met allele-carriers vs. Non-Met carriers) and diagnoses (HC, BPD, SPD) were examined with ANOVA. The BDNF 66Met allele was significantly associated with a deficit in amygdala habituation, particularly for emotional pictures. The association of the 66Met allele with a deficit in habituation to unpleasant emotional pictures remained significant in the subsample of BPD patients. Using imaging-genetics, we found preliminary evidence that deficient amygdala habituation may be modulated by BDNF genotype. Copyright © 2017. Published by Elsevier B.V.

  12. [Changes of the Expression of Brain Derived Neurotrophic Factors in Rats Trachea Induced by Acrolein Exposure].

    Science.gov (United States)

    Yuan, Bing; Yang, Rui-an; Zhao, Wei; Xu, Yan-yan; Dan, Qi-qin; Zhang, Yun-hui

    2015-07-01

    To investigate expressional changes of brain derived neurotrophic factor (BDNF) in the trachea of rats with acrolein inhalation. Twenty two SD rats were divided into 2 groups: the rats in experimental group were subjected to acrolein inhalation for the induce of trachea inflammatory injury, while the rats with saline (NS) inhalation were as control. All the rats were sacrificed in 1,3,6 weeks after acrolein (n = 11 at each time point) or saline inhalation (n = 11 at each time point), the samples of trachea epithelium were harvested. The immunohistochemistry and in situ hybridization was performed to detect the location of BDNF protein and mRNA in trachea. The expression of BDNF mRNA in the trachea tissues were determined by RT-PCR. There are positive cells in epithelium of trachea for BDNF protein and mRNA, with cytoplasm staining. The expression of BDNF mRNA in the trachea was increased at 1 week after acrolein inhalation (P 0.05). The inflammatory injury in trachea induced by acrolein exposure could be associated with the increased expression of BDNF. BDNF may be one of the crucial inflammatory factors in the process of inflammatory reaction in trachea with acrolein stimulation.

  13. Gemfibrozil has antidepressant effects in mice: Involvement of the hippocampal brain-derived neurotrophic factor system.

    Science.gov (United States)

    Ni, Yu-Fei; Wang, Hao; Gu, Qiu-Yan; Wang, Fei-Ying; Wang, Ying-Jie; Wang, Jin-Liang; Jiang, Bo

    2018-04-01

    Major depressive disorder has become one of the most serious neuropsychiatric disorders worldwide. However, currently available antidepressants used in clinical practice are ineffective for a substantial proportion of patients and always have side effects. Besides being a lipid-regulating agent, gemfibrozil is an agonist of peroxisome proliferator-activated receptor-α (PPAR-α). We investigated the antidepressant effects of gemfibrozil on C57BL/6J mice using the forced swim test (FST) and tail suspension test (TST), as well as the chronic unpredictable mild stress (CUMS) model of depression. The changes in brain-derived neurotrophic factor (BDNF) signaling cascade in the brain after CUMS and gemfibrozil treatment were further assessed. Pharmacological inhibitors and lentivirus-expressed short hairpin RNA (shRNA) were also used to clarify the antidepressant mechanisms of gemfibrozil. Gemfibrozil exhibited significant antidepressant actions in the FST and TST without affecting the locomotor activity of mice. Chronic gemfibrozil administration fully reversed CUMS-induced depressive-like behaviors in the FST, TST and sucrose preference test. Gemfibrozil treatment also restored CUMS-induced inhibition of the hippocampal BDNF signaling pathway. Blocking PPAR-α and BDNF but not the serotonergic system abolished the antidepressant effects of gemfibrozil on mice. Gemfibrozil produced antidepressant effects in mice by promoting the hippocampal BDNF system.

  14. Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise.

    Science.gov (United States)

    Borror, Andrew

    2017-09-01

    The mechanisms causing improved cognition following acute exercise are poorly understood. This article proposes that brain-derived neurotrophic factor (BDNF) is the main factor contributing to improved cognition following exercise. Additionally, it argues that cerebral blood flow (CBF) and oxidative stress explain the release of BDNF from cerebral endothelial cells. One way to test these hypotheses is to block endothelial function and measure the effect on BDNF levels and cognitive performance. The CBF and oxidative stress can also be examined in relationship to BDNF using a multiple linear regression. If these hypotheses are true, there would be a linear relationship between CBF+oxidative stress and BDNF levels as well as between BDNF levels and cognitive performance. The novelty of these hypotheses comes from the emphasis on the cerebral endothelium and the interplay between BDNF, CBF, and oxidative stress. If found to be valid, these hypotheses would draw attention to the cerebral endothelium and provide direction for future research regarding methods to optimize BDNF release and enhance cognition. Elucidating these mechanisms would provide direction for expediting recovery in clinical populations, such as stroke, and maintaining quality of life in the elderly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Diurnal Variation of Plasma Brain-Derived Neurotrophic Factor Levels in Women with Functional Hypothalamic Amenorrhea.

    Science.gov (United States)

    Drakopoulos, Panagiotis; Casarosa, Elena; Bucci, Fiorella; Piccinino, Manuela; Wenger, Jean-Marie; Nappi, Rossella Elena; Polyzos, Nicholas; Genazzani, Andrea Riccardo; Pluchino, Nicola

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is strongly related to hormonal networks and is modulated by hypothalamic activity. To evaluate plasma BDNF concentration in patients with functional hypothalamic amenorrhea (FHA), with reference to the BDNF circadian rhythm and its relation with the cortisol (F) rhythm, and to assess whether the duration of amenorrhea might influence the BDNF:F ratio in FHA. This was an observational study evaluating 36 amenorrheic and 30 eumenorrheic women. Basal values of BDNF and hormones were examined in blood samples collected from 7:00 to 9:00 h in all the women. Basal BDNF and F levels were determined in blood samples collected in 12 subjects from each group at 8:00, 12:00, 16:00, 20:00, and 24:00 h. BDNF plasma levels are significantly lower in amenorrheic women (p 0.05), sex steroids, and F in FHA. Low plasma BDNF levels in FHA are not significantly correlated with duration of amenorrhea. The 24-hour variation of BDNF in amenorrheic women is significantly lower when compared to the control group, and normal daily variations of BDNF disappeared in FHA patients. F preserved its circadian rhythm in both groups. Interactions between BDNF, the hypothalamus-pituitary-adrenal axis, and sex steroids might be critical in clinical conditions of modified homeostasis/adaptation, such as FHA. © 2015 S. Karger AG, Basel.

  16. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor.

    Science.gov (United States)

    Szuhany, Kristin L; Bugatti, Matteo; Otto, Michael W

    2015-01-01

    Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The brain-derived neurotrophic factor pathway, life stress, and chronic multi-site musculoskeletal pain.

    Science.gov (United States)

    Generaal, Ellen; Milaneschi, Yuri; Jansen, Rick; Elzinga, Bernet M; Dekker, Joost; Penninx, Brenda W J H

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val(66)met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val(66)met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Compared to val(66)val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p stress in the associations with chronic pain presence and severity. This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain. © The Author(s) 2016.

  18. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    Institute of Scientific and Technical Information of China (English)

    De-guo Jiang; Shi-li Jin; Gong-ying Li; Qing-qing Li; Zhi-ruo Li; Hong-xia Ma; Chuan-jun Zhuo; Rong-huan Jiang; Min-jie Ye

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry andin situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no signiifcant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our ifndings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  19. Calmodulin and calmodulin-binding proteins in cystic fibrosis and normal human fibroblasts

    International Nuclear Information System (INIS)

    Tallant, E.A.; Wallace, R.W.

    1986-01-01

    The authors have investigated the possibility that a lesion in a calmodulin (CaM)-dependent regulatory mechanism may be involved in cystic fibrosis (CF). The level of CaM, CaM-binding proteins (CaM-BP) and a CaM-dependent phosphatase (CaM-Ptase) have been compared in cultured fibroblasts from CF patients versus age- and sex-matched control subjects. The CaM concentration, measured by radioimmunoassay, ranged from 0.20 to 0.76 μg/mg protein (n=8); there was no significant difference in the average CaM concentration from CF patients vs controls. Using Western blotting techniques with 125 I-CaM, they detected at least ten distinct CaM-BPs in fibroblasts with molecular weights ranging from 230K to 37K; the only consistent difference between control and CF cell lines was in a 46.5K CaM-BP, which was depressed in all three CF samples. The 46.5 K CaM-BP was found only in the particulate fraction. A 59K CaM-BP was identified as a CaM-Ptase by its crossreactivity with an antibody against a brain CaM-Ptase. There was no significant difference in CaM-Ptase activity or in the amount of the phosphatase as determined by radioimmunoassay in CF vs. normal samples (n=8). Thus, the level of CaM as well as its various enzymes and proteins do not appear to be altered in CF fibroblasts except for a CaM-BP of 46.5K, the identity of which is currently being investigated

  20. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Peng, Hui; Yang, Tianbao; Jurick, Wayne M.

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  1. Alteration of the irisin–brain-derived neurotrophic factor axis contributes to disturbance of mood in COPD patients

    Directory of Open Access Journals (Sweden)

    Papp C

    2017-07-01

    Full Text Available Csaba Papp,1 Krisztian Pak,2 Tamas Erdei,2 Bela Juhasz,2 Ildiko Seres,3 Anita Szentpéteri,3 Laszlo Kardos,4 Maria Szilasi,5 Rudolf Gesztelyi,2 Judit Zsuga1 1Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, 2Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, 3Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4Department of Clinical Pharmacology, Infectious Diseases and Allergology, Kenezy Gyula Teaching County Hospital and Outpatient Clinic, 5Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary Abstract: COPD is accompanied by limited physical activity, worse quality of life, and increased prevalence of depression. A possible link between COPD and depression may be irisin, a myokine, expression of which in the skeletal muscle and brain positively correlates with physical activity. Irisin enhances the synthesis of brain-derived neurotrophic factor (BDNF, a neurotrophin involved in reward-related processes. Thus, we hypothesized that mood disturbances accompanying COPD are reflected by the changes in the irisin–BDNF axis. Case history, routine laboratory parameters, serum irisin and BDNF levels, pulmonary function, and disease-specific quality of life, measured by St George’s Respiratory Questionnaire (SGRQ, were determined in a cohort of COPD patients (n=74. Simple and then multiple linear regression were used to evaluate the data. We found that mood disturbances are associated with lower serum irisin levels (SGRQ’s Impacts score and reciprocal of irisin showed a strong positive association; β: 419.97; 95% confidence interval [CI]: 204.31, 635.63; P<0.001. This association was even stronger among patients in the lower 50% of BDNF levels (β: 434.11; 95% CI: 166.17, 702.05; P=0.002, while it became weaker for patients in the higher 50% of BDNF concentrations (β: 373.49; 95% CI: -74.91, 821.88; P=0

  2. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice.

    Science.gov (United States)

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.

    Science.gov (United States)

    Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A

    2013-01-15

    Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder.

    Science.gov (United States)

    Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne

    2012-11-01

    The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis

  5. Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood.

    Science.gov (United States)

    Bryn, V; Halvorsen, B; Ueland, T; Isaksen, J; Kolkova, K; Ravn, K; Skjeldal, O H

    2015-07-01

    Neurotrophic factors are essential regulators of neuronal maturation including synaptic synthesis. Among those, Brain derived neurotrophic factor (BDNF) has been in particular focus in the understanding of autism spectrum disorders (ASD). The aim of our study was to investigate whether BNDF could be used as diagnostic/biological marker for ASD. For this purpose we examined the plasma levels of BDNF and the precursors pro- BDNF in patients with ASD and compared it with non-autistic controls; determined whether there was a correlation between the BDNF and proBDNF levels and clinical severity. We also investigated the coding region of BDNF identify for well-variations which could be associated to ASD. The 65 ASD patients (51 boys) were enrolled from a recent completed epidemiological survey covering two counties (Oppland and Hedmark) in Norway. The mean age of the total number of children who participated in this study was 11,7 years. 30 non-autistic children were included as controls, 14 boys and 16 girls. The mean age was 11.3 years. Exclusion criteria for control group were individuals suffering from either neurological, endocrine, or immune insuffiency. Patients with ASD were characterized by moderately but significantly elevated plasma levels of BDNF compared to matched controls. No differences were observed in the proBDNF level between patients and controls. Within the ASD group, children with intellectual disability demonstrated increased BDNF, but not proBDNF levels, while the presence of ADHD had no impact on circulating proBDNF or BDNF. No further associations between plasma proBDNF or BDNF and other clinical demographics were observed. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  6. Determinants of Blood Brain-Derived Neurotrophic Factor Blood Levels in Patients with Alcohol Use Disorder.

    Science.gov (United States)

    Nubukpo, Philippe; Ramoz, Nicolas; Girard, Murielle; Malauzat, Dominique; Gorwood, Philip

    2017-07-01

    Blood brain-derived neurotrophic factor (BDNF) levels are influenced by both addiction and mood disorders, as well as somatic conditions, gender, and genetic polymorphisms, leading to widely varying results. Depressive symptoms and episodes are frequently observed in patients with alcohol use disorder, and vary widely over time, making it a challenge to determine which aspects are specifically involved in variations of serum BDNF levels in this population. We assessed 227 patients with alcohol dependence involved in a detoxification program, at baseline and after a follow-up of 6 months, for the Alcohol Use Disorders Identification Test score, the length of alcohol dependence, and the number of past detoxification programs. The Beck Depression Inventory and information on current tobacco and alcohol use, suicidal ideation, body mass index, age, gender, and psychotropic treatments were also collected. Serum BDNF (ELISA) and 2 genetic polymorphisms of the BDNF gene (Val33Met and rs962369) were analyzed. The presence of the Met allele, 2 markers of the history of alcohol dependence (gamma glutamyl transferase and the number of past treatments in detoxification programs), and the presence of a depressive episode (but not depressive score) were significantly associated with the 2 blood levels of BDNF at baseline and after 6 months. After controlling for baseline BDNF levels, the presence of the Met allele and an ongoing depressive episode were the only variables associated with changes in BNDF levels after 6 months. Low serum BDNF levels are associated with characteristics related to alcohol consumption and mood disorders, and variants of the BDNF gene in alcohol use disorder patients. The factors that most strongly influenced changes in serum BDNF levels following treatment in an alcohol detoxification program were variants of the BDNF gene and ongoing depression. Copyright © 2017 by the Research Society on Alcoholism.

  7. Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serum.

    Science.gov (United States)

    Flöck, A; Weber, S K; Ferrari, N; Fietz, C; Graf, C; Fimmers, R; Gembruch, U; Merz, W M

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays a fundamental role in brain development; additionally, it is involved in various aspects of cerebral function, including neurodegenerative and psychiatric diseases. Involvement of BDNF in parturition has not been investigated. The aim of our study was to analyze determinants of umbilical cord BDNF (UC-BDNF) concentrations of healthy, term newborns and their respective mothers. This cross-sectional prospective study was performed at a tertiary referral center. Maternal venous blood samples were taken on admission to labor ward; newborn venous blood samples were drawn from the umbilical cord (UC), before delivery of the placenta. Analysis was performed with a commercially available immunoassay. Univariate analyses and stepwise multivariate regression models were applied. 120 patients were recruited. UC-BDNF levels were lower than maternal serum concentrations (median 641 ng/mL, IQR 506 vs. median 780 ng/mL, IQR 602). Correlation between UC- and maternal BDNF was low (R=0.251, p=0.01). In univariate analysis, mode of delivery (MoD), gestational age (GA), body mass index at delivery, and gestational diabetes were determinants of UC-BDNF (MoD and smoking for maternal BDNF, respectively). Stepwise multivariate regression analysis revealed a model with MoD and GA as determinants for UC-BDNF (MoD for maternal BDNF). MoD and GA at delivery are determinants of circulating BDNF in the mother and newborn. We hypothesize that BDNF, like other neuroendocrine factors, is involved in the neuroendocrine cascade of delivery. Timing and mode of delivery may exert BDNF-induced effects on the cerebral function of newborns and their mothers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Angart, Phillip A; Carlson, Rebecca J; Thorwall, Sarah; Patrick Walton, S

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.

  9. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus.

    Science.gov (United States)

    Greenwood, B N; Strong, P V; Foley, T E; Thompson, R S; Fleshner, M

    2007-02-23

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 h later. Finally, bilateral injections of BDNF (1 mug) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not

  10. Involvement of Endogenous Brain-Derived Neurotrophic Factor in Hypothalamic-Pituitary-Adrenal Axis Activity.

    Science.gov (United States)

    Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L

    2015-11-01

    Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.

  11. Enriched environment influences hormonal status and hippocampal brain derived neurotrophic factor in a sex dependent manner.

    Science.gov (United States)

    Bakos, J; Hlavacova, N; Rajman, M; Ondicova, K; Koros, C; Kitraki, E; Steinbusch, H W M; Jezova, D

    2009-12-01

    The present study is aimed at testing the hypothesis that an enriched environment (EE) induces sex-dependent changes in stress hormone release and in markers of increased brain plasticity. The focus was on hypothalamic-pituitary-adrenocortical (HPA) axis activity, plasma levels of stress hormones, gene expression of glutamate receptor subunits and concentrations of brain-derived neurotrophic factor (BDNF) in selected brain regions. Rats exposed to EE were housed in groups of 12 in large cages with various objects, which were frequently changed, for 6 weeks. Control animals were housed four per cage under standard conditions. In females the EE-induced rise in hippocampal BDNF, a neurotrophic factor associated with increased neural plasticity, was more pronounced than in males. Similar sex-specific changes were observed in BDNF concentrations in the hypothalamus. EE also significantly attenuated oxytocin and aldosterone levels only in female but not male rats. Plasma testosterone positively correlated with hippocampal BDNF in female but not male rats housed in EE. In male rats housing in EE led to enhanced levels of testosterone and adrenocorticotropic hormone (ACTH), this was not seen in females. Hippocampal glucocorticoid but not mineralocorticoid receptor levels decreased in rats housed in EE irrespective of sex. Housing conditions failed to modify mRNA levels of glutamate receptor type 1 (Glur1) and metabotropic glutamate receptor subtype 5 (mGlur5) subunits of glutamate receptors in the forebrain. Moreover, a negative association between corticosterone and BDNF was observed in both sexes. The results demonstrate that the association between hormones and changes in brain plasticity is sex related. In particular, testosterone seems to be involved in the regulatory processes related to neuroplasticity in females.

  12. Assessment of Brain Derived Neurotrophic Factor in hair to study stress responses: A pilot investigation.

    Science.gov (United States)

    Harb, H; González-de-la-Vara, M; Thalheimer, L; Klein, U; Renz, H; Rose, M; Kruse, J; Potaczek, D P; Peters, E M J

    2017-12-01

    To study pathogenic stress-effects in health and disease, it is paramount to define easy access parameters for non-invasive analysis of biological change in response to stress. Hair samples successfully provide this access for the study of hypothalamus-pituitary-adrenal axis (HPA) changes. In this study, we assess the hair expression and corresponding epigenetic changes of a neurotrophin essential for autonomic nervous system function and mental health: brain derived neurotrophic factor (BDNF). In three independent studies in healthy academic volunteers (study I: German students, N=36; study II, German academic population sample, N=28; study III: Mexican students, N=115), BDNF protein expression or BDNF gene (BDNF) histone acetylation was determined. Simultaneously, mental distress and distress-associated somatic complaints were assessed by self-report. In study I, we found a negative correlation between hair-BDNF protein level and hair-cortisol as well as between hair-BDNF and somatic complaints, while hair-cortisol correlated positively with mental distress. In study II, we found a negative correlation between H4 histone acetylation at the BDNF gene P4-promoter and somatic complaints. Regression analysis confirmed confounder stability of associations in both studies. In study III, we confirmed study I and found lower hair-BDNF protein level in volunteers with high somatic complaints, who also reported higher mental distress during the end of term exams. The results indicate that BDNF protein levels can be detected in clipped hair and are associated with somatic complaints and stress in life. In addition, we concluded that plucked hair can provide material for the study of epigenetic changes in stress-affected tissues. These tools can prove valuable for future studies on distress, both under experimental and field conditions. Copyright © 2017. Published by Elsevier Ltd.

  13. Correlation between Nerve Growth Factor (NGF with Brain Derived Neurotropic Factor (BDNF in Ischemic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Joko Widodo

    2016-05-01

    Full Text Available Background: The neurotrophins nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient’s onset: 7-30 and over 30 days. Methods: This is cross sectional study on 46 subjects aged 38 – 74 years old with ischemic stroke from The Indonesian Central Hospital of Army Gatot Subroto Jakarta. Diagnosis of ischemic stroke was made using clinical examination and magnetic resonance imaging (MRI by neurologist. Subjects were divided into 2 groups based on stroke onset: 7 – 30 days (Group A: 19 subjects and > 30 days (Group B: 27 Subjects. Serum NGF levels were measured with ELISA method and BDNF levels were measured using multiplex method with Luminex Magpix. Results: Levels of NGF and BDNF were significantly different between onset group A and B (NGF p= 0.022, and BDNF p=0.008, with mean levels NGF in group A higher than group B, indicating that BDNF levels is lower in group A than group B. There was no significant correlation between NGF and BDNF levels in all groups. Conclusion: The variations in neurotrophic factor levels reflect an endogenous attempt at neuroprotection against biochemical and molecular changes after ischemic stroke. NGF represents an early marker of brain injury while BDNF recovery is most prominent during the first 14 days after onsite but continuous for more than 30 days. There is no significant correlation between NGF and BDNF in each group.  

  14. Dual Regulation of a Chimeric Plant Serine/Threonine Kinase by Calcium and Calcium/Calmodulin

    Science.gov (United States)

    Takezawa, D.; Ramachandiran, S.; Paranjape, V.; Poovaiah, B. W.

    1996-01-01

    A chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain was recently cloned from plants. The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substrates in a Ca(2+)/calmodulin-dependent manner. The calmodulin-binding region of CCAMK has similarity to the calmodulin-binding region of the alpha-subunit of multifunctional Ca(2+)/calmodulin-dependent protein kinase (CaMKII). CCaMK exhibits basal autophosphorylation at the threonine residue(s) (0.098 mol of P-32/mol) that is stimulated 3.4-fold by Ca(2+) (0.339 mol of P-32/mol), while calmodulin inhibits Ca(2+)-stimulated autophosphorylation to the basal level. A deletion mutant lacking the visinin-like domain did not show Ca(2+)-simulated autophosphorylation activity but retained Ca(2+)/calmodulin-dependent protein kinase activity at a reduced level. Ca(2+)-dependent mobility shift assays using E.coli-expressed protein from residues 358-520 revealed that Ca(2+) binds to the visinin-like domain. Studies with site-directed mutants of the visinin-like domain indicated that EF-hands II and III are crucial for Ca(2+)-induced conformational changes in the visinin-like domain. Autophosphorylation of CCaMK increases Ca(2+)/calmodulin-dependent protein kinase activity by about 5-fold, whereas it did not affect its C(2+)-independent activity. This report provides evidence for the existence of a protein kinase in plants that is modulated by Ca(2+) and Ca(2+)/calmodulin. The presence of a visinin-like Ca(2+)-binding domain in CCaMK adds an additional Ca(2+)-sensing mechanism not previously known to exist in the Ca(2+)/calmodulin-mediated signaling cascade in plants.

  15. Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions.

    Directory of Open Access Journals (Sweden)

    Massimo Lai

    2015-01-01

    Full Text Available Calmodulin is a calcium-binding protein ubiquitous in eukaryotic cells, involved in numerous calcium-regulated biological phenomena, such as synaptic plasticity, muscle contraction, cell cycle, and circadian rhythms. It exibits a characteristic dumbell shape, with two globular domains (N- and C-terminal lobe joined by a linker region. Each lobe can take alternative conformations, affected by the binding of calcium and target proteins. Calmodulin displays considerable functional flexibility due to its capability to bind different targets, often in a tissue-specific fashion. In various specific physiological environments (e.g. skeletal muscle, neuron dendritic spines several targets compete for the same calmodulin pool, regulating its availability and affinity for calcium. In this work, we sought to understand the general principles underlying calmodulin modulation by different target proteins, and to account for simultaneous effects of multiple competing targets, thus enabling a more realistic simulation of calmodulin-dependent pathways. We built a mechanistic allosteric model of calmodulin, based on an hemiconcerted framework: each calmodulin lobe can exist in two conformations in thermodynamic equilibrium, with different affinities for calcium and different affinities for each target. Each lobe was allowed to switch conformation on its own. The model was parameterised and validated against experimental data from the literature. In spite of its simplicity, a two-state allosteric model was able to satisfactorily represent several sets of experiments, in particular the binding of calcium on intact and truncated calmodulin and the effect of different skMLCK peptides on calmodulin's saturation curve. The model can also be readily extended to include multiple targets. We show that some targets stabilise the low calcium affinity T state while others stabilise the high affinity R state. Most of the effects produced by calmodulin targets can be

  16. Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor.

    Science.gov (United States)

    Hung, Pi-Lien; Huang, Chao-Ching; Huang, Hsiu-Mei; Tu, Dom-Gene; Chang, Ying-Chao

    2013-08-01

    Low level of thyroid hormone is a strong independent risk factor for white matter (WM) injury, a major cause of cerebral palsy, in preterm infants. Thyroxin upregulates brain-derived neurotrophic factor during development. We hypothesized that thyroxin protected against preoligodendrocyte apoptosis and WM injury in the immature brain via upregulation of brain-derived neurotrophic factor. Postpartum (P) day-7 male rat pups were exposed to hypoxic ischemia (HI) and intraperitoneally injected with thyroxin (T4; 0.2 mg/kg or 1 mg/kg) or normal saline immediately after HI at P9 and P11. WM damage was analyzed for myelin formation, axonal injury, astrogliosis, and preoligodendrocyte apoptosis. Neurotrophic factor expression was assessed by real-time polymerase chain reaction and immunohistochemistry. Neuromotor functions were measured using open-field locomotion (P11 and P21), inclined plane climbing (P11), and beam walking (P21). Intracerebroventricular injection of TrkB-Fc or systemic administration of 7,8-dihydroxyflavone was performed. On P11, the HI group had significantly lower blood T4 levels than the controls. The HI group showed ventriculomegaly and marked reduction of myelin basic protein immunoreactivities in the WM. T4 (1 mg/kg) treatment after HI markedly attenuated axonal injury, astrocytosis, and microgliosis, and increased preoligodendrocyte survival. In addition, T4 treatment significantly increased myelination and selectively upregulated brain-derived neurotrophic factor expression in the WM, and improved neuromotor deficits after HI. The protective effect of T4 on WM myelination and neuromotor performance after HI was significantly attenuated by TrkB-Fc. Systemic 7,8-dihydroxyflavone treatment ameliorated hypomyelination after HI injury. T4 protects against WM injury at both pathological and functional levels via upregulation of brain-derived neurotrophic factor-TrkB signaling in the immature brain.

  17. Effects of chronic aluminum exposure on learning and memory and brain-derived nerve growth factor in rats

    Institute of Scientific and Technical Information of China (English)

    潘宝龙

    2013-01-01

    Objective To investigate the effects of chronic aluminum exposure on the learning and memory abilities and brain-derived nerve growth factor (BDNF) in SpragueDawley (SD) rats.Methods Thirty-two male SD rats were randomly and equally divided into 4 groups:control group and high-,middle-,and low-dose exposure groups.The rats in high-,middle-,and low-dose expo-

  18. Brain-derived neurotrophic factor Val66Met polymorphism and hippocampal activation during episodic encoding and retrieval tasks

    OpenAIRE

    Dennis, Nancy A.; Cabeza, Roberto; Need, Anna C.; Waters-Metenier, Sheena; Goldstein, David B.; LaBar, Kevin S.

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin which has been shown to regulate cell survival and proliferation, as well as synaptic growth and hippocampal long-term potentiation. A naturally occurring single nucleotide polymorphism in the human BDNF gene (val66met) has been associated with altered intercellular trafficking and regulated secretion of BDNF in met compared to val carriers. Additionally, previous studies have found a relationship between the BDNF val66met genotype an...

  19. Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor

    OpenAIRE

    Goekint, Maaike; Bos, Inge; Heyman, Elsa; Meeusen, Romain; Michotte, Yvette; Sarre, Sophie

    2011-01-01

    Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was performed in rats that were subjected to 60 min of treadmill running at 20 m/min or rest. Two hours pos...

  20. Corallocins A-C, Nerve Growth and Brain-Derived Neurotrophic Factor Inducing Metabolites from the Mushroom Hericium coralloides.

    Science.gov (United States)

    Wittstein, Kathrin; Rascher, Monique; Rupcic, Zeljka; Löwen, Eduard; Winter, Barbara; Köster, Reinhard W; Stadler, Marc

    2016-09-23

    Three new natural products, corallocins A-C (1-3), along with two known compounds were isolated from the mushroom Hericium coralloides. Their benzofuranone and isoindolinone structures were elucidated by spectral methods. All corallocins induced nerve growth factor and/or brain-derived neurotrophic factor expression in human 1321N1 astrocytes. Furthermore, corallocin B showed antiproliferative activity against HUVEC and human cancer cell lines MCF-7 and KB-3-1.

  1. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  2. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin

    DEFF Research Database (Denmark)

    Perrier, J F; Mejia-Gervacio, S; Hounsgaard, J

    2000-01-01

    1. The involvement of intracellular calcium and calmodulin in the modulation of plateau potentials in motoneurones was investigated using intracellular recordings from a spinal cord slice preparation. 2. Chelation of intracellular calcium with BAPTA-AM or inactivation of calmodulin with W-7 or tr...

  3. Nitric Oxide Synthases Reveal a Role for Calmodulin in Controlling Electron Transfer

    Science.gov (United States)

    Abu-Soud, Husam M.; Stuehr, Dennis J.

    1993-11-01

    Nitric oxide (NO) is synthesized within the immune, vascular, and nervous systems, where it acts as a wide-ranging mediator of mammalian physiology. The NO synthases (EC 1.14.13.39) isolated from neurons or endothelium are calmodulin dependent. Calmodulin binds reversibly to neuronal NO synthase in response to elevated Ca2+, triggering its NO production by an unknown mechanism. Here we show that calmodulin binding allows NADPH-derived electrons to pass onto the heme group of neuronal NO synthase. Calmodulin-triggered electron transfer to heme was independent of substrate binding, caused rapid enzymatic oxidation of NADPH in the presence of O_2, and was required for NO synthesis. An NO synthase isolated from cytokine-induced macrophages that contains tightly bound calmodulin catalyzed spontaneous electron transfer to its heme, consistent with bound calmodulin also enabling electron transfer within this isoform. Together, these results provide a basis for how calmodulin may regulate NO synthesis. The ability of calmodulin to trigger electron transfer within an enzyme is unexpected and represents an additional function for calcium-binding proteins in biology.

  4. Modulation of myometrium mitochondrial membrane potential by calmodulin antagonists

    Directory of Open Access Journals (Sweden)

    S. G. Shlykov

    2014-02-01

    Full Text Available Influence of calmodulin antagonists on mitochondrial membrane potential was investigated using­ a flow cytometry method, confocal microscopy and fluorescent potential-sensitive probes TMRM and MTG. Influence of different concentrations of calmodulin antagonists on mitochondrial membrane potential was studied using flow cytometry method and a fraction of myometrium mitochondria of unpregnant rats. It was shown that 1-10 µМ calmidazolium gradually reduced mitochondria membrane potential. At the same time 10-100 µМ trifluope­razine influenced as follows: 10 µМ – increased polarization, while 100 µМ – caused almost complete depolarization of mitochondrial membranes. In experiments which were conducted with the use of confocal microscopy method and myometrium cells it was shown, that MTG addition to the incubation medium­ led to the appearance of fluorescence signal in a green range. Addition of the second probe (ТМRM resulted in the appearance of fluorescent signal in a red range. Mitochondrial membrane depolarization by 1µМ СССР or 10 mМ NaN3 was accompanied by the decline of “red” fluo­rescence intensity, “green” fluorescence was kept. The 10-15 minute incubation of myometrium cells in the presen­ce 10 µМ calmidazolium or 100 µМ trifluoperazine was accompanied by almost complete decrease of the TMRM fluorescent signal. Thus, with the use of potential-sensitive fluorescent probes TMRM and MTG it was shown, that calmodulin antagonists modulate mitochondrial membrane potential of myometrium cells.

  5. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  6. Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome

    Directory of Open Access Journals (Sweden)

    Akyol ES

    2015-03-01

    Full Text Available Esra Soydas Akyol,1 Yakup Albayrak,2 Murat Beyazyüz,3 Nurkan Aksoy,4 Murat Kuloglu,5 Kenji Hashimoto6 1Deparment of Psychiatry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 2Department of Psychiatry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 3Department of Psychiatry, Biga State Hospital, Çanakkale, Turkey; 4Department of Biochemistry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 5Department of Psychiatry, Faculty of Medicine, Akdeniz University, Antalya, Turkey; 6Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan Background: Brain-derived neurotrophic factor (BDNF is a well-established neurotrophin that plays a role in the pathophysiology of numerous psychiatric disorders. Many studies have investigated the serum BDNF levels in patients with schizophrenia. However, there are restricted data in the literature that compare the serum BDNF levels in patients with deficit and nondeficit syndromes. In this study, we aimed to compare the serum BDNF levels between schizophrenic patients with deficit or nondeficit syndrome and healthy controls.Methods: After fulfilling the inclusion and exclusion criteria, 58 patients with schizophrenia and 36 healthy controls were included in the study. The patients were grouped as deficit syndrome (N=23 and nondeficit syndrome (N=35 according to the Schedule for the Deficit Syndrome. Three groups were compared in terms of the sociodemographic and clinical variants and serum BDNF levels.Results: The groups were similar in terms of age, sex, body mass index, and smoking status. The serum BDNF levels in patients with deficit syndrome were significantly lower than those in healthy controls. In contrast, the serum BDNF levels in patients with nondeficit syndrome were similar to those in healthy controls.Conclusion: This study suggests that decreased BDNF levels may play a role in the pathophysio­logy of schizophrenic

  7. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel.

    Directory of Open Access Journals (Sweden)

    Zoltán Oláh

    2007-06-01

    Full Text Available Ca(2+-loaded calmodulin normally inhibits multiple Ca(2+-channels upon dangerous elevation of intracellular Ca(2+ and protects cells from Ca(2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+-uptake via the vanilloid inducible Ca(2+-channel/inflamatory pain receptor 1 (TRPV1, which suggests that calmodulin inhibitors may block pore formation and Ca(2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45Ca(2+-uptake at microM concentrations: calmidazolium (broad range > or = trifluoperazine (narrow range chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially. Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+-uptake in intact TRPV1(+ cells, and suggests an extracellular site of inhibition. TRPV1(+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2

  8. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    Science.gov (United States)

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  9. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment

    NARCIS (Netherlands)

    Molendijk, M.L.; Bus, B.A.A.; Spinhoven, P.; Penninx, B.W.J.H.; Kenis, G.; Prickaerts, J.; Voshaar, R.C.O.; Elzinga, B.M.

    2011-01-01

    Recent evidence supports 'the neurotrophin hypothesis of depression' in its prediction that brain-derived neurotrophic factor (BDNF) is involved in depression. However, some key questions remain unanswered, including whether abnormalities in BDNF persist beyond the clinical state of depression,

  10. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Bilgiç, Ayhan; Toker, Aysun; Işık, Ümit; Kılınç, İbrahim

    2017-03-01

    It has been suggested that neurotrophins are involved in the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD). This study aimed to investigate whether there are differences in serum brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and neurotrophin-3 (NTF3) levels between children with ADHD and healthy controls. A total of 110 treatment-naive children with the combined presentation of ADHD and 44 healthy controls aged 8-18 years were enrolled in this study. The severity of ADHD symptoms was determined by scores on the Conners' Parent Rating Scale-Revised Short and Conners' Teacher Rating Scale-Revised Short. The severity of depression and anxiety symptoms of the children were evaluated by the self-report inventories. Serum levels of neurotrophins were measured using commercial enzyme-linked immunosorbent assay kits. The multivariate analysis of covariance (MANCOVA) revealed a significant main effect of groups in the levels of serum neurotrophins, an effect that was independent of age, sex, and the severity of the depression and anxiety. The analysis of covariance (ANCOVA) indicated that the mean serum GDNF and NTF3 levels of ADHD patients were significantly higher than that of controls. However, serum BDNF and NGF levels did not show any significant differences between groups. No correlations between the levels of serum neurotrophins and the severity of ADHD were observed. These results suggest that elevated serum GDNF and NTF3 levels may be related to ADHD in children.

  11. Effect of six weeks of endurance exercise and following detraining on serum brain derived neurotrophic factor and memory performance in middle aged males with metabolic syndrome.

    Science.gov (United States)

    Babaei, P; Azali Alamdari, K; Soltani Tehrani, B; Damirchi, A

    2013-08-01

    Brain derived neurotrophic factor (BDNF) and physical inactivity contribute to the development of metabolic syndrome (MetS). Aerobic training has been reported to improve MetS, however less attention has been directed toward the role of training and detraining on cognitive function in MetS. Twenty one healthy middle-aged males and 21 with MetS were distributed into four groups: MetS exercise (ME), MetS control (MC), Healthy exercise (HE) and healthy control (HC). Both ME and HE, followed a 6-week aerobic training program (3 sessions/week). Digit Span memory test and blood sampling were conducted pre training, post training and also following a six weeks detraining. Data were analyzed using spearman, pearson and repeated measure ANOVA tests. Baseline serum BDNF level was positively correlated with waist circumference (r=0.383, P=0.012) and showed significant elevation in MetS compared with healthy subjects (1101.66±61.34 vs. 903.72±46.57 pg/mL, P=0.014). After aerobic exercise BDNF level significantly increased in HE, but decreased in ME group (P=0.001). Both short and mid term memory significantly increased (PExercise induced cognitive improvement might be mediated via BDNF-linked mechanisms in healthy people. However, the health status of individuals should be considered.

  12. The Effect of 4 Weeks of Flaxseed Extract Supplementation on Serum Concentration of Brain-Derived Neurotrophic Factor and C-Reactive Protein

    Directory of Open Access Journals (Sweden)

    Hosein Nazari

    2017-02-01

    Full Text Available Background and Objective: Omega-3 Supplementation has different effects on the body. Terefore, this study was carried out with the aim of investigating the effect of 4 weeks of flaxseed extract supplementation on serum concentrations of Brain-derived neurotrophic factor (BDNF and C-reactive protein (CRP. Methods: In this double-blind study, 24 male students (mean age, 23.21±1.98 were randomly divided into two groups, including flaxseed extract (n=12 and placebo (n=12. After 4 weeks of supplementation with flaxseed extract, serum levels of BDNF and CRP was measured in fasting state. BDNF level was measured using an enzyme-linked immunosorbent assay (ELISA kit, and CRP level was measured using an immunoturbidimetric assay kit. Data were analyzed using t-test. The level of significance was set at p<0.05. Results: After four weeks of supplementation with flaxseed extract the mean serum level of BDNF significantly increased (p<0.001, but no significant change was observed in the serum level of CRP (p<0.591. Conclusion: It seems that supplementation with flaxseed extract through increasing BDNF level is useful for the improvement of cognitive and functional benefits of the brain.

