Sample records for calmodulin kinase ii

  1. Calmodulin kinase II inhibition protects against structural heart disease. (United States)

    Zhang, Rong; Khoo, Michelle S C; Wu, Yuejin; Yang, Yingbo; Grueter, Chad E; Ni, Gemin; Price, Edward E; Thiel, William; Guatimosim, Silvia; Song, Long-Sheng; Madu, Ernest C; Shah, Anisha N; Vishnivetskaya, Tatiana A; Atkinson, James B; Gurevich, Vsevolod V; Salama, Guy; Lederer, W J; Colbran, Roger J; Anderson, Mark E


    Beta-adrenergic receptor (betaAR) stimulation increases cytosolic Ca(2+) to physiologically augment cardiac contraction, whereas excessive betaAR activation causes adverse cardiac remodeling, including myocardial hypertrophy, dilation and dysfunction, in individuals with myocardial infarction. The Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a recently identified downstream element of the betaAR-initiated signaling cascade that is linked to pathological myocardial remodeling and to regulation of key proteins involved in cardiac excitation-contraction coupling. We developed a genetic mouse model of cardiac CaMKII inhibition to test the role of CaMKII in betaAR signaling in vivo. Here we show CaMKII inhibition substantially prevented maladaptive remodeling from excessive betaAR stimulation and myocardial infarction, and induced balanced changes in excitation-contraction coupling that preserved baseline and betaAR-stimulated physiological increases in cardiac function. These findings mark CaMKII as a determinant of clinically important heart disease phenotypes, and suggest CaMKII inhibition can be a highly selective approach for targeting adverse myocardial remodeling linked to betaAR signaling.

  2. Monoclonal antibody against brain calmodulin-dependent protein kinase type II detects putative conformational changes induced by Ca/sup 2 +/-calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    LeVine, H. III; Su, J.L.; Sahyoun, N.E.


    A mouse monoclonal IgG1 antibody has been generated against the soluble form of the calmodulin-dependent protein kinase type II. This antibody recognizes both the soluble and cytoskeletal forms of the enzyme, requiring Ca/sup 2 +/ for the interaction. Other divalent cations such as Zn/sup 2 +/, Mn/sup 2 +/, Cd/sup 2 +/, Co/sup 2 +/, and Ni/sup 2 +/ will substitute for Ca/sup 2 +/, while Mg/sup 2 +/ and Ba/sup 2 +/ will not. The antibody reacts with both the ..cap alpha..- and ..beta..-subunits on Western blots in a similar Ca/sup 2 +/-dependent fashion but with a lower sensitivity. The affinity of the antibody for the kinase is 0.13 nM determined by displacement of /sup 125/I Bolton-Hunter-labeled kinase with unlabeled enzyme. Calmodulin and antibody reciprocally potentiate each other's interaction with the enzyme. This is illustrated both by direct binding studies and by a decrease of the K/sub m app/ for calmodulin and an increase in the V/sub max/ for the autophosphorylation reaction of the enzyme. The antibody thus appears to recognize and stabilize a conformation of the kinase which favors calmodulin binding although it does not itself activate the kinase in the absence of calmodulin. Since the M/sub r/ 30,000 catalytic fragment of the kinase is not immunoreactive, either the antibody combining site of the kinase must be present in the noncatalytic portion of the protein along with the calmodulin binding site or proteolysis interferes with the putative Ca/sup 2 +/-dependent conformational change. Thus, monoclonal antibodies can be useful tools in elucidating the mechanism by which Ca/sup 2 +/ and calmodulin act on the kinase molecule.

  3. Thermodynamics of calmodulin trapping by Ca2+/calmodulin-dependent protein kinase II: subpicomolar Kd determined using competition titration calorimetry. (United States)

    Tse, Joyce K Y; Giannetti, Anthony M; Bradshaw, J Michael


    Calmodulin (CaM) trapping by Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a phenomenon whereby the affinity of CaM for CaMKII increases >1000-fold following CaMKII autophosphorylation. The molecular basis of this effect is not entirely understood. Binding of CaM to the phosphorylated and the unphosphorylated states of CaMKII is well mimicked by the interaction of CaM with two different length peptides taken from the CaM-binding region of CaMKII, peptides we refer to as the long and intermediate peptides. To better understand the conformational change accompanying CaM trapping, we have used isothermal titration calorimetry (ITC) to compare the binding thermodynamics of CaM to these peptides as well as to a shorter CaMKII-based peptide. Calorimetric analysis revealed that the enthalpy, rather than the entropy, distinguished binding of these three peptides. Furthermore, the heat capacity change was found to be similar for the long and intermediate peptides but smaller in magnitude for the short peptide. Direct titration of CaM with peptide provided the Kd value for the short peptide (Kd = 5.9 +/- 2.4 microM), but a novel, two-phased competitive binding strategy was necessary to ascertain the affinities of the intermediate (Kd = 0.17 +/- 0.06 nM) and long (Kd = 0.07 +/- 0.04 pM) peptides. To our knowledge, the Kd for the long peptide is the most potent measured to date using ITC. Together, the findings reported here support a model whereby the final conformational change accompanying CaM trapping buries little additional surface area but does involve formation of new hydrogen bonds and van der Waals contacts that contribute to formation of the high-affinity, CaM-trapped state.

  4. Increased calcium/calmodulin-dependent protein kinase II activity by morphine-sensitization in rat hippocampus. (United States)

    Kadivar, Mehdi; Farahmandfar, Maryam; Ranjbar, Faezeh Esmaeli; Zarrindast, Mohammad-Reza


    Repeated exposure to drugs of abuse, such as morphine, elicits a progressive enhancement of drug-induced behavioral responses, a phenomenon termed behavioral sensitization. These changes in behavior may reflect long-lasting changes in some of the important molecules involved in memory processing such as calcium/calmodulin-dependent protein kinase II (CaMKII). In the present study, we investigated the effect of morphine sensitization on mRNA expression of α and β isoforms and activity of CaMKII in the hippocampus of male rats. Animals were treated for 3 days with saline or morphine (20mg/kg) and following a washout period of 5 days, a challenge dose of morphine (5mg/kg) were administered. The results indicate that morphine administration in pre-treated animals produces behavioral sensitization, as determined by significant increase in locomotion and oral stereotypy behavior. In addition, repeated morphine treatment increased mRNA expression of both α and β isoforms of CaMKII in the hippocampus. The present study also showed that induction of morphine sensitization significantly increased both Ca2+/calmodulin-independent and Ca2+/calmodulin-dependent activities of CaMK II in the rat hippocampus. However, acute administration of morphine (5mg/kg) did not alter either α and β CaMKII mRNA expression or CaMKII activity in the hippocampus. The stimulation effects of morphine sensitization on mRNA expression and activity of CaMKII were completely abolished by administration of naloxone, 30min prior to s.c. injections of morphine (20mg/kg/day×3 days). Our data demonstrated that induction of morphine sensitization could effectively modulate the activity and the mRNA expression of CaMKII in the hippocampus and this effect of morphine was exerted by the activation of opioid receptors.

  5. Bcl10 is phosphorylated on Ser138 by Ca2+/calmodulin-dependent protein kinase II. (United States)

    Ishiguro, Kazuhiro; Ando, Takafumi; Goto, Hidemi; Xavier, Ramnik


    Ordered assembly of scaffold proteins Carma1-Bcl10-Malt1 determines NF-kappaB activation following T cell receptor (TCR) engagement. Carma1-Bcl10 interaction and the signaling pathway are controlled by Carma1 phosphorylation, which are induced by PKCtheta and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In addition to Carma1 phosphorylation, previous studies have demonstrated that Bcl10 is phosphorylated in the C-terminal Ser/Thr rich region following TCR engagement. However the kinases that phosphorylate Bcl10 are incompletely understood. Here we show that CaMKII phosphorylates Bcl10 on Ser138. Furthermore, a CaMKII inhibitor, KN93, and CaMKII siRNA substantially reduce Bcl10 phosphorylation induced by phorbol myristate acetate/ionomycin. S138A mutation prolongs Bcl10-induced NF-kappaB activation, suggesting that Bcl10 phosphorylation is involved in attenuation of NF-kappaB activation. These findings suggest that CaMKII modulates NF-kappaB activation via phosphorylating Bcl10 as well as Carma1.

  6. α-Calcium calmodulin kinase II modulates the temporal structure of hippocampal bursting patterns.

    Directory of Open Access Journals (Sweden)

    Jeiwon Cho

    Full Text Available The alpha calcium calmodulin kinase II (α-CaMKII is known to play a key role in CA1/CA3 synaptic plasticity, hippocampal place cell stability and spatial learning. Additionally, there is evidence from hippocampal electrophysiological slice studies that this kinase has a role in regulating ion channels that control neuronal excitability. Here, we report in vivo single unit studies, with α-CaMKII mutant mice, in which threonine 305 was replaced with an aspartate (α-CaMKII(T305D mutants, that indicate that this kinase modulates spike patterns in hippocampal pyramidal neurons. Previous studies showed that α-CaMKII(T305D mutants have abnormalities in both hippocampal LTP and hippocampal-dependent learning. We found that besides decreased place cell stability, which could be caused by their LTP impairments, the hippocampal CA1 spike patterns of α-CaMKII(T305D mutants were profoundly abnormal. Although overall firing rate, and overall burst frequency were not significantly altered in these mutants, inter-burst intervals, mean number of intra-burst spikes, ratio of intra-burst spikes to total spikes, and mean intra-burst intervals were significantly altered. In particular, the intra burst intervals of place cells in α-CaMKII(T305D mutants showed higher variability than controls. These results provide in vivo evidence that besides its well-known function in synaptic plasticity, α-CaMKII, and in particular its inhibitory phosphorylation at threonine 305, also have a role in shaping the temporal structure of hippocampal burst patterns. These results suggest that some of the molecular processes involved in acquiring information may also shape the patterns used to encode this information.

  7. Oxidized calmodulin kinase II regulates conduction following myocardial infarction: a computational analysis.

    Directory of Open Access Journals (Sweden)

    Matthew D Christensen


    Full Text Available Calmodulin kinase II (CaMKII mediates critical signaling pathways responsible for divergent functions in the heart including calcium cycling, hypertrophy and apoptosis. Dysfunction in the CaMKII signaling pathway occurs in heart disease and is associated with increased susceptibility to life-threatening arrhythmia. Furthermore, CaMKII inhibition prevents cardiac arrhythmia and improves heart function following myocardial infarction. Recently, a novel mechanism for oxidative CaMKII activation was discovered in the heart. Here, we provide the first report of CaMKII oxidation state in a well-validated, large-animal model of heart disease. Specifically, we observe increased levels of oxidized CaMKII in the infarct border zone (BZ. These unexpected new data identify an alternative activation pathway for CaMKII in common cardiovascular disease. To study the role of oxidation-dependent CaMKII activation in creating a pro-arrhythmia substrate following myocardial infarction, we developed a new mathematical model of CaMKII activity including both oxidative and autophosphorylation activation pathways. Computer simulations using a multicellular mathematical model of the cardiac fiber demonstrate that enhanced CaMKII activity in the infarct BZ, due primarily to increased oxidation, is associated with reduced conduction velocity, increased effective refractory period, and increased susceptibility to formation of conduction block at the BZ margin, a prerequisite for reentry. Furthermore, our model predicts that CaMKII inhibition improves conduction and reduces refractoriness in the BZ, thereby reducing vulnerability to conduction block and reentry. These results identify a novel oxidation-dependent pathway for CaMKII activation in the infarct BZ that may be an effective therapeutic target for improving conduction and reducing heterogeneity in the infarcted heart.

  8. Ca2+/calmodulin-dependent kinase II contributes to inhibitor of nuclear factor-kappa B kinase complex activation in Helicobacter pylori infection. (United States)

    Maubach, Gunter; Sokolova, Olga; Wolfien, Markus; Rothkötter, Hermann-Josef; Naumann, Michael


    Helicobacter pylori, a class I carcinogen, induces a proinflammatory response by activating the transcription factor nuclear factor-kappa B (NF-κB) in gastric epithelial cells. This inflammatory condition could lead to chronic gastritis, which is epidemiologically and biologically linked to the development of gastric cancer. So far, there exists no clear knowledge on how H. pylori induces the NF-κB-mediated inflammatory response. In our study, we investigated the role of Ca(2+) /calmodulin-dependent kinase II (CAMKII), calmodulin, protein kinases C (PKCs) and the CARMA3-Bcl10-MALT1 (CBM) complex in conjunction with H. pylori-induced activation of NF-κB via the inhibitor of nuclear factor-kappa B kinase (IKK) complex. We use specific inhibitors and/or RNA interference to assess the contribution of these components. Our results show that CAMKII and calmodulin contribute to IKK complex activation and thus to the induction of NF-κB in response to H. pylori infection, but not in response to TNF-α. Thus, our findings are specific for H. pylori infected cells. Neither the PKCs α, δ, θ, nor the CBM complex itself is involved in the activation of NF-κB by H. pylori. The contribution of CAMKII and calmodulin, but not PKCs/CBM to the induction of an inflammatory response by H. pylori infection augment the understanding of the molecular mechanism involved and provide potential new disease markers for the diagnosis of gastric inflammatory diseases including gastric cancer.

  9. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II.

    Directory of Open Access Journals (Sweden)

    Shirley Pepke


    Full Text Available During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,including Ca2+/calmodulin-dependent protein kinase II (CaMKII, are regulated by calmodulin, a small protein that can bindup to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic

  10. Calmodulin Kinase II Interacts with the Dopamine Transporter C Terminus to Regulate Amphetamine-Induced Reverse Transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion


    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d...... in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIalpha binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux....

  11. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion


    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d...... in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIalpha binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux....

  12. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Directory of Open Access Journals (Sweden)

    Mima Kazuko


    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  13. The calmodulin-dependent protein kinase II inhibitor KN-93 protects rat cerebral cortical neurons from N-methyl-D-aspartic acid-induced injury

    Institute of Scientific and Technical Information of China (English)

    Xuewen Liu; Cui Ma; Ruixian Xing; Weiwei Zhang; Buxian Tian; Xidong Li; Qiushi Li; Yanhui Zhang


    In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyl-D-aspartic acid-induced injury. Results showed that, compared with N-methyl-Daspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 μM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.

  14. Neuronal calcium/calmodulin-dependent protein kinase II mediates nicotine reward in the conditioned place preference test in mice. (United States)

    Jackson, Kia J; Muldoon, Pretal P; Walters, Carrie; Damaj, Mohamad Imad


    Several recent studies have indicated the involvement of calcium-dependent mechanisms, in particular the abundant calcium-activated kinase, calcium/calmodulin-dependent kinase II (CaMKII), in behaviors associated with nicotine dependence in mice. Behavioral and biochemical studies have shown that CaMKII is involved in acute and chronic nicotine behaviors and nicotine withdrawal; however, evidence of a role for CaMKII in nicotine reward is lacking. Thus, the goal of the current study was to examine the role of CaMKII in nicotine reward. Using pharmacological and genetic tools, we tested nicotine conditioned place preference (CPP) in C57Bl/6 mice after administration of CaMKII antagonists and in α-CaMKII wild-type (+/+) and heterozygote (±) mice. CaMKII antagonists blocked expression of nicotine CPP, and the preference score was significantly reduced in α-CaMKII ± mice compared with their +/+ counterparts. Further, we assessed CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), prefrontal cortex, and hippocampus after nicotine CPP and found significant increases in CaMKII activity in the mouse VTA and NAc that were blocked by CaMKII antagonists. The findings from this study show that CaMKII mediates nicotine reward and suggest that increases in CaMKII activity in the VTA and NAc are relevant to nicotine reward behaviors.

  15. The octopamine receptor OAMB mediates ovulation via Ca2+/calmodulin-dependent protein kinase II in the Drosophila oviduct epithelium.

    Directory of Open Access Journals (Sweden)

    Hyun-Gwan Lee

    Full Text Available Ovulation is an essential physiological process in sexual reproduction; however, the underlying cellular mechanisms are poorly understood. We have previously shown that OAMB, a Drosophila G-protein-coupled receptor for octopamine (the insect counterpart of mammalian norepinephrine, is required for ovulation induced upon mating. OAMB is expressed in the nervous and reproductive systems and has two isoforms (OAMB-AS and OAMB-K3 with distinct capacities to increase intracellular Ca2+ or intracellular Ca2+ and cAMP in vitro. Here, we investigated tissue specificity and intracellular signals required for OAMB's function in ovulation. Restricted OAMB expression in the adult oviduct epithelium, but not the nervous system, reinstated ovulation in oamb mutant females, in which either OAMB isoform was sufficient for the rescue. Consistently, strong immunoreactivities for both isoforms were observed in the wild-type oviduct epithelium. To delineate the cellular mechanism by which OAMB regulates ovulation, we explored protein kinases functionally interacting with OAMB by employing a new GAL4 driver with restricted expression in the oviduct epithelium. Conditional inhibition of Ca2+/Calmodulin-dependent protein kinase II (CaMKII, but not protein kinase A or C, in the oviduct epithelium inhibited ovulation. Moreover, constitutively active CaMKII, but not protein kinase A, expressed only in the adult oviduct epithelium fully rescued the oamb female's phenotype, demonstrating CaMKII as a major downstream molecule conveying the OAMB's ovulation signal. This is consistent with the ability of both OAMB isoforms, whose common intracellular signal in vitro is Ca2+, to reinstate ovulation in oamb females. These observations reveal the critical roles of the oviduct epithelium and its cellular components OAMB and CaMKII in ovulation. It is conceivable that the OAMB-mediated cellular activities stimulated upon mating are crucial for secretory activities suitable for egg

  16. Rat vas deferens SERCA2 is modulated by Ca{sup 2+}/calmodulin protein kinase II-mediated phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.B.R.; Muzi-Filho, H. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Valverde, R.H.F. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Quintas, L.E.M. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Noel, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Einicker-Lamas, M. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ (Brazil); Cunha, V.M.N. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)


    Ca{sup 2+} pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca{sup 2+}-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca{sup 2+} (Ca{sub 0.5} = 780 nM) and a low sensitivity to vanadate (IC{sub 50} = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca{sup 2+} and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca{sup 2+} accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca{sup 2+} and CaM, possibly via CaMKII, in a process that results in stimulation of Ca{sup 2+} pumping activity.

  17. Phosphorylation of calcium calmodulin-dependent protein kinase II following lateral fluid percussion brain injury in rats. (United States)

    Folkerts, Michael M; Parks, Elizabeth A; Dedman, John R; Kaetzel, Marcia A; Lyeth, Bruce G; Berman, Robert F


    Traumatic brain injury (TBI) can dramatically increase levels of intracellular calcium ([Ca(2+)](i)). One consequence of increased [Ca(2+)](i) would be altered activity and function of calcium-regulated proteins, including calcium-calmodulin-dependent protein kinase II (CaMKII), which is autophosphorylated on Thr(286)(pCaMKII(286)) in the presence of calcium and calmodulin. Therefore, we hypothesized that TBI would result in increased levels of pCaMKII(286), and that such increases would occur early after injury in brain regions known to be damaged following lateral fluid percussion TBI (i.e., hippocampus and cortex). In order to test this hypothesis, immunostaining of CaMKII was examined in rat hippocampus and cortex after lateral fluid percussion (LFP) injury using an antibody directed against pCaMKII(286). LFP injury produced a marked increase in pCaMKII(286) immunostaining in the hippocampus and overlying cortex 30 min after TBI. The pattern of increased immunostaining was uneven, and unexpectedly absent in some hippocampal CA3 pyramidal neurons. This suggests that phosphatase activity may also increase following TBI, resulting in dephosphorylation of pCaMKII(286) in subpopulations of CA3 pyramidal neurons. Western blotting confirmed a rapid increase in levels of pCaMKII(286) at 10 and 30 min after brain injury, and that it was transient and no longer significantly elevated when examined at 3, 8, and 24 h. These results demonstrate that TBI alters the autophosphorylation state of CaMKII, an important neuronal regulator of critical cell functions, including enzyme activities, cell structure, gene expression, and neuronal plasticity, and provide a molecular mechanism that is likely to contribute to cell injury and impaired plasticity after TBI.

  18. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses. (United States)

    Rodrigues, Sarina M; Farb, Claudia R; Bauer, Elizabeth P; LeDoux, Joseph E; Schafe, Glenn E


    Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in synaptic plasticity and memory formation in a variety of learning systems and species. The present experiments examined the role of CaMKII in the circuitry underlying pavlovian fear conditioning. First, we reveal by immunocytochemical and tract-tracing methods that alphaCaMKII is postsynaptic to auditory thalamic inputs and colocalized with the NR2B subunit of the NMDA receptor. Furthermore, we show that fear conditioning results in an increase of the autophosphorylated (active) form of alphaCaMKII in lateral amygdala (LA) spines. Next, we demonstrate that intra-amygdala infusion of a CaMK inhibitor, 1-[NO-bis-1,5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl-4-phenylpiperazine, KN-62, dose-dependently impairs the acquisition, but not the expression, of auditory and contextual fear conditioning. Finally, in electrophysiological experiments, we demonstrate that an NMDA receptor-dependent form of long-term potentiation at thalamic input synapses to the LA is impaired by bath application of KN-62 in vitro. Together, the results of these experiments provide the first comprehensive view of the role of CaMKII in the amygdala during fear conditioning.

  19. Hyperexcitability and changes in activities of Ca2+/calmodulin-dependent kinase II and mitogen-activated protein kinase in the hippocampus of rats exposed to 1-bromopropane. (United States)

    Fueta, Yukiko; Fukunaga, Kohji; Ishidao, Toru; Hori, Hajime


    Chronic inhalation of 1-bromopropane (1-BP), a substitute of ozone-depleting chlorofluorocarbons, has been suspected of having central neurotoxicity (Clinical Neurology and Neurosurgery 101 (1999) 199; Journal of Occupational Health 44 (2002) 1) for humans. In animal experiments, 1-BP inhalation (1500 ppm) caused hyperexcitability in the CA1 and the dentate gyrus (DG) [Journal of Occupational Health 42 (2000) 149, Journal of Occupational Health 44 (2002) 156]. We studied whether the hyperexcitability is associated with changes of Ca2+/calmodulin-dependent kinase II (CaMKII), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC). Male Wistar rats were exposed to 1-BP for 6 hours in a day in an exposure chamber with a concentration of 700 ppm for 8 weeks. After the inhalation, paired-pulse ratios of field excitatory postsynaptic potentials and population spikes (PSs) were analyzed in the CA1 and DG of hippocampal slices. Control rats were then given fresh air in the inhalation chamber. Semiquantitative immunoblotting analyses of protein kinases using antibodies against active and conventional protein kinases were done using the whole hippocampus. A paired-pulse ratio of PS was increased at the 5 ms interpulse interval in the CA1 and at the 10-20 ms interpulse intervals in the DG. The amount of active MAPK and total amount of CaMKIIalpha and beta were significantly increased by 28, 29, and 46% compared to control, respectively, without any change in PKC activity. In contrast, the amount of active CaMKIIbeta was decreased to 78%. These results suggest that modifications of intracellular signaling cascades are associated with hyperexcitability that occurred in the hippocampal formation of rats exposed to the chronic inhalation of 1-BP.

  20. Behavioral modulation of neuronal calcium/calmodulin-dependent protein kinase II activity: differential effects on nicotine-induced spinal and supraspinal antinociception in mice. (United States)

    Damaj, M Imad


    Recent studies have implicated the involvement of Ca(2+)-dependent mechanisms, in particular calcium/calmodulin-dependent protein kinase II (CaM kinase II) in nicotine-induced antinociception using the tail-flick test. The spinal cord was suggested as a possible site of this involvement. The present study was undertaken to investigate the hypothesis that similar mechanisms exist for nicotine-induced antinociception in the hot-plate test, a response thought to be centrally mediated. In order to assess these mechanisms, i.c.v. administered CaM kinase II inhibitors were evaluated for their effects on antinociception produced by either i.c.v. or s.c. administration of nicotine in both tests. In addition, nicotine's analgesic effects were tested in mice lacking half of their CaM kinase II (CaM kinase II heterozygous) and compare it to their wild-type counterparts. Our results showed that although structurally unrelated CaM kinase II inhibitors blocked nicotine's effects in the tail-flick test in a dose-related manner, they failed to block the hot-plate responses. In addition, the antinociceptive effects of systemic nicotine in the tail-flick but not the hot-plate test were significantly reduced in CaM kinase II heterozygous mice. These observations indicate that in contrast to the tail-flick response, the mechanism of nicotine-induced antinociception in the hot-plate test is not mediated primarily via CaM kinase II-dependent mechanisms at the supraspinal level.

  1. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C by Ca2+/calmodulin-dependent protein kinase II inhibits DNA synthesis

    DEFF Research Database (Denmark)

    Maga, G; Mossi, R; Fischer, R


    that the PCNA binding domain is phosphorylated by the Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme required for cell cycle progression in eukaryotic cells. The DNA binding domain, on the other hand, is not phosphorylated. Phosphorylation by CaMKII reduces the binding of PCNA to RF......Replication factor C (RF-C) is a heteropentameric protein essential for DNA replication and DNA repair. It is a molecular matchmaker required for loading of the proliferating cell nuclear antigen (PCNA) sliding clamp onto double-strand DNA and for PCNA-dependent DNA synthesis by DNA polymerases...

  2. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.


    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  3. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    Directory of Open Access Journals (Sweden)

    Cong Haolong

    Full Text Available Enterovirus 71 (EV71 is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  4. Dual Regulation of a Chimeric Plant Serine/Threonine Kinase by Calcium and Calcium/Calmodulin (United States)

    Takezawa, D.; Ramachandiran, S.; Paranjape, V.; Poovaiah, B. W.


    A chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain was recently cloned from plants. The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substrates in a Ca(2+)/calmodulin-dependent manner. The calmodulin-binding region of CCAMK has similarity to the calmodulin-binding region of the alpha-subunit of multifunctional Ca(2+)/calmodulin-dependent protein kinase (CaMKII). CCaMK exhibits basal autophosphorylation at the threonine residue(s) (0.098 mol of P-32/mol) that is stimulated 3.4-fold by Ca(2+) (0.339 mol of P-32/mol), while calmodulin inhibits Ca(2+)-stimulated autophosphorylation to the basal level. A deletion mutant lacking the visinin-like domain did not show Ca(2+)-simulated autophosphorylation activity but retained Ca(2+)/calmodulin-dependent protein kinase activity at a reduced level. Ca(2+)-dependent mobility shift assays using E.coli-expressed protein from residues 358-520 revealed that Ca(2+) binds to the visinin-like domain. Studies with site-directed mutants of the visinin-like domain indicated that EF-hands II and III are crucial for Ca(2+)-induced conformational changes in the visinin-like domain. Autophosphorylation of CCaMK increases Ca(2+)/calmodulin-dependent protein kinase activity by about 5-fold, whereas it did not affect its C(2+)-independent activity. This report provides evidence for the existence of a protein kinase in plants that is modulated by Ca(2+) and Ca(2+)/calmodulin. The presence of a visinin-like Ca(2+)-binding domain in CCaMK adds an additional Ca(2+)-sensing mechanism not previously known to exist in the Ca(2+)/calmodulin-mediated signaling cascade in plants.

  5. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells (United States)

    Chi, Mengna; Evans, Hamish; Gilchrist, Jackson; Mayhew, Jack; Hoffman, Alexander; Pearsall, Elizabeth Ann; Jankowski, Helen; Brzozowski, Joshua Stephen; Skelding, Kathryn Anne


    Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional kinase that controls a range of cellular functions, including proliferation, differentiation and apoptosis. The biological properties of CaMKII are regulated by multi-site phosphorylation. However, the role that CaMKII phosphorylation plays in cancer cell metastasis has not been examined. We demonstrate herein that CaMKII expression and phosphorylation at T286 is increased in breast cancer when compared to normal breast tissue, and that increased CAMK2 mRNA is associated with poor breast cancer patient prognosis (worse overall and distant metastasis free survival). Additionally, we show that overexpression of WT, T286D and T286V forms of CaMKII in MDA-MB-231 and MCF-7 breast cancer cells increases invasion, migration and anchorage independent growth, and that overexpression of the T286D phosphomimic leads to a further increase in the invasive, migratory and anchorage independent growth capacity of these cells. Pharmacological inhibition of CaMKII decreases MDA-MB-231 migration and invasion. Furthermore, we demonstrate that overexpression of T286D, but not WT or T286V-CaMKII, leads to phosphorylation of FAK, STAT5a, and Akt. These results demonstrate a novel function for phosphorylation of CaMKII at T286 in the control of breast cancer metastasis, offering a promising target for the development of therapeutics to prevent breast cancer metastasis. PMID:27605043

  6. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures.

    Directory of Open Access Journals (Sweden)

    Qing Lu

    Full Text Available We have recently shown that p38MAP kinase (p38MAPK stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.

  7. Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission


    Slonimsky, John D.; Mattaliano, Mark D.; Moon, Jung-Il; Leslie C. Griffith; Birren, Susan J.


    Neurotrophins regulate sympathetic neuron cotransmission by modulating the activity-dependent release of norepinephrine and acetylcholine. Nerve growth factor promotes excitatory noradrenergic transmission, whereas brain-derived neurotrophic factor (BDNF), acting through the p75 receptor, increases inhibitory cholinergic transmission. This regulation of corelease by target-derived factors leads to the functional modulation of myocyte beat rate in neuron–myocyte cocultures. Calcium/calmodulin-...

  8. L-type calcium channels and calcium/calmodulin-dependent kinase II differentially mediate behaviors associated with nicotine withdrawal in mice. (United States)

    Jackson, K J; Damaj, M I


    Smoking is a widespread health problem. Because the nicotine withdrawal syndrome is a major contributor to continued smoking and relapse, it is important to understand the molecular and behavioral mechanisms of nicotine withdrawal to generate more effective smoking cessation therapies. Studies suggest a role for calcium-dependent mechanisms, such as L-type calcium channels and calcium/calmodulin-dependent protein kinase II (CaMKII), in the effects of nicotine dependence; however, the role of these mechanisms in nicotine-mediated behaviors is unclear. Thus, the goal of this study was to elucidate the role of L-type calcium channels and CaMKII in nicotine withdrawal behaviors. Using both pharmacological and genetic methods, our results show that L-type calcium channels are involved in physical, but not affective, nicotine withdrawal behaviors. Although our data do provide evidence of a role for CaMKII in nicotine withdrawal behaviors, our pharmacological and genetic assessments yielded different results concerning the specific role of the kinase. Pharmacological data suggest that CaMKII is involved in somatic signs and affective nicotine withdrawal, and activity level is decreased after nicotine withdrawal, whereas the genetic assessments yielded results suggesting that CaMKII is involved only in the anxiety-related response, yet the kinase activity may be increased after nicotine withdrawal; thus, future studies are necessary to clarify the precise behavioral specifics of the relevance of CaMKII in nicotine withdrawal behaviors. Overall, our data show that L-type calcium channels and CaMKII are relevant in nicotine withdrawal and differentially mediate nicotine withdrawal behaviors.

  9. Ca2+/calmodulin-dependent protein kinase II alpha is required for the initiation and maintenance of opioid-induced hyperalgesia. (United States)

    Chen, Yan; Yang, Cheng; Wang, Zaijie Jim


    Repeated administration of opioids not only leads to tolerance and dependence, but also results in nociceptive enhancement called opioid-induced hyperalgesia (OIH). Nociceptive mediators involved in OIH generation remain poorly understood. In the present study, we tested the hypothesis that Ca(2+)/calmodulin-depent protein kinase II (CaMKIIalpha) is critical for OIH. Opioid-induced hyperalgesia was produced by repeated morphine administration or pellet implantation in mice. Correlating with the development of tactile allodynia and thermal hyperalgesia, spinal CaMKIIalpha activity was significantly increased in OIH. KN93, a CaMKII inhibitor, dose- and time-dependently reversed OIH and CaMKII activation without impairing locomotor coordination. To elucidate the specific CaMKII isoform involved, we targeted CaMKIIalpha by using small interfering RNA and demonstrated that knockdown of spinal CaMKIIalpha attenuated OIH. Furthermore, morphine failed to induce OIH in CaMKIIalpha(T286A) point mutant mice, although wild-type littermate mice developed robust OIH after repeated treatments with morphine. These data implicate, for the first time, an essential role of CaMKIIalpha as a cellular mechanism leading to and maintaining opioid-induced hyperalgesia.

  10. Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. (United States)

    Shioda, Norifumi; Beppu, Hideyuki; Fukuda, Takaichi; Li, En; Kitajima, Isao; Fukunaga, Kohji


    In humans, mutations in the gene encoding ATRX, a chromatin remodeling protein of the sucrose-nonfermenting 2 family, cause several mental retardation disorders, including α-thalassemia X-linked mental retardation syndrome. We generated ATRX mutant mice lacking exon 2 (ATRX(ΔE2) mice), a mutation that mimics exon 2 mutations seen in human patients and associated with milder forms of retardation. ATRX(ΔE2) mice exhibited abnormal dendritic spine formation in the medial prefrontal cortex (mPFC). Consistent with other mouse models of mental retardation, ATRX(ΔE2) mice exhibited longer and thinner dendritic spines compared with wild-type mice without changes in spine number. Interestingly, aberrant increased calcium/calmodulin-dependent protein kinase II (CaMKII) activity was observed in the mPFC of ATRX(ΔE2) mice. Increased CaMKII autophosphorylation and activity were associated with increased phosphorylation of the Rac1-guanine nucleotide exchange factors (GEFs) T-cell lymphoma invasion and metastasis 1 (Tiam1) and kalirin-7, known substrates of CaMKII. We confirmed increased phosphorylation of p21-activated kinases (PAKs) in mPFC extracts. Furthermore, reduced protein expression and activity of protein phosphatase 1 (PP1) was evident in the mPFC of ATRX(ΔE2) mice. In cultured cortical neurons, PP1 inhibition by okadaic acid increased CaMKII-dependent Tiam1 and kalirin-7 phosphorylation. Together, our data strongly suggest that aberrant CaMKII activation likely mediates abnormal spine formation in the mPFC. Such morphological changes plus elevated Rac1-GEF/PAK signaling seen in ATRX(ΔE2) mice may contribute to mental retardation syndromes seen in human patients.

  11. Beta 2 subunit-containing nicotinic receptors mediate acute nicotine-induced activation of calcium/calmodulin-dependent protein kinase II-dependent pathways in vivo. (United States)

    Jackson, K J; Walters, C L; Damaj, M I


    Nicotine is the addictive component of tobacco, and successful smoking cessation therapies must address the various processes that contribute to nicotine addiction. Thus, understanding the nicotinic acetylcholine receptor (nAChR) subtypes and subsequent molecular cascades activated after nicotine exposure is of the utmost importance in understanding the progression of nicotine dependence. One possible candidate is the calcium/calmodulin-dependent protein kinase II (CaMKII) pathway. Substrates of this kinase include the vesicle-associated protein synapsin I and the transcription factor cAMP response element-binding protein (CREB). The goal of these studies was to examine these postreceptor mechanisms after acute nicotine treatment in vivo. We first show that administration of nicotine increases CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), and amygdala. In beta2 nAChR knockout (KO) mice, nicotine does not induce an increase in kinase activity, phosphorylated (p)Synapsin I, or pCREB. In contrast, alpha7 nAChR KO mice show nicotine-induced increases in CaMKII activity and pCREB, similar to their wild-type littermates. Moreover, we show that when animals are pretreated with the CaMKII inhibitors 4-[(2S)-2-[(5-isoquinolinylsulfonyl) methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl]phenyl isoquinolinesulfonic acid ester (KN-62) and N-[2-[[[3-(4-chlorophenyl)-2 propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide (KN-93), nicotine-induced increase in the kinase activity and pCREB was attenuated in the VTA and NAc, whereas pretreatment with (2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, phosphate) (KN-92), the inactive analog, did not alter the nicotine-induced increase in pCREB. Taken together, these data suggest that the nicotine-induced increase in CaMKII activity may correlate with the nicotine-induced increase in pSynapsin I and pCREB in the VTA and NAc via beta2

  12. Possible interaction of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II on reversal of spatial memory impairment induced by morphine. (United States)

    Farahmandfar, Maryam; Kadivar, Mehdi; Naghdi, Nasser


    The opioid system plays an important role in learning and memory by modulation of different molecules in the brain. The aim of the present study was to investigate the role of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II (CaMKII) on the morphine-induced modulation of spatial memory consolidation in male rats. Spatial memory was assessed in Morris water maze task by a single training session of eight trials followed by a probe trial and visible test 24h later. Our data indicated that post-training administration of L-arginine, a nitric oxide precursor (6 and 9 µg/rat, intra-CA1) significantly decreased amnesia induced by morphine (10 mg/kg) in spatial memory consolidation. A reversal effect of L-arginine on morphine-induced amnesia prevented by KN-93 (N-[2-(N-(4-chlorocinnamyl)-N-methylaminomethyl) phenyl]-N-[2-hydroxyethyl] methoxybenzenesulfnamide), CaMKII inhibitor, (10 nmol/0.5 µl/site). In addition, post-training injection of L-NAME, (NG-nitro-L-arginine methyl ester), a nitric oxide synthase (NOS) inhibitor (10 and 15 µg/rat) or KN-93 (10 nmol/0.5 µl/site) with lower dose of morphine (2.5 mg/kg), which did not induce amnesia by itself, caused inhibition of memory consolidation. We also showed that co-administration of L-arginine (9 µg/rat) and morphine (10 mg/kg) significantly increased CaMKII activity in the rat hippocampus. On the other hand, administration of L-NAME (10 µg/rat) led to a decrease in the haippocampal activity of CaMKII in morphine-treated (2.5mg/kg) animals. These results indicate that acute single exposure to morphine can modulate consolidation of spatial memory, which may be mediated by a hippocampal nitrergic system and CaMKII activity.

  13. Age-dependent targeting of protein phosphatase 1 to Ca2+/calmodulin-dependent protein kinase II by spinophilin in mouse striatum.

    Directory of Open Access Journals (Sweden)

    Anthony J Baucum

    Full Text Available Mechanisms underlying age-dependent changes of dendritic spines on striatal medium spiny neurons are poorly understood. Spinophilin is an F-actin- and protein phosphatase 1 (PP1-binding protein that targets PP1 to multiple downstream effectors to modulate dendritic spine morphology and function. We found that calcium/calmodulin-dependent protein kinase II (CaMKII directly and indirectly associates with N- and C-terminal domains of spinophilin, but F-actin can displace CaMKII from the N-terminal domain. Spinophilin co-localizes PP1 with CaMKII on the F-actin cytoskeleton in heterologous cells, and spinophilin co-localizes with synaptic CaMKII in neuronal cultures. Thr286 autophosphorylation enhances the binding of CaMKII to spinophilin in vitro and in vivo. Although there is no change in total levels of Thr286 autophosphorylation, maturation from postnatal day 21 into adulthood robustly enhances the levels of CaMKII that co-immunoprecipitate with spinophilin from mouse striatal extracts. Moreover, N- and C-terminal domain fragments of spinophilin bind more CaMKII from adult vs. postnatal day 21 striatal lysates. Total levels of other proteins that interact with C-terminal domains of spinophilin decrease during maturation, perhaps reducing competition for CaMKII binding to the C-terminal domain. In contrast, total levels of α-internexin and binding of α-internexin to the spinophilin N-terminal domain increases with maturation, perhaps bridging an indirect interaction with CaMKII. Moreover, there is an increase in the levels of myosin Va, α-internexin, spinophilin, and PP1 in striatal CaMKII immune complexes isolated from adult and aged mice compared to those from postnatal day 21. These changes in spinophilin/CaMKII interactomes may contribute to changes in striatal dendritic spine density, morphology, and function during normal postnatal maturation and aging.

  14. Regulation of voltage-gated Ca(2+) currents by Ca(2+)/calmodulin-dependent protein kinase II in resting sensory neurons. (United States)

    Kostic, Sandra; Pan, Bin; Guo, Yuan; Yu, Hongwei; Sapunar, Damir; Kwok, Wai-Meng; Hudmon, Andy; Wu, Hsiang-En; Hogan, Quinn H


    Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0μM) reduced depolarization-induced ICa by 16-30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by the efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent.

  15. The Ca²⁺-calmodulin-Ca²⁺/calmodulin-dependent protein kinase II signaling pathway is involved in oxidative stress-induced mitochondrial permeability transition and apoptosis in isolated rat hepatocytes. (United States)

    Toledo, Flavia D; Pérez, Leonardo M; Basiglio, Cecilia L; Ochoa, Justina E; Sanchez Pozzi, Enrique J; Roma, Marcelo G


    Oxidative stress (OS) is a common event in most hepatopathies, leading to mitochondrial permeability transition pore (MPTP) formation and further exacerbation of both OS from mitochondrial origin and cell death. Intracellular Ca²⁺ increase plays a permissive role in these events, but the underlying mechanisms are poorly known. We examined in primary cultured rat hepatocytes whether the Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling pathway is involved in this process, by using tert-butyl hydroperoxide (tBOOH) as a pro-oxidant, model compound. tBOOH (500 μM, 15 min) induced MPTP formation, as assessed by measuring mitochondrial membrane depolarization as a surrogate marker, and increased lipid peroxidation in a cyclosporin A (CsA)-sensitive manner, revealing the involvement of MPTPs in tBOOH-induced radical oxygen species (ROS) formation. Intracellular Ca²⁺ sequestration with BAPTA/AM, CaM blockage with W7 or trifluoperazine, and CaMKII inhibition with KN-62 all fully prevented tBOOH-induced MPTP opening and reduced tBOOH-induced lipid peroxidation to a similar extent to CsA, suggesting that Ca²⁺/CaM/CaMKII signaling pathway fully mediates MPTP-mediated mitochondrial ROS generation. tBOOH-induced apoptosis, as shown by flow cytometry of annexin V/propidium iodide, mitochondrial release of cytochrome c, activation of caspase-3 and increase in the Bax-to-Bcl-xL ratio, and the Ca²⁺/CaM/CaMKII signaling antagonists fully prevented these effects. Intramitochondrial CaM and CaMKII were partially involved in tBOOH-induced MPTP formation, since W7 and KN-62 both attenuated the tBOOH-induced, MPTP-mediated swelling of isolated mitochondria. We concluded that Ca²⁺/CaM/CaMKII signaling pathway is a key mediator of OS-induced MPTP formation and the subsequent exacerbation of OS from mitochondrial origin and apoptotic cell death.

  16. Membrane actions of 1α,25(OH)2D3 are mediated by Ca(2+)/calmodulin-dependent protein kinase II in bone and cartilage cells. (United States)

    Doroudi, Maryam; Plaisance, Marc C; Boyan, Barbara D; Schwartz, Zvi


    1α,25(OH)2D3 regulates osteoblasts and chondrocytes via its membrane-associated receptor, protein disulfide isomerase A3 (Pdia3) in caveolae. 1α,25(OH)2D3 binding to Pdia3 leads to phospholipase-A2 (PLA2)-activating protein (PLAA) activation, stimulating cytosolic PLA2 and resulting in prostaglandin E2 (PGE2) release and PKCα activation, subsequently stimulating differentiation. However, how PLAA transmits the signal to cPLA2 is unknown. Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) activation is required for PLA2 activation in vascular smooth muscle cells, suggesting a similar role in 1α,25(OH)2D3-dependent signaling. The aim of the present study is to evaluate the roles of CaM and CaMKII as mediators of 1α,25(OH)2D3-stimulated PLAA-dependent activation of cPLA2 and PKCα, and downstream biological effects. The results indicated that 1α,25(OH)2D3 and PLAA-peptide increased CaMKII activity within 9 min. Silencing Cav-1, Pdia3 or Plaa in osteoblasts suppressed this effect. Similarly, antibodies against Plaa or Pdia3 blocked 1α,25(OH)2D3-dependent CaMKII. Caveolae disruption abolished activation of CaMKII by 1α,25(OH)2D3 or PLAA. CaMKII-specific and CaM-specific inhibitors reduced cPLA2 and PKC activities, PGE2 release and osteoblast maturation markers in response to 1α,25(OH)2D3. Camk2a-silenced but not Camk2b-silenced osteoblasts showed comparable effects. Immunoprecipitation showed increased interaction of CaM and PLAA in response to 1α,25(OH)2D3. The results indicate that membrane actions of 1α,25(OH)2D3 via Pdia3 triggered the interaction between PLAA and CaM, leading to dissociation of CaM from caveolae, activation of CaMKII, and downstream PLA2 activation, and suggest that CaMKII plays a major role in membrane-mediated actions of 1α,25(OH)2D3.

  17. Phosphorylation at Ser²⁶ in the ATP-binding site of Ca²⁺/calmodulin-dependent kinase II as a mechanism for switching off the kinase activity. (United States)

    Yilmaz, Mehtap; Gangopadhyay, Samudra S; Leavis, Paul; Grabarek, Zenon; Morgan, Kathleen G


    CaMKII (Ca²⁺/calmodulin-dependent kinase II) is a serine/threonine phosphotransferase that is capable of long-term retention of activity due to autophosphorylation at a specific threonine residue within each subunit of its oligomeric structure. The γ isoform of CaMKII is a significant regulator of vascular contractility. Here, we show that phosphorylation of CaMKII γ at Ser²⁶, a residue located within the ATP-binding site, terminates the sustained activity of the enzyme. To test the physiological importance of phosphorylation at Ser²⁶, we generated a phosphospecific Ser²⁶ antibody and demonstrated an increase in Ser²⁶ phosphorylation upon depolarization and contraction of blood vessels. To determine if the phosphorylation of Ser²⁶ affects the kinase activity, we mutated Ser²⁶ to alanine or aspartic acid. The S26D mutation mimicking the phosphorylated state of CaMKII causes a dramatic decrease in Thr²⁸⁷ autophosphorylation levels and greatly reduces the catalytic activity towards an exogenous substrate (autocamtide-3), whereas the S26A mutation has no effect. These data combined with molecular modelling indicate that a negative charge at Ser²⁶ of CaMKII γ inhibits the catalytic activity of the enzyme towards its autophosphorylation site at Thr²⁸⁷ most probably by blocking ATP binding. We propose that Ser²⁶ phosphorylation constitutes an important mechanism for switching off CaMKII activity.

  18. Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD. (United States)

    Sosanya, Natasha M; Cacheaux, Luisa P; Workman, Emily R; Niere, Farr; Perrone-Bizzozero, Nora I; Raab-Graham, Kimberly F


    The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the "capture" of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the "tag" is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca(2+)/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner.

  19. Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD* (United States)

    Sosanya, Natasha M.; Cacheaux, Luisa P.; Workman, Emily R.; Niere, Farr; Perrone-Bizzozero, Nora I.; Raab-Graham, Kimberly F.


    The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the “capture” of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the “tag” is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner. PMID:25944900

  20. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Rodriguez-del Valle Nuri


    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  1. Beta2-containing nicotinic acetylcholine receptors mediate calcium/calmodulin-dependent protein kinase-II and synapsin I protein levels in the nucleus accumbens after nicotine withdrawal in mice. (United States)

    Jackson, Kia J; Imad Damaj, M


    Nicotinic acetylcholine receptors are calcium-permeable and the initial targets for nicotine. Studies suggest that calcium-dependent mechanisms mediate some behavioral responses to nicotine; however, the post-receptor calcium-dependent mechanisms associated with chronic nicotine and nicotine withdrawal remain unclear. The proteins calcium/calmodulin-dependent protein kinase II (CaMKII) and synapsin I are essential for neurotransmitter release and were shown to be involved in drug dependence. In the current study, using pharmacological techniques, we sought to (a) complement previously published behavioral findings from our lab indicating a role for calcium-dependent signaling in nicotine dependence and (b) expand on previously published acute biochemical and pharmacological findings indicating the relevance of calcium-dependent mechanisms in acute nicotine responses by evaluating the function of CaMKII and synapsin I after chronic nicotine and withdrawal in the nucleus accumbens, a brain region implicated in drug dependence. Male mice were chronically infused with nicotine for 14 days, and treated with the β2-selective antagonist dihydro-β-erythroidine (DHβE), or the α7 antagonist, methyllycaconitine citrate (MLA) 20min prior to dissection of the nucleus accumbens. Results show that phosphorylated and total CaMKII and synapsin I protein levels were significantly increased in the nucleus accumbens after chronic nicotine infusion, and reduced after treatment with DHβE, but not MLA. A spontaneous nicotine withdrawal assessment also revealed significant reductions in phosphorylated CaMKII and synapsin I levels 24h after cessation of nicotine treatment. Our findings suggest that post-receptor calcium-dependent mechanisms associated with nicotine withdrawal are mediated through β2-containing nicotinic receptors.

  2. Active Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII Regulates NMDA Receptor Mediated Postischemic Long-Term Potentiation (i-LTP by Promoting the Interaction between CaMKII and NMDA Receptors in Ischemia

    Directory of Open Access Journals (Sweden)

    Ning Wang


    Full Text Available Active calcium/calmodulin-dependent protein kinase II (CaMKII has been reported to take a critical role in the induction of long-term potentiation (LTP. Changes in CaMKII activity were detected in various ischemia models. It is tempting to know whether and how CaMKII takes a role in NMDA receptor (NMDAR-mediated postischemic long-term potentiation (NMDA i-LTP. Here, we monitored changes in NMDAR-mediated field excitatory postsynaptic potentials (NMDA fEPSPs at different time points following ischemia onset in vitro oxygen and glucose deprivation (OGD ischemia model. We found that 10 min OGD treatment induced significant i-LTP in NMDA fEPSPs, whereas shorter (3 min or longer (25 min OGD treatment failed to induce prominent NMDA i-LTP. CaMKII activity or CaMKII autophosphorylation displays a similar bifurcated trend at different time points following onset of ischemia both in vitro OGD or in vivo photothrombotic lesion (PT models, suggesting a correlation of increased CaMKII activity or CaMKII autophosphorylation with NMDA i-LTP. Disturbing the association between CaMKII and GluN2B subunit of NMDARs with short cell-permeable peptides Tat-GluN2B reversed NMDA i-LTP induced by OGD treatment. The results provide support to a notion that increased interaction between NMDAR and CaMKII following ischemia-induced increased CaMKII activity and autophosphorylation is essential for induction of NMDA i-LTP.

  3. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)


    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  4. Effects of selective inhibition of protein kinase C, cyclic AMP-dependent protein kinase, and Ca(2+)-calmodulin-dependent protein kinase on neurite development in cultured rat hippocampal neurons. (United States)

    Cabell, L; Audesirk, G


    A variety of experimental evidence suggests that calmodulin and protein kinases, especially protein kinase C, may participate in regulating neurite development in cultured neurons, particularly neurite initiation. However, the results are somewhat contradictory. Further, the roles of calmodulin and protein kinases on many aspects of neurite development, such as branching or elongation of axons vs dendrites, have not been extensively studied. Cultured embryonic rat hippocampal pyramidal neurons develop readily identifiable axons and dendrites. We used this culture system and the new generation of highly specific protein kinase inhibitors to investigate the roles of protein kinases and calmodulin in neurite development. Neurons were cultured for 2 days in the continuous presence of calphostin C (a specific inhibitor of protein kinase C), KT5720 (inhibitor of cyclic AMP-dependent protein kinase), KN62 (inhibitor of Ca(2+)-calmodulin-dependent protein kinase II), or calmidazolium (inhibitor of calmodulin), each at concentrations from approximately 1 to 10 times the concentration reported in the literature to inhibit each kinase by 50%. The effects of phorbol 12-myristate 13-acetate (an activator of protein kinase C) and 4 alpha-phorbol 12,13-didecanoate (an inactive phorbol ester) were also tested. At concentrations that had no effect on neuronal viability, calphostin C reduced neurite initiation and axon branching without significantly affecting the number of dendrites per neuron, dendrite branching, dendrite length, or axon length. Phorbol 12-myristate 13-acetate increased axon branching and the number of dendrites per cell, compared to the inactive 4 alpha-phorbol 12,13-didecanoate. KT5720 inhibited only axon branching. KN62 reduced axon length, the number of dendrites per neuron, and both axon and dendrite branching. At low concentrations, calmidazolium had no effect on any aspect of neurite development, but at high concentrations, calmidazolium inhibited every

  5. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase (United States)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.