  13. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men.

    Science.gov (United States)

    Zoladz, J A; Pilc, A; Majerczak, J; Grandys, M; Zapart-Bukowska, J; Duda, K

    2008-12-01

    It is believed that brain derived neurotrophic factor (BDNF) plays an important role in neuronal growth, transmission, modulation and plasticity. Single bout of exercise can increase plasma BDNF concentration [BDNF](p) in humans. It was recently reported however, that elevated [BDNF](p) positively correlated with risk factors for metabolic syndrome and type 2 diabetes mellitus in middle age group of subjects. On the other hand it is well established that endurance training decreases the risk of diabetes and development of metabolic syndrome. In the present study we have examined the effect of 5 weeks of moderate intensity endurance training on the basal and the exercise induced changes in [BDNF](p) in humans. Thirteen young, healthy and physically active men (mean +/- S.E: age 22.7 +/- 0.5 yr, body height 180.2 +/- 1.7 cm, body weight 77.0 +/- 2.5 kg, V(O2max) 45.29 +/- 0.93 ml x kg-1 x min(-1)) performed a five week endurance cycling training program, composed mainly of moderate intensity bouts. Before training [BDNF]p at rest have amounted to 10.3 +/- 1.4 pg x ml(-1). No effect of a single maximal incremental cycling up to V(O2max) on its concentration was found (10.9 +/- 2.3 pg x ml(-1), P=0.74). The training resulted in a significant (P=0.01) increase in [BDNF]p at rest to 16.8 +/- 2.1 pg x ml(-1), as well as in significant (P=0.0002) exercise induced increase in the [BDNF](p) (10.9 +/- 2.3 pg x ml(-1) before training vs. 68.4 +/- 16.0 pg x ml(-1) after training). The training induced increase in resting [BDNF](p) was accompanied by a slight decrease in insulin resistance (P=0.25), calculated using the homeostatic model assessment version 2 (HOMA2-IR), amounting to 1.40 +/- 0.13 before and 1.15 +/- 0.13 after the training. Moreover, we have found that the basal [BDNF](p) in athletes (n=16) was significantly higher than in untrained subjects (n=13) (29.5 +/- 9.5 pg x ml(-1) vs. 10.3 +/- 1.4 pg x ml(-1), P=0.013). We have concluded that endurance training of

  14. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates.

    Science.gov (United States)

    Augustyniak, Rafal; Kay, Lewis E

    2018-05-22

    Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.

  15. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  16. ROLE OF BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF IN THE DIAGNOSIS OF COGNTIVE DYSFUNCTION IN PATIENTS WITH TYPE 2 DIABETES

    Directory of Open Access Journals (Sweden)

    Irina Vladimirovna Gatskikh

    2016-02-01

    Full Text Available One of the heavy progressive vascular complications of type 2 diabetes is a central nervous system, manifesting cognitive dysfunction due to metabolic changes. Goal. Defining the role of brain-derived neurotrophic factor (BDNF in the diagnosis of cognitive dysfunction in patients with type 2 diabetes. Materials and methods. The study involved 83 patients with type 2 diabetes at the age of 40 - 70 years. Complex examination included clinical and laboratory examination, neuropsychological testing. To screen for cognitive impairment used the Montreal Cognitive Assessment Scale (MOS test. To identify early markers of cognitive impairment was determined the level of brain-derived neurotrophic factor (BDNF. Results. The study found a negative correlation between the level of BDNF and the HbA1c (r = - 0,494, p = 0.01, fasting glucose (r = - 0,499, p = 0.01, and a positive relationship between the level of BDNF and cognitive function in patients with type 2 diabetes. Conclusion. In patients with type 2 diabetes revealed cognitive dysfunction in the form of reduced memory, attention, optical-dimensional activity that correlated with chronic hyperglycemia. The role of brain-derived neurotrophic factor (BDNF in the complex diagnosis of cognitive dysfunction in patients with type 2 diabetes. With an increase in HbA1c in patients with type 2 diabetes reduces the level of BDNF in the blood plasma, and a decline in cognitive function. Recommended use of BDNF as an additional marker of cognitive dysfunction in patients with type 2 diabetes.

  17. Recombinant PrPSc shares structural features with brain-derived PrPSc: Insights from limited proteolysis.

    Science.gov (United States)

    Sevillano, Alejandro M; Fernández-Borges, Natalia; Younas, Neelam; Wang, Fei; R Elezgarai, Saioa; Bravo, Susana; Vázquez-Fernández, Ester; Rosa, Isaac; Eraña, Hasier; Gil, David; Veiga, Sonia; Vidal, Enric; Erickson-Beltran, Melissa L; Guitián, Esteban; Silva, Christopher J; Nonno, Romolo; Ma, Jiyan; Castilla, Joaquín; R Requena, Jesús

    2018-01-01

    Very solid evidence suggests that the core of full length PrPSc is a 4-rung β-solenoid, and that individual PrPSc subunits stack to form amyloid fibers. We recently used limited proteolysis to map the β-strands and connecting loops that make up the PrPSc solenoid. Using high resolution SDS-PAGE followed by epitope analysis, and mass spectrometry, we identified positions ~116/118, 133-134, 141, 152-153, 162, 169 and 179 (murine numbering) as Proteinase K (PK) cleavage sites in PrPSc. Such sites likely define loops and/or borders of β-strands, helping us to predict the threading of the β-solenoid. We have now extended this approach to recombinant PrPSc (recPrPSc). The term recPrPSc refers to bona fide recombinant prions prepared by PMCA, exhibiting infectivity with attack rates of ~100%. Limited proteolysis of mouse and bank vole recPrPSc species yielded N-terminally truncated PK-resistant fragments similar to those seen in brain-derived PrPSc, albeit with varying relative yields. Along with these fragments, doubly N- and C-terminally truncated fragments, in particular ~89/97-152, were detected in some recPrPSc preparations; similar fragments are characteristic of atypical strains of brain-derived PrPSc. Our results suggest a shared architecture of recPrPSc and brain PrPSc prions. The observed differences, in particular the distinct yields of specific PK-resistant fragments, are likely due to differences in threading which result in the specific biochemical characteristics of recPrPSc. Furthermore, recombinant PrPSc offers exciting opportunities for structural studies unachievable with brain-derived PrPSc.

  18. Effects of Fluid Ingestion on Brain-Derived Neurotrophic Factor and Cognition During Exercise in the Heat

    Directory of Open Access Journals (Sweden)

    Roh Hee-Tae

    2017-08-01

    Full Text Available We investigated the effects of fluid ingestion during exercise in different environments on the serum brain-derived neurotrophic factor and cognition among athletes. Ten collegiate male athletes (soccer, n = 5; rugby, n = 5 were enrolled, and they completed running tests in the following four conditions (60 min each: 1 thermoneutral temperature at 18°C (group 18; 2 high ambient temperature at 32°C without fluid ingestion (group 32; 3 high ambient temperature at 32°C with water ingestion (group 32+W; and 4 high ambient temperature at 32°C with sports drink ingestion (group 32+S. Serum brain-derived neurotrophic factor levels significantly increased in group 18 immediately after exercise when compared with those at rest and were significantly higher than those in group 32 immediately and 60 min after exercise (p < 0.05. In the Stroop Color and Word Test, significantly increased Word, Color, and Color-Word scores were observed in group 18 immediately after exercise compared to those at rest (p < 0.05. However, the Color-Word score appeared to be significantly lower in group 32 immediately after exercise compared to the other groups (p < 0.05 and at 60 min post-exercise compared to group 18 (p < 0.05. We found that the exercise performed in a thermoneutral environment improved cognitive function, but the exercise performed in a hot environment did not. The differences according to the exercise environment would be largely affected by brain-derived neurotrophic factor, and fluid ingestion regardless of the type of drink (water or sports beverage was assumed to have contributed to the improvement in cognitive function caused by exercising in a hot environment.

  19. Brain-derived neurotrophic factor exerts neuroprotective actions against amyloid β-induced apoptosis in neuroblastoma cells

    OpenAIRE

    KIM, JIN HEE

    2014-01-01

    Alzheimer’s disease (AD) brains demonstrate decreased levels of brain-derived neurotrophic factor (BDNF) and increased levels of β-amyloid peptide (Aβ), which is neurotoxic. The present study assessed the impact of BDNF on the toxic effects of Aβ25–35-induced apoptosis and the effects on BDNF-mediated signaling using the MTT assay, western blotting and reverse transcription quantitative polymerase chain reaction. Aβ25–35 was found to induce an apoptosis, dose-dependent effect on SH-SY5Y neuro...

  20. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Rodriguez-del Valle Nuri

    2007-11-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  1. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin.

    Science.gov (United States)

    de Almeida-Paula, Lidiana Duarte; Costa-Lotufo, Leticia V; Silva Ferreira, Zulma; Monteiro, Amanda Elisa G; Isoldi, Mauro Cesar; Godinho, Rosely O; Markus, Regina P

    2005-11-21

    Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.

  2. Novel Calmodulin (CALM2) Mutations Associated with Congenital Arrhythmia Susceptibility

    Science.gov (United States)

    Makita, Naomasa; Yagihara, Nobue; Crotti, Lia; Johnson, Christopher N.; Beckmann, Britt-Maria; Roh, Michelle S.; Shigemizu, Daichi; Lichtner, Peter; Ishikawa, Taisuke; Aiba, Takeshi; Homfray, Tessa; Behr, Elijah R.; Klug, Didier; Denjoy, Isabelle; Mastantuono, Elisa; Theisen, Daniel; Tsunoda, Tatsuhiko; Satake, Wataru; Toda, Tatsushi; Nakagawa, Hidewaki; Tsuji, Yukiomi; Tsuchiya, Takeshi; Yamamoto, Hirokazu; Miyamoto, Yoshihiro; Endo, Naoto; Kimura, Akinori; Ozaki, Kouichi; Motomura, Hideki; Suda, Kenji; Tanaka, Toshihiro; Schwartz, Peter J.; Meitinger, Thomas; Kääb, Stefan; Guicheney, Pascale; Shimizu, Wataru; Bhuiyan, Zahurul A.; Watanabe, Hiroshi; Chazin, Walter J.; George, Alfred L.

    2014-01-01

    Background Genetic predisposition to life-threatening cardiac arrhythmias such as in congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations. Methods and Results We employed conventional and next-generation sequencing approaches including exome analysis in genotype-negative LQTS probands. We identified five novel de novo missense mutations in CALM2 in three subjects with LQTS (p.N98S, p.N98I, p.D134H) and two subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1–9 years. Three of five probands had cardiac arrest and one of these subjects did not survive. Although all probands had LQTS, two subjects also exhibited electrocardiographic features consistent with CPVT. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of five probands responded to β-blocker therapy whereas one subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within calcium binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced calcium binding affinity. Conclusions CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT. PMID:24917665

  3. Circulating Estradiol Regulates Brain-Derived Estradiol via Actions at GnRH Receptors to Impact Memory in Ovariectomized Rats.

    Science.gov (United States)

    Nelson, Britta S; Black, Katelyn L; Daniel, Jill M

    2016-01-01

    Systemic estradiol treatment enhances hippocampus-dependent memory in ovariectomized rats. Although these enhancements are traditionally thought to be due to circulating estradiol, recent data suggest these changes are brought on by hippocampus-derived estradiol, the synthesis of which depends on gonadotropin-releasing hormone (GnRH) activity. The goal of the current work is to test the hypothesis that peripheral estradiol affects hippocampus-dependent memory through brain-derived estradiol regulated via hippocampal GnRH receptor activity. In the first experiment, intracerebroventricular infusion of letrozole, which prevents the synthesis of estradiol, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory in a radial-maze task. In the second experiment, hippocampal infusion of antide, a long-lasting GnRH receptor antagonist, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory. In the third experiment, hippocampal infusion of GnRH enhanced hippocampus-dependent memory, the effects of which were blocked by letrozole infusion. Results indicate that peripheral estradiol-induced enhancement of cognition is mediated by brain-derived estradiol via hippocampal GnRH receptor activity.

  4. Role of calmodulin and calcineurin in regulating flagellar motility and wave polarity in Leishmania.

    Science.gov (United States)

    Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2017-11-01

    We have previously reported the involvement of cyclic AMP in regulating flagellar waveforms in Leishmania. Here, we investigated the roles of calcium, calmodulin, and calcineurin in flagellar motility regulation in L. donovani. Using high-speed videomicroscopy, we show that calcium-independent calmodulin and calcineurin activity is necessary for motility in Leishmania. Inhibition of calmodulin and calcineurin induced ciliary beats interrupting flagellar beating in both live (in vivo) and ATP-reactivated (in vitro) parasites. Our results indicate that signaling mediated by calmodulin and calcineurin operates antagonistically to cAMP signaling in regulating the waveforms of Leishmania flagellum. These two pathways are possibly involved in maintaining the balance between the two waveforms, essential for responding to environmental cues, survival, and infectivity.

  5. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding.

    Science.gov (United States)

    Bonache, M Angeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario

    2014-11-28

    The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenient functionalization of PEG arms with azide and alkyne groups. The resulting conjugates, with a certain helical character in TFE solutions (CD), showed nanomolar affinity in a fluorescence CaM binding in vitro assay, higher than just the sum of the precursor PEG-peptide affinities, thus validating our design. The approach to these first described examples of Kv7.2 CaMBD-mimetics could pave the way to chimeric conjugates merging helices A and B from different Kv7 subunits.

  6. Identification and Characterization of the Interaction Site between cFLIPL and Calmodulin.

    Directory of Open Access Journals (Sweden)

    Gabriel Gaidos

    Full Text Available Overexpression of the cellular FLICE-like inhibitory protein (cFLIP has been reported in a number of tumor types. As an inactive procaspase-8 homologue, cFLIP is recruited to the intracellular assembly known as the Death Inducing Signaling Complex (DISC where it inhibits apoptosis, leading to cancer cell proliferation. Here we characterize the molecular details of the interaction between cFLIPL and calmodulin, a ubiquitous calcium sensing protein. By expressing the individual domains of cFLIPL, we demonstrate that the interaction with calmodulin is mediated by the N-terminal death effector domain (DED1 of cFLIPL. Additionally, we mapped the interaction to a specific region of the C-terminus of DED1, referred to as DED1 R4. By designing DED1/DED2 chimeric constructs in which the homologous R4 regions of the two domains were swapped, calmodulin binding properties were transferred to DED2 and removed from DED1. Furthermore, we show that the isolated DED1 R4 peptide binds to calmodulin and solve the structure of the peptide-protein complex using NMR and computational refinement. Finally, we demonstrate an interaction between cFLIPL and calmodulin in cancer cell lysates. In summary, our data implicate calmodulin as a potential player in DISC-mediated apoptosis and provide evidence for a specific interaction with the DED1 of cFLIPL.

  7. Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin.

    Science.gov (United States)

    Di Giovanni, Jerome; Iborra, Cécile; Maulet, Yves; Lévêque, Christian; El Far, Oussama; Seagar, Michael

    2010-07-30

    Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.

  8. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  9. New human erythrocyte protein with binding sites for both spectrin and calmodulin

    International Nuclear Information System (INIS)

    Gardner, K.; Bennett, V.

    1986-01-01

    A new cytoskeletal protein that binds calmodulin has been purified to greater than 95% homogeneity from human erythrocyte cytoskeletons. The protein is a heterodimer with subunits of 103,000 and 97,000 and M/sub r/ = 197,000 calculated from its Stokes radius of 6.9 nm and sedimentation coefficient of 6.8. A binding affinity of this protein for calmodulin has been estimated to be 230 nM by displacement of two different concentrations of 125 I-azidocalmodulin with increasing concentrations of unmodified calmodulin followed by Dixon plot analysis. This protein is present in red cells at approximately 30,000 copies per cell and contains a very tight binding site(s) on cytoskeletons. The protein can be only partially solubilized from isolated cytoskeletons in buffers containing high salt, but can be totally solubilized from red cell ghost membranes by extraction in low ionic strength buffers. Affinity purified IgG against this calmodulin-binding protein identifies crossreacting polypeptide(s) in brain, kidney, testes and retina. Visualization of the calmodulin-binding protein by negative staining, rotary shadowing and unidirectional shadowing indicate that it is a flattened circular molecule with molecular height of 5.4 nm and a diameter of 12.4 nm. Preliminary cosedimentation studies with purified spectrin and F-actin indicate that the site of interaction of this calmodulin-binding protein with the cytoskeleton resides on spectrin

  10. Brain-derived neurotrophic factor levels under chronic natalizumab treatment in multiple sclerosis. A preliminary report.

    Science.gov (United States)

    Văcăraş, Vitalie; Major, Zoltán Zsigmond; Buzoianu, Anca Dana

    Our main purpose was to investigate if the chronic treatment with the disease-modifying drug natalizumab shows quantifiable effect on BDNF levels in multiple sclerosis patients. BDNF plasma concentration was evaluated using enzyme-linked immunosorbent assay in healthy individuals, not treated multiple sclerosis patients and patients treated with natalizumab. Multiple sclerosis patients have a significantly lower amount of peripheral BDNF than healthy individuals. Patients treated with natalizumab have significantly higher BDNF levels than not treated patients. Chronic natalizumab treatment is associated with significantly increased plasma BDNF concentration in multiple sclerosis. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT(1A receptor.

    Directory of Open Access Journals (Sweden)

    Renwen Zhang

    Full Text Available In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT(1A, at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214-231 and carboxyl tail of the receptor (ct, 302-317. We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT(1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca²⁺-dependent fashion. The former is a 1-12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219 for alanine in i3, and phenylalanine (F309 or F313 for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT(1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.

  12. Two Distinct Calmodulin Binding Sites in the Third Intracellular Loop and Carboxyl Tail of Angiotensin II (AT1A) Receptor

    Science.gov (United States)

    Zhang, Renwen; Liu, Zhijie; Qu, Youxing; Xu, Ying; Yang, Qing

    2013-01-01

    In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT1A), at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214–231) and carboxyl tail of the receptor (ct, 302–317). We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca2+-dependent fashion. The former is a 1–12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219) for alanine in i3, and phenylalanine (F309 or F313) for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor. PMID:23755207

  13. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairment...... specific for the serotonin 2A receptor (5-HT(2A)R) in prefrontal cortex was described previously in these mice. This is of much interest, as 5-HT(2A)Rs have been linked to neuropsychiatric disorders and anxiety-related behavior. Here we further characterized the serotonin receptor alterations triggered...... was decreased in hippocampus of BDNF mutants, but unchanged in frontal cortex. Molecular analysis indicated corresponding changes in 5-HT(2A) and 5-HT(1A) mRNA expression but normal 5-HT(2C) content in these brain regions in BDNF(2L/2LCk-cre) mice. We investigated whether the reduction in frontal 5-HT(2A...

  14. Hypothalamic Dysfunction of the Thrombospondin Receptor α2δ-1 Underlies the Overeating and Obesity Triggered by Brain-Derived Neurotrophic Factor Deficiency

    Science.gov (United States)

    Cordeira, Joshua W.; Felsted, Jennifer A.; Teillon, Sarah; Daftary, Shabrine; Panessiti, Micaella; Wirth, Jena; Sena-Esteves, Miguel

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are critical components of the neural circuitry controlling appetite and body weight. Diminished BDNF signaling in mice results in severe hyperphagia and obesity. In humans, BDNF haploinsufficiency and the functional Bdnf Val66Met polymorphism have been linked to elevated food intake and body weight. The mechanisms underlying this dysfunction are poorly defined. We demonstrate a chief role of α2δ-1, a calcium channel subunit and thrombospondin receptor, in triggering overeating in mice with central BDNF depletion. We show reduced α2δ-1 cell-surface expression in the BDNF mutant ventromedial hypothalamus (VMH), an energy balance-regulating center. This deficit contributes to the hyperphagia exhibited by BDNF mutant mice because selective inhibition of α2δ-1 by gabapentin infusion into wild-type VMH significantly increases feeding and body weight gain. Importantly, viral-mediated α2δ-1 rescue in BDNF mutant VMH significantly mitigates their hyperphagia, obesity, and liver steatosis and normalizes deficits in glucose homeostasis. Whole-cell recordings in BDNF mutant VMH neurons revealed normal calcium currents but reduced frequency of EPSCs. These results suggest calcium channel-independent effects of α2δ-1 on feeding and implicate α2δ-1–thrombospondin interactions known to facilitate excitatory synapse assembly. Our findings identify a central mechanism mediating the inhibitory effects of BDNF on feeding. They also demonstrate a novel and critical role for α2δ-1 in appetite control and suggest a mechanism underlying weight gain in humans treated with gabapentinoid drugs. PMID:24403154

  15. Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) serum levels in bipolar disorder: The role of lithium.

    Science.gov (United States)

    Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Yalçın, Yaprak; Can, Güneş; Resmi, Halil; Akan, Pınar; Ergör, Gül; Aydemir, Omer; Cengisiz, Cengiz; Kerim, Doyuran

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) has been consistently reported to be decreased in mania or depression in bipolar disorders. Evidence suggests that Glial cell line-derived neurotrophic factor (GDNF) has a role in the pathogenesis of mood disorders. Whether GDNF and BDNF act in the same way across different episodes in bipolar disorders is unclear. BDNF and GDNF serum levels were measured simultaneously by enzyme-linked immunosorbent assay (ELISA) method in 96 patients diagnosed with bipolar disorder according to DSM-IV (37 euthymic, 33 manic, 26 depressed) in comparison to 61 healthy volunteers. SCID- I and SCID-non patient version were used for clinical evaluation of the patients and healthy volunteers respectively. Correlations between the two trophic factor levels, and medication dose, duration and serum levels of lithium or valproate were studied across different episodes of illness. Patients had significantly lower BDNF levels during mania and depression compared to euthymic patients and healthy controls. GDNF levels were not distinctive. However GDNF/BDNF ratio was higher in manic state compared to euthymia and healthy controls. Significant negative correlation was observed between BDNF and GDNF levels in euthymic patients. While BDNF levels correlated positively, GDNF levels correlated negatively with lithium levels. Regression analysis confirmed that lithium levels predicted only GDNF levels positively in mania, and negatively in euthymia. Small sample size in different episodes and drug-free patients was the limitation of thestudy. Current data suggests that lithium exerts its therapeutic action by an inverse effect on BDNF and GDNF levels, possibly by up-regulating BDNF and down-regulating GDNF to achieve euthymia. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density.

    Science.gov (United States)

    Cortés, Claudia; Eugenin, Eliseo; Aliaga, Esteban; Carreño, Leandro J; Bueno, Susan M; Gonzalez, Pablo A; Gayol, Silvina; Naranjo, David; Noches, Verónica; Marassi, Michelle P; Rosenthal, Doris; Jadue, Cindy; Ibarra, Paula; Keitel, Cecilia; Wohllk, Nelson; Court, Felipe; Kalergis, Alexis M; Riedel, Claudia A

    2012-09-01

    Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T(4)) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-D-aspartate receptor (NMDAr) were analyzed by immunoblot. We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF.

  17. Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders.

    Science.gov (United States)

    Knapman, A; Heinzmann, J-M; Hellweg, R; Holsboer, F; Landgraf, R; Touma, C

    2010-07-01

    Cognitive deficits are a common feature of major depression (MD), with largely unknown biological underpinnings. In addition to the affective and cognitive symptoms of MD, a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is commonly observed in these patients. Increased plasma glucocorticoid levels are known to render the hippocampus susceptible to neuronal damage. This structure is important for learning and memory, creating a potential link between HPA axis dysregulation and cognitive deficits in depression. In order to further elucidate how altered stress responsiveness may contribute to the etiology of MD, three mouse lines with high (HR), intermediate (IR), or low (LR) stress reactivity were generated by selective breeding. The aim of the present study was to investigate whether increased stress reactivity is associated with deficits in hippocampus-dependent memory tests. To this end, we subjected mice from the HR, IR, and LR breeding lines to tests of recognition memory, spatial memory, and depression-like behavior. In addition, measurements of brain-derived neurotrophic factor (BDNF) in the hippocampus and plasma of these animals were conducted. Our results demonstrate that HR mice exhibit hippocampus-dependent memory deficits along with decreased hippocampal, but not plasma, BDNF levels. Thus, the stress reactivity mouse lines are a promising animal model of the cognitive deficits in MD with the unique feature of a genetic predisposition for an altered HPA axis reactivity, which provides the opportunity to explore the progression of the symptoms of MD, predisposing genetic factors as well as new treatment strategies. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Eating habits modulate short term memory and epigenetical regulation of brain derived neurotrophic factor in hippocampus of low- and high running capacity rats.

    Science.gov (United States)

    Torma, Ferenc; Bori, Zoltan; Koltai, Erika; Felszeghy, Klara; Vacz, Gabriella; Koch, Lauren; Britton, Steven; Boldogh, Istvan; Radak, Zsolt

    2014-08-01

    Exercise capacity and dietary restriction (DR) are linked to improved quality of life, including enhanced brain function and neuro-protection. Brain derived neurotrophic factor (BDNF) is one of the key proteins involved in the beneficial effects of exercise on brain. Low capacity runner (LCR) and high capacity runner (HCR) rats were subjected to DR in order to investigate the regulation of BDNF. HCR-DR rats out-performed other groups in a passive avoidance test. BDNF content increased significantly in the hippocampus of HCR-DR groups compared to control groups (p<0.05). The acetylation of H3 increased significantly only in the LCR-DR group. However, chip-assay revealed that the specific binding between acetylated histone H3 and BNDF promoter was increased in both LCR-DR and HCR-DR groups. In spite of these increases in binding, at the transcriptional level only, the LCR-DR group showed an increase in BDNF mRNA content. Additionally, DR also induced the activity of cAMP response element-binding protein (CREB), while the content of SIRT1 was not altered. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was elevated in HCR-DR groups. But, based on the levels of nuclear respiratory factor-1 and cytocrome c oxidase, it appears that DR did not cause mitochondrial biogenesis. The data suggest that DR-mediated induction of BDNF levels includes chromatin remodeling. Moreover, DR does not induce mitochondrial biogenesis in the hippocampus of LCR/HCR rats. DR results in different responses to a passive avoidance test, and BDNF regulation in LCR and HCR rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Association of functional polymorphisms from brain-derived neurotrophic factor and serotonin-related genes with depressive symptoms after a medical stressor in older adults.

    Directory of Open Access Journals (Sweden)

    Kerri S Rawson

    Full Text Available Depressive symptoms are common in older adults after a disabling medical event and interfere with rehabilitation and recovery from the disability. This prospective study examined the role of genetic polymorphisms implicated in synaptic integrity and stress-associated depression as predictors of depressive symptoms after hip fracture. We recruited healthy comparisons from the community and participants with hip fracture after surgical fixation from Saint Louis, Missouri hospitals. We examined the valine (Val to methionine (Met polymorphism in brain-derived neurotrophic factor (BDNF, serotonin 1A receptor (5HT1a-rs6295 polymorphism, and the serotonin transporter-linked polymorphic region (5HTTLPR interaction with the rs25531 A to G single nucleotide polymorphism (5HTTLPR-rs25531 as predictors of depressive symptoms. We also examined whether depressive symptoms mediate the influence of BDNF genotype on functional recovery. Among 429 participants with hip fracture, BDNF Met/Met carriers developed significantly more depressive symptoms than Val/Val carriers during a four-week period after the fracture (p=.012. BDNF genotype also predicted functional recovery over the ensuing year, mediated by its effects on depressive symptoms (CI: 0.07-3.37. Unlike prior studies of stressful life events, the S' 5HTTLPR-rs25531 variant did not predict higher levels of depressive symptoms; instead, we report an exploratory finding of an epistatic effect between BDNF and 5HTTLPR-rs25531 whereby the compounded effects of two LA alleles and BDNF Met/Met genotype elevate risk of depressive symptoms after hip fracture (p=.006. No differences between 5HT1a genotypes were found. Our findings suggest plasticity-related genetic factors contribute to the neural mechanisms of mental and functional well-being after a disabling medical stressor.

  20. Regulation of Brain-Derived Neurotrophic Factor Exocytosis and Gamma-Aminobutyric Acidergic Interneuron Synapse by the Schizophrenia Susceptibility Gene Dysbindin-1.

    Science.gov (United States)

    Yuan, Qiang; Yang, Feng; Xiao, Yixin; Tan, Shawn; Husain, Nilofer; Ren, Ming; Hu, Zhonghua; Martinowich, Keri; Ng, Julia S; Kim, Paul J; Han, Weiping; Nagata, Koh-Ichi; Weinberger, Daniel R; Je, H Shawn

    2016-08-15

    Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. A brain-derived neurotrophic factor polymorphism Val66Met identifies fibromyalgia syndrome subgroup with higher body mass index and C-reactive protein.

    Science.gov (United States)

    Xiao, Yangming; Russell, I Jon; Liu, Ya-Guang

    2012-08-01

    A common single nucleotide polymorphism (SNP) in the gene of brain-derived neurotrophic factor (BDNF) results from a substitution at position 66 from valine (Val) to methionine (Met) and may predispose to human neuropsychiatric disorders. We proposed to determine whether these BDNF gene SNPs were associated with fibromyalgia syndrome (FMS) and/or any of its typical phenotypes. Patients with FMS (N = 95) and healthy normal controls (HNC, N = 58) were studied. Serum high-sensitivity C-reactive protein (hsCRP) levels were measured using an enzyme-linked immunosorbent assay (ELISA). The BDNF SNPs were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).The BDNF SNP distribution was 65 (68%) Val/Val, 28 (30%) Val/Met, and 2 (2%) Met/Met for FMS and 40 (69%), 17(29%), and 1 (2%) for HNC, respectively. The serum high-sensitivity C-reactive protein (hsCRP)and body mass index (BMI) in FMS were higher than in HNC. The FMS with BDNF Val66Val had significantly higher mean BMI (P = 0.0001) and hsCRP (P = 0.02) than did FMS carrying the Val66Met genotype. This pattern was not found in HNC. Phenotypic measures of subjective pain, pain threshold, depression, or insomnia did not relate to either of the BDNF SNPs in FMS. The relative distribution BDNF SNPs did not differ between FMS and HNC. The BDNF Val66Met polymorphism is not selective for FMS. The BDNF Val66Val SNP identifies a subgroup of FMS with elevated hsCRP and higher BMI. This is the first study to associate a BDNF polymorphism with a FMS subgroup phenotype.

  2. Brain derived neurotrophic factor mediated learning, fear acquisition and extinction as targets for developing novel treatments for anxiety

    Directory of Open Access Journals (Sweden)

    Karina Soares de Oliveira

    Full Text Available ABSTRACT Anxiety and obsessive-compulsive related disorders are highly prevalent and disabling disorders for which there are still treatment gaps to be explored. Fear is a core symptom of these disorders and its learning is highly dependent on the activity of the neurotrophin brain-derived neurotrophic factor (BDNF. Should BDNF-mediated fear learning be considered a target for the development of novel treatments for anxiety and obsessive-compulsive related disorders? We review the evidence that suggests that BDNF expression is necessary for the acquisition of conditioned fear, as well as for the recall of its extinction. We describe the findings related to fear learning and genetic/epigenetic manipulation of Bdnf expression in animals and BDNF allelic variants in humans. Later, we discuss how manipulation of BDNF levels represents a promising potential treatment target that may increase the benefits of therapies that extinguish previously conditioned fear.

  3. From Molecular to Nanotechnology Strategies for Delivery of Neurotrophins: Emphasis on Brain-Derived Neurotrophic Factor (BDNF)

    Science.gov (United States)

    Géral, Claire; Angelova, Angelina; Lesieur, Sylviane

    2013-01-01

    Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted. PMID:24300402

  4. Antidiabetic Effect of Brain-Derived Neurotrophic Factor and Its Association with Inflammation in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Ceren Eyileten

    2017-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a neurotrophin, which plays an important role in the central nervous system, and systemic or peripheral inflammatory conditions, such as acute coronary syndrome and type 2 diabetes mellitus (T2DM. BDNF is also expressed in several nonneuronal tissues, and platelets are the major source of peripheral BDNF. Here, we reviewed the potential role of BDNF in platelet reactivity in T2DM and its association with selected inflammatory and platelet activation mediators. Besides that, we focused on adipocytokines such as leptin, resistin, and adiponectin which are considered to take part in inflammation and both lipid and glucose metabolism in diabetic patients as previous studies showed the relation between adipocytokines and BDNF. We also reviewed the evidences of the antidiabetic effect of BDNF and the association with circulating inflammatory cytokines in T2DM.

  5. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Ericksen Mielle Borba

    2016-12-01

    Full Text Available Background/Aims: Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD pathology. Serum brain-derived neurotrophic factor (BDNF reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]. Methods: Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results: MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion: The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  6. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease.

    Science.gov (United States)

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  7. Cross-sectional associations of objectively measured physical activity with brain-derived neurotrophic factor in adolescents

    DEFF Research Database (Denmark)

    Huang, Tao; Gejl, Anne Kær; Tarp, Jakob

    2017-01-01

    .035). In girls, mean physical activity and MVPA were not associated with serum BDNF. Without adjustment for wear time, sedentary time was not associated with serum BDNF in either sex. CONCLUSION: These findings indicate that higher physical activity is associated with lower serum BDNF in boys, but not in girls....... standardized procedures. RESULTS: With adjustment for age, pubertal status and body mass index, mean physical activity (counts per minute) was negatively associated with serum BDNF in boys (P=0.013). Similarly, moderate-to-vigorous physical activity (MVPA) was negatively associated with serum BDNF in boys (P=0......OBJECTIVE: The purpose of this study was to examine the associations between objectively measured physical activity and serum brain-derived neurotrophic factor (BDNF) in adolescents. METHODS: Cross-sectional analyses were performed using data from 415 adolescents who participated in the 2015 follow...

  8. Brain-derived neurotrophic factor in the nucleus tractus solitarii modulates glucose homeostasis after carotid chemoreceptor stimulation in rats.

    Science.gov (United States)

    Montero, Sergio; Cuéllar, Ricardo; Lemus, Mónica; Avalos, Reyes; Ramírez, Gladys; de Álvarez-Buylla, Elena Roces

    2012-01-01

    Neuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation. Infusing BDNF into the nucleus tractus solitarii (NTS) before CChr stimulation, showed that this neurotrophin increased arterial glucose and BGR. In contrast, BDNF receptor (TrkB) antagonist (K252a) infusions in NTS resulted in a decrease in both glucose variables.

  9. Characterization and Functional Analysis of the Calmodulin-Binding Domain of Rac1 GTPase

    Science.gov (United States)

    Xu, Bing; Chelikani, Prashen; Bhullar, Rajinder P.

    2012-01-01

    Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s) in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151–164 in Rac1 is essential for calmodulin binding. Within the 151–164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A) demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A), activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration. PMID:22905193

  10. Characterization and functional analysis of the calmodulin-binding domain of Rac1 GTPase.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151-164 in Rac1 is essential for calmodulin binding. Within the 151-164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A, activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration.

  11. Impact of methionine oxidation on calmodulin structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States); Moen, Rebecca J. [Chemistry and Geology Department, Minnesota State University, Mankato, MN 56001 (United States); Olenek, Michael J. [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Klein, Jennifer C., E-mail: jklein@uwlax.edu [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Thomas, David D., E-mail: ddt@umn.edu [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States)

    2015-01-09

    Highlights: • We measured the distance distribution between two spin labels on calmodulin by DEER. • Two structural states, open and closed, were resolved at both low and high Ca. • Ca shifted the equilibrium toward the open state by a factor of 13. • Methionine oxidation, simulated by glutamine substitution, decreased the Ca effect. • These results have important implications for aging in muscle and other tissues. - Abstract: We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron–electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4 nm (closed) and another at ∼6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each

  12. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons.

    Science.gov (United States)

    Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng

    2014-10-01

    Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (pdiet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.

  13. Association study of a brain-derived neurotrophic factor polymorphism and short-term antidepressant response in major depressive disorders

    Directory of Open Access Journals (Sweden)

    Lung-Cheng Huang

    2008-10-01

    Full Text Available Eugene Lin1,7, Po See Chen2,6,7, Lung-Cheng Huang3,4, Sen-Yen Hsu51Vita Genomics, Inc., Wugu Shiang, Taipei, Taiwan; 2Department of Psychiatry, Hospital and College of Medicine, National Cheng Kung University, Tainan, Taiwan; 3Department of Psychiatry, National Taiwan University Hospital Yun-Lin Branch, Taiwan; 4Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Psychiatry, Chi Mei Medical Center, Liouying, Tainan, Taiwan; 6Department of Psychiatry, National Cheng Kung University Hospital, Dou-liou Branch, Yunlin, Taiwan; 7These authors contributed equally to this workAbstract: Major depressive disorder (MDD is one of the most common mental disorders worldwide. Single nucleotide polymorphisms (SNPs can be used in clinical association studies to determine the contribution of genes to drug efficacy. A common SNP in the brain-derived neurotrophic factor (BDNF gene, a methionine (Met substitution for valine (Val at codon 66 (Val66Met, is a candidate SNP for influencing antidepressant treatment outcome. In this study, our goal was to determine the relationship between the Val66Met polymorphism in the BDNF gene and the rapid antidepressant response to venlafaxine in a Taiwanese population with MDD. Overall, the BDNF Val66Met polymorphism was found not to be associated with short-term venlafaxine treatment outcome. However, the BDNF Val66Met polymorphism showed a trend to be associated with rapid venlafaxine treatment response in female patients. Future research with independent replication in large sample sizes is needed to confirm the role of the BDNF Val66Met polymorphism identified in this study.Keywords: antidepressant response, brain-derived neurotrophic factor, major depressive disorder, serotonin and norepinephrine reuptake inhibitor, single nucleotide polymorphisms

  14. Calmodulin-activated cyclic nucleotide phosphodiesterase from brain. Relationship of subunit structure to activity assessed by radiation inactivation

    International Nuclear Information System (INIS)

    Kincaid, R.L.; Kemdner, E.; Manganiello, V.C.; Osborne, J.C.; Vaughan, M.

    1981-01-01

    The apparent target sizes of the basal and calmodulin-dependent activities of calmodulin-activated phosphodiesterase from bovine brain were estimated using target theory analysis of data from radiation inactivation experiments. Whether crude or highly purified samples were irradiated, the following results were obtained. Low doses of radiation caused a 10 to 15% increase in basal activity, which, with further irradiation, decayed with an apparent target size of approx.60,000 daltons. Calmodulin-dependent activity decayed with an apparent target size of approx.105,000 daltons. The percentage stimulation of enzyme activity by calmodulin decreased markedly as a function of radiation dosage. These observations are consistent with results predicted by computer-assisted modeling based on the assumptions that: 1) the calmodulin-activated phosphodiesterase exists as a mixture of monomers which are fully active in the absence of calmodulin and dimers which are inactive in the absence of calmodulin; 2) in the presence of calmodulin, a dimer exhibits activity equal to that of two monomers; 3) on radiation destruction of a dimer, an active monomer is generated. This monomer-dimer hypothesis provides a plausible explanation for and definition of basal and calmodulin-dependent phosphodiesterase activity

  15. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: Residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family

    International Nuclear Information System (INIS)

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O.

    2005-01-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs

  16. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    International Nuclear Information System (INIS)

    O’Day, Danton H.; Huber, Robert J.; Suarez, Andres

    2012-01-01

    Highlights: ► Extracellular calmodulin is present throughout growth and development in Dictyostelium. ► Extracellular calmodulin localizes within the ECM during development. ► Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. ► Extracellular calmodulin exists in eukaryotic microbes. ► Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca 2+ /CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of the research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model amoebozoan.

  17. Ca(2+)-calmodulin-dependent phosphorylation of islet secretory granule proteins

    International Nuclear Information System (INIS)

    Watkins, D.T.

    1991-01-01

    The effect of Ca2+ and calmodulin on phosphorylation of islet secretory granule proteins was studied. Secretory granules were incubated in a phosphorylation reaction mixture containing [32P]ATP and test reagents. The 32P-labeled proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 32P content was visualized by autoradiography, and the relative intensities of specific bands were quantitated. When the reaction mixture contained EGTA and no added Ca2+, 32P was incorporated into two proteins with molecular weights of 45,000 and 13,000. When 10(-4) M Ca2+ was added without EGTA, two additional proteins (58,000 and 48,000 Mr) were phosphorylated, and the 13,000-Mr protein was absent. The addition of 2.4 microM calmodulin markedly enhanced the phosphorylation of the 58,000- and 48,000-Mr proteins and resulted in the phosphorylation of a major protein whose molecular weight (64,000 Mr) is identical to that of one of the calmodulin binding proteins located on the granule surface. Calmodulin had no effect on phosphorylation in the absence of Ca2+ but was effective in the presence of calcium between 10 nM and 50 microM. Trifluoperazine and calmidazolium, calmodulin antagonists, produced a dose-dependent inhibition of the calmodulin effect. 12-O-tetradecanoylphorbol 13-acetate, a phorbol ester that activates protein kinase C, produced no increase in phosphorylation, and 1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride, an inhibitor of protein kinase C, had no effect. These results indicate that Ca(2+)-calmodulin-dependent protein kinases and endogenous substrates are present in islet secretory granules

  18. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-12-31

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  19. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-01-01

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  20. Structure and expression of the chicken calmodulin I gene

    DEFF Research Database (Denmark)

    Ye, Q; Berchtold, M W

    1997-01-01

    The chicken calmodulin I (CaMI) gene has been isolated and characterized on the level of cDNA and genomic DNA. The deduced amino acid (aa) sequence is identical to the one of chicken CaMII which consists of 148 aa. The CaMI gene contains six exons. Its intron/exon organization is identical...... to that of the chicken CaMII and the CaMI and CaMIII genes of rat and human. Expression of the CaMI gene was detected in all chicken tissues examined, although at varying levels. The gene is transcribed into four mRNAs of 0.8, 1.4, 1.7 and 4.4 kb as determined by Northern blot analysis. Our results demonstrate...... that the "multigene-one-protein" principle of CaM synthesis is not only applicable to mammals whose CaM is encoded by three different genes, but also to chickens....

  1. Calmodulin stimulation of calcium transport in carrot microsomal vesicles

    International Nuclear Information System (INIS)

    Pierce, W.S.; Sze, H.

    1987-01-01

    ATP-dependent 45 Ca 2+ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca 2+ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca 2+ uptake (at 1.17 g/cc) was not affected by oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca 2+ . These results are consistent with the ER being an important site of intracellular Ca 2+ regulation

  2. The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val(66)Met

    NARCIS (Netherlands)

    Elzinga, Bernet M.; Molendijk, Marc L.; Voshaar, Richard C. Oude; Bus, Boudewijn A. A.; Prickaerts, Jos; Spinhoven, Philip; Penninx, Brenda J. W. H.

    Recent findings show lowered brain-derived neurotrophic factor (BDNF) levels in major depressive disorder (MDD). Exposure to stressful life events may (partly) underlie these BDNF reductions, but little is known about the effects of early or recent life stress on BDNF levels. Moreover, the effects

  3. The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val(66)Met

    NARCIS (Netherlands)

    Elzinga, B.M.; Molendijk, M.L.; Voshaar, R.C.O.; Bus, B.A.A.; Prickaerts, J.; Spinhoven, P.; Penninx, B.W.J.H.

    2011-01-01

    Rationale: Recent findings show lowered brain-derived neurotrophic factor (BDNF) levels in major depressive disorder (MDD). Exposure to stressful life events may (partly) underlie these BDNF reductions, but little is known about the effects of early or recent life stress on BDNF levels. Moreover,

  4. The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val66Met

    NARCIS (Netherlands)

    Elzinga, B.M.; Molendijk, M.L.; Oude Voshaar, R.C.; Bus, B.A.A.; Prickaerts, J.; Spinhoven, P.; Penninx, B.J.

    2011-01-01

    RATIONALE: Recent findings show lowered brain-derived neurotrophic factor (BDNF) levels in major depressive disorder (MDD). Exposure to stressful life events may (partly) underlie these BDNF reductions, but little is known about the effects of early or recent life stress on BDNF levels. Moreover,

  5. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    DEFF Research Database (Denmark)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...

  6. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  7. Modulation of calmodulin plasticity by the effect of macromolecular crowding.

    Science.gov (United States)

    Homouz, Dirar; Sanabria, Hugo; Waxham, M Neal; Cheung, Margaret S

    2009-09-04

    In vitro biochemical reactions are most often studied in dilute solution, a poor mimic of the intracellular space of eukaryotic cells, which are crowded with mobile and immobile macromolecules. Such crowded conditions exert volume exclusion and other entropic forces that have the potential to impact chemical equilibria and reaction rates. In this article, we used the well-characterized and ubiquitous molecule calmodulin (CaM) and a combination of theoretical and experimental approaches to address how crowding impacts CaM's conformational plasticity. CaM is a dumbbell-shaped molecule that contains four EF hands (two in the N-lobe and two in the C-lobe) that each could bind Ca(2+), leading to stabilization of certain substates that favor interactions with other target proteins. Using coarse-grained molecular simulations, we explored the distribution of CaM conformations in the presence of crowding agents. These predictions, in which crowding effects enhance the population of compact structures, were then confirmed in experimental measurements using fluorescence resonance energy transfer techniques of donor- and acceptor-labeled CaM under normal and crowded conditions. Using protein reconstruction methods, we further explored the folding-energy landscape and examined the structural characteristics of CaM at free-energy basins. We discovered that crowding stabilizes several different compact conformations, which reflects the inherent plasticity in CaM's structure. From these results, we suggest that the EF hands in the C-lobe are flexible and can be thought of as a switch, while those in the N-lobe are stiff, analogous to a rheostat. New combinatorial signaling properties may arise from the product of the differential plasticity of the two distinct lobes of CaM in the presence of crowding. We discuss the implications of these results for modulating CaM's ability to bind Ca(2+) and target proteins.

  8. Neurogranin alters the structure and calcium binding properties of calmodulin.

    Science.gov (United States)

    Hoffman, Laurel; Chandrasekar, Anuja; Wang, Xu; Putkey, John A; Waxham, M Neal

    2014-05-23

    Neurogranin (Ng) is a member of the IQ motif class of calmodulin (CaM)-binding proteins, and interactions with CaM are its only known biological function. In this report we demonstrate that the binding affinity of Ng for CaM is weakened by Ca(2+) but to a lesser extent (2-3-fold) than that previously suggested from qualitative observations. We also show that Ng induced a >10-fold decrease in the affinity of Ca(2+) binding to the C-terminal domain of CaM with an associated increase in the Ca(2+) dissociation rate. We also discovered a modest, but potentially important, increase in the cooperativity in Ca(2+) binding to the C-lobe of CaM in the presence of Ng, thus sharpening the threshold for the C-domain to become Ca(2+)-saturated. Domain mapping using synthetic peptides indicated that the IQ motif of Ng is a poor mimetic of the intact protein and that the acidic sequence just N-terminal to the IQ motif plays an important role in reproducing Ng-mediated decreases in the Ca(2+) binding affinity of CaM. Using NMR, full-length Ng was shown to make contacts largely with residues in the C-domain of CaM, although contacts were also detected in residues in the N-terminal domain. Together, our results can be consolidated into a model where Ng contacts residues in the N- and C-lobes of both apo- and Ca(2+)-bound CaM and that although Ca(2+) binding weakens Ng interactions with CaM, the most dramatic biochemical effect is the impact of Ng on Ca(2+) binding to the C-terminal lobe of CaM. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  10. Calmodulin interacts with PAC1 and VPAC2 receptors and regulates PACAP-induced FOS expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    is a well-known marker of neuronal activation, so we used a human neuroblastoma cell line NB-1 to explore the role of calmodulin in PACAP-induced FOS gene expression. We observed both short-term and prolonged altered PACAP-mediated activation of the FOS gene in the presence of the calmodulin-antagonist W-7...

  11. Inhibition of calmodulin - regulated calcium pump activity in rat brain by toxaphene

    International Nuclear Information System (INIS)

    Trottman, C.H.; Moorthy, K.S.

    1986-01-01

    In vivo effects of toxaphene on calcium pump activity in rat brain synaptosomes was studied. Male Sprague-Dawley rats were dosed with toxaphene at 0,25,50, and 100 mg/kg/day for 3 days and sacrificed 24 h after last dose. Ca 2+ -ATPase activity and 45 Ca uptake were determined in brain P 2 fraction. Toxaphene inhibited both Ca 2+ -ATPase activity and 45 Ca 2+ uptake and the inhibition was dose dependent. Both substrate and Ca 2+ activation kinetics of Ca 2+ -ATPase indicated non-competitive type of inhibition as evidenced by decreased catalytic velocity but not enzyme-substrate affinity. The inhibited Ca 2+ -ATPase activity and Ca 2+ uptake were restored to normal level by exogenously added calmodulin which increased both velocity and affinity. The inhibition of Ca 2+ -ATPase activity and Ca 2+ uptake and restoration by calmodulin suggests that toxaphene may impair active calcium transport mechanisms by decreasing regulator protein calmodulin levels

  12. Investigations into the binding of 125I-calmodulin to CA++ transport ATPase of human erythrocytes

    International Nuclear Information System (INIS)

    Sterk, V.

    1983-01-01

    The study described was carried out in order to investigate the binding of 125 I-calmodulin to Ca ++ transport ATPase using different Ca ++ concentrations and temperatures. The data obtained from these experiments were subsequently analysed in such as a way as to yield meaningful information relating to the mechanisms underlying the attachment of calmodulin to Ca ++ transport ATPase, the % proportion of membrane protein that was attributable to the enzyme as well as the number of calmodulin receptor sites on the individual erythrocytes, etc. Comparisons with data from the relevant literature permitted conclusions to be drawn concerning the mode of Ca ++ transport at the level of the erythrocytes. A new methodology and processing technique had to be developed prior to the beginning of the experiments. (orig./MG) [de

  13. Altered binding of 125I-labeled calmodulin to a 46.5-kilodalton protein in skin fibroblasts cultured from patients with cystic fibrosis

    International Nuclear Information System (INIS)

    Tallant, E.A.; Wallace, R.W.

    1987-01-01

    The levels of calmodulin and calmodulin-binding proteins have been determined in cultured skin fibroblasts from patients with cystic fibrosis (CF) and age- and sex-matched controls. Calmodulin ranged from 0.20 to 0.76 microgram/mg protein; there was no difference between calmodulin concentration in fibroblasts from CF patients and controls. Calmodulin-binding proteins of 230, 212, 204, 164, 139, 70, 59, 46.5, and 41 kD were identified. A protein with a mobility identical to the 59-kD calmodulin-binding protein was labeled by antiserum against calmodulin-dependent phosphatase. Although Ca 2+ /calmodulin-dependent phosphatase activity was detected, there was no different in activity between control and CF fibroblasts or in the level of phosphatase protein as determined by radioimmunoassay. Lower amounts of 125 I-calmodulin were bound to the 46.5-kD calmodulin-binding protein in CF fibroblasts as compared with controls. The 46.5-kD calmodulin-binding protein may be reduced in CF fibroblasts or its structure may be altered resulting in a reduced binding capacity and/or affinity for calmodulin and perhaps reflecting, either directly or indirectly, the genetic defect responsible for cystic fibrosis

  14. Interval training-induced alleviation of rigidity and hypertonia in patients with Parkinson's disease is accompanied by increased basal serum brain-derived neurotrophic factor.

    Science.gov (United States)

    Marusiak, Jarosław; Żeligowska, Ewa; Mencel, Joanna; Kisiel-Sajewicz, Katarzyna; Majerczak, Joanna; Zoladz, Jerzy A; Jaskólski, Artur; Jaskólska, Anna

    2015-04-01

    To examine the effects of cycloergometric interval training on parkinsonian rigidity, relaxed biceps brachii muscle tone in affected upper extremities, and serum level of brain-derived neurotrophic factor. Case series, repeated-measures design, pilot study. Eleven patients with mild-to-moderate Parkinson's disease (Hoehn & Yahr scale 2.3 ± 0.72), recruited from a neurological clinic, underwent cycle training and were tested along with non-trained, healthy control subjects (n = 11) in a motor control laboratory. Patients underwent 8 weeks of interval training (3 × 1-h sessions weekly, consisting of a 10-min warm-up, 40 min of interval exercise, and 10-min cool-down) on a stationary cycloergometer. Parkinsonian rigidity (Unified Parkinson's Disease-Rating-Scale) in the upper extremity, resting biceps brachii muscle tone (myometric stiffness and frequency), and brain-derived neurotrophic factor level were measured 1-3 days before interval training cycle started and 6-10 days after the last training session. Training resulted in a decrease in rigidity (p = 0.048) and biceps brachii myometric muscle stiffness (p = 0.030) and frequency (p = 0.006), and an increase in the level of brain-derived neurotrophic factor (p = 0.035) relative to pre-training values. The increase in brain-derived neurotrophic factor level correlated with improvements in parkinsonian rigidity (p = 0.025), biceps brachii myometric stiffness (p = 0.001) and frequency (p = 0.002). Training-induced alleviation of parkinsonian rigidity and muscle tone decrease may be associated with neuroplastic changes caused by a training-induced increase in the level of brain-derived neurotrophic factor.

  15. Targeting cell migration and the endoplasmic reticulum stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells

    International Nuclear Information System (INIS)

    Linxweiler, Maximilian; Greiner, Markus; Schorr, Stefan; Schäuble, Nico; Jung, Martin; Linxweiler, Johannes; Langer, Frank; Schäfers, Hans-Joachim; Cavalié, Adolfo; Zimmermann, Richard

    2013-01-01

    Tumor cells benefit from their ability to avoid apoptosis and invade other tissues. The endoplasmic reticulum (ER) membrane protein Sec62 is a key player in these processes. Sec62 is essential for cell migration and protects tumor cells against thapsigargin-induced ER stress, which are both linked to cytosolic Ca 2+ . SEC62 silencing leads to elevated cytosolic Ca 2+ and increased ER Ca 2+ leakage after thapsigargin treatment. Sec62 protein levels are significantly increased in different tumors, including prostate, lung and thyroid cancer. In lung cancer, the influence of Sec62 protein levels on patient survival was analyzed using the Kaplan-Meier method and log-rank test. To elucidate the underlying pathophysiological functions of Sec62, Ca 2+ imaging techniques, real-time cell analysis and cell migration assays were performed. The effects of treatment with the calmodulin antagonists, trifluoperazine (TFP) and ophiobolin A, on cellular Ca 2+ homeostasis, cell growth and cell migration were compared with the effects of siRNA-mediated Sec62 depletion or the expression of a mutated SEC62 variant in vitro. Using Biacore analysis we examined the Ca 2+ -sensitive interaction of Sec62 with the Sec61 complex. Sec62 overproduction significantly correlated with reduced patient survival. Therefore, Sec62 is not only a predictive marker for this type of tumor, but also an interesting therapeutic target. The present study suggests a regulatory function for Sec62 in the major Ca 2+ leakage channel in the ER, Sec61, by a direct and Ca 2+ -sensitive interaction. A Ca 2+ -binding motif in Sec62 is essential for its molecular function. Treatment of cells with calmodulin antagonists mimicked Sec62 depletion by inhibiting cell migration and rendering the cells sensitive to thapsigargin treatment. Targeting tumors that overproduce Sec62 with calmodulin antagonists in combination with targeted thapsigargin analogues may offer novel personalized therapeutic options

  16. Calcium/Calmodulin-dependent Protein Kinase II is a Ubiquitous Molecule in Human Long-term Memory Synaptic Plasticity: A Systematic Review

    Science.gov (United States)

    Ataei, Negar; Sabzghabaee, Ali Mohammad; Movahedian, Ahmad

    2015-01-01

    Background: Long-term memory is based on synaptic plasticity, a series of biochemical mechanisms include changes in structure and proteins of brain's neurons. In this article, we systematically reviewed the studies that indicate calcium/calmodulin kinase II (CaMKII) is a ubiquitous molecule among different enzymes involved in human long-term memory and the main downstream signaling pathway of long-term memory. Methods: All of the observational, case–control and review studies were considered and evaluated by the search engines PubMed, Cochrane Central Register of Controlled Trials and ScienceDirect Scopus between 1990 and February 2015. We did not carry out meta-analysis. Results: At the first search, it was fined 1015 articles which included “synaptic plasticity” OR “neuronal plasticity” OR “synaptic density” AND memory AND “molecular mechanism” AND “calcium/calmodulin-dependent protein kinase II” OR CaMKII as the keywords. A total of 335 articles were duplicates in the databases and eliminated. A total of 680 title articles were evaluated. Finally, 40 articles were selected as reference. Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory. PMID:26445635

  17. Serum levels of brain-derived neurotrophicfactor correlate with the number of T2 MRI lesions in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    E.R. Comini-Frota

    2012-01-01

    Full Text Available The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR lesions in multiple sclerosis (MS. The use of magnetic resonance imaging (MRI has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38, 21 women, 0.5-10 years (median 5 of disease duration, EDSS 1-4 (median 1.5 and 28 healthy controls, 19-49 years old (median 33, 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640] compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02 with T2/FLAIR (11-81 lesions, median 42. We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.

  18. β5 Integrin Up-Regulation in Brain-Derived Neurotrophic Factor Promotes Cell Motility in Human Chondrosarcoma

    Science.gov (United States)

    Li, Te-Mao; Fong, Yi-Chin; Liu, Shan-Chi; Chen, Po-Chun; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23874483

  19. Acute infusion of brain-derived neurotrophic factor in the insular cortex promotes conditioned taste aversion extinction.

    Science.gov (United States)

    Rodríguez-Serrano, Luis M; Ramírez-León, Betsabee; Rodríguez-Durán, Luis F; Escobar, Martha L

    2014-12-01

    Brain-derived neurotrophic factor (BDNF) has emerged as one of the most potent molecular mediators not only for synaptic plasticity, but also for the behavioral organism-environment interactions. Our previous studies in the insular cortex (IC), a neocortical region that has been related with acquisition and retention of conditioned taste aversion (CTA), have demonstrated that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the basolateral amygdaloid nucleus (Bla)-IC projection and enhances the retention of CTA memory of adult rats in vivo. The aim of the present study was to analyze whether acute BDNF-infusion in the IC modifies the extinction of CTA. Accordingly, animals were trained in the CTA task and received bilateral IC microinfusions of BDNF before extinction training. Our results showed that taste aversion was significantly reduced in BDNF rats from the first extinction trial. Additionally, we found that the effect of BDNF on taste aversion did not require extinction training. Finally we showed that the BDNF effect does not degrade the original taste aversion memory trace. These results emphasize that BDNF activity underlies memory extinction in neocortical areas and support the idea that BDNF is a key regulator and mediator of long-term synaptic modifications. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Brain-Derived Neurotrophic Factor in Patients with Primary Open-Angle Glaucoma and Age-related Cataract.

    Science.gov (United States)

    Shpak, Alexander A; Guekht, Alla B; Druzhkova, Tatiana A; Kozlova, Ksenia I; Gulyaeva, Natalia V

    2018-02-01

    To study brain-derived neurotrophic factor (BDNF) content in aqueous humor (AH), lacrimal fluid (LF), and blood serum (BS) in patients with age-related cataract and primary open-angle glaucoma (POAG). BDNF was studied in 57 patients with age-related cataract, 55 patients with POAG combined with cataract, and 29 healthy controls (one eye in each person). AH was sampled during cataract surgery. The levels of BDNF in LF and BS did not differ in cataract patients and controls. The concentration of BDNF (pg/mL) in patients with POAG and cataract was lower than in cataract patients in AH (35.2 ± 14.2 vs. 54.6 ± 29.6, P early POAG and relatively increased in the next stages of the disease, inversely correlating with visual field index (Pearson's correlation coefficient r = -0.404, P = 0.002) and average retinal nerve fiber layer thickness (r = -0.322, P = 0.018). BDNF contents in LF and BS were also the lowest in early POAG. BDNF in AH strongly correlated with its content in LF (r = 0.66, P early POAG and relative increase in the next stages of the disease. A strong correlation exists between BDNF contents in AH and LF.

  1. A putative model of overeating and obesity based on brain-derived neurotrophic factor: direct and indirect effects.

    Science.gov (United States)

    Ooi, Cara L; Kennedy, James L; Levitan, Robert D

    2012-08-01

    Increased food intake is a major contributor to the obesity epidemic in all age groups. Elucidating brain systems that drive overeating and that might serve as targets for novel prevention and treatment interventions is thus a high priority for obesity research. The authors consider 2 major pathways by which decreased activity of brain-derived neurotrophic factor (BDNF) may confer vulnerability to overeating and weight gain in an obesogenic environment. The first "direct" pathway focuses on the specific role of BDNF as a mediator of food intake control at brain areas rich in BDNF receptors, including the hypothalamus and hindbrain. It is proposed that low BDNF activity limited to this direct pathway may best explain overeating and obesity outside the context of major neuropsychiatric disturbance. A second "indirect" pathway considers the broad neurotrophic effects of BDNF on key monoamine systems that mediate mood dysregulation, impulsivity, and executive dysfunction as well as feeding behavior per se. Disruption in this pathway may best explain overeating and obesity in the context of various neuropsychiatric disturbances including mood disorders, attention-deficit disorder, and/or binge eating disorders. An integrative model that considers these potential roles of BDNF in promoting obesity is presented. The implications of this model for the early prevention and treatment of obesity are also considered.

  2. Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running.

    Science.gov (United States)

    Johnson, R A; Rhodes, J S; Jeffrey, S L; Garland, T; Mitchell, G S

    2003-01-01

    Voluntary wheel running in rats increases hippocampal brain-derived neurotrophic factor (BDNF) expression, a neurochemical important for neuronal survival, differentiation, connectivity and synaptic plasticity. Here, we report the effects of wheel running on BDNF and neurotrophin-3 (NT-3) protein levels in normal control mice, and in mice selectively bred (25 generations) for increased voluntary wheel running. We hypothesized that increased voluntary wheel running in selected (S) mice would increase CNS BDNF and NT-3 protein levels more than in control (C) mice. Baseline hippocampal BDNF levels (mice housed without running wheels) were similar in S and C mice. Following seven nights of running, hippocampal BDNF increased significantly more in S versus C mice, and levels were correlated with distance run (considering C and S mice together). Spinal and cerebellar BDNF and hippocampal NT-3 levels were not significantly affected by wheel running in any group, but there was a small, positive correlation between spinal C3-C6 BDNF levels and distance run (considering C and S mice together). This is the first study to demonstrate that mice which choose to run more have greater elevations in hippocampal BDNF, suggesting enhanced potential for exercise-induced hippocampal neuroplasticity.

  3. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF levels in a pharmacological model of mania

    Directory of Open Access Journals (Sweden)

    Laura Stertz

    2014-03-01

    Full Text Available Objective: In the present study, we aimed to examine the effects of repeated D-amphetamine (AMPH exposure, a well-accepted animal model of acute mania in bipolar disorder (BD, and histone deacetylase (HDAC inhibitors on locomotor behavior and HDAC activity in the prefrontal cortex (PFC and peripheral blood mononuclear cells (PBMCs of rats. Moreover, we aimed to assess brain-derived neurotrophic factor (BDNF protein and mRNA levels in these samples. Methods: We treated adult male Wistar rats with 2 mg/kg AMPH or saline intraperitoneally for 14 days. Between the 8th and 14th days, rats also received 47.5 mg/kg lithium (Li, 200 mg/kg sodium valproate (VPT, 2 mg/kg sodium butyrate (SB, or saline. We evaluated locomotor activity in the open-field task and assessed HDAC activity in the PFC and PBMCs, and BDNF levels in the PFC and plasma. Results: AMPH significantly increased locomotor activity, which was reversed by all drugs. This hyperactivity was associated with increased HDAC activity in the PFC, which was partially reversed by Li, VPT, and SB. No differences were found in BDNF levels. Conclusion: Repeated AMPH administration increases HDAC activity in the PFC without altering BDNF levels. The partial reversal of HDAC increase by Li, VPT, and SB may account for their ability to reverse AMPH-induced hyperactivity.

  4. Plasma brain-derived neurotrophic factor levels, learning capacity and cognition in patients with first episode psychosis

    Directory of Open Access Journals (Sweden)

    de Azua Sonia Ruiz

    2013-01-01

    Full Text Available Abstract Background Cognitive impairments are seen in first psychotic episode (FEP patients. The neurobiological underpinnings that might underlie these changes remain unknown. The aim of this study is to investigate whether Brain Derived Neurotrophic Factor (BDNF levels are associated with cognitive impairment in FEP patients compared with healthy controls. Methods 45 FEP patients and 45 healthy controls matched by age, gender and educational level were selected from the Basque Country area of Spain. Plasma BDNF levels were assessed in healthy controls and in patients. A battery of cognitive tests was applied to both groups, with the patients being assessed at 6 months after the acute episode and only in those with a clinical response to treatment. Results Plasma BDNF levels were altered in patients compared with the control group. In FEP patients, we observed a positive association between BDNF levels at six months and five cognitive domains (learning ability, immediate and delayed memory, abstract thinking and processing speed which persisted after controlling for medications prescribed, drug use, intelligence quotient (IQ and negative symptoms. In the healthy control group, BDNF levels were not associated with cognitive test scores. Conclusion Our results suggest that BDNF is associated with the cognitive impairment seen after a FEP. Further investigations of the role of this neurotrophin in the symptoms associated with psychosis onset are warranted.

  5. Serum brain-derived neurotrophic factor and interleukin-6 response to high-volume mechanically demanding exercise.

    Science.gov (United States)

    Verbickas, Vaidas; Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas; Baranauskiene, Neringa; Brazaitis, Marius; Satkunskiene, Danguole; Unikauskas, Alvydas; Skurvydas, Albertas

    2018-01-01

    The aim of this study was to follow circulating brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) levels in response to severe muscle-damaging exercise. Young healthy men (N = 10) performed a bout of mechanically demanding stretch-shortening cycle exercise consisting of 200 drop jumps. Voluntary and electrically induced knee extension torque, serum BDNF levels, and IL-6 levels were measured before and for up to 7 days after exercise. Muscle force decreased by up to 40% and did not recover by 24 hours after exercise. Serum BDNF was decreased 1 hour and 24 hours after exercise, whereas IL-6 increased immediately and 1 hour after but recovered to baseline by 24 hours after exercise. IL-6 and 100-Hz stimulation torque were correlated (r = -0.64, P exercise. In response to acute, severe muscle-damaging exercise, serum BDNF levels decrease, whereas IL-6 levels increase and are associated with peripheral fatigue. Muscle Nerve 57: E46-E51, 2018. © 2017 Wiley Periodicals, Inc.

  6. The involvement of brain-derived neurotrophic factor in 3,4-methylenedioxymethamphetamine-induced place preference and behavioral sensitization.

    Science.gov (United States)

    Mouri, Akihiro; Noda, Yukihiro; Niwa, Minae; Matsumoto, Yurie; Mamiya, Takayoshi; Nitta, Atsumi; Yamada, Kiyofumi; Furukawa, Shoei; Iwamura, Tatsunori; Nabeshima, Toshitaka

    2017-06-30

    3,4-Methylenedioxymethamphetamine (MDMA) is known to induce dependence and psychosis in humans. Brain-derived neurotrophic factor (BDNF) is involved in the synaptic plasticity and neurotrophy in midbrain dopaminergic neurons. This study aimed to investigate the role of BDNF in MDMA-induced dependence and psychosis. A single dose of MDMA (10mg/kg) induced BDNF mRNA expression in the prefrontal cortex, nucleus accumbens, and amygdala, but not in the striatum or the hippocampus. However, repeated MDMA administration for 7 days induced BDNF mRNA expression in the striatum and hippocampus. Both precursor and mature BDNF protein expression increased in the nucleus accumbens, mainly in the neurons. Additionally, rapidly increased extracellular serotonin levels and gradually and modestly increased extracellular dopamine levels were noted within the nucleus accumbens of mice after repeated MDMA administration. Dopamine receptor antagonists attenuated the effect of repeated MDMA administration on BDNF mRNA expression in the nucleus accumbens. To examine the role of endogenous BDNF in the behavioral and neurochemical effects of MDMA, we used mice with heterozygous deletions of the BDNF gene. MDMA-induced place preference, behavioral sensitization, and an increase in the levels of extracellular serotonin and dopamine within the nucleus accumbens, were attenuated in BDNF heterozygous knockout mice. These results suggest that BDNF is implicated in MDMA-induced dependence and psychosis by activating the midbrain serotonergic and dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of cigarette smoke on monocyte procoagulant activity: Focus on platelet-derived brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S

    2017-01-01

    Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.

  8. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    Science.gov (United States)

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism interacts with gender to influence cortisol responses to mental stress.

    Science.gov (United States)

    Jiang, Rong; Babyak, Michael A; Brummett, Beverly H; Siegler, Ilene C; Kuhn, Cynthia M; Williams, Redford B

    2017-05-01

    Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been associated with cortisol responses to stress with gender differences reported, although the findings are not entirely consistent. To evaluate the role of Val66Met genotype and gender on cortisol responses to stress, we conducted a 45-min mental stress protocol including four tasks and four rest periods. Blood cortisol was collected for assay immediately before and after each task and rest period. A significant two-way interaction of Val66Met genotype×gender (P=0.022) was observed on the total area under the curve (AUC), a total cortisol response over time, such that the Val/Val genotype was associated with a larger cortisol response to stress as compared to the Met group in women but not in men. Further contrast analyses between the Val/Val and Met group for each stress task showed a similar increased cortisol pattern among women Val/Val genotype but not among men. The present findings indicate the gender differences in the effect of Val66Met genotype on the cortisol responses to stress protocol, and extend the evidence for the importance of gender and the role of Val66Met in the modulation of stress reactivity and subsequent depression prevalence. Further studies and the underlying mechanism need to be investigated, which may provide an insight for prevention, intervention, and treatment strategies that target those at high risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  11. Expression and Localization of Brain-Derived Neurotrophic Factor (BDNF) mRNA and Protein in Human Submandibular Gland

    International Nuclear Information System (INIS)

    Saruta, Juri; Fujino, Kazuhiro; To, Masahiro; Tsukinoki, Keiichi

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) promotes cell survival and differentiation in the central and peripheral nervous systems. Previously, we reported that BDNF is produced by salivary glands under acute immobilization stress in rats. However, expression of BDNF is poorly understood in humans, although salivary gland localization of BDNF in rodents has been demonstrated. In the present study, we investigated the expression and localization of BDNF in the human submandibular gland (HSG) using reverse transcription-polymerase chain reaction, western blot analysis, in situ hybridization (ISH), immunohistochemistry (IHC), and ELISA. BDNF was consistently localized in HSG serous and ductal cells, as detected by ISH and IHC, with reactivity being stronger in serous cells. In addition, immunoreactivity for BDNF was observed in the saliva matrix of ductal cavities. Western blotting detected one significant immunoreactive 14 kDa band in the HSG and saliva. Immunoreactivities for salivary BDNF measured by ELISA in humans were 40.76±4.83 pg/mL and 52.64±8.42 pg/mL, in men and women, respectively. Although salivary BDNF concentrations in females tended to be higher than in males, the concentrations were not significantly different. In conclusion, human salivary BDNF may originate from salivary glands, as the HSG appears to produce BDNF

  12. Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    Comini-Frota, E.R.; Rodrigues, D.H.; Miranda, E.C.; Brum, D.G.; Kaimen-Maciel, D.R.; Donadi, E.A.; Teixeira, A.L.

    2011-01-01

    The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS

  13. Brain-derived neurotrophic factor (BDNF) and oxidative stress in heroin-dependent male patients undergoing methadone maintenance treatment.

    Science.gov (United States)

    Tsai, Meng-Chang; Huang, Tiao-Lai

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) and oxidative stress may play a role in patients with heroin dependence. The aim of this study was to investigate the serum levels and activities of BDNF and oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), and 8-hydroxy 2'-deoxyguanosine (8-OHdG), in heroin-dependent patients undergoing methadone maintenance treatment (MMT). 60 heroin-dependent male MMT patients and 30 healthy males were recruited for this study. The serum BDNF and oxidative stress markers of these subjects were measured with assay kits. Analyses of covariance (ANCOVAs) with age and body mass index adjustments indicated that the serum levels of BDNF in the MMT patients were significantly higher than those in the healthy controls (F=5.169; p=0.026). However, there were no significant differences between the heroin-dependent patients and the healthy controls in the serum levels or activities of oxidative stress markers (p>0.05). In conclusion, our results suggest that MMT increases BDNF levels in heroin-dependent patients, and that patients undergoing MMT might be in a balanced state of reduced oxidation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Changes in brain-derived neurotrophic factor (BDNF) during abstinence could be associated with relapse in cocaine-dependent patients.

    Science.gov (United States)

    Corominas-Roso, Margarida; Roncero, Carlos; Daigre, Constanza; Grau-Lopez, Lara; Ros-Cucurull, Elena; Rodríguez-Cintas, Laia; Sanchez-Mora, Cristina; Lopez, Maria Victoria; Ribases, Marta; Casas, Miguel

    2015-02-28

    Brain-derived neurotrophic factor (BDNF) is involved in cocaine craving in humans and drug seeking in rodents. Based on this, the aim of this study was to explore the possible role of serum BDNF in cocaine relapse in abstinent addicts. Forty cocaine dependent subjects (DSM-IV criteria) were included in an inpatient 2 weeks abstinence program. Organic and psychiatric co-morbidities were excluded. Two serum samples were collected for each subject at baseline and at after 14 abstinence days. After discharge, all cocaine addicts underwent a 22 weeks follow-up, after which they were classified into early relapsers (ER) (resumed during the first 14 days after discharge,) or late relapsers (LR) (resumed beyond 14 days after discharge). The only clinical differences between groups were the number of consumption days during the last month before detoxification. Serum BDNF levels increased significantly across the 12 days of abstinence in the LR group (p=0.02), whereas in the ER group BDNF remained unchanged. In the ER group, the change of serum BDNF during abstinence negatively correlated with the improvement in depressive symptoms (p=0.02). These results suggest that BDNF has a role in relapse to cocaine consumption in abstinent addicts, although the underlying neurobiological mechanisms remain to be clarified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. The associations between serum brain-derived neurotrophic factor, potential confounders, and cognitive decline: a longitudinal study.

    Directory of Open Access Journals (Sweden)

    Jasmine Nettiksimmons

    Full Text Available Brain-derived neurotrophic factor (BDNF plays a role in the maintenance and function of neurons. Although persons with Alzheimer's disease have lower cortical levels of BDNF, evidence regarding the association between circulating BDNF and cognitive function is conflicting. We sought to determine the correlates of BDNF level and whether BDNF level was prospectively associated with cognitive decline in healthy older adults. We measured serum BDNF near baseline in 912 individuals. Cognitive status was assessed repeatedly with the modified Mini-Mental Status Examination and the Digit Symbol Substitution test over the next 10 years. We evaluated the association between BDNF and cognitive decline with longitudinal models. We also assessed the association between BDNF level and demographics, comorbidities and health behaviors. We found an association between serum BDNF and several characteristics that are also associated with dementia (race and depression, suggesting that future studies should control for these potential confounders. We did not find evidence of a longitudinal association between serum BDNF and subsequent cognitive test trajectories in older adults, although we did identify a potential trend toward a cross-sectional association. Our results suggest that serum BDNF may have limited utility as a biomarker of prospective cognitive decline.

  16. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration

    KAUST Repository

    Limongi, Tania; Rocchi, A.; Cesca, F.; Tan, H.; Miele, E.; Giugni, Andrea; Orlando, M.; Perrone Donnorso, M.; Perozziello, G.; Benfenati, Fabio; Di Fabrizio, Enzo M.

    2018-01-01

    Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

  17. Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia.

    Science.gov (United States)

    Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K

    2017-07-01

    Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.

  18. Adjunctive N-acetylcysteine in depression: exploration of interleukin-6, C-reactive protein and brain-derived neurotrophic factor.

    Science.gov (United States)

    Hasebe, Kyoko; Gray, Laura; Bortolasci, Chiara; Panizzutti, Bruna; Mohebbi, Mohammadreza; Kidnapillai, Srisaiyini; Spolding, Briana; Walder, Ken; Berk, Michael; Malhi, Gin; Dodd, Seetal; Dean, Olivia M

    2017-12-01

    This study aimed to explore effects of adjunctive N-acetylcysteine (NAC) treatment on inflammatory and neurogenesis markers in unipolar depression. We embarked on a 12-week clinical trial of NAC (2000 mg/day compared with placebo) as an adjunctive treatment for unipolar depression. A follow-up visit was conducted 4 weeks following the completion of treatment. We collected serum samples at baseline and the end of the treatment phase (week 12) to determine changes in interleukin-6 (IL6), C-reactive protein (CRP) and brain-derived neurotrophic factor (BDNF) following NAC treatment. NAC treatment significantly improved depressive symptoms on the Montgomery-Asberg Depression Rating Scale (MADRS) over 16 weeks of the trial. Serum levels of IL6 were associated with reductions of MADRS scores independent of treatment response. However, we found no significant changes in IL6, CRP and BDNF levels following NAC treatment. Overall, this suggests that our results failed to support the hypothesis that IL6, CRP and BDNF are directly involved in the therapeutic mechanism of NAC in depression. IL6 may be a useful marker for future exploration of treatment response.

  19. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Catarina Rendeiro

    Full Text Available Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w, results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively, to a similar extent to that following blueberry supplementation (p = 0.002. These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01, suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.