    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  6. Plant chimeric Ca2+/Calmodulin-dependent protein kinase. Role of the neural visinin-like domain in regulating autophosphorylation and calmodulin affinity (United States)

    Sathyanarayanan, P. V.; Cremo, C. R.; Poovaiah, B. W.


    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.

  7. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat's Hippocampus during Morphine Withdrawal


    Ahmadi, Shamseddin; Amiri, Shahin; Rafieenia, Fatemeh; Rostamzadeh, Jalal


    Introduction Calcium/calmodulin-dependent protein kinase II (CaMKII) which is highly expressed in the hippocampus is known to play a pivotal role in reward-related memories and morphine dependence. Methods In the present study, repeated morphine injections once daily for 7 days was done to induce morphine tolerance in male Wistar rats, after which gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hippocampus was evaluated upon discontinuation of morphine injection over 21 days o...

  8. Ca2+/Calmodulin and Apo-Calmodulin Both Bind to and Enhance the Tyrosine Kinase Activity of c-Src.

    Directory of Open Access Journals (Sweden)

    Silviya R Stateva

    Full Text Available Src family non-receptor tyrosine kinases play a prominent role in multiple cellular processes, including: cell proliferation, differentiation, cell survival, stress response, and cell adhesion and migration, among others. And when deregulated by mutations, overexpression, and/or the arrival of faulty incoming signals, its hyperactivity contributes to the development of hematological and solid tumors. c-Src is a prototypical member of this family of kinases, which is highly regulated by a set of phosphorylation events. Other factor contributing to the regulation of Src activity appears to be mediated by the Ca2+ signal generated in cells by different effectors, where the Ca2+-receptor protein calmodulin (CaM plays a key role. In this report we demonstrate that CaM directly interacts with Src in both Ca2+-dependent and Ca2+-independent manners in vitro and in living cells, and that the CaM antagonist N-(6-aminohexyl-5-chloro-1-naphthalenesulfonamide (W-7 inhibits the activation of this kinase induced by the upstream activation of the epidermal growth factor receptor (EGFR, in human carcinoma epidermoide A431 cells, and by hydrogen peroxide-induced oxidative stress, in both A431 cells and human breast adenocarcinoma SK-BR-3 cells. Furthermore, we show that the Ca2+/CaM complex strongly activates the auto-phosphorylation and tyrosine kinase activity of c-Src toward exogenous substrates, but most relevantly and for the first time, we demonstrate that Ca2+-free CaM (apo-CaM exerts a far higher activatory action on Src auto-phosphorylation and kinase activity toward exogenous substrates than the one exerted by the Ca2+/CaM complex. This suggests that a transient increase in the cytosolic concentration of free Ca2+ is not an absolute requirement for CaM-mediated activation of Src in living cells, and that a direct regulation of Src by apo-CaM could be inferred.

  9. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan


    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (= Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca 2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. © 2012 Chen et al.

  10. Immunohistochemical locali- zation of Ca2+/calmodulin- dependent kinase in tobacco

    Institute of Scientific and Technical Information of China (English)


    The existence of Ca2+/calmodulin-dependent kinase (CaM kinase, CaMK) in tobacco is verified immuno- logically and its distribution in different tissues of tobacco is studied. It has been demonstrated that CaMK is mainly distributed in early developing anthers, developing ovules and embryos, lateral root primordium, apical meristem and leaf primordium of buds and mesophyll cells and developing vascular bundles of leaves. There is enormous CaM kinase distributed in leaf epidermis fair cells and guard cells of stomas too. Little kinase is found in mature stem or root cells. The distribution properties of CaM kinase in tobacco are consistent with those of CaM, suggesting that there exists the Ca2+ signal transduction pathway mediated by CaM kinase in tobacco and it plays an important role in the plant growth and development.

  11. Characterization of a Toxoplasma gondii calcium calmodulin-dependent protein kinase homolog


    Kato, Kentaro; Sugi, Tatsuki; Takemae, Hitoshi; Takano, Ryo; Gong, Haiyan; Ishiwa, Akiko; Horimoto, Taisuke; Akashi, Hiroomi


    Background Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and a major pathogen of animals and immunocompromised humans, in whom it causes encephalitis. Understanding the mechanism of tachyzoite invasion is important for the discovery of new drug targets and may serve as a model for the study of other apicomplexan parasites. We previously showed that Plasmodium falciparum expresses a homolog of human calcium calmodulin-dependent protein kinase (CaMK) that is ...

  12. Ca2+-dependent inhibition of G protein-coupled receptor kinase 2 by calmodulin. (United States)

    Haga, K; Tsuga, H; Haga, T


    Agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptor m2 subtypes (m2 receptors) or rhodopsin by G protein-coupled receptor kinase 2 (GRK2) was found to be inhibited by calmodulin in a Ca2+-dependent manner. The phosphorylation was fully inhibited in the absence of G protein betagamma subunits and partially inhibited in the presence of betagamma subunits. The dose-response curve for stimulation by betagamma subunits of the m2 and rhodopsin phosphorylation was shifted to the higher concentration of betagamma subunits by addition of Ca2+-calmodulin. The phosphorylation by GRK2 of a glutathione S-transferase fusion protein containing a peptide corresponding to the central part of the third intracellular loop of m2 receptors (I3-GST) was not affected by Ca2+-calmodulin in the presence or absence of betagamma subunits, but the agonist-dependent stimulation of I3-GST phosphorylation by an I3-deleted m2 receptor mutant in the presence of betagamma subunits was suppressed by Ca2+-calmodulin. These results indicate that Ca2+-calmodulin does not directly interact with the catalytic site of GRK2 but inhibits the kinase activity of GRK2 by interfering with the activation of GRK2 by agonist-bound m2 receptors and G protein betagamma subunits. In agreement with the assumption that GRK2 activity is suppressed by the increase in intracellular Ca2+, the sequestration of m2 receptors expressed in Chinese hamster ovary cells was found to be attenuated by the treatment with a Ca2+ ionophore, A23187.

  13. Calcium/calmodulin-dependent protein kinase IV mediates acute nicotine-induced antinociception in acute thermal pain tests. (United States)

    Jackson, Kia J; Damaj, Mohamad I


    Calcium-activated second messengers such as calcium/calmodulin-dependent protein kinase II have been implicated in drug-induced antinociception. The less abundant calcium-activated second messenger, calcium/calmodulin-dependent protein kinase IV (CaMKIV), mediates emotional responses to pain and tolerance to morphine analgesia but its role in nicotine-mediated antinociception is currently unknown. The goal of this study was to evaluate the role of CaMKIV in the acute effects of nicotine, primarily acute nicotine-induced antinociception. CaMKIV knockout (-/-), heterozygote (+/-), and wild-type (+/+) mice were injected with various doses of nicotine and evaluated in a battery of tests, including the tail-flick and hot-plate tests for antinociception, body temperature, and locomotor activity. Our results show a genotype-dependent reduction in tail-flick and hot-plate latency in CaMKIV (+/-) and (-/-) mice after acute nicotine treatment, whereas no difference was observed between genotypes in the body temperature and locomotor activity assessments. The results of this study support a role for CaMKIV in acute nicotine-induced spinal and supraspinal pain mechanisms, and further implicate involvement of calcium-dependent mechanisms in drug-induced antinociception.

  14. Purification and characterization of a Ca2+ -dependent/calmodulin-stimulated protein kinase from moss chloronema cells

    Indian Academy of Sciences (India)

    Jacinta S D’souza; Man Mohan Johri


    We have demonstrated the presence of a Ca2+-dependent/calmodulin-stimulated protein kinase (PK) in chloronema cells of the moss Funaria hygrometrica. The kinase, with a molecular mass of 70,000 daltons (PK70), was purified to homogeneity using ammonium sulphate fractionation, DEAE-cellulose chromatography, and calmodulin (CaM)-agarose affinity chromatography. The kinase activity was stimulated at a concentration of 50 M free Ca2+, and was further enhanced 3–5-fold with exogenously added 3–1000 nm moss calmodulin (CaM). Autophosphorylation was also stimulated with Ca2+ and CaM. Under in vitro conditions, PK70 phosphorylated preferentially lysine-rich substrates such as HIIIS and HVS. This PK shares epitopes with the maize Ca2+-dependent/calmodulin-stimulated PK (CCaMK) and also exhibits biochemical properties similar to the maize, lily, and tobacco CCaMK. We have characterized it as a moss CCaMK.

  15. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase (United States)

    Sathyanarayanan, P. V.; Poovaiah, B. W.


    Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.

  16. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation.

    Directory of Open Access Journals (Sweden)

    Peter Rellos

    Full Text Available UNLABELLED: Long-term potentiation (LTP, a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM-dependent kinase II (CaMKII. CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.

  17. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains (United States)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.


    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  18. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain (United States)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.


    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  19. Cloning and Characterization of a Homologous Ca2+/Calmodulin-Dependent Protein Kinase PSKH1 from Pearl Oyster Pinctada fucata

    Institute of Scientific and Technical Information of China (English)

    DAI Yiping; XIE Liping; XIONG Xunhao; CHEN Lei; FAN Weimin; ZHANG Rongqing


    Many of the effects of Ca2+ signaling are mediated through the Ca2+/calmodulin complex and its acceptors, the Ca2+/calmodulin-dependent protein kinases, including PSKH1. Studies of the proteins involved in the calcium metabolism in oysters will help elucidate the pearl formation mechanism. This paper describes a full-length PSKH1 cDNA isolated from pearl oyster Pinctada fucata. Oyster PSKH1 shares 65% homology with human PSKH1 and 48% similarity with rat CaM kinase I in the amino acid sequence, and contains a calmodulin-binding domain. The results of semi-quantitative reverse transcription-polymerase chain reaction and in situ hybridization revealed that oyster PSKH1 mRNA is highly expressed in the outer epithelial cells of the mantle pallial and in the gill epithelial cells. These studies provide important information describing the complex Ca2+ signaling mechanism in oyster calcium metabolism.

  20. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. (United States)

    Love, Nick R; Pollak, Nadine; Dölle, Christian; Niere, Marc; Chen, Yaoyao; Oliveri, Paola; Amaya, Enrique; Patel, Sandip; Ziegler, Mathias


    Nicotinamide adenine dinucleotide phosphate (NADP) is a critical cofactor during metabolism, calcium signaling, and oxidative defense, yet how animals regulate their NADP pools in vivo and how NADP-synthesizing enzymes are regulated have long remained unknown. Here we show that expression of Nadk, an NAD(+) kinase-encoding gene, governs NADP biosynthesis in vivo and is essential for development in Xenopus frog embryos. Unexpectedly, we found that embryonic Nadk expression is dynamic, showing cell type-specific up-regulation during both frog and sea urchin embryogenesis. We analyzed the NAD kinases (NADKs) of a variety of deuterostome animals, finding two conserved internal domains forming a catalytic core but a highly divergent N terminus. One type of N terminus (found in basal species such as the sea urchin) mediates direct catalytic activation of NADK by Ca(2+)/calmodulin (CaM), whereas the other (typical for vertebrates) is phosphorylated by a CaM kinase-dependent mechanism. This work indicates that animal NADKs govern NADP biosynthesis in vivo and are regulated by evolutionarily divergent and conserved CaM-dependent mechanisms.

  1. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha (United States)

    Wang, W.; Poovaiah, B. W.


    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  2. Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Keizo Takao

    Full Text Available Calcium-calmodulin dependent protein kinase IV (CaMKIV is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency.

  3. Kinetics of interaction of the myristoylated alanine-rich C kinase substrate, membranes, and calmodulin. (United States)

    Arbuzova, A; Wang, J; Murray, D; Jacob, J; Cafiso, D S; McLaughlin, S


    Membrane binding of the myristoylated alanine-rich C kinase substrate (MARCKS) requires both its myristate chain and basic "effector" region. Previous studies with a peptide corresponding to the effector region, MARCKS-(151-175), showed that the 13 basic residues interact electrostatically with acidic lipids and that the 5 hydrophobic phenylalanine residues penetrate the polar head group region of the bilayer. Here we describe the kinetics of the membrane binding of fluorescent (acrylodan-labeled) peptides measured with a stopped-flow technique. Even though the peptide penetrates the polar head group region, the association of MARCKS-(151-175) with membranes is extremely rapid; association occurs with a diffusion-limited association rate constant. For example, kon = 10(11) M-1 s-1 for the peptide binding to 100-nm diameter phospholipid vesicles. As expected theoretically, kon is independent of factors that affect the molar partition coefficient, such as the mole fraction of acidic lipid in the vesicle and the salt concentration. The dissociation rate constant (koff) is approximately 10 s-1 (lifetime = 0.1 s) for vesicles with 10% acidic lipid in 100 mM KCl. Ca2+-calmodulin (Ca2+.CaM) decreases markedly the lifetime of the peptide on vesicles, e.g. from 0.1 to 0.01 s in the presence of 5 micrM Ca2+.CaM. Our results suggest that Ca2+.CaM collides with the membrane-bound MARCKS-(151-175) peptide and pulls the peptide off rapidly. We discuss the biological implications of this switch mechanism, speculating that an increase in the level of Ca2+-calmodulin could rapidly release phosphatidylinositol 4, 5-bisphosphate that previous work has suggested is sequestered in lateral domains formed by MARCKS and MARCKS-(151-175).

  4. A new calmodulin-binding motif for inositol 1,4,5-trisphosphate 3-kinase regulation. (United States)

    Franco-Echevarría, Elsa; Baños-Sanz, Jose I; Monterroso, Begoña; Round, Adam; Sanz-Aparicio, Julia; González, Beatriz


    IP3-3K [Ins(1,4,5)P3 3-kinase] is a key enzyme that catalyses the synthesis of Ins(1,3,4,5)P4, using Ins(1,4,5)P3 and ATP as substrates. Both inositides, substrate and product, present crucial roles in the cell. Ins(1,4,5)P3 is a key point in Ca2+ metabolism that promotes Ca2+ release from intracellular stores and together with Ins(1,3,4,5)P4 regulates Ca2+ homoeostasis. In addition, Ins(1,3,4,5)P4 is involved in immune cell development. It has been proved that Ca2+/CaM (calmodulin) regulates the activity of IP3-3K, via direct interaction between both enzymes. Although we have extensive structural knowledge of the kinase domains of the three IP3-3K isoforms, no structural information is available about the interaction between IP3-3K and Ca2+/CaM. In the present paper we describe the crystal structure of the complex between human Ca2+/CaM and the CaM-binding region of human IP3-3K isoform A (residues 158-183) and propose a model for a complex including the kinase domain. The structure obtained allowed us to identify all of the key residues involved in the interaction, which have been evaluated by site-directed mutagenesis, pull-down and fluorescence anisotropy experiments. The results allowed the identification of a new CaM-binding motif, expanding our knowledge about how CaM interacts with its partners.

  5. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik


    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed....... Furthermore, the effect of exercise duration and intensity on skeletal muscle CaMKII activity and phosphorylation of downstream targets was examined. Eight healthy men exercised at ~67% of peak pulmonary O2 uptake (VO2peak) with muscle samples taken at rest and after 1, 10, 30, 60 and 90 min of exercise. Ten...... other men exercised for three consecutive 10 min bouts at 35%, 60% and 85% VO2peak with muscle samples taken at rest, at the end of each interval and 30 min post-exercise. There was a rapid and transient increase in autonomous CaMKII activity and CaMKII phosphorylation at Thr287 in skeletal muscle...

  6. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Institute of Scientific and Technical Information of China (English)

    Shucheng Xu


     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  7. Affinity-tagged phosphorylation assay by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (ATPA-MALDI): application to calcium/calmodulin-dependent protein kinase. (United States)

    Kinumi, Tomoya; Niki, Etsuo; Shigeri, Yasushi; Matsumoto, Hiroyuki


    A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based kinase assay using a peptide substrate tagged with a biotinyl group has been developed. The peptide moiety was designed to serve as an efficient substrate for calcium/calmodulin-dependent protein kinase II, based on the in vivo phosphorylation site of phosrestin I, a Drosophila homolog of arrestin. In the assay, the quantitative relationship was determined from the ratio of the peak areas between the two peaks respectively representing the unphosphorylated and the phosphorylated substrate. Attempts to assay phosphorylated peptides directly from the reaction mixture, gave inaccurate results because of the high noise level caused by the presence of salts and detergents. In contrast, after purifying the substrate peptides with the biotin affinity tag using streptavidin-coated magnetic beads, peak areas accurately represented the ratio between the unphosphorylated and phosphorylated peptide. By changing the substrate peptide to a peptide sequence that serves as a kinase substrate, it is expected that an efficient non-radioactive protein kinase assay using MALDI-TOF MS can be developed for any type of protein kinase. We call this technique "Affinity-Tagged Phosphorylation Assay by MALDI-TOF MS (ATPA-MALDI)." ATPA-MALDI should serve as a quick and efficient non-radioactive protein kinase assay by MALDI-TOF MS.

  8. Phosphorylation of anchoring protein by calmodulin protein kinase associated to the sarcoplasmic reticulum of rabbit fast-twitch muscle. (United States)

    Damiani, E; Sacchetto, R; Margreth, A


    Regulatory phosphorylation of phospholamban and of SR Ca(2+)-ATPase SERCA2a isoform by endogenous CaM-K II in slow-twitch skeletal and cardiac sarcoplasmic reticulum (SR) is well documented, but much less is known of the exact functional role of CaM K II in fast-twitch muscle SR. Recently, it was shown that RNA splicing of brain-specific alpha CaM K II, gives rise to a truncated protein (alpha KAP), consisting mainly of the association domain, serving to anchor CaM K II to SR membrane in rat skeletal muscle [Bayer, K.-U., et al. (1998) EMBO J. 19, 5598-5605]. In the present study, we searched for the presence of alpha KAP in sucrose-density purified SR membrane fractions from representative fast-twitch and slow-twitch limb muscles, both of the rabbit and the rat, using immunoblot techniques and antibody directed against the association domain of alpha CaM K II. Putative alpha KAP was immunodetected as a 23-kDa electrophoretic component on SDS-PAGE of the isolated SR from fast-twitch but not from slow-twitch muscle, and was further identified as a specific substrate of endogenous CaM K II, in the rabbit. Immunodetected, (32)P-labeled, non-calmodulin binding protein, behaved as a single 23-kDa protein species under several electrophoretic conditions. The 23-kDa protein, with defined properties, was isolated as a complex with 60-kDa delta CaM K II isoform, by sucrose-density sedimentation analysis. Moreover, we show here that putative alphaKAP, in spite of its inability to bind CaM in ligand blot overlay, co-eluted with delta CaM K II from CaM-affinity columns. That raises the question of whether CaM K II-mediated phosphorylation of alpha KAP and triadin together might be involved in a molecular signaling pathway important for SR Ca(2+)-release in fast-twitch muscle SR.

  9. Mediation of flowering by a calmodulin-dependent proteinkinase

    Institute of Scientific and Technical Information of China (English)

    LIANG; Shuping(


    [1]Roberts. D. M., Harmon, A. C., Calcium-modulated proteins: Targets of the intracellular signals in higher plants, Ann. Rev.Plant Physiol. Plant Mol. Biol., 1992, 43: 375-414.[2]Sun. D. Y.. Bian, Y. Q., Zhao, B. H. et al., The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division, Plant Cell Physiol., 1995, 36: 133-138.[3]Hrabak, E M., Dickmann, L. J., Satterlee, J. S. et al., Characterization of eight new members of the calmodulin-like domain protein kinase gene family from A rabidopsis thaliana, Plant Mol. Biol., 1996, 31:405-412.[4]Huang, J. F., Teyton, L., Harper, J, F., Activation of a Ca2+-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain, Biochemistry, 1996, 35: 13222-13234.[5]Yoo, B. C., Harmon, A. C., Intramolecular binding contributes to the activation of CDPK, a protein kinase with a calmodulin-like domain, Biochem., 1996, 35: 12029-12037.[6]Saijo, Y., Hata, S., Sheen, J. et al., cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases,Biochem. Biophys. Acta, 1997, 1350: 109-114.[7]Neuhaus. G., Bowler, C., Kern, R. et al., Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways, Cell, 1993, 73: 937-952.[8]Yang, T., Poovaiah, B. W., Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action, J. Biol. Chem., 2000, 275(5): 3137-3143.[9]Watillon, B., Kettmenn, R., Boxus, P. et al., Calcium/calmodulin-binding serine/threonine protein kinase homologous to mammalian type II calcium/calmodulin-dependent protein kinase is expressed in plant cells, Plant Physiol., 1993, 101:1381-1384.[10]Baum, G., Lev-Yadun, S., Fridmann, Y. et al., Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants, EMBO J, 1996, 15: 2988-2996.[11]Lu, Y. T., Dharmasiri, M. A. N., Harrington

  10. Calcium/calmodulin-dependent protein kinase Ⅱ signaling system in cardiovascular diseases%钙/钙调蛋白激酶Ⅱ信号系统与心血管疾病

    Institute of Scientific and Technical Information of China (English)



    CaMKⅡ是钙/钙调蛋白激酶(Ca2 +/calmodulin-dependent protein kinase,CaMK)成员之一.心脏中的CaMK包括Ⅰ,Ⅱ和Ⅳ三种类型,CaMKⅡ含量最多.CaMKⅡ单体由氨基端的催化域、中间部分的调节域和羧基端的结合域组成.钙调蛋白(calmodulin,CaM)与Ca2+结合后被激活,结合于CaMKⅡ调节域中的CaM结合区激活CaMKⅡ.CaMKⅡ富集于T管并靠近L-Ca2通道,也存在于肌浆网和细胞核中.激活的CaMKⅡ通过多种途径调节细胞内Ca2+平衡,广泛参与心血管系统生理活动及病理变化的信号转导过程,与多种心血管系统疾病密切相关.目前研究认为,CaMKⅡ信号系统在心律失常、心肌肥厚、心力衰竭、缺血性心脏病和扩张性心肌病的发生和发展中起着重要作用.%Ca2+/calmodulin-dependent protein kinase II ( CaMKII ) is one of the members of calcium/calmodulin protein kinases ( CaMKs). There are 3 types of CaMKs ( I , II , and IV ) in the heart, while CaMKII is the most abundant one. CaMK II monomer is composed of catalytic domain in the N-terminal, combining domain in the C-terminal and adjust domain in the middle. When CaM is activated by Ca2 + , Ca2+/CaM combines with the adjust domain, and further activates CaMK II. CaMK II is rich in T tube, close to L-Ca2 + channel, and also exists in sacoplasmic reticulum ( SR) and nucleus. CaMK II can adjust the balance of Ca 2+ in cells through various pathways, and then regulate a variety of physiological and pathological signaling transductions in the cardiovascular system. Therefore it is closely related to the cardiovascular system disease. Recent studies have suggested that CaMK II plays an important role in the occurrence and development of arrhythmia, cardiac hypertrophy, heart failure, ischemic heart diseases, and dilated cardiomyopathy.

  11. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice. (United States)

    Jackson, Kia J; Sanjakdar, Sarah S; Chen, Xiangning; Damaj, M Imad


    The influx of Ca(2+) through calcium-permeable nicotinic acetylcholine receptors (nAChRs) leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV) phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB), which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/-) mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  12. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  13. Cloning and Characterization of Two NAD Kinases from Arabidopsis. Identification of a Calmodulin Binding Isoform1[w (United States)

    Turner, William L.; Waller, Jeffrey C.; Vanderbeld, Barb; Snedden, Wayne A.


    NAD kinase (NADK; ATP:NAD 2′-phosphotransferase, EC, an enzyme found in both prokaryotes and eukaryotes, generates the important pyridine nucleotide NADP from substrates ATP and NAD. The role of NADKs in plants is poorly understood, and cDNAs encoding plant NADKs have not previously been described to our knowledge. We have cloned two cDNAs from Arabidopsis predicted to encode NADK isoforms, designated NADK1 and NADK2, respectively. Expressed as recombinant proteins in bacteria, both NADK1 and NADK2 were catalytically active, thereby confirming their identity as NADKs. Transcripts for both isoforms were detected in all tissues examined and throughout development. Although the predicted catalytic regions for NADK1 and NADK2 show sequence similarity to NADKs from other organisms, NADK2 possesses a large N-terminal extension that appears to be unique to plants. Using recombinant glutathione-S-transferase fusion proteins and calmodulin (CaM)-affinity chromatography, we delineated a Ca2+-dependent CaM-binding domain to a 45-residue region within the N-terminal extension of NADK2. Although recombinant NADK2 was not responsive to CaM in vitro, immunoblot analysis suggests that native NADK2 is a CaM-binding protein. In Arabidopsis crude extracts, CaM-dependent NADK activity was much greater than CaM-independent activity throughout development, particularly in young seedlings. A native CaM-dependent NADK was partially purified from Arabidopsis seedlings (KmNAD = 0.20 mM, KmMg2+−ATP = 0.17 mM). The enzyme was fully activated by conserved CaM (S0.5 = 2.2 nm) in the presence of calcium but displayed differential responsiveness to eight CaM-like Arabidopsis proteins. Possible roles for NADKs in plants are discussed in light of our observations. PMID:15247403

  14. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mendez Ricardo


    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic dimorphic fungus of worldwide distribution. It grows in the saprophytic form with hyaline, regularly septated hyphae and pyriform conidia at 25°C and as the yeast or parasitic form at 35°C. Previously, we characterized a calcium/calmodulin kinase in this fungus. Inhibitors of this kinase were observed to inhibit the yeast cell cycle in S. schenckii. Results The presence of RNA interference (RNAi mechanism in this fungus was confirmed by the identification of a Dicer-1 homologue in S. schenckii DNA. RNAi technology was used to corroborate the role of calcium/calmodulin kinase I in S. schenckii dimorphism. Yeast cells were transformed with the pSilent-Dual2G (pSD2G plasmid w/wo inserts of the coding region of the calcium/calmodulin kinase I (sscmk1 gene. Transformants were selected at 35°C using resistance to geneticin. Following transfer to liquid medium at 35°C, RNAi transformants developed as abnormal mycelium clumps and not as yeast cells as would be expected. The level of sscmk1 gene expression in RNAi transformants at 35°C was less than that of cells transformed with the empty pSD2G at this same temperature. Yeast two-hybrid analysis of proteins that interact with SSCMK1 identified a homologue of heat shock protein 90 (HSP90 as interacting with this kinase. Growth of the fungus similar to that of the RNAi transformants was observed in medium with geldanamycin (GdA, 10 μM, an inhibitor of HSP90. Conclusions Using the RNAi technology we silenced the expression of sscmk1 gene in this fungus. RNAi transformants were unable to grow as yeast cells at 35°C showing decreased tolerance to this temperature. The interaction of SSCMK1 with HSP90, observed using the yeast two-hybrid assay suggests that this kinase is involved in thermotolerance through its interaction with HSP90. SSCMK1 interacted with the C terminal domain of HSP90 where effector proteins and co-chaperones interact. These

  15. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim


    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  16. Chronic ethanol intake-induced changes in open-field behavior and calcium/calmodulin-dependent protein kinase Ⅳ expression in nucleus accumbens of rats: naloxone reversal

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Wei-liang BIAN; Gui-qin XIE; Sheng-zhong CUI; Mei-ling WU; Yue-hua LI; Ling-li QUE; Xiao-ru YUAN


    Aim: To investigate the effects of chronic ethanol intake on the locomotor activity and the levels of calcium/calmodulin-dependent protein kinase Ⅳ (CaM kinase Ⅳ) in the nucleus accumbens (NAc) of rats. Simultaneously, the effects of non-selective opioid antagonist (naloxone) on the CaM kinase Ⅳ expression in the NAc and ethanol consumption of rats were also observed. Methods: Ethanol was administered in drinking water at the concentrations of 6% (v/v), for 28 d. The locomotor activity of rats was investigated in the open-field apparatus. CaM kinase Ⅳ levels in the NAc were analyzed using Western blotting. Results: Rats consuming ethanol solution exhibited a significant decrease of ambulation activity, accompanied by a reduced frequency of explorative rearing in an open-field task on d 7 and d 14 of chronic ethanol ingestion, whereas presumed adaptation to the neurological effects of ethanol was observed on d 28. Chronic ethanol intake elicited a significant decrease of the CaM kinase Ⅳ expression in the nuclei, but not in the cytoplasm of the NAc on d 28. Naloxone treatment significantly attenu-ated ethanol intake of rats and antagonized the decrease of CaM kinase Ⅳ in the nuclei of NAc neurons. The cytosolic CaM kinase Ⅳ protein levels of the NAc also increased in rats exposed to ethanol plus naloxone. Conclusion: Chronic ethanol intake-induced changes in explorative behavior is mediated at least partly by changes in CaM kinase Ⅳ signaling in the nuclei of the NAc, and naloxone attenuates ethanol consumption through antagonizing the downregulation of CaM kinase Ⅳ in the NAc.

  17. MICrocephaly, disproportionate pontine and cerebellar hypoplasia syndrome: A clinico-radiologic phenotype linked to calcium/calmodulin-dependent serine protein kinase gene mutation

    Directory of Open Access Journals (Sweden)

    Rashid Saleem


    Full Text Available MICrocephaly, disproportionate pontine and cerebellar hypoplasia (MICPCH syndrome, a rare X-linked disorder, generally seen in girls, is characterized by neurodevelopmental delay, microcephaly, and disproportionate pontine and cerebellar hypoplasia. It is caused by inactivating calcium/calmodulin-dependent serine protein kinase (CASK gene mutations. We report a 2-year-old girl with severe neurodevelopmental delay, microcephaly, minimal pontine hypoplasia, cerebellar hypoplasia, and normal looking corpus callosum, with whom the conventional cytogenetic studies turned out to be normal, and an array-comparative genomic hybridization (a-CGH analysis showed CASK gene duplication at Xp11.4. Our case highlights the importance of using clinico-radiologic phenotype to guide genetic investigation and it also confirms the role of a-CGH analysis in establishing the genetic diagnosis of MICPCH syndrome, when conventional cytogenetic studies are inconclusive.

  18. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Issinger, O G;


    The noncatalytic beta-subunit is responsible for the latency of casein kinase 2 (CK2) activity toward calmodulin. Twenty-one mutants of the beta-subunit bearing either deletions or Ala substitutions for charged residues in the 5-6, 55-70, and 171-178 sequences have been assayed for their ability...... insensitive to 42 nM polylysine, which conversely promotes a more than 10-fold increase of calmodulin phosphorylation with wild-type beta.(ABSTRACT TRUNCATED AT 250 WORDS)...

  19. Nucleolin (C23), a physiological substrate for casein kinase II

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G


    Nucleolin (C23), a 110 kDa phosphoprotein, which is mainly found in the nucleolus has been shown to be a physiological substrate for casein kinase II (CKII). Nucleolin was identified and characterized by immunodetection using an anti-nucleolin antibody. Phosphopeptide patterns from nucleolin...... phosphorylated by purified casein kinase II and of phosphorylated nucleolin which had been isolated from tumor cells grown in the presence of [32P]-o-phosphate, were identical. The partial tryptic digest revealed nine phosphopeptides. Nucleolin isolated from Krebs II mouse ascites cells was phosphorylated...... by purified casein kinase II with about two moles phosphate per one mole of nucleolin....

  20. Variants in doublecortin- and calmodulin kinase like 1, a gene up-regulated by BDNF, are associated with memory and general cognitive abilities.

    Directory of Open Access Journals (Sweden)

    Stéphanie Le Hellard

    Full Text Available BACKGROUND: Human memory and general cognitive abilities are complex functions of high heritability and wide variability in the population. The brain-derived neurotrophic factor (BDNF plays an important role in mammalian memory formation. METHODOLOGY / PRINCIPAL FINDING: Based on the identification of genes markedly up-regulated during BDNF-induced synaptic consolidation in the hippocampus, we selected genetic variants that were tested in three independent samples, from Norway and Scotland, of adult individuals examined for cognitive abilities. In all samples, we show that markers in the doublecortin- and calmodulin kinase like 1 (DCLK1 gene, are significantly associated with general cognition (IQ scores and verbal memory function, resisting multiple testing. DCLK1 is a complex gene with multiple transcripts which vary in expression and function. We show that the short variants are all up-regulated after BDNF treatment in the rat hippocampus, and that they are expressed in the adult human brain (mostly in cortices and hippocampus. We demonstrate that several of the associated variants are located in potential alternative promoter- and cis-regulatory elements of the gene and that they affect BDNF-mediated expression of short DCLK1 transcripts in a reporter system. CONCLUSION: These data present DCLK1 as a functionally pertinent gene involved in human memory and cognitive functions.

  1. Competitive binding of postsynaptic density 95 and Ca2+-calmodulin dependent protein kinase Ⅱ to N-methyl-D-aspartate receptor subunit 2B in rat brain

    Institute of Scientific and Technical Information of China (English)

    Fan-jie MENG; Jun GUO; Bo SONG; Xue-bo YAN; Guang-yi ZHANG


    AIM: To investigate the interactions among postsynaptic density 95 (PSD-95), Ca2+-calmodulin dependent protein kinase Ⅱα (CaMKⅡα), and N-methyl-D-aspartate receptor subunit 2B (NR2B) during ischemia and reperfusion in hippocampus of rats. METHODS: Brain ischemia was induced by four-vessel occlusion procedure in rats. Immunoprecipitation and immunoblotting were performed to study the interactions and phosphorylation of proteins. The association-dissociation of PSD-95 and CaMKⅡα to and from N-methyl-D-aspartate (NMDA) receptor induced by ischemia and reperfusion and the effects of 1-[N,O-bis-(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenyl-piperazine (KN-62, a selective inhibitor of CaMKⅡ) on these protein interactions were investigated. Coimmunoprecipitation and immunoblotting were performed for the studies of interactions among proteins. RESULTS: The alternations of the binding level of PSD-95 and CaMKⅡα to NR2B during ischemia and reperfusion demonstrated the negative correlation to each other. Pre-administration of KN62 through both cerebral ventricles inhibited the 10 min ischemia-induced increase of the binding of PSD-95 to NR2B and, on the contrary, promoted the binding of CaMKⅡα to NR2B. CONCLUSION: PSD-95 competes with CaMKⅡ to bind to NR2B during ischemia and reperfusion in rat hippocampus.

  2. Antagonists of Calcium Fluxes and Calmodulin Block Activation of the p21-Activated Protein Kinases in Neutrophils

    NARCIS (Netherlands)

    Lian, J.P. (Jian); Crossley, L. (Lisa); Zhan, Q. (Qian); Huang, R. (Riyun); Coffer, P.J.; Toker, A. (Alex); Robinson, D. (Dwight); Badwey, J.A. (John)


    Neutrophils stimulated with fMLP or a variety of other chemoattractants that bind to serpentine receptors coupled to heterotrimeric G proteins exhibit rapid activation of two p21-activated protein kinases (Paks) with molecular masses of ~63 and 69 kDa (y- and a-Pak). Previous studies have shown that

  3. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G


    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  4. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R


    persistent ROCK II and guanine triphosphate-bound RhoA. In contrast, the microfilament cytoskeleton was enhanced by ROCK II down-regulation. Phagocytic uptake of fibronectin-coated beads was strongly down-regulated in ROCK II-depleted cells but not those lacking ROCK I. These effects originated in part from......The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...... bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite...

  5. Identification of calcium/calmodulin-binding receptor-like kinase GsCBRLK-interactive proteins using yeast two-hybrid system%酵母双杂交筛选与GsCBRLK相互作用的蛋白质

    Institute of Scientific and Technical Information of China (English)

    杨姗姗; 孙晓丽; 于洋; 才华; 纪巍; 柏锡; 朱延明


    GsCBRLK(calcium/calmodulin-binding receptor-like kinase from Glycine soja)在ABA及盐胁迫诱导的钙离子信号通路中起到关键的调节作用.为深入研究GsCBRLK蛋白的作用机制,文章采用膜酵母双杂交系统,以GsCBRLK为诱饵蛋白,筛选与其相互作用的蛋白质.通过构建野生大豆盐胁迫条件下的cDNA文库、膜酵母双杂交系统筛选、复筛、回转验证、生物信息学分析以及酵母体内互作验证等手段,最终获得2个(SNARE和14-3-3蛋白)与GsCBRLK诱饵蛋白相互作用的蛋白质.%GsCBRLK (calcium/calmodulin-binding receptor-like kinase from Glycine soja) links ABA (abscisic acid)-and salt-induced calcium/calmodulin signal in plant cells. In order to study the molecular mechanismes of GsCBLRK, the salt-treated Glycine soja cDNA library was screened with pB73-STE-CBRLK as bait plasmid using yeast two hybrid system. Two positive clones (SNARE and 14-3-3 protein) were identified by constructing cDNA library of wild soybean under salt treatment, membrane system yeast two hybrid screening, multiple screen, rotary validation, bioinformatic analysis and interaction identification in yeast.

  6. A mechanism for regulation of chloroplast LHC II kinase by plastoquinol and thioredoxin. (United States)

    Puthiyaveetil, Sujith


    State transitions are acclimatory responses to changes in light quality in photosynthesis. They involve the redistribution of absorbed excitation energy between photosystems I and II. In plants and green algae, this redistribution is produced by reversible phosphorylation of the chloroplast light harvesting complex II (LHC II). The LHC II kinase is activated by reduced plastoquinone (PQ) in photosystem II-specific low light. In high light, when PQ is also reduced, LHC II kinase becomes inactivated by thioredoxin. Based on newly identified amino acid sequence features of LHC II kinase and other considerations, a mechanism is suggested for its redox regulation.

  7. Mediation of flowering by a calmodulin-dependent proteinkinase

    Institute of Scientific and Technical Information of China (English)


    A calmodulin-dependent protein kinase (MCK1) appeared important in regulating flowering in tobacco. The expression of modified MCK1 that lacks the C-terminal including calmodulin-binding domain upsets the flowering developmental program, leading to the abortion of flower primordia initiated on the main axis of the plant and, as well, caused the prolongation of the vegetative phase in axillary buds. The abortion process of flowers began first in the developing anthers and subsequently the entire flower senesces. In axillary buds the prolonged vegetative phase was characterized by atypical elongated, narrow, twisted leaves. These results suggested a role for calmodulin-dependent protein kinase homologs in mediating flowering.

  8. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. (United States)

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming


    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.


    DEFF Research Database (Denmark)


    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  10. 脑缺血时NMDA受体通过Src激酶和Ca2+/钙调蛋白依赖性蛋白激酶Ⅱ调控ERKs激活%N-methyl-D-aspartate receptors mediate diphosphorylation of extracellular signal-regulated kinases through Src family tyrosine kinases and Ca2+/calmodulin-dependent protein kinase Ⅱ in rat hippocampus after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    吴辉文; 李洪福; 郭军


    目的 ERKs是钙依赖性激活蛋白,本研究旨在探讨钙依赖性蛋白激酶是否参与了脑缺血后ERK级联的调控.方法 采用四动脉结扎诱导大鼠前脑缺血,用免疫印迹的方法观察几个钙依赖性蛋白激酶含量及活性的变化.结果 致死性脑缺血以NMDA受体依赖的方式激活ERKs,并差异性上调Src和Ca2+/钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)的活性.Src激酶和CaMKⅡ的抑制剂PP2和KN62能显著的阻止缺血诱导的ERKs激活.然而,缺血诱导的Src过度激活也伴随着ERKs的活性抑制.结论 致死性脑缺血刺激NMDA受体通过Src激酶和CaMKⅡ介导ERKs活性上调,但是脑缺血诱导的Src过度激活可能也参与了ERKs信号通路的负性调控.%Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia.Methods Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. Results Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA)receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) activities. With the inhibition of Src family tyrosine kinases or CaMKⅡ by administration of PP2or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. Conclusions Src family tyrosine kinases and CaMKⅡ might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.

  11. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension. (United States)

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M


    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (Phypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension and associated vascular and target organ damage.

  12. Influence of zoledronate on osteoclast differentiation and gene expression of calmodulin and calmodulin-dependent protein kinase Ⅱ%唑来膦酸对破骨细胞分化中钙调蛋白和钙调蛋白依赖性激酶Ⅱ基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    李鹏; 林珏杉; 张鹏; 董伟; 李金源; 戚孟春


    目的 研究唑来膦酸对破骨细胞分化及信号分子钙调蛋白、钙调蛋白依赖性激酶(calmodulin-dependent protein kinase,CAMK)Ⅱ基因表达的影响.方法 应用核因子κB受体激活蛋白配体(receptor activatior of nuclear factor κB ligand,RANKL)诱导小鼠单核巨噬细胞株RAW264.7向破骨细胞分化.细胞分为两组:A组用RANKL诱导5 d;B组在RANKL诱导3d后加用唑来膦酸处理2d.检测破骨细胞生成及钙调蛋白、CAMKⅡ基因表达情况.结果 B组新生多核破骨细胞、吸收陷窝数目及面积分别为(23±3)、(19±2)和(4951±223) μm2,均显著低于A组的(44±3)、(46±1)和(13 331±248) μm2 (P <0.01).与A组比较,B组钙调蛋白、CAMKⅡ基因表达也显著下降(P<0.01),mRNA及蛋白水平钙调蛋白分别下降了26.7%和37.2%;CAMKⅡ分别下降了57.0%和76.1%.结论 唑来膦酸可显著抑制破骨细胞生成和骨吸收功能,并下调钙调蛋白、CAMKⅡ基因表达;信号分子钙调蛋白、CAMKⅡ可能参与了唑来膦酸对破骨细胞的抑制作用.%Objective To investigate the effect of zoledronate acid on osteoclast differentiation and gene expression of calmodulin (CAM) and calmodulin-dependent protein kinase (CAMK) Ⅱ.Methods Receptor activatior of nuclear factor κB ligand (RANKL) was used to induce differentiation of RAW264.7cells into osteoclasts in vitro.The cells were divided into two groups,group A and group B.Both groups were treated with RANKL for 5 days,whereas group B was also treated with zoledronate for the last 2 days.Osteoclastogenesis and gene expression of CAM and CAMK Ⅱ were examined.Results In group B,the number of new-generated osteoclasts (≥ 3 nuclei),number and size of dentin resorption lacunaes were (23 ±3),(19 ±2) and (4951 ±223) μm2 respevtively,which were significantly lower than those [(44 ±3),(46±1) and (13 331 ±248) μ m2]in group A (P<0.01).mRNA and protein level of CAM and CAMK Ⅱ were also significantly

  13. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase. (United States)

    Nishikawa, K; Toker, A; Wong, K; Marignani, P A; Johannes, F J; Cantley, L C


    Protein kinase Cmu (PKCmu), also named protein kinase D, is an unusual member of the PKC family that has a putative transmembrane domain and pleckstrin homology domain. This enzyme has a substrate specificity distinct from other PKC isoforms (Nishikawa, K., Toker, A., Johannes, F. J., Songyang, Z., and Cantley, L. C. (1997) J. Biol. Chem. 272, 952-960), and its mechanism of regulation is not yet clear. Here we show that PKCmu forms a complex in vivo with a phosphatidylinositol 4-kinase and a phosphatidylinositol-4-phosphate 5-kinase. A region of PKCmu between the amino-terminal transmembrane domain and the pleckstrin homology domain is shown to be involved in the association with the lipid kinases. Interestingly, a kinase-dead point mutant of PKCmu failed to associate with either lipid kinase activity, indicating that autophosphorylation may be required to expose the lipid kinase interaction domain. Furthermore, the subcellular distribution of the PKCmu-associated lipid kinases to the particulate fraction depends on the presence of the amino-terminal region of PKCmu including the predicted transmembrane region. These results suggest a novel model in which the non-catalytic region of PKCmu acts as a scaffold for assembly of enzymes involved in phosphoinositide synthesis at specific membrane locations.

  14. Downregulation of extracellular signal-regulated kinase 1/2 activity by calmodulin KII modulates p21Cip1 levels and survival of immortalized lymphocytes from Alzheimer's disease patients. (United States)

    Esteras, Noemí; Alquézar, Carolina; Bermejo-Pareja, Félix; Bialopiotrowicz, Emilia; Wojda, Urszula; Martín-Requero, Angeles


    Previously, we reported a Ca(2+)/calmodulin (CaM)-dependent impairment of apoptosis induced by serum deprivation in Alzheimer's disease (AD) lymphoblasts. These cell lines showed downregulation of extracellular signal-regulated kinase (ERK)1/2 activity and elevated content of p21 compared with control cells. The aim of this study was to delineate the molecular mechanism underlying the distinct regulation of p21 content in AD cells. Quantitative reverse transcription polymerase chain reaction analysis demonstrated increased p21 messenger RNA (mRNA) levels in AD cells. The ERK1/2 inhibitor, PD98059, prevented death of control cells and enhanced p21 mRNA and protein levels. The CaM antagonist, calmidazolium, and the CaMKII inhibitor, KN-62, normalized the survival pattern of AD lymphoblasts by augmenting ERK1/2 activation and reducing p21 mRNA and protein levels. Upregulation of p21 transcription in AD cells appears to be the consequence of increased activity of forkhead box O3a (FOXO3a) as the result of diminished ERK1/2-mediated phosphorylation of this transcription factor, which in turn facilitates its nuclear accumulation. Murine double minute 2 (MDM2) protein levels were decreased in AD cells relative to control lymphoblasts, suggesting an impairment of FOXO3a degradation.

  15. Pollination-induced Apoptosis in Tobacco Related to Expression of Calcium/calmodulin-dependent Protein Kinase T1%烟草花粉发育过程中的细胞凋亡及其与钙/钙调素依赖性蛋白激酶T1表达的关系

    Institute of Scientific and Technical Information of China (English)

    王玲; 王盈; 张美; 吕应堂


    用原位末端标记及免疫组化显色方法,对烟草花药发育过程中的细胞凋亡进行了检测.结果表明绒毡层、环形细胞、药隔组织细胞在减数分裂后四分体时期开始凋亡(Plate I,C&D),而花药维管束细胞从小孢子母细胞时期就开始凋亡(Plate I,E).这些特定的细胞在花药发育特定时期的凋亡担负着特定的作用.钙/钙调素依赖性蛋白激酶T1在这些凋亡细胞中大量特异表达(PlateII),表明钙信号途径参与了烟草花粉发育的细胞凋亡调控.%Using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and immunohistochemical methods, the pollination-induced cell death in tobacco (Nicotiana tabacum L.) was detected. The results indicated that pollination induced apoptotic death in specific cells. Apoptosis was initiated during the tetrad stage after meiosis in the tapetal cells, cyclic cells, and connective cells (Plate I, C and D), and during pollen mother cell stage in the vascular bundle (Plate I, E). Those apoptotic events,which occurred in the specific cells in the specific stages of antherdevelopment, play some vital roles of specific biological function. The highly expression of calcium/calmodulin dependent protein kinase T1 related closely to these apoptotic processes (Plate II) in these cells, suggesting that calcium-mediated signal pathway is involved in the regulation of apoptosis during anther development in tobacco.

  16. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)


    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  17. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II

    DEFF Research Database (Denmark)

    Elmlund, Hans; Baraznenok, Vera; Lindahl, Martin


    CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8......-dependent kinase activity. We use electron microscopy and single-particle reconstruction to demonstrate that the Cdk8 module forms a distinct structural entity that binds to the head and middle region of Mediator, thereby sterically blocking interactions with pol II....

  18. Ca/calmodulin-dependent phosphorylation of endocytic scaffold ITSN1

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.


    Full Text Available ITSN1 is an endocytic scaffold protein with a prominent function in synaptic transmission. It is known that Ca signaling is crucial for the regulation of synaptic proteins functioning. Aim. Checking the possibility of Ca/calmodulin-dependent phosphorylation of ITSN1. Methods. Affinity chromatography, in vitro kinase reaction, Western blotting, gel staining with fluorescent stains. Results. We show that the fraction of calmodulin-binding proteins is able to phosphorylate the recombinant fragments encoding the coiled-coil region and the SH3 domain-containing region of ITSN1 in the presence of Ca ions and calmodulin. Conclusions. The coiled-coil region and the SH3 domain-containing region of ITSN1 undergo Ca/calmodulin-dependent phosphorylation in vitro, suggesting a possible regulation of ITSN1 by Ca signaling.

  19. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach. (United States)

    Al-Shboul, Othman; Mustafa, Ayman


    Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.

  20. Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice (United States)

    Huang, Tzyy-Nan; Hsueh, Yi-Ping


    Background Human genetic studies have indicated that mutations in calcium/calmodulin-dependent serine protein kinase (CASK) result in X-linked mental retardation and autism-spectrum disorders. We aimed to establish a mouse model to study how Cask regulates mental ability. Methods Because Cask encodes a multidomain scaffold protein, a possible strategy to dissect how CASK regulates mental ability and cognition is to disrupt specific protein–protein interactions of CASK in vivo and then investigate the impact of individual specific protein interactions. Previous in vitro analyses indicated that a rat CASK T724A mutation reduces the interaction between CASK and T-brain-1 (TBR1) in transfected COS cells. Because TBR1 is critical for glutamate receptor, ionotropic, N-methyl-d-aspartate receptor subunit 2B (Grin2b) expression and is a causative gene for autism and intellectual disability, we then generated CASK T740A (corresponding to rat CASK T724A) mutant mice using a gene-targeting approach. Immunoblotting, coimmunoprecipitation, histological methods and behavioural assays (including home cage, open field, auditory and contextual fear conditioning and conditioned taste aversion) were applied to investigate expression of CASK and its related proteins, the protein–protein interactions of CASK, and anatomic and behavioural features of CASK T740A mice. Results The CASK T740A mutation attenuated the interaction between CASK and TBR1 in the brain. However, CASK T740A mice were generally healthy, without obvious defects in brain morphology. The most dramatic defect among the mutant mice was in extinction of associative memory, though acquisition was normal. Limitations The functions of other CASK protein interactions cannot be addressed using CASK T740A mice. Conclusion Disruption of the CASK and TBR1 interaction impairs extinction, suggesting the involvement of CASK in cognitive flexibility. PMID:28234597

  1. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei (United States)

    Li, H.; Roux, S. J.


    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  2. Protein kinase C-beta II (PKC-betaII) expression in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise; Lindebjerg, Jan; Lahn, Michael;


    PURPOSE: Current development of targeted agents for the treatment of colorectal cancer include the clinical evaluation of kinase inhibitors, such as enzastaurin, a serine/threonine kinase inhibitor designed to suppress signaling through Protein Kinase C (PKC) and AKT pathways. Little is known abo...