  20. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Adam Dinoff

    Full Text Available The mechanisms through which physical activity supports healthy brain function remain to be elucidated. One hypothesis suggests that increased brain-derived neurotrophic factor (BDNF mediates some cognitive and mood benefits. This meta-analysis sought to determine the effect of exercise training on resting concentrations of BDNF in peripheral blood.MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after exercise interventions ≥ 2 weeks. Risk of bias was assessed using standardized criteria. Standardized mean differences (SMDs were generated from random effects models. Risk of publication bias was assessed using funnel plots and Egger's test. Potential sources of heterogeneity were explored in subgroup analyses.In 29 studies that met inclusion criteria, resting concentrations of peripheral blood BDNF were higher after intervention (SMD = 0.39, 95% CI: 0.17-0.60, p < 0.001. Subgroup analyses suggested a significant effect in aerobic (SMD = 0.66, 95% CI: 0.33-0.99, p < 0.001 but not resistance training (SMD = 0.07, 95% CI: -0.15-0.30, p = 0.52 interventions. No significant difference in effect was observed between males and females, nor in serum vs plasma.Aerobic but not resistance training interventions increased resting BDNF concentrations in peripheral blood.

  1. No effect of escitalopram versus placebo on brain-derived neurotrophic factor in healthy individuals: a randomised trial.

    Science.gov (United States)

    Knorr, Ulla; Koefoed, Pernille; Soendergaard, Mia H Greisen; Vinberg, Maj; Gether, Ulrik; Gluud, Christian; Wetterslev, Jørn; Winkel, Per; Kessing, Lars V

    2016-04-01

    Brain-derived neurotrophic factor (BDNF) seems to play an important role in the course of depression including the response to antidepressants in patients with depression. We aimed to study the effect of an antidepressant intervention on peripheral BDNF in healthy individuals with a family history of depression. We measured changes in BDNF messenger RNA (mRNA) expression and whole-blood BDNF levels in 80 healthy first-degree relatives of patients with depression randomly allocated to receive daily tablets of escitalopram 10 mg versus placebo for 4 weeks. We found no statistically significant difference between the escitalopram and the placebo group in the change in BDNF mRNA expression and whole-blood BDNF levels. Post hoc analyses showed a statistically significant negative correlation between plasma escitalopram concentration and change in whole-blood BDNF levels in the escitalopram-treated group. The results of this randomised trial suggest that escitalopram 10 mg has no effect on peripheral BDNF levels in healthy individuals.

  2. Activation of the sigma-1 receptor by haloperidol metabolites facilitates brain-derived neurotrophic factor secretion from human astroglia.

    Science.gov (United States)

    Dalwadi, Dhwanil A; Kim, Seongcheol; Schetz, John A

    2017-05-01

    Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex.

    Science.gov (United States)

    Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E

    2015-01-02

    Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Brain-derived neurotrophic factor Val66Met polymorphism and dexamethasone/CRH test results in depressed patients.

    Science.gov (United States)

    Schüle, Cornelius; Zill, Peter; Baghai, Thomas C; Eser, Daniela; Zwanzger, Peter; Wenig, Nadine; Rupprecht, Rainer; Bondy, Brigitta

    2006-09-01

    Data suggest that both neurotrophic and hypothalamic-pituitary-adrenocortical (HPA) systems are involved in the pathophysiology of depression. The aim of the present study was to investigate whether the non-conservative brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has an impact on HPA axis activity in depressed patients. At admission, the dexamethasone/CRH (DEX/CRH) test was performed in 187 drug-free in-patients suffering from major depression or depressed state of bipolar disorder (DSM-IV criteria). Moreover, genotyping of BDNF Val66Met polymorphism was carried out using the fluorescence resonance energy transfer method (FRET). Homozygous carriers of the Met/Met genotype showed a significantly higher HPA axis activity during the DEX/CRH test than patients carrying the Val/Val or Val/Met genotype (ACTH, cortisol). Our results further contribute to the hypothesized association between HPA axis dysregulation and reduced neuroplasticity in depression and are consistent with the assumption that BDNF is a stress-responsive intercellular messenger modifying HPA axis activity.

  5. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF) in mouse ovaries: relationship to oocytes developmental potential.

    Science.gov (United States)

    Wu, Li-Min; Hu, Mei-Hong; Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  6. Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression.

    Science.gov (United States)

    Ignácio, Z M; Réus, G Z; Abelaira, H M; Quevedo, J

    2014-09-05

    Epidemiological studies have shown significant results in the interaction between the functions of brain-derived neurotrophic factor (BDNF) and 5-HT in mood disorders, such as major depressive disorder (MDD). The latest research has provided convincing evidence that gene transcription of these molecules is a target for epigenetic changes, triggered by stressful stimuli that starts in early childhood and continues throughout life, which are subsequently translated into structural and functional phenotypes culminating in depressive disorders. The short variants of 5-HTTLPR and BDNF-Met are seen as forms which are predisposed to epigenetic aberrations, which leads individuals to a susceptibility to environmental adversities, especially when subjected to stress in early life. Moreover, the polymorphic variants also feature epistatic interactions in directing the functional mechanisms elicited by stress and underlying the onset of depressive disorders. Also emphasized are works which show some mediators between stress and epigenetic changes of the 5-HTT and BDNF genes, such as the hypothalamic-pituitary-adrenal (HPA) axis and the cAMP response element-binding protein (CREB), which is a cellular transcription factor. Both the HPA axis and CREB are also involved in epistatic interactions between polymorphic variants of 5-HTTLPR and Val66Met. This review highlights some research studying changes in the epigenetic patterns intrinsic to genes of 5-HTT and BDNF, which are related to lifelong environmental adversities, which in turn increases the risks of developing MDD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    Science.gov (United States)

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  8. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF in mouse ovaries: relationship to oocytes developmental potential.

    Directory of Open Access Journals (Sweden)

    Li-Min Wu

    Full Text Available BACKGROUND: Brain-derived neurotropic factor (BDNF was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. METHODS: Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. RESULTS: Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. CONCLUSION: BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  9. Therapeutic potential of brain-derived neurotrophic factor (BDNF and a small molecular mimics of BDNF for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary Wurzelmann

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF, a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  10. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    Science.gov (United States)

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  11. Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Comini-Frota, E.R. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, D.H. [Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Miranda, E.C. [Ecoar Diagnostic Center, Belo Horizonte, MG (Brazil); Brum, D.G. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Kaimen-Maciel, D.R. [Unidade de Neurologia, Hospital Universitário, Universidade Estadual de Londrina, Londrina, PR (Brazil); Donadi, E.A. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Teixeira, A.L. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2011-11-23

    The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.

  12. The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills.

    Science.gov (United States)

    Harris, S E; Fox, H; Wright, A F; Hayward, C; Starr, J M; Whalley, L J; Deary, I J

    2006-05-01

    A polymorphism (Val66Met) in the gene encoding brain-derived neurotrophic factor (BDNF) has previously been associated with impaired hippocampal function and scores on the Logical Memory subtest of the Wechsler Memory Scale-Revised (WMS-R). Despite its widespread expression in the brain, there have been few studies examining the role of BDNF on cognitive domains, other than memory. We examined the association between BDNF Val66Met genotype and non-verbal reasoning, as measured by Raven's standard progressive matrices (Raven), in two cohorts of relatively healthy older people, one aged 79 (LBC1921) and the other aged 64 (ABC1936) years. LBC1921 and ABC1936 subjects had reasoning measured at age 11 years, using the Moray House Test (MHT), in the Scottish Mental Surveys of 1932 and 1947, respectively. BDNF genotype was significantly associated with later life Raven scores, controlling for sex, age 11 MHT score and cohort (P = 0.001). MHT, Verbal Fluency and Logical Memory scores were available, in later life, for LBC1921 only. BDNF genotype was significantly associated with age 79 MHT score, controlling for sex and age 11 MHT score (P = 0.016). In both significant associations, Met homozygotes scored significantly higher than heterozygotes and Val homozygotes. This study indicates that BDNF genotype contributes to age-related changes in reasoning skills, which are closely related to general intelligence.

  13. Decreased Serum Levels of Ghrelin and Brain-Derived Neurotrophic Factor in Premenopausal Women With Metabolic Syndrome.

    Science.gov (United States)

    Jabbari, Masoumeh; Kheirouri, Sorayya; Alizadeh, Mohammad

    2018-03-21

    We aimed to investigate the association between serum levels of ghrelin and brain-derived neurotrophic factor (BDNF) with MetS and its components in premenopausal women. 43 patients with MetS and 43 healthy controls participated in this study. Participants' body mass index (BMI), waist circumference (WC), systolic and diastolic blood pressure (SBP and DBP) were measured. Serum levels of total cholesterol (TC), triglyceride (TG), low and high density lipoprotein cholesterol (LDL-C and HDL-C), fasting blood sugar (FBS), insulin, BDNF and ghrelin determined. Homeostasis model assessment insulin resistance index (HOMA-IR) was also calculated. Participants in MetS group had higher waist-to-hip ratios, elevated SBP and DBP, and higher serum levels of TG, FBS and insulin when compared with the control group. Serum ghrelin and BDNF levels were significantly lower in participants with MetS than in the healthier control subjects. There was a strong, positive correlation between serum ghrelin and BDNF levels. Both proteins negatively correlated with TG, FBS, HOMA-IR and positively with HDL-C. Furthermore, serum BDNF levels negatively associated with insulin levels. The findings indicate that variations occur in the circulating level of ghrelin and BDNF proteins in MetS patients. A strong correlation between serum ghrelin and BDNF suggests that production, release or practice of these 2 proteins might be related mechanically.

  14. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids.

    Science.gov (United States)

    Das, Undurti N

    2013-10-01

    Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Tatiana Lauxen Peruzzolo

    2015-01-01

    Full Text Available Pediatric bipolar disorder (PBD is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder. We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm3, respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD.

  16. Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson's disease patients.

    Science.gov (United States)

    Zoladz, J A; Majerczak, J; Zeligowska, E; Mencel, J; Jaskolski, A; Jaskolska, A; Marusiak, J

    2014-06-01

    It has been demonstrated that physical training increases serum brain-derived neurotrophic factor (BDNF) in healthy people. The aim of this study was to establish the effect of physical training on the basal serum level of the BDNF in the Parkinson's disease patients (PD patients) in relation to their health status. Twelve PD patients (mean ± S.E.M: age 70 ± 3 years; body mass 70 ± 2 kg; height 163 ± 3 cm) performed a moderate-intensity interval training (three 1-hour training sessions weekly), lasting 8 weeks. Basal serum BDNF in the PD patients before training amounted to 10,977 ± 756 pg x mL(-1) and after 8 weeks of training it has increased to 14,206 ± 1256 pg x mL(-1) (i.e. by 34%, P=0.03). This was accompanied by an attenuation of total Unified Parkinson's Disease Rating Scale (UPDRS) (P=0.01). The training resulted also in a decrease of basal serum soluble vascular cell adhesion molecule 1 (sVCAM-1) (P=0.001) and serum tumor necrosis factor-α (TNF-α) (P=0.03) levels. We have concluded that the improvement of health status of the Parkinson's disease patients after training could be related to the increase of serum BDNF level caused by the attenuated inflammation in those patients.

  17. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  18. Fingolimod phosphate attenuates oligomeric amyloid β-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons.

    Directory of Open Access Journals (Sweden)

    Yukiko Doi

    Full Text Available The neurodegenerative processes that underlie Alzheimer's disease are mediated, in part, by soluble oligomeric amyloid β, a neurotoxic protein that inhibits hippocampal long-term potentiation, disrupts synaptic plasticity, and induces the production of reactive oxygen species. Here we show that the sphingosine-1-phosphate (S1P receptor (S1PR agonist fingolimod phosphate (FTY720-P-a new oral drug for multiple sclerosis-protects neurons against oligomeric amyloid β-induced neurotoxicity. We confirmed that primary mouse cortical neurons express all of the S1P receptor subtypes and FTY720-P directly affects the neurons. Treatment with FTY720-P enhanced the expression of brain-derived neurotrophic factor (BDNF in neurons. Moreover, blocking BDNF-TrkB signaling with a BDNF scavenger, TrkB inhibitor, or ERK1/2 inhibitor almost completely ablated these neuroprotective effects. These results suggested that the neuroprotective effects of FTY720-P are mediated by upregulated neuronal BDNF levels. Therefore, FTY720-P may be a promising therapeutic agent for neurodegenerative diseases, such as Alzheimer's disease.

  19. The association between brain-derived neurotrophic factor and central pulse pressure after an oral glucose tolerance test.

    Science.gov (United States)

    Lee, I-Te; Chen, Chen-Huan; Wang, Jun-Sing; Fu, Chia-Po; Lee, Wen-Jane; Liang, Kae-Woei; Lin, Shih-Yi; Sheu, Wayne Huey-Herng

    2018-01-01

    Arterial stiffening blunts postprandial vasodilatation. We hypothesized that brain-derived neurotrophic factor (BDNF) may modulate postprandial central pulse pressure, a surrogate marker for arterial stiffening. A total of 82 non-diabetic subjects received a 75-g oral glucose tolerance test (OGTT) after overnight fasting. Serum BDNF concentrations were determined at 0, 30, and 120min to calculate the area under the curve (AUC). Brachial and central blood pressures were measured using a noninvasive central blood pressure monitor before blood withdrawals at 0 and 120min. With the median AUC of BDNF of 45(ng/ml)∗h as the cutoff value, the central pulse pressure after glucose intake was significantly higher in the subjects with a low BDNF than in those with a high BDNF (63±16 vs. 53±11mmHg, P=0.003), while the brachial pulse pressure was not significantly different between the 2 groups (P=0.099). In a multivariate linear regression model, a lower AUC of BDNF was an independent predictor of a higher central pulse pressure after oral glucose intake (linear regression coefficient-0.202, 95% confidence interval-0.340 to -0.065, P=0.004). After oral glucose challenge, a lower serum BDNF response is significantly associated with a higher central pulse pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up.

    Science.gov (United States)

    Francis, K; Dougali, A; Sideri, K; Kroupis, C; Vasdekis, V; Dima, K; Douzenis, A

    2018-05-01

    Several lines of evidence point to a probable relationship between brain-derived neurotrophic factor (BDNF) and autism spectrum disorder (ASD), but studies have yielded inconsistent findings on the BDNF serum level in ASD. The study aimed to assess those levels in children with ASD and their families. BDNF serum levels were measured in 45 ASD children without intellectual disability (ID) and allergies, age 30-42 months and age-matched normal controls. BDNF serum levels in the parents of the ASD subjects were compared to normal controls. BDNF serum levels in the ASD subjects were followed up for 3 years and correlated with adaptive functioning changes. BDNF serum levels were measured to be lower in children with ASD and independent of all the major baseline characteristics of the subjects. Having a child with ASD raises the BDNF levels in parents comparing to controls. Prospectively, no correlation between the change of BDNF variables in time and the change of the Vineland scores was found. Our results contradict those from recent published meta-analyses with the age, the presence of ID and allergies being possible contributing factors. The parents' data indeed point to a role of BDNF in the pathophysiology of ASD. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Effects of Music Aerobic Exercise on Depression and Brain-Derived Neurotrophic Factor Levels in Community Dwelling Women

    Directory of Open Access Journals (Sweden)

    Shu-Hui Yeh

    2015-01-01

    Full Text Available A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF levels between community women with and without music aerobic exercise (MAE for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016, decreased depression symptoms in crying (p = 0.03, appetite (p = 0.006, and fatigue (p = 0.011. The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042. The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels.

  2. Effects of Music Aerobic Exercise on Depression and Brain-Derived Neurotrophic Factor Levels in Community Dwelling Women

    Science.gov (United States)

    Yeh, Shu-Hui; Lin, Li-Wei; Chuang, Yu Kuan; Liu, Cheng-Ling; Tsai, Lu-Jen; Tsuei, Feng-Shiou; Lee, Ming-Tsung; Hsiao, Chiu-Yueh; Yang, Kuender D.

    2015-01-01

    A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016), decreased depression symptoms in crying (p = 0.03), appetite (p = 0.006), and fatigue (p = 0.011). The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042). The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels. PMID:26075212

  3. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF gene as a potent diagnostic biomarker in major depression.

    Directory of Open Access Journals (Sweden)

    Manabu Fuchikami

    Full Text Available Major depression, because of its recurring and life-threatening nature, is one of the top 10 diseases for global disease burden. Major depression is still diagnosed on the basis of clinical symptoms in patients. The search for specific biological markers is of great importance to advance the method of diagnosis for depression. We examined the methylation profile of 2 CpG islands (I and IV at the promoters of the brain-derived neurotrophic factor (BDNF gene, which is well known to be involved in the pathophysiology of depression. We analyzed genomic DNA from peripheral blood of 20 Japanese patients with major depression and 18 healthy controls to identify an appropriate epigenetic biomarker to aid in the establishment of an objective system for the diagnosis of depression. Methylation rates at each CpG unit was measured using a MassArray® system (SEQUENOM, and 2-dimensional hierarchical clustering analyses were undertaken to determine the validity of these methylation profiles as a diagnostic biomarker. Analyses of the dendrogram from methylation profiles of CpG I, but not IV, demonstrated that classification of healthy controls and patients at the first branch completely matched the clinical diagnosis. Despite the small number of subjects, our results indicate that classification based on the DNA methylation profiles of CpG I of the BDNF gene may be a valuable diagnostic biomarker for major depression.

  4. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration

    KAUST Repository

    Limongi, Tania

    2018-04-04

    Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

  5. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Lin PY

    2015-10-01

    Full Text Available Pao-Yen Lin1,2 1Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 2Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan Abstract: Evidence has supported the role of brain-derived neurotrophic factor (BDNF in antidepressant effect. The precursor of BDNF (proBDNF often exerts opposing biological effects on mature BDNF (mBDNF. Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms. Keywords: antidepressant, mature BDNF, neurotrophic effect, proBDNF cleavage 

  6. Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Aron K Barbey

    Full Text Available Brain-derived neurotrophic factor (BDNF promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI. In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156 consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points, verbal comprehension (6 IQ points, perceptual organization (6 IQ points, working memory (8 IQ points, and processing speed (8 IQ points after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI.

  7. The use of dansyl-calmodulin to study interactions with channels and other proteins.

    Science.gov (United States)

    Alaimo, Alessandro; Malo, Covadonga; Areso, Pilar; Aloria, Kerman; Millet, Oscar; Villarroel, Alvaro

    2013-01-01

    Steady-state fluorescence spectroscopy is a biophysical technique widely employed to characterize -interactions between proteins in vitro. Only a few proteins naturally fluoresce in cells, but by covalently attaching fluorophores virtually all proteins can be monitored. One of the first extrinsic fluorescent probes to be developed, and that is still in use, is dansyl chloride. We have used this method to monitor the interaction of a variety of proteins, including ion channels, with the Ca(2+)-dependent regulatory protein calmodulin. Here we describe the preparation and use of dansyl-calmodulin (D-CaM).

  8. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    Science.gov (United States)

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  9. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc

    Directory of Open Access Journals (Sweden)

    Marks David R

    2009-01-01

    Full Text Available Abstract Background Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF activation of neurotrophin receptor tyrosine kinase B (TrkB suppresses the Shaker voltage-gated potassium channel (Kv1.3 via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. Results We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc and growth factor receptor-binding protein 10 (Grb10, with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293. nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2 domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111–113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein

  10. Brain-derived neurotrophic factor (Val66Met and serotonin transporter (5-HTTLPR polymorphisms modulate plasticity in inhibitory control performance over time but independent of inhibitory control training

    Directory of Open Access Journals (Sweden)

    Sören Enge

    2016-07-01

    Full Text Available Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N=122 and a three-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal was employed and genetic variation (Val66Met in the brain-derived neurotrophic factor (BDNF promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HT transporter (5-HTTLPR was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting

  11. Rescue of axotomized rubrospinal neurons by brain-derived neurotrophic factor (BDNF) in the developing opossum, Didelphis virginiana.

    Science.gov (United States)

    Wang, X M; Terman, J R; Martin, G F

    1999-12-10

    Many rubrospinal neurons die in developing opossums when their axon is cut at thoracic levels of the spinal cord and in the present study we asked whether they can be rescued by brain-derived neurotrophic factor (BDNF). Bilateral injections of Fast Blue (FB) were made into the rostral lumbar cord to prelabel rubrospinal neurons and 5 days later the rubrospinal tract was cut unilaterally by hemisecting the thoracic cord. Immediately after hemisection, BDNF-soaked gelfoam was placed into the lesion cavity. Since pilot data indicated that one application of BDNF was not sufficient to produce a rescue effect, a second application was made 7 days later. Seven days after the second application the pups were killed by an overdose of anesthetic so that the red nucleus contralateral and ipsilateral to the lesion site could be examined for labeled neurons. The rubrospinal tract is almost entirely crossed, so the red nucleus contralateral to the lesion contained many axotomized neurons, whereas the red nucleus ipsilateral to it did not. Age-matched controls were subjected to the same procedures, but the gelfoam applied to the lesion site in the experimental animals was soaked only in the vehicle used to deliver BDNF. In all cases, labeled neurons were fewer in number in the red nucleus contralateral to the lesion than ipsilateral to it. It was of particular interest, however, that labeled neurons contralateral to the lesion were more numerous in the animals treated with BDNF than in the controls. We conclude that BDNF rescues at least some rubrospinal neurons from axotomy-induced cell death in developing opossums suggesting that loss of access to BDNF, and perhaps other neurotrophins, contributes to failure of rubrospinal neurons to survive axotomy.

  12. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    Science.gov (United States)

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. © The Author (2016). Published by

  13. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Chien-Hung Shih

    Full Text Available Neurite outgrowth is an essential process for the establishment of the nervous system. Brain-derived neurotrophic factor (BDNF binds to its receptor TrkB and regulates axonal and dendritic morphology of neurons through signal transduction and gene expression. SH2B1 is a signaling adaptor protein that regulates cellular signaling in various physiological processes. The purpose of this study is to investigate the role of SH2B1 in the development of the central nervous system. In this study, we show that knocking down SH2B1 reduces neurite formation of cortical neurons whereas overexpression of SH2B1β promotes the development of hippocampal neurons. We further demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth and signaling using the established PC12 cells stably expressing TrkB, SH2B1β or SH2B1β mutants. Our data indicate that overexpressing SH2B1β enhances BDNF-induced MEK-ERK1/2, and PI3K-AKT signaling pathways. Inhibition of MEK-ERK1/2 and PI3K-AKT pathways by specific inhibitors suggest that these two pathways are required for SH2B1β-promoted BDNF-induced neurite outgrowth. Moreover, SH2B1β enhances BDNF-stimulated phosphorylation of signal transducer and activator of transcription 3 at serine 727. Finally, our data indicate that the SH2 domain and tyrosine phosphorylation of SH2B1β contribute to BDNF-induced signaling pathways and neurite outgrowth. Taken together, these findings demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth through enhancing pathways involved MEK-ERK1/2 and PI3K-AKT.

  14. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism affects sympathetic tone in a gender-specific way.

    Science.gov (United States)

    Chang, Chuan-Chia; Chang, Hsin-An; Chen, Tien-Yu; Fang, Wen-Hui; Huang, San-Yuan

    2014-09-01

    The Val/Val genotype of the brain-derived neurotrophic factor (BDNF) polymorphism (Val66Met) has been reported to affect human anxiety-related phenotypes. Substantial research has demonstrated that anxiety is associated with sympathetic activation, while sex steroid hormones have been shown to exert differential actions in regulating BDNF expression. Thus, we examined whether the BDNF variant modulates autonomic function in a gender-dependent manner. From 708 adults initially screened for medical and psychiatric illnesses, a final cohort of 583 drug-free healthy Han Chinese (355 males, 228 females; age 34.43±8.42 years) was recruited for BDNF genotyping (Val/Val: 136, 23.3%, Val/Met: 294, 50.4%, and Met/Met: 153, 26.2%). Time- and frequency-domain analyses of heart rate variability (HRV) were used to assess autonomic outflow to the heart. Significant genotype-by-gender interaction effects were found on HRV indices. Even after adjusting for possible confounders, male participants bearing the Val/Val genotype had significant increases in low frequency (LF), LF% and LF/high frequency (HF) ratio, indicating altered sympathovagal balance with increased sympathetic modulation, compared to male Met/Met homozygotes. Females, however, showed an opposite but non-significant pattern. These results suggest that the studied BDNF polymorphism is associated with sympathetic control in a gender-specific way. The findings here support the view that male subjects with the Val/Val genotype have increased risk of anxiety by association with sympathetic activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lack of Postprandial Peak in Brain-Derived Neurotrophic Factor in Adults with Prader-Willi Syndrome.

    Directory of Open Access Journals (Sweden)

    Marta Bueno

    Full Text Available Prader-Willi syndrome (PWS is characterized by severe hyperphagia. Brain-derived neurotrophic factor (BDNF and leptin are reciprocally involved in energy homeostasis.To analyze the role of BDNF and leptin in satiety in genetic subtypes of PWS.Experimental study.University hospital.90 adults: 30 PWS patients; 30 age-sex-BMI-matched obese controls; and 30 age-sex-matched lean controls.Subjects ingested a liquid meal after fasting ≥10 hours.Leptin and BDNF levels in plasma extracted before ingestion and 30', 60', and 120' after ingestion. Hunger, measured on a 100-point visual analogue scale before ingestion and 60' and 120' after ingestion.Fasting BDNF levels were lower in PWS than in controls (p = 0.05. Postprandially, PWS patients showed only a truncated early peak in BDNF, and their BDNF levels at 60' and 120' were lower compared with lean controls (p<0.05. Leptin was higher in PWS patients than in controls at all time points (p<0.001. PWS patients were hungrier than controls before and after eating. The probability of being hungry was associated with baseline BDNF levels: every 50-unit increment in BDNF decreased the odds of being hungry by 22% (OR: 0.78, 95%CI: 0.65-0.94. In uniparental disomy, the odds of being hungry decreased by 66% (OR: 0.34, 90%CI: 0.13-0.9. Postprandial leptin patterns did no differ among genetic subtypes.Low baseline BDNF levels and lack of postprandial peak may contribute to persistent hunger after meals. Uniparental disomy is the genetic subtype of PWS least affected by these factors.

  16. Brain derived neurotrophic factor contributes to the cardiogenic potential of adult resident progenitor cells in failing murine heart.

    Directory of Open Access Journals (Sweden)

    Rasmita Samal

    Full Text Available Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium.Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25 ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts.Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii repressed the cell cycle progression suggesting its potency to ameliorate heart failure.

  17. Maternal obesity alters brain derived neurotrophic factor (BDNF) signaling in the placenta in a sexually dimorphic manner.

    Science.gov (United States)

    Prince, Calais S; Maloyan, Alina; Myatt, Leslie

    2017-01-01

    Obesity is a major clinical problem in obstetrics being associated with adverse pregnancy outcomes and fetal programming. Brain derived neurotrophic factor (BDNF), a validated miR-210 target, is necessary for placental development, fetal growth, glucose metabolism, and energy homeostasis. Plasma BDNF levels are reduced in obese individuals; however, placental BDNF has yet to be studied in the context of maternal obesity. In this study, we investigated the effect of maternal obesity and sexual dimorphism on placental BDNF signaling. BDNF signaling was measured in placentas from lean (pre-pregnancy BMI 30) women at term without medical complications that delivered via cesarean section without labor. MiRNA-210, BDNF mRNA, proBDNF, and mature BDNF were measured by RT - PCR, ELISA, and Western blot. Downstream signaling via TRKB (BDNF receptor) was measured using Western blot. Maternal obesity was associated with increased miRNA-210 and decreased BDNF mRNA in placentas from female fetuses, and decreased proBDNF in placentas from male fetuses. We also identified decreased mature BDNF in placentas from male fetuses when compared to female fetuses. Mir-210 expression was negatively correlated with mature BDNF protein. TRKB phosphorylated at tyrosine 817, not tyrosine 515, was increased in placentas from obese women. Maternal obesity was associated with increased phosphorylation of MAPK p38 in placentas from male fetuses, but not phosphorylation of ERK p42/44. BDNF regulation is complex and highly regulated. Pre-pregnancy/early maternal obesity adversely affects BDNF/TRKB signaling in the placenta in a sexually dimorphic manner. These data collectively suggest that induction of placental TRKB signaling could ameliorate the placental OB phenotype, thus improving perinatal outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-09-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  19. A functional brain-derived neurotrophic factor (BDNF) gene variant increases the risk of moderate-to-severe allergic rhinitis.

    Science.gov (United States)

    Jin, Peng; Andiappan, Anand Kumar; Quek, Jia Min; Lee, Bernett; Au, Bijin; Sio, Yang Yie; Irwanto, Astrid; Schurmann, Claudia; Grabe, Hans Jörgen; Suri, Bani Kaur; Matta, Sri Anusha; Westra, Harm-Jan; Franke, Lude; Esko, Tonu; Sun, Liangdan; Zhang, Xuejun; Liu, Hong; Zhang, Furen; Larbi, Anis; Xu, Xin; Poidinger, Michael; Liu, Jianjun; Chew, Fook Tim; Rotzschke, Olaf; Shi, Li; Wang, De Yun

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. We sought to identify disease associations and the functional effect of BDNF genetic variants in patients with moderate-to-severe AR. Tagging single nucleotide polymorphisms (SNPs) spanning the BDNF gene were selected from the human HapMap Han Chinese from Beijing (CHB) data set, and associations with moderate-to-severe AR were assessed in 2 independent cohorts of Chinese patients (2216 from Shandong province and 1239 living in Singapore). The functional effects of the BDNF genetic variants were determined by using both in vitro and ex vivo assays. The tagging SNP rs10767664 was significantly associated with the risk of moderate-to-severe AR in both Singapore Chinese (P = .0017; odds ratio, 1.324) and Shandong Chinese populations (P = .039; odds ratio, 1.180). The coding nonsynonymous SNP rs6265 was in perfect linkage with rs10767664 and conferred increased BDNF protein secretion by a human cell line in vitro. Subjects bearing the AA genotype of rs10767664 exhibited increased risk of moderate-to-severe AR and displayed increased BDNF protein and total IgE levels in plasma. Using a large-scale expression quantitative trait locus study, we demonstrated that BDNF SNPs are significantly associated with altered BDNF concentrations in peripheral blood. A common genetic variant of the BDNF gene is associated with increased risk of moderate-to-severe AR, and the AA genotype is associated with increased BDNF mRNA levels in peripheral blood. Together, these data indicate that functional BDNF gene variants increase the risk of moderate-to-severe AR. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Brain-derived neurotrophic factor improves proliferation of endometrial epithelial cells by inhibition of endoplasmic reticulum stress during early pregnancy.

    Science.gov (United States)

    Lim, Whasun; Bae, Hyocheol; Bazer, Fuller W; Song, Gwonhwa

    2017-12-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family binds to two transmembrane receptors; neurotrophic receptor tyrosine kinase 2 (NTRK2) with high affinity and p75 with low affinity. Although BDNF-NTRK2 signaling in the central nervous system is known, signaling in the female reproductive system is unknown. Therefore, we determined effects of BDNF on porcine endometrial luminal epithelial (pLE) cells isolated from Day 12 of pregnancy, as well as expression of BDNF and NTRK2 in endometria of cyclic and pregnant pigs. BDNF-NTRK2 genes were expressed in uterine glandular (GE) and luminal (LE) epithelia during early pregnancy. In addition, their expression in uterine GE and LE decreased with increasing parity of sows. Recombinant BDNF increased proliferation in pLE cells in a dose-dependent, as well as expression of PCNA and Cyclin D1 in nuclei of pLE cells. BDNF also activated phosphorylation of AKT, P70S6K, S6, ERK1/2, JNK, P38 proteins in pLE cells. In addition, cell death resulting from tunicamycin-induced ER stress was prevented when pLE cells were treated with the combination of tunicamycin and BDNF which also decreased cells in the Sub-G 1 phase of the cell cycle. Furthermore, tunicamycin-induced unfolded protein response genes were mostly down-regulated to the basal levels as compared to non-treated pLE cells. Our finding suggests that BDNF acts via NTRK2 to induce development of pLE cells for maintenance of implantation and pregnancy by activating cell signaling via the PI3K and MAPK pathways and by inhibiting ER stress. © 2017 Wiley Periodicals, Inc.

  1. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia.

    Science.gov (United States)

    Wysokiński, Adam

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are neurotrophins-proteins that induce the survival, development, and function of neurons. Their role in the development of schizophrenia and mood disorders is widely studied. This study was aimed to determine whether depression affects levels of BDNF and NT-3 in patients with schizophrenia. Data for 53 Caucasian adult hospitalized patients with chronic paranoid schizophrenia was compared with 27 healthy subjects. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) and positive, negative and general sub-scores, the Calgary Depression Scale for Schizophrenia (CDSS), the Hamilton Depression Rating Scale (HDRS), and the Clinical Global Impressions scale (CGI). Patients were defined as depressed (SHZ-DEP) with scores CDSS > 6 and HDRS > 7, otherwise they were included into the non-depressed group (SHZ-nonDEP). In total, 17 patients (32.1%) with schizophrenia met criteria for depression. SHZ-DEP patients had higher scores in HDRS, CDSS, PANSS total, PANSS negative, PANSS general and CGI (p BDNF or NT-3 levels between patients with schizophrenia and controls. BDNF levels were lower in SHZ-DEP compared to SHZ-nonDEP: 18.82 ± 5.95 versus 22.10 ± 5.31 ng/mL, p = 0.045. NT-3 levels were higher in SHZ-DEP compared to SHZ-nonDEP: 133.31 ± 222.19 versus 56.04 ± 201.28 pg/mL, p = 0.033. There were no differences in neurotrophin levels between patients with schizophrenia and controls. We found lower BDNF and higher NT-3 serum levels in depressed patients with schizophrenia.

  2. Remission of depression following electroconvulsive therapy (ECT) is associated with higher levels of brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Freire, Thiago Fernando Vasconcelos; Fleck, Marcelo Pio de Almeida; da Rocha, Neusa Sica

    2016-03-01

    Research on the association between electroconvulsive therapy (ECT) and increased brain derived neurotrophic factor (BDNF) levels has produced conflicting result. There have been few studies which have evaluated BDNF levels in clinical contexts where there was remission following treatment. The objective of this study was to investigate whether remission of depression following ECT is associated with changes in BDNF levels. Adult inpatients in a psychiatric unit were invited to participate in this naturalistic study. Diagnoses were made using the Mini-International Neuropsychiatric Interview (MINI) and symptoms were evaluated at admission and discharge using the Hamilton Rating Scale for Depression (HDRS-17). Thirty-one patients who received a diagnosis of depression and were subjected to ECT were included retrospectively. Clinical remission was defined as a score of less than eight on the HDRS-17 at discharge. Serum BDNF levels were measured in blood samples collected at admission and discharge with a commercial kit used in accordance with the manufacturer's instructions. Subjects HDRS-17 scores improved following ECT (t = 13.29; p = 0.00). A generalized estimating equation (GEE) model revealed a remission × time interaction with BDNF levels as a dependent variable in a Wald chi-square test [Wald χ(2) = 5.98; p = 0.01]. A post hoc Bonferroni test revealed that non-remitters had lower BDNF levels at admission than remitters (p = 0.03), but there was no difference at discharge (p = 0.16). ECT remitters had higher serum BDNF levels at admission and the level did not vary during treatment. ECT non-remitters had lower serum BDNF levels at admission, but levels increased during treatment and were similar to those of ECT remitters at discharge. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies.

    Science.gov (United States)

    Fernandes, Brisa S; Molendijk, Marc L; Köhler, Cristiano A; Soares, Jair C; Leite, Cláudio Manuel G S; Machado-Vieira, Rodrigo; Ribeiro, Thamara L; Silva, Jéssica C; Sales, Paulo M G; Quevedo, João; Oertel-Knöchel, Viola; Vieta, Eduard; González-Pinto, Ana; Berk, Michael; Carvalho, André F

    2015-11-30

    The neurotrophic hypothesis postulates that mood disorders such as bipolar disorder (BD) are associated with a lower expression of brain-derived neurotrophic factor (BDNF). However, its role in peripheral blood as a biomarker of disease activity and of stage for BD, transcending pathophysiology, is still disputed. In the last few years an increasing number of clinical studies assessing BDNF in serum and plasma have been published. Therefore, it is now possible to analyse the association between BDNF levels and the severity of affective symptoms in BD as well as the effects of acute drug treatment of mood episodes on BDNF levels. We conducted a systematic review and meta-analysis of all studies on serum and plasma BDNF levels in bipolar disorder. Through a series of meta-analyses including a total of 52 studies with 6,481 participants, we show that, compared to healthy controls, peripheral BDNF levels are reduced to the same extent in manic (Hedges' g = -0.57, P = 0.010) and depressive (Hedges' g = -0.93, P = 0.001) episodes, while BDNF levels are not significantly altered in euthymia. In meta-regression analyses, BDNF levels additionally negatively correlate with the severity of both manic and depressive symptoms. We found no evidence for a significant impact of illness duration on BDNF levels. In addition, in plasma, but not serum, peripheral BDNF levels increase after the successful treatment of an acute mania episode, but not of a depressive one. In summary, our data suggest that peripheral BDNF levels, more clearly in plasma than in serum, is a potential biomarker of disease activity in BD, but not a biomarker of stage. We suggest that peripheral BDNF may, in future, be used as a part of a blood protein composite measure to assess disease activity in BD.

  4. Brain-Derived Neurotrophic Factor in TBI-related mortality: Interrelationships between Genetics and Acute Systemic and CNS BDNF Profiles

    Science.gov (United States)

    Failla, Michelle D.; Conley, Yvette P.; Wagner, Amy K.

    2015-01-01

    Background Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) were protective in acute mortality. Post-acutely, these genotypes carried lower mortality risk in older adults, and greater mortality risk among younger adults. Objective Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Methods CSF and serum BDNF were assessed prospectively during the first week following severe TBI (n=203), and in controls (n=10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. Results CSF BDNF levels tended to be higher post-TBI (p=0.061) versus controls and were associated with time until death (p=0.042). In contrast, serum BDNF levels were reduced post-TBI versus controls (pBDNF serum and gene*age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (p=0.07). Conclusions BDNF levels predicted mortality, in addition to gene*age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. PMID:25979196

  5. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    International Nuclear Information System (INIS)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-01-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations

  6. [Prenatal lead exposure related to cord blood brain derived neurotrophic factor (BDNF) levels and impaired neonatal neurobehavioral development].

    Science.gov (United States)

    Ren, L H; Mu, X Y; Chen, H Y; Yang, H L; Qi, W

    2016-06-01

    To explore the relationship between umbilical cord blood brain-derived neurotrophic factor (BDNF) and neonatal neurobehavioral development in lead exposure infants. All infants and their mother were randomly selected during 2011 to 2012, subjects were selected according to the umbilical cord blood lead concentrations, which contcentration of lead was higher than 0.48 μmol/L were taken into high lead exposure group, about 60 subjects included. Comparing to the high lead exposure group, according to gender, weight, pregnant week, length and head circumferenece, the level of cord blood lead concentration under 0.48 μmol/L were taken into control group, 60 cases included. Lead content was determined by graphite furnace atomic absorption spectrometry. Neonatal behavioral neurological assessment (NBNA) was used to determine the development of neonatal neuronal behavior. The content of BDNF was detected by ELISA. Comparing the BDNF and the NBNA score between two groups, and linear correlation was given on analysis the correlation between lead concentration in cord blood and BDNF, BDNF and the NBNA score. Lead content in high exposure group was (0.613±0.139) μmol/L, and higher than (0.336±0.142) μmol/L in low exposure group (t=3.21, PBDNF content in high exposure group which was (3.538±1.203) ng/ml was higher than low exposure group (2.464±0.918) ng/ml (t=7.60, PBDNF content was negatively correlated with NBNA summary score, passive muscle tension and active muscle tone score (r was -0.27, -0.29, -0.30, respectively, P values were BDNF was negatively correlated with neonatal neurodevelopment, may serve as a useful biomarker.

  7. Neurocognitive function, brain-derived neurotrophic factor (BDNF) and IL-6 levels in cancer patients with depression.

    Science.gov (United States)

    Jehn, C F; Becker, B; Flath, B; Nogai, H; Vuong, L; Schmid, P; Lüftner, D

    2015-10-15

    Increased IL-6 and decreased brain-derived neurotrophic factor (BDNF) levels have been implicated in the pathophysiology of depression. The objective was to assess the influence of BDNF and IL-6 on cognitive function and depression in patients with cancer. Serum BDNF and plasma IL-6 were measured in patients with metastatic cancer. Diagnosis of depression was established according to DSM-IV criteria. Cognitive function was assessed by the Verbal Learning and Memory Test (VLMT). A total of 59 patients were recruited in this study. Only IL-6 levels were significantly elevated in patients with clinical depression (35.7 vs. 6.9 pg/ml; pBDNF levels (p=0.16). Patients with clinical depression showed significant impairment of short-term memory (STM) (24.4 vs. 37.5; p=0.01), but not of long-term memory (LTM) (3.9 vs. 2.8; p=0.3). STM was dependent on the level of BDNF and younger age (b=0.60; p=0.001; b= -0.63; p=0.003, respectively). IL-6 was not only strongly associated with depression, but was an independent predictor of BDNF level as well (b= -0.50; p=0.01). LTM was associated only with a good KPS (b=0.47; p=0.037). Hemoglobin levels and the prior number of chemotherapy lines were not predictive of memory performance. Low BDNF is associated with cognitive impairment, STM, in patients with cancer, however no influence on depression could be found. IL-6 is strongly associated with depression and an independent predictor of BDNF levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2016-07-15

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model.

    Science.gov (United States)

    Martin, Keith R G; Quigley, Harry A; Zack, Donald J; Levkovitch-Verbin, Hana; Kielczewski, Jennifer; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Klein, Ronald L; Hauswirth, William W

    2003-10-01

    To develop a modified adenoassociated viral (AAV) vector capable of efficient transfection of retinal ganglion cells (RGCs) and to test the hypothesis that use of this vector to express brain-derived neurotrophic factor (BDNF) could be protective in experimental glaucoma. Ninety-three rats received one unilateral, intravitreal injection of either normal saline (n = 30), AAV-BDNF-woodchuck hepatitis posttranscriptional regulatory element (WPRE; n = 30), or AAV-green fluorescent protein (GFP)-WPRE (n = 33). Two weeks later, experimental glaucoma was induced in the injected eye by laser application to the trabecular meshwork. Survival of RGCs was estimated by counting axons in optic nerve cross sections after 4 weeks of glaucoma. Transgene expression was assessed by immunohistochemistry, Western blot analysis, and direct visualization of GFP. The density of GFP-positive cells in retinal wholemounts was 1,828 +/- 299 cells/mm(2) (72,273 +/- 11,814 cells/retina). Exposure to elevated intraocular pressure was similar in all groups. Four weeks after initial laser treatment, axon loss was 52.3% +/- 27.1% in the saline-treated group (n = 25) and 52.3% +/- 24.2% in the AAV-GFP-WPRE group (n = 30), but only 32.3% +/- 23.0% in the AAV-BDNF-WPRE group (n = 27). Survival in AAV-BDNF-WPRE animals increased markedly and the difference was significant compared with those receiving either AAV-GFP-WPRE (P = 0.002, t-test) or saline (P = 0.006, t-test). Overexpression of the BDNF gene protects RGC as estimated by axon counts in a rat glaucoma model, further supporting the potential feasibility of neurotrophic therapy as a complement to the lowering of IOP in the treatment of glaucoma.

  10. Association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with early-onset bipolar disorder.

    Science.gov (United States)

    Nassan, Malik; Croarkin, Paul E; Luby, Joan L; Veldic, Marin; Joshi, Paramjit T; McElroy, Susan L; Post, Robert M; Walkup, John T; Cercy, Kelly; Geske, Jennifer R; Wagner, Karen D; Cuellar-Barboza, Alfredo B; Casuto, Leah; Lavebratt, Catharina; Schalling, Martin; Jensen, Peter S; Biernacka, Joanna M; Frye, Mark A

    2015-09-01

    Brain-derived neurotrophic factor (BDNF) Val66Met (rs6265) functional polymorphism has been implicated in early-onset bipolar disorder. However, results of studies are inconsistent. We aimed to further explore this association. DNA samples from the Treatment of Early Age Mania (TEAM) and Mayo Clinic Bipolar Disorder Biobank were investigated for association of rs6265 with early-onset bipolar disorder. Bipolar cases were classified as early onset if the first manic or depressive episode occurred at age ≤19 years (versus adult-onset cases at age >19 years). After quality control, 69 TEAM early-onset bipolar disorder cases, 725 Mayo Clinic bipolar disorder cases (including 189 early-onset cases), and 764 controls were included in the analysis of association, assessed with logistic regression assuming log-additive allele effects. Comparison of TEAM cases with controls suggested association of early-onset bipolar disorder with the rs6265 minor allele [odds ratio (OR) = 1.55, p = 0.04]. Although comparison of early-onset adult bipolar disorder cases from the Mayo Clinic versus controls was not statistically significant, the OR estimate indicated the same direction of effect (OR = 1.21, p = 0.19). When the early-onset TEAM and Mayo Clinic early-onset adult groups were combined and compared with the control group, the association of the minor allele rs6265 was statistically significant (OR = 1.30, p = 0.04). These preliminary analyses of a relatively small sample with early-onset bipolar disorder are suggestive that functional variation in BDNF is implicated in bipolar disorder risk and may have a more significant role in early-onset expression of the disorder. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Brain-Derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study

    Science.gov (United States)

    Diniz, Breno Satler; Reynolds, Charles F.; Begley, Amy; Dew, Mary Amanda; Anderson, Stewart J.; Lotrich, Francis; Erickson, Kirk I.; Lopez, Oscar; Aizenstein, Howard; Sibille, Etienne L.; Butters, Meryl A.

    2014-01-01

    Changes in brain-derived neurotrophic factor (BDNF) level are implicated in the pathophysiology of cognitive decline in depression and neurodegenerative disorders in older adults. We aimed to evaluate the longitudinal association over two years between BDNF and persistent cognitive decline in individuals with remitted late-life depression and Mild Cognitive Impairment (LLD+MCI) compared to either individuals with remitted LLD and no cognitive decline (LLD+NCD) or never-depressed, cognitively normal, elderly control participants. We additionally evaluated the effect of double-blind, placebo-controlled donepezil treatment on BDNF levels in all of the remitted LLD participants (across the levels of cognitive function). We included 160 elderly participants in this study (72 LLD+NCD, 55 LLD+MCI and 33 never-depressed cognitively normal elderly participants). At the same visits, cognitive assessments were conducted and blood sampling to determine serum BDNF levels were collected at baseline assessment and after one and two years of follow-up. We utilized repeated measure, mixed effect models to assess: (1) the effects of diagnosis (LLD+MCI, LLD+NCD, and controls), time, and their interaction on BDNF levels; and (2) the effects of donepezil treatment (donepezil vs. placebo), time, baseline diagnosis (LLD+MCI vs. LLD+NCD), and interactions between these contrasts on BDNF levels. We found a significant effect of time on BDNF level (p=0.02) and a significant decline in BDNF levels over 2 years of follow-up in participants with LLD+MCI (p=0.004) and controls (p=0.04). We found no effect of donepezil treatment on BDNF level. The present results suggest that aging is an important factor related to decline in BDNF level. PMID:24290367

  12. Alterations in brain-derived neurotrophic factor in the mouse hippocampus following acute but not repeated benzodiazepine treatment.

    Directory of Open Access Journals (Sweden)

    Stephanie C Licata

    Full Text Available Benzodiazepines (BZs are safe drugs for treating anxiety, sleep, and seizure disorders, but their use also results in unwanted effects including memory impairment, abuse, and dependence. The present study aimed to reveal the molecular mechanisms that may contribute to the effects of BZs in the hippocampus (HIP, an area involved in drug-related plasticity, by investigating the regulation of immediate early genes following BZ administration. Previous studies have demonstrated that both brain derived neurotrophic factor (BDNF and c-Fos contribute to memory- and abuse-related processes that occur within the HIP, and their expression is altered in response to BZ exposure. In the current study, mice received acute or repeated administration of BZs and HIP tissue was analyzed for alterations in BDNF and c-Fos expression. Although no significant changes in BDNF or c-Fos were observed in response to twice-daily intraperitoneal (i.p. injections of diazepam (10 mg/kg + 5 mg/kg or zolpidem (ZP; 2.5 mg/kg + 2.5 mg/kg, acute i.p. administration of both triazolam (0.03 mg/kg and ZP (1.0 mg/kg decreased BDNF protein levels within the HIP relative to vehicle, without any effect on c-Fos. ZP specifically reduced exon IV-containing BDNF transcripts with a concomitant increase in the association of methyl-CpG binding protein 2 (MeCP2 with BDNF promoter IV, suggesting that MeCP2 activity at this promoter may represent a ZP-specific mechanism for reducing BDNF expression. ZP also increased the association of phosphorylated cAMP response element binding protein (pCREB with BDNF promoter I. Future work should examine the interaction between ZP and DNA as the cause for altered gene expression in the HIP, given that BZs can enter the nucleus and intercalate into DNA directly.

  13. Brain-derived neurotrophic factor is increased in serum and skin levels of patients with chronic spontaneous urticaria.

    Science.gov (United States)

    Rössing, K; Novak, N; Mommert, S; Pfab, F; Gehring, M; Wedi, B; Kapp, A; Raap, U

    2011-10-01

    Chronic spontaneous urticaria is triggered by many direct and indirect aggravating factors including autoreactive/autoimmune mechanisms, infections, non-allergic and pseudoallergic intolerance reactions. However, the role of neuroimmune mechanisms in chronic spontaneous urticaria so far is unclear. Thus, we wanted to address the regulation of the neurotrophin brain-derived neurotrophic factor (BDNF) in serum and inflammatory skin of patients with chronic spontaneous urticaria in comparison to subjects with healthy skin. Fifty adult patients with chronic spontaneous urticaria and 23 skin-healthy subjects were studied. Chronic spontaneous urticaria was defined as recurrent weals for more than 6 weeks. Autologous serum skin test was performed in all patients with chronic spontaneous urticaria and BDNF serum levels were analysed by enzyme immunoassay in all subjects. Furthermore, skin biopsies were taken from weals of eight patients with chronic spontaneous urticaria as well as from healthy skin of eight controls to evaluate the expression of BDNF and its receptors including tyrosine kinase (trk) B and pan-neurotrophin receptor p75(NTR) by immunohistochemistry. BDNF serum levels were detectable in all subjects studied. However, BDNF levels were significantly higher in patients with chronic spontaneous urticaria compared to non-atopic skin-healthy controls (Pchronic spontaneous urticaria compared with controls (Pchronic spontaneous urticaria and controls and no difference in BDNF serum levels between autologous serum skin test-positive (n=23) and -negative (n=27) patients with chronic spontaneous urticaria. This study shows that BDNF is increased in serum and diseased skin of patients with chronic spontaneous urticaria, suggesting a role for neurotrophins in the pathophysiology of this chronic inflammatory skin disease. Further studies are needed to address the functional role of BDNF on key target effector cells in chronic spontaneous urticaria to establish new

  14. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  15. Association of Lipid Peroxidation and Brain-Derived Neurotrophic Factor with Executive Function in Adolescent Bipolar Disorder.

    Science.gov (United States)

    Newton, Dwight F; Naiberg, Melanie R; Andreazza, Ana C; Scola, Gustavo; Dickstein, Daniel P; Goldstein, Benjamin I

    2017-02-01

    Executive dysfunction is common and impairing in youth bipolar disorder (BD), and oxidative stress (OS) and brain-derived neurotrophic factor (BDNF) have been implicated in executive deficits of adult BD. This study aimed to determine the association between OS and executive dysfunction in BD adolescents and the influence of BDNF on this association. Serum levels of lipid hydroperoxides (LPH) and 4-hydroxy-2-nonenal (4-HNE) and BDNF levels were measured in 29 BD and 25 control adolescents. The intra-extra-dimensional (IED) set-shifting task assessed executive function. Lower IED scores indicated better performance. High and low BDNF subgroups were defined by median split. IED Z-scores were impaired in the BD group compared to controls, whereas biomarker levels were not significantly different between groups. LPH-BDNF correlations were significantly different between BD and controls (Z = 2.046, p = 0.041). In high BDNF BD subjects, LPH was significantly positively correlated with IED completed stage trials (ρ = 0.755, p = 0.001) and pre-extra-dimensional shift errors (ρ = 0.588, p = 0.017). Correlations were opposite in controls. In a linear model, LPH, BDNF, and the LPH-BDNF interaction each significantly explained variance of IED total trials (adjusted) (model r 2  = 0.187, F = 2.811, p = 0.035). There is a negative association between LPH and executive function in BD adolescents, which may be modulated by BDNF. LPH and BDNF may be useful biomarkers of executive function in BD. These findings highlight the importance of examining multiple peripheral biomarkers in relation to cognitive functions in BD adolescents. Future studies should explore these factors in longitudinal designs to determine the directionality of observed associations.

  16. Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats.

    Science.gov (United States)

    Naert, Gaëlle; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2007-01-01

    Depression is characterized by hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. In this major mood disorder, neurosteroids and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), seem to be implicated and have some antidepressant effects. BDNF is highly involved in regulation of the HPA axis, whereas neurosteroids effects have never been clearly established. In this systematic in vivo study, we showed that the principal neuroactive steroids, namely dehydroepiandrosterone (DHEA), pregnenolone (PREG) and their sulfate esters (DHEA-S and PREG-S), along with allopregnanolone (ALLO), stimulated HPA axis activity, while also modulating central BDNF contents. In detail, DHEA, DHEA-S, PREG, PREG-S and ALLO induced corticotropin-releasing hormone (CRH) and/or arginine vasopressin (AVP) synthesis and release at the hypothalamic level, thus enhancing plasma adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations. This stimulation of the HPA axis occurred concomitantly with BDNF modifications at the hippocampus, amygdala and hypothalamus levels. We showed that these neurosteroids induced rapid effects, probably via neurotransmitter receptors and delayed effects perhaps after metabolization in other neuroactive steroids. We highlighted that they had peripheral effects directly at the adrenal level by inducing CORT release, certainly after estrogenic metabolization. In addition, we showed that, at the dose used, only DHEA, DHEA-S and PREG-S had antidepressant effects. In conclusion, these results highly suggest that part of the HPA axis and antidepressant effects of neuroactive steroids could be mediated by BDNF, particularly at the amygdala level. They also suggest that neurosteroids effects on central BDNF could partially explain the trophic properties of these molecules.

  17. Hypothalamic-pituitary-adrenal axis hyperactivity is associated with decreased brain-derived neurotrophic factor in female suicide attempters.

    Science.gov (United States)

    Ambrus, Livia; Lindqvist, Daniel; Träskman-Bendz, Lil; Westrin, Åsa

    2016-11-01

    Both decreased levels of brain-derived neurotrophic factor (BDNF) and hypothalamic-pituitary-adrenal (HPA) axis dysregulation may be involved in the pathophysiology of suicidal behaviour, as well as cognitive symptoms of depression. Pre-clinical and clinical studies have shown interactions between HPA-axis activity and BDNF, but this has not been studied in a clinical cohort of suicidal subjects. The purpose of this study was, therefore, to investigate associations between HPA-axis activity and BDNF in suicide attempters. Furthermore, this study examined the relationship between the HPA-axis, BDNF, and cognitive symptoms in suicidal patients. Since previous data indicate gender-related differences in BDNF and the HPA axis, males and females were examined separately. Seventy-five recent suicide attempters (n = 41 females; n = 34 males) were enrolled in the study. The Dexamethasone Suppression Test (DST) was performed and BDNF in plasma were analysed. Patients were evaluated with the Comprehensive Psychopathological Rating Scale (CPRS) from which items 'Concentration difficulties' and 'Failing memory' were extracted. Only among females, DST non-suppressors had significantly lower BDNF compared to DST suppressors (p = 0.022), and there was a significant correlation between post-DST serum cortisol at 8 a.m. and BDNF (rs = -0.437, p = 0.003). Concentration difficulties correlated significantly with post-DST cortisol in all patients (rs = 0.256, p = 0.035), in females (rs = 0.396, p = 0.015), and with BDNF in females (rs = -0.372, p = 0.020). The findings suggest an inverse relationship between the HPA-axis and BDNF in female suicide attempters. Moreover, concentration difficulties may be associated with low BDNF and DST non-suppression in female suicide attempters.

  18. Pivotal Role of Brain-Derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats.

    Science.gov (United States)

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon

    2017-01-24

    Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.

  19. Brain-Derived Neurotrophic Factor Val66Met Human Polymorphism Impairs the Beneficial Exercise-Induced Neurobiological Changes in Mice

    Science.gov (United States)

    Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio

    2016-01-01

    Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise. PMID:27388329

  20. Modulatory effects of aromatherapy massage intervention on electroencephalogram, psychological assessments, salivary cortisol and plasma brain-derived neurotrophic factor.

    Science.gov (United States)

    Wu, Jin-Ji; Cui, Yanji; Yang, Yoon-Sil; Kang, Moon-Seok; Jung, Sung-Cherl; Park, Hyeung Keun; Yeun, Hye-Young; Jang, Won Jung; Lee, Sunjoo; Kwak, Young Sook; Eun, Su-Yong

    2014-06-01

    Aromatherapy massage is commonly used for the stress management of healthy individuals, and also has been often employed as a therapeutic use for pain control and alleviating psychological distress, such as anxiety and depression, in oncological palliative care patients. However, the exact biological basis of aromatherapy massage is poorly understood. Therefore, we evaluated here the effects of aromatherapy massage interventions on multiple neurobiological indices such as quantitative psychological assessments, electroencephalogram (EEG) power spectrum pattern, salivary cortisol and plasma brain-derived neurotrophic factor (BDNF) levels. A control group without treatment (n = 12) and aromatherapy massage group (n = 13) were randomly recruited. They were all females whose children were diagnosed as attention deficit hyperactivity disorder and followed up in the Department of Psychiatry, Jeju National University Hospital. Participants were treated with aromatherapy massage for 40 min twice per week for 4 weeks (8 interventions). A 4-week-aromatherapy massage program significantly improved all psychological assessment scores in the Stat-Trait Anxiety Index, Beck Depression Inventory and Short Form of Psychosocial Well-being Index. Interestingly, plasma BDNF levels were significantly increased after a 4 week-aromatherapy massage program. Alpha-brain wave activities were significantly enhanced and delta wave activities were markedly reduced following the one-time aromatherapy massage treatment, as shown in the meditation and neurofeedback training. In addition, salivary cortisol levels were significantly reduced following the one-time aromatherapy massage treatment. These results suggest that aromatherapy massage could exert significant influences on multiple neurobiological indices such as EEG pattern, salivary cortisol and plasma BDNF levels as well as psychological assessments. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    Directory of Open Access Journals (Sweden)

    Claudia Mastroeni

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS of the human motor hand area (M1HAND can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val(66met polymorphism in the brain-derived neurotrophic factor (BDNF gene. Here we used theta burst stimulation (TBS to examine whether the BDNF val(66met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS usually inducing a lasting increase and continuous TBS (cTBS a lasting decrease in corticospinal excitability. In three separate sessions, healthy val(66met (n = 12 and val(66val (n = 17 carriers received neuronavigated cTBS followed by cTBS (n = 27, cTBS followed by iTBS (n = 29, and iTBS followed by iTBS (n = 28. Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS and increase (iTBS in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val(66met carriers and val(66val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val(66met polymorphism, our results do not support the notion that the BDNF val(66met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND.

  2. Brain-Derived Neurotrophic Factor – A Major Player in Stimulation-Induced Homeostatic Metaplasticity of Human Motor Cortex?

    Science.gov (United States)

    Rizzo, Vincenzo; Ritter, Christoph; Klein, Christine; Pohlmann, Ines; Brueggemann, Norbert; Quartarone, Angelo; Siebner, Hartwig Roman

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val66met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val66met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val66met (n = 12) and val66val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val66met carriers and val66val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val66met polymorphism, our results do not support the notion that the BDNF val66met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND. PMID:23469118

  3. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    Science.gov (United States)

    Mastroeni, Claudia; Bergmann, Til Ole; Rizzo, Vincenzo; Ritter, Christoph; Klein, Christine; Pohlmann, Ines; Brueggemann, Norbert; Quartarone, Angelo; Siebner, Hartwig Roman

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val(66)met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val(66)met (n = 12) and val(66)val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val(66)met carriers and val(66)val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val(66)met polymorphism, our results do not support the notion that the BDNF val(66)met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND.

  4. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania.

    Science.gov (United States)

    Fries, Gabriel R; Valvassori, Samira S; Bock, Hugo; Stertz, Laura; Magalhães, Pedro Vieira da Silva; Mariot, Edimilson; Varela, Roger B; Kauer-Sant'Anna, Marcia; Quevedo, João; Kapczinski, Flávio; Saraiva-Pereira, Maria Luiza

    2015-09-01

    Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors.

    Science.gov (United States)

    Wang, Z; Liu, Q; Zhang, R; Liu, S; Xia, Z; Hu, Y

    2009-11-10

    The purpose of this work is to study the effect of catalpol, an iridoid from Rehmannia glutinosa on neurodegenerative changes induced by beta-amyloid peptide Abeta(25-35) or Abeta(25-35)+ibotenic acid and the underlying mechanism. Results showed that catalpol significantly improved the memory deficits in the neurodegenerative mouse model produced by injection of Abeta(25-35)+ibotenic acid to the nucleus magnocellularis basalis, yet it is neither a cholinesterase inhibitor nor a muscarinic (M) receptor agonist. Instead, the choline acetyl transferase (ChAT) activity and the M receptor density in brain were significantly decreased in the model mice and catalpol could significantly elevate their levels. Furthermore, the brain-derived neurotrophic factor (BDNF) content in brain was significantly decreased in the model mice and catalpol elevated it to normal level (83%+/-3% and 102%+/-2% of normal respectively). There is a significant positive correlation between BDNF content and memory. Primary culture of forebrain neurons revealed that aggregated Abeta(25-35) induced significant decrease of ChAT positive neuron number, neurite outgrowth length, and M receptor density, while catalpol added to the culture medium 2 h prior to Abeta addition showed significant dose dependent protective effect. Notably, 24 h and 48 h after the addition of Abeta to the cultured cells, the BDNF mRNA level in the neurons decreased to 76%+/-7% and 66%+/-3% of control without catalpol treatment, but became 128%+/-17% and 131%+/-23% of control with catalpol treatment. When the action of BDNF was inhibited by k252a in the cultured neurons, the protective effect of catalpol was completely (neurite outgrowth length) or partially (ChAT positive neuron number and the M receptor density) abolished. Taken together, catalpol improves memory and protects the forebrain neurons from neurodegeneration through increasing BDNF expression. Whether catalpol could reverse the neurodegenerative changes already

  6. Brain-derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress.

    Science.gov (United States)

    Dretsch, Michael N; Williams, Kathy; Emmerich, Tanja; Crynen, Gogce; Ait-Ghezala, Ghania; Chaytow, Helena; Mathura, Venkat; Crawford, Fiona C; Iverson, Grant L

    2016-01-01

    In addition to experiencing traumatic events while deployed in a combat environment, there are other factors that contribute to the development of posttraumatic stress disorder (PTSD) in military service members. This study explored the contribution of genetics, childhood environment, prior trauma, psychological, cognitive, and deployment factors to the development of traumatic stress following deployment. Both pre- and postdeployment data on 231 of 458 soldiers were analyzed. Postdeployment assessments occurred within 30 days from returning stateside and included a battery of psychological health, medical history, and demographic questionnaires; neurocognitive tests; and blood serum for the D2 dopamine receptor (DRD2), apolipoprotein E (APOE), and brain-derived neurotropic factor (BDNF) genes. Soldiers who screened positive for traumatic stress at postdeployment had significantly higher scores in depression (d = 1.91), anxiety (d = 1.61), poor sleep quality (d = 0.92), postconcussion symptoms (d = 2.21), alcohol use (d = 0.63), traumatic life events (d = 0.42), and combat exposure (d = 0.91). BDNF Val66 Met genotype was significantly associated with risk for sustaining a mild traumatic brain injury (mTBI) and screening positive for traumatic stress. Predeployment traumatic stress, greater combat exposure and sustaining an mTBI while deployed, and the BDNF Met/Met genotype accounted for 22% of the variance of postdeployment PTSD scores (R (2)  = 0.22, P PTSD scores. These findings suggest predeployment traumatic stress, genetic, and environmental factors have unique contributions to the development of combat-related traumatic stress in military service members.

  7. Role of Serum Brain Derived Neurotrophic Factor and Central N-Acetylaspartate for Clinical Response under Antidepressive Pharmacotherapy

    Directory of Open Access Journals (Sweden)

    Sarah Nase

    2016-02-01

    Full Text Available Background: The predictive therapeutic value of brain derived neurotrophic factor (BDNF and its changes associated with the use of specific antidepressants are still unclear. In this study, we examined BDNF as a peripheral and NAA as a central biomarker over the time course of antidepressant treatment to specify both of their roles in the response to the medication and clinical outcome. Methods: We examined serum BDNF (ELISA kit in a sample of 76 (47 female and 29 male depressed patients in a naturalistic setting. BDNF was assessed before medication and subsequently after two, four and six weeks of antidepressant treatment. Additionally, in fifteen patients, N-acetylaspartate (NAA was measured in the anterior cingulate cortex (ACC with magnetic resonance spectroscopy (MRS. Over a time course of six weeks BDNF and NAA were also examined in a group of 41 healthy controls. Results: We found significant lower serum BDNF concentrations in depressed patients compared to the sample of healthy volunteers before and after medication. BDNF and clinical symptoms decreased significantly in the patients over the time course of antidepressant treatment. Serum BDNF levels at baseline predicted the symptom outcome after eight weeks. Specifically, responders and remitters had lower serum BDNF at baseline than the nonresponders and nonremitters. NAA was slightly decreased but not significantly lower in depressed patients when compared with healthy controls. During treatment period, NAA showed a tendency to increase. Limitations: A relative high drop-out rate and possibly, a suboptimal observation period for BDNF. Conclusion: Our data confirm serum BDNF as a biomarker of depression with a possible role in response prediction. However, our findings argue against serum BDNF increase being a prerequisite to depressive symptom reduction.

  8. Parental brain-derived neurotrophic factor genotype, child prosociality, and their interaction as predictors of parents' warmth.

    Science.gov (United States)

    Avinun, Reut; Knafo-Noam, Ariel

    2017-05-01

    Parental warmth has been associated with various child behaviors, from effortful control to callous-unemotional traits. Factors that have been shown to affect parental warmth include heritability and child behavior. However, there is limited knowledge about which specific genes are involved, how they interact with child behavior, how they affect differential parenting, and how they affect fathers. We examined what affects paternal and maternal warmth by focusing on the child's prosocial behavior and parents' genotype, specifically a Valine to Methionine substitution at codon 66 in the brain-derived neurotrophic factor (BDNF) gene. Data was available from a sample of 6.5 year-old twins, consisting of 369 mothers and 663 children and 255 fathers and 458 children. Self-reports were used to assess mothers' and fathers' warmth. Child prosociality was assessed with the other-parent report and experimental assessments. Mothers' warmth was not affected by their BDNF genotype, neither as a main effect nor in an interaction with child prosociality. Fathers with the Met allele scored higher on warmth. Additionally, there was a significant interaction between fathers' BDNF genotype and child prosociality. For fathers with the Met allele there was a positive association between warmth and child prosociality. Conversely, for fathers with the Val/Val genotype there was no association between warmth and child prosociality. Results were repeated longitudinally in a subsample with data on age 8-9 years. A direct within family analysis showed that fathers with the Met allele were more likely than Val/Val carriers to exhibit differential parenting toward twins who differed in their prosocial behavior. The same pattern of findings was found with mother-rated and experimentally assessed prosociality. These results shed light on the genetic and environmental underpinnings of paternal behavior and differential parenting.

  9. Brain-derived neurotrophic factor Val66Met polymorphism and cognitive function in persons with cardiovascular disease.

    Science.gov (United States)

    Szabo, Ashley J; Alosco, Michael L; Miller, Lindsay A; McGeary, John E; Poppas, Athena; Cohen, Ronald A; Gunstad, John

    2013-12-01

    Cognitive impairment is common among persons with cardiovascular disease (CVD), and several potential aetiological mechanisms have been described, including contributions of genetic markers such as variations in the brain-derived neurotrophic (BDNF) gene. This current study examined the associations of BDNF genotype with cognitive function among individuals with CVD. This study included 110 participants with CVD who completed a comprehensive neuropsychological battery that assessed global cognitive function, attention/executive function, memory, language, and visuospatial abilities. All participants also underwent blood draw to provide a DNA sample that was used to determine BDNF genotype. Carriers of either one or two copies of the methionine allele of BDNF were categorized into one group (n = 33); non-carriers were categorized into a second group (n = 77). After adjustment for demographic and medical characteristics, hierarchical regression analyses revealed persons with one or more methionine alleles displayed better performance than valine/valine individuals for attention/executive function (β = 0.22, P = 0.047) and memory (β = 0.25, P = 0.03), as well as a trend for language (β = 0.19, P = 0.08) and visuospatial abilities (β = 0.21, P = 0.06). BDNF Val66Met had little impact on cognitive functioning in a sample of older adults with CVD, and significant findings contradicted that predicted by past work. Future work is much needed to clarify the mechanisms of these findings, particularly studies examining both circulating BDNF levels and genetic variation in the BDNF gene and cognitive function over time. © 2013 The Authors. Psychogeriatrics © 2013 Japanese Psychogeriatric Society.

  10. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    Science.gov (United States)

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Abstract Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  11. Relationship between Levels of Brain-Derived Neurotrophic Factor and Metabolic Parameters in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Banu Boyuk

    2014-01-01

    Full Text Available Background and Aim. Studies have suggested that brain-derived neurotrophic factor (BDNF plays a role in glucose and lipid metabolism and inflammation. The aim of this study was to evaluate the relationship between serum BDNF levels and various metabolic parameters and inflammatory markers in patients with type 2 diabetes mellitus (T2DM. Materials and Methods. The study included 88 T2DM patients and 33 healthy controls. Fasting blood samples were obtained from the patients and the control group. The serum levels of BDNF were measured with an ELISA kit. The current paper introduces a receiver-operating characteristic (ROC generalization curve to identify cut-off for the BDNF values in type 2 diabetes patients. Results. The serum levels of BDNF were significantly higher in T2DM patients than in the healthy controls (206.81 ± 107.32 pg/mL versus 130.84 ± 59.81 pg/mL; P<0.001. They showed a positive correlation with the homeostasis model assessment of insulin resistance (HOMA-IR (r=0.28; P<0.05, the triglyceride level (r=0.265; P<0.05, and white blood cell (WBC count (r=0.35; P<0.001. In logistic regression analysis, age (P<0.05, body mass index (BMI (P<0.05, C-reactive protein (CRP (P<0.05, and BDNF (P<0.01 were independently associated with T2DM. In ROC curve analysis, BDNF cut-off was 137. Conclusion. The serum BDNF level was higher in patients with T2DM. The BDNF had a cut-off value of 137. The findings suggest that BDNF may contribute to glucose and lipid metabolism and inflammation.

  12. The effect of exercise training modality on serum brain derived neurotrophic factor levels in individuals with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Damon L Swift

    Full Text Available Brain derived neurotrophic factor (BDNF has been implicated in memory, learning, and neurodegenerative diseases. However, the relationship of BDNF with cardiometabolic risk factors is unclear, and the effect of exercise training on BDNF has not been previously explored in individuals with type 2 diabetes.Men and women (N = 150 with type 2 diabetes were randomized to an aerobic exercise (aerobic, resistance exercise (resistance, or a combination of both (combination for 9 months. Serum BDNF levels were evaluated at baseline and follow-up from archived blood samples.Baseline serum BDNF was not associated with fitness, body composition, anthropometry, glucose control, or strength measures (all, p>0.05. Similarly, no significant change in serum BDNF levels was observed following exercise training in the aerobic (-1649.4 pg/ml, CI: -4768.9 to 1470.2, resistance (-2351.2 pg/ml, CI:-5290.7 to 588.3, or combination groups (-827.4 pg/ml, CI: -3533.3 to 1878.5 compared to the control group (-2320.0 pg/ml, CI: -5750.8 to 1110.8. However, reductions in waist circumference were directly associated with changes in serum BDNF following training (r = 0.25, p = 0.005.Serum BDNF was not associated with fitness, body composition, anthropometry, glucose control, or strength measures at baseline. Likewise, serum BDNF measures were not altered by 9 months of aerobic, resistance, or combination training. However, reductions in waist circumference were associated with decreased serum BDNF levels. Future studies should investigate the relevance of BDNF with measures of cognitive function specifically in individuals with type-2 diabetes.

  13. Brain derived Neurotropic Factor (BDNF) is associated with childhood abuse but not cognitive domains in first episode psychosis.

    Science.gov (United States)

    Theleritis, Christos; Fisher, Helen L; Shäfer, Ingo; Winters, Laura; Stahl, Daniel; Morgan, Craig; Dazzan, Paola; Breedvelt, Josefien; Sambath, Irene; Vitoratou, Silia; Russo, Manuela; Reichenberg, Abraham; Falcone, M Aurora; Mondelli, Valeria; O'Connor, Jennifer; David, Anthony; McGuire, Philip; Pariante, Carmine; Di Forti, Marta; Murray, Robin M; Bonaccorso, Stefania

    2014-10-01

    The Brain-derived Neurotrophic Factor (BDNF) modulates cognitive processes and is associated with increased risk of schizophrenia. Childhood trauma (CT) is frequent in patients with psychosis and severely affects course and outcome. We investigated the hypothesis that BDNF is associated with both CT and cognitive deficits in a sample of first-episode psychosis (FEP) cases and unaffected controls. Participants with FEP and healthy controls were recruited between August 2008 and July 2011 from South London, UK. Childhood traumatic events were detected using the Childhood Experience of Care and Abuse Questionnaire (CECA-Q). Neuropsychological data were also collected. BDNF plasma levels were measured from fasting blood samples. Data were available on 87 FEP patients and 152 controls. Our results showed a significant effect of separation (F=5.5; df=1,115; p=.02), physical (F=4.7; df=1, 118; p=.03) and sexual abuse (F=5.4; df=1,117; p=.02) on BDNF levels with lower levels among those who experienced the traumatic event compared to those who did not. Physical abuse predicted lower plasma levels of BDNF (β=-.30; p=.03) whereas sexual and/or physical abuse showed a trend (β=-.26; p=.06) in FEP patients but not in unaffected controls. No association between BDNF plasma levels and cognitive functions was found among patients with FEP and controls. Our findings suggest the possible involvement of BDNF in the onset of first-episode psychosis in individuals exposed to early trauma and propose BDNF as a potential clinical biomarker to detect the detrimental effects of CT on human brain plasticity. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  14. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men

    Directory of Open Access Journals (Sweden)

    A. Zembron-Lacny

    2016-01-01

    Full Text Available Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF and its relationship to oxidative damage and conventional cardiovascular disease (CVD biomarkers, such as atherogenic index, C-reactive protein (hsCRP and oxidized LDL (oxLDL, in active and inactive men. Seventeen elderly males (61-80 years and 17 young males (20-24 years participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001. In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL, hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men.

  15. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed...

  16. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.

    Science.gov (United States)

    Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T

    1997-10-10

    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.

  17. Conditioned taste aversion and Ca/calmodulin-dependent kinase II in the parabrachial nucleus of rats

    Czech Academy of Sciences Publication Activity Database

    Křivánek, Jiří

    2001-01-01

    Roč. 76, č. 1 (2001), s. 46-56 ISSN 1074-7427 R&D Projects: GA AV ČR IAA7011706 Institutional research plan: CEZ:AV0Z5011922 Keywords : calcium/calmodulin-dependent kinase II * conditioned taste aversion * parabrachial nucleus of rat Subject RIV: FH - Neurology Impact factor: 1.830, year: 2001

  18. The Adsorption of Calmoduline via Nicotinamide Immobilized Poly(HEMA-GMA Cryogels

    Directory of Open Access Journals (Sweden)

    Kadir Erol

    2016-12-01

    Full Text Available The separation and purification methods for the isolation of an important biomolecule calmoduline protein is extremely important. Among these methods, the adsorption technique is extremely popular, and the cryogels as adsorbents with the macro porous structure and interconnected flow channels cryogel they have are preferred in this field. In this study, the adsorption of calmoduline via Ca(II immobilized poly (2-hydroxyethyl methacrylate-glycidyl methacrylate, poly (HEMA-GMA, cryogels through changing interaction time, calmoduline initial concentration and temperature conditions. For the characterization of cryogels, the swelling test, Fourier Transform Infrared (FT-IR Spectroscopy, Scanning Electron Microscopy (SEM, surface area (BET, elemental analysis and ICP-OES methods were performed. Nicotinamide molecule was used as Ca (II chelating agent and the adsorption capacity of the cryogels was estimated as 1.812 mg calmoduline / g cryogel. The adsorption models of the adsorption reaction were examined by the Langmuir and Freundlich isotherm models and was determined to be more appropriate for Langmuir isotherm model.