  3. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe


    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  4. Fibronectin matrix assembly requires distinct contributions from Rho kinases I and -II

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Ushakov, Dmitriy; Multhaupt, Hinke A B;


    Extracellular matrix is integral to tissue architecture and regulates many aspects of cell behavior. Fibronectin matrix assembly involves the actin cytoskeleton and the small GTPase RhoA, but downstream signaling is not understood. Here, down-regulation of either rho kinase isoform (ROCK I or -II...

  5. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II. (United States)

    Cingolani, Francesca; Casasampere, Mireia; Sanllehí, Pol; Casas, Josefina; Bujons, Jordi; Fabrias, Gemma


    Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites.

  6. Activation of ERK1/2 and TNF-α production are regulated by calcium/calmodulin signaling pathway during Penicillium marneffei infection within human macrophages. (United States)

    Chen, Renqiong; Ji, Guangquan; Wang, Ling; Ren, Hong; Xi, Liyan


    Previous study have shown that Penicillium marneffei (P. marneffei)-induced TNF-α production via an extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase-dependent mechanism is an important host defence mechanism against P. marneffei in human macrophages. Therefore, we explore signaling pathway that regulates TNF-α secretion and activation of ERK1/2 by intracellular signaling mechanisms during P. marneffei infection. We found that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase Ⅱ pathway in P. marneffei-infected human macrophages. In contrast, P. marneffei-induced p38 MAPK activation was negatively regulated by calcium/calmodulin/calmodulin kinase Ⅱ signaling pathway. Furthermore, TNF-α production in P. marneffei-infected human macrophages was also dependent on Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway. These data suggest that Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway plays vital regulatory roles in macrophage activation and subsequent cytokine production during P. marneffei infection.

  7. Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse. (United States)

    Yue, Hai-Yuan; Xu, Jianhua


    Neuronal activity triggers endocytosis at synaptic terminals to retrieve efficiently the exocytosed vesicle membrane, ensuring the membrane homeostasis of active zones and the continuous supply of releasable vesicles. The kinetics of endocytosis depends on Ca(2+) and calmodulin which, as a versatile signal pathway, can activate a broad spectrum of downstream targets, including myosin light chain kinase (MLCK). MLCK is known to regulate vesicle trafficking and synaptic transmission, but whether this kinase regulates vesicle endocytosis at synapses remains elusive. We investigated this issue at the rat calyx of Held synapse, where previous studies using whole-cell membrane capacitance measurement have characterized two common forms of Ca(2+)/calmodulin-dependent endocytosis, i.e., slow clathrin-dependent endocytosis and rapid endocytosis. Acute inhibition of MLCK with pharmacological agents was found to slow down the kinetics of both slow and rapid forms of endocytosis at calyces. Similar impairment of endocytosis occurred when blocking myosin II, a motor protein that can be phosphorylated upon MLCK activation. The inhibition of endocytosis was not accompanied by a change in Ca(2+) channel current. Combined inhibition of MLCK and calmodulin did not induce synergistic inhibition of endocytosis. Together, our results suggest that activation of MLCK accelerates both slow and rapid forms of vesicle endocytosis at nerve terminals, likely by functioning downstream of Ca(2+)/calmodulin.

  8. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. (United States)

    Ebrahimian, Talin; Li, Melissa Wei; Lemarié, Catherine A; Simeone, Stefania M C; Pagano, Patrick J; Gaestel, Matthias; Paradis, Pierre; Wassmann, Sven; Schiffrin, Ernesto L


    Vascular oxidative stress and inflammation play an important role in angiotensin II-induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase-activated protein kinase 2 (MK2), a downstream target of p38 mitogen-activated protein kinase, is involved in angiotensin II-induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II-induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II-induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II-induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II-induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II-induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II-induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and vascular inflammation

  9. Roles of an unconventional protein kinase and myosin II in amoeba osmotic shock responses. (United States)

    Betapudi, Venkaiah; Egelhoff, Thomas T


    The contractile vacuole (CV) is a dynamic organelle that enables Dictyostelium amoeba and other protist to maintain osmotic homeostasis by expelling excess water. In the present study, we have uncovered a mechanism that coordinates the mechanics of the CV with myosin II, regulated by VwkA, an unconventional protein kinase that is conserved in an array of protozoa. Green fluorescent protein (GFP)-VwkA fusion proteins localize persistently to the CV during both filling and expulsion phases of water. In vwkA null cells, the established CV marker dajumin still localizes to the CV, but these structures are large, spherical and severely impaired for discharge. Furthermore, myosin II cortical localization and assembly are abnormal in vwkA null cells. Parallel analysis of wild-type cells treated with myosin II inhibitors or of myosin II null cells also results in enlarged CVs with impaired dynamics. We suggest that the myosin II cortical cytoskeleton, regulated by VwkA, serves a critical conserved role in the periodic contractions of the CV, as part of the osmotic protective mechanism of protozoa.

  10. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee (United States)

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin


    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  11. Creatine kinase activity in patients with diabetes mellitus type I and type II. (United States)

    Jevrić-Causević, Adlija; Malenica, Maja; Dujić, Tanja


    Diabetes mellitus can be looked upon as an array of diseases, all of which exhibit common symptoms. While pathogenesis of IDDM (insulin dependant diabetes mellitus) is well understood, the same is not true for diabetes mellitus type II. In the latter case, relative contribution of the two factors (insulin resistance or decreased insulin secretion) varies individually, being highly increased in peripheral tissues and strictly dependant on insulin for glucose uptake. Moreover, in patients with diabetes mellitus type II, disbalance at the level of regulation of glucose metabolism as well as lipid metabolism has been noted in skeletal muscles. It is normal to assume that in this type of diabetes, these changes are reflected at the level of total activity of enzyme creatine kinase. This experimental work was performed on a group of 80 regular patients of Sarajevo General Hospital. Forty of those patients were classified as patients with diabetes type I and forty as patients with diabetes type II. Each group of patients was carefully chosen and constituted of equal number of males and females. The same was applied for adequate controls. Concentration of glucose was determined for each patient with GOD method, while activity of creatine kinase was determined with CK-NAC activated kit. Statistical analysis of the results was performed with SPSS software for Windows. Obtained results point out highly expressed differences in enzyme activity between two populations examined. Changes in enzyme activity are more expressed in patients with diabetes type II. Positive correlation between concentration of glucose and serum activity of the enzyme is seen in both categories of diabetic patients which is not the case for the patients in control group. At the same time, correlation between age and type of diabetes does exist . This is not followed at the level of enzyme activity or concentration of glucose.

  12. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors. (United States)

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N


    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers.

  13. 钙调蛋白激酶Ⅱ抑制剂对肥厚心肌细胞的影响%The effects of calmodulin kinase Ⅱ inhibitor on hypertrophic cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    柯俊; 陈锋; 肖幸; 戴木森; 王晓萍; 陈兵; 陈敏; 张存泰


    目的 观察钙调蛋白激酶Ⅱ(CaMKⅡ)抑制剂KN-93对肥厚心肌细胞L型钙电流(ICa,L)及细胞内钙离子浓度([Ca2+]i)的影响.方法 选取雌性新西兰大白兔48只,随机(随机数字法)分为4组:假手术组(sham组)、心肌肥厚组(LVH组)、心肌肥厚+KN-93组(KN-93组)、心肌肥厚+KN-92组(KN-92组),每组12只,通过缩窄腹主动脉制备兔心肌肥厚模型,Sham组仅游离腹主动脉未进行缩窄.8周后,采用胶原酶消化法分离单个心肌细胞,应用穿孔膜片钳技术记录L型钙电流(ICa,L);应用钙荧光指示剂Fura-2/AM结合图像分析技术测定各组心肌细胞内[Ca2+]i.结果 8周后,心肌肥厚模型建立成功.在0 mV时LVH组、Sham组的峰值ICa.L分另为(1.38±0.3)nA、(0.87±0.1)nA(P<0.01,n=12),电流密度分别为(6.7±1.0)pA/pF、(6.3 ±0.7)pA/pF(P>0.05,n=12).当KN-92及KN-93在浓度为0.5μmol/L时,可分别使肥厚心肌细胞0 mV时的峰值ICa,L降低(9.4±2.8)%、(10.5±3)%(P>0.05,n=12);当浓度增至1 μmol/L时,其峰值ICa,L降低程度分别为(13.4±3.7)%、(40±4.9)%(P<0.01,n=12).Sham组、LVH组、KN-92组及KN-93组中心肌细胞[Ca2+]i分别为(98.0±12.3)nmol/L、(154.0±26.2)nmol/L、(147.0±29.6)nmol/L和(108.0±21.2)nmol/L.结论 CaMKⅡ特异性抑制剂KN-93可有效抑制肥厚心肌细胞ICa.L,减轻细胞内钙超载,这可能是其抗肥厚心肌室性心律失常发生的主要细胞电生理机制.%Objective To investigate the effect of the calmodulin kinase Ⅱ Inhibitor KN-93 on L-typecalcium current(ICa,L)and intracellular calcium concentration([Ca2+]i)in hypertrophic cardiac myocytes.Methods Forty-eight female New Zealand white rabbits were randomized(random number)into four groups(12 animals in each group):the sham operation group(sham group),the left ventricular hypertrophy group(LVH group),the myocardial hypertrophy + KN-93 group(KN-93 group),and the myocardial hypertrophy + KN-92 group(KN-92 group).Myocardial hypertrophy in

  14. Rho/Rho-dependent kinase affects locomotion and actin-myosin II activity of Amoeba proteus. (United States)

    Kłopocka, W; Redowicz, M J


    The highly motile free-living unicellular organism Amoeba proteus has been widely used as a model to study cell motility. However, the molecular mechanisms underlying its unique locomotion are still scarcely known. Recently, we have shown that blocking the amoebae's endogenous Rac- and Rho-like proteins led to distinct and irreversible changes in the appearance of these large migrating cells as well as to a significant inhibition of their locomotion. In order to elucidate the mechanism of the Rho pathway, we tested the effects of blocking the endogenous Rho-dependent kinase (ROCK) by anti-ROCK antibodies and Y-27632, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride, a specific inhibitor of ROCK, on migrating amoebae and the effect of the Rho and ROCK inhibition on the actin-activated Mg-ATPase of the cytosolic fraction of the amoebae. Amoebae microinjected with anti-ROCK inhibitors remained contracted and strongly attached to the glass surface and exhibited an atypical locomotion. Despite protruding many pseudopodia that were advancing in various directions, the amoebae could not effectively move. Immunofluorescence studies showed that ROCK-like protein was dispersed throughout the cytoplasm and was also found in the regions of actin-myosin II interaction during both isotonic and isometric contraction. The Mg-ATPase activity was about two- to threefold enhanced, indicating that blocking the Rho/Rho-dependent kinase activated myosin. It is possible then that in contrast to the vertebrate cells, the inactivation of Rho/Rho-dependent kinase in amoebae leads to the activation of myosin II and to the observed hypercontracted cells which cannot exert effective locomotion.

  15. Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Stanley K.L. [Singapore Immunology Network A-STAR (Singapore); Neo, Soek-Ying, E-mail: [Singapore Immunology Network A-STAR (Singapore); Yap, Yann-Wan [Singapore Immunology Network A-STAR (Singapore); Karuturi, R. Krishna Murthy; Loh, Evelyn S.L. [Genome Institute of Singapore A-STAR (Singapore); Liau, Kui-Hin [Department of General Surgery, Tan Tock Seng Hospital (Singapore); Ren, Ee-Chee, E-mail: [Singapore Immunology Network A-STAR (Singapore); Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)


    Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2{alpha}) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2{alpha} mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2{alpha} was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2{alpha} can modulate HCC cell growth.

  16. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria

    DEFF Research Database (Denmark)

    Grankowski, N; Boldyreff, B; Issinger, O G


    cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most...... of the expressed proteins were produced in an insoluble form. The recombinant CKII alpha subunit was purified by DEAE-cellulose chromatography, followed by phosphocellulose and heparin-agarose chromatography. The recombinant CKII beta subunit was extracted from the insoluble pellet and purified in a single step...... on phosphocellulose. From 10 g bacterial cells, the yield of soluble protein was 12 mg alpha subunit and 5 mg beta subunit. SDS/PAGE analysis of the purified recombinant proteins indicated molecular masses of 42 kDa and 26 kDa for the alpha and beta subunits, respectively, in agreement with the molecular masses...

  17. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior (United States)

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.


    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  18. Conformational heterogeneity of the calmodulin binding interface (United States)

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.


    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention.

  19. Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II.

    Directory of Open Access Journals (Sweden)

    Li Lin

    Full Text Available Angiotensin II (Ang II type 1 (AT1 receptor is known to mediate a variety of physiological actions of Ang II including autophagy. However, the role of AT1 receptor in cardiomyocyte autophagy triggered by mechanical stress still remains elusive. The aim of this study was therefore to examine whether and how AT1 receptor participates in cardiomyocyte autophagy induced by mechanical stresses. A 48-hour mechanical stretch and a 4-week transverse aorta constriction (TAC were imposed to cultured cardiomyocytes of neonatal rats and adult male C57B/L6 mice, respectively, to induce cardiomyocyte hypertrophy prior to the assessment of cardiomyocyte autophagy using LC3b-II. Losartan, an AT1 receptor blocker, but not PD123319, the AT2 inhibitor, was found to significantly reduce mechanical stretch-induced LC3b-II upregulation. Moreover, inhibition of p38MAP kinase attenuated not only mechanical stretch-induced cardiomyocyte hypertrophy but also autophagy. To the contrary, inhibition of ERK and JNK suppressed cardiac hypertrophy but not autophagy. Intriguingly, mechanical stretch-induced autophagy was significantly inhibited by Losartan in the absence of Ang II. Taken together, our results indicate that mechanical stress triggers cardiomyocyte autophagy through AT1 receptor-mediated activation of p38MAP kinase independently of Ang II.

  20. Role of EGFR transactivation in angiotensin II signaling to extracellular regulated kinase in preglomerular smooth muscle cells. (United States)

    Andresen, Bradley T; Linnoila, Jenny J; Jackson, Edwin K; Romero, Guillermo G


    Angiotensin (Ang) II promotes the phosphorylation of extracellular regulated kinase (ERK); however, the mechanisms leading to Ang II-induced ERK phosphorylation are debated. The currently accepted theory involves transactivation of epidermal growth factor receptor (EGFR). We have shown that generation of phosphatidic acid (PA) is required for the recruitment of Raf to membranes and the activation of ERK by multiple agonists, including Ang II. In the present report, we confirm that phospholipase D-dependent generation of PA is required for Ang II-mediated phosphorylation of ERK in Wistar-Kyoto and spontaneously hypertensive rat preglomerular smooth muscle cells (PGSMCs). However, EGF stimulation does not activate phospholipase D or generate PA. These observations indicate that EGF recruits Raf to membranes via a mechanism that does not involve PA, and thus, Ang II-mediated phosphorylation of ERK is partially independent of EGFR-mediated signaling cascades. We hypothesized that phosphoinositide-3-kinase (PI3K) can also act to recruit Raf to membranes; therefore, inhibition of PI3K should inhibit EGF signaling to ERK. Wortmannin, a PI3K inhibitor, inhibited EGF-mediated phosphorylation of ERK (IC50, approximately 14 nmol/L). To examine the role of the EGFR in Ang II-mediated phosphorylation of ERK we utilized 100 nmol/L wortmannin to inhibit EGFR signaling to ERK and T19N RhoA to block Ang II-mediated ERK phosphorylation. Wortmannin treatment inhibited EGF-mediated but not Ang II-mediated phosphorylation of ERK. Furthermore, T19N RhoA inhibited Ang II-mediated ERK phosphorylation, whereas T19N RhoA had significantly less effect on EGF-mediated ERK phosphorylation. We conclude that transactivation of the EGFR is not primarily responsible for Ang II-mediated activation of ERK in PGSMCs.

  1. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation. (United States)

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo


    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinaseII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases.

  2. Cyclin-dependent kinase 9 links RNA polymerase II transcription to processing of ribosomal RNA. (United States)

    Burger, Kaspar; Mühl, Bastian; Rohrmoser, Michaela; Coordes, Britta; Heidemann, Martin; Kellner, Markus; Gruber-Eber, Anita; Heissmeyer, Vigo; Strässer, Katja; Eick, Dirk


    Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3' extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3' processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3' rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing.

  3. Tau regulates the subcellular localization of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Barreda, Elena Gomez de [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avila, Jesus, E-mail: [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); CIBER de Enfermedades Neurodegenerativas, 28031 Madrid (Spain)


    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  4. Function of cGMP-dependent protein kinase II in volume load-induced diuresis. (United States)

    Schramm, Andrea; Schinner, Elisabeth; Huettner, Johannes P; Kees, Frieder; Tauber, Philipp; Hofmann, Franz; Schlossmann, Jens


    Atrial natriuretic peptide (ANP)/cGMPs cause diuresis and natriuresis. Their downstream effectors beyond cGMP remain unclear. To elucidate a probable function of cGMP-dependent protein kinase II (cGKII), we investigated renal parameters in different conditions (basal, salt diets, starving, water load) using a genetically modified mouse model (cGKII-KO), but did not detect any striking differences between WT and cGKII-KO. Thus, cGKII is proposed to play only a marginal role in the adjustment of renal concentration ability to varying salt loads without water restriction or starving conditions. When WT mice were subjected to a volume load (performed by application of a 10-mM glucose solution (3% of BW) via feeding needle), they exhibited a potent diuresis. In contrast, urine volume was decreased significantly in cGKII-KO. We showed that AQP2 plasma membrane (PM) abundance was reduced for about 50% in WT upon volume load, therefore, this might be a main cause for the enhanced diuresis. In contrast, cGKII-KO mice almost completely failed to decrease AQP2-PM distribution. This significant difference between both genotypes is not induced by an altered p-Ser256-AQP2 phosphorylation, as phosphorylation at this site decreases similarly in WT and KO. Furthermore, sodium excretion was lowered in cGKII-KO mice during volume load. In summary, cGKII is only involved to a minor extent in the regulation of basal renal concentration ability. By contrast, cGKII-KO mice are not able to handle an acute volume load. Our results suggest that membrane insertion of AQP2 is inhibited by cGMP/cGKII.

  5. Functional analysis of Trichoderma reesei CKIIα2, a catalytic subunit of casein kinase II. (United States)

    Wang, Mingyu; Yang, Hui; Zhang, Meiling; Liu, Kuimei; Wang, Hanbin; Luo, Yi; Fang, Xu


    Trichoderma reesei is the most important industrial cellulase-producing filamentous fungus. Although its molecular physiology has been investigated, the signal transduction pathways are not fully understood. In particular, the role of casein kinase II (CKII) is not yet clear. In this work, we carried out functional investigations on a catalytic subunit of CKII, CKIIα2. Comparison of the phenotypic features of T. reesei parent and Δck2α2 strains showed significant changes following ck2α2 disruption. T. reesei Δck2α2 form significantly smaller mycelial pellets in glucose-containing liquid minimum media, have shorter and fewer branch hyphae, produce smaller amounts of chitinases, produce more spores, show more robust growth on glucose-containing agar plates, and consume glucose at a significantly higher rate. Suggestions can be made that CKIIα2 governs chitinase expression, and the disruption of ck2α2 results in lower levels of chitinase production, leading to a weaker cell wall disruption capability, further resulting in weaker hyphal branching, which eventually leads to smaller mycelial pellets in liquid media. Further conclusions can be made that CKIIα2 is involved in repression of sporulation and glucose metabolism, which is consistent with the proposal that CKIIα2 represses global metabolism. These observations make the deletion of ck2α2 a potentially beneficial genetic disruption for T. reesei during industrial applications, as smaller mycelial pellets, more spores and more robust glucose metabolism are all desired traits for industrial fermentation. This work reports novel unique functions of a CKII catalytic subunit and is also the first genetic and physiological investigation on CKII in T. reesei.

  6. Type II kinase inhibitors show an unexpected inhibition mode against Parkinson's disease-linked LRRK2 mutant G2019S. (United States)

    Liu, Min; Bender, Samantha A; Cuny, Gregory D; Sherman, Woody; Glicksman, Marcie; Ray, Soumya S


    A number of well-known type II inhibitors (ATP-noncompetitive) that bind kinases in their DFG-out conformation were tested against wild-type LRRK2 and the most common Parkinson's disease-linked mutation, G2019S. We found that traditional type II inhibitors exhibit surprising variability in their inhibition mechanism between the wild type (WT) and the G2019S mutant of LRRK2. The type II kinase inhibitors were found to work in an ATP-competitive fashion against the G2019S mutant, whereas they appear to follow the expected noncompetitive mechanism against WT. Because the G2019S mutation lies in the DXG motif (DYG in LRRK2 but DFG in most other kinases) of the activation loop, we explored the structural consequence of the mutation on loop dynamics using an enhanced sampling method called metadynamics. The simulations suggest that the G2019S mutation stabilizes the DYG-in state of LRRK2 through a series of hydrogen bonds, leading to an increase in the conformational barrier between the active and inactive forms of the enzyme and a relative stabilization of the active form. The conformational bias toward the active form of LRRK2 mutants has two primary consequences. (1) The mutant enzyme becomes hyperactive, a known contributor to the Parkinsonian phenotype, as a consequence of being "locked" into the activated state, and (2) the mutation creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP-competitive fashion. Our results suggest that developing type II inhibitors, which are generally considered superior to type I inhibitors because of desirable selectivity profiles, might be especially challenging for the G2019S LRRK2 mutant.

  7. Hepatocyte Growth Factor Inhibits Apoptosis by the Profibrotic Factor Angiotensin II via Extracellular Signal-regulated Kinase 1/2 in Endothelial Cells and Tissue Explants (United States)


    II via Extracellular Signal-regulated Kinase 1/2 in Endothelial Cells and Tissue Explants Young H. Lee, Ana P. Marquez , Ognoon Mungunsukh, and Regina...L., Gonzalez- Garcia , M., Page, C., Herrera, R., and Nunez, G. (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt... Marquez , A. P., and Day, R. M. (2010). Angiotensin-II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial

  8. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    SUN; Daye(


    [1]Cheng. W. Y., Cyclic 3', 5'-nucleotide phosphodiestrase: demonstration of an activator, Biochm. Biophys. Res. Commun.,1970, 38: 533-538.[2]Boynton, A. L., Whitfield, J. F., MacManus, J. P., Calmodulin stimulates DNA synthesis by rat liver cells, BBRC.1980,95(2): 745-749.[3]Gorbacherskaya, L. V., Borovkova, T. V., Rybin, U. O. et al., Effect of exogenous calmodulin on lymphocyte proliferation in normal subjects, Bull Exp. Med. Biol., 1983, 95: 361-363.[4]Wong, P. Y.-K., Lee, W. H., Chao, PH.-W., The role of calmodulin in prostaglandin metabolism, Ann. NY Acad. Sci.,1980, 356: 179-189.[5]Mac Neil, S., Dawson, R. A., Crocker, G. et al., Effects of extracellular calmodulin and calmodulin antagonists on B16 melanoma cell growth, J. Invest. Dermatol., 1984, 83: 15-19.[6]Crocker, D. G., Dawson, R. A., Mac Neil, S. et al., An extracellular role for calmodulin-like activity in cell proliferation,Biochem. J., 1988, 253: 877-884.[7]Polito. V. S., Calmodulin and calmodulin inhibitors: effect on pollen germination and tube growth, in Pollen: Biology and Implications for Plant Breeding (eds. Mulvshy, D. L., Ottaviaro, E.), New York: Elsevier, 1983.53-60.[8]Biro, R. L., Sun, D. Y., Roux, S. al., Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution, Plant Physiol., 1984,75: 382-386.[9]Terry, M. E., Bonner, B. A., An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of IAA-induced growth, Plant Physiol., 1980, 66: 321-325.[10]Josefina, H. N., Aldasars, J. J., Rodriguez, D., Localization of calmodulin on embryonic Cice aricium L, in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.), New York, London: Plenum Press, 1985, 313.[11]Dauwalder, M., Roux, S. J., Hardison, L., Distribution of calmodulin in pea seedling: immunocytochemical localization in plumules and root apices, Planta, 1986, 168: 461

  9. Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors. (United States)

    Saito, S; Hirata, Y; Emori, T; Imai, T; Marumo, F


    To determine whether angiotensin (ANG) II, a vasoconstrictor hormone, activates constitutive nitric oxide synthase (cNOS) in endothelial cells (ECs), we investigated the cellular mechanism by which ANG II induces nitric oxide (NO) formation in cultured bovine ECs. ANG II rapidly (within 1 min) and dose-dependently (10(-9)-10(-6) M) increased nitrate/nitrite (NOx) production. This effect of ANG II was abolished by a NOS inhibitor, NG-monomethyl-L-arginine. An ANG II type 1 (AT1) receptor antagonist (DuP 753), but not an ANG II type 2 (AT2) receptor antagonist (PD 123177), dose-dependently inhibited ANG II-induced NOx production. A Ca(2+)-channel blocker (barnidipine) failed to affect ANG II-induced NOx production, whereas an intracellular Ca2+ chelator (BAPTA) and a calmodulin inhibitor (W-7) abolished NOx production induced by ANG II. A protein kinase C (PKC) inhibitor (H-7) and down-regulation of endogenous PKC after pretreatment with phorbol ester decreased NOx production stimulated by ANG II. ANG II transiently stimulated inositol 1,4,5-trisphosphate (IP3) formation, and increased cytosolic free Ca2+ concentrations; these effects were blocked by DuP 753. Our data demonstrate that ANG II stimulates NO release by activation of Ca2+/calmodulin-dependent cNOS via AT1 receptors in bovine ECs.

  10. Endogenous type II cGMP-dependent protein kinase exists as a dimer in membranes and can Be functionally distinguished from the type I isoforms

    NARCIS (Netherlands)

    A.B. Vaandrager (Arie); M.J. Edixhoven (Marcel); A.G. Bot (Alice); M.A. Kroos (Marian); T. Jarchau; S. Lohmann; H.G. Genieser; H.R. de Jonge (Hugo)


    textabstractIn mammalian tissues two types of cGMP-dependent protein kinase (cGK) have been identified. In contrast to the dimeric cGK I, cGK II purified from pig intestine was shown previously to behave as a monomer. However, recombinant rat cGK II was found to have hy

  11. Stimulation of dopamine receptors inhibited Ca2+-calmodulin- dependent protein kinase Ⅱ activity in rat striatal slices%激动多巴胺受体抑制大鼠纹状体脑片Ca2+-钙调蛋白依赖性蛋白激酶Ⅱ活性

    Institute of Scientific and Technical Information of China (English)

    唐放鸣; 侯筱宇; 张光毅


    AIM: To investigate the mechanism underlying dopa minergic neurotoxicity in the striamm during anoxia. METHODS: Using rat striatal slices as an in vitro model, the activity of Ca2 + -calmodulin-dependent protein kinase Ⅱ (CCDPK Ⅱ ) was examined by the method of substrate phosphorylation 32 P-incorporation. RESULTS: Anoxia for 30 min greatly reduced CCDPK Ⅱ activity by about 75 %. Reserpinization by repeated reserpine administration ( 1 mg· kg- 1 · d- 1 for 7 d, sc ) preserved CCDPK Ⅱ activity against the anoxia-induced decrease (about 40 % of control). The activity of CCDPK Ⅱ was reduced significantly by exposure of rat striatal slices to micromolar concentrations of dopamine in the presence of extracellular Ca2+. Omission of Ca2+ in the incubation medium (with addition of 1 mmol/L egtazic acid) diminished the dopamine-induced decrease of the kinase activity. Application of apomorphine, a non selective dopamine receptor agonist, produced a similar concentration-related decrease of CCDPK Ⅱ activity. Exposure to SKF38393 (selective D1-like receptor agonist) or quinpirole (selective D2-like receptor agonist) also inhibited the kinase activity. The dopamine-induced decrease of CCDPK Ⅱ activity was attenuated by preincubation with Sch-23390 (selective D1-like receptor antagonist) or domperidone (selective D2-like receptor antagonist). CONCLUSION: Dopamine is involved in the anoxia-induced inhibition of CCDPK Ⅱ activity by activation of both D1-like and D2-like receptors and influx of Ca2+, which may contribute to dopamine-mediated striatal neuronal damage.%目的:研究缺氧时纹状体多巴胺能神经毒性的机制. 方法:采用大鼠纹状体脑片体外培养模型,以底物 磷酸化32P-掺入法测定Ca2+-钙调蛋白依赖性蛋白激 酶Ⅱ(CCDPKⅡ)的活性.结果:缺氧30 min,纹状 体脑片CCTPKⅡ活性降低75%,慢性利血平化使 得缺氧诱导的酶活性降低程度减轻,与对照组相比 大约降低40%.

  12. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Muchir, Antoine, E-mail: [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Wu, Wei [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Sera, Fusako; Homma, Shunichi [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Worman, Howard J., E-mail: [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States)


    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  13. Type II PI4-kinases control Weibel-Palade body biogenesis and von Willebrand factor structure in human endothelial cells. (United States)

    Lopes da Silva, Mafalda; O'Connor, Marie N; Kriston-Vizi, Janos; White, Ian J; Al-Shawi, Raya; Simons, J Paul; Mössinger, Julia; Haucke, Volker; Cutler, Daniel F


    Weibel-Palade bodies (WPBs) are endothelial storage organelles that mediate the release of molecules involved in thrombosis, inflammation and angiogenesis, including the pro-thrombotic glycoprotein von Willebrand factor (VWF). Although many protein components required for WPB formation and function have been identified, the role of lipids is almost unknown. We examined two key phosphatidylinositol kinases that control phosphatidylinositol 4-phosphate levels at the trans-Golgi network, the site of WPB biogenesis. RNA interference of the type II phosphatidylinositol 4-kinases PI4KIIα and PI4KIIβ in primary human endothelial cells leads to formation of an increased proportion of short WPB with perturbed packing of VWF, as exemplified by increased exposure of antibody-binding sites. When stimulated with histamine, these cells release normal levels of VWF yet, under flow, form very few platelet-catching VWF strings. In PI4KIIα-deficient mice, immuno-microscopy revealed that VWF packaging is also perturbed and these mice exhibit increased blood loss after tail cut compared to controls. This is the first demonstration that lipid kinases can control the biosynthesis of VWF and the formation of WPBs that are capable of full haemostatic function.

  14. Identification of Ca2+/calmodulin-dependent phosphorylation sites of endocytic scaffold ITSN1 by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.


    Full Text Available ITSN1 is a scaffold protein involved in endocytosis, signal transduction and cytoskeleton regulation. It has been previously shown that ITSN1 undergoes Ca2+/calmodulin-dependent phosphorylation in vitro. Aim. We intend to identify these phosphorylation sites. Methods. In vitro kinase reaction; liquid chromatography-tandem mass spectrometry (LC/MS/MS. Results. We identified five sites of Ca2+/calmodulin-dependent phosphorylation in the recombinant fragments of ITSN1. Conclusions. We have shown that the ITSN1 coiled-coil region (CCR and the interdomain linkers between EH2 and CCR, SH3A and SH3B, SH3B and SH3C domains were phosphorylated in a Ca2+/calmodulin-dependent manner in vitro.

  15. Protein Kinase Inhibitors CK59 and CID755673 Alter Primary Human NK Cell Effector Functions (United States)

    Scheiter, Maxi; Bulitta, Björn; van Ham, Marco; Klawonn, Frank; König, Sebastian; Jänsch, Lothar


    Natural killer (NK) cells are part of the innate immune response and play a crucial role in the defense against tumors and virus-infected cells. Their effector functions include the specific killing of target cells, as well as the modulation of other immune cells by cytokine release. Kinases constitute a relevant part in signaling, are prime targets in drug research and the protein kinase inhibitor Dasatinib is already used for immune-modulatory therapies. In this study, we tested the effects of the kinase inhibitors CK59 and CID755673. These inhibitors are directed against calmodulin kinase II (CaMKII; CK59) and PKD family kinases (CID755673) that were previously suggested as novel components of NK activation pathways. Here, we use a multi-parameter, FACS-based assay to validate the influence of CK59 and CID755673 on the effector functions of primary NK cells. Treatment with CK59 and CID755673 indeed resulted in a significant dose-dependent reduction of NK cell degranulation markers and cytokine release in freshly isolated Peripheral blood mononuclear cell populations from healthy blood donors. These results underline the importance of CaMKII for NK cell signaling and suggest protein kinase D2 as a novel signaling component in NK cell activation. Notably, kinase inhibition studies on pure NK cell populations indicate significant donor variations. PMID:23508354

  16. Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface. (United States)

    Pantic, B; Trevisan, E; Citta, A; Rigobello, M P; Marin, O; Bernardi, P; Salvatori, S; Rasola, A


    The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.

  17. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L.; Hood, Molly M.; Lord, John W.; Lu, Wei-Ping; Miller, David F.; Patt, William C.; Smith, Bryan D.; Vogeti, Lakshminarayana; Kaufman, Michael D.; Petillo, Peter A.; Wise, Scott C.; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L. (Deciphera); (Emerald); (Cocrystal)


    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  18. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region. (United States)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L


    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  19. Phosphorylation of tau by death-associated protein kinase 1 antagonizes the kinase-induced cell apoptosis. (United States)

    Duan, Dong-Xiao; Chai, Gao-Shang; Ni, Zhong-Fei; Hu, Yu; Luo, Yu; Cheng, Xiang-Shu; Chen, Ning-Ning; Wang, Jian-Zhi; Liu, Gong-Ping


    The intracellular accumulation of hyperphosphorylated tau plays a crucial role in neurodegeneration of Alzheimer's disease (AD), but the mechanism is not fully understood. From the observation that tau hyperphosphorylation renders cells more resistant to chemically-induced cell apoptosis, we have proposed that tau-involved apoptotic abortion may be the trigger of neurodegeneration. Here, we further studied whether this phenomenon is also applicable for the cell death induced by constitutively expressed factors, such as death-associated protein kinase 1 (DAPK1). We found that DAPK1 was upregulated and accumulated in the brain of human tau transgenic mice. Overexpression of DAPK1 in HEK293 and N2a cells decreased cell viability with activation of caspase-3, whereas simultaneous expression of tau antagonized DAPK1-induced apoptotic cell death. Expression of DAPK1 induced tau hyperphosphorylation at Thr231, Ser262, and Ser396 with no effects on protein phosphatase 2A, glycogen synthase kinase-3β, protein kinase A, calcium/calmodulin dependent protein kinase II, cell division cycle 2, or cyclin dependent protein kinase 5. The phosphorylation level of microtubule affinity-regulating kinase 2 (MARK2) was increased by expression of DAPK1, but simultaneous downregulation of MARK2 did not affect the DAPK1-induced tau hyperphosphorylation. DAPK1 was co-immunoprecipitated with tau proteins both in vivo and in vitro, and expression of the kinase domain-truncated DAPK1 did not induce tau hyperphosphorylation. These data suggest that tau hyperphosphorylation at Thr231, Ser262, and Ser396 by DAPK1 renders the cells more resistant to the kinase-induced apoptotic cell death, providing new insights into the tau-involved apoptotic abortion in the course of chronic neurodegeneration.

  20. Immunoelectron microscopic localization of calmodulin in corn root cells

    Institute of Scientific and Technical Information of China (English)



    Methods for the localization of plant calmodulin by immuno-gold and immuno-peroxidase electron microscopy have been developed. In both corn root-cap cells and meristematic cells, calmodulin was found to be localized in the nucleus, cytoplasm, mitochondria as well as in the cell wall, In the meristematic cells, calmodulin was distinctly localized on the plasma membrane, cytoplasmic face of rough endoplasmic rcticulum and polyribosomes. Characteristically, calmodulin was present in the amyloplasts of root-cap cells. The widespread distribution of calmodulin may reflect its plciotropic functions in plant cellular activities.

  1. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. (United States)

    García-Pardo, María Pilar; Roger-Sanchez, Concepción; Rodríguez-Arias, Marta; Miñarro, Jose; Aguilar, María Asunción


    Drug addiction shares brain mechanisms and molecular substrates with learning and memory processes, such as the stimulation of glutamate receptors and their downstream signalling pathways. In the present work we provide an up-to-date review of studies that have demonstrated the implication of the main memory-related calcium-dependent protein kinases in opiate and cocaine addiction. The effects of these drugs of abuse in different animal models of drug reward, dependence and addiction are altered by manipulation of the mitogen-activated protein kinase (MAPK) family, particularly extracellular signal regulated kinase (ERK), calcium/calmodulin-dependent kinase II (CaMKII), the protein kinase C (PKC) family (including PKMζ), cAMP-dependent protein kinase A (PKA), cGMP-dependent protein kinase G (PKG), the phosphatidylinositol 3-kinase (PI3K) pathway and its downstream target mammalian target of Rapamycin (mTOR), cyclin-dependent kinase 5 (Cdk5), heat-shock proteins (Hsp) and other enzymes and proteins. Research suggests that drugs of abuse induce dependence and addiction by modifying the signalling pathways that involve these memory-related protein kinases, and supports the idea that drug addiction is an excessive aberrant learning disorder in which the maladaptive memory of drug-associated cues maintains compulsive drug use and contributes to relapse. Moreover, the studies we review offer new pharmacological strategies to treat opiate and cocaine dependence based on the manipulation of these protein kinases. In particular, disruption of reconsolidation of drug-related memories may have a high therapeutic value in the treatment of drug addiction.

  2. Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells. (United States)

    Pinton, Paolo; Tsuboi, Takashi; Ainscow, Edward K; Pozzan, Tullio; Rizzuto, Rosario; Rutter, Guy A


    The mechanisms by which glucose may affect protein kinase C (PKC) activity in the pancreatic islet beta-cell are presently unclear. By developing adenovirally expressed chimeras encoding fusion proteins between green fluorescent protein and conventional (betaII), novel (delta), or atypical (zeta) PKCs, we show that glucose selectively alters the subcellular localization of these enzymes dynamically in primary islet and MIN6 beta-cells. Examined by laser scanning confocal or total internal reflection fluorescence microscopy, elevated glucose concentrations induced oscillatory translocations of PKCbetaII to spatially confined regions of the plasma membrane. Suggesting that increases in free cytosolic Ca(2+) concentrations ([Ca(2+)](c)) were primarily responsible, prevention of [Ca(2+)](c) increases with EGTA or diazoxide completely eliminated membrane recruitment, whereas elevation of cytosolic [Ca(2+)](c) with KCl or tolbutamide was highly effective in redistributing PKCbetaII both to the plasma membrane and to the surface of dense core secretory vesicles. By contrast, the distribution of PKCdelta.EGFP, which binds diacylglycerol but not Ca(2+), was unaffected by glucose. Measurement of [Ca(2+)](c) immediately beneath the plasma membrane with a ratiometric "pericam," fused to synaptic vesicle-associated protein-25, revealed that depolarization induced significantly larger increases in [Ca(2+)](c) in this domain. These data demonstrate that nutrient stimulation of beta-cells causes spatially and temporally complex changes in the subcellular localization of PKCbetaII, possibly resulting from the generation of Ca(2+) microdomains. Localized changes in PKCbetaII activity may thus have a role in the spatial control of insulin exocytosis.

  3. Hydrophobic motif site-phosphorylated protein kinaseII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy. (United States)

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh


    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  4. Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain

    DEFF Research Database (Denmark)

    Pandey, A.; Dan, I.; Kristiansen, T.Z.;


    activates the JNK kinase pathway but not p38 or ERK pathways. PAK5 transcript is predominantly expressed in brain as revealed by Northern blot and in situ hybridization. The expression pattern of PAK5 is distinct from that of PAK4 and PAK6, suggesting a functional division among PAK-II subfamily kinases......The p21-activated kinase (PAK) family of protein kinases has recently attracted considerable attention as an effector of Rho family of small G proteins and as an upstream regulator of MAPK signalling pathways during cellular events such as re-arrangement of the cytoskeleton and apoptosis. We have...... that PAK5 preferentially binds to CDC42 in the presence of GTP and that CRIB motif is essential for this interaction. PAK5 is a functional protein kinase but unlike PAK-I family kinases (PAK1, 2, and 3), the kinase activity of PAK5 does not seem to require the binding of CDC42. Overexpression of PAK5...

  5. Effects of Ca2+/calmodulin-dependent protein kinase Ⅱ on PDGF-induced collagen α1(Ⅰ) production in human hepatic stellate cells%Ca2+/钙调蛋白依赖性蛋白激酶Ⅱ在PDGF诱导肝星状细胞胶原合成中的作用

    Institute of Scientific and Technical Information of China (English)

    安萍; 刘亚玲; 全晓静; 刘璐; 罗和生


    目的 观察Ca2+/钙调蛋白依赖性蛋白激酶Ⅱ(CaMKⅡ)对PDGF诱导下人肝星状细胞(hepatic stellate cell,HSC) collagen α1(Ⅰ)合成的影响.方法 CaMKⅡα siRNA转染对HSC内CaMKⅡα进行干扰,real-time PCR法检测HSC collagen α1(Ⅰ)及TIMP-1 mRNA的表达,Western blot法检测collagen α1(Ⅰ)及MMP-2、TIMP-1表达的变化,ELISA法检测HSC collagen α1(Ⅰ)分泌的变化.结果 CaMKⅡα siRNA可显著抑制PDGF诱导下HSC collagen α1(Ⅰ) 及MMP-2、TIMP-1的转录、蛋白表达以及collagen α1(Ⅰ)的分泌,差异均有统计学意义(P<0.05).结论 CaMKⅡα信号参与了PDGF诱导下HSC collagen α1(Ⅰ)的产生与分泌,同时通过抑制MMP-2、促进TIMP-1的表达而阻止胶原的降解,是肝纤维化发展过程中PDGF信号的重要调控分子和肝纤维化的潜在治疗靶点.%Objective To observe the effects of Ca2+/calmodulin-dependent protein kinase Ⅱ ( CaMK Ⅱ ) on PDGF-induced collagen α1 (Ⅰ) production in human hepatic stellate cells. Methods The knockdown of CaMK Ⅱ a was performed by CaMK Ⅱ α siRNA transient transfection. The mRNA and protein expression of collagen α1 (Ⅰ) , MMP-2 and TIMP-1 were determined by real-time PCR and Western blot, respectively. The secretion of collagen α1 (Ⅰ) in culture media was tested by ELISA. Results CaMK Ⅱ knockdown by CaMK Ⅱ a siRNA significantly inhibited collagen α1 (Ⅰ) expression and secretion in PDGF-induced HSCs. CaMK Ⅱ inhibition resulted in up-regulation of MMP-2 and down-regulation of TIMP-1. Conclusion CaMK Ⅱ α regulate PDGF-induced collagen α1 (Ⅰ) production and secretion, increase TIMP-1 expression and decrease MMP-2 expression. Our study shed light on CaMK Ⅱ as a crucial signal in PDGF-activated HSCs and a potential therapeutic target in hepatic fibrosis.

  6. Growth-dependent modulation of casein kinase II and its substrate nucleolin in primary human cell cultures and HeLa cells

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G


    We have previously provided evidence that casein kinase II (CKII) and its substrate nucleolin increase concomitantly during certain development stages during embryogenesis (Schneider et al., Eur. J. Biochem. 161, 733-738). We now show that during normal growth of primary cell cultures and HeLa...

  7. cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl- channels co-expressed with cGMP-dependent protein kinase type II but not type Ibeta

    NARCIS (Netherlands)

    A.B. Vaandrager (Arie); S.M. Lohmann (Suzanne); H.R. de Jonge (Hugo); W.C. Poller; B.C. Tilly (Bernard); A. Smolenski; S. Schneider-Rasp; A.G. Bot (Alice); M.J. Edixhoven (Marcel); B.J. Scholte (Bob); T. Jarchau; U. Walter


    textabstractIn order to investigate the involvement of cGMP-dependent protein kinase (cGK) type II in cGMP-provoked intestinal Cl- secretion, cGMP-dependent activation and phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels was ana

  8. Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II

    NARCIS (Netherlands)

    P.J. French (Pim); J. Bijman (Jan); M.J. Edixhoven (Marcel); A.B. Vaandrager (Arie); B.J. Scholte (Bob); S.M. Lohmann (Suzanne); A.C. Nairn; H.R. de Jonge (Hugo)


    textabstractType II cGMP-dependent protein kinase (cGKII) isolated from pig intestinal brush borders and type I alpha cGK (cGKI) purified from bovine lung were compared for their ability to activate the cystic fibrosis transmembrane conductance regulator (CFTR)-Cl- channel in excis

  9. Extracellular signal regulated kinase and SMAD signaling both mediate the angiotensin II driven progression towards overt heart failure in homozygous TGR(mRen2)27

    NARCIS (Netherlands)

    de Boer, RA; Pokharel, S; Flesch, M; van Kampen, DA; Suurmeijer, AJH; Boomsma, F; van Gilst, WH; van Veldhuisen, DJ; Pinto, YM


    Angiotensin (Ang) II is a key player in left ventricular (LV) remodeling and cardiac fibrosis. Its effects are thought to be transferred at least in part by mitogen-activated protein kinases (MAPK), transforming growth factor (TGF) beta(1), and the Smad pathway. In this study we sought to elucidate

  10. Autonomous CaMKII requires further stimulation by Ca2+/calmodulin for enhancing synaptic strength. (United States)

    Barcomb, Kelsey; Buard, Isabelle; Coultrap, Steven J; Kulbe, Jacqueline R; O'Leary, Heather; Benke, Timothy A; Bayer, K Ulrich


    A hallmark feature of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is generation of autonomous (Ca(2+)-independent) activity by T286 autophosphorylation. Biochemical studies have shown that "autonomous" CaMKII is ∼5-fold further stimulated by Ca(2+)/CaM, but demonstration of a physiological function for such regulation within cells has remained elusive. In this study, CaMKII-induced enhancement of synaptic strength in rat hippocampal neurons required both autonomous activity and further stimulation. Synaptic strength was decreased by CaMKIIα knockdown and rescued by reexpression, but not by mutants impaired for autonomy (T286A) or binding to NMDA-type glutamate receptor subunit 2B (GluN2B; formerly NR2B; I205K). Full rescue was seen with constitutively autonomous mutants (T286D), but only if they could be further stimulated (additional T305/306A mutation), and not with two other mutations that additionally impair Ca(2+)/CaM binding. Compared to rescue with wild-type CaMKII, the CaM-binding-impaired mutants even had reduced synaptic strength. One of these mutants (T305/306D) mimicked an inhibitory autophosphorylation of CaMKII, whereas the other one (Δstim) abolished CaM binding without introducing charged residues. Inhibitory T305/306 autophosphorylation also reduced GluN2B binding, but this effect was independent of reduced Ca(2+)/CaM binding and was not mimicked by T305/306D mutation. Thus, even autonomous CaMKII activity must be further stimulated by Ca(2+)/CaM for enhancement of synaptic strength.

  11. Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running (United States)

    Fluck, M.; Waxham, M. N.; Hamilton, M. T.; Booth, F. W.


    Spikes in free Ca(2+) initiate contractions in skeletal muscle cells, but whether and how they might signal to transcription factors in skeletal muscles of living animals is unknown. Since previous studies in non-muscle cells have shown that serum response factor (SRF) protein, a transcription factor, is phosphorylated rapidly by Ca(2+)/calmodulin (CaM)-dependent protein kinase after rises in intracellular Ca(2+), we measured enzymatic activity that phosphorylates SRF (designated SRF kinase activity). Homogenates from 7-day-hypertrophied anterior latissimus dorsi muscles of roosters had more Ca(2+)-independent SRF kinase activity than their respective control muscles. However, no differences were noted in Ca(2+)/CaM-dependent SRF kinase activity between control and trained muscles. To determine whether the Ca(2+)-independent and Ca(2+)/CaM-dependent forms of Ca(2+)/CaM-dependent protein kinase II (CaMKII) might contribute to some of the SRF kinase activity, autocamtide-3, a synthetic substrate that is specific for CaMKII, was employed. While the Ca(2+)-independent form of CaMKII was increased, like the Ca(2+)-independent form of SRF kinase, no alteration in CaMKII occurred at 7 days of stretch overload. These observations suggest that some of SRF phosphorylation by skeletal muscle extracts could be due to CaMKII. To determine whether this adaptation was specific to the exercise type (i.e., hypertrophy), similar measurements were made in the white vastus lateralis muscle of rats that had completed 2 wk of voluntary running. Although Ca(2+)-independent SRF kinase was increased, no alteration occurred in Ca(2+)/CaM-dependent SRF kinase activity. Thus any role of Ca(2+)-independent SRF kinase signaling has downstream modulators specific to the exercise phenotype.

  12. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  13. Kv7 Channels Can Function without Constitutive Calmodulin Tethering (United States)

    Alberdi, Araitz; Alaimo, Alessandro; Etxeberría, Ainhoa; Fernández-Orth, Juncal; Zamalloa, Teresa; Roura-Ferrer, Meritxell; Villace, Patricia; Areso, Pilar; Casis, Oscar; Villarroel, Alvaro


    M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function. PMID:21980481

  14. Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin. (United States)

    Wang, C L; Leavis, P C; Gergely, J


    The stepwise addition of Tb3+ to calmodulin yields a large tyrosine-sensitized Tb3+ luminescence enhancement as the third and fourth ions bind to the protein [Wang, C.-L. A., Aquaron, R. R., Leavis, P. C., & Gergely, J. (1982) Eur. J. Biochem. 124, 7-12]. Since the only tyrosine residues in calmodulin are located within binding sites III and IV, these results suggest that Tb3+ binds first to sites I and II. Recent NMR studies have provided evidence that Ca2+, on the other hand, binds preferentially to sites III and IV. Kinetic studies using a stopped-flow apparatus also show that the preferential binding of Ca2+ and lanthanide ions is different. Upon rapid mixing of 2Ca-calmodulin with two Tb3+ ions, there was a small and rapid tyrosine fluorescence change, but no Tb3+ luminescence was observed, indicating that Tb3+ binds to sites I and II but not sites III and IV. When two Tb3+ ions are mixed with 2Dy-calmodulin, Tb3+ luminescence rises rapidly as Tb3+ binds to the empty sites III and IV, followed by a more gradual decrease (k = 0.4 s-1 as the ions redistribute themselves over the four sites. These results indicate that (i) both Tb3+ and Dy3+ prefer binding to sites I and II of calmodulin and (ii) the binding of Tb3+ to calmodulin is not impeded by the presence of two Ca2+ ions initially bound to the protein. Thus, the Ca2+ and lanthanide ions must exhibit opposite preferences for the four sites of calmodulin: sites III and IV are the high-affinity sites for Ca2+, whereas Tb3+ and Dy3+ prefer sites I and II.

  15. Competitive inhibition of TRPV1-calmodulin interaction by vanilloids. (United States)

    Hetényi, Anasztázia; Németh, Lukács; Wéber, Edit; Szakonyi, Gerda; Winter, Zoltán; Jósvay, Katalin; Bartus, Éva; Oláh, Zoltán; Martinek, Tamás A


    There is enormous interest toward vanilloid agonists of the pain receptor TRPV1 in analgesic therapy, but the mechanisms of their sensory neuron-blocking effects at high or repeated doses are still a matter of debate. Our results have demonstrated that capsaicin and resiniferatoxin form nanomolar complexes with calmodulin, and competitively inhibit TRPV1-calmodulin interaction. These interactions involve the protein recognition interface of calmodulin, which is responsible for all of the cell-regulatory calmodulin-protein interactions. These results draw attention to a previously unknown vanilloid target, which may contribute to the explanation of the paradoxical pain-modulating behavior of these important pharmacons.

  16. Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension. (United States)

    Yu, Yang; Xue, Bao-Jian; Zhang, Zhi-Hua; Wei, Shun-Guang; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B


    Blood-borne angiotensin II (ANG II) can upregulate p44/42 mitogen-activated protein kinase (MAPK) signaling and ANG II type-1 receptors in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center. We tested the hypothesis that brain p44/42 MAPK signaling contributes to the development of ANG II-induced hypertension. The ANG II infusion (120 ng/kg per min, subcutaneously) induced increases in phosphorylated p44/42 MAPK and ANG II type-1 receptors in the PVN after 1 week, before the onset of hypertension, that were sustained as hypertension developed during a 2- or 3-week infusion protocol. Bilateral PVN microinjections of small interfering RNAs for p44/42 MAPK, at the onset of the ANG II infusion or 1 week later, prevented the early increase in p44/42 MAPK activity. The early treatment normalized ANG II type-1 receptor expression in the PVN and attenuated the hypertensive response to the 2-week infusion of ANG II. The later small interfering RNA microinjections had a transient effect on ANG II type-1 receptor expression in PVN and no effect on the hypertensive response to the 3-week infusion of ANG II. The early treatment also normalized the pressure response to ganglionic blockade. The ANG II infusion induced increases in mRNA for proinflammatory cytokines that were not affected by either small interfering RNA treatment. These results suggest that the full expression of ANG II-induced hypertension depends on p44/42 MAPK-mediated effects. A potential role for p44/42 MAPK in modulating the ANG II-induced central inflammatory response might also be considered. MAPK signaling in PVN may be a novel target for early intervention in the progression of ANG II-dependent hypertension.

  17. Spatial memory deficits and motor coordination facilitation in cGMP-dependent protein kinase type II-deficient mice. (United States)

    Wincott, Charlotte M; Kim, Seonil; Titcombe, Roseann F; Tukey, David S; Girma, Hiwot K; Pick, Joseph E; Devito, Loren M; Hofmann, Franz; Hoeffer, Charles; Ziff, Edward B


    Activity-dependent trafficking of AMPA receptors to synapses regulates synaptic strength. Activation of the NMDA receptor induces several second messenger pathways that contribute to receptor trafficking-dependent plasticity, including the NO pathway, which elevates cGMP. In turn, cGMP activates the cGMP-dependent protein kinase type II (cGKII), which phosphorylates the AMPA receptor subunit GluA1 at serine 845, a critical step facilitating synaptic delivery in the mechanism of activity-dependent synaptic potentiation. Since cGKII is expressed in the striatum, amygdala, cerebral cortex, and hippocampus, it has been proposed that mice lacking cGKII may present phenotypic differences compared to their wild-type littermates in emotion-dependent tasks, learning and memory, and drug reward salience. Previous studies have shown that cGKII KO mice ingest higher amounts of ethanol as well as exhibit elevated anxiety levels compared to wild-type (WT) littermates. Here, we show that cGKII KO mice are significantly deficient in spatial learning while exhibiting facilitated motor coordination, demonstrating a clear dependence of memory-based tasks on cGKII. We also show diminished GluA1 phosphorylation in the postsynaptic density (PSD) of cGKII KO prefrontal cortex while in hippocampal PSD fractions, phosphorylation was not significantly altered. These data suggest that the role of cGKII may be more robust in particular brain regions, thereby impacting complex behaviors dependent on these regions differently.

  18. Extracellular signal-regulated kinases 1/2 control claudin-2 expression in Madin-Darby canine kidney strain I and II cells. (United States)

    Lipschutz, Joshua H; Li, Shixiong; Arisco, Amy; Balkovetz, Daniel F


    The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.

  19. Production of superoxide from photosystem II-light harvesting complex II supercomplex in STN8 kinase knock-out rice mutants under photoinhibitory illumination. (United States)

    Poudyal, Roshan Sharma; Nath, Krishna; Zulfugarov, Ismayil S; Lee, Choon-Hwan


    When phosphorylation of Photosystem (PS) II core proteins is blocked in STN8 knock-out mutants of rice (Oryza sativa) under photoinhibitory illumination, the mobilization of PSII supercomplex is prevented. We have previously proposed that more superoxide (O2(-)) is produced from PSII in the mutant (Nath et al., 2013, Plant J. 76, 675-686). Here, we clarify the type and site for the generation of reactive oxygen species (ROS). Using both histochemical and fluorescence probes, we observed that, compared with wild-type (WT) leaves, levels of ROS, including O2(-) and hydrogen peroxide (H2O2), were increased when leaves from mutant plants were illuminated with excess light. However, singlet oxygen production was not enhanced under such conditions. When superoxide dismutase was inhibited, O2(-) production was increased, indicating that it is the initial event prior to H2O2 production. In thylakoids isolated from WT leaves, kinase was active in the presence of ATP, and spectrophotometric analysis of nitrobluetetrazolium absorbance for O2(-) confirmed that PSII-driven superoxide production was greater in the mutant thylakoids than in the WT. This contrast in levels of PSII-driven superoxide production between the mutants and the WT plants was confirmed by conducting protein oxidation assays of PSII particles from osstn8 leaves under strong illumination. Those assays also demonstrated that PSII-LHCII supercomplex proteins were oxidized more in the mutant, thereby implying that PSII particles incur greater damage even though D1 degradation during PSII-supercomplex mobilization is partially blocked in the mutant. These results suggest that O2(-) is the major form of ROS produced in the mutant, and that the damaged PSII in the supercomplex is the primary source of O2(-).

  20. Use of fluorescently labelled calmodulins as tools to measure subcellular calmodulin activation in living dorsal root ganglion cells. (United States)

    Milikan, J M; Bolsover, S R


    We have used fluorescently labelled calmodulins to probe the activity of calmodulin in living dorsal root ganglion cells. Calmodulin labelled with the fluorophore 5-([4,6 dichlorotriazin-2yl]amino)-fluorescein (FL-CaM) does not change its fluorescence when it binds calcium, while calmodulin labelled at lysine 75 with 2-chloro-(6-(4-N,N-diethylamino-phenyl)-1,4,5-triazin-4-yl (TA-CaM), an environment-sensitive probe, increases its fluorescence when it binds calcium. We micro-injected FL-CaM or TA-CaM into rat dorsal root ganglion cells and found that both probes localise to the cell nucleus. In contrast, endogenous cellular calmodulin, in dorsal root ganglion cells as in hippocampal neurones, is predominantly cytosolic unless the neurones are depolarised, then it moves to the nucleus. FL-CaM and TA-CaM, introduced into dorsal root ganglion cells via a patch pipette, also immediately move to the nucleus, indicating that the nuclear localisation is a property of the labelled calmodulins. Although the subcellular distribution of FL-CaM and TA-CaM does not necessarily match that of endogenous calmodulin, we show that FL-CaM can be used as a control for TA-CaM when studying calmodulin activation in different cellular compartments.


    DEFF Research Database (Denmark)

    Fog, Jacob; Khoshbouei, H; Holy, M

    The dopamine transporter(DAT) plays a key role in clearing extracellular dopamine(DA) from the synapse. Moreover DAT is a target for the action of widely abused psychostimulants such as cocaine and amphetamine(AMPH). AMPH is a substrate for the DAT and promotes the reversal of transport and thus...

  2. High-pressure SANS and fluorescence unfolding study of calmodulin. (United States)

    Gibrat, Gabriel; Hoa, Gaston Hui Bon; Craescu, Constantin T; Assairi, Liliane; Blouquit, Yves; Annighöfer, Burkhard; May, Roland P; Bellissent-Funel, Marie-Claire


    Apo-calmodulin, a small soluble mainly α protein, is a calcium-dependent protein activator. Calcium binding affects the calmodulin conformation but also its stability. Calcium free form unfolds between 40 and 80°C, whereas the calcium-saturated form is stable up to temperatures as high as 100°C, forbidding comparison of the thermal unfolding pathways of the two forms. Thus, this paper focuses especially on the conformation of pressure-induced unfolding states of both forms of calmodulin, by combining small-angle neutron scattering (SANS) with biophysical techniques such as tyrosines and ANS fluorescence. In contrast to heat denaturation (Gibrat et al., BBA, 2012), the pressure denaturation of calmodulin is reversible up to pressures of 3000bar (300MPa). A pressure-induced compact intermediate state has been found for the two calmodulin forms, but their unfolding pathways are different. A domain compaction and an increase of the ANS fluorescence of holo form have been evidenced. On the contrary, a domain dilatation and an ANS fluorescence decrease have been found for the apo form. The pressure induced an increase of the interdomain distance for both calmodulin forms, suggesting that the central linker of calmodulin is flexible in solution.

  3. 钙调蛋白依赖性蛋白激酶Ⅱ对前列腺癌PC3细胞增殖、侵袭及上皮-间充质转化的影响%Effects of calcium/calmodulin dependent protein kinase Ⅱ on proliferation, invasion and epithelia-mesenchymal transition of prostate cancer PC3 cells

    Institute of Scientific and Technical Information of China (English)

    彭璇; 陈晖; 王敏; 刘修恒


    Objective To observe the effects of inactivation of calcium/calmodulin dependent protein kinase Ⅱ (CaMK Ⅱ) on proliferation, invasion and epithelia-mesenchymal transition related signaling pathway in prostate cancer PC3 cells.Methods The activity of CaMK Ⅱ in PC3 cells was suppressed by KN93, a pharmacological inhibitor.MTT assay was used to detect the inhibition rate of PC3 cells and the invasion ability of PC3 cells was examined using Transwell invasion chambers.The protein expression of phosphorylated CaMK Ⅱ (p-CaMK Ⅱ), nuclear factor κB (NF-κB), zinc finger transcription factor (Snail), and Raf kinase inhibitory protein (RKIP) was measured by Western blotting.Results After treatment with KN93 for 24 h, the protein expression of p-CaMK Ⅱ PC3 cells treated with 5, 10, 20 μmol/L KN93 (0.453 ± 0.070, 0.368 ± 0.076, and 0.308 ± 0.011) was significantly decreased as compare with control group (0.596 ± 0.028) (P < 0.05 or 0.01), 40 μmol/L KN93 almost completely inhibited p-CaMK Ⅱ protein expression.The inhibition rate of PC3 cells treated with KN93 for 24 h was (6.88±1.79)%, (12.92 ±2.74)%, (17.88 ±2.86)% and (31.23 ±4.24)%, and (16.53 ±2.45) %, (29.02 ± 1.74) %, (40.52 ± 1.98) % and (52.26 ± 3.51) % for 48 h respectively.The number of the invasion PC3 cells in control and KN93 groups was (149 ± 17), (97 ± 7), (59 ± 9),(51 ±7), and (24 ± 3)/high magnification mirror (HP) respectively.The number of invasion cells in KN93 groups was significantly decreased when compared with control group (P < 0.01).The protein expression of NF-κB p65 had no significant difference between control and KN93 groups (P > 0.05), but p-NF-κB p65 was down-regulated in KN93 groups (0.483 ± 0.052, 0.490 ± 0.064, 0.432 ± 0.057,and 0.341 ±0.008) when compared with control group (0.597 ±0.020, P <0.05 or 0.01).As compared with control group (0.716 ±0.046), Snail protein expression in PC3 cells treated with 5, and 10 μmol/L KN93 (0

  4. Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence.

    Directory of Open Access Journals (Sweden)

    Sophia Magen

    Full Text Available Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34 has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2(nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.

  5. Localization of calmodulin and calmodulin-like protein and their functions in biomineralization in P. fucata

    Institute of Scientific and Technical Information of China (English)

    Zi Fang; Zhenguang Yan; Shuo Li; Qin Wang; Weizhong Cao; Guangrui Xu; Xunhao Xiong; Liping Xie; Rongqing Zhang


    Calmodulin (CaM) and calmodulin-like protein (CaLP) are two proteins involved in biomineralization. Their localizations in Pinct-ada fucata mantle epithelia were studied by Western blot (WB) analysis of the nuclear/cytosol fraction of primary cultured P. fucata mantle cells and immunogold electron microscopy. The results showed a completely different distribution of these two proteins at the subcellular level. CaM was distributed throughout both the nucleus and cytoplasm of the mantle epithelium but CaLP was distributed only in the cytoplasm. The functions of these two proteins in biomineralization were investigated by shell regeneration. During this process, the expressions of CaM and CaLP were greatly enhanced in different organelles of the mantle epithelium. Overexpression of these two proteins and a mutant of calmodulin-like protein (M-CaLP) that lacks an extra C-terminal tail in MC3T3-E1 promoted the mRNA expression of osteopontin, a biomineralization marker for osteoblasts. All of the results indicated that CaM and CaLP have completely different distributions in the mantle epithelium and affect the biomineralization process at different levels. The extra C-terminal tail of CaLP is important for its functions in biomineralization in P. fucata.

  6. Casein kinase II induced polymerization of soluble TDP-43 into filaments is inhibited by heat shock proteins.

    Directory of Open Access Journals (Sweden)

    Yari Carlomagno

    Full Text Available BACKGROUND: Trans-activation Response DNA-binding Protein-43 (TDP-43 lesions are observed in Amyotrophic Lateral Sclerosis (ALS, Frontotemporal Lobar Degeneration with ubiquitin inclusions (FTLD-TDP and 25-50% of Alzheimer's Disease (AD cases. These abnormal protein inclusions are composed of either amorphous TDP-43 aggregates or highly ordered filaments. The filamentous TDP-43 accumulations typically contain clean 10-12 nm filaments though wider 18-20 nm coated filaments may be observed. The TDP-43 present within these lesions is phosphorylated, truncated and ubiquitinated, and these modifications appear to be abnormal as they are linked to both a cellular heat shock response and microglial activation. The mechanisms associated with this abnormal TDP-43 accumulation are believed to result in a loss of TDP-43 function, perhaps due to the post-translational modifications or resulting from physical sequestration of the TDP-43. The formation of TDP-43 inclusions involves cellular translocation and conversion of TDP-43 into fibrillogenic forms, but the ability of these accumulations to sequester normal TDP-43 and propagate this behavior between neurons pathologically is mostly inferred. The lack of methodology to produce soluble full length TDP-43 and recapitulate this polymerization into filaments as observed in disease has limited our understanding of these pathogenic cascades. RESULTS: The protocols described here generate soluble, full-length and untagged TDP-43 allowing for a direct assessment of the impact of various posttranslational modifications on TDP-43 function. We demonstrate that Casein Kinase II (CKII promotes the polymerization of this soluble TDP-43 into 10 nm diameter filaments that resemble the most common TDP-43 structures observed in disease. Furthermore, these filaments are recognized as abnormal by Heat Shock Proteins (HSPs which can inhibit TDP-43 polymerization or directly promote TDP-43 filament depolymerization. CONCLUSION

  7. Light-modulated abundance of an mRNA encoding a calmodulin-regulated, chromatin-associated NTPase in pea (United States)

    Hsieh, H. L.; Tong, C. G.; Thomas, C.; Roux, S. J.


    A CDNA encoding a 47 kDa nucleoside triphosphatase (NTPase) that is associated with the chromatin of pea nuclei has been cloned and sequenced. The translated sequence of the cDNA includes several domains predicted by known biochemical properties of the enzyme, including five motifs characteristic of the ATP-binding domain of many proteins, several potential casein kinase II phosphorylation sites, a helix-turn-helix region characteristic of DNA-binding proteins, and a potential calmodulin-binding domain. The deduced primary structure also includes an N-terminal sequence that is a predicted signal peptide and an internal sequence that could serve as a bipartite-type nuclear localization signal. Both in situ immunocytochemistry of pea plumules and immunoblots of purified cell fractions indicate that most of the immunodetectable NTPase is within the nucleus, a compartment proteins typically reach through nuclear pores rather than through the endoplasmic reticulum pathway. The translated sequence has some similarity to that of human lamin C, but not high enough to account for the earlier observation that IgG against human lamin C binds to the NTPase in immunoblots. Northern blot analysis shows that the NTPase MRNA is strongly expressed in etiolated plumules, but only poorly or not at all in the leaf and stem tissues of light-grown plants. Accumulation of NTPase mRNA in etiolated seedlings is stimulated by brief treatments with both red and far-red light, as is characteristic of very low-fluence phytochrome responses. Southern blotting with pea genomic DNA indicates the NTPase is likely to be encoded by a single gene.

  8. Protein kinase A type I activates a CRE-element more efficiently than protein kinase A type II regardless of C subunit isoform

    Directory of Open Access Journals (Sweden)

    Kvissel Anne-Katrine


    Full Text Available Abstract Background Protein kinase A type I (PKAI and PKAII are expressed in most of the eukaryotic cells examined. PKA is a major receptor for cAMP and specificity is achieved partly through tissue-dependent expression and subcellular localization of subunits with different biochemical properties. In addition posttranslational modifications help fine tune PKA activity, distribution and interaction in the cell. In spite of this the functional significance of two forms of PKA in one cell has not been fully determined. Here we have tested the ability of PKAI and PKAII formed by expression of the regulatory (R subunits RIα or RIIα in conjunction with Cα1 or Cβ2 to activate a co-transfected luciferace reporter gene, controlled by the cyclic AMP responsive element-binding protein (CREB in vivo. Results We show that PKAI when expressed at equal levels as PKAII was significantly (p Conclusion We suggest that differential effects of PKAI and PKAII in inducing Cre-luciferace activity depend on R and not C subunit identity.

  9. Surface plasmon resonance characterization of calspermin-calmodulin binding kinetics. (United States)

    Murphy, Andrew J; Kemp, Fred; Love, John


    We cloned, expressed, and purified a chimeric fusion between a soluble green fluorescent protein (smGFP) and the calmodulin binding protein calspermin. We have shown that the fusion protein, labeled smGN, has a K(i) in the calmodulin-dependent cyclic nucleotide phosphodiesterase activity assay of 1.97 nM, i.e., 3800 times smaller than that of the commonly used calmodulin inhibitor W7. Association and dissociation rate constants (k(a) and k(d)) and the dissociation equilibrium constant (K(D)) of smGN for calmodulin were determined using surface plasmon resonance (SPR). The k(a)=1.24 x 10(6)M(-1)s(-1), the k(d)=5.49 x 10(-3)s(-1), and the K(D)=4.42 x 10(-9)M. We also found that the GFP moiety was important for successfully binding calspermin to the surface of the CM5 flow cell at a sufficiently high concentration for SPR, and that this procedure may be used for SPR analysis of other acidic polypeptides, whose pIliquid chromatography-tandem mass spectrometry, indicating a high level of specificity. We conclude that the high affinity and specific binding between smGN and calmodulin make it an easily localized recombinant alternative to chemical calmodulin inhibitors.

  10. Casein kinases

    DEFF Research Database (Denmark)

    Issinger, O G


    subunits are highly conserved during evolution. The relationship between CK-2 alpha from humans and plants is still 73%. Similar relationships are reported for the beta-subunit. Chromosomal assignment of CK-2 alpha shows two gene loci, one of which is a pseudogene. They are located on different chromosomes......, no genetic changes are necessarily involved; the observed changes may be entirely due to a signal transduction pathway where CK-2 could be phosphorylated by another kinase(s). CK-2 cDNAs from various organisms have been isolated and characterized. From the deduced amino acid sequence it turns out that CK-2......-subunit affecting: (i) stability, (ii) enzyme specificity and (iii) enzyme activity. The question where CK-2 and its subunits are located throughout the cell cycle has also been addressed, mainly because of the large discrepancies that still exist between results obtained by different investigators. Tissue...

  11. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos (United States)

    Medley, Jeffrey C.; Kabara, Megan M.; Stubenvoll, Michael D.; DeMeyer, Lauren E.


    ABSTRACT Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2) in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α) of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner. PMID:27881437

  12. Olmesartan inhibits angiotensin II-Induced migration of vascular smooth muscle cells through Src and mitogen-activated protein kinase pathways. (United States)

    Kyotani, Yoji; Zhao, Jing; Tomita, Sayuko; Nakayama, Hitoshi; Isosaki, Minoru; Uno, Masayuki; Yoshizumi, Masanori


    Clinical studies have shown that angiotensin-receptor blockers (ARBs) reduce the risk of cardiovascular diseases in hypertensive patients. It is assumed that the reduction of the risk by ARBs may be attributed in part to the inhibition of angiotensin II (AII)-induced vascular smooth muscle cell (VSMC) migration associated with atherosclerosis. However, the effect of ARBs on AII-induced changes in intracellular signaling and resultant cell migration has not been well established. Here, we investigated the effect of olmesartan, an ARB, on AII-induced extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) activation and rat aortic smooth muscle cell (RASMC) migration. Olmesartan inhibited AII-induced ERK1/2 and JNK activation at lower concentrations (10 nM). On the other hand, PP2, a Src tyrosine kinase inhibitor, also inhibited AII-induced ERK1/2 and JNK activation, but its effect on ERK1/2 was less pronounced than that of olmesartan. Olmesartan, U0126 (an ERK1/2 inhibitor), SP600125 (a JNK inhibitor), and PP2 potently inhibited AII-induced RASMC migration. From these findings, it was inferred that angiotensin-receptor blockade by olmesartan results in the inhibition of AII-induced activation of Src, ERK1/2, and JNK in RASMC. Olmesartan may be a potent inhibitor of AII-induced VSMC migration, which may be involved in the progression of atherosclerosis.

  13. Phosphorylation and mRNA splicing of collapsin response mediator protein-2 determine inhibition of rho-associated protein kinase (ROCK) II function in carcinoma cell migration and invasion

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Couchman, John R; Yoneda, Atsuko


    migration and invasion. Furthermore, the interaction of CRMP-2 and ROCK II is partially regulated by glycogen synthase kinase (GSK)-3 phosphorylation of CRMP-2, downstream of PI3K. Inhibition of PI3K reduced interaction of CRMP-2 with ROCK II, an effect rescued by simultaneous inhibition of GSK3. Inhibition...... II-CRMP-2 interactions. Using phosphorylation-mimetic and -resistant CRMP-2L constructs, it was revealed that phosphorylation of CRMP-2L negatively regulates its inhibitory function in ROCK-dependent haptotactic cell migration, as well as invasion of human colon carcinoma cells. Collectively......The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II...

  14. Protective effects of calmodulin antagonists (trifluoperazine and W-7 on hypothermic ischemic rat hearts.

    Directory of Open Access Journals (Sweden)



    Full Text Available The cardioprotective effect of calmodulin antagonists, trifluoperazine (TFP and N-(6-aminohexyl-5-chloro-1-naphthalene sulfonamide (W-7 was examined on the isolated rat heart exposed to hypothermic and ischemic conditions by measuring distribution of lysosomal enzymes in myocardial cells, and leakage of creatine kinase (CK during reperfusion and postischemic recovery in myocardial systolic function. Experimental hearts were infused with 20 degrees C Krebs-Henseleit bicarbonate buffer (KHB or KHB containing TFP or W-7 for 2min every 30min during hypothermic ischemia. After ischemia for 120min at 20 degrees C, rat hearts were reperfused at 37 degrees C for 30min. TFP and W-7 improved functional recovery and prevented CK release. In TFP treated hearts, leakage of lysosomal enzymes was reduced significantly, whereas stabilization of lysosomes by W-7 did not occur. These results suggest that calcium-calmodulin dependent enzymes may play an important role in the development of cellular damage of the myocardium during hypothermic ischemia, although levels of leakage of lysosomal enzymes may be unreliable predictors of functional recovery after hypothermic ischemia.

  15. Resveratrol increases nitric oxide production in the rat thick ascending limb via Ca2+/calmodulin. (United States)

    Gonzalez-Vicente, Agustin; Cabral, Pablo D; Garvin, Jeffrey L


    The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent deacetylase sirtuin1 (SIRT1) activities, all of which could activate NO production. We hypothesized that resveratrol stimulates NO production by thick ascending limbs via a Ca2+/calmodulin-dependent mechanism. To test this, the effect of resveratrol on NO bioavailability was measured in thick ascending limb suspensions. Cai was measured in single perfused thick ascending limbs. SIRT1 activity and expression were measured in thick ascending limb lysates. Resveratrol (100 µM) increased NO bioavailability in thick ascending limb suspensions by 1.3±0.2 AFU/mg/min (pthick ascending limbs via a Ca2+/calmodulin dependent mechanism, and SIRT1 and AMPK do not participate. Resveratrol-stimulated NO production in thick ascending limbs may account for part of its beneficial effects.

  16. Reversible bleb formation in mast cells stimulated with antigen is Ca2+/calmodulin-dependent and bleb size is regulated by ARF6. (United States)

    Yanase, Yuhki; Carvou, Nicolas; Frohman, Michael A; Cockcroft, Shamshad


    Mast cells stimulated with antigen undergo extensive changes in their cytoskeleton. In the present study, we assess the impact of actin-modifying drugs and report that, in the presence of cytochalasin D, mast cells stop membrane ruffling, but instead bleb. Bleb formation is reversible following washout of cytochalasin D and occurs in an actin-polymerization-dependent manner. Bleb formation is inhibited by expression of constitutively active ezrin-T567D. Blebbing is also inhibited by blebbistatin, a myosin II inhibitor, implying myosin II activation in the process. We used a selection of inhibitors and observed that myosin II activation is dependent mainly on Ca2+-calmodulin, with only a small contribution from Rho kinase. The signalling pathways stimulated by antigen include PLC (phospholipase C) and PLD (phospholipase D). Bleb formation was dependent on activation of PLC, but not PLD. Primary alcohols, used previously as a means to reduce PLD-derived phosphatidic acid, were potent inhibitors of membrane blebbing, but a more selective inhibitor of PLD, FIPI (5-fluoro-2-indolyl des-chlorohalopemide), was without effect. FIPI also did not inhibit membrane ruffling or degranulation of mast cells, indicating that inhibition by primary alcohols works through an unidentified mechanism rather than via diversion of PLD activity as assumed. We also examined the requirement for ARF6 (ADP-ribosylation factor 6) and observed that its expression led to an increase in bleb size and a further increase was observed with the dominant-active mutant, ARF6-Q67L. Since ARF6-T27N had no effect on bleb size, we conclude that ARF6 needs to be active to regulate the size of the blebs.

  17. Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold. (United States)

    Mühlbacher, Wolfgang; Mayer, Andreas; Sun, Mai; Remmert, Michael; Cheung, Alan C M; Niesser, Jürgen; Soeding, Johannes; Cramer, Patrick


    CTDK-I is a yeast kinase complex that phosphorylates the C-terminal repeat domain (CTD) of RNA polymerase II (Pol II) to promote transcription elongation. CTDK-I contains the cyclin-dependent kinase Ctk1 (homologous to human CDK9/CDK12), the cyclin Ctk2 (human cyclin K), and the yeast-specific subunit Ctk3, which is required for CTDK-I stability and activity. Here we predict that Ctk3 consists of a N-terminal CTD-interacting domain (CID) and a C-terminal three-helix bundle domain. We determine the X-ray crystal structure of the N-terminal domain of the Ctk3 homologue Lsg1 from the fission yeast Schizosaccharomyces pombe at 2.0 Å resolution. The structure reveals eight helices arranged into a right-handed superhelical fold that resembles the CID domain present in transcription termination factors Pcf11, Nrd1, and Rtt103. Ctk3 however shows different surface properties and no binding to CTD peptides. Together with the known structure of Ctk1 and Ctk2 homologues, our results lead to a molecular framework for analyzing the structure and function of the CTDK-I complex.

  18. Inorganic lead and calcium interact positively in activation of calmodulin. (United States)

    Kern, M; Wisniewski, M; Cabell, L; Audesirk, G


    Calmodulin is a ubiquitous calcium-binding protein that mediates many of the intracellular actions of Ca2+ ions. The calcium-binding sites of calmodulin consist of four EF-hand motifs; full activation of calmodulin normally occurs when all four sites are occupied by Ca2+. Inorganic lead (PY2+) has been shown to activate calmodulin at total lead concentrations similar to the concentrations of Ca2+ required for activation (Goldstein and Ar, 1983; Habermann et al., 1983), but the free Pb2+ concentrations required for calmodulin activation have not been determined. In addition, it is possible that activation may occur with different sites occupied by different divalent cations, for example Ca2+ and Pb2+. We investigated the ability of free Pb2+, alone or in combination with Ca2+, to activate calmodulin. In aqueous media, N-phenyl-1-naphthylamine (NPN) and 8-anilino-1-naphthalenesulfonate (ANS) show increased fluorescence when bound to hydrophobic regions of proteins. This increased fluorescence has been used to monitor the conformational change that occurs during calmodulin activation (LaPorte et al., 1980). In the presence of calmodulin, both Ca2+ and Pb2+ stimulated increased fluorescence of NPN and ANS. Threshold and EC50 free metal concentrations were approximately 100 nM and 450-500 nM, respectively, for Ca2+ and 100 pM and 400-550 pM, respectively, for Pb2+. Fluorescence was enhanced by combinations of low concentrations of free Ca2+ and Pb2+; for example, as little as 20 pM free Pb2+ enhanced fluorescence in combination with 200 nM free Ca2+. The activity of the PDE1 isoform of cyclic nucleotide phosphodiesterase is stimulated by Ca2+/calmodulin (Wang et al., 1990). In the presence of calmodulin, we found that Ca2+ and Pb2+ activated calmodulin-stimulated PDE activity, with threshold and EC50 free metal concentrations of approximately 200 nM and 1200 nM, respectively, for Ca2+ and 300 pM and 430 pM, respectively, for Pb2+. PDE activity was stimulated by

  19. Calmodulin modulation of ion channels and receptors

    Institute of Scientific and Technical Information of China (English)


    Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.

  20. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    孙大业; 唐文强; 马力耕


    Traditionally, calmodulin (CaM) was thought to be a multi-functional receptor for intracellular Ca2+ signals. But in the last ten years, it was found that CaM also exists and acts extracellularly in animal and plant cells to regulate many important physiological functions. Laboratory studies by the authors showed that extracellular CaM in plant cells can stimulate the proliferation of suspension cultured cell and protoplast; regulate pollen germination and pollen tube elongation,and stimulate the light-independent gene expression of Rubisco small subunit (rbcS). Furthermore,we defined the trans-membrane and intracellular signal transduction pathways for extracellular CaM by using a pollen system. The components in this pathway include heterotrimeric G-protein,phospholipase C, IP3, calcium signal and protein phosphorylation etc. Based on our findings, we suggest that extracellular CaM is a polypeptide signal in plants. This idea strongly argues against the traditional concept that there is no intercellular polypeptide signal in plants.

  1. Acute inhibition of corticosteroidogenesis by inhibitors of calmodulin action. (United States)

    Carsia, R V; Moyle, W R; Wolff, D J; Malamed, S


    To identify the possible role of calmodulin in ACTH function, we tested the ability of chlorpromazine (CP) and other calmodulin antagonists to inhibit steroidogenesis of isolated adrenocortical cells of the rat. CP reversibly inhibited maximal ACTH-induced corticosterone (B) production. The presence of the drug did not alter the ED50 of ACTH stimulation (3.2 X 10(3) pg/ml), suggesting that it inhibited ACTH-induced steroidogenesis in a noncompetitive manner. The CP concentration required for half-maximal inhibition was 8.2 microM, a value close to the dissociation constant of the CP-calmodulin complex (5.3 microM). Concentrations greater than 40 microM resulted in complete inhibition. Similar concentrations of CP inhibited ACTH-induced cAMP accumulation in a dose-dependent manner, indicating an effect of the drug on early events in ACTH action. In addition, CP also apparently acted at a site distal to the point of cAMP formation, as shown by the finding that it inhibited cAMP-induced B production. CP inhibition of ACTH-induced B production was independent of the Ca2+ concentration, suggesting that the drug did not compete with Ca2+ directly. Concentrations of CP greater than 20 microM inhibited protein synthesis as measured by leucine incorporation into cellular proteins. Thus, although the inhibitory effect of high concentrations of CP on steroidogenesis might be explained by an effect on protein synthesis, the inhibition seen at 10 microM appeared to be independent of protein synthesis. Other antagonists of calmodulin action inhibited maximal ACTH-induced B production with the following relative potencies: trifluoperazine greater than CP greater than haloperidol greater than chlordiazepoxide. This order is similar to that reported for inhibition of calmodulin-activated phosphodiesterase and for binding to calmodulin. These findings suggest that calmodulin may modulate the effect of ACTH on steroidogenesis at multiple sites.

  2. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. (United States)

    Hintermair, Corinna; Heidemann, Martin; Koch, Frederic; Descostes, Nicolas; Gut, Marta; Gut, Ivo; Fenouil, Romain; Ferrier, Pierre; Flatley, Andrew; Kremmer, Elisabeth; Chapman, Rob D; Andrau, Jean-Christophe; Eick, Dirk


    Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5' and 3' regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4-P levels in the 3' region of genes occurring subsequently to an increase of Ser2-P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells.

  3. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis. (United States)

    Drum, C L; Yan, S Z; Sarac, R; Mabuchi, Y; Beckingham, K; Bohm, A; Grabarek, Z; Tang, W J


    The edema factor exotoxin produced by Bacillus anthracis is an adenylyl cyclase that is activated by calmodulin (CaM) at resting state calcium concentrations in infected cells. A C-terminal 60-kDa fragment corresponding to the catalytic domain of edema factor (EF3) was cloned, overexpressed in Escherichia coli, and purified. The N-terminal 43-kDa domain (EF3-N) of EF3, the sole domain of edema factor homologous to adenylyl cyclases from Bordetella pertussis and Pseudomonas aeruginosa, is highly resistant to protease digestion. The C-terminal 160-amino acid domain (EF3-C) of EF3 is sensitive to proteolysis in the absence of CaM. The addition of CaM protects EF3-C from being digested by proteases. EF3-N and EF3-C were expressed separately, and both fragments were required to reconstitute full CaM-sensitive enzyme activity. Fluorescence resonance energy transfer experiments using a double-labeled CaM molecule were performed and indicated that CaM adopts an extended conformation upon binding to EF3. This contrasts sharply with the compact conformation adopted by CaM upon binding myosin light chain kinase and CaM-dependent protein kinase type II. Mutations in each of the four calcium binding sites of CaM were examined for their effect on EF3 activation. Sites 3 and 4 were found critical for the activation, and neither the N- nor the C-terminal domain of CaM alone was capable of activating EF3. A genetic screen probing loss-of-function mutations of EF3 and site-directed mutations based on the homology of the edema factor family revealed a conserved pair of aspartate residues and an arginine that are important for catalysis. Similar residues are essential for di-metal-mediated catalysis in mammalian adenylyl cyclases and a family of DNA polymerases and nucleotidyltransferases. This suggests that edema factor may utilize a similar catalytic mechanism.

  4. The Ca(2+)/Calmodulin/CaMKK2 Axis: Nature's Metabolic CaMshaft. (United States)

    Marcelo, Kathrina L; Means, Anthony R; York, Brian


    Calcium (Ca(2+)) is an essential ligand that binds its primary intracellular receptor calmodulin (CaM) to trigger a variety of downstream processes and pathways. Central to the actions of Ca(2+)/CaM is the activation of a highly conserved Ca(2+)/CaM kinase (CaMK) cascade that amplifies Ca(2+) signals through a series of subsequent phosphorylation events. Proper regulation of Ca(2+) flux is necessary for whole-body metabolism and disruption of Ca(2+) homeostasis has been linked to various metabolic diseases. Here we provide a synthesis of recent advances that highlight the roles of the Ca(2+)/CaMK axis in key metabolic tissues. An appreciation of this information is critical to understanding the mechanisms by which Ca(2+)/CaM-dependent signaling contributes to metabolic homeostasis and disease.

  5. Pivoting between calmodulin lobes triggered by calcium in the Kv7.2/calmodulin complex. (United States)

    Alaimo, Alessandro; Alberdi, Araitz; Gomis-Perez, Carolina; Fernández-Orth, Juncal; Bernardo-Seisdedos, Ganeko; Malo, Covadonga; Millet, Oscar; Areso, Pilar; Villarroel, Alvaro


    Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca(2+). First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using (15)N-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca(2+) the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca(2+) makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca(2+).

  6. Mangiferin, a natural xanthone, protects murine liver in Pb(II induced hepatic damage and cell death via MAP kinase, NF-κB and mitochondria dependent pathways.

    Directory of Open Access Journals (Sweden)

    Pabitra Bikash Pal

    Full Text Available One of the most well-known naturally occurring environmental heavy metals, lead (Pb has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II] in the form of Pb(NO32 (at a dose of 5 mg/kg body weight, 6 days, orally induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally, on the other hand, diminished the formation of reactive oxygen species (ROS and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT and alkaline phosphatase (ALP]. Mangiferin also reduced Pb(II induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II-induced activation of mitogen-activated protein kinases (MAPKs (phospho-ERK 1/2, phosphor-JNK phospho- p38, nuclear translocation of NF-κB and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II. Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II induced hepatic dysfunction.

  7. Mangiferin, a Natural Xanthone, Protects Murine Liver in Pb(II) Induced Hepatic Damage and Cell Death via MAP Kinase, NF-κB and Mitochondria Dependent Pathways (United States)

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.


    One of the most well-known naturally occurring environmental heavy metals, lead (Pb) has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II)] in the form of Pb(NO3)2 (at a dose of 5 mg/kg body weight, 6 days, orally) induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally), on the other hand, diminished the formation of reactive oxygen species (ROS) and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT) and alkaline phosphatase (ALP)]. Mangiferin also reduced Pb(II) induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II)-induced activation of mitogen-activated protein kinases (MAPKs) (phospho-ERK 1/2, phosphor-JNK phospho- p38), nuclear translocation of NF-κB and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II) induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II). Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II) induced hepatic dysfunction. PMID:23451106

  8. Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate. (United States)

    Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A


    The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes.

  9. Proteomic Analysis of Calcium- and Phosphorylation-dependentCalmodulin Complexes in Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Deok-Jin; Wang, Daojing


    Protein conformational changes due to cofactor binding (e.g. metal ions, heme) and/or posttranslational modifications (e.g. phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium (Ca{sup 2+}) signaling and homeostasis. No systematic approach on the identification of phosphorylation-dependent Ca{sup 2+}/CaM binding proteins has been published. Herein, we report a proteome-wide study of phosphorylation-dependent CaM binding proteins from mammalian cells. This method, termed 'Dynamic Phosphoprotein Complex Trapping', 'DPPC Trapping' for short, utilizes a combination of in vivo and in vitro assays. The basic strategy is to drastically shift the equilibrium towards endogenous phosphorylation of Ser, Thr, and Tyr at the global scale by inhibiting corresponding phosphatases in vivo. The phosphorylation-dependent calmodulin-binding proteins are then trapped in vitro in a Ca{sup 2+}-dependent manner by CaM-Sepharose chromatography. Finally, the isolated calmodulin-binding proteins are separated by SDS-PAGE and identified by LC/MS/MS. In parallel, the phosphorylation-dependent binding is visualized by silver staining and/or Western blotting. Using this method, we selectively identified over 120 CaM-associated proteins including many previously uncharacterized. We verified ubiquitin-protein ligase EDD1, inositol 1, 4, 5-triphosphate receptor type 1 (IP{sub 3}R1), and ATP-dependent RNA helicase DEAD box protein 3 (DDX3), as phosphorylation-dependent CaM binding proteins. To demonstrate the utilities of our method in understanding biological pathways, we showed that pSer/Thr of IP{sub 3}R1 in vivo by staurosporine-sensitive kinase(s), but not by PKA/PKG/PKC, significantly reduced the affinity of its Ca{sup 2+}-dependent CaM binding. However, pSer/Thr of IP{sub 3}R1 did not substantially affect its Ca{sup 2+}-independent CaM binding. We further showed that phosphatase PP1, but not PP2A or PP2B

  10. Structural Consequences of Calmodulin EF Hand Mutations. (United States)

    Piazza, Michael; Taiakina, Valentina; Dieckmann, Thorsten; Guillemette, J Guy


    Calmodulin (CaM) is a cytosolic Ca(2+)-binding protein that serves as a control element for many enzymes. It consists of two globular domains, each containing two EF hand pairs capable of binding Ca(2+), joined by a flexible central linker region. CaM is able to bind and activate its target proteins in the Ca(2+)-replete and Ca(2+)-deplete forms. To study the Ca(2+)-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca(2+)-binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. These CaM mutant proteins are deficient in binding Ca(2+) in either the N-lobe EF hands (CaM12), C-lobe EF hands (CaM34), or all four EF hands (CaM1234). To investigate potential structural changes these mutations may cause, we performed detailed NMR studies of CaM12, CaM34, and CaM1234 including determining the solution structure of CaM1234. We then investigated if these CaM mutants affected the interaction of CaM with a target protein known to interact with apoCaM by determining the solution structure of CaM34 bound to the iNOS CaM binding domain peptide. The structures provide direct structural evidence of changes that are present in these Ca(2+)-deficient CaM mutants and show these mutations increase the hydrophobic exposed surface and decrease the electronegative surface potential throughout each lobe of CaM. These Ca(2+)-deficient CaM mutants may not be a true representation of apoCaM and may not allow for native-like interactions of apoCaM with its target proteins.

  11. Effect of Anacyclus pyrethrum on pentylenetetrazole-induced kindling, spatial memory, oxidative stress and rho-kinase II expression in mice. (United States)

    Pahuja, Monika; Mehla, Jogender; Reeta, K H; Tripathi, Manjari; Gupta, Yogendra Kumar


    Anacyclus pyrethrum (A. pyrethrum) has been reported to exhibit anticonvulsant activity. In the present study, the effect of hydro-alcoholic extract of A. pyrethrum root (HEAP) on pentylenetetrazole (PTZ) induced kindling, spatial memory, oxidative stress and rho kinase (ROCK II) was assessed. Male albino mice (25-30 g) were used in the study. PTZ (35 mg/kg, i.p. on alternate days) was injected to induce kindling and PTZ (70 mg/kg, i.p) challenge was given 7 days post-kindling. HEAP was administered orally daily in the doses of 100, 250 and 500 mg/kg along with PTZ injections during the kindling process and continued till PTZ challenge post kindling. Spatial memory was assessed using Morris water maze test. Oxidative stress parameters [malondialdehyde (MDA) and reduced glutathione (GSH)] and ROCK II expression were estimated in whole brain at the end of the study. Pre-treatment with HEAP (250 and 500 mg/kg) showed significant increase in the myoclonic jerk latency and delay in the development of kindling. A significant decrease in mortality was observed at higher doses of HEAP (250 and 500 mg/kg). Pre-treatment with HEAP significantly increased the number of platform crossings and decreased the escape latency, as opposed to the PTZ group, thus showing protection against memory deficit. HEAP pre-treatment also attenuated the oxidative stress induced by PTZ kindling. PTZ induced kindling increased the ROCK II expression whereas, HEAP pre-treatment attenuated the increase in ROCK II expression. To conclude, HEAP pre-treatment showed antiepileptic effect and also showed protection against cognitive impairment by decreasing oxidative stress and ROCK II expression in PTZ kindled mice.

  12. Intron analyses reveal multiple calmodulin copies in Littorina. (United States)

    Simpson, R J; Wilding, C S; Grahame, J


    Intron 3 and the flanking exons of the calmodulin gene have been amplified, cloned, and sequenced from 18 members of the gastropod genus Littorina. From the 48 sequences, at least five different gene copies have been identified and their functionality characterized using a strategy based upon the potential protein product predicted from flanking exon data. The functionality analyses suggest that four of the genes code for functional copies of calmodulin. All five copies have been identified across a wide range of littorinid species although not ubiquitously. Using this novel approach based on intron sequences, we have identified an unprecedented number of potential calmodulin copies in Littorina, exceeding that reported for any other invertebrate. This suggests a higher number of, and more ancient, gene duplications than previously detected in a single genus.

  13. AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. (United States)

    Lee, Jang Han; Kim, Ji Hyun; Kim, Ja Seon; Chang, Jai Won; Kim, Soon Bae; Park, Jung Sik; Lee, Sang Koo


    The epithelial-mesenchymal transition (EMT) is a novel mechanism that promotes renal fibrosis. Transforming growth factor-β (TGF-β), angiotensin II, aldosterone, high glucose, and urinary albumin are well-known causes of EMT and renal fibrosis. We examined whether and how activation of AMP-activated protein kinase (AMPK) suppressed EMT induced by the above agents in tubular epithelial cells. All experiments were performed using HK-2 cells. Protein expression was measured by Western blot analysis. Intracellular reactive oxygen species (ROS) were analyzed by flow cytometry. Exposure of tubular cells to TGF-β (10 ng/ml), angiotensin II (1 μM), aldosterone (100 nM), high glucose (30 mM), and albumin (5 mg/ml) for 5 days induced EMT, as shown by upregulation of α-smooth muscle actin and downregulation of E-cadherin. ROS and NADPH oxidase 4 (Nox4) expression were increased, and antioxidants such as tiron and N-acetylcysteine inhibited EMT induction. Metformin (the best known clinical activator of AMPK) suppressed EMT induction through inhibition of ROS via induction of heme oxygenase-1 and endogenous antioxidant thioredoxin. An AMPK inhibitor (compound C) and AMPK small interfering RNA blocked the effect of metformin, and another AMPK activator [5-aminoimidazole-4-carboxamide-1β riboside (AICAR)] exerted the same effects as metformin. In conclusion, AMPK activation might be beneficial in attenuating the tubulointerstitial fibrosis induced by TGF-β, angiotensin II, aldosterone, high glucose, and urinary albumin.

  14. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)


    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  15. Drosophila casein kinase I alpha regulates homolog pairing and genome organization by modulating condensin II subunit Cap-H2 levels.

    Directory of Open Access Journals (Sweden)

    Huy Q Nguyen

    Full Text Available The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing. Recent work has shown that condensin II governs both interphase chromosome compaction and homolog pairing and condensin II activity is controlled by the turnover of its regulatory subunit Cap-H2. Specifically, Cap-H2 is a target of the SCFSlimb E3 ubiquitin-ligase which down-regulates Cap-H2 in order to maintain homologous chromosome pairing, chromosome length and proper nuclear organization. Here, we identify Casein Kinase I alpha (CK1α as an additional negative-regulator of Cap-H2. CK1α-depletion stabilizes Cap-H2 protein and results in an accumulation of Cap-H2 on chromosomes. Similar to Slimb mutation, CK1α depletion in cultured cells, larval salivary gland, and nurse cells results in several condensin II-dependent phenotypes including dispersal of centromeres, interphase chromosome compaction, and chromosome unpairing. Moreover, CK1α loss-of-function mutations dominantly suppress condensin II mutant phenotypes in vivo. Thus, CK1α facilitates Cap-H2 destruction and modulates nuclear organization by attenuating chromatin localized Cap-H2 protein.

  16. Drosophila Casein Kinase I Alpha Regulates Homolog Pairing and Genome Organization by Modulating Condensin II Subunit Cap-H2 Levels (United States)

    Nguyen, Huy Q.; Nye, Jonathan; Buster, Daniel W.; Klebba, Joseph E.; Rogers, Gregory C.; Bosco, Giovanni


    The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing. Recent work has shown that condensin II governs both interphase chromosome compaction and homolog pairing and condensin II activity is controlled by the turnover of its regulatory subunit Cap-H2. Specifically, Cap-H2 is a target of the SCFSlimb E3 ubiquitin-ligase which down-regulates Cap-H2 in order to maintain homologous chromosome pairing, chromosome length and proper nuclear organization. Here, we identify Casein Kinase I alpha (CK1α) as an additional negative-regulator of Cap-H2. CK1α-depletion stabilizes Cap-H2 protein and results in an accumulation of Cap-H2 on chromosomes. Similar to Slimb mutation, CK1α depletion in cultured cells, larval salivary gland, and nurse cells results in several condensin II-dependent phenotypes including dispersal of centromeres, interphase chromosome compaction, and chromosome unpairing. Moreover, CK1α loss-of-function mutations dominantly suppress condensin II mutant phenotypes in vivo. Thus, CK1α facilitates Cap-H2 destruction and modulates nuclear organization by attenuating chromatin localized Cap-H2 protein. PMID:25723539

  17. Central SDF-1/CXCL12 expression and its cardiovascular and sympathetic effects: the role of angiotensin II, TNF-α, and MAP kinase signaling. (United States)

    Wei, Shun-Guang; Zhang, Zhi-Hua; Yu, Yang; Felder, Robert B


    The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptors are expressed by neurons and glial cells in cardiovascular autonomic regions of the brain, including the hypothalamic paraventricular nucleus (PVN), and contribute to neurohumoral excitation in rats with ischemia-induced heart failure. The present study examined factors regulating the expression of SDF-1 in the PVN and mechanisms mediating its sympatho-excitatory effects. In urethane anesthetized rats, a 4-h intracerebroventricular (ICV) infusion of angiotensin II (ANG II) or tumor necrosis factor-α (TNF-α) in doses that increase mean blood pressure (MBP) and sympathetic drive increased the expression of SDF-1 in PVN. ICV administration of SDF-1 increased the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), JNK, and p38 MAPK in PVN, along with MBP, heart rate (HR), and renal sympathetic nerve activity (RSNA), but did not affect total p44/42 MAPK, JNK, and p38 MAPK levels. ICV pretreatment with the selective p44/42 MAPK inhibitor PD98059 prevented the SDF-1-induced increases in MBP, HR, and RSNA; ICV pretreatment with the selective JNK and p38 MAPK inhibitors attenuated but did not block these SDF-1-induced excitatory responses. ICV PD98059 also prevented the sympatho-excitatory response to bilateral PVN microinjections of SDF-1. ICV pretreatment with SDF-1 short-hairpin RNA significantly reduced ANG II- and TNF-α-induced phosphorylation of p44/42 MAPK in PVN. These findings identify TNF-α and ANG II as drivers of SDF-1 expression in PVN and suggest that the full expression of their cardiovascular and sympathetic effects depends upon SDF-1-mediated activation of p44/42 MAPK signaling.

  18. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells]. (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B


    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  19. Intracellular levels of calmodulin are increased in transformed cells

    Institute of Scientific and Technical Information of China (English)



    By using Hoechst 33342,rabbit anti calmodulin antibody,FITC-labeled goat anti rabbit IgG and SR101(sulfo rhodamine 101)simultaneously to stain individual normal and transformed cells,the microspectrophotometric analysis demonstrated that 3 markers which represented the nucleus,calmodulin and total protein respectively,could be recognized in individualj cells without interference,The phase of the cell cycle was determined by DNA content(Hoechst 33342),We found that in transformed cells(NIH3T3) tsRSV-LA90,cultured at 33℃ and transformed C3H10T1/2 Cells),the ration of calmodulin to total protein (based on the phases of cell cycle)was higher than that in normal cells (NIH3T3 tsRSV-LA90 cells,cultured at 39℃ and C3H10T1/2 cells)in every cell cycle phase,This ration increased obviously only from G1 to S phase in either normal or transformed cells.The results showed that calmodulinreally increased during the transformation,and its increase was specific.In the meantime when cells proceeded from G1 to S.the intraceollular calmodulin content also increased specifically.