  19. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions

    Science.gov (United States)

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G.; Módos, Károly; Kardos, József; Liliom, Károly

    2010-01-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic, and spectroscopic approaches using purified bovine calmodulin and bovine cerebral microsomal fraction to arrive at our conclusions. Here we present 1) a 1.6-Å resolution crystal structure of their complex, in which the sphingolipid occupies the conventional hydrophobic binding site on calmodulin; 2) a peculiar stoichiometry-dependent binding process: at low or high protein-to-lipid ratio calmodulin binds lipid micelles or a few lipid molecules in a compact globular conformation, respectively, and 3) evidence that the sphingolipid displaces calmodulin from its targets on cerebral microsomes. We have ascertained the specificity of the interaction using structurally related lipids as controls. Our observations reveal the structural basis of selective calmodulin inhibition by the sphingolipid. On the basis of the crystallographic and biophysical characterization of the calmodulin–sphingosylphosphorylcholine interaction, we propose a novel lipid-protein binding model, which might be applicable to other interactions as well.—Kovacs, E., Harmat, V., Tóth, J., Vértessy, B. G., Módos, K., Kardos, J., Liliom, K. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions. PMID:20522785

  20. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II.

    Directory of Open Access Journals (Sweden)

    Shirley Pepke

    2010-02-01

    Full Text Available During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,including Ca2+/calmodulin-dependent protein kinase II (CaMKII, are regulated by calmodulin, a small protein that can bindup to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic

  1. The relationship of Chlamydophila pneumoniae with schizophrenia: The role of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in this relationship

    OpenAIRE

    Kalayci, Fatma; Ozdemir, Armagan; Saribas, Suat; Yuksel, Pelin; Ergin, Sevgi; Mert Kuskucu, Ali; Aksoy Poyraz, Cana; Balcioglu, Ibrahim; Alpay, Nihat; Kurt, Aykut; Sezgin, Zeynep; Tufan Kocak, Banu; Sucu Icel, Rana; Can, Gunay; Bahar Tokman, Hrisi

    2017-01-01

    Several pathogens have been suspected of playing a role in the pathogenesis of schizophrenia. Chronic inflammation has been proposed to occur as a result of persistent infection caused by Chlamydophila pneumoniae cells that reside in brain endothelial cells for many years. It was recently hypothesized that brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) may play prominent roles in the development of schizophrenia. NT-3 and BDNF levels have been suggested to change in respon...

  2. Plasma brain-derived neurotrophic factor and reverse dipping pattern of nocturnal blood pressure in patients with cardiovascular risk factors.

    Directory of Open Access Journals (Sweden)

    Manabu Kadoya

    Full Text Available Basic studies have shown that brain-derived neurotrophic factor (BDNF has critical roles in the survival, growth, maintenance, and death of central and peripheral neurons, while it is also involved in regulation of the autonomic nervous system. Furthermore, recent clinical studies have suggested potential role of plasma BDNF in the circulatory system.We investigated the mutual relationships among plasma BDNF, patterns of nocturnal blood pressure changes (dippers, non-dippers, extra-dippers, and reverse-dippers, and cardiac autonomic function as determined by heart rate variability (HRV.This was a cross-sectional study of patients registered in the Hyogo Sleep Cardio-Autonomic Atherosclerosis (HSCAA Study from October 2010 to November 2012.Two-hundred fifty patients with 1 or more cardiovascular risk factor(s (obesity, smoking, presence of cardiovascular event history, hypertension, dyslipidemia, diabetes mellitus, chronic kidney disease were enrolled.Plasma BDNF levels (natural logarithm transformed were significantly (p = 0.001 lower in reverse-dipper patients (7.18±0.69 pg/ml, mean ± SD, n = 36 as compared to dippers (7.86±0.86 pg/ml, n = 100. Multiple logistic regression analysis showed that BDNF (odds ratios: 0.417, 95% confidence interval: 0.228-0.762, P = 0.004 was the sole factor significantly and independently associated with the reverse-dippers as compared with dippers. Furthermore, plasma BDNF level was significantly and positively correlated with the time-domain (SDNN, SDANN5, CVRR and frequency-domain (LF of HRV parameters. Finally, multiple logistic regression analyses showed that the relationship between plasma BDNF and the reverse-dippers was weakened, yet remained significant or borderline significant even after adjusting for HRV parameters.Low plasma BDNF was independently associated with patients showing a reverse-dipper pattern of nocturnal blood pressure, in which an imbalance of cardiac autonomic function

  3. Expression of Brain-Derived Neurotrophic Factor (BDNF Increases the Resistance of Neurons to Death in the Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    I. V. Ostrova

    2015-01-01

    Full Text Available A search for substances that are able to protect brain cells from the damaging effect of hypoxia remains one of the most relevant issues in modern neurobiology and medicine. Whether neurotrophic factors, brain-derived neurotrophic factor (BDNF protein in particular, can be used to treat neurological diseases is the subject of wide speculation in the literature now. However, how the expression of this protein in the brain neurons changes after systemic circulatory arrest in the postresuscitation period remains uncertain.Objective: to estimate the level of BDNF expression in the highly ischemia-sensitive neuronal population of cerebellar Purkinje cells and the value of BDNF in the resistance of neurons to ischemia-reperfusion.Materials and methods. In mature outbred male albino rats (n=11, the heart was stopped under ether anesthesia at 12 minutes via intrathoracic ligation of the vascular fascicle, followed by revivification. A control group included pseudo-operated animals (n=11. On days 7 after revivification, a morphometric analysis of Nissl-stained paraffin sections 5—6 μm thick was used to determine the total number of Purkinje cells per 1 mm of their layer length. The expression of BDNF protein in the Purkinje cells was immunohistochemically examined by an indirect peroxidase-antiperoxidase test using primary polyclonal antibodies against BDNF. The count of Purkinje cells with different immune responses to BDNF protein was calculated. The intensity of BDNF expression was estimated from the mean optical density. Results. 12-minute systemic circulatory arrest in the rats resulted in a 12.5% reduction in the number of Purkinje cells. The immunohistochemical examination revealed a lower numbers of BDNF– neurons in the resuscitated rats. In this case, the count of BDNF+ and BDNF++ neurons corresponded to their reference level. Consequently, only BDNF-negative neurons, i.e. those that failed to express BDNF protein, died. Analysis of the

  4. Glucose concentrations modulate brain-derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus.

    Science.gov (United States)

    McIsaac, W; Ferguson, A V

    2017-04-01

    The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L -1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABA a antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L -1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L -1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABA A independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central

  5. A Preliminary Report on Brain-Derived Extracellular Vesicle as Novel Blood Biomarkers for Sport-Related Concussions

    Directory of Open Access Journals (Sweden)

    Keisuke Kawata

    2018-04-01

    Full Text Available The purpose of the study was to test the utility of unique panel of blood biomarkers as a means to reflect one’s recovery process after sport-related neurotrauma. We established a panel of biomarkers that reacted positive with CD81 (extracellular vesicle marker and various neuron- and glia-specific antigens [e.g., neurofilament light polypeptide (NF-L, tau, synaptosome-associated protein 25 (SNAP25, glial fibrillary acidic protein, and myelin basic protein]. We first evaluated test–retest reliabilities of brain-derived exosome markers, followed by an application of these markers in eight professional ice hockey players to detect cumulative neuronal burden from a single ice hockey season. During the season, two players were diagnosed with concussions by team physician based on an exhibition of symptoms as well as abnormality in balance and ocular motor testing. One player reached symptom-free status 7 days after the concussion, while the other player required 36 days for symptoms to completely resolve. Blood samples and clinical assessments including balance error scoring system and near point of convergence throughout recovery process were obtained. Biomarkers indicative of axonal damage, neuronal inflammation, and glial activation showed excellent test–retest reliabilities (intraclass correlation coefficient: 0.713–0.998, p’s < 0.01. There was a statistically significant increase in the NF-L marker at post-season follow-up compared to pre-season baseline (Z = −2.100, P = 0.036; however the statistical significance did not withstand Bonferroni correction for multiple comparisons. In concussion cases, neuronal and microglia markers notably increased after concussions, with the unique expression patterns being similar to that of concussion recovery process. These longitudinal data coupled with excellent test–retest reliabilities of novel array of blood biomarkers potentially reflect the damage in neural cell

  6. S100B protein, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in human milk.

    Directory of Open Access Journals (Sweden)

    Ruisong Li

    Full Text Available Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF, and glial cell line-derived neurotrophic factor (GDNF in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored.To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030<0.05. In addition, there was a significant correlation between the levels of S100B protein and BDNF (z = 2.09, P = 0.037<0.05. Delivery modes were negatively associated with the concentration of GDNF in human milk.S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding.

  7. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  8. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure

    Directory of Open Access Journals (Sweden)

    Hayashi Nobuhiro

    2008-02-01

    Full Text Available Abstract Background The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. Results The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC in different temperatures, and Kd was observed to be in the low μM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Conclusion Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure

  9. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    Science.gov (United States)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  10. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.

    Directory of Open Access Journals (Sweden)

    John P Cavaretta

    Full Text Available KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is impaired by mutations in KCNQ2 carboxy-terminal tail that cause benign familial neonatal convulsion and myokymia, suggesting that their correct surface distribution and density at the axon is crucial for control of neuronal excitability. However, the molecular mechanisms responsible for regulating enrichment of KCNQ channels at the neuronal axon remain elusive. Here, we show that enrichment of KCNQ channels at the axonal surface of dissociated rat hippocampal cultured neurons is regulated by ubiquitous calcium sensor calmodulin. Using immunocytochemistry and the cluster of differentiation 4 (CD4 membrane protein as a trafficking reporter, we demonstrate that fusion of KCNQ2 carboxy-terminal tail is sufficient to target CD4 protein to the axonal surface whereas inhibition of calmodulin binding to KCNQ2 abolishes axonal surface expression of CD4 fusion proteins by retaining them in the endoplasmic reticulum. Disruption of calmodulin binding to KCNQ2 also impairs enrichment of heteromeric KCNQ2/KCNQ3 channels at the axonal surface by blocking their trafficking from the endoplasmic reticulum to the axon. Consistently, hippocampal neuronal excitability is dampened by transient expression of wild-type KCNQ2 but not mutant KCNQ2 deficient in calmodulin binding. Furthermore, coexpression of mutant calmodulin, which can interact with KCNQ2/KCNQ3 channels but not calcium, reduces but does not abolish their enrichment at the axonal surface, suggesting that apo calmodulin but not calcium-bound calmodulin is necessary for their preferential targeting to the axonal

  11. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: More evidence for oxidative stress in vitiligo

    International Nuclear Information System (INIS)

    Schallreuter, K.U.; Gibbons, N.C.J.; Zothner, C.; Abou Elloof, M.M.; Wood, J.M.

    2007-01-01

    Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10 -3 M H 2 O 2 . One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10 -3 M H 2 O 2 oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H 2 O 2 utilising 45 calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activities were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H 2 O 2 -mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo

  12. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin.

    Science.gov (United States)

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-10-03

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.

  13. Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: a double-blind, randomized, placebo-controlled trial.

    Science.gov (United States)

    Solati, Zahra; Jazayeri, Shima; Tehrani-Doost, Mehdi; Mahmoodianfard, Salma; Gohari, Mahmood Reza

    2015-05-01

    Previous studies have shown a positive effect of zinc as an adjunctive therapy on reducing depressive symptoms. However, to our knowledge, no study has examined the effect of zinc monotherapy on mood. The aim of the present study was to determine the effects of zinc monotherapy on depressive symptoms and serum brain-derived neurotrophic factor (BDNF) levels in overweight or obese subjects. Fifty overweight or obese subjects were randomly assigned into two groups and received either 30 mg zinc or placebo daily for 12 weeks. At baseline and post-intervention, depression severity was assessed using Beck depression inventory II (BDI II), and serum BDNF and zinc levels were determined by enzyme-linked immunosorbent assay and atomic absorption spectrophotometry, respectively. The trial was completed with 46 subjects. After a 12-week supplementation, serum zinc and BDNF levels increased significantly in the zinc-supplemented group compared with the placebo group. BDI scores declined in both the groups at the end of the study, but reduction in the zinc-supplemented group was significantly higher than the placebo group. More analysis revealed that following supplementation, BDI scores decreased in subgroup of subjects with depressive symptoms (BDI ≥ 10) (n = 30), but did not change in the subgroup of non-depressed subjects (BDI BDNF levels and depression severity in all participants. Interestingly, a significant positive correlation was found between serum BDNF and zinc levels at baseline. Zinc monotherapy improves mood in overweight or obese subjects most likely through increasing BDNF levels.

  14. Early paternal deprivation alters levels of hippocampal brain-derived neurotrophic factor and glucocorticoid receptor and serum corticosterone and adrenocorticotropin in a sex-specific way in socially monogamous mandarin voles.

    Science.gov (United States)

    Wu, Ruiyong; Song, Zhenzhen; Wang, Siyang; Shui, Li; Tai, Fadao; Qiao, Xufeng; He, Fengqin

    2014-01-01

    In monogamous mammals, fathers play an important role in the development of the brain and typical behavior in offspring, but the exact nature of this process is not well understood. In particular, little research has addressed whether the presence or absence of paternal care alters levels of hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF), and basal levels of serum corticosterone (CORT) and adrenocorticotropin (ACTH). Here, we explored this concept using socially monogamous mandarin voles (Microtus mandarinus), a species in which fathers display high levels of paternal care toward their pups. Our immunohistochemical study shows that paternal deprivation (PD) significantly decreased levels of GR and BDNF protein in the CA1 and CA2/3 of the hippocampus. In the dental gyrus, decreases in GR and BDNF induced by PD were evident in females but not in males. Additionally, enzyme-linked immunosorbent assay results show that PD significantly upregulated levels of serum CORT and ACTH in females, but not males. These findings demonstrate that PD alters HPA axis activity in a sex-specific way. The changes in stress hormones documented here may be associated with alteration in hippocampal BDNF and GR levels. © 2014 S. Karger AG, Basel.

  15. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    Science.gov (United States)

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  16. DNA repair in human cells: Methods for the determination of calmodulin involvement

    International Nuclear Information System (INIS)

    Charp, P.A.

    1987-01-01

    Exposure of DNA to either physical or chemical agents can result in the formation of a number of different lesions which must be repaired enzymatically in order for DNA to carry on normal replication and transcription. In most cases, the enzymes involved in this repair of damaged DNA include endonucleases, exonucleases, glycosylases, polymerases, and ligases. Each group of enzymes is involved in precise steps in DNA repair. Exposure to physical agents such as ultraviolet light (UV) at a wavelength of 254 nm is repaired by two distinct and different mechanisms. One mode of enzymatic repair of pyrimidine dimers is accomplished in situ by photoreactivation of UV-induced pyrimidine dimers by photoreactivating light. The second mode of enzymatic repair is the excision repair of pyrimidine dimers involving several different enzymes including endonuclease, exonuclease, and DNA ligase. A summary of the sequence of enzymatic steps involved is shown. It has been observed that specific drugs which bind to and alter the action of calmodulin in cells block DNA synthesis. This suggests that calmodulin may play a role both in normal DNA replication and repair. Others using an indirect method measuring the degree of DNA nucleoid sedimentation, showed that the specific anti-calmodulin agent W-13 slowed the rate of DNA repair. Others showed that DNA synthesis in T51B rat liver cells could be blocked with the addition of either chlorpromazine or trifluoperazine

  17. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  18. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    Science.gov (United States)

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  19. Supplementation with eicosapentaenoic omega-3 fatty acid does not influence serum brain-derived neurotrophic factor in diabetes mellitus patients with major depression

    DEFF Research Database (Denmark)

    Bot, Mariska; Pouwer, Francois; Assies, Johanna

    2011-01-01

    BACKGROUND: Low brain-derived neurotrophic factor (BDNF) levels are observed in both depressed and diabetes patients. Animal research has shown that omega-3 polyunsaturated fatty acids increase BDNF levels. In this exploratory randomized double-blind placebo-controlled study in diabetes patients...... with major depression, we tested whether (a) omega- 3 ethyl-eicosapentaenoic acid (E-EPA) leads to increased serum BDNF levels and (b) whether changes in BDNF levels are associated with corresponding changes in depression. METHODS: Patients received 1 g/day E-EPA (n = 13) or placebo (n = 12) for 12 weeks...

  20. Selective cognitive deficits and reduced hippocampal brain-derived neurotrophic factor mRNA expression in small-conductance calcium-activated K+ channel deficient mice

    DEFF Research Database (Denmark)

    Jacobsen, J P R; Redrobe, J P; Hansen, H H

    2009-01-01

    performed equally well in passive avoidance, object recognition and the Morris water maze. Thus, some aspects of working/short-term memory are disrupted in T/T mice. Using in situ hybridization, we further found the cognitive deficits in T/T mice to be paralleled by reduced brain-derived neurotrophic factor...... the brain following doxycycline treatment. We tested T/T and wild type (WT) littermate mice in five distinct learning and memory paradigms. In Y-maze spontaneous alternations and five-trial inhibitory avoidance the performance of T/T mice was markedly inferior to WT mice. In contrast, T/T and WT mice...

  1. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone.

    Science.gov (United States)

    Motamedi, Shima; Karimi, Isaac; Jafari, Fariba

    2017-06-01

    The brain-derived neurotrophic factor (BDNF) is involved in metabolic syndrome (MetS) and neurodegenerative diseases (NDD) like Alzheimer's disease, Huntington's disease, Parkinson's disease and depression. If one factor plays an essential role in the pathogenesis of two diseases, it can be concluded that there might be a common root in these two diseases, as well. This review was aimed to highlight the crucial roles of BDNF in the pathogenesis of MetS and NDD and to introduce sole prophylactic or therapeutic applications, BDNF gene therapy and BDFN administration, in controlling MetS and NDD.

  2. Catechol-O-Methyltransferase (COMT) Gene (Val158Met) and Brain-Derived Neurotropic Factor (BDNF) (Val66Met) Genes Polymorphism in Schizophrenia: A Case-Control Study

    OpenAIRE

    Saravani, Ramin; Galavi, Hamid Reza; Lotfian Sargazi, Marzieh

    2017-01-01

    Objective: Several studies have shown that some polymorphisms of genes encoding catechol-O-methyltransferase (COMT), the key enzyme in degrading dopamine, and norepinephrine and the human brain-derived neurotropic factor (BDNF), a nerve growth factor, are strong candidates for risk of schizophrenia (SCZ). In the present study, we aimed at examining the effects of COMT Val158Met (G>A) and BDNF Val66Met (G>A) polymorphisms on SCZ risk in a sample of Iranian population. Method: This case- contro...

  3. Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase

    International Nuclear Information System (INIS)

    Trewhella, J.; Blumenthal, D.K.; Rokop, S.E.; Seeger, P.A.

    1990-01-01

    Small-angle X-ray and neutron scattering have been used to study the solution structures of calmodulin complexed with synthetic peptides corresponding to residues 342-366 and 301-326, designated PhK5 and PhK13, respectively, in the regulatory domain of the catalytic subunit of skeletal muscle phosphorylase kinase. The scattering data show that binding of PhK5 to calmodulin induces a dramatic contraction of calmodulin, similar to that previously observed when calmodulin is complexed with the calmodulin-binding domain peptide from rabbit skeletal muscle myosin light chain kinase. In contrast, calmodulin remains extended upon binding PhK13. In the presence of both peptides, calmodulin also remains extended. Apparently, the presence of PhK13 inhibits calmodulin from undergoing the PhK5-induced contraction. These data indicate that there is a fundamentally different type of calmodulin-target enzyme interaction in the case of the catalytic subunit of phosphorylase kinase compared with that for myosin light chain kinase

  4. The positive cognitive impact of aerobic fitness is associated with peripheral inflammatory and brain-derived neurotrophic biomarkers in young adults.

    Science.gov (United States)

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2017-10-01

    There is ample evidence for supporting the positive impact of aerobic fitness on cognitive function, but little is known about the physiological mechanisms. The objective of this study was to investigate whether the positive cognitive impact of aerobic fitness is associated with inflammatory and neurotrophic peripheral biomarkers in young adults aged 18 to 29years (n=87). For the objective assessment of aerobic fitness, we measured maximal oxygen uptake (VO 2 max) as a parametric measure of cardiorespiratory capacity. We demonstrated that young adults with the higher levels of VO 2 max performed better on computerized cognitive tasks assessing sustained attention and working memory. This positive VO 2 max-cognitive performance association existed independently of confounders (e.g., years of education, intelligence scores) but was significantly dependent on resting peripheral blood levels of inflammatory (C-reactive protein, CRP) and neurotrophic (brain-derived neurotrophic factor, BDNF) biomarkers. Statistical models showed that CRP was a mediator of the effect of VO 2 max on working memory. Further, BDNF was a moderator of the effect of VO 2 max on working memory. These mediating and moderating effects occurred in individuals with higher levels of aerobic fitness. The results suggest that higher aerobic fitness, as measured by VO 2 max, is associated with enhanced cognitive functioning and favorable resting peripheral levels of inflammatory and brain-derived neurotrophic biomarkers in young adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of Six-Week Ginkgo biloba Supplementation on Aerobic Performance, Blood Pro/Antioxidant Balance, and Serum Brain-Derived Neurotrophic Factor in Physically Active Men

    Directory of Open Access Journals (Sweden)

    Ewa Sadowska-Krępa

    2017-07-01

    Full Text Available Extracts of Ginkgo biloba leaves, a natural source of flavonoids and polyphenolic compounds, are commonly used as therapeutic agents for the improvement of both cognitive and physiological performance. The present study was aimed to test the effects of a six-week supplementation with 160 mg/day of a standardized extract of Ginkgo biloba or a matching placebo on aerobic performance, blood antioxidant capacity, and brain-derived neurotrophic factor (BDNF level in healthy, physically active young men, randomly allocated to two groups (n = 9 each. At baseline, as well as on the day following the treatment, the participants performed an incremental cycling test for the assessment of maximal oxygen uptake. Venous blood samples taken at rest, then immediately post-test and following 1 h of recovery, were analyzed for activities of antioxidant enzymes and plasma concentrations of non-enzymatic antioxidants, total phenolics, uric acid, lipid peroxidation products, ferric reducing ability of plasma (FRAP, and serum brain-derived neurotrophic factor (BDNF. Our results show that six weeks’ supplementation with Ginkgo biloba extract in physically active young men may provide some marginal improvements in their endurance performance expressed as VO2max and blood antioxidant capacity, as evidenced by specific biomarkers, and elicit somewhat better neuroprotection through increased exercise-induced production of BDNF.

  6. Plasma level of brain-derived neurotrophic factor and the related analysis in depressive patients with suicide attempt

    Institute of Scientific and Technical Information of China (English)

    操军

    2014-01-01

    Objective To explore the association between brainderived neurotrophic factor(BDNF)and suicidal behavior through analyzing and detecting the alteration of plasma BDNF level in depressive patients with suicide attempt.Methods Using enzyme-linked immunosorbent analysis(ELISA)to test the plasma level of BDNF in 27suicidal depressed patients,33 non-suicidal depressed patients and 30 normal controls.Meanwhile,the Hamilton Depression Scale(HAMD)and Beck

  7. W342F Mutation in CCaMK Enhances Its Affinity to Calmodulin But Compromises Its Role in Supporting Root Nodule Symbiosis in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Edgard Jauregui

    2017-11-01

    Full Text Available The calcium/calmodulin-dependent protein kinase (CCaMK is regulated by free Ca2+ and Ca2+-loaded calmodulin. This dual binding is believed to be involved in its regulation and associated physiological functions, although direct experimental evidence for this is lacking. Here we document that site-directed mutations in the calmodulin-binding domain of CCaMK alters its binding capacity to calmodulin, providing an effective approach to study how calmodulin regulates CCaMK in terms of kinase activity and regulation of rhizobial symbiosis in Medicago truncatula. We observed that mutating the tryptophan at position 342 to phenylalanine (W342F markedly increased the calmodulin-binding capability of the mutant. The mutant CCaMK underwent autophosphorylation and catalyzed substrate phosphorylation in the absence of calcium and calmodulin. When the mutant W342F was expressed in ccamk-1 roots, the transgenic roots exhibited an altered nodulation phenotype. These results indicate that altering the calmodulin-binding domain of CCaMK could generate a constitutively activated kinase with a negative role in the physiological function of CCaMK.

  8. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent

    NARCIS (Netherlands)

    Takanari, Hiroki; Bourgonje, Vincent J A; Fontes, Magda S C; Raaijmakers, Antonia J A; Driessen, Helen; Jansen, John A.; Van Der Nagel, Roel; Kok, Bart; Van Stuijvenberg, Leonie; Boulaksil, Mohamed; Takemoto, Yoshio; Yamazaki, Masatoshi; Tsuji, Yukiomi; Honjo, Haruo; Kamiya, Kaichiro; Kodama, Itsuo; Anderson, Mark E.; Van Der Heyden, Marcel A G; Van Rijen, Harold V M; van Veen, AAB; Vos, Marc A.

    2016-01-01

    Aim In healthy hearts, ventricular gap junctions are mainly composed by connexin43 (Cx43) and localize in the intercalated disc, enabling appropriate electrical coupling. In diseased hearts, Cx43 is heterogeneously down-regulated, whereas activity of calmodulin/calcium-calmodulin protein kinase II

  9. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent

    NARCIS (Netherlands)

    Takanari, H.; Bourgonje, V.J.; Fontes, M.S.; Raaijmakers, A.J.; Driessen, H.; Jansen, JA; Nagel, R. van der; Kok, B; Stuijvenberg, L. van; Boulaksil, M.; Takemoto, Y.; Yamazaki, M.; Tsuji, Y.; Honjo, H.; Kamiya, K.; Kodama, I.; Anderson, M.E.; Heyden, M.A. van der; Rijen, H.V. van; Veen, T.A. van; Vos, M.A.

    2016-01-01

    AIM: In healthy hearts, ventricular gap junctions are mainly composed by connexin43 (Cx43) and localize in the intercalated disc, enabling appropriate electrical coupling. In diseased hearts, Cx43 is heterogeneously down-regulated, whereas activity of calmodulin/calcium-calmodulin protein kinase II

  10. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase.

    Science.gov (United States)

    Polya, G M; Chandra, S; Condron, R

    1993-02-01

    A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.

  11. MIPS: a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock.

    Science.gov (United States)

    Zhang, Xuan; Zhou, Huiyue; Zang, Xiaonan; Gong, Le; Sun, Hengyi; Zhang, Xuecheng

    2014-08-01

    To study the Ca(2+)/Calmodulin (CaM) signal transduction pathway of Gracilaria lemaneiformis under heat stress, myo-inositol-1-phosphate synthase (MIPS), a calmodulin-binding protein, was isolated using the yeast two-hybrid system. cDNA and DNA sequences of mips were cloned from G. lemaneiformis by using 5'RACE and genome walking procedures. The MIPS DNA sequence was 2,067 nucleotides long, containing an open reading frame (ORF) of 1,623 nucleotides with no intron. The mips ORF was predicted to encode 540 amino acids, which included the conserved MIPS domain and was 61-67 % similar to that of other species. After analyzing the amino acid sequence of MIPS, the CaM-Binding Domain (CaMBD) was inferred to be at a site spanning from amino acid 212 to amino acid 236. The yeast two-hybrid results proved that MIPS can interact with CaM and that MIPS is a type of calmodulin-binding protein. Next, the expression of CaM and MIPS in wild-type G. lemaneiformis and a heat-tolerant G. lemaneiformis cultivar, "981," were analyzed using real-time PCR under a heat shock of 32 °C. The expression level displayed a cyclical upward trend. Compared with wild type, the CaM expression levels of cultivar 981 were higher, which might directly relate to its resistance to high temperatures. This paper indicates that MIPS and CaM may play important roles in the high-temperature resistance of G. lemaneiformis.

  12. Catalase activity is modulated by calcium and calmodulin in detached mature leaves of sweet potato.

    Science.gov (United States)

    Afiyanti, Mufidah; Chen, Hsien-Jung

    2014-01-15

    Catalase (CAT) functions as one of the key enzymes in the scavenging of reactive oxygen species and affects the H2O2 homeostasis in plants. In sweet potato, a major catalase isoform was detected, and total catalase activity showed the highest level in mature leaves (L3) compared to immature (L1) and completely yellow, senescent leaves (L5). The major catalase isoform as well as total enzymatic activity were strongly suppressed by ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). This inhibition could be specifically and significantly mitigated in mature L3 leaves by exogenous CaCl2, but not MgCl2 or CoCl2. EGTA also inhibited the activity of the catalase isoform in vitro. Furthermore, chlorpromazine (CPZ), a calmodulin (CAM) inhibitor, drastically suppressed the major catalase isoform as well as total enzymatic activity, and this suppression was alleviated by exogenous sweet potato calmodulin (SPCAM) fusion protein in L3 leaves. CPZ also inhibited the activity of the catalase isoform in vitro. Protein blot hybridization showed that both anti-catalase SPCAT1 and anti-calmodulin SPCAM antibodies detect a band at the same position, which corresponds to the activity of the major catalase isoform from unboiled, but not boiled crude protein extract of L3 leaves. An inverse correlation between the major catalase isoform/total enzymatic activity and the H2O2 level was also observed. These data suggest that sweet potato CAT activity is modulated by CaCl2 and SPCAM, and plays an important role in H2O2 homeostasis in mature leaves. Association of SPCAM with the major CAT isoform is required and regulates the in-gel CAT activity band. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Catalytic properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin

    International Nuclear Information System (INIS)

    Ryu, S.H.; Lee, S.Y.; Lee, K.Y.; Rhee, S.G.

    1987-01-01

    Inositol 1,4,5-triphosphate (Ins-1,4,5-P 3 ) is an important second-messenger molecule that mobilizes Ca 2+ from intracellular stores in response to the occupancy of receptor by various Ca 2+ -mobilizing agonists. The fate of Ins-1,4,5-P 3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P 3 to Ins-1,3,4,5-P 4 , whereas the latter forms Ins-1,4-P 2 . Recent studies suggest that Ins-1,3,4,5-P 4 might modulate the entry of Ca 2+ from an extracellular source. In the current report, the authors describe the partial purification of the 3-kinase from the cytosolic fraction of bovine brain and studies of its catalytic properties. They found that the 3-kinase activity is significantly activated by the Ca 2+ /calmodulin complex. Therefore, they propose that Ca 2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P 3 forms a complex with calmodulin, and that the Ca 2+ /calmodulin complex stimulates the conversion of Ins-1,4,5-P 3 , and intracellular Ca 2+ mobilizer, to Ins-1,3,4,5-P 4 , an extracellular Ca 2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3- 32 P]Ins-1,3,4,5-P 4 and [γ- 32 P]ATP by thin-layer chromatography. Using this new assay method, they evaluated kinetic parameters (K/sub m/ for ATP = 40 μM, K/sub m/ for Ins-1,4,5-P 3 = 0.7 μM, K/sub i/ for ADP = 12 μM) and divalent cation specificity (Mg 2+ > > Mn 2+ > Ca 2+ ) for the 3-kinase

  14. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  15. CHARACTERIZATION OF TIGHTLY-ASSOCIATED SMOOTH MUSCLE MYOSIN-MYOSIN LIGHT CHAIN KINASE-CALMODULIN COMPLEXES*

    OpenAIRE

    Hong, Feng; Haldeman, Brian D.; John, Olivia A.; Brewer, Paul D.; Wu, Yi-Ying; Ni, Shaowei; Wilson, David P.; Walsh, Michael P.; Baker, Jonathan E.; Cremo, Christine R.

    2009-01-01

    A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by smooth muscle myosin light chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM (up-SMM) from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ~ 23–37% of that in gizzard tissue. Fifteen t...

  16. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein.

    Science.gov (United States)

    Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N

    2017-11-01

    Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    Science.gov (United States)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  18. A possible role for ghrelin, leptin, brain-derived neurotrophic factor and docosahexaenoic acid in reducing the quality of life of coeliac disease patients following a gluten-free diet.

    Science.gov (United States)

    Russo, Francesco; Chimienti, Guglielmina; Clemente, Caterina; Ferreri, Carla; Orlando, Antonella; Riezzo, Giuseppe

    2017-03-01

    A gluten-free diet (GFD) has been reported to negatively impact the quality of life (QoL) of coeliac disease (CD) patients. The gut-brain axis hormones ghrelin and leptin, with the brain-derived neurotrophic factor (BDNF), may affect QoL of CD patients undergoing GFD. Our aims were to evaluate whether: (a) the circulating concentrations of leptin, ghrelin and BDNF in CD patients were different from those in healthy subjects; (b) GFD might induce changes in their levels; (c) BDNF Val66Met polymorphism variability might affect BDNF levels; and (d) serum BDNF levels were related to dietary docosahexaenoic acid (DHA) as a neurotrophin modulator. Nineteen adult coeliac patients and 21 healthy controls were included. A QoL questionnaire was administered, and serum concentrations of ghrelin, leptin, BDNF and red blood cell membrane DHA levels were determined at the enrolment and after 1 year of GFD. BDNF Val66Met polymorphism was analysed. Results from the questionnaire indicated a decline in QoL after GFD. Ghrelin and leptin levels were not significantly different between groups. BDNF levels were significantly (p = 0.0213) lower in patients after GFD (22.0 ± 2.4 ng/ml) compared to controls (31.2 ± 2.2 ng/ml) and patients at diagnosis (25.0 ± 2.5 ng/ml). BDNF levels correlated with DHA levels (p = 0.008, r = 0.341) and the questionnaire total score (p = 0.041, r = 0.334). Ghrelin and leptin seem to not be associated with changes in QoL of patients undergoing dietetic treatment. In contrast, a link between BDNF reduction and the vulnerability of CD patients to psychological distress could be proposed, with DHA representing a possible intermediate.

  19. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system.

    Science.gov (United States)

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik; Hallén, Anna; Bäckhed, Fredrik; Jansson, John-Olov

    2013-10-01

    The gut microbiota contributes to fat mass and the susceptibility to obesity. However, the underlying mechanisms are not completely understood. To investigate whether the gut microbiota affects hypothalamic and brainstem body fat-regulating circuits, we compared gene expression of food intake-regulating neuropeptides between germ-free and conventionally raised (CONV-R) mice. We found that CONV-R mice had decreased expression of the antiobesity neuropeptide glucagon-like peptide-1 (GLP-1) precursor proglucagon (Gcg) in the brainstem. Moreover, in both the hypothalamus and the brainstem, CONV-R mice had decreased expression of the antiobesity neuropeptide brain-derived neurotrophic factor (Bdnf). CONV-R mice had reduced expression of the pro-obesity peptides neuropeptide-Y (Npy) and agouti-related protein (Agrp), and increased expression of the antiobesity peptides proopiomelanocortin (Pomc) and cocaine- and amphetamine-regulated transcript (Cart) in the hypothalamus. The latter changes in neuropeptide expression could be secondary to elevated fat mass in CONV-R mice. Leptin treatment caused less weight reduction and less suppression of orexigenic Npy and Agrp expression in CONV-R mice compared with germ-free mice. The hypothalamic expression of leptin resistance-associated suppressor of cytokine signaling 3 (Socs-3) was increased in CONV-R mice. In conclusion, the gut microbiota reduces the expression of 2 genes coding for body fat-suppressing neuropeptides, Gcg and Bdnf, an alteration that may contribute to fat mass induction by the gut microbiota. Moreover, the presence of body fat-inducing gut microbiota is associated with hypothalamic signs of Socs-3-mediated leptin resistance, which may be linked to failed compensatory body fat reduction.

  20. Impact of Rye Kernel-Based Evening Meal on Microbiota Composition of Young Healthy Lean Volunteers With an Emphasis on Their Hormonal and Appetite Regulations, and Blood Levels of Brain-Derived Neurotrophic Factor

    Directory of Open Access Journals (Sweden)

    Olena Prykhodko

    2018-05-01

    Full Text Available Rye kernel bread (RKB evening meals improve glucose tolerance, enhance appetite regulation and increase satiety in healthy volunteers. These beneficial effects on metabolic responses have been shown to be associated with increased gut fermentation. The present study aimed to elucidate if RKB evening meals may cause rapid alterations in microbiota composition that might be linked to metabolic-, immune-, and appetite- parameters. Gut-brain axis interaction was also studied by relating microbiota composition to amount of brain-derived neurotrophic factor (BDNF in blood plasma. Nineteen healthy volunteers, ten women and nine men aged 22–29 years, BMI < 25 (NCT02093481 participated in the study performed in a crossover design. Each person was assigned to either white wheat bread (WWB or RKB intake as a single evening meal or three consecutive evenings. Stool and blood samples as well as subjective appetite ratings were obtained the subsequent morning after each test occasion, resulting in four independent collections per participant (n = 76. DNA was extracted from the fecal samples and V4 hypervariable region of the bacterial 16S rRNA genes was sequenced using next generation sequencing technology. Higher abundance of Prevotella and Faecalibacterium with simultaneous reduction of Bacteroides spp. were observed after RKB meals compared to WWB. The associations between metabolic test variables and microbiota composition showed a positive correlation between Bacteroides and adiponectin levels, whereas only Prevotella genus was found to have positive association with plasma levels of BDNF. These novel findings in gut-brain interactions might be of importance, since decreased levels of BDNF, that plays an essential role in brain function, contribute to the pathogenesis of several major neurodisorders, including Alzheimer's. Thus, daily consumption of Faecalibacterium- and/or Prevotella-favoring meals should be investigated further for their potential to

  1. Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience.

    Science.gov (United States)

    Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji

    2016-12-01

    Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.

  2. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  3. Brain Derived Neurotrophic Factor (BDNF) levels as a possible predictor of psychopathology in healthy twins at high and low risk for affective disorder

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla; Kessing, Lars Vedel

    2014-01-01

    and low risk twins, respectively). Participants were followed up longitudinally with questionnaires at 6-month intervals for mean seven years and then reassessed with a personal interview to obtain information about whether they had developed psychiatric illness. At follow-up 36 participants (15.4%) had...... developed psychiatric disorder. Cox regression analysis revealed that BDNF levels at baseline were not associated with onset of illness in this explorative study. Further, two-way interactions between BDNF levels and the Val66Met polymorphism or between familial risk and the Val66Met polymorphism did......Brain Derived Neurotrophic Factor (BDNF) is a potential biomarker of affective disorder. However, longitudinal studies evaluating a potential predictive role of BDNF on subsequent psychopathology are lacking. The aim of this study was to investigate whether BDNF alone or in interaction...

  4. Brain-derived neurotrophic factor and interleukin-6 levels in the serum and cerebrospinal fluid of children with viral infection-induced encephalopathy.

    Science.gov (United States)

    Morichi, Shinichiro; Yamanaka, Gaku; Ishida, Yu; Oana, Shingo; Kashiwagi, Yasuyo; Kawashima, Hisashi

    2014-11-01

    We investigated changes in the brain-derived neurotrophic factor (BDNF) and interleukin (IL)-6 levels in pediatric patients with central nervous system (CNS) infections, particularly viral infection-induced encephalopathy. Over a 5-year study period, 24 children hospitalized with encephalopathy were grouped based on their acute encephalopathy type (the excitotoxicity, cytokine storm, and metabolic error types). Children without CNS infections served as controls. In serum and cerebrospinal fluid (CSF) samples, BDNF and IL-6 levels were increased in all encephalopathy groups, and significant increases were noted in the influenza-associated and cytokine storm encephalopathy groups. Children with sequelae showed higher BDNF and IL-6 levels than those without sequelae. In pediatric patients, changes in serum and CSF BDNF and IL-6 levels may serve as a prognostic index of CNS infections, particularly for the diagnosis of encephalopathy and differentiation of encephalopathy types.