  20. Bending of the calmodulin central helix : A theoretical study

    NARCIS (Netherlands)

    VanderSpoel, D; DeGroot, BL; Hayward, S; Berendsen, HJC; Vogel, HJ


    The crystal structure of calcium-calmodulin (CaM) reveals a protein with a typical dumbbell structure. Various spectroscopic studies have suggested that the central linker region of CaM, which is alpha-helical in the crystal structure, is flexible in solution. In particular, NMR studies have indicat

  1. 43. Calmodulin regulating calcium sensitivity of Na channels

    Directory of Open Access Journals (Sweden)

    R. Vegiraju


    Full Text Available By extrapolating information from existing research and observing previous assumptions regarding the structure of the Na Channel, this experiment was conducted under the hypothesis that the Na Channel is in part regulated by the calmodulin protein, as a result proving calcium sensitivity of the Na Channel. Furthermore, we assume that there is a one to one stoichiometry between the Na Channel and the Calmodulin. There has been extensive research into the functionality and structure of sodium ion channels (Na channels, as several diseases are associated with the lack of regulation of sodium ions, that is caused by the disfunction of these Na channels. However, one highly controversial matter in the field is the importance of the protein calmodulin (CaM and calcium in Na channel function. Calmodulin is a protein that is well known for its role as a calcium binding messenger protein, and that association is believed to play an indirect role in regulating the Na channel through the Na channel’s supposed calcium sensitivity. While there are proponents for both sides, there has been relatively little research that provides strong evidence for either case. In this experiment, the effect of calmodulin on NaV 1.5 is tested by preparing a set of cardiac cells (of the human specie with the NaV 1.5 C-Termini and CaM protein, which were then to be placed in solutions with varying concentrations of calcium. We took special care to test multiple concentrations of calcium, as previous studies have tested very low concentrations, with Manu Ben-Johny’s team from the John Hopkins laboratory in particular testing up to a meager 50 micromolar, despite producing a well-respected paper (By comparison, the average Na channel can naturally sustain a concentration of almost 1-2 millimolar and on some occasions, reaching even higher concentrations. After using light scattering and observing the signals given off by the calcium interacting with these Nav1.5/Ca

  2. Partial purification and characterization of a Ca(2+)-dependent protein kinase from the green alga, Dunaliella salina (United States)

    Roux, S. J.


    A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10(-7) molar. and half-maximal activation was at about 3 x 10(-7) molar. The optimum pH for its Ca(2+)-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separated from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants.

  3. C-terminal extension of calmodulin-like 3 protein from Oryza sativa L.: interaction with a high mobility group target protein. (United States)

    Chinpongpanich, Aumnart; Phean-O-Pas, Srivilai; Thongchuang, Mayura; Qu, Li-Jia; Buaboocha, Teerapong


    A large number of calmodulin-like (CML) proteins are present in plants, but there is little detailed information on the functions of these proteins in rice (Oryza sativa L.). Here, the CML3 protein from rice (OsCML3) and its truncated form lacking the C-terminal extension (OsCML3m) were found to exhibit a Ca2+-binding property and subsequent conformational change, but the ability to bind the CaM kinase II peptide was only observed for OsCML3m. Changes in their secondary structure upon Ca2+-binding measured by circular dichroism revealed that OsCML3m had a higher helical content than OsCML3. Moreover, OsCML3 was mainly localized in the plasma membrane, whereas OsCML3m was found in the nucleus. The rice high mobility group B1 (OsHMGB1) protein was identified as one of the putative OsCML3 target proteins. Bimolecular fluorescence complementation analysis revealed that OsHMGB1 bound OsCML3, OsCML3m or OsCML3s (cysteine to serine mutation at the prenylation site) in the nucleus presumably through the methionine and phenylalanine-rich hydrophobic patches, confirming that OsHMGB1 is a target protein in planta. The effect of OsCML3 or OsCML3m on the DNA-binding ability of OsHMGB1 was measured using an electrophoretic mobility shift assay. OsCML3m decreased the level of OsHMGB1 binding to pUC19 double-stranded DNA whereas OsCML3 did not. Taken together, OsCML3 probably provides a mechanism for manipulating the DNA-binding ability of OsHMGB1 in the nucleus and its C-terminal extension provides an intracellular Ca2+ regulatory switch.

  4. Melatonin Stimulates Dendrite Formation and Complexity in the Hilar Zone of the Rat Hippocampus: Participation of the Ca++/Calmodulin Complex

    Directory of Open Access Journals (Sweden)

    Aline Domínguez-Alonso


    Full Text Available Melatonin (MEL, the main product synthesized by the pineal gland, stimulates early and late stages of neurodevelopment in the adult brain. MEL increases dendrite length, thickness and complexity in the hilar and mossy neurons of hippocampus. Dendrite formation involves activation of Ca2+/Calmodulin (CaM-dependent kinase II (CaMKII by CaM. Previous work showed that MEL increased the synthesis and translocation of CaM, suggesting that MEL activates CaM-dependent enzymes by this pathway. In this work we investigated whether MEL stimulates dendrite formation by CaMKII activation in organotypic cultures from adult rat hippocampus. We found that the CaMKII inhibitor, KN-62, abolished the MEL stimulatory effects on dendritogenesis and that MEL increased the relative amount of CaM in the soluble fraction of hippocampal slices. Also, PKC inhibition abolished dendritogenesis, while luzindole, an antagonist of MEL receptors (MT1/2, partially blocked the effects of MEL. Moreover, autophosphorylation of CaMKII and PKC was increased in presence of MEL, as well as phosphorylation of ERK1/2. Our results indicate that MEL stimulates dendrite formation through CaMKII and the translocation of CaM to the soluble fraction. Dendritogenesis elicited by MEL also required PKC activation, and signaling through MT1/2 receptors was partially involved. Data strongly suggest that MEL could repair the loss of hippocampal dendrites that occur in neuropsychiatric disorders by increasing CaM levels and activation of CaMKII.

  5. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kouchi, Zen, E-mail: [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan); Fujiwara, Yuki [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan); Yamaguchi, Hideki [Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-city, Saitama 332-0012 (Japan); Nakamura, Yoshikazu; Fukami, Kiyoko [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan)


    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  6. Data for the co-expression and purification of human recombinant CaMKK2 in complex with calmodulin in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lisa Gerner


    Full Text Available Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2 has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 ‘apo’, CaMKK2 (165-501 in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, “Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2” [1].

  7. Restricted growth of U-type infectious haematopoietic necrosis virus (IHNV) in rainbow trout cells may be linked to casein kinase II activity (United States)

    Park, J.-W.; Moon, C.H.; Harmache, A.; Wargo, A.R.; Purcell, M.K.; Bremont, M.; Kurath, G.


    casein kinase II (CKII) inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), reduced the titre of the U type 8.3-fold at 24 h post-infection. In contrast, 100 μm of the CKII inhibitor reduced the titre of the M type only 1.3-fold at 48 h post-infection. Our data suggest that the different growth of U- and M-type IHNV in RTG-2 cells may be linked to a differential requirement for cellular protein kinases such as CKII for their growth.

  8. Restricted growth of U-type infectious haematopoietic necrosis virus (IHNV) in rainbow trout cells may be linked to casein kinase II activity. (United States)

    Park, J W; Moon, C H; Harmache, A; Wargo, A R; Purcell, M K; Bremont, M; Kurath, G


    casein kinase II (CKII) inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), reduced the titre of the U type 8.3-fold at 24 h post-infection. In contrast, 100 μm of the CKII inhibitor reduced the titre of the M type only 1.3-fold at 48 h post-infection. Our data suggest that the different growth of U- and M-type IHNV in RTG-2 cells may be linked to a differential requirement for cellular protein kinases such as CKII for their growth.

  9. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    Energy Technology Data Exchange (ETDEWEB)

    Albertella, M.R.; Jones, H.; Thomson, W. [Oxford Univ. (United Kingdom)] [and others


    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  10. Theoretical calculations, DNA interaction, topoisomerase I and phosphatidylinositol-3-kinase studies of water soluble mixed-ligand nickel(II) complexes. (United States)

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Kalilur Rahiman, Aziz


    Eight water soluble mixed-ligand nickel(II) complexes of the type [NiL(1-4)(diimine)H2O]·(ClO4)2, (1-8) where L(1-4) = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, and diimine = 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) were synthesized and characterized by elemental analysis and spectroscopic methods. The uncoordinated perchlorate anions was ascertained form IR spectra of the complexes, and the absorption spectra reveal the octahedron geometry around nickel(II) ion with tridentate Schiff base ligand, diimine and a coordinated water molecule. Cyclic voltammograms of the complexes indicate the one-electron irreversible processes in the cathodic and anodic region. In vitro antioxidant activity proved the significant radical scavenging activity of the complexes against DPPH radical. The groove/electrostatic binding nature of complexes with CT-DNA (calf thymus deoxyribonucleic acid) were affirmed by absorption, hydrodynamic and voltammetric titration experiments and docking analysis. All the complexes exhibit significant cleavage activity on plasmid DNA via hydrolytic and oxidatively, in which the oxidative mechanism involves hydroxyl radicals and supports the possibility of minor-groove binding. The complex 4 shows significant topoisomerase I (Topo-I) inhibitory activity. The molecular modeling analysis of complexes with phosphatidylinositol-3-kinase (PI3K) receptor indicate the hydrogen bonding with Met1039, Asp837 and Leu1027, and hydrophobic interactions with Ser488, Asn498, Asp500, Gln662, Lys668, Ile844, Ile847, Ile850, Val941, Leu942, Leu1020, Met1034, Leu1035, Thr1037, Met1039, Gln1041 and Ile1051 of subdomain IIA of BSA. The complexes show σ-π interaction between diimines and amino groups of Leu1030 and Arg839.

  11. Fluorescence Spectra Studies on the Interaction between Lanthanides and Calmodulin

    Institute of Scientific and Technical Information of China (English)


    The conformation of Calmodulin(CaM) induced by lanthanides has been examined using fluorescence methods.With the addition of lanthanide (Ln3+), the intrinsic fluorescence intensity of CaM without calcium ions (Apo-CaM) first increases and then decreases.Ln3+ causes the decrease of intrinsic fluorescence intensity of calcium saturated CaM (Ca2+4-CaM) only at high concentrations.At low concentrations, Ln3+ results not only in the enhancement of fluorescence intensity of Apo-CaM, but also in a blue shift of the maximum emission wavelengh of dansyl labeled calmodulin(Apo-D-CaM).The molecular mechanism of the interaction between Ln3+ and CaM has been discussed in the light of the fluorescence spectra.

  12. Pharmacological and safety evaluation of CIGB-300, a casein kinase 2 inhibitor peptide, administered intralesionally to patients with cervical cancer stage IB2/II

    Directory of Open Access Journals (Sweden)

    Soriano-García JL


    Full Text Available CIGB-300 is a pro-apoptotic casein kinase 2 inhibitor peptide with potential anticancer action. An open-label and dose scaling Phase I trial was carried out to investigate the peptide tumor uptake, pharmacokinetics, toxicity, and levels of a CIGB-300 response biomarker in patients with cervical cancer stage IB2/II. Fourteen patients were included; six of them received 35 mg, 6 received 70 mg and the two remaining patients received 245 mg of CIGB-300 prior chemoradiotherapy. CIGB-300 was applied by intratumor injections during 5-consecutive days. For pharmacokinetic and biodistribution studies, the peptide was radiolabeled with 99mTc in the first administration and whole body gammagraphy and plasma testing were done during 48 h. Data showed that the maximum tolerated dose was 70 mg for CIGB-300 in this clinical setting. Furthermore, an allergic-like syndrome was identified as the dose limiting toxicity, which was well-correlated with plasmatic histamine levels. Importantly, the mean tumor uptake was 14.9 mg and 10.4 mg for CIGB-300 doses of 35 and 70 mg, respectively. Also, the kidneys were the main target organ for drug elimination. Finally, treatment with CIGB-300 significantly reduced the B23/nucleophosmin levels in tumor specimens. CIGB-300 meets potentialities to be tested in future trials in a neoadjuvant setting prior to chemoradiotherapy in cervical cancer.

  13. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits. (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B


    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response.

  14. Identification of a BET Family Bromodomain/Casein Kinase II/TAF-Containing Complex as a Regulator of Mitotic Condensin Function

    Directory of Open Access Journals (Sweden)

    Hyun-Soo Kim


    Full Text Available Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02, casein kinase II (CKII, and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.

  15. Calmodulin disruption impacts growth and motility in juvenile liver fluke


    McCammick, Erin M.; McVeigh, Paul; McCusker, Paul; Timson, David J; Morphew, Russell M.; Brophy, Peter M.; Marks, Nikki J.; Mousley, Angela; Maule, Aaron G.


    Background Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamen...

  16. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana (United States)

    Li, Fangfang; Zhao, Nan; Xu, Xiongbiao; Wang, Yaqin; Yang, Xiuling; Liu, Shu-Sheng; Wang, Aiming; Zhou, Xueping


    A recently characterized calmodulin-like protein is an endogenous RNA silencing suppressor that suppresses sense-RNA induced post-transcriptional gene silencing (S-PTGS) and enhances virus infection, but the mechanism underlying calmodulin-like protein-mediated S-PTGS suppression is obscure. Here, we show that a calmodulin-like protein from Nicotiana benthamiana (NbCaM) interacts with Suppressor of Gene Silencing 3 (NbSGS3). Deletion analyses showed that domains essential for the interaction between NbSGS3 and NbCaM are also required for the subcellular localization of NbSGS3 and NbCaM suppressor activity. Overexpression of NbCaM reduced the number of NbSGS3-associated granules by degrading NbSGS3 protein accumulation in the cytoplasm. This NbCaM-mediated NbSGS3 degradation was sensitive to the autophagy inhibitors 3-methyladenine and E64d, and was compromised when key autophagy genes of the phosphatidylinositol 3-kinase (PI3K) complex were knocked down. Meanwhile, silencing of key autophagy genes within the PI3K complex inhibited geminivirus infection. Taken together these data suggest that NbCaM acts as a suppressor of RNA silencing by degrading NbSGS3 through the autophagy pathway. PMID:28212430

  17. CaMK-II activation is essential for zebrafish inner ear development and acts through Delta-Notch signaling. (United States)

    Rothschild, Sarah C; Lahvic, Jamie; Francescatto, Ludmila; McLeod, Jamie J A; Burgess, Shawn M; Tombes, Robert M


    Zebrafish inner ear development is characterized by the crystallization of otoliths onto immotile kinocilia that protrude from sensory "hair" cells. The stereotypical formation of these sensory structures is dependent on the expression of key patterning genes and on Ca2+ signals. One potential target of Ca2+ signaling in the inner ear is the type II Ca2+/calmodulin-dependent protein kinase (CaMK-II), which is preferentially activated in hair cells, with intense activation at the base of kinocilia. In zebrafish, CaMK-II is encoded by seven genes; the expression of one of these genes (camk2g1) is enriched in hair cells. The suppression of camk2g1 expression by antisense morpholino oligonucleotides or inhibition of CaMK-II activation by the pharmacological antagonist, KN-93, results in aberrant otolith formation without preventing cilia formation. In fact, CaMK-II suppression results in additional ciliated hair cells and altered levels of Delta-Notch signaling members. DeltaA and deltaD transcripts are increased and DeltaD protein accumulates in hair cells of CaMK-II morphants, indicative of defective recycling and/or exocytosis. Our findings indicate that CaMK-II plays a critical role in the developing ear, influencing cell differentiation through extranuclear effects on Delta-Notch signaling. Continued expression and activation of CaMK-II in maculae and cristae in older embryos suggests continued roles in auditory sensory maturation and transduction.

  18. Role of calcium/calmodulin-dependent kinase Ⅱ alpha in central nucleus of amygdale in fentanyl-induced hyperalgesia in rats: the relationship with mEPSCs%中央杏仁核钙/钙调素依赖性蛋白激酶Ⅱα在芬太尼诱发大鼠痛觉过敏中的作用:与mEPSCs的关系

    Institute of Scientific and Technical Information of China (English)

    李珍; 王忠三; 罗放


    Objective To evaluate the role of calcium/calmodulin-dependent kinase Ⅱ alpha (CaMK Ⅱα) in the central nucleus of the amygdale (CeA) in fentanyl-induced hyperalgesia in rats and the relationship with miniature excitatory postsynaptic currents (mEPSCs).Methods Thirty-two male Sprague-Dawley rats,weighing 50-80 g,in which the CeA was successfully cannulated,were randomly divided into 4 groups (n=8 each) using a random number table:control 1 group (group C1),fentanylinduced hyperalgesia 1 group (group FIH1),KN92 group,and KN93 group.Normal saline was injected subcutaneously,and dimethyl sulfoxide (DMSO) was given into the amygdale in group C1.In group FIH1,fentanyl was injected subcutaneously (60 μg/kg per time,4 times in total,15-min interval,cumulative dose of 240 μg/kg) to establish the model of hyperalgesia.In KN92 and KN93 groups,KN92 and KN93 10 nmol were given into the CeA after establishing the model.The mechanical paw withdrawal threshold (MWT) and thermal paw withdrawal threshold (TWT) were measured at 6 and 7 h after fentanyl or normal saline injection.Another 12 Sprague-Dawley rats were selected and randomly divided into either control 2 group (group C2) or fentanyl-induced hyperalgesia 2 group (group FIH2) using a random number table with 6 rats in each group.The brains were removed and sliced 12 h later,and the frequency and amplitude of mEPSCs were recorded.KN93 10 nmol was then added to the artificial cerebral spinal fluid,and the frequency and amplitude of mEPSCs were recorded by whole cell patch-clamp technique.Results Compared with group C 1,the MWT and TWT were significantly decreased at 6 h after fentanyl or normal saline injection in FIH1,KN92 and KN93 groups,and at 7 h after fentanyl or normal saline injection in FIH and KN92 groups (P<0.05).Compared with group FIH1,the MWT and TWT were significantly increased at 7 h after fentanyl or normal saline injection in group KN93 (P<0.05),and no significant change was found in group KN92 (P

  19. A phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory mantle cell lymphoma

    NARCIS (Netherlands)

    F. Morschhauser; J.F. Seymour; H.C. Kluin-Nelemans (Hanneke); A. Grigg; M. Wolf; M. Pfreundschuh (Michael); H. Tilly (Herve); J. Raemaekers; M.B. van 't Veer (Mars); N. Milpied; G. Cartron; A. Pezzutto; A. Spencer; F. Reyes; M. Dreyling (Martin)


    textabstractBackground: Protein kinase C beta (PKCβ), a pivotal enzyme in B-cell signaling and survival, is overexpressed in most cases of mantle cell lymphoma (MCL). Activation of PI3K/AKT pathway is involved in pathogenesis of MCL. Enzastaurin, an oral serine/threonine kinase inhibitor, suppresses

  20. A phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory mantle cell lymphoma

    NARCIS (Netherlands)

    Morschhauser, F.; Seymour, J. F.; Kluin-Nelemans, H. C.; Grigg, A.; Wolf, M.; Pfreundschuh, M.; Tilly, H.; Raemaekers, J.; van 't Veer, M. B.; Milpied, N.; Cartron, G.; Pezzutto, A.; Spencer, A.; Reyes, F.; Dreyling, M.


    Background: Protein kinase C beta (PKC beta), a pivotal enzyme in B-cell signaling and survival, is overexpressed in most cases of mantle cell lymphoma (MCL). Activation of PI3K/AKT pathway is involved in pathogenesis of MCL. Enzastaurin, an oral serine/threonine kinase inhibitor, suppresses signali

  1. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny [State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao (China); Kwan, Yiu Wa [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Chan, Shun Wan [State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong (China); Leung, George Pak Heng [Pharmacology and Pharmacy, Faculty of Medicine, The University of Hong Kong, Hong Kong (China); Lee, Simon Ming Yuen, E-mail: [State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao (China); Hoi, Maggie Pui Man, E-mail: [State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao (China)


    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repair with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways.

  2. Prenatal cocaine exposure impairs cognitive function of progeny via insulin growth factor II epigenetic regulation. (United States)

    Zhao, Qian; Hou, Jing; Chen, Bo; Shao, Xue; Zhu, Ruiming; Bu, Qian; Gu, Hui; Li, Yan; Zhang, Baolai; Du, Changman; Fu, Dengqi; Kong, Jueying; Luo, Li; Long, Hailei; Li, Hongyu; Deng, Yi; Zhao, Yinglan; Cen, Xiaobo


    Studies have showed that prenatal cocaine exposure (PCOC) can impair cognitive function and social behavior of the offspring; however, the mechanism underlying such effect is poorly understood. Insulin-like growth factor II (Igf-II), an imprinted gene, has a critical role in memory consolidation and enhancement. We hypothesized that epigenetic regulation of hippocampal Igf-II may attribute to the cognitive deficits of PCOC offspring. We used Morris water maze and open-field task to test the cognitive function in PCOC offspring. The epigenetic alteration involved in hippocampal Igf-II expression deficit in PCOC offspring was studied by determining Igf-II methylation status, DNA methyltransferases (DNMT) expressions and L-methionine level. Moreover, IGF-II rescue experiments were performed and the downstream signalings were investigated in PCOC offspring. In behavioral tests, we observed impaired spatial learning and memory and increased anxiety in PCOC offspring; moreover, hippocampal IGF-II mRNA and protein expressions were significantly decreased. Hippocampal methylation of cytosine-phospho-guanine (CpG) dinucleotides in differentially methylated region (DMR) 2 of Igf-II was elevated in PCOC offspring, which may be driven by the upregulation of L-methionine and DNA methyltransferase (DNMT) 1. Importantly, intra-hippocampal injection of recombinant IGF-II reactivated the repressed calcium calmodulin kinase II α (CaMKIIα) and reversed cognitive deficits in PCOC offspring. Collectively, our findings suggest that cocaine exposure during pregnancy impairs cognitive function of offspring through epigenetic modification of Igf-II gene. Enhancing IGF-II signaling may represent a novel therapeutical strategy for cocaine-induced cognitive impairment.

  3. Influence of neurotropic compounds on the calmodulin- and troponin C-dependent processes

    Energy Technology Data Exchange (ETDEWEB)

    Baldenkov, G.N.; Men' shikov, M.Yu.; Feoktistov, I.A.; Tkachuk, V.A.


    An analysis was made of the effects of neurotropic compounds on the Ca-binding proteins - calmodulin and troponin C. It was shown that most of the neuroleptics of the phenothiazine group interact effectively both with calmodulin and with troponin C and also inhibit the calmodulin-dependent phosphodiesterase of cyclic nucleotides and calcium-activated actomyosin ATPase. Neuroleptics of the butyrophenone group, as well as imipramine and diphenhydramine, are capable of a low-efficiency interaction only with calmodulin. It was found that one of the phenothiazines - methophenazine, which is an effective inhibitor of calmodulin and calmodulin-dependent phosphodiesterase - does not affect troponin C and Ca-dependent actomyosin ATPase. As a result of this, methophenazine can serve as a convenient tool for studying processes regulated by these Ca-binding proteins. It was concluded that troponin C possesses Ca-dependent binding sites for drugs structurally similar to those of calmodulin but binding the drugs less effectively and exhibiting selectivity with respect to certain preparations. It was shown that despite the homology of the two Ca-binding proteins, calmodulin and troponin C, a selective action on the processes regulated by them is possible.

  4. Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins. (United States)

    Slavov, Nikolai; Carey, Jannette; Linse, Sara


    Diverse physiological processes are regulated differentially by Ca(2+) oscillations through the common regulatory hub calmodulin. The capacity of calmodulin to combine specificity with promiscuity remains to be resolved. Here we propose a mechanism based on the molecular properties of calmodulin, its two domains with separate Ca(2+) binding affinities, and target exchange rates that depend on both target identity and Ca(2+) occupancy. The binding dynamics among Ca(2+), Mg(2+), calmodulin, and its targets were modeled with mass-action differential equations based on experimentally determined protein concentrations and rate constants. The model predicts that the activation of calcineurin and nitric oxide synthase depends nonmonotonically on Ca(2+)-oscillation frequency. Preferential activation reaches a maximum at a target-specific frequency. Differential activation arises from the accumulation of inactive calmodulin-target intermediate complexes between Ca(2+) transients. Their accumulation provides the system with hysteresis and favors activation of some targets at the expense of others. The generality of this result was tested by simulating 60 000 networks with two, four, or eight targets with concentrations and rate constants from experimentally determined ranges. Most networks exhibit differential activation that increases in magnitude with the number of targets. Moreover, differential activation increases with decreasing calmodulin concentration due to competition among targets. The results rationalize calmodulin signaling in terms of the network topology and the molecular properties of calmodulin.

  5. Preparation of Europium Induced Conformation—specific anti—calmodulin Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    WeiGuoLI; ChaoQI; 等


    Monoclonal antibody technique was employed to detect the conformational difference of CaM induced by metal ions. A trivalent europium ion induced conformation-specific anti-calmodulin monoclonal antibody was successfully prepared with europium-saturated calmodulin as antigen.

  6. Preparation of Europium Induced Conformation-specific anti-calmodulin Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)


    Monoclonal antibody technique was employed to detect the conformational difference of CaM induced by metal ions. A trivalent europium ion induced conformation-specific anti-calmodulin monoclonal antibody was successfully prepared with europium-saturated calmodulin as antigen.

  7. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity. (United States)

    Beccia, Maria Rosa; Sauge-Merle, Sandrine; Lemaire, David; Brémond, Nicolas; Pardoux, Romain; Blangy, Stéphanie; Guilbaud, Philippe; Berthomieu, Catherine


    Calmodulin (CaM) is an essential Ca(II)-dependent regulator of cell physiology. To understand its interaction with Ca(II) at a molecular level, it is essential to examine Ca(II) binding at each site of the protein, even if it is challenging to estimate the site-specific binding properties of the interdependent CaM-binding sites. In this study, we evaluated the site-specific Ca(II)-binding affinity of sites I and II of the N-terminal domain by combining site-directed mutagenesis and spectrofluorimetry. The mutations had very low impact on the protein structure and stability. We used these binding constants to evaluate the inter-site cooperativity energy and compared it with its lower limit value usually reported in the literature. We found that site I affinity for Ca(II) was 1.5 times that of site II and that cooperativity induced an approximately tenfold higher affinity for the second Ca(II)-binding event, as compared to the first one. We further showed that insertion of a tryptophan at position 7 of site II binding loop significantly increased site II affinity for Ca(II) and the intra-domain cooperativity. ΔH and ΔS parameters were studied by isothermal titration calorimetry for Ca(II) binding to site I, site II and to the entire N-terminal domain. They showed that calcium binding is mainly entropy driven for the first and second binding events. These findings provide molecular information on the structure-affinity relationship of the individual sites of the CaM N-terminal domain and new perspectives for the optimization of metal ion binding by mutating the EF-hand loops sequences.

  8. Calmodulin regulates the post-anaphase reposition of centrioles during cytokinesis

    Institute of Scientific and Technical Information of China (English)

    Yue Yue YU; Gu DAI; Fei Yan PAN; Jie CHEN; Chao Jun LI


    A transient postanaphase repositioning of the centriole is found to control the completion of cytokinesis.Using a green fluorescent protein-calmodulin fusion protein as a living cell probe,we have previously found that calmodulin is associated with the initiation and progression of cytokinesis.In this study,we further studied the effect of calmodulin on the repositioning of the centriole and subsequent cell cycle progression.When activity of calmodulin is inhibited,the regression of the centriole from the intercellular bridge to the cell center is blocked,and thus the completion of cell division is repressed and two daughter cells are linked by longer cell bridge in perturbed cells.W7 treatment during cytokinesis also results in unfinished cytokinesis and stopped G1 phase.These results suggest that calmodulin activity is required for centriole repositioning and can affect the completion of cytokinesis and cell cycle progression.

  9. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  10. Identification of spectrin as a calmodulin-binding component in the pituitary gonadotrope

    Energy Technology Data Exchange (ETDEWEB)

    Wooge, C.H.


    Gonadotropin releasing hormone (GnRH) is a hypothalamic decapeptide which stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) from the pituitary. Ca{sup 2+} fulfills the requirements of a second messenger for this system. Inhibition of calmodulin will inhibit GnRH stimulated LH release. The aim of the present studies has been to identify the locus of action of calmodulin within the pituitary. By use of an {sup 125}I-calmodulin gel overlayer assay, five major Ca{sup 2+}-dependent {sup 125}I-calmodulin labelled components of subunit M{sub r} > 205,000; 200,000; 135,000; 60,000; and 52,000 have been identified. This labeling was found to be phenothiazine-sensitive. Ca{sup 2+}-independent binding that was observed appears to be due to hydrophobic interactions of calmodulin with acid-soluble proteins, principally histones. Subcellular fractionation revealed that the Ca{sup 2+}-dependent calmodulin-binding components are localized primarily in the cytosolic fraction. Separation of dispersed anterior pituitary cells through a linear Metrizamide gradient yielded gonadotrope-enriched fractions, which were found to contain all five {sup 125}I-calmodulin binding components corresponding to the major bands in the pituitary homogenate. The calmodulin-binding component levels do not appear to be differentially regulated by steroids. The calmodulin binding component with a M{sub r} > 205,000 has been identified as spectrin. Spectrin-like immunoreactivity and {sup 125}I-calmodulin-binding activity in pituitary tissue homogenates co-migrated in various percentage acrylamide gels with avian erythrocyte spectrin. Spectrin was detected in a gonadotrope-enriched fraction by immunoblotting, and confirmed in gonadotropes by indirect immunofluorescence of cultured pituitary cells in which spectrin- and LH-immunoreactivity co-localized.

  11. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel. (United States)

    Oláh, Zoltán; Jósvay, Katalin; Pecze, László; Letoha, Tamás; Babai, Norbert; Budai, Dénes; Otvös, Ferenc; Szalma, Sándor; Vizler, Csaba


    Ca(2+)-loaded calmodulin normally inhibits multiple Ca(2+)-channels upon dangerous elevation of intracellular Ca(2+) and protects cells from Ca(2+)-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+). Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+)-uptake via the vanilloid inducible Ca(2+)-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca(2+) entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45)Ca(2+)-uptake at microM concentrations: calmidazolium (broad range) > or = trifluoperazine (narrow range) chlorpromazine/amitriptyline>fluphenazine>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+) or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+)-uptake in intact TRPV1(+) cells, and suggests an extracellular site of inhibition. TRPV1(+), inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+)-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+)-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+)-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2

  12. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel.

    Directory of Open Access Journals (Sweden)

    Zoltán Oláh

    Full Text Available Ca(2+-loaded calmodulin normally inhibits multiple Ca(2+-channels upon dangerous elevation of intracellular Ca(2+ and protects cells from Ca(2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+-uptake via the vanilloid inducible Ca(2+-channel/inflamatory pain receptor 1 (TRPV1, which suggests that calmodulin inhibitors may block pore formation and Ca(2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45Ca(2+-uptake at microM concentrations: calmidazolium (broad range > or = trifluoperazine (narrow range chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially. Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+-uptake in intact TRPV1(+ cells, and suggests an extracellular site of inhibition. TRPV1(+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2

  13. Intracellular transactivation of epidermal growth factor receptor by α1A-adrenoceptor is mediated by phosphatidylinositol 3-kinase independently of activation of extracellular signal regulated kinases 1/2 and serine-threonine kinases in Chinese hamster ovary cells. (United States)

    Ulu, Nadir; Henning, Robert H; Guner, Sahika; Zoto, Teuta; Duman-Dalkilic, Basak; Duin, Marry; Gurdal, Hakan


    Transactivation of epidermal growth factor receptor (EGFR) by α1-adrenoceptor (α1-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all α1-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster ovary (CHO) cells stably expressing one subtype of α1-AR were transiently transfected with EGFR. The transactivation mechanism was examined both by coexpression of a chimeric erythropoietin (EPO)-EGFR with an extracellular EPO and intracellular EGFR domain, and by pharmacologic inhibition of external and internal signaling routes. All three α1-AR subtypes transactivated EGFR, which was dependent on the increase in intracellular calcium. The EGFR kinase inhibitor AG1478 [4-(3'-chloroanilino)-6,7-dimethoxyquinazoline] abrogated α1A-AR and α1D-AR induced phosphorylation of EGFR, but both the inhibition of matrix metalloproteinases by GM6001 [(R)-N4-hydroxy-N(1)-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-ethyl]-2-isobutyl-succinamide] or blockade of EGFR by cetuximab did not. Stimulation of α1A-AR and α1D-AR also induced phosphorylation of EPO-EGFR chimeric receptors. Moreover, α1A-AR stimulation enhanced phosphorylation of extracellular signal regulated kinase (ERK) 1/2 and serine-threonine kinases (Akt), which were both unaffected by AG1478, indicating that ERK1/2 and Akt phosphorylation is independent of EGFR transactivation. Accordingly, inhibitors of ERK1/2 or Akt did not influence the α1A-AR-mediated EGFR transactivation. Inhibition of calcium/calmodulin-dependent kinase II (CaMKII), phosphatidylinositol 3-kinase (PI3K), and Src, however, did block EGFR transactivation by α1A-AR and α1D-AR. These findings demonstrate that all α1-AR subtypes transactivate EGFR, which is dependent on an intracellular signaling route involving an increase in calcium and activation of CaMKII, PI3K, and Src, but not the of ERK1/2 and Akt pathways.

  14. Phosphatidylinositol 3-kinase in myogenesis. (United States)

    Kaliman, P; Zorzano, A


    Phosphatidylinositol 3-kinase (PI 3-kinase) has been cloned and characterized in a wide range of organisms. PI 3-kinases are activated by a diversity of extracellular stimuli and are involved in multiple cell processes such as cell proliferation, protein trafficking, cell motility, differentiation, regulation of cytoskeletal structure, and apoptosis. It has recently been shown that PI 3-kinase is a crucial second messenger in the signaling of myogenesis. Two structurally unrelated highly specific inhibitors of PI 3-kinase-wortmannin and LY294002-block the morphological and biochemical differentiation program of different skeletal-muscle cell models. Moreover, L6E9 myoblasts overexpressing a dominant-negative mutant of PI 3-kinase p85 regulatory subunit (Δp85) are unable to differentiate. Furthermore, PI 3-kinase is specifically involved in the insulinlike growth factor (IGF)-dependent myogenic pathway. Indeed, the ability of IGF-I, des-1,3-IGF-I, and IGF-II to promote cell fusion and muscle-specific protein expression is impaired after treatment with PI 3-kinase inhibitors or in cells overexpressing Δp85. The identification of additional key downstream elements of the IGF/PI 3-kinase myogenic cascade is crucial to a detailed understanding of the process of muscle differentiation and may generate new tools for skeletal and cardiac muscle regeneration therapies. (Trends Cardiovasc Med 1997;7:198-202). © 1997, Elsevier Science Inc.

  15. Insulin phosphorylates calmodulin in preparations of solubilized rat hepatocyte insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, D.B.; McDonald, J.M.


    It has previously been shown that insulin stimulates the phosphorylation of calmodulin in adipocyte insulin receptor preparations. Here they demonstrate that insulin also stimulates the phosphorylation of calmodulin in wheat germ lectin-enriched insulin receptor preparations obtained from rat hepatocytes. Standard phosphorylation assays were performed at 30C in the presence of 50mM Tris-HCl (pH 7.5), 0.1% (v/v) Triton X-100, 1mM EGTA, 50 M (el-TSP)ATP, 5mM MgCl2, 0.25 M polylysine, 1.2 M calmodulin and various CaS and insulin concentrations. The phosphorylation of calmodulin was determined by SDS-PAGE and autoradiography. Phosphorylation of calmodulin had an absolute requirement for insulin receptors, insulin and certain basic proteins. Phosphorylation was maximal above 13 nM insulin and at submicromolar CaS concentrations, whereas supramicromolar CaS concentrations were inhibitory. As was observed in the adipocyte insulin receptor system, calmodulin phosphorylation was dependent upon the presence of co-factors, such as polylysine, histone H/sub f/2b and protamine sulfate. The role played by these co-factors has not yet been established. These data suggest that both CaS and calmodulin participate in post receptor insulin events in hepatocytes.

  16. Stimulation of fibroblast proliferation by neokyotorphin requires Ca influx and activation of PKA, CaMK II and MAPK/ERK. (United States)

    Sazonova, Olga V; Blishchenko, Elena Yu; Tolmazova, Anna G; Khachin, Dmitry P; Leontiev, Konstantin V; Karelin, Andrey A; Ivanov, Vadim T


    Neokyotorphin [TSKYR, hemoglobin alpha-chain fragment (137-141)] has previously been shown to enhance fibroblast proliferation, its effect depending on cell density and serum level. Here we show the dependence of the effect of neokyotorphin on cell type and its correlation with the effect of protein kinase A (PKA) activator 8-Br-cAMP, but not the PKC activator 4beta-phorbol 12-myristate, 13-acetate (PMA). In L929 fibroblasts, the proliferative effect of neokyotorphin was suppressed by the Ca2+ L-type channel inhibitors verapamil or nifedipine, the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, kinase inhibitors H-89 (PKA), KN-62 (Ca2+/calmodulin-dependent kinase II) and PD98059 (mitogen-activated protein kinase). The proliferative effect of 8-Br-cAMP was also suppressed by KN-62 and PD98059. PKC suppression (downregulation with PMA or inhibition with bisindolylmaleimide XI) did not affect neokyotorphin action. The results obtained point to a cAMP-like action for neokyotorphin.

  17. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Søndergaard, Mads


    a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe...... dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser......]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2...

  18. From Sphingosine Kinase to Dihydroceramide Desaturase: A Structure-Activity Relationship (SAR) Study of the Enzyme Inhibitory and Anticancer Activity of 4-((4-(4-Chlorophenyl)thiazol-2-yl)amino)phenol (SKI-II). (United States)

    Aurelio, Luigi; Scullino, Carmen V; Pitman, Melissa R; Sexton, Anna; Oliver, Victoria; Davies, Lorena; Rebello, Richard J; Furic, Luc; Creek, Darren J; Pitson, Stuart M; Flynn, Bernard L


    The sphingosine kinase (SK) inhibitor, SKI-II, has been employed extensively in biological investigations of the role of SK1 and SK2 in disease and has demonstrated impressive anticancer activity in vitro and in vivo. However, interpretations of results using this pharmacological agent are complicated by several factors: poor SK1/2 selectivity, additional activity as an inducer of SK1-degradation, and off-target effects, including its recently identified capacity to inhibit dihydroceramide desaturase-1 (Des1). In this study, we have delineated the structure-activity relationship (SAR) for these different targets and correlated them to that required for anticancer activity and determined that Des1 inhibition is primarily responsible for the antiproliferative effects of SKI-II and its analogues. In the course of these efforts, a series of novel SK1, SK2, and Des1 inhibitors have been generated, including compounds with significantly greater anticancer activity.

  19. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors

    Directory of Open Access Journals (Sweden)

    Latha eMukunda


    Full Text Available Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs, occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX and a highly conserved co-receptor protein (Orco. The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs expressing Or22a inside the fly’s antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native

  20. Flavonoid Myricetin Modulates GABAA Receptor Activity through Activation of Ca2+ Channels and CaMK-II Pathway

    Directory of Open Access Journals (Sweden)

    Xiao Hu Zhang


    Full Text Available The flavonoid myricetin is found in several sedative herbs, for example, the St. John's Wort, but its influence on sedation and its possible mechanism of action are unknown. Using patch-clamp technique on a brain slice preparation, the present study found that myricetin promoted GABAergic activity in the neurons of hypothalamic paraventricular nucleus (PVN by increasing the decay time and frequency of the inhibitory currents mediated by GABAA receptor. This effect of myricetin was not blocked by the GABAA receptor benzodiazepine- (BZ- binding site antagonist flumazenil, but by KN-62, a specific inhibitor of the Ca2+/calmodulin-stimulated protein kinase II (CaMK-II. Patch clamp and live Ca2+ imaging studies found that myricetin could increase Ca2+ current and intracellular Ca2+ concentration, respectively, via T- and L-type Ca2+ channels in rat PVN neurons and hypothalamic primary culture neurons. Immunofluorescence staining showed increased phosphorylation of CaMK-II after myricetin incubation in primary culture of rat hypothalamic neurons, and the myricetin-induced CaMK-II phosphorylation was further confirmed by Western blotting in PC-12 cells. The present results suggest that myricetin enhances GABAA receptor activity via calcium channel/CaMK-II dependent mechanism, which is distinctively different from that of most existing BZ-binding site agonists of GABAA receptor.

  1. Inhibition of protein kinase CbetaII increases glucose uptake in 3T3-L1 adipocytes through elevated expression of glucose transporter 1 at the plasma membrane.

    NARCIS (Netherlands)

    Bosch, R.R.; Bazuine, M.; Wake, M.M.; Span, P.N.; Olthaar, A.J.; Schurmann, A.; Maassen, J.A.; Hermus, A.R.M.M.; Willems, P.H.G.M.; Sweep, C.G.J.


    The mechanism via which diacylglycerol-sensitive protein kinase Cs (PKCs) stimulate glucose transport in insulin-sensitive tissues is poorly defined. Phorbol esters, such as phorbol-12-myristate-13-acetate (PMA), are potent activators of conventional and novel PKCs. Addition of PMA increases the rat

  2. Immunohistochemical determination of calcium-calmodulin binding predicts neuronal damage after global ischemia. (United States)

    Picone, C M; Grotta, J C; Earls, R; Strong, R; Dedman, J


    Since ionic Ca2+ binds with intracellular calmodulin (CaM) before activating proteases, kinases, and phospholipases, demonstration of persistent Ca2+-CaM binding in neurons destined to show ischemic cellular injury would support the concept that elevated intracellular Ca2+ plays a causative role in ischemic neuronal damage. In order to characterize Ca2+-CaM binding, we used a sheep anti-CaM antibody (CaM-Ab) which recognizes CaM that is not bound to Ca2+ or brain target proteins. Therefore, immunohistochemical staining of brain sections by labeled CaM-Ab represented only unbound CaM. Six normal rats were compared to 15 animals rendered ischemic for 30 min by a modification of the four-vessel occlusion model. Animals were killed immediately after ischemia, and after 2 and 24 h of reperfusion. Brain sections through hippocampus were incubated in CaM-Ab, and a diaminobenzadiene labeled anti-sheep secondary antibody was added to stain the CaM-Ab. Staining in the endal limb of dentate, dorsal CA1, lateral CA3, and parietal cortex was graded on a 4-point scale. All normal animals had grade 4 staining indicating the presence of unbound CaM in all four brain regions. Ischemic animals demonstrated reduced (grade 0 to 2) staining in the CA1 and CA3 regions immediately and 2 and 24 h after ischemia (p less than 0.01 for both regions at all three time intervals) indicating persistent binding of CaM with Ca2+ and target proteins in these regions. Staining decreased in dentate and cortex up to 2 h after ischemia (p = 0.02 for both regions) but returned toward normal by 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit. (United States)

    Peng, Hui; Yang, Tianbao; Ii, Wayne M Jurick


    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  4. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng


    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  5. Tetrahydroindazoles as Interleukin-2 Inducible T-Cell Kinase Inhibitors. Part II. Second-Generation Analogues with Enhanced Potency, Selectivity, and Pharmacodynamic Modulation in Vivo. (United States)

    Burch, Jason D; Barrett, Kathy; Chen, Yuan; DeVoss, Jason; Eigenbrot, Charles; Goldsmith, Richard; Ismaili, M Hicham A; Lau, Kevin; Lin, Zhonghua; Ortwine, Daniel F; Zarrin, Ali A; McEwan, Paul A; Barker, John J; Ellebrandt, Claire; Kordt, Daniel; Stein, Daniel B; Wang, Xiaolu; Chen, Yong; Hu, Baihua; Xu, Xiaofeng; Yuen, Po-Wai; Zhang, Yamin; Pei, Zhonghua


    The medicinal chemistry community has directed considerable efforts toward the discovery of selective inhibitors of interleukin-2 inducible T-cell kinase (ITK), given its role in T-cell signaling downstream of the T-cell receptor (TCR) and the implications of this target for inflammatory disorders such as asthma. We have previously disclosed a structure- and property-guided lead optimization effort which resulted in the discovery of a new series of tetrahydroindazole-containing selective ITK inhibitors. Herein we disclose further optimization of this series that resulted in further potency improvements, reduced off-target receptor binding liabilities, and reduced cytotoxicity. Specifically, we have identified a correlation between the basicity of solubilizing elements in the ITK inhibitors and off-target antiproliferative effects, which was exploited to reduce cytotoxicity while maintaining kinase selectivity. Optimized analogues were shown to reduce IL-2 and IL-13 production in vivo following oral or intraperitoneal dosing in mice.

  6. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail:; Soni, Hitesh; John, Theresa A.; Yang, Fen


    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  7. Enhanced casein kinase II activity during mouse embryogenesis. Identification of a 110-kDa phosphoprotein as the major phosphorylation product in mouse embryos and Krebs II mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Schneider, H R; Reichert, G H; Issinger, O G


    , increased phosphorylation of a 110-kDa protein is observed. Treatment of the embryo extracts with heparin, a highly specific inhibitor of CKII activity, results in a drastic reduction of the 110-kDa protein phosphorylation indicating that the protein might be a CKII-specific substrate. Rapidly proliferating...... mouse tumour cells also show an enhanced CKII activity. Here too, a 110-kDa phosphoprotein was the major phosphoryl acceptor. Partial proteolytic digestion shows that both proteins are identical. Other protein kinases tested (cAMP- and cGMP-dependent protein kinases) only show a basal level of enzyme...

  8. Synthesis and evaluation of the antiproliferative activity of novel pyrrolo[1,2-a]quinoxaline derivatives, potential inhibitors of Akt kinase. Part II. (United States)

    Desplat, Vanessa; Moreau, Stephane; Gay, Aurore; Fabre, Solene Belisle; Thiolat, Denis; Massip, Stephane; Macky, Gregory; Godde, Frederic; Mossalayi, Djavad; Jarry, Christian; Guillon, Jean


    Attenuation of protein kinases by selective inhibitors is an extremely active field of activity in anticancer drug development. Therefore, Akt, a serine/threonine protein kinase, also known as protein kinase B (PKB), represents an attractive potential target for therapeutic intervention. Recent efforts in the development and biological evaluation of small molecule inhibitors of Akt have led to the identification of novel inhibitors with various heterocycle scaffolds. Based on previous results obtained on the antiproliferative activities of new pyrrolo[1,2-a]quinoxalines, a novel series was designed and synthesized from various substituted phenyl-1H-pyrrole-2-carboxylic acid alkyl esters via a multistep heterocyclization process. These new compounds were tested for their in vitro ability to inhibit the proliferation of the human leukemic cell lines K562, U937, and HL60, and the breast cancer cell line MCF7. The first biological evaluation of our new substituted pyrrolo[1,2-a]quinoxalines showed antiproliferative activity against the tested cell lines. From a general SAR point of view, these preliminary biological results highlight the importance of substitution at the C-4 position of the pyrroloquinoxaline scaffold by a benzylpiperidinyl fluorobenzimidazole group, and also the need for a functionalization on the pyrrole ring.

  9. Impact of methionine oxidation on calmodulin structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States); Moen, Rebecca J. [Chemistry and Geology Department, Minnesota State University, Mankato, MN 56001 (United States); Olenek, Michael J. [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Klein, Jennifer C., E-mail: [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Thomas, David D., E-mail: [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States)


    Highlights: • We measured the distance distribution between two spin labels on calmodulin by DEER. • Two structural states, open and closed, were resolved at both low and high Ca. • Ca shifted the equilibrium toward the open state by a factor of 13. • Methionine oxidation, simulated by glutamine substitution, decreased the Ca effect. • These results have important implications for aging in muscle and other tissues. - Abstract: We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron–electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4 nm (closed) and another at ∼6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each

  10. Characterization and functional analysis of the calmodulin-binding domain of Rac1 GTPase.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151-164 in Rac1 is essential for calmodulin binding. Within the 151-164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A, activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration.

  11. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  12. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.


    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  13. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.


    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  14. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein (United States)

    Yang, T.; Poovaiah, B. W.


    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  15. Structure and expression of the chicken calmodulin I gene

    DEFF Research Database (Denmark)

    Ye, Q; Berchtold, M W


    The chicken calmodulin I (CaMI) gene has been isolated and characterized on the level of cDNA and genomic DNA. The deduced amino acid (aa) sequence is identical to the one of chicken CaMII which consists of 148 aa. The CaMI gene contains six exons. Its intron/exon organization is identical...... to that of the chicken CaMII and the CaMI and CaMIII genes of rat and human. Expression of the CaMI gene was detected in all chicken tissues examined, although at varying levels. The gene is transcribed into four mRNAs of 0.8, 1.4, 1.7 and 4.4 kb as determined by Northern blot analysis. Our results demonstrate...... that the "multigene-one-protein" principle of CaM synthesis is not only applicable to mammals whose CaM is encoded by three different genes, but also to chickens....

  16. A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding (United States)

    Porter Moore, C.; Zhang, J. Z.; Hamilton, S. L.


    Oxidation of the skeletal muscle Ca(2+) release channel (RYR1) increases its activity, produces intersubunit disulfide bonds, and blocks its interaction with calmodulin. Conversely, bound calmodulin protects RYR1 from the effects of oxidants (Zhang, J.-Z., Wu, Y., Williams, B. Y., Rodney, G., Mandel, F., Strasburg, G. M., and Hamilton, S. L. (1999) Am. J. Physiol. 276, Cell Physiol. C46-C53). In addition, calmodulin protects RYR1 from trypsin cleavage at amino acids 3630 and 3637 (Moore, C. P., Rodney, G., Zhang, J.-Z., Santacruz-Toloza, L., Strasburg, G. M., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). The sequence between these two tryptic sites is AVVACFR. Alkylation of RYR1 with N-ethylmaleimide (NEM) blocks both (35)S-apocalmodulin binding and oxidation-induced intersubunit cross-linking. In the current work, we demonstrate that both cysteines needed for the oxidation-induced intersubunit cross-link are protected from alkylation with N-ethylmaleimide by bound calmodulin. We also show, using N-terminal amino acid sequencing together with analysis of the distribution of [(3)H]NEM labeling with each sequencing cycle, that cysteine 3635 of RYR1 is rapidly labeled by NEM and that this labeling is blocked by bound calmodulin. We propose that cysteine 3635 is located at an intersubunit contact site that is close to or within a calmodulin binding site. These findings suggest that calmodulin and oxidation modulate RYR1 activity by regulating intersubunit interactions in a mutually exclusive manner and that these interactions involve cysteine 3635.

  17. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. (United States)

    Fanger, C M; Ghanshani, S; Logsdon, N J; Rauer, H; Kalman, K; Zhou, J; Beckingham, K; Chandy, K G; Cahalan, M D; Aiyar, J


    Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1, a human intermediate conductance channel expressed in peripheral tissues. Cal- modulin was found to interact strongly with the cytoplasmic carboxyl (C)-tail of hIKCa1 in a yeast two-hybrid system. Deletion analyses defined a requirement for the first 62 amino acids of the C-tail, and the binding of calmodulin to this region did not require Ca2+. The C-tail of hSKCa3, a human neuronal small conductance channel, also bound calmodulin, whereas that of a voltage-gated K+ channel, mKv1.3, did not. Calmodulin co-precipitated with the channel in cell lines transfected with hIKCa1, but not with mKv1. 3-transfected lines. A mutant calmodulin, defective in Ca2+ sensing but retaining binding to the channel, dramatically reduced current amplitudes when co-expressed with hIKCa1 in mammalian cells. Co-expression with varying amounts of wild-type and mutant calmodulin resulted in a dominant-negative suppression of current, consistent with four calmodulin molecules being associated with the channel. Taken together, our results suggest that Ca2+-calmodulin-induced conformational changes in all four subunits are necessary for the channel to open.

  18. An antisense oligodeoxynucleotide targeted against the type II sub. beta. regulatory subunit mRNA of protein kinase inhibits cAMP-induced differentiation in HL-60 leukemia cells without affecting phorbol ester effects

    Energy Technology Data Exchange (ETDEWEB)

    Tortora, G.; Clair, T.; Cho-Chung, Y.S. (National Institutes of Health, Bethesda, MD (USA))


    The type II{sub {beta}} regulatory subunit of cAMP-dependent protein kinase (RII{sub {beta}}) has been hypothesized to play an important role in the growth inhibition and differentiation induced by site-selective cAMP analogs in human cancer cells, but direct proof of this function has been lacking. To address this tissue, HL-60 human promyelocytic leukemia cells were exposed to RII{sub {beta}} antisense synthetic oligodeoxynucleotide, and the effects on cAMP-induced growth regulation were examined. Exposure of these cells to RII{sub {beta}} antisense oligodeoxynucleotide resulted in a decrease in cAMP analog-induced growth inhibition and differentiation without apparent effect on differentiation induced by phorbol esters. This loss in cAMP growth regulatory function correlated with a decrease in basal and induced levels of RII{sub {beta}} protein. Exposure to RII{sub {beta}} sense, RI{sub {alpha}} and RII{sub {alpha}} antisense, or irrelevant oligodeoxynucleotides had no such effect. These results show that the RII{sub {beta}} regulatory subunit of protein kinase plays a critical role in the cAMP-induced growth regulation of HL-60 leukemia cells.

  19. Fluorescence probe study of Ca2+-dependent interactions of calmodulin with calmodulin-binding peptides of the ryanodine receptor. (United States)

    Gangopadhyay, Jaya Pal; Grabarek, Zenon; Ikemoto, Noriaki


    We have used a highly environment-sensitive fluorescent probe 6-bromoacetyl-2-dimethylaminonaphthalene (badan) to study the interaction between calmodulin (CaM) and a CaM-binding peptide of the ryanodine receptor (CaMBP) and its sub-fragments F1 and F4. Badan was attached to the Thr34Cys mutant of CaM (CaM-badan). Ca(2+) increase in a physiological range of Ca(2+) (0.1-2 microM) produced about 40 times increase in the badan fluorescence. Upon binding to CaMBP, the badan fluorescence of apo-CaM showed a small increase at a slow rate; whereas that of Ca-CaM showed a large decrease at a very fast rate. Upon binding of CaM to the badan-labeled CaMBP, the badan fluorescence showed a small and slow increase at low Ca(2+), and a large and fast increase at high Ca(2+). Thus, the badan probe attached to CaM Cys(34) can be used to monitor conformational changes occurring not only in CaM, but also those in the CaM-CaMBP interface. Based on our results we propose that both the interaction interface and the global conformation of the CaM-CaMBP complex are altered by calcium.

  20. The distribution of calmodulin and Ca2+—activated calmodulin in cell cycle of mouse erythroleukemia cells

    Institute of Scientific and Technical Information of China (English)

    YouJinsong; LiSuwen; 等


    Cell proliferation is accompanied with changing levels of intracellular calmodulin (CaM) and its activation.Prior data from synchronized cell population could not actually stand for various CaM levels in different phases of cell cycle.Here,based upon quantitative measurement of fluorescence in individual cells,a method was developed to investigate intracellular total CaM and Ca2+-activated CaM contents. Intensity of CaM immunoflurescence gave total CaM level,and Ca2+-activated CaM was measured by fluorescence intensity of CaM antagonist trifluoperazine (TFP).In mouse erythroleukemia (MEL) cells,total CaM level increased from G1 through S to G2M,reaching a maximum of 2-fold increase,then reduced to half amount after cell division.Meanwhile,Ca2+-activated CaM also in creased through the cell cycle(G1,S,G2M).Increasing observed in G1 meant that the entry of cells from G1 into S phase may require CaM accumulation,and,equally or even more important,Ca2+-dependent activation of CaM.Ca2+-activated CaM decreased after cell division.The results suggested that CaM gene expression and C2+-modulated CaM activation act synergistically to accomplish the cell cycle progression.

  1. Genes encoding calmodulin-binding proteins in the Arabidopsis genome (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.


    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  2. Calmodulin interacts with PAC1 and VPAC2 receptors and regulates PACAP-induced FOS expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.


    is a well-known marker of neuronal activation, so we used a human neuroblastoma cell line NB-1 to explore the role of calmodulin in PACAP-induced FOS gene expression. We observed both short-term and prolonged altered PACAP-mediated activation of the FOS gene in the presence of the calmodulin-antagonist W-7...

  3. Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, R.; Kale, R.K. (Jawaharlal Nehru Univ., New Delhi (India). School of Life Sciences)


    Rat liver microsomes were irradiated with {gamma}-rays at a dose of 1.31 Gy s{sup -1}. The extent of lipid peroxidation, measured in terms of malondialdehyde (MDA) formed, increased with radiation dose. The presence of calmodulin antagonists during irradiation decreased lipid peroxidation. The order of their protective efficiency was: chlorpromazine (CPZ)>promethazine (PMZ)>trimeprazine (TMZ). Their protective effect was diminished in the presence of ferrous (Fe{sup 2+}) ions and was restored on addition of EDTA. However, calmodulin antagonists considerably inhibited radiation-induced lipid peroxidation in the presence of ferric (Fe{sup 3+}) ions. Calmodulin antagonists also decreased the cytochrome P-450 content of microsomes. These results are discussed with respect to their applicability to radiotherapy. A possible mechanism for the inhibition of radiation-induced lipid peroxidation is suggested. (author).

  4. Impedance Characterization of Adsorption Process of Calmodulin on Au Substrate and its Combination with Ca2+

    Institute of Scientific and Technical Information of China (English)


    In this paper,the adsorption process of calmodulin (CaM) on Au substrate was first investigated with electrochemical impedance spectroscopy (EIS) method.The result reveals that the adsorption of the protein-calmodulin contains two steps,i.e.,one short quick step followed by a slow one.The complexation of calmodulin with Ca2+ was also first probed using EIS technique,in which the complexation of CaM with Ca2+ could be reflected by the change of apparent membrane capacitance(Capp) clearly.In all above measurements,a redox couple Fe(CN)63-/ Fe(CN)64- was used as probing-pin to reflect all the changes occurring in the above process.Our work suggests that some biological processes of CaM could be studied using EIS method conveniently.

  5. Glucose-induced downregulation of angiotensin II and arginine vasopressin receptors in cultured rat aortic vascular smooth muscle cells. Role of protein kinase C.


    Williams, B.; Tsai, P.; Schrier, R W


    Early diabetes mellitus is characterized by impaired responses to pressor hormones and pressor receptor downregulation. The present study examined the effect of elevated extracellular glucose concentrations on angiotensin II (AII) and arginine vasopressin (AVP) receptor kinetics in cultured rat vascular smooth muscle cells (VSMC). Scatchard analysis of [3H]AVP and 125I-AII binding to confluent VSMC showed that high glucose concentrations (20 mM) similarly depressed AVP and AII surface recepto...

  6. Essential roles for calcium and calmodulin in G2/M progression in Aspergillus nidulans



    nimT encodes a protein in Aspergillus nidulans that is required for tyrosine dephosphorylation of p34cdc2 and has a strong homology to cdc25-type proteins. Conditional mutation of nimT (nimT23 mutation) arrests cells in G2 at the restrictive temperature. After release of the temperature-sensitive nimT23 block, p34cdc2 undergoes tyrosine dephosphorylation and we showed that as cells entered mitosis, a rapid increase in calmodulin was observed. The increase in calmodulin and progression into mi...

  7. Enhancement of contraction and L-type Ca(2+) current by murrayafoline-A via protein kinase C in rat ventricular myocytes. (United States)

    Chidipi, Bojjibabu; Son, Min-Jeong; Kim, Joon-Chul; Lee, Jeong Hyun; Toan, Tran Quoc; Cuong, Nguyen Manh; Lee, Byung Ho; Woo, Sun-Hee


    We previously reported that murrayafoline-A (1-methoxy-3-methyl-9H-carbazole, Mu-A) increases the contractility of ventricular myocytes, in part, via enhancing Ca(2+) influx through L-type Ca(2+) channels, and that it increases the Ca(2+) transients by activation of protein kinase C (PKC). In the present study, we further examined the cellular mechanisms for the enhancement of contractility and L-type Ca(2+) current (ICa,L) by Mu-A. Cell shortening and ICa,L were measured in rat ventricular myocytes using a video edge detection method and perforated patch-clamp technique, respectively. We found that the positive inotropic effect of Mu-A was not affected by pre-exposure to the β-adrenoceptor antagonist propranolol, the protein kinase A (PKA) inhibitors KT5720 or H-89, or the phospholipase C inhibitor U73122. Interestingly, the Mu-A-mediated increases in cell shortening and in the rate of contraction were completely suppressed by pre-treatment with the PKC inhibitor GF109203X. The stimulatory effect of Mu-A on ICa,L was not altered by inhibition of PKA (KT5720), G-protein coupled receptors (suramin), or α1-adrenoceptor (prazosin). However, pre-exposure to the PKC inhibitor, GF109203X or chelerythrine, abolished the Mu-A-induced increase in ICa,L. Pre-exposure to the Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 slightly reduced the stimulatory effects on contraction and ICa,L by Mu-A. Phosphorylation of PKC was enhanced by Mu-A in ventricular myocytes. These data suggest that Mu-A increases contraction and ICa,L via PKC in rat ventricular myocytes, and that the PKC-mediated responses in the presence of Mu-A may be partly mediated by CaMKII.

  8. Impact of Methionine Oxidation on Calmodulin Structural Dynamics (United States)

    McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin; Moen, Rebecca J.; Olenek, Michael J.; Klein, Jennifer C.; Thomas, David D.


    We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron-electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous x-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: In both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ~4 nm (closed) and another at ~6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each population ranging from 1.5 to 3 nm. Both mutations (M109Q and M124Q) decrease the effect of Ca on the structure of CaM, primarily by decreasing the closed-to-open equilibrium constant in the presence of Ca. We propose that Met oxidation alters CaM’s functional interaction with its target proteins by perturbing this Ca-dependent structural shift. PMID:25478640

  9. Direct detection of calmodulin tuning by ryanodine receptor channel targets using a Ca2+-sensitive acrylodan-labeled calmodulin. (United States)

    Fruen, Bradley R; Balog, Edward M; Schafer, Janet; Nitu, Florentin R; Thomas, David D; Cornea, Razvan L


    Calmodulin (CaM) activates the skeletal muscle ryanodine receptor (RyR1) at nanomolar Ca(2+) concentrations but inhibits it at micromolar Ca(2+) concentrations, indicating that binding of Ca(2+) to CaM may provide a molecular switch for modulating RyR1 channel activity. To directly examine the Ca(2+) sensitivity of RyR1-complexed CaM, we used an environment-sensitive acrylodan adduct of CaM. The resulting (ACR)CaM probe displayed high-affinity binding to, and Ca(2+)-dependent regulation of, RyR1 similar to that of unlabeled wild-type (WT) CaM. Upon addition of Ca(2+), (ACR)CaM exhibited a substantial (>50%) decrease in fluorescence (K(Ca) = 2.7 +/- 0.8 microM). A peptide derived from the RyR1 CaM binding domain (RyR1(3614)(-)(43)) caused an even more pronounced Ca(2+)-dependent fluorescence decrease, and a >or=10-fold leftward shift in its K(Ca) (0.2 +/- 0.1 microM). In the presence of intact RyR1 channels in SR vesicles, (ACR)CaM fluorescence spectra were distinct from those in the presence of RyR1(3614)(-)(43), although a Ca(2+)-dependent decrease in fluorescence was still observed. The K(Ca) for (ACR)CaM fluorescence in the presence of SR (0.8 +/- 0.4 microM) was greater than in the presence of RyR1(3614)(-)(43) but was consistent with functional determinations showing the conversion of (ACR)CaM from channel activator (apoCaM) to inhibitor (Ca(2+)CaM) at Ca(2+) concentrations between 0.3 and 1 microM. These results indicate that binding to RyR1 targets evokes significant changes in the CaM structure and Ca(2+) sensitivity (i.e., CaM tuning). However, changes resulting from binding of CaM to the full-length, tetrameric channels are clearly distinct from changes caused by the RyR1-derived peptide. We suggest that the Ca(2+) sensitivity of CaM when in complex with full-length channels may be tuned to respond to physiologically relevant changes in Ca(2+).

  10. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines.

    Directory of Open Access Journals (Sweden)

    Thom Griffith


    Full Text Available The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR and voltage-gated Ca2+ -channel (VGCC activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators.

  11. Phylogenetic analysis of dermatophyte species using DNA sequence polymorphism in calmodulin gene

    NARCIS (Netherlands)

    Ahmadi, Bahram; Mirhendi, Hossein; Makimura, Koichi; de Hoog, G Sybren; Shidfar, Mohammad Reza; Nouripour-Sisakht, Sadegh; Jalalizand, Niloofar


    Use of phylogenetic species concepts based on rDNA internal transcribe spacer (ITS) regions have improved the taxonomy of dermatophyte species; however, confirmation and refinement using other genes are needed. Since the calmodulin gene has not been systematically used in dermatophyte taxonomy, we e

  12. Real—time Analysis of the Interaction between Calmodulin and Melittin by SPR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    WeiGuoLI; XiaoQiangCUI; 等


    The dynamic interaction process of calmodulin with an immobilized peptide melittin was investigated in real time by surface plasmon resonance spectroscopy, and dissociation constant of the complex was calculated to be 3.37×10-6 mol/L.

  13. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin

    DEFF Research Database (Denmark)

    Perrier, J F; Mejia-Gervacio, S; Hounsgaard, J


    or trifluoperazine reduced the amplitude of depolarization-induced plateau potentials. Inactivation of calmodulin also inhibited facilitation of plateau potentials by activation of group I metabotropic glutamate receptors or muscarinic receptors. 3. In low-sodium medium and in the presence of tetraethylammonium...

  14. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep;


    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins. ...

  15. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function (United States)

    Astegno, Alessandra; Maresi, Elena; Marino, Valerio; Dominici, Paola; Pedroni, Marco; Piccinelli, Fabio; Dell'Orco, Daniele


    Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca2+-binding ability in the C-terminal lobe suggest that the EF-hand Ca2+-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface.Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous

  16. Fast activation of Ca2+-ATPases in plasma membranes from cardiac muscle and from ascites carcinoma cells: a possible function of endogenous calmodulin. (United States)

    Wetzker, R; Klinger, R; Haase, H; Vetter, R; Böhmer, F D


    Content of endogenous calmodulin, binding of calmodulin to, and Ca2+-ATPase activity in plasma membranes of cardiac muscle. Ehrlich ascites carcinoma (EAC) cells and erythrocytes were examined. The content of endogenous calmodulin in cardiac and EAC cells was shown to be considerably higher than in erythrocyte membranes. Ca2+-independent binding of calmodulin to cardiac and EAC cell membranes was found to be realized by some low molecular weight proteins. Ca2+-ATPases in cardiac and EAC cell membranes differ from those in erythrocytes with respect to their activation by Ca2+ and calmodulin. The erythrocyte enzyme is strongly stimulated by exogenous calmodulin and reaches its maximum activity about 2 min after Ca2+-addition. In contrast, the Ca2+-ATPases in cardiac and EAC cell plasma membranes cannot be considerably stimulated by exogenous calmodulin and are instantaneously activated by Ca2+.

  17. Apocalmodulin and Ca2+ calmodulin bind to the same region on the skeletal muscle Ca2+ release channel (United States)

    Moore, C. P.; Rodney, G.; Zhang, J. Z.; Santacruz-Toloza, L.; Strasburg, G.; Hamilton, S. L.


    The skeletal muscle Ca2+ release channel (RYR1) is regulated by calmodulin in both its Ca2+-free (apocalmodulin) and Ca2+-bound (Ca2+ calmodulin) states. Apocalmodulin is an activator of the channel, and Ca2+ calmodulin is an inhibitor of the channel. Both apocalmodulin and Ca2+ calmodulin binding sites on RYR1 are destroyed by a mild tryptic digestion of the sarcoplasmic reticulum membranes, but calmodulin (either form), bound to RYR1 prior to tryptic digestion, protects both the apocalmodulin and Ca2+ calmodulin sites from tryptic destruction. The protected sites are after arginines 3630 and 3637 on RYR1. These studies suggest that both Ca2+ calmodulin and apocalmodulin bind to the same or overlapping regions on RYR1 and block access of trypsin to sites at amino acids 3630 and 3637. This sequence is part of a predicted Ca2+ CaM binding site of amino acids 3614-3642 [Takeshima, H., et al. (1989) Nature 339, 439-445].

  18. Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1 promoter and its regulation by Sp1

    Directory of Open Access Journals (Sweden)

    Botella Luisa M


    Full Text Available Abstract Background Activin receptor-like kinase 1 (ALK1 is a Transforming Growth Factor-β (TGF-β receptor type I, mainly expressed in endothelial cells that plays a pivotal role in vascular remodelling and angiogenesis. Mutations in the ALK1 gene (ACVRL1 give rise to Hereditary Haemorrhagic Telangiectasia, a dominant autosomal vascular dysplasia caused by a haploinsufficiency mechanism. In spite of its patho-physiological relevance, little is known about the transcriptional regulation of ACVRL1. Here, we have studied the different origins of ACVRL1 transcription, we have analyzed in silico its 5'-proximal promoter sequence and we have characterized the role of Sp1 in the transcriptional regulation of ACVRL1. Results We have performed a 5'Rapid Amplification of cDNA Ends (5'RACE of ACVRL1 transcripts, finding two new transcriptional origins, upstream of the one previously described, that give rise to a new exon undiscovered to date. The 5'-proximal promoter region of ACVRL1 (-1,035/+210 was analyzed in silico, finding that it lacks TATA/CAAT boxes, but contains a remarkably high number of GC-rich Sp1 consensus sites. In cells lacking Sp1, ACVRL1 promoter reporters did not present any significant transcriptional activity, whereas increasing concentrations of Sp1 triggered a dose-dependent stimulation of its transcription. Moreover, silencing Sp1 in HEK293T cells resulted in a marked decrease of ACVRL1 transcriptional activity. Chromatin immunoprecipitation assays demonstrated multiple Sp1 binding sites along the proximal promoter region of ACVRL1 in endothelial cells. Furthermore, demethylation of CpG islands, led to an increase in ACVRL1 transcription, whereas in vitro hypermethylation resulted in the abolishment of Sp1-dependent transcriptional activation of ACVRL1. Conclusions Our results describe two new transcriptional start sites in ACVRL1 gene, and indicate that Sp1 is a key regulator of ACVRL1 transcription, providing new insights into

  19. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway. (United States)

    Said, Hamid M; Wang, Shuling; Ma, Thomas Y


    In mammalian cells (including those of the ocular system), the water-soluble vitamin B2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na+ dependent, (3) saturable as a function of concentration with an apparent Km of 80 +/- 14 nM, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) as well as by the Na+ -H+ exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca2+ -calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is

  20. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues (United States)

    Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan


    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.

  1. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure

    Directory of Open Access Journals (Sweden)

    Hayashi Nobuhiro


    Full Text Available Abstract Background The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. Results The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC in different temperatures, and Kd was observed to be in the low μM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Conclusion Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure

  2. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.

    Directory of Open Access Journals (Sweden)

    John P Cavaretta

    Full Text Available KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is impaired by mutations in KCNQ2 carboxy-terminal tail that cause benign familial neonatal convulsion and myokymia, suggesting that their correct surface distribution and density at the axon is crucial for control of neuronal excitability. However, the molecular mechanisms responsible for regulating enrichment of KCNQ channels at the neuronal axon remain elusive. Here, we show that enrichment of KCNQ channels at the axonal surface of dissociated rat hippocampal cultured neurons is regulated by ubiquitous calcium sensor calmodulin. Using immunocytochemistry and the cluster of differentiation 4 (CD4 membrane protein as a trafficking reporter, we demonstrate that fusion of KCNQ2 carboxy-terminal tail is sufficient to target CD4 protein to the axonal surface whereas inhibition of calmodulin binding to KCNQ2 abolishes axonal surface expression of CD4 fusion proteins by retaining them in the endoplasmic reticulum. Disruption of calmodulin binding to KCNQ2 also impairs enrichment of heteromeric KCNQ2/KCNQ3 channels at the axonal surface by blocking their trafficking from the endoplasmic reticulum to the axon. Consistently, hippocampal neuronal excitability is dampened by transient expression of wild-type KCNQ2 but not mutant KCNQ2 deficient in calmodulin binding. Furthermore, coexpression of mutant calmodulin, which can interact with KCNQ2/KCNQ3 channels but not calcium, reduces but does not abolish their enrichment at the axonal surface, suggesting that apo calmodulin but not calcium-bound calmodulin is necessary for their preferential targeting to the axonal

  3. Calmodulin as a downstream gene of octopamine-OAR α1 signalling mediates olfactory attraction in gregarious locusts. (United States)

    Xu, L; Li, L; Yang, P; Ma, Z


    The migratory locust (Locusta migratoria) shows aggregative traits in nymph marching bands and swarm formations through mutual olfactory attraction of conspecifics. However, olfactory preference in different nymph stages in gregarious locusts is not sufficiently explored. In this study, we found that the nymph olfactory preference for gregarious volatiles exhibited obvious variations at different developmental stages. The gregarious locusts show attractive response to conspecific volatiles from the third stadium. Transcriptome comparison between third- and fourth-stadium nymphs showed that the G protein-coupled receptor (GPCR) pathways are significantly enriched. Amongst the genes present in GPCR pathways, the expression level of calmodulin in locust brains significantly increased from the third- to the fourth-stadium nymphs. Amongst the four octopamine receptors (OARs) belonging to the GPCR family, only OAR α1 showed similar expression patterns to those of calmodulin, and knockdown of OAR α1 reduced the expression level of calmodulin. RNA interference of calmodulin decreased locomotion and induced the loss of olfactory attraction in gregarious locusts. Moreover, the activation of OAR α1 in calmodulin-knockdown locusts did not induce olfactory attraction of the nymphs to gregarious volatiles. Thus, calmodulin as a downstream gene of octopamine-OAR α1 (OA-OAR α1) signalling mediates olfactory attraction in gregarious locusts. Overall, this study provides novel insights into the mechanism of OA-OAR α1 signalling involved in olfactory attraction of gregarious locusts.

  4. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. (United States)

    Galon, Yael; Nave, Roy; Boyce, Joy M; Nachmias, Dikla; Knight, Marc R; Fromm, Hillel


    Calmodulin-binding transcription activator (CAMTA) 3 (also called SR1) is a calmodulin-binding transcription factor in Arabidopsis. Two homozygous T-DNA insertion mutants (camta3-1, camta3-2) showed enhanced spontaneous lesions. Transcriptome analysis of both mutants revealed 6 genes with attenuated expression and 99 genes with elevated expression. Of the latter, 32 genes are related to defense against pathogens (e.g. WRKY33, PR1 and chitinase). Propagation of a virulent strain of the bacterial pathogen Pseudomonas syringae and the fungal pathogen Botrytis cinerea were attenuated in both mutants. Moreover, both mutants accumulated high levels of H2O2. We suggest that CAMTA3 regulates the expression of a set of genes involved in biotic defense responses.

  5. Calmodulin-binding transcription activators and perspectives for applications in biotechnology. (United States)

    Shen, Chenjia; Yang, Yanjun; Du, Liqun; Wang, Huizhong


    In recent years, a novel family of calmodulin-binding transcription activators (CAMTAs) has been reported in various species. The CAMTAs share a conserved domain organization, with a CG-1 DNA-binding domain, a transcription factor immunoglobulin domain, several ankyrin repeats, a calmodulin-binding domain, and a varying number of IQ motifs. CAMTAs participate in transcriptional regulation by recognizing and binding to a specific cis-element: (G/A/C)CGCG(C/G/T). Plants suffer from the environmental challenges, including abiotic and biotic stresses. Investigations in various plant species indicate a broad range of CAMTA functions involved in developmental regulation, environmental stress response, and hormone cross talk. In this review, we focus on the expression patterns and biological functions of CAMTAs to explore their probable applications in biotechnology. Furthermore, the identification and phylogenetic analysis of CAMTAs in crops could open new perspectives for enhancing stress tolerance, which could lead to improved crop production.

  6. Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels. (United States)

    Ben-Johny, Manu; Dick, Ivy E; Sang, Lingjie; Limpitikul, Worawan B; Kang, Po Wei; Niu, Jacqueline; Banerjee, Rahul; Yang, Wanjun; Babich, Jennifer S; Issa, John B; Lee, Shin Rong; Namkung, Ho; Li, Jiangyu; Zhang, Manning; Yang, Philemon S; Bazzazi, Hojjat; Adams, Paul J; Joshi-Mukherjee, Rosy; Yue, Daniel N; Yue, David T


    Voltage-gated Na and Ca(2+) channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca(2+) and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms.

  7. Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: implications for the classification of pyridoxal kinases. (United States)

    Safo, Martin K; Musayev, Faik N; di Salvo, Martino L; Hunt, Sharyn; Claude, Jean-Baptiste; Schirch, Verne


    The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.

  8. Synthesis and decay of calmodulin-ubiquitin conjugates in cell-free extracts of various rabbit tissues. (United States)

    Laub, M; Jennissen, H P


    Calmodulin is the natural substrate for ubiquitin-ligation by the enzyme ubiquitin-calmodulin ligase (uCaM-synthetase; EC The activity of this ligase is regulated by the binding of the second messenger Ca2+ to the substrate calmodulin, which increases the activity ca. 10-fold. Up till now, two components of the ligase could be identified: uCaM Syn-F1 and uCaM Syn-F2, the first of which binds to ubiquitin and the second which binds to calmodulin. Since the physiological role of this enzyme is still unclear, this study was designed to examine whether the activity of uCaM-Synthetase in 40,000 x g tissue supernatants correlates with the calmodulin content in the various tissues. In reticulocytes, spleen, erythrocytes, testis and brain, which are rich in uCaM synthetase, the tissue contents calculated on the basis of activity measurements were between 4-80-fold higher than in red and white skeletal muscle. These activities did not correlate with the respective calmodulin contents of the tissues indicating that other factors were determining these enzyme levels. A second aim was to gain information on the role of the ATP-ubiquitin-dependent proteolytic pathway in those tissues displaying uCaM synthetase activity. In the reticulocyte system which contains the classical ATP-ubiquitin-dependent proteolytic pathway as measured with 125I-BSA, no ubiquitin-dependent degradation of calmodulin could be detected. We therefore examined the other tissues of the rabbit with the substrate 125I-BSA and succeeded in finding a ubiquitin-independent ATP-dependent proteolytic activity in every case but no ubiquitin-dependent activity. The ubiquitin-independent activity was highest in smooth muscle and red skeletal muscle being ca. 3-4-fold higher than in lung and testis. In 50% of the tissue crude extracts the time curve of calmodulin ubiquitylation progressed through a maximum indicating a dynamic steady state based on conjugate synthesis and decay. If a ubiquitylation pulse

  9. Phylogenetic analysis of dermatophyte species using DNA sequence polymorphism in calmodulin gene. (United States)

    Ahmadi, Bahram; Mirhendi, Hossein; Makimura, Koichi; de Hoog, G Sybren; Shidfar, Mohammad Reza; Nouripour-Sisakht, Sadegh; Jalalizand, Niloofar


    Use of phylogenetic species concepts based on rDNA internal transcribe spacer (ITS) regions have improved the taxonomy of dermatophyte species; however, confirmation and refinement using other genes are needed. Since the calmodulin gene has not been systematically used in dermatophyte taxonomy, we evaluated its intra- and interspecies sequence variation as well as its application in identification, phylogenetic analysis, and taxonomy of 202 strains of 29 dermatophyte species. A set of primers was designed and optimized to amplify the target followed by bilateral sequencing. Using pairwise nucleotide comparisons, a mean similarity of 81% was observed among 29 dermatophyte species, with inter-species diversity ranging from 0 to 200 nucleotides (nt). Intraspecies nt differences were found within strains of Trichophyton interdigitale, Arthroderma simii, T. rubrum and A. vanbreuseghemii, while T. tonsurans, T. violaceum, Epidermophyton floccosum, Microsporum canis, M. audouinii, M. cookei, M. racemosum, M. gypseum, T. mentagrophytes, T schoenleinii, and A. benhamiae were conserved. Strains of E. floccosum/M. racemosum/M. cookei, A. obtosum/A. gertleri, T. tonsurans/T. equinum and a genotype of T. interdigitale had identical calmodulin sequences. For the majority of the species, tree topology obtained for calmodulin gene showed a congruence with coding and non-coding regions including ITS, BT2, and Tef-1α. Compared with the phylogenetic tree derived from ITS, BT2, and Tef-1α genes, some species such as E. floccosum and A. gertleri took relatively remote positions. Here, characterization and obtained dendrogram of calmodulin gene on a broad range of dermatophyte species provide a basis for further discovery of relationships between species. Studies of other loci are necessary to confirm the results.

  10. Antioxidant, DNA interaction, VEGFR2 kinase, topoisomerase I and in vitro cytotoxic activities of heteroleptic copper(II) complexes of tetrazolo[1,5-a]pyrimidines and diimines. (United States)

    Haleel, A; Mahendiran, D; Veena, V; Sakthivel, N; Rahiman, A Kalilur


    A series of heteroleptic mononuclear copper(II) complexes of the type [Cu(L(1-3))(diimine)]ClO4 (1-6) containing three tetrazolo[1,5-a]pyrimidine core ligands, ethyl 5-methyl-7-(2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (HL(1)), ethyl 5-methyl-7-(4-diethylamino-2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (HL(2)) or ethyl 5-methyl-7-(2-hydroxy-4-nitrophenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (HL(3)), and two diimine coligands, 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized and characterized by spectral methods. The geometry of complexes have been determined with the help of electronic absorption and EPR splitting patterns, which suggest four coordinated square planar geometry around copper(II) ion. The lowering of HOMO-LUMO band gap value of complex 4 implies its higher biological activity compared to other complexes. Antioxidant studies revealed that the complexes possess considerable radical scavenging potency against DPPH. The binding studies of the complexes with calf thymus DNA (CT-DNA) revealed groove mode of binding, which was further supported by docking simulation. The complexes 3 and 4 strongly inhibit the topoisomerase I, and also strongly interact with VEGFR2 kinase receptor via π-π, σ-π and hydrogen bonding interaction. Gel electrophoresis experiments demonstrated the ability of the complexes to cleave plasmid DNA in the absence of activators. In vitro cytotoxic activities of the complexes were examined on three cancerous cell lines such as human lung (A549), cervical (HeLa) and colon (HCT-15), and two normal cells such as human embryonic kidney (HEK) and peripheral blood mononuclear cells (PBMCs). The live cell and fluorescent imaging of cancer cells were observed with acridine orange/ethidium bromide staining assay. All encouraging chemical and biological findings indicate that the complex 4 is a suitable candidate for drug target.

  11. Preliminary research on myosin light chain kinase in rabbit liver

    Institute of Scientific and Technical Information of China (English)

    Bin Ren; Hua-Qing Zhu; Zhao-Feng Luo; Qing Zhou; Yuan Wang; Yu-Zhen Wang


    AIM: To study preliminarily the properties of myosin light chain kinase (MLCK) in rabbit liver. METHODS: The expression of MLCK was detected by reverse transcription-polymerase chain reaction (RT-PCR);the MLCK was obtained from rabbit liver, and its activity was analyzed by γ-32P incorporation technique to detect the phosphorylation of myosin light chain. RESULTS: MLCK was expressed in rabbit liver, and the activity of the enzyme was similar to rabbit smooth muscle MLCK, and calmodulin-dependent. When the concentration was 0.65 mg-L-1, the activity was at the highest level. CONCLUSION: MLCK expressed in rabbit liver may catalyze the phosphorylation of myosin light chain, which may play important roles in the regulation of hepatic cell functions.

  12. The Calcium/Calmodulin/Kinase System and Arrhythmogenic Afterdepolarizations in Bradycardia-Related Acquired Long-QT Syndrome

    NARCIS (Netherlands)

    Qi, XiaoYan; Yeh, Yung-Hsin; Chartier, Denis; Xiao, Ling; Tsuji, Yukiomi; Brundel, Bianca J. J. M.; Kodama, Itsuo; Nattel, Stanley


    Background-Sustained bradycardia is associated with long-QT syndrome in human beings and causes spontaneous torsades de pointes in rabbits with chronic atrioventricular block (CAVB), at least partly by downregulating delayed-rectifier K(+)-current to cause action potential (AP) prolongation. We addr

  13. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase


    Marialuisa Moccia; Qingsong Liu; Teresa Guida; Giorgia Federico; Annalisa Brescia; Zheng Zhao; Hwan Geun Choi; Xianming Deng; Li Tan; Jinhua Wang; Marc Billaud; Gray, Nathanael S.; Francesca Carlomagno; Massimo Santoro


    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-media...

  14. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I;


    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  15. Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids. (United States)

    Yokoyama, Takeshi; Kosaka, Yuto; Mizuguchi, Mineyuki


    Death-associated protein kinase 1 (DAPK1) is a 160 kDa serine/threonine protein kinase that belongs to the Ca(2+)/calmodulin-dependent protein kinase subfamily. DAPK1 is a possible target for the treatment of acute ischemic stroke and endometrial adenocarcinomas. In the present study, we investigated the binding characteristics of 17 natural flavonoids to DAPK1 using a 1-anilinonaphthalene-8-sulfonic acid competitive binding assay and revealed that morin was the strongest binder among the selected compounds. The crystallographic analysis of DAPK1 and 7 selected flavonoid complexes revealed the structure-binding affinity relationship in atomic-level detail. It was suggested that the high affinity of morin could be accounted for by the ionic interaction between 2'-OH and K42 and that such an interaction would not take place with either cyclin-dependent protein kinases or PIM kinases because of their broader entrance regions. Thus, morin would be a more selective inhibitor of DAPK1 than either of these other types of kinases. In addition, we found that the binding of kaempferol to DAPK1 was associated with a chloride ion. The present study provides a better understanding of the molecular properties of the ATP site of DAPK1 and may be useful for the design of specific DAPK1 inhibitors.

  16. Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kappaB pathway in retinal pigment epithelial cells. (United States)

    Fang, I-Mo; Yang, Chang-Hao; Yang, Chung-May; Chen, Muh-Shy


    High linoleic acid (LA) intake is known to correlate with age-related macular degeneration (AMD), but the molecular mechanisms remain unclear. This study was conducted to investigate the effects of LA on expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) and their associated signaling pathways in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with different concentrations of LA. Expressions of iNOS and COX-2 were examined using semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Concentrations of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the culture medium were determined by enzyme-link immunosorbent assay (ELISA). Activation of p42/44, p38, JNK mitogen-activated protein kinase (MAPK) and nuclear factors (NF)-kappaB were evaluated by Western blot analysis and electrophoretic mobility shift assay (EMSA). We found that LA induced expression of iNOS and COX-2 in RPE cells at the mRNA and protein levels in a time-and dose-dependent manner. Upregulation of iNOS and COX-2 resulted in increased production of NO and PGE(2). Moreover, LA caused degradation of IkappaB and increased NF-kappaB DNA binding activity. Effects of LA-induced iNOS and COX-2 expression were inhibited by a NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). LA activated p42/44, but not p38 or JNK MAPK. Inhibition of p42/44 activity by PD98059 significantly reduced LA-induced activation of NF-kappaB. Linoleic acid-induced expression of iNOS and COX-2 as well as PGE(2) and NO release in RPE cells were sequentially mediated through activation of p42/p44, MAPK, then NF-kappaB. These results may provide new insights into both mechanisms of LA action on RPE cells and pathogenesis of age-related macular degeneration.

  17. MIPS: a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock. (United States)

    Zhang, Xuan; Zhou, Huiyue; Zang, Xiaonan; Gong, Le; Sun, Hengyi; Zhang, Xuecheng


    To study the Ca(2+)/Calmodulin (CaM) signal transduction pathway of Gracilaria lemaneiformis under heat stress, myo-inositol-1-phosphate synthase (MIPS), a calmodulin-binding protein, was isolated using the yeast two-hybrid system. cDNA and DNA sequences of mips were cloned from G. lemaneiformis by using 5'RACE and genome walking procedures. The MIPS DNA sequence was 2,067 nucleotides long, containing an open reading frame (ORF) of 1,623 nucleotides with no intron. The mips ORF was predicted to encode 540 amino acids, which included the conserved MIPS domain and was 61-67 % similar to that of other species. After analyzing the amino acid sequence of MIPS, the CaM-Binding Domain (CaMBD) was inferred to be at a site spanning from amino acid 212 to amino acid 236. The yeast two-hybrid results proved that MIPS can interact with CaM and that MIPS is a type of calmodulin-binding protein. Next, the expression of CaM and MIPS in wild-type G. lemaneiformis and a heat-tolerant G. lemaneiformis cultivar, "981," were analyzed using real-time PCR under a heat shock of 32 °C. The expression level displayed a cyclical upward trend. Compared with wild type, the CaM expression levels of cultivar 981 were higher, which might directly relate to its resistance to high temperatures. This paper indicates that MIPS and CaM may play important roles in the high-temperature resistance of G. lemaneiformis.

  18. Thymidine kinases in archaea

    DEFF Research Database (Denmark)

    Clausen, A.R.; Matakos, A.; Sandrini, Michael;


    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarchaea...... that a functional deoxyribonucleoside salvage pathway is not crucial for the archaeal cell....

  19. La régulation des protéines plastidiales par la calmoduline


    Dell'Aglio, Elisa


    Calmodulin (CaM) is an important modulator of cell responses of eukaryotes. This protein is composed of four calcium (Ca2+)-binding sites and a flexible central helix. CaM can interact with other proteins in a Ca2+-dependent way. This leads to a wide variety of effects, such as activation/inhibition of enzymes, opening of membrane channels and regulation of protein trafficking. The identification of high-affinity CaM targets requires techniques allowing the study of the CaM-binding parameters...

  20. Postsynaptic long-term enhancement (LTE) by dopamine may be mediated by Ca2+ and calmodulin. (United States)

    Mochida, S; Libet, B


    Long-term enhancement (LTE), of postsynaptic slow depolarizing responses to a muscarinic agonist (MCh), follows a brief exposure of the rabbit superior cervical ganglion to another transmitter, dopamine (DA). Either reduction of external Ca2+ (to 1.0 mM or 0.2 mM) or presence of a specific calmodulin antagonist (calmidazolium at 5 microM) blocked DA induction of this LTE. However, unlike LTP in hippocampus, induction of LTE is not mediated by depolarization-dependent influx of Ca2+.

  1. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals. (United States)

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J


    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3.

  2. Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. (United States)

    Lee, Hak Joo; Mariappan, Meenalakshmi M; Feliers, Denis; Cavaglieri, Rita C; Sataranatarajan, Kavithalakshmi; Abboud, Hanna E; Choudhury, Goutam Ghosh; Kasinath, Balakuntalam S


    Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H(2)S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase β, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase β inhibitor, had the same effect. Renal cortical content of cystathionine β-synthase and cystathionine γ-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes.

  3. Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei (United States)

    Li, H.; Dauwalder, M.; Roux, S. J.


    Almost all the Ca(2+)-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 x 10(-7) molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca(2+)-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca(2+)-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.

  4. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I


    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region o...

  5. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Finley, Natosha L., E-mail: [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 (United States)


    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  6. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin. (United States)

    Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L


    Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM.

  7. Isolation of Hybridomas for Golgi-associated Proteins and a Plant Calmodulin (United States)

    Kuzmanoff, K. M.; Ray, P. M.


    The demonstration of a role for calcium in the mechanism of the gravitropic response indicates a role for calmodulin. Localization studies indicate that plant cell walls have a high content of calmodulin which suggests a regulatory role for CaM in both gravitropic curvature and auxin-induced growth. Auxin regulation of cell wall loosening and elongation is the basis for most models of this phenomenon. Auxin treatment of pea stem tissue rapidly increases the ctivity of Golgi-localized B-1,4-glucan synthase (GS), an enzyme involved in biosynthesis of wall xyloglucan which apparently constitutes the substrate for the wall loosening process. In order to determine whether auxin stimulates GS activity either by modulation of existing enzyme or induces de novo formation of Golgi glucan synthase, a study was undertaken to isolate and quantitate glucan synthase. This enzyme appears to be an integral protein of the Golgi membrane and has resisted isolation with retention of activity. The production of monoclonal antibody for glucan synthase was undertaken due to the inability to isolate GS by standard detergent/liposome techniques.

  8. NMR and molecular dynamics studies of the interaction of melatonin with calmodulin (United States)

    Turjanski, Adrián G.; Estrin, Darío A.; Rosenstein, Ruth E.; McCormick, John E.; Martin, Stephen R.; Pastore, Annalisa; Biekofsky, Rodolfo R.; Martorana, Vincenzo


    Pineal hormone melatonin (N-acetyl-5-methoxytryptamine) is thought to modulate the calcium/calmodulin signaling pathway either by changing intracellular Ca2+ concentration via activation of its G-protein–coupled membrane receptors, or through a direct interaction with calmodulin (CaM). The present work studies the direct interaction of melatonin with intact calcium-saturated CaM both experimentally, by fluorescence and nuclear magnetic resonance spectroscopies, and theoretically, by molecular dynamics simulations. The analysis of the experimental data shows that the interaction is calcium-dependent. The affinity, as obtained from monitoring 15N and 1H chemical shift changes for a melatonin titration, is weak (in the millimolar range) and comparable for the N- and C-terminal domains. Partial replacement of diamagnetic Ca2+ by paramagnetic Tb3+ allowed the measurement of interdomain NMR pseudocontact shifts and residual dipolar couplings, indicating that each domain movement in the complex is not correlated with the other one. Molecular dynamics simulations allow us to follow the dynamics of melatonin in the binding pocket of CaM. Overall, this study provides an example of how a combination of experimental and theoretical approaches can shed light on a weakly interacting system of biological and pharmacological significance. PMID:15498938

  9. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A;


    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  10. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases

    DEFF Research Database (Denmark)

    Issinger, O G; Beier, H; Speichermann, N


    identified by two-dimensional gel electrophoresis. Almost identical results were obtained when ribosomal subunits from HeLa or ascites-tumour cells were used. About 50-60% of the total radioactive phosphate incorporated into small-subunit ribosomal proteins by either kinase was associated with protein S6...

  11. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei (United States)

    Li, H.; Roux, S. J.


    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  12. Using bacteria to determine protein kinase specificity and predict target substrates.

    Directory of Open Access Journals (Sweden)

    Michael F Chou

    Full Text Available The identification of protein kinase targets remains a significant bottleneck for our understanding of signal transduction in normal and diseased cellular states. Kinases recognize their substrates in part through sequence motifs on substrate proteins, which, to date, have most effectively been elucidated using combinatorial peptide library approaches. Here, we present and demonstrate the ProPeL method for easy and accurate discovery of kinase specificity motifs through the use of native bacterial proteomes that serve as in vivo libraries for thousands of simultaneous phosphorylation reactions. Using recombinant kinases expressed in E. coli followed by mass spectrometry, the approach accurately recapitulated the well-established motif preferences of human basophilic (Protein Kinase A and acidophilic (Casein Kinase II kinases. These motifs, derived for PKA and CK II using only bacterial sequence data, were then further validated by utilizing them in conjunction with the scan-x software program to computationally predict known human phosphorylation sites with high confidence.

  13. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Evzen, E-mail:; Nencka, Radim, E-mail:


    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine.

  14. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants (United States)

    Yang, Tianbao; Poovaiah, B. W.


    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  15. Inhibitory role of peroxiredoxin II (Prx II) on cellular senescence. (United States)

    Han, Ying-Hao; Kim, Hyun-Sun; Kim, Jin-Man; Kim, Sang-Keun; Yu, Dae-Yeul; Moon, Eun-Yi


    Reactive oxygen species (ROS) were generated in all oxygen-utilizing organisms. Peroxiredoxin II (Prx II) as one of antioxidant enzymes may play a protective role against the oxidative damage caused by ROS. In order to define the role of Prx II in organismal aging, we evaluated cellular senescence in Prx II(-/-) mouse embryonic fibroblast (MEF). As compared to wild type MEF, cellular senescence was accelerated in Prx II(-/-) MEF. Senescence-associated (SA)-beta-galactosidase (Gal)-positive cell formation was about 30% higher in Prx II(-/-) MEF. N-Acetyl-l-cysteine (NAC) treatment attenuated SA-beta-Gal-positive cell formation. Prx II(-/-) MEF exhibited the higher G2/M (41%) and lower S (1.6%) phase cells as compared to 24% and 7.3% [corrected] in wild type MEF, respectively. A high increase in the p16 and a slight increase in the p21 and p53 levels were detected in PrxII(-/-) MEF cells. The cellular senescence of Prx II(-/-) MEF was correlated with the organismal aging of Prx II(-/-) mouse skin. While extracellular signal-regulated kinase (ERK) and p38 activation was detected in Prx II(-/-) MEF, ERK and c-Jun N-terminal kinase (JNK) activation was detected in Prx II(-/-) skin. These results suggest that Prx II may function as an enzymatic antioxidant to prevent cellular senescence and skin aging.

  16. Studying Kinetochore Kinases

    NARCIS (Netherlands)

    Saurin, Adrian T; Kops, Geert J P L


    Mitotic kinetochores are signaling network hubs that regulate chromosome movements, attachment error-correction, and the spindle assembly checkpoint. Key switches in these networks are kinases and phosphatases that enable rapid responses to changing conditions. Describing the mechanisms and dynamics

  17. Pkh-kinases control eisosome assembly and organization


    Walther, TC; Aguilar, PS; Fröhlich, F.; Chu, F.; Moreira, K.; Burlingame, Al; WALTER, P.


    Eisosomes help sequester a subgroup of plasma membrane proteins into discrete membrane domains that colocalize with sites of endocytosis. Here we show that the major eisosome component Pil1 in vivo is a target of the long-chain base (LCB, the biosynthetic precursors to sphingolipids)-signaling pathway mediated by the Pkh-kinases. Eisosomes disassemble if Pil1 is hyperphosphorylated (i) upon overexpression of Pkh-kinases, (ii) upon reducing LCB concentrations by inhibiting serine-palmitoyl tra...

  18. Flagellar Radial Spokes Contain a Ca2+-stimulated Nucleoside Diphosphate Kinase (United States)

    Patel-King, Ramila S.; Gorbatyuk, Oksana; Takebe, Sachiko; King, Stephen M.


    The radial spokes are required for Ca2+-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca2+-independent manner, whereas IQ2 and IQ3 show Ca2+-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca2+. This Ca2+-responsive enzyme, which accounts for ∼45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca2+-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes. PMID:15194815

  19. Genotyping species of the Sporothrix schenckii complex by PCR-RFLP of calmodulin. (United States)

    Rodrigues, Anderson Messias; de Hoog, G Sybren; de Camargo, Zoilo Pires


    Sporotrichosis is one of the most common subcutaneous mycosis in Latin America and is caused by 4 pathogenic thermodimorphic fungi in the genus Sporothrix. From both therapeutic and epidemiological perspectives, it is essential to identify the causative agents down to the species level. Traditional parameters may overlap among closely related species, and we propose polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) as an alternative approach. In the present study, the calmodulin gene was amplified and digested with HhaI to yield 5 different electrophoretic patterns representing all medically important Sporothrix species: Sporothrix brasiliensis, Sporothrix schenckii sensu stricto, Sporothrix globosa, and Sporothrix luriei. The PCR-RFLP protocol described here is a simple and inexpensive method and is highly suitable for accurate routine genotyping of relevant Sporothrix species.

  20. Calcium and Calmodulin-Mediated Regulation of Gene Expression in Plants

    Institute of Scientific and Technical Information of China (English)

    Min Chul Kim; Woo Sik Chung; Dae-Jin Yun; Moo Je Cho


    Sessile plants have developed a very delicate system to sense diverse kinds of endogenous developmental cues and exogenous environmental stimuli by using a simple Ca2+ ion. Calmodulin (CAM) is the predominant Ca2+ sensor and plays a crucial role in decoding the Ca2+ signatures into proper cellular responses in various cellular compartments in eukaryotes. A growing body of evidence points to the importance of Ca2+ and CaM in the regulation of the transcriptional process during plant responses to endogenous and exogenous stimuli. Here, we review recent progress in the identification of transcriptional regulators modulated by Ca2+ and CaM and in the assessment of their functional significance during plant signal transduction in response to biotic and abiotic stresses and developmental cues.

  1. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)


    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  2. Allosteric activation of Bordetella pertussis adenylyl cyclase by calmodulin: molecular dynamics and mutagenesis studies. (United States)

    Selwa, Edithe; Davi, Marilyne; Chenal, Alexandre; Sotomayor-Pérez, Ana-Cristina; Ladant, Daniel; Malliavin, Thérèse E


    Adenylyl cyclase (AC) toxin is an essential toxin that allows Bordetella pertussis to invade eukaryotic cells, where it is activated after binding to calmodulin (CaM). Based on the crystal structure of the AC catalytic domain in complex with the C-terminal half of CaM (C-CaM), our previous molecular dynamics simulations (Selwa, E., Laine, E., and Malliavin, T. (2012) Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 80, 1028–1040) suggested that three residues (i.e. Arg(338), Asn(347), and Asp(360)) might be important for stabilizing the AC/CaM interaction. These residues belong to a loop-helix-loop motif at the C-terminal end of AC, which is located at the interface between CaM and the AC catalytic loop. In the present study, we conducted the in silico and in vitro characterization of three AC variants, where one (Asn(347); ACm1A), two (Arg(338) and Asp(360); ACm2A), or three residues (Arg(338), Asn(347), and Asp(360); ACm3A) were substituted with Ala. Biochemical studies showed that the affinities of ACm1A and ACm2A for CaM were not affected significantly, whereas that of ACm3A was reduced dramatically. To understand the effects of these modifications, molecular dynamics simulations were performed based on the modified proteins. The molecular dynamics trajectories recorded for the ACm3AC-CaM complex showed that the calcium-binding loops of C-CaM exhibited large fluctuations, which could be related to the weakened interaction between ACm3A and its activator. Overall, our results suggest that the loop-helix-loop motif at the C-terminal end of AC is crucial during CaM binding for stabilizing the AC catalytic loop in an active configuration.