  5. Regulation of Brain-Derived Neurotrophic Factor and Growth Factor Signaling Pathways by Tyrosine Phosphatase Shp2 in the Retina: A Brief Review

    Directory of Open Access Journals (Sweden)

    Mojdeh Abbasi

    2018-03-01

    Full Text Available SH2 domain-containing tyrosine phosphatase-2 (PTPN11 or Shp2 is a ubiquitously expressed protein that plays a key regulatory role in cell proliferation, differentiation and growth factor (GF signaling. This enzyme is well expressed in various retinal neurons and has emerged as an important player in regulating survival signaling networks in the neuronal tissues. The non-receptor phosphatase can translocate to lipid rafts in the membrane and has been implicated to regulate several signaling modules including PI3K/Akt, JAK-STAT and Mitogen Activated Protein Kinase (MAPK pathways in a wide range of biochemical processes in healthy and diseased states. This review focuses on the roles of Shp2 phosphatase in regulating brain-derived neurotrophic factor (BDNF neurotrophin signaling pathways and discusses its cross-talk with various GF and downstream signaling pathways in the retina.

  6. Effect of Mirtazapine Treatment on Serum Levels of Brain-Derived Neurotrophic Factor and Tumor Necrosis Factor-α in Patients of Major Depressive Disorder with Severe Depression.

    Science.gov (United States)

    Gupta, Rachna; Gupta, Keshav; Tripathi, A K; Bhatia, M S; Gupta, Lalit K

    2016-01-01

    This study evaluated the clinical efficacy of mirtazapine and its effect on serum brain-derived neurotrophic factor (BDNF) and tumor necrosis factor-α (TNF-α) levels in patients of major-depressive disorder (MDD) with severe depression. Patients (aged 18-60) with MDD diagnosed by DSM-IV criteria, and Hamilton Rating Scale for Depression (HAM-D) score ≥25 were included (n = 30). Mirtazapine was given in the doses of 30 mg/day. All patients were followed up for 12 weeks for the evaluation of clinical efficacy, safety along with serum BDNF and TNF-α levels. HAM-D score at the start of treatment was 30.1 ± 1.92, which significantly (p depressed patients and treatment response is associated with an increase in serum BDNF and a decrease in serum TNF-α levels. © 2016 S. Karger AG, Basel.

  7. Sex matters: females in proestrus show greater diazepam anxiolysis and brain-derived neurotrophin factor- and parvalbumin-positive neurons than males.

    Science.gov (United States)

    Ravenelle, Rebecca; Berman, Ariel K; La, Jeffrey; Mason, Briana; Asumadu, Evans; Yelleswarapu, Chandra; Donaldson, S Tiffany

    2018-04-01

    In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor

    International Nuclear Information System (INIS)

    Martin-Garcia, Julio; Cao, Wei; Varela-Rohena, Angel; Plassmeyer, Matthew L.; Gonzalez-Scarano, Francisco

    2006-01-01

    We previously described envelope glycoproteins of an HIV-1 isolate adapted in vitro for growth in microglia that acquired a highly fusogenic phenotype and lower CD4 dependence, as well as resistance to inhibition by anti-CD4 antibodies. Here, we investigated whether similar phenotypic changes are present in vivo. Envelope clones from the brain and spleen of an HIV-1-infected individual with neurological disease were amplified, cloned, and sequenced. Phylogenetic analysis demonstrated clustering of sequences according to the tissue of origin, as expected. Functional clones were then used in cell-to-cell fusion assays to test for CD4 and co-receptor utilization and for sensitivity to various antibodies and inhibitors. Both brain- and spleen-derived envelope clones mediated fusion in cells expressing both CD4 and CCR5 and brain envelopes also used CCR3 as co-receptor. We found that the brain envelopes had a lower CD4 dependence, since they efficiently mediated fusion in the presence of low levels of CD4 on the target cell membrane, and they were significantly more resistant to blocking by anti-CD4 antibodies than the spleen-derived envelopes. In contrast, we observed no difference in sensitivity to the CCR5 antagonist TAK-779. However, brain-derived envelopes were significantly more resistant than those from spleen to the fusion inhibitor T-1249 and concurrently showed slightly greater fusogenicity. Our results suggest an increased affinity for CD4 of brain-derived envelopes that may have originated from in vivo adaptation to replication in microglial cells. Interestingly, we note the presence of envelopes more resistant to a fusion inhibitor in the brain of an untreated, HIV-1-infected individual

  9. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Yaswen, P.; Smoll, A.; Stampfer, M.R.; Peehl, D.M.; Trask, D.K.; Sager, R.

    1990-01-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[α]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type β increased its relative abundance. The protein encoded by NB-1 may have Ca 2 plus binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined

  10. Resveratrol increases nitric oxide production in the rat thick ascending limb via Ca2+/calmodulin.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Cabral, Pablo D; Garvin, Jeffrey L

    2014-01-01

    The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent deacetylase sirtuin1 (SIRT1) activities, all of which could activate NO production. We hypothesized that resveratrol stimulates NO production by thick ascending limbs via a Ca2+/calmodulin-dependent mechanism. To test this, the effect of resveratrol on NO bioavailability was measured in thick ascending limb suspensions. Cai was measured in single perfused thick ascending limbs. SIRT1 activity and expression were measured in thick ascending limb lysates. Resveratrol (100 µM) increased NO bioavailability in thick ascending limb suspensions by 1.3±0.2 AFU/mg/min (pthick ascending limbs via a Ca2+/calmodulin dependent mechanism, and SIRT1 and AMPK do not participate. Resveratrol-stimulated NO production in thick ascending limbs may account for part of its beneficial effects.

  11. Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.

    Science.gov (United States)

    Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2018-06-04

    Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.

  12. Distinct Calcium Signaling Pathways Regulate Calmodulin Gene Expression in Tobacco1

    Science.gov (United States)

    van der Luit, Arnold H.; Olivari, Claudio; Haley, Ann; Knight, Marc R.; Trewavas, Anthony J.

    1999-01-01

    Cold shock and wind stimuli initiate Ca2+ transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca2+ pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca2+ transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca2+ signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca2+ dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca2+ signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm. PMID:10557218

  13. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion

    2006-01-01

    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d...

  14. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating

    DEFF Research Database (Denmark)

    Kristensen, Anders Skov; Jenkins, Meagan A; Banke, Tue G

    2011-01-01

    The function, trafficking and synaptic signaling of AMPA receptors are tightly regulated by phosphorylation. Ca(2+)/calmodulin-dependent kinase II (CaMKII) phosphorylates the GluA1 AMPA receptor subunit at Ser831 to increase single-channel conductance. We show that CaMKII increases the conductanc...

  15. Changes in calmodulin concentration and cyclic 3',5'-nucleotide phosphodiesterase activity in skeletal muscle of hyper- and hypothyroid rats.

    Science.gov (United States)

    Mano, T; Iwase, K; Yoshimochi, I; Sawai, Y; Oda, N; Nishida, Y; Mokuno, T; Kotake, M; Nakai, A; Hayakawa, N

    1995-08-01

    Hyper- and hypothyroid states occasionally induce skeletal muscle dysfunction i.e. periodic paralysis and thyroid myopathy. The etiology of these diseases remains unclear, but several findings suggest that the catecholamine-beta-receptor-cAMP system or other messenger systems are disturbed in these diseases. In this context, we evaluated changes in the cyclic 3',5'-nucleotide metabolic enzyme, cyclic 3',5'-nucleotide phosphodiesterase (PDE) and calmodulin concentrations in skeletal muscles of hyper- and hypothyroid rats. Activities of cyclic AMP-PDE were low in skeletal muscle both from hyper- and hypothyroid rats, and calmodulin concentration was high in hyperthyroid and low in hypothyroid rats, as compared with normal rats. DE-52 column chromatographic analysis showed that the cGMP hydrolytic activity in peak I and the cAMP hydrolytic activity in peak II were decreased in hypothyroid rats, whereas cAMP hydrolytic activity in peak III was unchanged. The cAMP hydrolytic activity in peak III was decreased in hyperthyroid rats, but the activities in peaks I and II were unchanged. These findings indicate that cAMP and calmodulin may have some role in skeletal muscle function in the hyperthyroid state, and that cAMP and calmodulin-dependent metabolism may be suppressed in the hypothyroid state.

  16. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members.

    Science.gov (United States)

    Heinen, R C; Diniz-Mendes, L; Silva, J T; Paschoalin, V M F

    2006-11-01

    Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  17. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members

    Directory of Open Access Journals (Sweden)

    R.C. Heinen

    2006-11-01

    Full Text Available Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  18. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn.

    Science.gov (United States)

    Grau, James W; Huang, Yung-Jen

    2018-04-07

    Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl - is down-regulated. This causes the intracellular concentration of Cl - to increase, reducing (and potentially reversing) the inward flow of Cl - through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The

  19. Proteomic Analysis of Calcium- and Phosphorylation-dependentCalmodulin Complexes in Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Deok-Jin; Wang, Daojing

    2006-05-26

    Protein conformational changes due to cofactor binding (e.g. metal ions, heme) and/or posttranslational modifications (e.g. phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium (Ca{sup 2+}) signaling and homeostasis. No systematic approach on the identification of phosphorylation-dependent Ca{sup 2+}/CaM binding proteins has been published. Herein, we report a proteome-wide study of phosphorylation-dependent CaM binding proteins from mammalian cells. This method, termed 'Dynamic Phosphoprotein Complex Trapping', 'DPPC Trapping' for short, utilizes a combination of in vivo and in vitro assays. The basic strategy is to drastically shift the equilibrium towards endogenous phosphorylation of Ser, Thr, and Tyr at the global scale by inhibiting corresponding phosphatases in vivo. The phosphorylation-dependent calmodulin-binding proteins are then trapped in vitro in a Ca{sup 2+}-dependent manner by CaM-Sepharose chromatography. Finally, the isolated calmodulin-binding proteins are separated by SDS-PAGE and identified by LC/MS/MS. In parallel, the phosphorylation-dependent binding is visualized by silver staining and/or Western blotting. Using this method, we selectively identified over 120 CaM-associated proteins including many previously uncharacterized. We verified ubiquitin-protein ligase EDD1, inositol 1, 4, 5-triphosphate receptor type 1 (IP{sub 3}R1), and ATP-dependent RNA helicase DEAD box protein 3 (DDX3), as phosphorylation-dependent CaM binding proteins. To demonstrate the utilities of our method in understanding biological pathways, we showed that pSer/Thr of IP{sub 3}R1 in vivo by staurosporine-sensitive kinase(s), but not by PKA/PKG/PKC, significantly reduced the affinity of its Ca{sup 2+}-dependent CaM binding. However, pSer/Thr of IP{sub 3}R1 did not substantially affect its Ca{sup 2+}-independent CaM binding. We further showed that phosphatase PP1, but not PP2A or PP2B

  20. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairmen...

  1. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    Directory of Open Access Journals (Sweden)

    Liu S

    2018-04-01

    Full Text Available Su Liu,1,2,* Jun-Li Yao,1,3,* Xin-Xin Wan,1,* Zhi-Jing Song,1 Shuai Miao,1,2 Ye Zhao,1,2 Xiu-Li Wang,1,2 Yue-Peng Liu4 1Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China; 2Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; 3Department of Anesthesiology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu, China; 4Center of Clinical Research and Translational Medicine, Lianyungang Oriental Hospital, Lianyungang, Jiangsu, China *These authors contributed equally to this work Purpose: Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh signaling in opioid-induced hyperalgesia and tolerance. Methods: Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF inhibitor K252 and anti-BDNF antibody were used. Results: Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh

  2. Brain-derived neurotrophic factor and autism: maternal and infant peripheral blood levels in the Early Markers for Autism (EMA) Study

    Science.gov (United States)

    Croen, Lisa A.; Goines, Paula; Braunschweig, Daniel; Yolken, Robert; Yoshida, Cathleen K.; Grether, Judith K.; Fireman, Bruce; Kharrazi, Martin; Hansen, Robin; Van de Water, Judy

    2008-01-01

    LAY ABSTRACT The diagnosis of autism is based solely on behavioral characteristics. There is currently no laboratory test that can be done to identify autism. In this study, we investigated a molecule called brain derived neurotrophic factor (BDNF) as a possible early biologic marker for autism. BDNF is a small protein found throughout the central nervous system and in circulating blood. We measured the level of BDNF in blood collected from women during pregnancy and from their babies at birth. We found that the concentration of BDNF in the maternal mid-pregnancy and newborn blood specimens was similar for children with autism, children with mental retardation, and children with typical development. The results of this study suggest that BDNF is unlikely to be a useful early biologic marker for autism. SCIENTIFIC ABSTRACT Objective To investigate levels of brain-derived neurotrophic factor (BDNF) in mid-pregnancy and neonatal blood specimens as early biologic markers for autism. Methods We conducted a population-based case-control study nested within the cohort of infants born from July 2000 – September 2001 to women who participated in the prenatal screening program in Orange County, California. Cases (n=84) were all children receiving services for autism at the Regional Center of Orange County. Two comparison groups from the same study population were included: children with mental retardation or developmental delay (n=49) receiving services at the same regional center, and children not receiving services for developmental disabilities, randomly sampled from the California birth certificate files (n=159), and frequency-matched to autism cases on sex, birth year, and birth month. BDNF concentrations were measured in archived mid-pregnancy and neonatal blood specimens drawn during routine prenatal and newborn screening using a highly sensitive bead-based assay (Luminex). Results The concentration of BDNF in maternal mid-pregnancy and neonatal specimens was

  3. Detection of calmodulin binding protein at 170 KDA in BALB, AKR, DON and chicken granulosa cells

    International Nuclear Information System (INIS)

    Selinfreund, R.; Lin, P.H.; Marrone, B.; Wharton, W.

    1987-01-01

    Calmodulin (CAM) has been shown to bind to the epidermal growth factor (EGF) receptor (170 kDa) and is phosphorylated in a EGF dependent manner in the A431 human epidermoid carcinoma cells. In the present study, they report 125 I-CAM binding to a 170 kDa protein detected in cell membrane vesicles of Balb/3T3, AKR, DON and chicken granulosa cells. Purified plasma membranes from these cells were resolved via electrophoresis (without heat denaturation) and electroblotted onto nictrocellulose paper. Upon hybridizing against 125 I-CAM, a distinct autoradiographic band occurred at 170 kDa for all the cells lines under study. The binding of CAM is specific and can be displaced with the addition of excess unlabeled CAM. The result suggest that 125 I-CAM may bind to the 170 kDa EGF receptor in BALB, AKR, DON and chicken granulosa cells

  4. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  5. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

    2010-08-06

    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  6. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    International Nuclear Information System (INIS)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe; Ranty, Benoit

    2010-01-01

    Research highlights: → The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein → The interaction is confirmed in plant cell nuclei → The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  7. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  8. Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF)

    Science.gov (United States)

    Kailainathan, Sumangali; Piers, Thomas M.; Yi, Jee Hyun; Choi, Seongmin; Fahey, Mark S.; Borger, Eva; Gunn-Moore, Frank J.; O’Neill, Laurie; Lever, Michael; Whitcomb, Daniel J.; Cho, Kwangwook; Allen, Shelley J.

    2016-01-01

    This study describes a fundamental functional difference between the two main polymorphisms of the pro-form of brain-derived neurotrophic factor (proBDNF), providing an explanation as to why these forms have such different age-related neurological outcomes. Healthy young carriers of the Met66 form (present in ∼30% Caucasians) have reduced hippocampal volume and impaired hippocampal-dependent memory function, yet the same polymorphic population shows enhanced cognitive recovery after traumatic brain injury, delayed cognitive dysfunction during aging, and lower risk of late-onset Alzheimer’s disease (AD) compared to those with the more common Val66 polymorphism. To examine the differences between the protein polymorphisms in structure, kinetics of binding to proBDNF receptors and in vitro function, we generated purified cleavage-resistant human variants. Intriguingly, we found no statistical differences in those characteristics. As anticipated, exogenous application of proBDNF Val66 to rat hippocampal slices dysregulated synaptic plasticity, inhibiting long-term potentiation (LTP) and facilitating long-term depression (LTD). We subsequently observed that this occurred via the glycogen synthase kinase 3β (GSK3β) activation pathway. However, surprisingly, we found that Met66 had no such effects on either LTP or LTD. These novel findings suggest that, unlike Val66, the Met66 variant does not facilitate synapse weakening signaling, perhaps accounting for its protective effects with aging. PMID:26687096

  9. Investigating the Interactive Effects of Sex Steroid Hormones and Brain-Derived Neurotrophic Factor during Adolescence on Hippocampal NMDA Receptor Expression

    Directory of Open Access Journals (Sweden)

    Cushla R. McCarthny

    2018-01-01

    Full Text Available Sex steroid hormones have neuroprotective properties which may be mediated by brain-derived neurotrophic factor (BDNF. This study sought to determine the interactive effects of preadolescent hormone manipulation and BDNF heterozygosity (+/− on hippocampal NMDA-R expression. Wild-type and BDNF+/− mice were gonadectomised, and females received either 17β-estradiol or progesterone treatment, while males received either testosterone or dihydrotestosterone (DHT treatment. Dorsal (DHP and ventral hippocampus (VHP were dissected, and protein expression of GluN1, GluN2A, GluN2B, and PSD-95 was assessed by Western blot analysis. Significant genotype × OVX interactions were found for GluN1 and GluN2 expression within the DHP of female mice, suggesting modulation of select NMDA-R levels by female sex hormones is mediated by BDNF. Furthermore, within the DHP BDNF+/− mice show a hypersensitive response to hormone treatment on GluN2 expression which may result from upstream alterations in TrkB phosphorylation. In contrast to the DHP, the VHP showed no effects of hormone manipulation but significant effects of genotype on NMDA-R expression. Castration had no effect on NMDA-R expression; however, androgen treatment had selective effects on GluN2B. These data show case distinct, interactive roles for sex steroid hormones and BDNF in the regulation of NMDA-R expression that are dependent on dorsal versus ventral hippocampal region.

  10. Apoptosis Signal-Regulating Kinase 1 Is Involved in Brain-Derived Neurotrophic Factor (BDNF)-Enhanced Cell Motility and Matrix Metalloproteinase 1 Expression in Human Chondrosarcoma Cells

    Science.gov (United States)

    Lin, Chih-Yang; Chang, Sunny Li-Yun; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23892595

  11. rs10767664 Gene Variant in Brain-Derived Neurotrophic Factor Is Associated with Diabetes Mellitus Type 2 in Caucasian Females with Obesity.

    Science.gov (United States)

    de Luis, Daniel Antonio; Aller, Rocío; Izaola, Olatz; Primo, David; Romero, Enrique

    2017-01-01

    The role of brain-derived neurotrophic factor (BDNF) variants on diabetes prevalence, basal adipokine levels, body weight, and cardiovascular risk factors remains unclear in obese patients. This study is aimed at analyzing the effects of rs10767664 BDNF gene polymorphism on diabetes mellitus prevalence, body weight, cardiovascular risk factors, and serum adipokine levels in obese female patients. A total of 507 obese women were enrolled in a prospective way. Biochemical evaluation and anthropometric measures were recorded. The frequency of diabetes mellitus in the group of patients with non-T allele was 20.1 and 28.3% in T-allele carriers. Logistic regression showed a risk of diabetes mellitus of 1.33 (95% CI 1.17-2.08) in subjects with T allele adjusted by age and body mass index (BMI). T-allele carriers with diabetes mellitus have a higher weight, BMI, waist circumference, blood pressure, glucose, homeostasis model assessment insulin resistance (HOMA-IR), insulin, and C-reactive protein (CRP) levels than non-T-allele carriers. rs10767664 polymorphism of BDNF gene is associated with prevalence of diabetes mellitus in obese female patients. T-allele carriers with diabetes mellitus have a higher weight, fat mass, blood pressure, level of insulin, glucose, HOMA-IR, and CRP than non-T-allele carriers. © 2017 S. Karger AG, Basel.

  12. Brain-derived neurotrophic factor (BDNF) serum basal levels is not affected by power training in mobility-limited older adults - A randomized controlled trial

    DEFF Research Database (Denmark)

    Hvid, Lars G; Nielsen, Martin KF; Simonsen, Casper

    2017-01-01

    high extent, it may be particularly effective in terms of eliciting increases in systemic BDNF levels. We examined the effects of 12 weeks of power training on mature BDNF (mBDNF) and total BDNF (tBDNF) in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We......Brain-derived neurotrophic factor (BDNF) is a potential important factor involved in neuroplasticity, and may be a mediator for eliciting adaptations in neuromuscular function and physical function in older individuals following physical training. As power training taxes the neural system to a very...... included 47 older men and women: n = 22 in the training group (TG: progressive high intensity power training, 2 sessions per week; age 82.7 ± 5.4 years, 55% women) and n = 25 in the control group (CG: no interventions; age 82.2 ± 4.5 years, 76% women). Following overnight fasting, basal serum levels of m...

  13. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology

    Directory of Open Access Journals (Sweden)

    Heather Bowling

    2016-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF plays an important role in neurodevelopment, synaptic plasticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuits in vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the majority of studies on synaptic plasticity, learning and memory were performed in acute brain slices or in vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these findings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  14. Lower brain-derived neurotrophic factor levels associated with worsening fatigue in prostate cancer patients during repeated stress from radiation therapy.

    Science.gov (United States)

    Saligan, L N; Lukkahatai, N; Holder, G; Walitt, B; Machado-Vieira, R

    2016-12-01

    Fatigue during cancer treatment is associated with depression. Neurotrophic factors play a major role in depression and stress and might provide insight into mechanisms of fatigue. This study investigated the association between plasma concentrations of three neurotrophic factors (BDNF, brain-derived neurotrophic factor; GDNF, glial-derived neurotrophic factor; and SNAPIN, soluble N-ethylmaleimide sensitive fusion attachment receptor-associated protein) and initial fatigue intensification during external beam radiation therapy (EBRT) in euthymic non-metastatic prostate cancer men. Fatigue, as measured by the 13-item Functional Assessment of Cancer Therapy-Fatigue (FACT-F), and plasma neurotrophic factors were collected at baseline (prior to EBRT) and mid-EBRT. Subjects were categorized into fatigue and no fatigue groups using a > 3-point change in FACT-F scores between the two time points. Multiple linear regressions analysed the associations between fatigue and neurotrophic factors. FACT-F scores of 47 subjects decreased from baseline (43.95 ± 1.3) to mid-EBRT (38.36 ± 1.5, P fatigue. SNAPIN levels were associated with fatigue scores (r s = 0.43, P = 0.005) at baseline. A significant decrease of BDNF concentration (P = 0.008) was found in fatigued subjects during EBRT (n = 39). Baseline SNAPIN and decreasing BDNF levels may influence worsening fatigue during EBRT. Further investigations are warranted to confirm their role in the pathophysiology and therapeutics of fatigue.

  15. Circulating brain-derived neurotrophic factor and indices of metabolic and cardiovascular health: data from the Baltimore Longitudinal Study of Aging.

    Directory of Open Access Journals (Sweden)

    Erin Golden

    2010-04-01

    Full Text Available Besides its well-established role in nerve cell survival and adaptive plasticity, brain-derived neurotrophic factor (BDNF is also involved in energy homeostasis and cardiovascular regulation. Although BDNF is present in the systemic circulation, it is unknown whether plasma BDNF correlates with circulating markers of dysregulated metabolism and an adverse cardiovascular profile.To determine whether circulating BDNF correlates with indices of metabolic and cardiovascular health, we measured plasma BDNF levels in 496 middle-age and elderly subjects (mean age approximately 70, in the Baltimore Longitudinal Study of Aging. Linear regression analysis revealed that plasma BDNF is associated with risk factors for cardiovascular disease and metabolic syndrome, regardless of age. In females, BDNF was positively correlated with BMI, fat mass, diastolic blood pressure, total cholesterol, and LDL-cholesterol, and inversely correlated with folate. In males, BDNF was positively correlated with diastolic blood pressure, triglycerides, free thiiodo-thyronine (FT3, and bioavailable testosterone, and inversely correlated with sex-hormone binding globulin, and adiponectin.Plasma BDNF significantly correlates with multiple risk factors for metabolic syndrome and cardiovascular dysfunction. Whether BDNF contributes to the pathogenesis of these disorders or functions in adaptive responses to cellular stress (as occurs in the brain remains to be determined.

  16. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients.

    Science.gov (United States)

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-02-02

    BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.

  17. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids.

    Science.gov (United States)

    Abdel-Maksoud, Sahar M; Hassanein, Sally I; Gohar, Neveen A; Attia, Saad M M; Gad, Mohamed Z

    2017-10-01

    The aim of this study was investigating the effect of omega-3 fatty acids (ω-3 FAs) on brain-derived neurotrophic factor (BDNF) gene expression, using in vivo and in vitro models, to unravel the potential mechanisms of polyunsaturated fatty acids use in obesity. Twenty-nine Sprague-Dawley rats were divided into three groups; lean controls fed normal chow diet for 14 weeks, obese controls fed 60% of their diet as saturated fats for 14 weeks, and ω-3 FAs-treated rats fed 60% saturated fat diet for 14 weeks with concomitant oral administration of 400 mg/kg/day ω-3 FAs, mainly docosahexaenoic acid and EPA, from week 12 to week 14. For the in vitro experiment, hypothalamic cells from six obese rats were cultured in the presence of different concentrations of ω-3 FAs to determine its direct effect on BDNF expression. In vivo results showed that obesity has negative effect on BDNF gene expression in rat hypothalamus that was reversed by administration of ω-3 FAs. Obese rats showed hypercholesterolemia, hypertriglyceridemia, normoinsulinemia, hyperglycemia and hyperleptinemia. Treatment with ω-3 FAs showed significant decrease in serum total cholesterol and TAG. Also serum glucose level and HOMA index were decreased significantly. In vitro results demonstrated the increase in BDNF expression by ω-3 FAs in a dose-dependent manner. Obesity causes down-regulation of BDNF gene expression that can be reversed by ω-3 FAs treatment, making them an interesting treatment approach for obesity and metabolic disease.

  18. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    Science.gov (United States)

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  19. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    Science.gov (United States)

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Serum Brain-Derived Neurotrophic Factor is Related to Platelet Reactivity but not to Genetic Polymorphisms within BDNF Encoding Gene in Patients with Type 2 Diabetes.

    Science.gov (United States)

    Eyileten, Ceren; Zaremba, Małgorzata; Janicki, Piotr K; Rosiak, Marek; Cudna, Agnieszka; Kapłon-Cieślicka, Agnieszka; Opolski, Grzegorz; Filipiak, Krzysztof J; Kosior, Dariusz A; Mirowska-Guzel, Dagmara; Postula, Marek

    2016-01-07

    The aim of this study was to investigate the association between serum concentrations of the brain-derived neurotrophic factor (BDNF), platelet reactivity and inflammatory markers, as well as its association with BDNF encoding gene variants in type 2 diabetic patients (T2DM) during acetylsalicylic acid (ASA) therapy. This retrospective, open-label study enrolled 91 patients. Serum BDNF, genotype variants, hematological, biochemical, and inflammatory markers were measured. Blood samples were taken in the morning 2-3 h after the last ASA dose. The BDNF genotypes for selected variants were analyzed by use of the iPLEX Sequenom assay. In multivariate linear regression analysis, CADP-CT >74 sec (pBDNF. In multivariate logistic regression analysis, CADP-CT >74 sec (p=0.02) and IL-6 concentration (p=0.03) were risk factors for serum BDNF above the median. Non-significant differences were observed between intronic SNP rs925946, missense SNP rs6265, and intronic SNP rs4923463 allelic groups and BDNF concentrations in the investigated cohort. Chronic inflammatory condition and enhanced immune system are associated with the production of BDNF, which may be why the serum BDNF level in T2DM patients with high platelet reactivity was higher compared to subjects with normal platelet reactivity in this study.

  1. Long-term lithium treatment increases intracellular and extracellular brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons at subtherapeutic concentrations.

    Science.gov (United States)

    De-Paula, Vanessa J; Gattaz, Wagner F; Forlenza, Orestes V

    2016-12-01

    The putative neuroprotective effects of lithium treatment rely on the fact that it modulates several homeostatic mechanisms involved in the neurotrophic response, autophagy, oxidative stress, inflammation, and mitochondrial function. Lithium is a well-established therapeutic option for the acute and long-term management of bipolar disorder and major depression. The aim of this study was to evaluate the effects of subtherapeutic and therapeutic concentrations of chronic lithium treatment on brain-derived neurotrophic factor (BDNF) synthesis and secretion. Primary cultures of cortical and hippocampal neurons were treated with different subtherapeutic (0.02 and 0.2 mM) and therapeutic (2 mM) concentrations of chronic lithium treatment in cortical and hippocampal cell culture. Lithium treatment increased the intracellular protein expression of cortical neurons (10% at 0.02 mM) and hippocampal neurons (28% and 14% at 0.02 mM and 0.2 mM, respectively). Extracellular BDNF of cortical neurons increased 30% and 428% at 0.02 and 0.2 mM, respectively and in hippocampal neurons increased 44% at 0.02 mM. The present study indicates that chronic, low-dose lithium treatment up-regulates BDNF production in primary neuronal cell culture. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code".

    Science.gov (United States)

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico

    2014-10-03

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Effects of confinement on physiological and psychological responses and expression of interleukin 6 and brain derived neurotrophic factor mRNA in primiparous and multiparous weaning sows

    Directory of Open Access Journals (Sweden)

    Mingyue Zhang

    2017-09-01

    Full Text Available Objective The present study aimed to investigate whether the long-lasting, recurrent restricting of sows leads to the physiological and psychological reaction of discomfort. Methods Sows (Large White that had experienced restricting for about 0.5 or 3 years and age-matched sows kept in a group housing system (loose sows were compared. Pupillary light reflex parameters were measured at the weaning stage. Immediately after slaughter, blood samples were taken to measure serum cortisol levels, and the brain was dissected, gene expression in the hippocampus, frontal cortex and hypothalamus was analyzed. Results The serum cortisol levels were higher in the confined sows than in the loose sows. The full maturity, but not the young adolescent, confined sows had longer latency time in the onset of pupil constriction than their loose counterparts. Real-time polymerase chain reaction analyses revealed an increased expression of interleukin 6 mRNA in the hippocampus and decreased expression of brain derived neurotrophic factor mRNA in hippocampus and hypothalamus and to a lesser extent in the frontal cortex of the full maturity confined sows, compared with the full maturity loose sows. Conclusion Taken together, these data indicated that recurrent restricting stress in full maturity sows leads to the physiological and psychological reaction of discomfort.

  4. Effect of oleuropein on cognitive deficits and changes in hippocampal brain-derived neurotrophic factor and cytokine expression in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Lee, Bombi; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2018-01-01

    Post-traumatic stress disorder (PTSD) is a condition that develops after an individual has experienced a major trauma. This psychopathological response to traumatic stressors induces learning and memory deficits in rats. Oleuropein (OLE), a major compound in olive leaves, has been reported to possess several pharmacological properties, including anti-cancer, anti-diabetic, anti-atherosclerotic and neuroprotective activities. However, the cognitive effects of OLE and its mechanism of action have remained unclear in PTSD. In this study, we examined whether OLE improved spatial cognitive impairment induced in rats following single prolonged stress (SPS), an animal model of PTSD. Male rats were treated intraperitoneally (i.p.) with vehicle or various doses of OLE for 14 consecutive days after the SPS procedure. The SPS procedure resulted in cognitive impairment in the object recognition task and the Morris water maze test, which was reversed by OLE (100 mg/kg, i.p). Additionally, as assessed by immunohistochemistry and reverse transcription-polymerase chain reaction analysis, the administration of OLE significantly alleviated memory-associated decreases in the levels of brain-derived neurotrophic factor and cAMP response element-binding protein and mRNA in the hippocampus. Together, these findings suggest that OLE attenuated SPS-induced cognitive impairment significantly by inhibiting the expression of pro-inflammatory mediators in the rat brain. Thus, OLE reversed several behavioral impairments triggered by the traumatic stress of SPS and might be a potential useful therapeutic intervention for PTSD.

  5. Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function.

    Science.gov (United States)

    Nicholson, J R; Peter, J-C; Lecourt, A-C; Barde, Y-A; Hofbauer, K G

    2007-12-01

    In the present study, we aimed to investigate the neuromodulatory role played by hypothalamic brain-derived neurotrophic factor (BDNF) in the regulation of acute cardiovascular and feeding responses to melanocortin-4 receptor (MC4R) activation. In vitro, a selective MC4R agonist, MK1, stimulated BDNF release from isolated rat hypothalami and this effect was blocked by preincubation with the MC3/4R antagonist SHU-9119. In vivo, peripheral administration of MK1 decreased food intake in rats and this effect was blocked by pretreatment with an anti-BDNF antibody administered into the third ventricle. When anorexia was induced with the cannabinoid-1 receptor (CB1R) antagonist AM251, the anti-BDNF antibody did not prevent the reduction in food intake. Peripheral administration of MK1 also increased mean arterial pressure, heart rate and body temperature. These effects were prevented by pretreatment with the anti-BDNF antibody whereas the intracerebroventricular administration of BDNF caused changes similar to those of MK1. These findings demonstrate for the first time that activation of MC4R leads to an acute release of BDNF in the hypothalamus. This release is a prerequisite for MC4R-induced effects on appetite, body temperature and cardiovascular function. By contrast, CB1R antagonist-mediated anorexia is independent of the MC4R/BDNF pathway. Overall, these results show that BDNF is an important downstream mediator of the MC4R pathway.

  6. Association of Brain-Derived Neurotrophic Factor G196A and Attempted Suicide: A Case-Control Study in Rural China.

    Science.gov (United States)

    Wang, Jin-Yu; Wang, Xin-Ting; Wang, Lin-Lin; Jia, Cun-Xian

    2015-01-01

    Suicide is an important public problem, the mechanism of which has not been clarified. Many studies have focused on the molecular, biological and genetic mechanisms of suicide. Brain-derived neurotrophic factor (BDNF) G196A is one of the most leading loci in recent studies, but the results are inconsistent. We conducted a 1:1 age- and sex-matched case-control study in rural areas of Shandong Province, China. A total of 365 pairs of cases and controls were finally recruited into our study. The adjusted odds ratios (AORs) of BDNF 196G/G and their 95% confidence intervals (CIs) were calculated by multivariate conditional logistic regression models. No association between BDNF polymorphisms and attempted suicide was found in the overall population. However, the BDNF 196G/G genotype was significantly related to attempted suicide in the elderly population (AOR = 7.85, 95% CI: 1.12-54.90, p = 0.038), while the associations were not significant in young and middle-aged groups. Our study suggests that the BDNF 196G/G genotype increases the risk of attempted suicide in elderly people. © 2015 S. Karger AG, Basel.

  7. The brain-derived neurotrophic factor (BDNF val66met polymorphism differentially affects performance on subscales of the Wechsler memory scale – third edition (WMS-III

    Directory of Open Access Journals (Sweden)

    Yvette Nicole Lamb

    2015-08-01

    Full Text Available Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF gene and the catechol-O-methyltransferase (COMT gene influence brain structure and function, as well as cognitive abilities. They are most influential in the hippocampus and prefrontal cortex (PFC, respectively. Recall and recognition are forms of memory proposed to have different neural substrates, with recall having a greater dependence on the PFC and hippocampus. This study aimed to determine whether the BDNF val66met or COMT val158met polymorphisms differentially affect recall and recognition, and whether these polymorphisms interact. A sample of 100 healthy adults was assessed on recall and familiarity-based recognition using the Faces and Family Pictures subscales of the Wechsler Memory Scale – Third Edition (WMS-III. COMT genotype did not affect performance on either task. The BDNF polymorphism (i.e. met carriers relative to val homozygotes was associated with poorer recall ability, while not influencing recognition. Combining subscale scores in memory tests such as the WMS might obscure gene effects. Our results demonstrate the importance of distinguishing between recall and familiarity-based recognition in neurogenetics research.

  8. Expression of brain-derived neurotrophic factors, neurotrophin-3, and neurotrophin-4 in the nucleus accumbens during heroin dependency and withdrawal.

    Science.gov (United States)

    Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Wang, Yanlin; Liang, Wenmei

    2017-08-02

    Neurotrophins, brain-derived neurotrophic factors (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), have been implicated in the modulation of heroin dependency. This study was designed to explore the expression alterations of BDNF, NT-3, and NT-4 in the context of heroin dependence and withdrawal in the rat nucleus accumbens (NAc). Heroin dependence was induced by a progressive intraperitoneal treatment of heroin. The results showed that the expression levels of BDNF and NT-4 were significantly decreased in the NAc of rats with heroin addiction in comparison with the control group, whereas there was a significant increase in BDNF and NT-4 expressions in the groups of rats with both naloxone-induced and spontaneous withdrawal. Moreover, NT-3 expression was markedly increased in the NAc of rats with heroin addiction and spontaneous withdrawal in comparison with the control group, but decreased in the NAc of rats with naloxone-induced withdrawal. These results indicated that chronic administration of heroin results in the alterations of BDNF, NT-3, and NT-4 expressions in the rat NAc. BDNF, NT-3, and NT-4 may play a critical role in the development of heroin dependency and withdrawal.

  9. Interleukin 1-beta upregulates brain-derived neurotrophic factor, neurotrophin 3 and neuropilin 2 gene expression and NGF production in annulus cells.

    Science.gov (United States)

    Gruber, H E; Hoelscher, G L; Bethea, S; Hanley, E N

    2012-11-01

    The relationship between disc cells, nerves and pain production in the intervertebral disc is poorly understood. Neurotrophins, signaling molecules involved in the survival, differentiation and migration of neurons, and neurite outgrowth, are expressed in non-neuronal tissues including the disc. We hypothesized that three-dimensional exposure of human disc cells to the proinflammatory cytokine IL-1ß in vitro would elevate neurotrophin gene expression levels and production of nerve growth factor (NGF). Cells isolated from Thompson grade III and IV discs were cultured for 14 days under control conditions or with addition of 10(2) pM IL-1ß; mRNA was isolated and conditioned media assayed for NGF content. IL-1ß exposure in three-dimensional culture significantly increased expression of neurotrophin 3, brain-derived neurotrophic factor, and neuropilin 2 compared to controls. IL-1ß-exposed cells showed significantly increased NGF production compared to controls. Findings support our hypothesis, expand previous data concerning expression of neurotrophins, and provide the first documented expression of neurotrophin 3 and neuropilin 2. Our results have direct translational relevance, because they address the primary clinical issue of low back pain and open the possibility of novel analgesic therapies using specific small-molecular antagonists to neurotrophins.

  10. Brain-derived neurotrophic factor/neurotrophin 3 regulate axon initial segment location and affect neuronal excitability in cultured hippocampal neurons.