  3. Conformational selection and functional dynamics of calmodulin: a (19)F nuclear magnetic resonance study. (United States)

    Hoang, Joshua; Prosser, R Scott


    Calcium-bound calmodulin (CaM-4Ca(2+)) is innately promiscuous with regard to its protein interaction network within the cell. A key facet of the interaction process involves conformational selection. In the absence of a binding peptide, CaM-4Ca(2+) adopts an equilibrium between a native state (N) and a weakly populated near-native peptide-bound-like state (I), whose lifetime is on the order of 1.5 ms at 37 °C, based on (19)F nuclear magnetic resonance (NMR) Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion measurements. This peptide-bound-like state of CaM-4Ca(2+) is entropically stabilized (ΔS = 280 ± 35 J mol(-1) K(-1)) relative to the native state, water-depleted, and likely parental to specific bound states. Solvent depletion, conformational selection, and flexibility of the peptide-bound-like state may be important in priming the protein for binding. At higher temperatures, the exchange rate, kex, appears to markedly slow, suggesting the onset of misfolded or off-pathway states, which retards interconversion between N and I. (19)F NMR CPMG relaxation dispersion experiments with both CaM-4Ca(2+) and the separate N-terminal and C-terminal domains reveal the cooperative role of the two domains in the binding process and the flexibility of the N-terminal domain in facilitating binding. Thus, when calcium binds, calmodulin establishes its interaction with a multitude of protein binding partners, through a combination of conformational selection to a state that is parental to the peptide-bound state and, finally, induced fit.

  4. The roles and relations of calpastatin, calmodulin and an undefined cytoplasmic factor in the regulation of cardiac L-type Ca2+ channels

    Institute of Scientific and Technical Information of China (English)

    HAO Li-ying; ZHU Tong; HU Hui-yuan; ZHAO Mei-mi; RUI Feng; LIU Yan; ZHAO Jin-sheng; tsuko Minobe; Masaki Kameyama


    Objective To explore the mechanism that cytoplasmic factors could recover L-type Ca2+ channel activity after "run-down'. The factors include ATP, calpastatin and H fraction (a high molecular fraction of bovine cardiac cytoplasm). Methods Single Ca2+ channel activities were recorded with patch clamp technique in guinea-pig cardiac myocytes. Run-down was induced by the inside-out patch formation. Calpastatin (CS), calmodulin(CaM) and three GST-fusion fragment peptides derived from the C-terminal tail of guineapig Car1.2, CT-1 (amino acids number 1509-1791), CTo2 (1777-2003) and CT-3 (1944-2169) were produced as GST fusion proteins. Results (1)CaM + ATP or CS + ATP restored the channels after rundown;however, the CaM or CS's effects became smaller with the longer run-down time. (2)After run down, CaM-dependent protein kinase (CaMKII) produced Ca2+ channel activity to only 2-10% of the basal activity, however, in the presence of CaMKII, the time-dependent nature of the CaM effect was abolished. (3) In pull-down assay, CT-1 treated with CaMKII showed a higher affinity for CaM than that treated with phosphatase. (4)CaMKII was detected in the H fraction of bovine cardiac cytoplasm. Conclusions The results show that CS, CaM and CaMKII are all involved in the maintenance of the basal activity of L-type Ca2+ channels, and that there might be cross talks among the four factors (CS, CaM, CaMKII and the undefined cytoplasmic factor). This work was supported by the grants from the Japan Society for the Promotion of Science and the National Natural Science Foundation of China (No. 30670761, No. 30671726).

  5. Calmodulin and calcium interplay in the modulation of TRPC5 channel activity. Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation. (United States)

    Ordaz, Benito; Tang, Jisen; Xiao, Rui; Salgado, Alfonso; Sampieri, Alicia; Zhu, Michael X; Vaca, Luis


    TRPC5 forms Ca2+-permeable nonselective cation channels important for neurite outgrowth and growth cone morphology of hippocampal neurons. Here we studied the activation of mouse TRPC5 expressed in Chinese hamster ovary and human embryonic kidney 293 cells by agonist stimulation of several receptors that couple to the phosphoinositide signaling cascade and the role of calmodulin (CaM) on the activation. We showed that exogenous application of 10 microM CaM through patch pipette accelerated the agonist-induced channel activation by 2.8-fold, with the time constant for half-activation reduced from 4.25 +/- 0.4 to 1.56 +/- 0.85 min. We identified a novel CaM-binding site located at the C terminus of TRPC5, 95 amino acids downstream from the previously determined common CaM/IP3R-binding (CIRB) domain for all TRPC proteins. Deletion of the novel CaM-binding site attenuated the acceleration in channel activation induced by CaM. However, disruption of the CIRB domain from TRPC5 rendered the channel irresponsive to agonist stimulation without affecting the cell surface expression of the channel protein. Furthermore, we showed that high (>5 microM) intracellular free Ca2+ inhibited the current density without affecting the time course of TRPC5 activation by receptor agonists. These results demonstrated that intracellular Ca2+ has dual and opposite effects on the activation of TRPC5. The novel CaM-binding site is important for the Ca2+/CaM-mediated facilitation, whereas the CIRB domain is critical for the overall response of receptor-induced TRPC5 channel activation.

  6. Phosphorylation of the mRNA cap binding protein and eIF-4A by different protein kinases

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, C.H.


    These studies were done to determine the identity of a protein kinase that phosphorylates the mRNA cap binding protein (CBP). Two chromatographic steps (dye and ligand and ion exchange HPLC) produced a 500x purification of an enzyme activity in rabbit reticulocytes that phosphorylated CBP at serine residues. Isoelectric focusing analysis of kinase treated CBP demonstrated 5 isoelectric species of which the 2 most anodic species were phosphorylated (contained /sup 32/P). This kinase activity phosphorylated CBP when it was isolated or in the eIF-4F complex. Purified protein kinase C, cAMP or cGMP dependent protein kinase, casein kinase I or II, myosin light chain kinase or insulin receptor kinase did not significantly phosphorylate isolated CBP or CBP in the eIF-4F complex. However, cAMP and cGMP dependent protein kinases and casein kinase II phosphorylated eIF-4A but did not phosphorylate the 46 kDa component of eIF-4F. cAMP dependent protein kinase phosphorylated a approx. 220 kDa protein doublet in eIF-4F preparations. These studies indicate that CBP kinase activity probably represents a previously unidentified protein kinase. In addition, eIF-4A appears to be phosphorylated by several protein kinases whereas the 46 kDa component of the eIF-4F complex was not.

  7. Serine 77 in the PDZ domain of PICK1 is a protein kinase Cα phosphorylation site regulated by lipid membrane binding

    DEFF Research Database (Denmark)

    Ammendrup-Johnsen, Ina; Thorsen, Thor Seneca; Gether, Ulrik


    PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing...... the activity of PICK1 itself. Here we show that PICK1 is a substrate in vitro both for PKCα (protein kinase Cα), as previously shown, and for CaMKIIα (Ca(2+)-calmodulin-dependent protein kinase IIα). By mutation of predicted phosphorylation sites, we identify Ser77 in the PDZ domain as a major phosphorylation...... for optimal phosphorylation. Binding of PKCα to the PICK1 PDZ domain was not required for phosphorylation, but a PDZ domain peptide ligand reduced the overall level of phosphorylation ~30%. The phosphomimic S77D reduced the extent of cytosolic clustering of eYFP-PICK1 in COS7 cells and thereby conceivably its...

  8. Urotensin II induction of neonatal cardiomyocyte hypertrophy involves the CaMKII/PLN/SERCA 2a signaling pathway. (United States)

    Shi, Hongtao; Han, Qinghua; Xu, Jianrong; Liu, Wenyuan; Chu, Tingting; Zhao, Li


    Although studies have shown that Urotensin II (UII) can induce cardiomyocyte hypertrophy and UII-induced cardiomyocyte hypertrophy model has been widely used for hypertrophy research, but its precise mechanism remains unknown. Recent researches have demonstrated that UII-induced cardiomyocyte hypertrophy has a relationship with the changes of intracellular Ca(2+) concentration. Therefore, the aim of this study was to investigate the mechanisms of cardiomyocyte hypertrophy induced by UII and to explore whether the calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulating of phospholamban (PLN) Thr17-phosphorylation signaling pathway contributed to UII-induced cardiomyocyte hypertrophy. Primary cultures of neonatal rat cardiomyocytes were stimulated for 48h with UII. Cell size, protein/DNA contents and intracellular Ca(2+) were determined. Phosphorylated and total forms of CaMKII, PLN and the total amount of serco/endo-plasmic reticulum ATPases (SERCA 2a) were quantified by western blot. The responses of cardiomyocytes to UII were also evaluated after pretreatment with the CaMKII inhibitor, KN-93. These results showed that UII increased cell size, protein/DNA ratio and intracellular Ca(2+), consistent with a hypertrophic response. Furthermore, the phosphorylation of CaMKII and its downstream target PLN (Thr17), SERCA 2a levels were up-regulated by UII treatment. Conversely, treatment with KN-93 reversed all those effects of UII. Taken together, the results suggest that UII can induce cardiomyocyte hypertrophy through CaMKII-mediated up-regulating of PLN Thr17-phosphorylation signaling pathway.

  9. The effects of various incubation temperatures, particulate isolation, and possible role of calmodulin on the activity of the base exchange enzymes of rat brain. (United States)

    Buchanan, A G; Kanfer, J N


    The involvement of calmodulin in the choline, ethanolamine, and serine exchange activities of rat brain microsomes was investigated. Calmodulin stimulated choline exchange activity to a greater extent than ethanolamine and serine exchange activities. The three base exchange activities were inhibited by antipsychotic drugs believed to prevent calmodulin interaction, but not by calmodulin-binding protein. The solutions employed for tissue homogenization and subsequent isolation of microsomes greatly influenced the base exchange activities. The process of resuspending isolated microsomes and recentrifugation, or "washing," produced major losses of detectable activity. The base exchange enzyme activities were maximal at 45 degrees, and Arrhenius plots revealed a common transition temperature of 31 degrees. The activation energies for the base exchange reactions decreased at temperatures above the observed transition temperature. Kinetic data, Km and Vmax, for the base exchange activities at 27, 37, and 45 degrees are presented.

  10. Protein (Cyanobacteria): 352974 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ociation-domain protein Synechococcus sp. CB0101 MALSDRDQEILSINQAMLDSVVNGDWSRYATFCA...ZP_07974427.1 1117:14446 1118:14646 1129:7054 232348:1931 Calcium/calmodulin dependent protein kinase II ass

  11. Sequence Classification: 776392 [

    Lifescience Database Archive (English)

    Full Text Available ated locomotion UNC-43, DEfecation Cycle abnormal DEC-8, calcium/calmodulin-dependent Ser/Thr protein kinase II (58.3 kD) (unc-43) || ...

  12. Heterologous expression and biochemical characterization of two calcium-dependent protein kinase isoforms CaCPK1 and CaCPK2 from chickpea. (United States)

    Syam Prakash, S R; Jayabaskaran, Chelliah


    In plants, calcium-dependent protein kinases (CPKs) constitute a unique family of enzymes consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. We isolated two cDNAs encoding calcium-dependent protein kinase isoforms (CaCPK1 and CaCPK2) from chickpea. Both isoforms were expressed as fusion proteins in Escherichia coli. Biochemical analyses have identified CaCPK1 and CaCPK2 as Ca(2+)-dependent protein kinases since both enzymes phosphorylated themselves and histone III-S as substrate only in the presence of Ca(2+). The kinase activity of the recombinant enzymes was calmodulin independent and sensitive to CaM antagonists W7 [N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide] and calmidazoilum. Phosphoamino acid analysis revealed that the isoforms transferred the gamma-phosphate of ATP only to serine residues of histone III-S and their autophosphorylation occurred on serine and threonine residues. These two isoforms showed considerable variations with respect to their biochemical and kinetic properties including Ca(2+) sensitivities. The recombinant CaCPK1 has a pH and temperature optimum of pH 6.8-8.6 and 35-42 degrees C, respectively, whereas CaCPK2 has a pH and temperature optimum of pH 7.2-9 and 35-42 degrees C, respectively. Taken together, our results suggest that CaCPK1 and CaCPK2 are functional serine/threonine kinases and may play different roles in Ca(2+)-mediated signaling in chickpea plants.

  13. Domain Modeling: NP_742076.1 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_742076.1 chr7 CRYSTAL STRUCTURE OF SU6656-BOUND CALCIUM/CALMODULIN-DEPENDENT PRO...TEIN KINASE II DELTA IN COMPLEX WITH CALMODULIN p2wela_ chr7/NP_742076.1/NP_742076.1_holo_10-316.pdb blast 1

  14. Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor. (United States)

    Hanyu, Yuichiro; Imai, Kumiko K; Kawasaki, Yosuke; Nakamura, Takahiro; Nakaseko, Yukinobu; Nagao, Koji; Kokubu, Aya; Ebe, Masahiro; Fujisawa, Asuka; Hayashi, Takeshi; Obuse, Chikashi; Yanagida, Mitsuhiro


    Calcium/calmodulin-dependent protein kinase (CaMK) is required for diverse cellular functions, and similar kinases exist in fungi. Although mammalian CaMK kinase (CaMKK) activates CaMK and also evolutionarily-conserved AMP-activated protein kinase (AMPK), CaMKK is yet to be established in yeast. We here report that the fission yeast Schizosaccharomyces pombe Ssp1 kinase, which controls G2/M transition and response to stress, is the putative CaMKK. Ssp1 has a CaM binding domain (CBD) and associates with 14-3-3 proteins as mammalian CaMKK does. Temperature-sensitive ssp1 mutants isolated are defective in the tolerance to limited glucose, and this tolerance requires the conserved stretch present between the kinase domain and CBD. Sds23, multi-copy suppressor for mutants defective in type 1 phosphatase and APC/cyclosome, also suppresses the ssp1 phenotype, and is required for the tolerance to limited glucose. We demonstrate that Sds23 binds to type 2A protein phosphatases (PP2A) and PP2A-related phosphatase Ppe1, and that Sds23 inhibits Ppe1 phosphatase activity. Ssp1 and Ppe1 thus seem to antagonize in utilizing limited glucose. We also show that Ppk9 and Ssp2 are the catalytic subunits of AMPK and AMPK-related kinases, respectively, which bind to common beta-(Amk2) and gamma-(Cbs2) subunits.

  15. Chemosensitizing acridones: in vitro calmodulin dependent cAMP phosphodiesterase inhibition, docking, pharmacophore modeling and 3D QSAR studies. (United States)

    Rajendra Prasad, V V S; Deepak Reddy, G; Appaji, D; Peters, G J; Mayur, Y C


    Calmodulin inhibitors have proved to play a significant role in sensitizing MDR cancer cells by interfering with cellular drug accumulation. The present investigation focuses on the evaluation of in vitro inhibitory efficacy of chloro acridones against calmodulin dependent cAMP phosphodiesterase (PDE1c). Moreover, molecular docking of acridones was performed with PDE1c in order to identify the possible protein ligand interactions and results thus obtained were compared with in vitro data. In addition an efficient pharmacophore model was developed from a set of 38 chemosensitizing acridones effective against doxorubicin resistant (HL-60/DX) cancer cell lines. Pharmacophoric features such as one hydrogen bond acceptor, one hydrophobic region, a positive ion group and three aromatic rings i.e., AHPRRR have been identified. Ligand based 3D-QSAR was also performed by employing partial least square regression analysis.

  16. The intracerebroventricular (ICV) administration of W-7, a calmodulin inhibitor, attenuates the development of morphine tolerance in rats. (United States)

    Sepehri, Gholamreza; Sheibani, Vahid; Azarang, Afrooz; Shamsizadeh, Ali; Afarinesh, Mohammad Reza; Azizollahi, Saeed; Sepehri, Ehsan


    The present study was performed to determine the effect of intracerebroventricular (ICV) administration of W-7, a specific calmodulin inhibitor, on the development of tolerance to antinociceptive effect morphine administration. This study was carried out on male wistar rats, weighing 200-250 g. Morphine was administered daily (15 mg/kg for 8 days). The threshold to thermal nociceptive stimuli was measured by tail-flick test. W-7 (0.25, 0.5 and 1 micromol/rat) was injected through ICV. Maximal possible effect percentage (MPE %) was considered as analgesia index. Our result showed that chronic morphine exposure induced tolerance to its antinociceptive effect and administration of W-7 (0.5 and 1 micromol/rat) decreased the development of tolerance to it. In conclusion these data showed that chronic injection of W-7 inhibited the development of morphine tolerance which indicates that calmodulin and its dependent pathways may play a role in the morphine tolerance processes.

  17. Enterococcus faecalis phosphomevalonate kinase. (United States)

    Doun, Stephanie S; Burgner, John W; Briggs, Scott D; Rodwell, Victor W


    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni(++) affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37 degrees C. The activation energy was approximately 5.6 kcal/mol. Activity with Mn(++), the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). K(m) values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 micromol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed.

  18. Inhibitors of p21-activated kinases (PAKs). (United States)

    Rudolph, Joachim; Crawford, James J; Hoeflich, Klaus P; Wang, Weiru


    The p21-activated kinase (PAK) family of serine/threonine protein kinases plays important roles in cytoskeletal organization, cellular morphogenesis, and survival, and members of this family have been implicated in many diseases including cancer, infectious diseases, and neurological disorders. Owing to their large and flexible ATP binding cleft, PAKs, particularly group I PAKs (PAK1, -2, and -3), are difficult to drug; hence, few PAK inhibitors with satisfactory kinase selectivity and druglike properties have been reported to date. Examples are a recently discovered group II PAK (PAK4, -5, -6) selective inhibitor series based on a benzimidazole core, a group I PAK selective series based on a pyrido[2,3-d]pyrimidine-7-one core, and an allosteric dibenzodiazepine PAK1 inhibitor series. Only one compound, an aminopyrazole based pan-PAK inhibitor, entered clinical trials but did not progress beyond phase I trials. Clinical proof of concept for pan-group I, pan-group II, or PAK isoform selective inhibition has yet to be demonstrated.

  19. Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells. (United States)

    Cook, Natasha; Fraser, Scott A; Katerelos, Marina; Katsis, Frosa; Gleich, Kurt; Mount, Peter F; Steinberg, Gregory R; Levidiotis, Vicki; Kemp, Bruce E; Power, David A


    The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.

  20. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    Directory of Open Access Journals (Sweden)

    Yang Tianbao


    Full Text Available Abstract Background Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Results Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. Conclusions This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions.

  1. Update on Aurora Kinase Targeted Therapeutics in Oncology (United States)

    Green, Myke R.; Woolery, Joseph E.


    Introduction Mammalian cells contain three distinct serine/threonine protein kinases with highly conserved catalytic domains, including aurora A and B kinases that are essential regulators of mitotic entry and progression. Overexpression of aurora A and/or B kinase is associated with high proliferation rates and poor prognosis, making them ideal targets for anti-cancer therapy. Disruption of mitotic machinery is a proven anti-cancer strategy employed by multiple chemotherapeutic agents. Numerous small molecule inhibitors of the aurora kinases have been discovered and tested in vivo and in vitro, with a few currently in phase II testing. Areas covered This review provides the reader with updated results from both preclinical and human studies for each of the aurora kinase inhibitors (AKI) that are currently being investigated. The paper also covers in detail the late breaking and phase I data presented for AKIs thereby allowing the reader to compare and contrast individual and classrelated effects of AKIs. Expert opinion While the successful development and approval of an AKI for anti-cancer therapy remains unresolved, pre-clinical identification of resistant mechanisms would help design better early phase clinical trials where relevant combinations may be evaluated prior to phase II testing. The authors believe that aurora kinases are important anti-cancer targets that operate in collaboration with other oncogenes intimately involved in uncontrolled tumor proliferation and by providing a unique, targeted and complimentary anti-cancer mechanism, expand the available armamentarium against cancer. PMID:21556291

  2. Analysis of kinase gene expression in the frontal cortex of suicide victims: implications of fear and stress. (United States)

    Choi, Kwang; Le, Thien; Xing, Guoqiang; Johnson, Luke R; Ursano, Robert J


    Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK), the cyclin-dependent kinase, the mitogen-activated protein kinase (MAPK), and the protein kinase C (PKC) in the prefrontal cortex (PFC) of mood disorder patients died with suicide (N = 45) and without suicide (N = 38). We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (N = 46). The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (false discovery rate, FDR-adjusted p 1.1). Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress associated neural plasticity, and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide.

  3. Multiple host kinases contribute to Akt activation during Salmonella infection. (United States)

    Roppenser, Bernhard; Kwon, Hyunwoo; Canadien, Veronica; Xu, Risheng; Devreotes, Peter N; Grinstein, Sergio; Brumell, John H


    SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4) P2/PI(3-5) P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4) P2/PI(3-5) P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  4. Multiple host kinases contribute to Akt activation during Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Bernhard Roppenser

    Full Text Available SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4 P2/PI(3-5 P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4 P2/PI(3-5 P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  5. Plant phosphatidylinositol 3-kinase

    NARCIS (Netherlands)

    Lee, Y.; Munnik, T.; Munnik, T.


    Phosphatidylinositol 3-kinase (PI3K) phosphorylates the D-3 position of phosphoinositides. In Arabidopsis, only one PI3K exists, which belongs to the class-III PI3K subfamily which makes phosphatidylinositol 3-phosphate (PtdIns3P). The single AtPI3K gene is essential for survival, since loss of its

  6. A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana. (United States)

    Landoni, Michela; De Francesco, Alessandra; Galbiati, Massimo; Tonelli, Chiara


    Calmodulin (CAM) is an ubiquitous calcium binding protein whose function is to translate the signals, perceived as calcium concentration variations, into the appropriate cellular responses. In Arabidopsis thaliana there are 4 CAM isoforms which are highly similar, encoded by 7 genes, and one possible explanation proposed for the evolutionary conservation of the CAM gene family is that the different genes have acquired different functions so that they play possibly overlapping but non-identical roles. Here we report the characterization of the Arabidopsis mutant cam2-2, identified among the lines of the gene-trapping collection EXOTIC because of a distorted segregation of kanamycin resistance. Phenotypic analysis showed that in normal growth conditions cam2-2 plants were indistinguishable from the wild type while genetic analysis showed a reduced transmission of the cam2-2 allele through the male gametophyte and in vitro pollen germination revealed a reduced level of germination in comparison with the wild type. These results provide genetic evidence of the involvement of a CAM gene in pollen germination and support the theory of functional diversification of the CAM gene family.

  7. Responses of plant calmodulin to endocytosis induced by rare earth elements. (United States)

    Wang, Lihong; Cheng, Mengzhu; Chu, Yunxia; Li, Xiaodong; Chen, David D Y; Huang, Xiaohua; Zhou, Qing


    The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells.

  8. Calcium/calmodulin dependence of nitric oxide synthase from Viviparus ater

    Directory of Open Access Journals (Sweden)

    D Tagliazucchi


    Full Text Available The calcium ion dependence of soluble and particulate nitric oxyde synthase (NOS activity fromViviparus ater immunocytes was investigated. At a calcium ion concentration of 2 nM, the NOS activitymeasured by citrulline formation was 27.1 ± 2.2 and 9.3 ± 0.8 pmol/min/106cell for soluble andparticulate NOS, respectively. The increase in free calcium ion concentration to 300 nM increasesenzyme activity to 57.5 ± 4.1 and 23.5 ± 1.2 pmol/min/106cell, respectively. The 50 % activation of thecalcium-dependent activity is 91 and 97 nM Ca2+ for soluble and particulate enzymes. Trifluoperazine,an inhibitor of the calmodulin-dependent enzyme, partially inhibits both activities. Soluble NOS is fivetimes more sensitive than particulate NOS. The behaviour of both activities with three NOS inhibitors(7-nitroindazole, S-methylisothiourea sulphate, diphenyleneiodonium is very similar, with IC50 valuesthat are not significantly different. The calcium ion dependence of NOS activities, in a range of freecalcium ion variations, which are transiently observed in receptor-stimulated cells, suggests that nitricoxyde in V. ater immunocytes not only has a defensive role but also signalling relevance in crosstalkingbetween immunocytes and other cells.

  9. Intracerebroventricular administration of morphine confers remote cardioprotection--role of opioid receptors and calmodulin. (United States)

    Zhang, Ye; Irwin, Michael G; Lu, Yao; Mei, Bin; Zuo, You-Mei; Chen, Zhi-Wu; Wong, Tak-Ming


    The current study aimed to delineate the mechanism of remote preconditioning by intracerebroventricular morphine (RMPC) against myocardial ischemia-reperfusion injury. Male Sprague-Dawley rats were given an intracerebroventricular morphine injection before myocardial ischemia and reperfusion injury. Ischemia-reperfusion injury was achieved by 30min of left coronary artery occlusion followed by 120min of reperfusion. The effects of remote preconditioning by intracerebroventricular morphine preconditioning were also determined upon selective blockade of the δ, κ or μ-opioid receptors, or calmodulin (CaM). The infarct size, as a percentage of the area at risk, was determined by 2,3,5-triphenyltetrazolium staining. Remote preconditioning by intracerebroventricular morphine reduced infarct size in the ischemic/reperfused myocardium, and the effect was abolished by the selective blockade of any one of the three δ, κ and μ opioid receptors or CaM. Furthermore, remote preconditioning by intracerebroventricular morphine increased the expression of CaM in the hippocampus and the plasma level of calcitonin gene-related peptide (CGRP). The results of the present study provide evidence that the cardioprotection of remote preconditioning by intracerebroventricular morphine involves not only all three types of opioid receptors in the central nervous system, but also CaM, which releases CGRP, one of the mediators of remote preconditioning.

  10. Structural and thermodynamic studies of the tobacco calmodulin-like rgs-CaM protein. (United States)

    Makiyama, Rodrigo K; Fernandes, Carlos A H; Dreyer, Thiago R; Moda, Bruno S; Matioli, Fabio F; Fontes, Marcos R M; Maia, Ivan G


    The tobacco calmodulin-like protein rgs-CaM is involved in host defense against virus and is reported to possess an associated RNA silencing suppressor activity. Rgs-CaM is also believed to act as an antiviral factor by interacting and targeting viral silencing suppressors for autophagic degradation. Despite these functional data, calcium interplay in the modulation of rgs-CaM is still poorly understood. Here we show that rgs-CaM displays a prevalent alpha-helical conformation and possesses three functional Ca(2+)-binding sites. Using computational modeling and molecular dynamics simulation, we demonstrate that Ca(2+) binding to rgs-CaM triggers expansion of its tertiary structure with reorientation of alpha-helices within the EF-hands. This conformational change leads to the exposure of a large negatively charged region that may be implicated in the electrostatic interactions between rgs-CaM and viral suppressors. Moreover, the kd values obtained for Ca(2+) binding to the three functional sites are not within the affinity range of a typical Ca(2+) sensor.

  11. High-level expression of human calmodulin in E. coli and its effects on cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xiao Jun Li; Jian Guo Wu; Jun Ling Si; Da Wen Guo; Jian Ping Xu


    Calmodulin (CaM), widely distributed in almost all eukaryotic cells, is a major intracellular calcium receptor responsible for mediating the Ca2 + signal to a multitude of different enzyme systems and is thought to play a vital role in the regulation of cell proliferative cycle[1,2]. Recently, many studies showed that CaM is also present in extracellular fluid such as cell culture media and normal body fluid and has been reported to stimulate proliferation in a range of normal and neoplastic cells, apparently acting as an autocrine growth factor[3-11]. In 1988, Crocker et al reported for the first time that addition of extracellular pure pig brain CaM could promote DNA synthesis and cell [7]proliferation in K562 human leukaemic lymphocytes[7].After that, more and more research was done on extracellular CaM and evidences demonstrated that extracellular CaM could also stimulate cell proliferation in normal human umbilical vein endothelial cells[5], keratinocytes[4], suspension-cultured cells of Angelica Dahurica, etc[6]. CaM is a monomeric protein of 148 amino acids that contains four homologous Ca2 + -binding domains. CaM has been highly conserved throughout the evolution. Only 1 out of 148 amino acids of human CaM is different from that of fish CaM. Complementary DNAs encoding rat, eel, chicken, human, and trypanosome CaM have been cloned.

  12. Molecular cloning and characterisation of two calmodulin isoforms of the Madagascar periwinkle Catharanthus roseus. (United States)

    Poutrain, P; Guirimand, G; Mahroug, S; Burlat, V; Melin, C; Ginis, O; Oudin, A; Giglioli-Guivarc'h, N; Pichon, O; Courdavault, V


    Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase.

  13. Characterization and expression of calmodulin gene during larval settlement and metamorphosis of the polychaete Hydroides elegans

    KAUST Repository

    Chen, Zhangfan


    The polychaete . Hydroides elegans (Serpulidae, Lophotrochozoa) is a problematic marine fouling organism in most tropical and subtropical coastal environment. Competent larvae of . H. elegans undergo the transition from the swimming larval stage to the sessile juvenile stage with substantial morphological, physiological, and behavior changes. This transition is often referred to as larval settlement and metamorphosis. In this study, we examined the possible involvement of calmodulin (CaM) - a multifunctional calcium metabolism regulator, in the larval settlement and metamorphosis of . H. elegans. A full-length . CaM cDNA was successfully cloned from . H. elegans (. He-CaM) and it contained an open reading frame of 450. bp, encoding 149 amino acid residues. It was highly expressed in 12. h post-metamorphic juveniles, and remained high in adults. . In situ hybridization conducted in competent larvae and juveniles revealed that . He-CaM gene was continuously expressed in the putative growth zones, branchial rudiments, and collar region, suggesting that . He-CaM might be involved in tissue differentiation and development. Our subsequent bioassay revealed that the CaM inhibitor W7 could effectively inhibit larval settlement and metamorphosis, and cause some morphological defects of unsettled larvae. In conclusion, our results revealed that CaM has important functions in the larval settlement and metamorphosis of . H. elegans. © 2012 Elsevier Inc..

  14. Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations

    CERN Document Server

    Nandigrami, Prithviraj


    Calmodulin (CaM) is a ubiquitous calcium binding protein consisting of two structurally similar domains with distinct stabilities, binding affinities, and flexibilities. We present coarse grained simulations that suggest the mechanism for the domain's allosteric transitions between the open and closed conformations depend on subtle differences in the folded state topology of the two domains. Throughout a wide temperature range, the simulated transition mechanism of the N-terminal domain (nCaM) follows a two-state transition mechanism while domain opening in the C-terminal domain (cCaM) involves unfolding and refolding of the tertiary structure. The appearance of the unfolded intermediate occurs at a higher temperature in nCaM than it does in cCaM. That is, we find that cCaM unfolds more readily along the transition route than nCaM. Furthermore, unfolding and refolding of the domain significantly slows the domain opening and closing rates of cCaM, a distinct scenario which can potentially influence the mechani...

  15. Subtle pH differences trigger single residue motions for moderating conformations of calmodulin

    CERN Document Server

    Atilgan, Ali Rana; Atilgan, Canan


    This study reveals the essence of ligand recognition mechanisms by which calmodulin (CaM) controls a variety of Ca2+ signaling processes. We study eight forms of calcium-loaded CaM each with distinct conformational states. Reducing the structure to two degrees of freedom conveniently describes main features of conformational changes of CaM via simultaneous twist-bend motions of the two lobes. We utilize perturbation-response scanning (PRS) technique, coupled with molecular dynamics simulations to analyze conformational preferences of calcium-loaded CaM, initially in extended form. PRS is comprised of sequential application of directed forces on residues followed by recording the resulting coordinates. We show that manipulation of a single residue, E31 located in one of the EF hand motifs, reproduces structural changes to compact forms, and the flexible linker acts as a transducer of binding information to distant parts of the protein. Independently, using four different pKa calculation strategies, we find E31...

  16. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Daniel X Keller

    Full Text Available The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.


    DEFF Research Database (Denmark)

    Søndergaard, Mads Toft; Chazin, Walter J.; Chen, Wayne S.R.;

    We recently identified the first two human missense mutations in a calmodulin (CaM) gene (CALM1) and linked these to catecholaminergic polymorphic ventricular tachycardia (CPVT) and sudden cardiac death in young individuals1. More CaM mutations have since been identified in CALM1 and also......M in the presence of RyR2 CaMBD. The D95V, N97S and D129G mutations lowered the affinity of Ca2+ binding of the C-lobe of CaM, to apparent KDs of ~ 140, 150, and 4000 nM, respectively, consistent with the critical role of these residues in Ca2+ binding to the C-lobe. Thus, we suggest that these mutations may shift...... to an apo-CaM binding state during diastole, leading to dysregulation of RyR2 mediated Ca2+ release. Despite the pronounced impact on RyR2 mediated Ca2+ release, the N-lobe N53I mutation only imposed a small lowering of the N-lobe Ca2+ affinity (KD ~1200 nM). Thus, the RyR2 mediated Ca2+ release is either...

  18. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin (United States)

    Yang, T.; Poovaiah, B. W.


    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  19. Depolymerization of actin cytoskeleton is involved in stomatal closure-induced by extracellular calmodulin in Arabidopsis

    Institute of Scientific and Technical Information of China (English)


    Extracellular calmodulin(CaM)plays significant roles in many physiological processes,but little is known about its mechanism of regulating stomatal movements.In this paper,whether CaM exists in the guard cell walls of Arabidopsis and whether depolymerization of actin cytoskeleton is involved in extracellular CaM-induced stomatal closing are investigated.It is found that CaM exists in guard cell walls of Arabidopsis,and its molecular weight is about 17 kD.Bioassay using CaM antagonists W7-agarose and anti-CaM serum shows that the endogenous extracellular CaM promotes stomatal closure and delays stomatal opening.The long radial actin filaments in guard cells undergo disruption in a time-dependent manner during exogenous CaM-induced stomatal closing.Pharmacological experiments show that depolymerization of actin cytoskeleton enhances the effect of exogenous CaM-induced stomatal closing and polymerization reduces the effect.We also find that exogenous CaM triggers an increase in [Ca2+]cyt of guard cells.If [Ca2+]cyt increase is blocked with EGTA,exogenous CaM-induced stomatal closure is inhibited.These results indicate that extracellular CaM causes elevation of [Ca2+]cyt in guard cells,subsequently resulting in disruption of actin filaments and finally leading to guard cells closure.

  20. Transcriptional effect of a calmodulin inhibitor, W-7, on the ligninolytic enzyme genes in Phanerochaete chrysosporium. (United States)

    Sakamoto, Takaiku; Kitaura, Hironori; Minami, Masahiko; Honda, Yoichi; Watanabe, Takashi; Ueda, Akio; Suzuki, Kazumi; Irie, Toshikazu


    We investigated the effects of a calmodulin (CaM) inhibitor, W-7, on the expression of lignin peroxidase (LiP) and manganese peroxidase (MnP) genes in Phanerochaete chrysosporium to consider the role of cam gene, which was upregulated in parallel with the total activities of LiP and MnP in our previous transcriptomic analysis. The addition of 100 μM W-7 to the fungal cultures repressed the total activities of LiP and MnP, whereas the addition of 100 μM W-5, which is a control drug of W-7, retained approximately half of them, indicating that the effect of W-7 was attributable to CaM inhibition. Real-time reverse transcription polymerase chain reaction analysis revealed that most of lip and mnp isozyme genes predicted from whole-genome data were significantly inhibited by W-7 at the transcription level (P ≤ 0.05). These results suggest that CaM has an important role for the expression of isozyme genes of LiP and MnP at the transcription level.

  1. Altered calmodulin degradation and signaling in non-neuronal cells from Alzheimer's disease patients. (United States)

    Esteras, Noemí; Muñoz, Úrsula; Alquézar, Carolina; Bartolomé, Fernando; Bermejo-Pareja, Félix; Martín-Requero, Ángeles


    Previous work indicated that changes in Ca(2+)/calmodulin (CaM) signaling pathway are involved in the control of proliferation and survival of immortalized lymphocytes from Alzheimer's disease (AD) patients. We examined the regulation of cellular CaM levels in AD lymphoblasts. An elevated CaM content in AD cells was found when compared with control cells from age-matched individuals. We did not find significant differences in the expression of the three genes that encode CaM: CALM1, 2, 3, by real time RT-PCR. However, we observed that the half-life of CaM was higher in lymphoblasts from AD than in control cells, suggesting that degradation of CaM is impaired in AD lymphoblasts. The rate of CaM degradation was found to be dependent on cellular Ca(2+) and ROS levels. CaM degradation occurs mainly via the ubiquitin-proteasome system. Increased levels of CaM were associated with overactivation of PI3K/Akt and CaMKII. Our results suggest that increased levels of CaM synergize with serum to overactivate PI3K/Akt in AD cells by direct binding of CaM to the regulatory α-subunit (p85) of PI3K. The systemic failure of CaM degradation, and thus of Ca(2+)/CaM-dependent signaling pathways, may be important in the etiopathogenesis of AD.

  2. Comparing allosteric transitions in the domains of calmodulin through coarse-grained simulations. (United States)

    Nandigrami, Prithviraj; Portman, John J


    Calmodulin (CaM) is a ubiquitous Ca(2+)-binding protein consisting of two structurally similar domains with distinct stabilities, binding affinities, and flexibilities. We present coarse grained simulations that suggest that the mechanism for the domain's allosteric transitions between the open and closed conformations depends on subtle differences in the folded state topology of the two domains. Throughout a wide temperature range, the simulated transition mechanism of the N-terminal domain (nCaM) follows a two-state transition mechanism while domain opening in the C-terminal domain (cCaM) involves unfolding and refolding of the tertiary structure. The appearance of the unfolded intermediate occurs at a higher temperature in nCaM than it does in cCaM consistent with nCaM's higher thermal stability. Under approximate physiological conditions, the simulated unfolded state population of cCaM accounts for 10% of the population with nearly all of the sampled transitions (approximately 95%) unfolding and refolding during the conformational change. Transient unfolding significantly slows the domain opening and closing rates of cCaM, which can potentially influence its Ca(2+)-binding mechanism.

  3. The Ca(2+ influence on calmodulin unfolding pathway: a steered molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    Full Text Available The force-induced unfolding of calmodulin (CaM was investigated at atomistic details with steered molecular dynamics. The two isolated CaM domains as well as the full-length CaM were simulated in N-C-terminal pulling scheme, and the isolated N-lobe of CaM was studied specially in two other pulling schemes to test the effect of pulling direction and compare with relevant experiments. Both Ca(2+-loaded CaM and Ca(2+-free CaM were considered in order to define the Ca(2+ influence to the CaM unfolding. The results reveal that the Ca(2+ significantly affects the stability and unfolding behaviors of both the isolated CaM domains and the full-length CaM. In Ca(2+-loaded CaM, N-terminal domain unfolds in priori to the C-terminal domain. But in Ca(2+-free CaM, the unfolding order changes, and C-terminal domain unfolds first. The force-extension curves of CaM unfolding indicate that the major unfolding barrier comes from conquering the interaction of two EF-hand motifs in both N- and C- terminal domains. Our results provide the atomistic-level insights in the force-induced CaM unfolding and explain the observation in recent AFM experiments.

  4. Molecular characterization of a calmodulin involved in the signal transduction chain of gravitaxis in Euglena gracilis. (United States)

    Daiker, Viktor; Lebert, Michael; Richter, Peter; Häder, Donat-Peter


    The unicellular flagellate Euglena gracilis shows a negative gravitactic behavior. This is based on physiological mechanisms which in the past have been indirectly assessed. Meanwhile, it was possible to isolate genes involved in the signal transduction chain of gravitaxis. The DNA sequences of five calmodulins were found in Euglena, one of which was only known in its protein structure (CaM.1); the other four are new. The biosynthesis of the corresponding proteins of CaM.1-CaM.5 was inhibited by means of RNA interference to determine their involvement in the gravitactic signal transduction chain. RNAi of CaM.1 inhibits free swimming of the cells and pronounced cell-form aberrations. The division of cells was also hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Blockage of CaM.3 to CaM. 5 did not impair gravitaxis. In contrast, the blockage of CaM.2 has only a transient and not pronounced influence on motility and cell form, but leads to a total loss of gravitactic orientation for more than 30 days. This indicates that CaM.2 is an element in the signal transduction chain of gravitaxis in E. gracilis. The results are discussed with regard to the current working model of gravitaxis in E. gracilis.

  5. Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars

    Institute of Scientific and Technical Information of China (English)


    In the present study, we investigated the effects of increasing salinity on growth, gas exchange, abscisic acid(ABA), calmodulin (CAM), and the relevance to salt tolerance in seedlings of Populus euphratica Oliv. and cuttings of P. "pupularis 35-44" (P. popularis) and P. x euramericana cv. 1-214 (P. cv. Italica). The relative growth rates of shoot height (RGRH) for P. cv. Italica and P. popularis were severely reduced by increasing salt stress,whereas the growth reduction was relatively less in P. euphratica. Similarly, P. euphratica maintained higher net photosynthetic rates (Pn) and unit transpiration rates (TRN) than P. cv. Italica and P. popularis under conditions of higher salinity. Salinity caused a significant increase in leaf ABA and CaM in the three genotypes after the onset of stress, but NaCl-induced ABA and CaM accumulation was more pronounced in P. euphratica,suggesting that P. euphratica plants are more sensitive in sensing soil salinity than the other two poplars.Furthermore, P. euphratica maintained relatively higher ABA and CaM concentrations under conditions of high salinity. The higher capacity to synthesize stress signals, namely ABA and CaM, in P. euphratica and the contribution of this to the salt resistance of P. euphratica are discussed.

  6. Calmodulin Involvement in Stress-Activated Nuclear Localization of Albumin in JB6 Epithelial Cells.

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas J.; Negash, Sewite; Smallwood, Heather S.; Ramos, Kenneth S.; Thrall, Brian D.; Squier, Thomas C.


    We report that in response to oxidative stress, albumin is translocated to the nucleus where it binds in concert with known transcription factors to an antioxidant response element (ARE), which controls the expression of glutathione-S-transferase and other antioxidant enzymes, functioning to mediate adaptive cellular responses. To investigate the mechanisms underlying this adaptive cell response, we have identified linkages between calcium signaling and the nuclear translocation of albumin in JB6 epithelial cells. Under resting conditions, albumin and the calcium regulatory protein, calmodulin (CaM), co-immunoprecipitate using antibodies against either protein, indicating a tight association. Calcium activation of CaM disrupts the association between CaM and albumin, suggesting that transient increases in cytosolic calcium levels function to mobilize intracellular albumin to facilitate its translocation into the nucleus. Likewise, nuclear translocation of albumin is induced by exposure of cells to hydrogen peroxide or a phorbol ester, indicating a functional linkage between reactive oxygen species, calcium, and PKC-signaling pathways. Inclusion of an antioxidant enzyme (i.e., superoxide dismutase) blocks nuclear translocation, suggesting that the oxidation of sensitive proteins functions to coordinate the adaptive cellular response. These results suggest that elevated calcium transients, and associated increases in reactive oxygen species, contribute to adaptive cellular responses through the mobilization and nuclear translocation of cellular albumin to mediate the transcriptional regulation of antioxidant responsive elements.

  7. Distinguishing Unfolding and Functional Conformational Transitions of Calmodulin Using Ultraviolet Resonance Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Eric M.; Balakrishnan, G.; Squier, Thomas C.; Spiro, Thomas


    Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this paper, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in teritary contacts at the inter-domain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.

  8. Calmodulin-mediated suppression of 2-ketoisovalerate reductase in Beauveria bassiana beauvericin biosynthetic pathway. (United States)

    Kim, Jiyoung; Yoon, Deok-Hyo; Oh, Junsang; Hyun, Min-Woo; Han, Jae-Gu; Sung, Gi-Ho


    Ketoisovalerate reductase (KIVR, E.C. mediates the specific reduction of 2-ketoisovalerate (2-Kiv) to d-hydroxyisovalerate (d-Hiv), a precursor for beauvericin biosynthesis. Beauvericin, a famous mycotoxin produced by many fungi, is a cyclooligomer depsipeptide, which has insecticidal, antimicrobial, antiviral, and cytotoxic activities. In this report, we demonstrated that Beauveria bassiana 2-ketoisovalerate reductase (BbKIVR) acts as a typical KIVR enzyme in the entomopathogenic fungus B. bassiana. In addition, we found that BbKIVR interacts with calmodulin (CaM) in vitro and in vivo. The functional role of CaM-binding to BbKIVR was to negatively regulate the BbKIVR activity in B. bassiana. Environmental stimuli such as light and salt stress suppressed BbKIVR activity in B. bassiana. Interestingly, this negative effect of BbKIVR activity by light and salt stress was recovered by CaM inhibitors, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbKIVR plays an important role in the beauvericin biosynthetic pathway mediated by environmental stimuli such as light and salt stress via the CaM signaling pathway.

  9. Three synonymous genes encode calmodulin in a reptile, the Japanese tortoise, Clemmys japonica

    Directory of Open Access Journals (Sweden)

    Kouji Shimoda


    Full Text Available Three distinct calmodulin (CaM-encoding cDNAs were isolated from a reptile, the Japanese tortoise (Clemmys japonica, based on degenerative primer PCR. Because of synonymous codon usages, the deduced amino acid (aa sequences were exactly the same in all three genes and identical to the aa sequence of vertebrate CaM. The three cDNAs, referred to as CaM-A, -B, and -C, seemed to belong to the same type as CaMI, CaMII, and CaMIII, respectively, based on their sequence identity with those of the mammalian cDNAs and the glutamate codon biases. Northern blot analysis detected CaM-A and -B as bands corresponding to 1.8 kb, with the most abundant levels in the brain and testis, while CaM-C was detected most abundantly in the brain as bands of 1.4 and 2.0 kb. Our results indicate that, in the tortoise, CaM protein is encoded by at least three non-allelic genes, and that the ‘multigene-one protein' principle of CaM synthesis is applicable to all classes of vertebrates, from fishes to mammals.

  10. The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. (United States)

    Daiker, Viktor; Häder, Donat-P; Richter, Peter R; Lebert, Michael


    The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.

  11. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko


    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  12. Enterococcus faecalis phosphomevalonate kinase


    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.


    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. E. faecalis genomic DNA and the polymerase chain reaction were used to clone D...

  13. Oncoprotein protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA); Davis, Roger (Princeton, MA); Derijard, Benoit (Shrewsbury, MA)


    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  14. Involvement of heterotrimeric G protein in signal transduc-tion of extracellular calmodu-lin in regulating rbcS expres-sion

    Institute of Scientific and Technical Information of China (English)


    The role of heterotrimeric G protein in signal transduction pathway of extracellular calmodulin in regulating rbcS expression was examined in suspension-cultured cells of transgenic tobacco. Pharmalogical experiments indicated that G protein agonist cholera toxin enhanced rbcS expression and heterotrimeric G protein antagonist pertussis toxin inhibited rbcS expression in transgenic tobacco cells. Pertussis toxin also inhibited the enhancement effect caused by exogenous purified calmodulin on rbcS expression, whereas cholera toxin completely reversed the inhibitory effects caused by anti-calmodulin serum on rbcS expression. The right side-out vesicles from tobacco cell membrane were purified, which contained all of substrates for fluometric assay of GTPase activity. Exogenous purified calmodulin, when adding directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in the right side-out plasma membrane vesicles, and this increase in GTPase activity was completely inhibited both by hetero-trimeric G proteins antagonist pertussis toxin and nonhy-drolyzable GTP analogs GMP-PCP. These results provided the evidence that heterotrimeric G proteins may be involved in signal transduction pathways of extracellular calmodulin to regulate rbcS gene expression.

  15. Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment. (United States)

    Filomeni, Giuseppe; Cardaci, Simone; Da Costa Ferreira, Ana Maria; Rotilio, Giuseppe; Ciriolo, Maria Rosa


    We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N']copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.

  16. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)


    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  17. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts. (United States)

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj


    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca(2+) influx via a mechanosensitive L-type Ca(2+) channel, which subsequently raises intracellular Ca(2+) and activates AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca(2+)-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  18. Purification and characterization of tagless recombinant human elongation factor 2 kinase (eEF-2K) expressed in Escherichia coli. (United States)

    Abramczyk, Olga; Tavares, Clint D J; Devkota, Ashwini K; Ryazanov, Alexey G; Turk, Benjamin E; Riggs, Austen F; Ozpolat, Bulent; Dalby, Kevin N


    The eukaryotic elongation factor 2 kinase (eEF-2K) modulates the rate of protein synthesis by impeding the elongation phase of translation by inactivating the eukaryotic elongation factor 2 (eEF-2) via phosphorylation. eEF-2K is known to be activated by calcium and calmodulin, whereas the mTOR and MAPK pathways are suggested to negatively regulate kinase activity. Despite its pivotal role in translation regulation and potential role in tumor survival, the structure, function, and regulation of eEF-2K have not been described in detail. This deficiency may result from the difficulty of obtaining the recombinant kinase in a form suitable for biochemical analysis. Here we report the purification and characterization of recombinant human eEF-2K expressed in the Escherichia coli strain Rosetta-gami 2(DE3). Successive chromatography steps utilizing Ni-NTA affinity, anion-exchange, and gel filtration columns accomplished purification. Cleavage of the thioredoxin-His(6)-tag from the N-terminus of the expressed kinase with TEV protease yielded 9 mg of recombinant (G-D-I)-eEF-2K per liter of culture. Light scattering shows that eEF-2K is a monomer of ∼85 kDa. In vitro kinetic analysis confirmed that recombinant human eEF-2K is able to phosphorylate wheat germ eEF-2 with kinetic parameters comparable to the mammalian enzyme.

  19. Diacylglycerol Kinase Inhibition and Vascular Function. (United States)

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton


    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction.

  20. Intrinsically disordered caldesmon binds calmodulin via the “buttons on a string” mechanism

    Directory of Open Access Journals (Sweden)

    Sergei E. Permyakov


    Full Text Available We show here that chicken gizzard caldesmon (CaD and its C-terminal domain (residues 636–771, CaD136 are intrinsically disordered proteins. The computational and experimental analyses of the wild type CaD136 and series of its single tryptophan mutants (W674A, W707A, and W737A and a double tryptophan mutant (W674A/W707A suggested that although the interaction of CaD136 with calmodulin (CaM can be driven by the non-specific electrostatic attraction between these oppositely charged molecules, the specificity of CaD136-CaM binding is likely to be determined by the specific packing of important CaD136 tryptophan residues at the CaD136-CaM interface. It is suggested that this interaction can be described as the “buttons on a charged string” model, where the electrostatic attraction between the intrinsically disordered CaD136 and the CaM is solidified in a “snapping buttons” manner by specific packing of the CaD136 “pliable buttons” (which are the short segments of fluctuating local structure condensed around the tryptophan residues at the CaD136-CaM interface. Our data also show that all three “buttons” are important for binding, since mutation of any of the tryptophans affects CaD136-CaM binding and since CaD136 remains CaM-buttoned even when two of the three tryptophans are mutated to alanines.

  1. NMR Structure of Calmodulin Complexed to an N-terminally Acetylated α-Synuclein Peptide (United States)

    Gruschus, James M.; Yap, Thai Leong; Pistolesi, Sara; Maltsev, Alexander S.; Lee, Jennifer C.