    Science.gov (United States)

    Guo, Yu; Su, Zi-Jun; Chen, Yi-Kun; Chai, Zhen

    2017-07-01

    Plasticity of the axon initial segment (AIS) has aroused great interest in recent years because it regulates action potential initiation and neuronal excitability. AIS plasticity manifests as modulation of ion channels or variation in AIS structure. However, the mechanisms underlying structural plasticity of the AIS are not well understood. Here, we combined immunofluorescence, patch-clamp recordings, and pharmacological methods in cultured hippocampal neurons to investigate the factors participating in AIS structural plasticity during development. With lowered neuronal density, the distance between the AIS and the soma increased, while neuronal excitability decreased, as shown by the increased action potential threshold and current threshold for firing an action potential. This variation in the location of the AIS was associated with cellular secretory substances, including brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3). Indeed, blocking BDNF and NT3 with TrkB-Fc eliminated the effect of conditioned medium collected from high-density cultures on AIS relocation. Elevating the extracellular concentration of BDNF or NT3 promoted movement of the AIS proximally to the soma and increased neuronal excitability. Furthermore, knockdown of neurotrophin receptors TrkB and TrkC caused distal movement of the AIS. Our results demonstrate that BDNF and NT3 regulate AIS location and neuronal excitability. These regulatory functions of neurotrophic factors provide insight into the molecular mechanisms underlying AIS biology. © 2017 International Society for Neurochemistry.

  11. Brain-Derived Neurotrophic Factor Elevates Activating Transcription Factor 4 (ATF4 in Neurons and Promotes ATF4-Dependent Induction of Sesn2

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2018-03-01

    Full Text Available Activating transcription factor 4 (ATF4 plays important physiologic roles in the brain including regulation of learning and memory as well as neuronal survival and death. Yet, outside of translational regulation by the eIF2α-dependent stress response pathway, there is little information about how its levels are controlled in neurons. Here, we show that brain-derived neurotrophic factor (BDNF promotes a rapid and sustained increase in neuronal ATF4 transcripts and protein levels. This increase is dependent on tropomyosin receptor kinase (TrkB signaling, but independent of levels of phosphorylated eIF2α. The elevation in ATF4 protein occurs both in nuclei and processes. Transcriptome analysis revealed that ATF4 mediates BDNF-promoted induction of Sesn2 which encodes Sestrin2, a protector against oxidative and genotoxic stresses and a mTor complex 1 inhibitor. In contrast, BDNF-elevated ATF4 did not affect expression of a number of other known ATF4 targets including several with pro-apoptotic activity. The capacity of BDNF to elevate neuronal ATF4 may thus represent a means to maintain this transcription factor at levels that provide neuroprotection and optimal brain function without risk of triggering neurodegeneration.

  12. Either brain-derived neurotrophic factor or neurotrophin-3 only neurotrophin-producing grafts promote locomotor recovery in untrained spinalized cats.

    Science.gov (United States)

    Ollivier-Lanvin, Karen; Fischer, Itzhak; Tom, Veronica; Houlé, John D; Lemay, Michel A

    2015-01-01

    Background. Transplants of cellular grafts expressing a combination of 2 neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote and enhance locomotor recovery in untrained spinalized cats. Based on the time course of recovery and the absence of axonal growth through the transplants, we hypothesized that recovery was due to neurotrophin-mediated plasticity within the existing locomotor circuitry of the lumbar cord. Since BDNF and NT-3 have different effects on axonal sprouting and synaptic connectivity/strengthening, it becomes important to ascertain the contribution of each individual neurotrophins to recovery. Objective. We studied whether BDNF or NT-3 only producing cellular grafts would be equally effective at restoring locomotion in untrained spinal cats. Methods. Rat fibroblasts secreting one of the 2 neurotrophins were grafted into the T12 spinal transection site of adult cats. Four cats in each group (BDNF alone or NT-3 alone) were evaluated. Locomotor recovery was tested on a treadmill at 3 and 5 weeks post-transection/grafting. Results. Animals in both groups were capable of plantar weight-bearing stepping at speed up to 0.8 m/s as early as 3 weeks and locomotor capabilities were similar at 3 and 5 weeks for both types of graft. Conclusions. Even without locomotor training, either BDNF or NT-3 only producing grafts promote locomotor recovery in complete spinal animals. More clinically applicable delivery methods need to be developed. © The Author(s) 2014.

  13. Serum brain-derived neurotrophic factor and glucocorticoid receptor levels in lymphocytes as markers of antidepressant response in major depressive patients: a pilot study.

    Science.gov (United States)

    Rojas, Paulina Soledad; Fritsch, Rosemarie; Rojas, Romina Andrea; Jara, Pablo; Fiedler, Jenny Lucy

    2011-09-30

    Depressive patients often have altered cortisol secretion, an effect that likely derives from impaired activity of the glucocorticoid receptor (GR), the main regulator of the hypothalamus-pituitary-adrenal (HPA) axis. Glucocorticoids reduce the levels of brain-derived neurotrophic factor (BDNF), a downstream target of antidepressants. Antidepressants promote the transcriptional activity of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a regulator of BDNF expression. To identify potential biomarkers for the onset of antidepressant action in depressive patients, GR and phospho-CREB (pCREB) levels in lymphocytes and serum BDNF levels were repeatedly measured during the course of antidepressant treatment. Thirty-four depressed outpatients (10 male and 24 female) were treated with venlafaxine (75mg/day), and individuals exhibiting a 50% reduction in their baseline 17-Item Hamilton Depression Rating Scale score by the 6th week of treatment were considered responders. Responders showed an early improvement in parallel with a rise in BDNF levels during the first two weeks of treatment. Non-responders showed increased GR levels by the third week and reduced serum BDNF by the sixth week of treatment. In contrast, venlafaxine did not affect levels of pCREB. We conclude that levels of BDNF in serum and GR levels in lymphocytes may represent biomarkers that could be used to predict responses to venlafaxine treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats.

    Science.gov (United States)

    Li, Ying; Ji, Yong-juan; Jiang, Hong; Liu, De-xiang; Zhang, Qian; Fan, Shu-jian; Pan, Fang

    2009-07-05

    Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Age and stress had different effects on the behavior of different aged animals (age: F = 6.173, P BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress in both age groups (P BDNF (F = 9.408, P BDNF expression compared to the young stressed group at every testing time point. Stress has age-dependent effects on behavioral responses and hippocampal BDNF expression in rats.

  15. Brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress.

    Science.gov (United States)

    Naert, Gaelle; Ixart, Guy; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2011-01-01

    Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Comparison of the influence of two models of mild stress on hippocampal brain-derived neurotrophin factor (BDNF) immunoreactivity in old age rats.

    Science.gov (United States)

    Badowska-Szalewska, Ewa; Ludkiewicz, Beata; Krawczyk, Rafał; Melka, Natalia; Moryś, Janusz

    2017-01-01

    The way hippocampal neurons function during stress in old age (critical times of life) is dependent on brain derived neurotrophin factor (BDNF). This study examined the influence of acute and chronic forced swim (FS) or high-light open field (HL‑OF) stimulation on the density of BDNF immunoreactive (ir) neurons in the hippocampal pyramidal layers of CA1, CA2, CA3 regions and the granular layer of dentate gyrus (DG) in old (postnatal day 720; P720) Wistar Han rats. Our data showed that in comparison with non-stressed rats, acute FS caused a significant increase in the density of BDNF-ir neurons in CA2 and CA3, while acute HL-OF led to an increase in this factor in all hippocampal subfields with the exception of DG. However, the density of BDNF-ir cells remained unchanged after exposure to chronic FS or HL‑OF in the hippocampal regions in relation to the control rats. These results indicate that acute FS or HL-OF proved to be a stressor that induces an increase in the density of BDNF-ir pyramidal neurons, which was probably connected with up-regulation of HPA axis activity and short‑time memory processing of the stressful situation. Moreover, as far as the influence on BDNF-ir cells in hippocampus is concerned, chronic FS or HL-OF was not an aggravating factor for rats in the ontogenetic periods studied.

  17. The Pilot Study of the Effect of Meditation to the Serum Brain-Derived Neurotrophic Factor (BDNF) of Medical Students, Srinakharinvirot University.

    Science.gov (United States)

    Turakitwanakan, Wanpen; Mekseepralard, Chantana; Busarakumtragul, Panaree

    2015-11-01

    Mindfulness meditation is a method to decrease stress and increase memory. So, mindfulness meditation should increase serum brain-derived neurotrophic factor (BDNF). To study the effect of mindfulness meditation on the serum BDNF of medical students. The study group consisted of 30 male and female second-year medical students that volunteered to participate in the study, aged 19.1 ± 0.55 year olds (range 18-20) from Srinakharinwirot University. Their blood was drawn to measure BDNF before and after a four-day mindfulness meditation programme. The comparison of serum BDNF levels before and after meditation were analysed by paired t-test. The subjects were 66.77%female and 33.33% male. The average serum BDNF level before the meditation was 17.67 ng/ml (SD 3.58). After meditation, there was a decrease in serum BDNF to 17.34 ng/ml, which was however not statistically significant (SD 4.04, p > 0.05). The levels of blood BDNF decreases slightly after practising meditation. We plan to investigate the reason in the future.

  18. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model.

    Science.gov (United States)

    Scaini, Giselli; Comim, Clarissa M; Oliveira, Giovanna M T; Pasquali, Matheus A B; Quevedo, João; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Bogo, Maurício R; Streck, Emilio L

    2013-09-01

    Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.

  19. Prior regular exercise reverses the decreased effects of sleep deprivation on brain-derived neurotrophic factor levels in the hippocampus of ovariectomized female rats.

    Science.gov (United States)

    Saadati, Hakimeh; Sheibani, Vahid; Esmaeili-Mahani, Saeed; Darvishzadeh-Mahani, Fatemeh; Mazhari, Shahrzad

    2014-11-01

    Previous studies indicated that brain-derived neurotrophic factor (BDNF) is the main candidate to mediate the beneficial effects of exercise on cognitive function in sleep deprived male rats. In addition, our previous findings demonstrate that female rats are more vulnerable to the deleterious effects of sleep deprivation on cognitive performance and synaptic plasticity. Therefore, the current study was designed to investigate the effects of treadmill exercise and/or sleep deprivation (SD) on the levels of BDNF mRNA and protein in the hippocampus of female rats. Intact and ovariectomized (OVX) female Wistar rats were used in the present experiment. The exercise protocol was four weeks treadmill running and sleep deprivation was accomplished using the multiple platform method. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblot analysis were used to evaluate the level of BDNF mRNA and protein in the rat hippocampus respectively. Our results showed that protein and mRNA expression of BDNF was significantly (psleep deprived OVX rats under exercise conditions had a significant (peffect against hippocampus-related functions and impairments induced by sleep deprivation probably by inducing BDNF expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Brain-Derived Neurotrophic Factor Loaded PS80 PBCA Nanocarrier for In Vitro Neural Differentiation of Mouse Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Chiu-Yen Chung

    2017-03-01

    Full Text Available Brain derived neurotrophic factor (BDNF can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC was constructed to deliver plasmid DNAs (pDNAs containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF. The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification.

  1. Neural Mobilization Treatment Decreases Glial Cells and Brain-Derived Neurotrophic Factor Expression in the Central Nervous System in Rats with Neuropathic Pain Induced by CCI in Rats

    Directory of Open Access Journals (Sweden)

    Aline Carolina Giardini

    2017-01-01

    Full Text Available Background. Glial cells are implicated in the development of chronic pain and brain-derived neurotropic factor (BDNF released from activated microglia contributes to the nociceptive transmission. Neural mobilization (NM technique is a method clinically effective in reducing pain sensitivity. Here we examined the involvement of glial cells and BDNF expression in the thalamus and midbrain after NM treatment in rats with chronic constriction injury (CCI. CCI was induced and rats were subsequently submitted to 10 sessions of NM, every other day, beginning 14 days after CCI. Thalamus and midbrain were analyzed for glial fibrillary acidic protein (GFAP, microglial cell OX-42, and BDNF using Immunohistochemistry and Western blot assays. Results. Thalamus and midbrain of CCI group showed increases in GFAP, OX-42, and BDNF expression compared with control group and, in contrast, showed decreases in GFAP, OX-42, and BDNF after NM when compared with CCI group. The decreased immunoreactivity for GFAP, OX-42, and BDNF in ventral posterolateral nucleus in thalamus and the periaqueductal gray in midbrain was shown by immunohistochemistry. Conclusions. These findings may improve the knowledge about the involvement of astrocytes, microglia, and BDNF in the chronic pain and show that NM treatment, which alleviates neuropathic pain, affects glial cells and BDNF expression.

  2. Evaluation of the Relationship between Brain-Derived Neurotropic Factor Levels and the Stroop Interference Effect in Children with Attention-Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Şimşek, Şeref; Gençoğlan, Salih; Yüksel, Tuğba; Kaplan, İbrahim; Aktaş, Hüseyin; Alaca, Rümeysa

    2016-12-01

    Brain-derived neurotropic factor (BDNF) has been suggested to play a role in the pathogenesis of attention-deficit hyperactivity disorder (ADHD). In addition, impairment in executive functions has been reported in children with ADHD. This study investigated the presence of a relationship between Stroop test scores and BDNF levels in children with ADHD. The study was conducted in the Department of Child Psychiatry at Dicle University. The study included 49 children between 6 and 15 years of age (M/F: 42/7), who were diagnosed with ADHD according to DSM-IV, and who did not receive previous therapy. Similar in terms of age and gender to the ADHD group, 40 children were selected in the control group. The Kiddie Schedule for Affective Disorders and Schizophrenia, Present and Lifetime version was administered to all participants. Parents and teachers were administered Turgay DSM-IV-based Child and Adolescent Behavior Disorders Screening and Rating Scale to measure symptom severity in children with ADHD. Children with ADHD underwent the Stroop test. BDNF levels were evaluated in serum by ELISA. The ADHD and control groups did not differ in terms of BDNF levels. BDNF levels did not differ between ADHD subtypes. There was also no relationship between the Stroop test interference scores and BDNF levels. The findings of the present study are in line with those in studies that demonstrated no significant role of BDNF in the pathogenesis of ADHD.

  3. Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism.

    Science.gov (United States)

    Asthana, Manish Kumar; Brunhuber, Bettina; Mühlberger, Andreas; Reif, Andreas; Schneider, Simone; Herrmann, Martin J

    2016-06-01

    Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  4. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E

    2011-05-18

    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  5. Comparison of Brain-Derived Neurotrophic Factor (BDNF and Insulin-like Growth Factor 1 (IGF-1 Responses to Different Endurance Training Intensities in Runner Men

    Directory of Open Access Journals (Sweden)

    M. Habibian

    2017-04-01

    Full Text Available Aims: Blood neurotrophins, such as Brain-Derived Neurotrophic Factor (BDNF and Insulin-like Growth Factor 1 (IGF-1, mediate exercise- induced health benefits in humans. The purpose of this study was to compare the response of BDNF and IGF-1 to different endurance training intensities in runner men. Materials & Methods: In this semi-experimental study with pre-test-posttest design in 2015, 10 people of male runners from Gorgan were selected through purposeful and accessible sampling. The endurance training protocol was 6 km running with moderate (70-75% of heart rate reserve or severe (80-85% of heart rate reserve intensity, which was performed within a week's interval. Fasting blood samples were collected before and immediately after both acute training sessions and serum levels of BDNF and IGF-1 were measured by ELISA and radioimmunoassay enzyme. Data were analyzed by SPSS 20 software using independent t-test and paired t-test. Findings: Both acute endurance training significantly increased serum levels of BDNF and IGF-1 in runners, but high intensity endurance exercises increased BDNF levels in comparison with moderate intensity (p0.05. Conclusion: Serum BDNF response in endurance athletes is affected by the intensity of exercise, so that the effect of high intensity endurance training on BDNF levels is greater than moderate intensity exercise, but the response of IGF-1 to acute endurance training is independent of the intensity of exercise.

  6. EEG alpha power as an intermediate measure between brain-derived neurotrophic factor Val66Met and depression severity in patients with major depressive disorder.

    Science.gov (United States)

    Zoon, Harriët F A; Veth, C P M; Arns, Martijn; Drinkenburg, W H I M; Talloen, Willem; Peeters, Pieter J; Kenemans, J L

    2013-06-01

    Major depressive disorder has a large impact on patients and society and is projected to be the second greatest global burden of disease by 2020. The brain-derived neurotrophic factor (BDNF) gene is considered to be one of the important factors in the etiology of major depressive disorder. In a recent study, alpha power was found to mediate between BDNF Met and subclinical depressed mood. The current study looked at a population of patients with major depressive disorder (N = 107) to examine the association between the BDNF Val66Met polymorphism, resting state EEG alpha power, and depression severity. For this purpose, repeated-measures analysis of variance, partial correlation, and multiple linear models were used. Results indicated a negative association between parietal-occipital alpha power in the eyes open resting state and depression severity. In addition, Met/Met patients showed lower global absolute alpha power in the eyes closed condition compared with Val-carriers. These findings are in accordance with the previously uncovered pathway between BDNF Val66Met, resting state EEG alpha power, and depression severity. Additional research is needed for the clarification of this tentative pathway and its implication in personalized treatment of major depressive disorder.

  7. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons.

    Science.gov (United States)

    Wang, Rui; Li, Yu-Hua; Xu, Ying; Li, Ying-Bo; Wu, Hong-Li; Guo, Hao; Zhang, Jian-Zhao; Zhang, Jing-Jie; Pan, Xue-Yang; Li, Xue-Jun

    2010-02-01

    Curcumin is a major constituent of curcuma longa, a traditional medicine used to manage mental disorders effectively in China. The neuroprotective effects of curcumin have been demonstrated in our previous studies. In the present research, we confirmed this effect by showing that curcumin application promoted the viability of cultured rodent cortical neurons. Moreover, when neurons were pretreated with tyrosine kinase B (TrkB) antibody, known to inhibit the activity of brain-derived neurotrophic factor (BDNF), the protective effect of curcumin was blocked. Additionally, treatment of curcumin increased BDNF and phosphor-TrkB and both of these enhancements can be suppressed by ERK and PI-3K inhibitors. The administration of curcumin led to increased levels of phosphor-ERK and AKT, which were each blocked by MAPK and PI-3K inhibitors. Furthermore, the curcumin-induced increase in phosphorylated cyclic AMP response element binding protein (CREB), which has been implicated as a possible mediator of antidepressant actions, was prevented by MAPK and PI-3K inhibitors. Therefore, we hypothesize the neuroprotection of curcumin might be mediated via BDNF/TrkB-MAPK/PI-3K-CREB signaling pathway. Copyright 2009. Published by Elsevier Inc.

  8. Early Postoperative Nociceptive Threshold and Production of Brain-Derived Neurotrophic Factor Induced by Plantar Incision Are Not Influenced with Minocycline in a Rat: Role of Spinal Microglia

    Directory of Open Access Journals (Sweden)

    Eiji Masaki

    2016-03-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF from spinal microglia is crucial for aberrant nociceptive signaling in several pathological pain conditions, including postoperative pain. We assess the contribution of spinal microglial activation and associated BDNF overexpression to the early post-incisional nociceptive threshold. Methods: Male Sprague-Dawley rats were implanted with an intrathecal catheter. A postoperative pain model was established by plantar incision. Thermal and mechanical nociceptive responses were assessed by infrared radiant heat and von Frey filaments before and after plantar incision. Rats were injected intrathecally the microglial activation inhibitor minocycline before incision, 24 h after incision, or both. Other groups were subjected to the same treatments and the L4-L5 spinal cord segment removed for immunohistochemical analysis of microglia activation and BNDF expression. Results: Plantar incision reduced both thermal latency and mechanical threshold, indicating thermal hypersensitivity and mechanical allodynia. Minocycline temporally reduced thermal withdrawal latency but had no effect on mechanical withdrawal threshold, spinal microglial activity, or dorsal horn BDNF overexpression during the early post-incision period. Conclusion: These results suggest that spinal microglia does not contribute substantially to post-incisional nociceptive threshold. The BDNF overexpression response that may contribute to postoperative hyperalgesia and allodynia is likely derived from other sources.

  9. The relationship of Chlamydophila pneumoniae with schizophrenia: The role of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in this relationship.

    Science.gov (United States)

    Kalayci, Fatma; Ozdemir, Armagan; Saribas, Suat; Yuksel, Pelin; Ergin, Sevgi; Kuskucu, Ali Mert; Poyraz, Cana Aksoy; Balcioglu, Ibrahim; Alpay, Nihat; Kurt, Aykut; Sezgin, Zeynep; Kocak, Banu Tufan; Icel, Rana Sucu; Can, Gunay; Tokman, Hrisi Bahar; Kocazeybek, Bekir

    Several pathogens have been suspected of playing a role in the pathogenesis of schizophrenia. Chronic inflammation has been proposed to occur as a result of persistent infection caused by Chlamydophila pneumoniae cells that reside in brain endothelial cells for many years. It was recently hypothesized that brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) may play prominent roles in the development of schizophrenia. NT-3 and BDNF levels have been suggested to change in response to various manifestations of infection. Therefore, we aimed to elucidate the roles of BDNF and NT3 in the schizophrenia-C. pneumoniae infection relationship. RT-PCR, immunofluorescence and ELISA methods were used. Fifty patients suffering from schizophrenia and 35 healthy individuals were included as the patient group (PG) and the healthy control group (HCG), respectively. We detected persistent infection in 14 of the 50 individuals in the PG and in 1 of the 35 individuals in the HCG. A significant difference was found between the two groups (p0.05). C. pneumoniae DNA was not detected in any group. A significant difference in NT-3 levels was observed between the groups, with very low levels in the PG (p0.05). In conclusion, we suggest that NT-3 levels during persistent C. pneumoniae infection may play a role in this relationship. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    Science.gov (United States)

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Relationships between brain-derived neurotrophic factor, clinical symptoms and decision-making in chronic schizophrenia: data from the Iowa Gambling Task

    Directory of Open Access Journals (Sweden)

    Hikaru eHori

    2014-12-01

    Full Text Available The levels of brain-derived neurotrophic factor (BDNF are significantly decreased in patients with schizophrenia and correlate with impairments in cognitive function. However, no study has investigated the relationship between the serum BDNF levels and decision-making. We compared patients with schizophrenia to healthy controls with respect to their decision-making ability and serum BDNF levels. Eighty-six chronic schizophrenia patients and 51 healthy controls participated in this study. We controlled for gender, age, and estimated intelligence quotient (IQ, and we investigated the differences in decision-making performance on the Iowa Gambling Task (IGT between the schizophrenia patient and control groups. We also compared the IGT scores, the serum BDNF levels, and the clinical symptoms between the groups. The IGT scores of the schizophrenia patients were lower than those of the controls. A negative correlation was detected between the mean net scores on the trials in the final two blocks and the serum BDNF levels(p<0.05). Multiple regression analysis revealed that depressive symptoms and the serum BDNF levels were significantly associated with the mean net scores on the trials in the final two blocks. Based on these results, impaired sensitivity to both reward and punishment is associated with depressive symptoms and reduced serum BDNF levels in chronic schizophrenia patients and may be related to their poor performance on the IGT.

  12. Effect of electroacupuncture on brain-derived neurotrophic factor mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Zhao, Jianxin; Xu, Huazhou; Tian, Yuanxiang; Hu, Manxiang; Xiao, Hongling

    2013-04-01

    This work aims to observe the effects of electroacupuncture on brain-derived neurotrophic factor (BDNF) mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury. The models of mouse cerebral ischemia-reperfusion injury were established. A total of 96 healthy mice were randomly assigned into 4 groups, namely, the sham surgery, model, model + electroacupuncture, and mode + hydergine groups. Mice in the model + electroacupuncture group were treated through electroacupuncture at the Shenshu (BL 23), Geshu (BL 17), and Baihui (GV 20) acupoints. Mice in the model+hydergine group were intragastrically administered with hydergine (0.77 mg/kg(-1) x day(-1)). The levels of BDNF mRNA expressions in the hippocampus were ana lyzed through a semi-quantitative reverse transcription-polymerase chain reaction assay on days 1 and 7 after the surgeries. BDNF mRNA expressions in the mouse hippocampus of the model group on days 1 and 7 after the surgery were higher than those of the sham surgery group (both P electroacupuncture treatment, BDNF mRNA expression in the mouse hippocampus of the model + electroacupuncture group was significantly elevated compared with the model group (both P 0.05). Electroacupuncture treatment enhances endogenous BDNF expression, which may improve the survival environment for intracerebral neurons and inhibit the apoptosis of hippocampal cells.

  13. Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tirosine kinase receptor (TrkB) content in mice.

    Science.gov (United States)

    Costa, M S; Botton, P H; Mioranzza, S; Souza, D O; Porciúncula, L O

    2008-06-02

    The beneficial effects of caffeine on cognition are controversial in humans, whereas its benefit in rodents had been well characterized. However, most studies were performed with acute administration of caffeine and the tasks used to evaluate cognition had aversive components. Here, we evaluated adulthood administration of caffeine up to old age on recognition memory in mice using the object recognition task (ORT) and on brain-derived neurotrophic factor (BNDF) and tyrosine kinase receptor (TrkB) immunocontent in the hippocampus. Adult mice (6 months old) received either drinking water or caffeine (1 mg/mL) during 12 months. At 18 months of age both groups were tested for ORT. Our results showed that aged mice exhibited lower performance in the recognition memory compared with adults (6 months old). Furthermore, caffeine-treated mice showed similar performance to adult mice in the ORT and an improvement compared with their age-matched control mice. Caffeine also counteracted the age-related increase in BDNF and TrkB immunocontent. Our results corroborate with other studies and reinforce that caffeine consumed in adulthood may prevent recognition memory decline with aging. This preventive effect may involve a decrease in the hippocampal BDNF and TrkB immunocontent.

  14. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor.

    Science.gov (United States)

    Khallaf, Waleed A I; Messiha, Basim A S; Abo-Youssef, Amira M H; El-Sayed, Nesrine S

    2017-07-01

    Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.

  15. Antagonist targeting microRNA-155 protects against lithium-pilocarpine-induced status epilepticus in C57BL/6 mice by activating brain-derived neurotrophic factor

    Directory of Open Access Journals (Sweden)

    Zhengxu eCai

    2016-05-01

    Full Text Available Epilepsy is a severe brain disorder affecting numerous patients. Recently, it is inferred that modulation of microRNA-155 (miR-155 could serve as a promising treatment of mesial temporal lobe epilepsy (MTLE. In the current study, the therapeutic potential of miR-155 antagonist against TLE was evaluated and the underlying mechanism involved in this regulation was explored. TLE model was induced by lithium-pilocarpine method. The effect of miR-155 antagonist on epilepticus symptoms of TLE mice was assessed using Racine classification and electroencephalogram (EEG recordings. The expression of brain-derived neurotrophic factor (BDNF and its association with miR-155 were also assessed with a series of experiments. Our results showed that level of miR-155 was significantly up-regulated after induction of TLE model. Based on the results of EEG and behavior analyses, seizures in mice were alleviated by miR-155 antagonist. Moreover, administration of miR-155 antagonist also significantly increased the level of BDNF. The results of dual luciferase assay and western blotting showed that miR-155 antagonist exerted its action on status epilepticus by directly regulating the activity of BDNF. Taken all the information together, our results demonstrated that miR-155 antagonist might firstly induce the expression of BDNF, which then contributed to the alleviation of epilepsy in the current study.

  16. [Effects of qishenyiqi gutta pills on calcium/calmodulin dependent protein kinase II in rats with renal hypertension].

    Science.gov (United States)

    Zhang, Xiao-ying; Wei, Wan-lin; Shu, Chang-cheng; Zhang, Ling; Tian, Guo-xiang

    2013-02-05

    To explore the effects of qishenyiqi gutta pills on myocardial hypertrophy of left ventricle and calcium/calmodulin dependent protein kinase II (CAMK II) in rats with renal hypertension and elucidate its intervention mechanism for myocardial hypertrophy. A total of 50 Wistar rats were randomly divided into 5 groups of sham-operation, control, high-dose qishenyiqi gutta pills, low-dose qishenyiqi gutta pills and valsartan (n = 10 each). The rat model of myocardial hypertrophy with renal hypertension was established by the 2-kidney 1-clip (2K1C) method. The experimental animals were divided into control, high-dose, low-dose and valsartan groups. At Week 5 postoperation, valsartan group received an oral dose of valsartan (30 mg×kg(-1)×d(-1)), high-dose and low-dose groups took qishenyiqi gutta pills (250 and 125 mg×kg(-1)×d(-1)) while sham-operation and control groups had the same dose of normal saline solution. Tail arterial pressure was detected weekly and continued for 8 weeks. At the end of Week 12, the animals were sacrificed to harvest myocardial tissue of left ventricle for detecting left ventricular mass index (LVMI). The collagen volume fraction (CVF) of myocardium was examined by Van Gieson staining, the activities of superoxide dismutase (SOD) and reactive oxygen species (ROS) were detected by enzyme-linked immunosorbent assay (ELISA) and the expression of CAMK II was detected by immunohistochemistry and Western blot. (1) Blood pressures were significantly higher in high-dose, low-dose and control groups than those in sham-operation and valsartan groups ((167.66 ± 11.48), (166.72 ± 13.51), (174.34 ± 14.52) vs (119.57 ± 6.30), (131.80 ± 12.49) mm Hg, P pills may retard myocardial hypertrophy of left ventricle in rats with renal hypertension. And the mechanism is probably be correlated with its antioxidant activity and inhibited expression of myocardial CAMK II.

  17. 2,5-hexanedione (HD) treatment alters calmodulin, Ca2+/calmodulin-dependent protein kinase II, and protein kinase C in rats' nerve tissues

    International Nuclear Information System (INIS)

    Wang Qingshan; Hou Liyan; Zhang Cuili; Zhao Xiulan; Yu Sufang; Xie, Ke-Qin

    2008-01-01

    Calcium-dependent mechanisms, particularly those mediated by Ca 2+ /calmodulin (CaM)-dependent protein kinase II (CaMKII), have been implicated in neurotoxicant-induced neuropathy. However, it is unknown whether similar mechanisms exist in 2,5-hexanedione (HD)-induced neuropathy. For that, we investigated the changes of CaM, CaMKII, protein kinase C (PKC) and polymerization ratios (PRs) of NF-L, NF-M and NF-H in cerebral cortex (CC, including total cortex and some gray), spinal cord (SC) and sciatic nerve (SN) of rats treated with HD at a dosage of 1.75 or 3.50 mmol/kg for 8 weeks (five times per week). The results showed that CaM contents in CC, SC and SN were significantly increased, which indicated elevation of Ca 2+ concentrations in nerve tissues. CaMKII contents and activities were also increased in CC and were positively correlated with gait abnormality, but it could not be found in SC and SN. The increases of PKC contents and activities were also observed in SN and were positively correlated with gait abnormality. Except for that of NF-M in CC, the PRs of NF-L, NF-M and NF-H were also elevated in nerve tissues, which was consistent with the activation of protein kinases. The results suggested that CaMKII might be partly (in CC but not in SC and SN) involved in HD-induced neuropathy. CaMKII and PKC might mediate the HD neurotoxicity by altering the NF phosphorylation status and PRs

  18. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    Science.gov (United States)

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Association between obesity and the brain-derived neurotrophic factor gene polymorphism Val66Met in individuals with bipolar disorder in Mexican population

    Directory of Open Access Journals (Sweden)

    Morales-Marín ME

    2016-07-01

    Full Text Available Mirna Edith Morales-Marín,1 Alma Delia Genis-Mendoza,1,2 Carlos Alfonso Tovilla-Zarate,3 Nuria Lanzagorta,4 Michael Escamilla,5 Humberto Nicolini1,4 1Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN, CDMX, Mexico; 2Psychiatric Care Services, Child Psychiatric Hospital Dr Juan N Navarro, CDMX, Mexico; 3Genomics Research Center, Juarez Autonomous University of Tabasco, Comalcalco, Mexico; 4Carracci Medical Group, CDMX, Mexico; 5Department of Psychiatry, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso TX, USA Background: The brain-derived neurotrophic factor (BDNF has been considered as an important candidate gene in bipolar disorder (BD; this association has been derived from several genetic and genome-wide studies. A polymorphic variant of the BDNF (Val66Met confers some differences in the clinical presentation of affective disorders. In this study, we evaluated a sample population from Mexico City to determine whether the BDNF (rs6265 Val66Met polymorphism is associated with the body mass index (BMI of patients with BD.Methods: This association study included a sample population of 357 individuals recruited in Mexico City. A total of 139 participants were diagnosed with BD and 137 were classified as psychiatrically healthy controls (all individuals were interviewed and evaluated by the Diagnostic Interview for Genetic Studies. Genomic DNA was extracted from peripheral blood leukocytes. The quantitative polymerase chain reaction (qPCR assay was performed in 96-well plates using the TaqMan Universal Thermal Cycling Protocol. After the PCR end point was reached, fluorescence intensity was measured in a 7,500 real-time PCR system and evaluated using the SDS v2.1 software, results were analyzed with Finetti and SPSS software. Concerning BMI stratification, random groups were defined as follows: normal <25 kg/m2, overweight (Ow =25.1–29.9 kg/m2

  20. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner.

    Science.gov (United States)

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

  1. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke.

    Science.gov (United States)

    Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.

  2. The Role of the Val66Met Polymorphism of the Brain Derived Neurotrophic Factor Gene in Coping Strategies Relevant to Depressive Symptoms.

    Directory of Open Access Journals (Sweden)

    Warren Caldwell

    Full Text Available Disturbances of brain derived neurotrophic factor (BDNF signalling have been implicated in the evolution of depression, which likely arises, in part, as a result of diminished synaptic plasticity. Predictably, given stressor involvement in depression, BDNF is affected by recent stressors as well as stressors such as neglect experienced in early life. The effects of early life maltreatment in altering BDNF signalling may be particularly apparent among those individuals with specific BDNF polymorphisms. We examined whether polymorphisms of the Val66Met genotype might be influential in moderating how early-life events play out with respect to later coping styles, cognitive flexibility and depressive features. Among male and female undergraduate students (N = 124, childhood neglect was highly related to subsequent depressive symptoms. This outcome was moderated by the BDNF polymorphism in the sense that depressive symptoms appeared higher in Met carriers who reported low levels of neglect than in those with the Val/Val allele. However, under conditions of high neglect depressive symptoms only increased in the Val/Val individuals. In effect, the Met polymorphism was associated with depressive features, but did not interact with early life neglect in predicting later depressive features. It was further observed that among the Val/Val individuals, the relationship between neglect and depression was mediated by emotion-focused styles and diminished perceived control, whereas this mediation was not apparent in Met carriers. In contrast to the more typical view regarding this polymorphism, the data are consistent with the perspective that in the presence of synaptic plasticity presumably associated with the Val/Val genotype, neglect allows for the emergence of specific appraisal and coping styles, which are tied to depression. In the case of the reduced degree of neuroplasticity expected in the Met carriers, early life adverse experiences are not tied

  3. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus.

    Science.gov (United States)

    Lee, Jaemeun; Kim, Kyungchan; Yu, Seong-Woon; Kim, Eun-Kyoung

    2016-03-08

    Insulin plays diverse roles in the brain. Although insulin produced by pancreatic β-cells that crosses the blood-brain barrier is a major source of brain insulin, recent studies suggest that insulin is also produced locally within the brain. However, the mechanisms underlying the production of brain-derived insulin (BDI) are not yet known. Here, we examined the effect of Wnt3a on BDI production in a hypothalamic cell line and hypothalamic tissue. In N39 hypothalamic cells, Wnt3a treatment significantly increased the expression of the Ins2 gene, which encodes the insulin isoform predominant in the mouse brain, by activating Wnt/β-catenin signaling. The concentration of insulin was higher in culture medium of Wnt3a-treated cells than in that of untreated cells. Interestingly, neurogenic differentiation 1 (NeuroD1), a target of Wnt/β-catenin signaling and one of transcription factors for insulin, was also induced by Wnt3a treatment in a time- and dose-dependent manner. In addition, the treatment of BIO, a GSK3 inhibitor, also increased the expression of Ins2 and NeuroD1. Knockdown of NeuroD1 by lentiviral shRNAs reduced the basal expression of Ins2 and suppressed Wnt3a-induced Ins2 expression. To confirm the Wnt3a-induced increase in Ins2 expression in vivo, Wnt3a was injected into the hypothalamus of mice. Wnt3a increased the expression of NeuroD1 and Ins2 in the hypothalamus in a manner similar to that observed in vitro. Taken together, these results suggest that BDI production is regulated by the Wnt/β-catenin/NeuroD1 pathway in the hypothalamus. Our findings will help to unravel the regulation of BDI production in the hypothalamus.

  4. Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells.

    Science.gov (United States)

    Lin, Chih-Yang; Wang, Shih-Wei; Chen, Yen-Ling; Chou, Wen-Yi; Lin, Ting-Yi; Chen, Wei-Cheng; Yang, Chen-Yu; Liu, Shih-Chia; Hsieh, Chia-Chu; Fong, Yi-Chin; Wang, Po-Chuan; Tang, Chih-Hsin

    2017-08-03

    Chondrosarcoma is the second most common primary malignancy of bone, and one of the most difficult bone tumors to diagnose and treat. It is well known that increased levels of vascular endothelial growth factor-C (VEGF-C) promote active tumor lymphangiogenesis and lymphatic tumor spread to regional lymph nodes. Brain-derived neurotrophic factor (BDNF) is known to promote metastasis in human chondrosarcoma cells. Knowing more about the mechanism of BDNF in VEGF-C expression and lymphangiogenesis in human chondrosarcoma would improve our understanding as how to prevent chondrosarcoma angiogenesis and metastasis, which currently lacks effective adjuvant treatment. Here, we found that BDNF expression was at least 2.5-fold higher in the highly migratory JJ012(S10) cell line as compared with the primordial cell line (JJ012). In addition, VEGF-C expression and secretion was markedly increased in JJ012(S10) cells. Conditioned medium from JJ012(S10) cells significantly promoted migration and tube formation of human lymphatic endothelial cells (LECs), whereas knockdown of BDNF attenuated LEC migration and tube formation by suppressing VEGF-C production in JJ012(S10) cells. Mechanistic investigations indicated that BDNF facilitated VEGF-C-dependent lymphangiogenesis through the MEK/ERK/mTOR signaling pathway. We also showed that microRNA (miR)-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade. Importantly, BDNF knockdown profoundly inhibited tumor-associated lymphangiogenesis in vivo. Further analyses identified that BDNF promoted tumor lymphangiogenesis by downregulating miR-624-3p in human chondrosarcoma tissues. In conclusion, this study is the first to reveal the mechanism underlying BDNF-induced lymphangiogenesis. We suggest that BDNF may serve as a promising therapeutic target for the restriction of VEGF-C-mediated tumor lymphangiogenesis and lymphatic metastasis.