    Calmodulin (CaM) is a calcium binding protein that plays numerous roles in Ca-dependent cellular processes, including uptake and release of neurotransmitters in neurons. α-Synuclein (α-syn), one of the most abundant proteins in central nervous system neurons, helps maintain presynaptic vesicles containing neurotransmitters and moderates their Ca-dependent release into the synapse. Ca-bound CaM interacts with α-syn most strongly at its N-terminus. The N-terminal region of α-syn is important for membrane binding, thus CaM could modulate membrane association of α-syn in a Ca-dependent manner. In contrast, Ca-free CaM has negligible interaction. The interaction with CaM leads to significant signal broadening in both CaM and α-syn NMR spectra, most likely due to conformational exchange. The broadening is much reduced when binding a peptide consisting of the first 19 residues of α-syn. In neurons, most α-syn is acetylated at the N-terminus, and acetylation leads to a ten-fold increase in binding strength for the α-syn peptide (KD = 35 ± 10 μM). The N-terminally acetylated peptide adopts a helical structure at the N-terminus with the acetyl group contacting the N-terminal domain of CaM, and with less ordered helical structure towards the C-terminus of the peptide contacting the CaM C-terminal domain. Comparison with known structures shows the CaM/α-syn complex most closely resembles Ca-bound CaM in a complex with an IQ motif peptide. However, a search comparing the α-syn peptide sequence with known CaM targets, including IQ motifs, found no homologies, thus the N-terminal α-syn CaM binding site appears to be a novel CaM target sequence. PMID:23607618

  2. Structural Studies of a Complex Between Endothelial Nitric Oxide Synthase and Calmodulin at Physiological Calcium Concentration. (United States)

    Piazza, Michael; Dieckmann, Thorsten; Guillemette, Joseph Guy


    The small acidic protein Calmodulin (CaM) serves as a Ca(2+) sensor and control element for many enzymes including nitric oxide synthase (NOS) enzymes that play major roles in key physiological and pathological processes. CaM binding causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. In this report, NMR spectroscopy was used to determine the solution structure of the endothelial NOS (eNOS) peptide in complex with CaM at the lowest Ca(2+) concentration (225 nM) required for CaM to bind to eNOS and corresponds to a physiological elevated Ca2+ level found in mammalian cells. Under these conditions, the CaM-eNOS complex has a Ca(2+)-replete C-terminal lobe bound the eNOS peptide and a Ca(2+) free N-terminal lobe loosely associated to the eNOS peptide. With increasing Ca(2+) concentration, the binding of Ca(2+) by the N-lobe of CaM results in a stronger interaction with the C-terminal region of the eNOS peptide and increased α-helical structure of the peptide that may be part of the mechanism resulting in electron transfer from the FMN to the heme in the oxygenase domain of the enzyme. SPR studies performed under the same conditions show Ca(2+) concentration dependent binding kinetics were consistent with the NMR structural results. This investigation shows that structural studies performed under more physiological relevant conditions provide information on subtle changes in structure that may not be apparent when experiments are performed in excess Ca(2+) concentrations.

  3. Localization and function of calmodulin in live-cells of Aspergillus nidulans. (United States)

    Chen, Shaochun; Song, Yiju; Cao, Jinling; Wang, Gang; Wei, Hua; Xu, Xushi; Lu, Ling


    Calmodulin (CaM) is a small, eukaryotic protein that reversibly binds Ca(2+). Study of CaM localization in genetically tractable organisms has yielded many insights into CaM function. Here, we described the dynamic localization of Aspergillus nidulans CaM (AnCaM) in live-cells by using recombination strains with homologous, single cross-over insertions at the target gene which placed the GFP fused copy under the inducible alcA promoter and the RFP-CaM integration under the native cam promoter. We found that the localization of CaM fusion was quite dynamic throughout the hypha and was concentrated to the active growing sites during germination, hyphal growth, cytokinesis and conidiation. The depletion of CaM by alcA promoter repression induced the explicit abnormalities of germlings with the swollen germ tubes. In addition, the position of highly concentrated GFP-CaM in the extreme apex seemed to determine the hyphal orientation. These data collectively suggest that CaM is constantly required for new hyphal growth. In contrast to this constant accumulation at the apex, GFP-CaM was only transiently localized at septum sites during cytokinesis. Notably, depletion of CaM caused the defect of septation with a completely blocked septum formation indicating that the transient CaM accumulation at the septum site is essential for septation. Moreover, the normal localization of CaM at a hyphal tip required the presence of the functional actin cytoskeleton and the motor protein KipA, which is indispensable for positioning Spitzenkörper. This is the first report of CaM localization and function in live-cells by the site-specific homologous integration in filamentous fungi.

  4. Cooperativity between calmodulin-binding sites in Kv7.2 channels. (United States)

    Alaimo, Alessandro; Alberdi, Araitz; Gomis-Perez, Carolina; Fernández-Orth, Juncal; Gómez-Posada, Juan Camilo; Areso, Pilar; Villarroel, Alvaro


    Among the multiple roles assigned to calmodulin (CaM), controlling the surface expression of Kv7.2 channels by binding to two discontinuous sites is a unique property of this Ca(2+) binding protein. Mutations that interfere with CaM binding or the sequestering of CaM prevent this M-channel component from exiting the endoplasmic reticulum (ER), which reduces M-current density in hippocampal neurons, enhancing excitability and offering a rational mechanism to explain some forms of benign familial neonatal convulsions (BFNC). Previously, we identified a mutation (S511D) that impedes CaM binding while allowing the channel to exit the ER, hinting that CaM binding may not be strictly required for Kv7.2 channel trafficking to the plasma membrane. Alternatively, this interaction with CaM might escape detection and, indeed, we now show that the S511D mutant contains functional CaM-binding sites that are not detected by classical biochemical techniques. Surface expression and function is rescued by CaM, suggesting that free CaM in HEK293 cells is limiting and reinforcing the hypothesis that CaM binding is required for ER exit. Within the CaM-binding domain formed by two sites (helix A and helix B), we show that CaM binds to helix B with higher apparent affinity than helix A, both in the presence and absence of Ca(2+), and that the two sites cooperate. Hence, CaM can bridge two binding domains, anchoring helix A of one subunit to helix B of another subunit, in this way influencing the function of Kv7.2 channels.

  5. Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus. (United States)

    Suetomi, Takashi; Sakamoto, Takaiku; Tokunaga, Yoshitaka; Kameyama, Toru; Honda, Yoichi; Kamitsuji, Hisatoshi; Kameshita, Isamu; Izumitsu, Kousuke; Suzuki, Kazumi; Irie, Toshikazu


    Previously, we suppressed the expression of genes encoding isozymes of lignin peroxidase (LiP) and manganese peroxidase (MnP) using a calmodulin (CaM) inhibitor, W7, in the white-rot fungus Phanerochaete chrysosporium; this suggested that CaM positively regulates their expression. Here, we studied the role of CaM in another white-rot fungus, Pleurotus ostreatus, which produces MnP and versatile peroxidase (VP), but not LiP. W7 upregulated Mn(2+)-dependent oxidation of guaiacol, suggesting that CaM negatively regulates the production of the enzymes. Suppression of CaM in P. ostreatus using RNAi also led to upregulation of enzyme activity, whereas overexpression of CaM in P. ostreatus caused downregulation. Real-time RT-PCR showed that MnP1-6 and VP3 levels in the CaM-knockdown strain were higher than those in the wild-type strain, while MnP-5 and -6 and VP1 and 2 levels in the CaM-overexpressing strain were lower than in the wild type. Moreover, we also found that another ligninolytic enzyme, laccase, which is not produced by P. chrysosporium, was negatively regulated by CaM in P. ostreatus similar to MnP and VP. Although overexpression of CaM did not reduce the ability of P. ostreatus to digest beech wood powder, the percentage of lignin remaining in the digest was slightly higher than in the wild-type strain digest.

  6. Designing molecular dynamics simulations to shift populations of the conformational states of calmodulin.

    Directory of Open Access Journals (Sweden)

    Ayse Ozlem Aykut

    Full Text Available We elucidate the mechanisms that lead to population shifts in the conformational states of calcium-loaded calmodulin (Ca(2+-CaM. We design extensive molecular dynamics simulations to classify the effects that are responsible for adopting occupied conformations available in the ensemble of NMR structures. Electrostatic interactions amongst the different regions of the protein and with its vicinal water are herein mediated by lowering the ionic strength or the pH. Amino acid E31, which is one of the few charged residues whose ionization state is highly sensitive to pH differences in the physiological range, proves to be distinctive in its control of population shifts. E31A mutation at low ionic strength results in a distinct change from an extended to a compact Ca(2+-CaM conformation within tens of nanoseconds, that otherwise occur on the time scales of microseconds. The kinked linker found in this particular compact form is observed in many of the target-bound forms of Ca(2+-CaM, increasing the binding affinity. This mutation is unique in controlling C-lobe dynamics by affecting the fluctuations between the EF-hand motif helices. We also monitor the effect of the ionic strength on the conformational multiplicity of Ca(2+-CaM. By lowering the ionic strength, the tendency of nonspecific anions in water to accumulate near the protein surface increases, especially in the vicinity of the linker. The change in the distribution of ions in the vicinal layer of water allows N- and C- lobes to span a wide variety of relative orientations that are otherwise not observed at physiological ionic strength. E31 protonation restores the conformations associated with physiological environmental conditions even at low ionic strength.

  7. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors. (United States)

    Van Hook, Matthew J; Parmelee, Caitlyn M; Chen, Minghui; Cork, Karlene M; Curto, Carina; Thoreson, Wallace B


    At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca(2+)) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons.

  8. Kinase inhibitors: a new class of antirheumatic drugs

    Directory of Open Access Journals (Sweden)

    Kyttaris VC


    Full Text Available Vasileios C KyttarisDivision of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USAAbstract: The outlook for patients with rheumatoid arthritis has improved significantly over the last three decades with the use of disease-modifying antirheumatic drugs. However, despite the use of methotrexate, cytokine inhibitors, and molecules targeting T and B cells, a percentage of patients do not respond or lose their response over time. The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. In the past decade, small molecules targeting several kinases, such as p38 MAPK, Syk, and JAK have been developed. Several p38 MAPK inhibitors proved ineffective in treating rheumatoid arthritis. The Syk inhibitor, fostamatinib, proved superior to placebo in Phase II trials and is currently under Phase III investigation. Tofacitinib, a JAK1/3 inhibitor, was shown to be efficacious in two Phase III trials, while VX-509, a JAK3 inhibitor, showed promising results in a Phase II trial. Fostamatinib and tofacitinib were associated with increased rates of infection, elevation of liver enzymes, and neutropenia. Moreover, fostamatinib caused elevations of blood pressure and diarrhea, while tofacitinib was associated with an increase in creatinine and elevation of lipid levels.Keywords: rheumatoid arthritis, kinase inhibitors, mitogen-activated phosphokinase p38, spleen tyrosine kinase, Janus kinases

  9. Isolation and Characterization of Calmodulin Gene of Alexandrium catenella (Dinoflagellate) and Its Performance in Cell Growth and Heat Stress

    Institute of Scientific and Technical Information of China (English)

    WEN Ruobing; SUI Zhenghong; BAO Zhenmin; ZHOU Wei; WANG Chunyan


    Harmful algal blooms (HABs) can occur and then disappear quickly, corresponding to consistent growing and declining of heavy biomasses. The molecular mechanism of blooming remains unclear. In this study, calmodulin gene (cam) of HAB causing species Alexandrium catenella was isolated and characterized. The expression of calmodulin gene was profiled at different growth rates and in heat stress. The full cDNA of cam was 597 nucleotides (nt) in length, including a 25 nt 5′untranslated region (UTR), an 122 nt 3′ UTR, and a 450 nt open reading frame (ORF) encoding 149 amino acids. The deduced calmodulin (CaM) was highly conserved in comparison with those of other organisms. As was determined with real-time RT PCR, the abundance of cam transcript varied in a pattern similar to cell growth rate during the whole growing period. The abundance of cam transcript increased by more than 8 folds from lag growth phase to exponential growth phase, and then obviously decreased from exponential growth phase to stationary/decline growth phase. In addition, the relative abundance of cam transcript significantly declined with time during heat shock. Taking CaM function described in other organisms into account, we believe that Ca2+-involved signal transduction, methyla-tion of DNA and toxin precursors underlined the cell growth of this species. The response of cam gene to heat stress in dinoflagellate suggested restrictions in Ca2+signal transduction and methylation. These findings are helpful to understand the relationships among growth, cell signal transduction, bloom formation and interaction with environmental stimuli in dinoflagellates.

  10. Quantitative measurement of Ca(2+)-dependent calmodulin-target binding by Fura-2 and CFP and YFP FRET imaging in living cells. (United States)

    Mori, Masayuki X; Imai, Yuko; Itsuki, Kyohei; Inoue, Ryuji


    Calcium dynamics and its linked molecular interactions cause a variety of biological responses; thus, exploiting techniques for detecting both concurrently is essential. Here we describe a method for measuring the cytosolic Ca(2+) concentration ([Ca(2+)](i)) and protein-protein interactions within the same cell, using Fura-2 and superenhanced cyan and yellow fluorescence protein (seCFP and seYFP, respectively) FRET imaging techniques. Concentration-independent corrections for bleed-through of Fura-2 into FRET cubes across different time points and [Ca(2+)](i) values allowed for an effective separation of Fura-2 cross-talk signals and seCFP and seYFP cross-talk signals, permitting calculation of [Ca(2+)](i) and FRET with high fidelity. This correction approach was particularly effective at lower [Ca(2+)](i) levels, eliminating bleed-through signals that resulted in an artificial enhancement of FRET. By adopting this correction approach combined with stepwise [Ca(2+)](i) increases produced in living cells, we successfully elucidated steady-state relationships between [Ca(2+)](i) and FRET derived from the interaction of seCFP-tagged calmodulin (CaM) and the seYFP-fused CaM binding domain of myosin light chain kinase. The [Ca(2+)](i) versus FRET relationship for voltage-gated sodium, calcium, and TRPC6 channel CaM binding domains (IQ domain or CBD) revealed distinct sensitivities for [Ca(2+)](i). Moreover, the CaM binding strength at basal or subbasal [Ca(2+)](i) levels provided evidence of CaM tethering or apoCaM binding in living cells. Of the ion channel studies, apoCaM binding was weakest for the TRPC6 channel, suggesting that more global Ca(2+) and CaM changes rather than the local CaM-channel interface domain may be involved in Ca(2+)CaM-mediated regulation of this channel. This simultaneous Fura-2 and CFP- and YFP-based FRET imaging system will thus serve as a simple but powerful means of quantitatively elucidating cellular events associated with Ca(2

  11. Fission yeast Cdk7 controls gene expression through both its CAK and C-terminal domain kinase activities. (United States)

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm; Hermand, Damien


    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity.

  12. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor. (United States)

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka


    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A2A receptor (A2AR), has an exceptionally long intracellular C terminus (A2AR-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A2AR and the role of Ca(2+) in this process. First, we studied the A2AR-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A2AR-ct through its distal calmodulin-like domain in a Ca(2+)-independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A2AR-calmodulin/Ca(2+) complex. Importantly, calmodulin displaced α-actinin 1 from the A2AR-ct in a Ca(2+)-dependent fashion, disrupting the A2AR-α-actinin 1 complex. Finally, we assessed the impact of Ca(2+) on A2AR internalization in living cells, a function operated by the A2AR-α-actinin 1 complex. Interestingly, while Ca(2+) influx did not affect constitutive A2AR endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A2AR/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A2AR with calmodulin and α-actinin 1 is fine-tuned by Ca(2+), a fact that might power agonist-mediated receptor internalization and function.

  13. Localisation of Protein Kinase C in Apoptosis and Neurite Outgrowth


    Schultz, Anna


    Protein kinase C (PKC) is a family of serine/threonine kinases, which are subgrouped into classical (a, bI, bII, g), novel (d, e, h, q) and atypical (z, i/l) isoforms. One major aim of this thesis work was to investigate if altered levels of PKC isoforms influence the apoptotic responses of malignant cell-lines. We show that overexpression of PKCd or PKCq renders SK-N-BE(2) neuroblastoma cells sensitive to apoptosis induced by phorbol esters or C2-ceramide. Moreover, overexpression of PKCa, P...

  14. Calcium homeostasis and protein kinase/phosphatase balance participate in nicotine-induced memory improvement in passive avoidance task in mice. (United States)

    Michalak, Agnieszka; Biala, Grazyna


    Long-term potentiation (LTP) and long-term depression (LTD) depend on specific postsynaptic Ca(2+)/calmodulin concentration. LTP results from Ca(2+) influx through the activated NMDA receptors or voltage-gated calcium channels (VGCCs) and is linked with activation of protein kinases including mitogen-activated protein kinase (MAPK). Weaker synaptic stimulation, as a result of low Ca(2+) influx, leads to activation of Ca(2+)/calmodulin-dependent phosphatase (calcineurin - CaN) and triggers LTD. Interestingly, both memory formation and drug addiction share similar neuroplastic changes. Nicotine, which is one of the most common addictive drugs, manifests its memory effects through nicotinic acetylcholine receptors (nAChRs). Because nAChRs may also gate Ca(2+), it is suggested that calcium signaling pathways are involved in nicotine-induced memory effects. Within the scope of the study was to evaluate the importance of calcium homeostasis and protein kinase/phosphatase balance in nicotine-induced short- and long-term memory effects. To assess memory function in mice passive avoidance test was used. The presented results confirm that acute nicotine (0.1mg/kg) improves short- and long-term memory. Pretreatment with L-type VGCC blockers (amlodipine, nicardipine verapamil) increased nicotine-induced memory improvement in the context of short- and long-term memory. Pretreatment with FK-506 (a potent CaN inhibitor) enhanced short- but not long-term memory effects of nicotine, while SL-327 (a selective MAPK/ERK kinase inhibitor) attenuated both nicotine-induced short- and long-term memory improvement. Acute nicotine enhances both types of memory via L-type VGCC blockade and via ERK1/2 activation. Only short- but not long-term memory enhancement induced by nicotine is dependent on CaN inhibition.

  15. Commitment to the CD4 lineage mediated by extracellular signal-related kinase mitogen-activated protein kinase and lck signaling. (United States)

    Sharp, L L; Hedrick, S M


    The development of T cells results in a concordance between the specificity of the TCR for MHC class I and class II molecules and the expression of CD8 and CD4 coreceptors. Based on analogy to simple metazoan models of organ development and lineage commitment, we sought to determine whether extracellular signal-related kinase (Erk) mitogen-activated protein (MAP) kinase pathway signaling acts as an inductive signal for the CD4 lineage. Here, we show that, by altering the intracellular signaling involving the Erk/MAP kinase pathway, T cells with specificity for MHC class I can be diverted to express CD4, and, conversely, T cells with specificity for MHC class II can be diverted to express CD8. Furthermore, we find that activation of the src-family tyrosine kinase, p56lck is an upstream mediator of lineage commitment. These results suggest a simple mechanism for lineage commitment in T cell development.

  16. Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin


    Zheng, Fei; Luo, Yongneng; Wang, Hongbing


    The induction of the immediate early gene Arc is strongly implicated in synaptic plasticity. Although the role of ERK was demonstrated, the regulation of Arc expression is largely unknown. In this study, we investigated the major signaling pathways underlying brain-derived neurotrophic factor (BDNF)-mediated Arc transcription in cultured cortical neurons. The BDNF-stimulated Arc transcription was solely regulated by the Ras-Raf-MAPK signaling through ERK, but not by phosphoinositide 3-kinase ...

  17. Effects of polyamines and calcium and sodium ions on smooth muscle cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase. (United States)

    Chen, H; Baron, C B; Griffiths, T; Greeley, P; Coburn, R F


    In many different cell types, including smooth muscle cells (Baron et al., 1989, Am. J. Physiol., 256: C375-383; Baron et al., J. Pharmacol. Exp. Ther. 266: 8-15), phosphatidylinositol (4)-phosphate 5-kinase plays a critical role in the regulation of membrane concentrations of phosphatidylinositol (4,5)-bisphosphate and formation of inositol (1,4,5)-trisphosphate. In unstimulated porcine trachealis smooth muscle, 70% of total cellular phosphatidylinositol (4)-phosphate 5-kinase activity was associated with cytoskeletal proteins and only trace activity was detectable in isolated sarcolemma. Using two different preparations, we studied cytoskeleton-associated phosphatidyl inositol (4)-phosphate 5-kinase under conditions that attempted to mimic the ionic and thermal cytoplasmic environment of living cells. The cytoskeleton-associated enzyme, studied using phosphatidylinositol (4)-phosphate substrate concentrations that produced phosphatidylinositol 4,5-bisphosphate at about 10% of the maximal rate, was sensitive to free [Mg2+], had an absolute requirement for phosphatidylserine, phosphatidic acid, or phosphatidylinositol, and included type I isoforms. At 0.5 mM free [Mg2+], physiological spermine concentrations, 0.2-0.4 mM, increased phosphatidylinositol (4)-phosphate 5-kinase activity two to four times compared to controls run without spermine. The EC50 for spermine-evoked increases in activity was 0.17 +/- 0.02 mM. Spermine-evoked enzyme activity was a function of both free [Mg2+] and substrate concentration. Cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase was inhibited by free [Ca2+] over a physiological range for cytoplasm--10(-8) to 10(-5) M, an effect independent of the presence of calmodulin. Na+ over the range 20 to 50 mM also inhibited this enzyme activated by 5 mM Mg2+ but had no effect on spermine-activated enzyme. Na+, Ca2+, and spermine appear to be physiological modulators of smooth muscle cytoskeleton-bound phosphatidylinositol (4

  18. Measurement of the cytotoxic effects of different strains of Mycoplasma equigenitalium on the equine uterine tube using a calmodulin assay. (United States)

    Bermúdez, V M; Miller, R B; Rosendal, S; Fernando, M A; Johnson, W H; O'Brien, P J


    The cytopathic effects induced by five strains of Mycoplasma equigenitalium for cells of equine uterine tube explants were tested by measuring changes in cellular and extracellular concentrations of calmodulin (CaM). Calmodulin concentrations in samples of total homogenate (TH) and total homogenate supernates (THS) of the infected equine uterine tube explants were significantly lower than respective measurements on noninfected controls. In tissue culture medium fractions (TCM) of some infected explants, CaM concentrations were significantly higher than noninfected controls (p > 0.95). The results suggest that M. equigenitalium colonization on ciliated cells of the equine uterine tube can affect the permeability of the cell membrane leading to leakage or release of CaM during cell breakdown. Measurement of CaM concentrations in samples of TH revealed significant differences in the cytotoxic effects induced by different strains of M. equigenitalium on the equine uterine tube (EUT). The data suggests that some strains of M. equigenitalium may have a role in reproductive failure in the mare. In addition comparisons of the means of the concentrations of CaM in samples of TH or THS in EUT explants from four mares in the follicular and four in the luteal phase of the estrous cycle were found to be not significantly different. PMID:1477802

  19. Using a GFP-gene fusion technique to study the cell cycle-dependent distribution of calmodulin in living cells

    Institute of Scientific and Technical Information of China (English)

    李朝军; 吕品; 张东才


    In this study, a green fluorescent protein (GFP)-calmodulin (CaM) fusion gene method was used to examine the distribution of calmodulin during various stages of cell cycle. First, it was found that the distribution of CaM in living cells changes with the cell cycle. CaM was found mainly in the cytoplasm during G1 phase. It began to move into the nucleus when the cell entered S phase. At G2 phase, CaM became more concentrated in the nucleus than in cytoplasm. Second, the accumulation of CaM in the nucleus during G2 phase appeared to be related to the onset of mitosis, since inhibiting the activation of CaM at this stage resulted in blocking the nuclear membrane breakdown and chromatin condensation. Finally, after the cell entered mitosis, a high concentration of CaM was found at the polar regions of the mitotic spindle. At this time, inhibiting the activity of CaM would cause a disruption of the spindle structure. The relationship between the stage-specific distribution of CaM and its function in regulat

  20. In vitro and in vivo protein phosphorylation in Avena sativa L. coleoptiles: effects of Ca2+, calmodulin antagonists, and auxin (United States)

    Veluthambi, K.; Poovaiah, B. W.


    In vitro and in vivo protein phosphorylations in oat (Avena sativa L.) coleoptile segments were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. In vitro phosphorylation of several polypeptides was distinctly promoted at 1 to 15 micromolar free Ca2+ concentrations. Ca2(+)-stimulated phosphorylation was markedly reduced by trifluoperazine, chlorpromazine, and naphthalene sulfonamide (W7). Two polypeptides were phosphorylated both under in vitro and in vivo conditions, but the patterns of phosphorylation of several other polypeptides were different under the two conditions indicating that the in vivo phosphorylation pattern of proteins is not truly reflected by in vitro phosphorylation studies. Trifluoperazine, W7, or ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) + calcium ionophore A23187 treatments resulted in reduced levels of in vivo protein phosphorylation of both control and auxin-treated coleoptile segments. Analysis by two-dimensional electrophoresis following in vivo phosphorylation revealed auxin-dependent changes of certain polypeptides. A general inhibition of phosphorylation by calmodulin antagonists suggested that both control and auxin-treated coleoptiles exhibited Ca2+, and calmodulin-dependent protein phosphorylation in vivo.

  1. Specific MAP-kinase blockade protects against renal damage in homozygous TGR(mRen2)27 rats

    NARCIS (Netherlands)

    de Borst, MH; Navis, G; de Boer, RA; Vis, LM; van Gilst, WH; van Goor, H


    Angiotensin II (AngII) plays an important role in renal damage by acting on hemodynamics, cell-growth, proliferation, and fibrosis, mainly by effects on the AngII type 1 (AT,) receptor. The AT, receptor activates several intracellular signaling molecules such as mitogen-activated protein kinases ext

  2. Volatile anesthetics inhibit the activity of calmodulin by interacting with its hydrophobic site

    Institute of Scientific and Technical Information of China (English)

    ZHOU Miao-miao; XIA Hui-min; LIU Jiao; XU You-nian; XIN Nai-xin; ZHANG Shi-hai


    Background Volatile anesthetics (VAs) may affect varied and complex physiology processes by manipulating Ca2+-calmodulin (CaM).However,the detailed mechanism about the action of VAs on CaM has not been elucidated.This study was undertaken to examine the effects of VAs on the conformational change,hydrophobic site,and downstream signaling pathway of CaM,to explore the possible mechanism of anesthetic action of VAs.Methods Real-time second-harmonic generation (SHG) was performed to monitor the conformational change of CaM in the presence of VAs, each plus 100 μmol/L Ca2+. A hydrophobic fluorescence indicator,8-anilinonaphthalene-1-sulfonate (ANS),was utilized to define whether the VAs would interact with CaM at the hydrophobic site or not.High-performance liquid chromatography (HPLC) was carried out to analyze the activity of CaM-dependent phosphodiesterase (PDE1) in the presence of VAs.The VAs studied were ether,enflurane,isoflurane,and sevoflurane,with their aqueous concentrations 7.6,9.5,11.4 mmol/L; 0.42,0.52,0.62 mmol/L; 0.25,0.31,0.37 mmol/L and 0.47,0.59,0.71 mmol/L respectively,each were equivalent to their 0.8,1.0 and 1.2 concentration for 50% of maximal effect (EC50) for general anesthesia.Results The second-harmonic radiation of CaM in the presence of Ca2+ was largely inhibited by the VAs.The fluorescence intensity of ANS,generated by binding of Ca2+ to CaM,was reversed by the VAs.HPLC results also showed that AMP,the product of the hydrolysis of cAMP by CaM-dependent PDE1,was reduced by the VAs.Conclusions Our findings demonstrate that the above VAs interact with the hydrophobic core of Ca2+-CaM and the interaction results in the inhibition of the conformational change and activity of CaM.This in vitro study may provide us insight into the possible mechanism of anesthetic action of VAs in vivo.

  3. Identification of the Calmodulin-Binding Domains of Fas Death Receptor.

    Directory of Open Access Journals (Sweden)

    Bliss J Chang

    Full Text Available The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD and that of the Fas-associated protein (FADD interact to form the core of the death-inducing signaling complex (DISC, a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD. However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR, biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1 and 251-288 (Fas-Pep2 constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling

  4. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function. (United States)

    Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L; Sheffield, Val C; Golan, Hava; Parvari, Ruti


    Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the Ca

  5. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action (United States)

    Yang, T.; Poovaiah, B. W.


    The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium

  6. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    Directory of Open Access Journals (Sweden)

    Raouf A. Khalil


    Full Text Available Blood pressure (BP is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN. In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i, which forms a complex with calmodulin, activates myosin light chain (MLC kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC. PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK and MAPK kinase (MEK, a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  7. LIK1, a CERK1-interacting kinase, regulates plant immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Mi Ha Le

    Full Text Available Chitin, an integral component of the fungal cell wall, is one of the best-studied microbe-associated molecular patterns. Previous work identified a LysM receptor-like kinase (LysM-RLK1/CERK1 as the primary chitin receptor in Arabidopsis. In order to identify proteins that interact with CERK1, we conducted a yeast two-hybrid screen using the intracellular kinase domain of CERK1 as the bait. This screen identified 54 putative CERK1-interactors. Screening mutants defective in 43 of these interacting proteins identified only two, a calmodulin like protein (At3g10190 and a leucine-rich repeat receptor like kinase (At3g14840, which differed in their response to pathogen challenge. In the present work, we focused on characterizing the LRR-RLK gene where mutations altered responses to chitin elicitation. This LRR-RLK was named LysM RLK1-interacting kinase 1 (LIK1. The interaction between CERK1 and LIK1 was confirmed by co-immunoprecipitation using protoplasts and transgenic plants. In vitro experiments showed that LIK1 was directly phosphorylated by CERK1. In vivo phosphorylation assays showed that Col-0 wild-type plants have more phosphorylated LIK1 than cerk1 mutant plants, suggesting that LIK1 may be directly phosphorylated by CERK1. Lik1 mutant plants showed an enhanced response to both chitin and flagellin elicitors. In comparison to the wild-type plants, lik1 mutant plants were more resistant to the hemibiotrophic pathogen Pseudomonas syringae, but more susceptible to the necrotrophic pathogen Sclerotinia sclerotiorum. Consistent with the enhanced susceptibility to necrotrophs, lik1 mutants showed reduced expression of genes involved in jasmonic acid and ethylene signaling pathways. These data suggest that LIK1 directly interacts with CERK1 and regulates MAMP-triggered innate immunity.

  8. Ca2+-mediated potentiation of the swelling-induced taurine efflux from HeLa cells: On the role of calmodulin and novel protein kinase C isoforms

    DEFF Research Database (Denmark)

    Falktoft, Birgitte; Lambert, Ian H.


    The present work sets out to investigate how Ca2+ regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca2+-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation...

  9. Ca2+/calmodulin-dependent protein kinase IIα (αCaMKII) controls the activity of the dopamine transporter: Implications for angelman syndrome

    NARCIS (Netherlands)

    T. Steinkellner (Thomas); J.-W. Yang (Jae-Won); T.R. Montgomery (Therese); W.-Q. Chen (Wei-Qiang); M.-T. Winkler (Marie-Therese); S. Sucic (Sonja); G. Lubec (Gert); M. Freissmuth (Michael); Y. Elgersma (Ype); H.H. Sitte (Harald); O. Kudlacek (Oliver)


    textabstractThe dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are

  10. Role of signal transduction crosstalk between adenylyl cyclase and MAP kinase in hippocampus-dependent memory. (United States)

    Xia, Zhengui; Storm, Daniel R


    One of the intriguing questions in neurobiology is how long-term memory (LTM) traces are established and maintained in the brain. Memory can be divided into at least two temporally and mechanistically distinct forms. Short-term memory (STM) lasts no longer than several hours, while LTM persists for days or longer. A crucial step in the generation of LTM is consolidation, a process in which STM is converted to LTM. Hippocampus-dependent LTM depends on activation of Ca(2+), Erk/MAP kinase (MAPK), and cAMP signaling pathways, as well as de novo gene expression and translation. One of the transcriptional pathways strongly implicated in LTM is the CREB/CRE (calcium, cAMP response element) transcriptional pathway. Interestingly, this transcriptional pathway may also contribute to other forms of neuroplasticity including adaptive responses to drugs. Evidence discussed in this review indicates that activation of the Erk1/2 MAP Kinase (MAPK)/CRE transcriptional pathway during the formation of hippocampus-dependent memory depends on calmodulin (CaM)-stimulated adenylyl cyclases.

  11. ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response. (United States)

    Lin, Xiaozeng; Yan, Judy; Tang, Damu


    DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signal-regulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs.

  12. An ion-current mutant of Paramecium tetraurelia with defects in the primary structure and post-translational N-methylation of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Wallen-Friedman, M.A.


    My work on pantophobiac A{sup 2} (pntA{sup 2}), a behavioral mutant of Paramecium tetraurelia, suggest that the Ca{sup ++}-binding protein calmodulin (CaM), and post-translation N-methylation of CaM, are important for Ca{sup ++}-related ion-current function. Calmodulin from wild-type Paramecium has two sites of lysine-N-methylation. Both of these sites are almost fully methylated in vivo; thus wild-type calmodulin is a poor substrate for N-methylation in vitro. In contrast, pntA/{sup 2} CaM can be heavily N-methylated in vitro, suggesting that the mutant calmodulin is under-methylated in vivo. Amino-acid composition analysis showed that CaM lysine 115 is undermethylated in pntA{sup 2}. Once pntA{sup 2} CaM is N-methylated, the (methyl-{sup 3}H) group does not turn over in either wild-type or pntA{sup 2} cytoplasmic fractions. The methylating enzymes in pntA{sup 2} high-speed supernatant fractions are active, but may be less robust than those of the wild type, suggesting a possible control of these enzymes by CaM.

  13. Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene replacement system

    DEFF Research Database (Denmark)

    Panina, Svetlana; Stephan, Alexander; la Cour, Jonas Marstrand;


    Calmodulin (CaM) was shown to be essential for survival of lower eukaryotes by gene deletion experiments. So far, no CaM gene deletion was reported in higher eukaryotes. In vertebrates, CaM is expressed from several genes, which encode an identical protein, making it difficult to generate a model...

  14. Dibenzoylmethane exerts metabolic activity through regulation of AMP-activated protein kinase (AMPK-mediated glucose uptake and adipogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Nami Kim

    Full Text Available Dibenzoylmethane (DBM has been shown to exert a variety of beneficial effects on human health. However, the mechanism of action is poorly understood. In this study, DBM increased phosphorylation of AMP-activated protein kinase (AMPK and stimulated glucose uptake in a skeletal muscle cell line. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor blocked DBM-induced glucose uptake. DBM increased the concentration of intracellular calcium and glucose uptake due to DBM was abolished by STO-609 (a calcium/calmodulin-dependent protein kinase inhibitor. DBM stimulated phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK, which was blocked by pretreatment with compound C, an AMPK inhibitor. The expression of glucose transporter type 4 (GLUT4 was increased by DBM. The translocation of GLUT4 to the plasma membrane was also increased by DBM in AMPK dependently. In addition, DBM suppressed weight gain and prevented fat accumulation in the liver and abdomen in mice fed a high-fat diet. In pre-adipocyte cells, DBM decreased the activity of acetyl-CoA carboxylase (ACC, the rate-limiting enzyme of fatty acid synthesis. Expression of the adipogenic gene, fatty acid synthase (FAS, was suppressed by DBM in an AMPK-dependent manner. These results showed that the beneficial metabolic effects of DBM might be due to regulation of glucose uptake via AMPK in skeletal muscle and inhibition of adipogenesis in pre-adipocytes.

  15. Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain (United States)

    Hwang, I.; Harper, J. F.; Liang, F.; Sze, H.


    To investigate how calmodulin regulates a unique subfamily of Ca(2+) pumps found in plants, we examined the kinetic properties of isoform ACA2 identified in Arabidopsis. A recombinant ACA2 was expressed in a yeast K616 mutant deficient in two endogenous Ca(2+) pumps. Orthovanadate-sensitive (45)Ca(2+) transport into vesicles isolated from transformants demonstrated that ACA2 is a Ca(2+) pump. Ca(2+) pumping by the full-length protein (ACA2-1) was 4- to 10-fold lower than that of the N-terminal truncated ACA2-2 (Delta2-80), indicating that the N-terminal domain normally acts to inhibit the pump. An inhibitory sequence (IC(50) = 4 microM) was localized to a region within valine-20 to leucine-44, because a peptide corresponding to this sequence lowered the V(max) and increased the K(m) for Ca(2+) of the constitutively active ACA2-2 to values comparable to the full-length pump. The peptide also blocked the activity (IC(50) = 7 microM) of a Ca(2+) pump (AtECA1) belonging to a second family of Ca(2+) pumps. This inhibitory sequence appears to overlap with a calmodulin-binding site in ACA2, previously mapped between aspartate-19 and arginine-36 (J.F. Harper, B. Hong, I. Hwang, H.Q. Guo, R. Stoddard, J.F. Huang, M.G. Palmgren, H. Sze inverted question mark1998 J Biol Chem 273: 1099-1106). These results support a model in which the pump is kept "unactivated" by an intramolecular interaction between an autoinhibitory sequence located between residues 20 and 44 and a site in the Ca(2+) pump core that is highly conserved between different Ca(2+) pump families. Results further support a model in which activation occurs as a result of Ca(2+)-induced binding of calmodulin to a site overlapping or immediately adjacent to the autoinhibitory sequence.

  16. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    YongliangZhang; ChenDong


    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses. Cellular & Molecular Immunology. 2005;2(1):20-27.

  17. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Yongliang Zhang; Chen Dong


    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses.

  18. Characterization of calmodulin-Fas death domain interaction: an integrated experimental and computational study. (United States)

    Fancy, Romone M; Wang, Lingyun; Napier, Tiara; Lin, Jiabei; Jing, Gu; Lucius, Aaron L; McDonald, Jay M; Zhou, Tong; Song, Yuhua


    The Fas death receptor-activated death-inducing signaling complex (DISC) regulates apoptosis in many normal and cancer cells. Qualitative biochemical experiments demonstrate that calmodulin (CaM) binds to the death domain of Fas. The interaction between CaM and Fas regulates Fas-mediated DISC formation. A quantitative understanding of the interaction between CaM and Fas is important for the optimal design of antagonists for CaM or Fas to regulate the CaM-Fas interaction, thus modulating Fas-mediated DISC formation and apoptosis. The V254N mutation of the Fas death domain (Fas DD) is analogous to an identified mutant allele of Fas in lpr-cg mice that have a deficiency in Fas-mediated apoptosis. In this study, the interactions of CaM with the Fas DD wild type (Fas DD WT) and with the Fas DD V254N mutant were characterized using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and molecular dynamics (MD) simulations. ITC results reveal an endothermic binding characteristic and an entropy-driven interaction of CaM with Fas DD WT or with Fas DD V254N. The Fas DD V254N mutation decreased the association constant (Ka) for CaM-Fas DD binding from (1.79 ± 0.20) × 10(6) to (0.88 ± 0.14) × 10(6) M(-1) and slightly increased a standard state Gibbs free energy (ΔG°) for CaM-Fas DD binding from -8.87 ± 0.07 to -8.43 ± 0.10 kcal/mol. CD secondary structure analysis and MD simulation results did not show significant secondary structural changes of the Fas DD caused by the V254N mutation. The conformational and dynamical motion analyses, the analyses of hydrogen bond formation within the CaM binding region, the contact numbers of each residue, and the electrostatic potential for the CaM binding region based on MD simulations demonstrated changes caused by the Fas DD V254N mutation. These changes caused by the Fas DD V254N mutation could affect the van der Waals interactions and electrostatic interactions between CaM and Fas DD, thereby affecting

  19. Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling. (United States)

    Holopainen, Tanja; Räsänen, Markus; Anisimov, Andrey; Tuomainen, Tomi; Zheng, Wei; Tvorogov, Denis; Hulmi, Juha J; Andersson, Leif C; Cenni, Bruno; Tavi, Pasi; Mervaala, Eero; Kivelä, Riikka; Alitalo, Kari


    Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy.

  20. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL

    Directory of Open Access Journals (Sweden)

    Hastie C James


    Full Text Available Abstract Background Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. Results Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL. Conclusion All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.

  1. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  2. Expression, purification, and characterization of proteins from high-quality combinatorial libraries of the mammalian calmodulin central linker. (United States)

    Bradley, Luke H; Bricken, Michael L; Randle, Charlotte


    Combinatorial libraries offer an attractive approach towards exploring protein sequence, structure and function. Although several strategies introduce sequence diversity, the likelihood of identifying proteins with novel functions is increased when the library of genes encodes for folded and soluble structures. Here we present the first application of the binary patterning approach of combinatorial protein library design to the unique central linker region of the highly-conserved protein, calmodulin (CaM). We show that this high-quality approach translates very well to the CaM protein scaffold: all library members over-express and are functionally diverse, having a range of conformations in the presence and absence of calcium as determined by circular dichroism spectroscopy. Collectively, these data support that the binary patterning approach, when applied to the highly-conserved protein fold, can yield large collections of folded, soluble and highly-expressible proteins.

  3. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations

    DEFF Research Database (Denmark)

    Shamgar, Liora; Ma, Lijuan; Schmitt, Nicole;


    The slow IKS K+ channel plays a major role in repolarizing the cardiac action potential and consists of the assembly of KCNQ1 and KCNE1 subunits. Mutations in either KCNQ1 or KCNE1 genes produce the long-QT syndrome, a life-threatening ventricular arrhythmia. Here, we show that long-QT mutations...... located in the KCNQ1 C terminus impair calmodulin (CaM) binding, which affects both channel gating and assembly. The mutations produce a voltage-dependent macroscopic inactivation and dramatically alter channel assembly. KCNE1 forms a ternary complex with wild-type KCNQ1 and Ca(2+)-CaM that prevents...... the risk of ventricular arrhythmias. Udgivelsesdato: 2006-Apr-28...

  4. Identification of a Denitrase Activity Against Calmodulin in Activated Macrophages Using High-Field Liquid Chromatography - FTICR Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; Lourette, Natacha M.; Boschek, Curt B.; Bigelow, Diana J.; Smith, Richard D.; Pasa-Tolic, Liljiana; Squier, Thomas C.


    We have identified a denitrase activity in macrophages that is upregulated following macrophage activation, which is shown by mass spectrometry to recognize nitrotyrosines in the calcium signaling protein calmodulin (CaM) and convert them to their native tyrosine structure without the formation of any aminotyrosine. Comparable extents of methionine sulfoxide reduction are also observed that are catalyzed by endogenous methionine sulfoxide reductases. Competing with repair processes, oxidized CaM is a substrate for a peptidase activity that results in the selective cleavage of the C-terminus lysine (i.e., Lys148) that is expected to diminish CaM function. Thus, competing repair and peptidase activities define the abundances and functionality of CaM to modulate cellular metabolism in response to oxidative stress, where the presence of the truncated CaM species provides a useful biomarker for the transient appearance of oxidized CaM.

  5. The involvement of intracellular calcium ion concentration and calmodulin in the 25-hydroxylation of cholecalciferol in ovine and rat liver. (United States)

    Corlett, S C; Chaudhary, M S; Tomlinson, S; Care, A D


    The effect of Ca2+ ion concentration on the 25 hydroxylation of tritiated cholecalciferol (3HD3) was investigated using homogenates of ovine liver from vitamin D replete sheep. A significant decrease in the production of 25 hydroxycholecalciferol (25OHD3) was observed when the concentration of Ca2+ in the homogenate was raised above 0.68 mmol/l by the addition of calcium gluconate. Similarly, a final concentration of 37 mumol EGTA/1 (equivalent to a Ca2+ concentration of 26.5 nmol/l) was associated with a 50% reduction of 25OHD3 production. That is, a broad bell-shaped relationship was observed between the production of 25OHD3 and the Ca2+ concentration in the homogenate. These changes in the rate of production of 25OHD3 were reproduced with hepatocytes from vitamin D replete rats, prepared by collagenase perfusion, using the drugs dantrolene sodium (DaNa) to reduce (ED50 = 57 mmol/l) and veratridine to increase (ED50 = 550 mmol/l) the intracellular Ca2+ concentration. Hepatocytes from vitamin D replete rats also showed a reduction in 25 hydroxylation of D3 (ED50 = 6 ng/ml) in response to the addition of 1-25 dihydroxycholecalciferol (1-25 (OH)2D3). The calmodulin antagonists; W7, compound 48/80, trifluoperazine (TFP) and calmidazolium (R24571) were all found to effect a dose response inhibition of the 25 hydroxylation of cholecalciferol by homogenates of ovine liver. R24571 had a similar inhibitory effect (ED50 = 70 mumol/l) upon the 25 hydroxylase enzyme of rat hepatocytes. It is concluded that the 25 hydroxylation of cholecalciferol in liver of vitamin D replete rats and sheep is calcium sensitive and is reduced in the presence of increased concentrations of 1,25(OH)2D3. Calmodulin may also be involved in the regulation of hepatocyte 25-hydroxylase activity by Ca2+.

  6. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants

    Institute of Scientific and Technical Information of China (English)

    Jianrong Sang; Aying Zhang; Fan Lin; Mingpu Tan; Mingyi Jiang


    Using pharmacological and biochemical approaches,the signaling pathways between hydrogen peroxide (H2O2),calcium (Ca2+)-calmodulin (CAM),and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants.Treatments with ABA,H2O2,and CaCI2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves.However,such increases were blocked by the pretreatments with Ca2+ inhibitors and CaM antagonists.Meanwhile,pretreatments with two NOS inhibitors also suppressed the Ca2+-induced increase in the production of NO.On the other hand,treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaMI) gene and the contents of CaM in leaves of maize plants,and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor.Moreover,SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4),cytosolic ascorbate peroxidase (cAPX),and glutathione reductase 1 (GRI) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca2+ inhibitors and CaM antagonists.Our results suggest that Ca2+-CaM functions both upstream and downstream of NO production,which is mainly from NOS,in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.

  7. Hypotonic shock modulates Na(+ current via a Cl(- and Ca(2+/calmodulin dependent mechanism in alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    André Dagenais

    Full Text Available Alveolar epithelial cells are involved in Na(+ absorption via the epithelial Na(+ channel (ENaC, an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl(- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl(- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC inhibitor reduced the total and ENaC currents, showing that transcellular Cl(- transport plays a major role in that process. During hypotonic shock, a basolateral Cl(- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca(2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl(- influx as well as Ca(2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock.

  8. Receptor-mediated stimulation of lipid signalling pathways in CHO cells elicits the rapid transient induction of the PDE1B isoform of Ca2+/calmodulin-stimulated cAMP phosphodiesterase. (United States)

    Spence, S; Rena, G; Sullivan, M; Erdogan, S; Houslay, M D


    Chinese hamster ovary cells (CHO cells) do not exhibit any Ca2+/calmodulin-stimulated cAMP phosphodiesterase (PDE1) activity. Challenge of CHO cells with agonists for endogenous P2-purinoceptors, lysophosphatidic acid receptors and thrombin receptors caused a similar rapid transient induction of PDE1 activity in each instance. This was also evident on noradrenaline challenge of a cloned CHO cell line transfected so as to overexpress alpha 1B-adrenoceptors. This novel PDE1 activity appeared within about 15 min of exposure to ligands, rose to a maximum value within 30 min to 1 h and then rapidly decreased. In each case, the expression of novel PDE1 activity was blocked by the transcriptional inhibitor actinomycin D. Challenge with insulin of either native CHO cells or a CHO cell line transfected so as to overexpress the human insulin receptor failed to induce PDE1 activity. Reverse transcriptase-PCR analyses, using degenerate primers able to detect the PDE1C isoform, did not amplify any fragment from RNA preparations of CHO cells expressing PDE1 activity, although they did so from the human thyroid carcinoma FTC133 cell line. Reverse transcriptase-PCR analyses, using degenerate primers able to detect the PDE1A and PDE1B isoforms, successfully amplified a fragment of the predicted size from RNA preparations of both CHO cells expressing PDE1 activity and human Jurkat T-cells. Sequencing of the PCR products, generated using the PDE1A/B primers, yielded a novel sequence which, by analogy with sequences reported for bovine and murine PDE1B forms, suggests that the PDE1 species induced in CHO cells through protein kinase C activation and that expressed in Jurkat T-cells are PDE1B forms.

  9. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    Directory of Open Access Journals (Sweden)

    Marialuisa Moccia

    Full Text Available Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI, ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  10. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase. (United States)

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S; Carlomagno, Francesca; Santoro, Massimo


    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  11. Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism. (United States)

    Ferguson, C; Kern, M; Audesirk, G


    Inorganic lead (Pb2+) activates calmodulin, which in turn may stimulate many other cellular processes. The plasma membrane Ca2+ ATPase is a calmodulin-stimulated enzyme that plays the major role in regulating the "resting" intracellular free Ca2+ ion concentration, [Ca2+]i. We hypothesized that exposing neurons to low levels of Pb2+ would cause Pb2+ to enter the cytoplasm, and that intracellular Pb2+, by activating calmodulin, would stimulate plasma membrane Ca2+ ATPase activity, thereby increasing Ca2+ extrusion and reducing [Ca2+]i. We used the ratiometric Ca2+ indicator fura-2 to estimate changes in [Ca2+]i. In vitro calibrations of fura-2 with solutions of defined free Ca2+ and free Pb2+ concentrations showed that, at free Ca2+ concentrations from 10 nM to 1000 nM, adding Pb2+ caused either no significant change in the F340/F380 ratio (free Pb2+ concentrations from 100 fM to 1 pM) or increased the F340/F380 ratio (free Pb2+ concentrations from 5 to 50 pM). Therefore, fura-2 should be suitable for estimating Pb2+-induced decreases in [Ca2+]i, but not increases in [Ca2+]i. We exposed cultured embryonic rat hippocampal neurons to 100 nM Pb2+ for periods from 1 hour to 2 days and measured the F340/F380 ratio; the ratio decreased significantly by 9 to 16% at all time points, indicating that Pb2+ exposure decreased [Ca2+]i. In neurons loaded with 45Ca, Pb2+ exposure increased Ca2+ efflux for at least two hours; by 24 hours, Ca2+ efflux returned to control levels. Influx of 45Ca was not altered by Pb2+ exposure. Low concentrations (250 nM) of the calmodulin inhibitor calmidazolium had no effect on either 45Ca efflux or on the F340/F380 ratio in fura-loaded control neurons, but completely eliminated the increase in 45Ca efflux and decrease in F340/F380 ratio in Pb2+-exposed neurons. Zaldoride, another calmodulin inhibitor, also eliminated the decrease in F340/F380 ratio in Pb2+-exposed neurons. We conclude that Pb2+ exposure decreases [Ca2+]i and increases Ca2+ efflux


    Directory of Open Access Journals (Sweden)

    Sabitha. K


    Full Text Available Maternal embryonic leucine zipper kinase (MELK, a member of the AMP serine/threonine kinase family, exhibits multiple features consistent with the potential utility of this gene as an anticancer target. Reports show that MELK functions as a cancer-specific protein kinase, and that down-regulation of MELK results in growth suppression of breast cancer cells. There are many inhibitors which bind to kinases and are in clinical trials too. In our study we have taken a library of different inhibitors and docked those using GLIDE Induced Fit. From docking result we can conclude that Syk inhibitor II, Rho kinase inhibitor IV, p38 MAP Kinase Inhibitor III, HA 1004, Dihydrochloride and IKK -2 inhibitor VI have good binding affinity towards MELK and may have anticancer activity.

  13. Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2 beta

    DEFF Research Database (Denmark)

    Boldyreff, B; James, P; Staudenmann, W;


    Human casein kinase-2 (CK-2) subunits alpha and beta were bicistronically expressed in bacteria. The recombinant holoenzyme shared all investigated properties with the native CK-2 from mammalian sources (rat liver, Krebs II mouse ascites tumour cells). Contrary to recombinant human CK-2 produced...

  14. The alterations of Ca2+/calmodulin/CaMKII/CaV1.2 signaling in experimental models of Alzheimer's disease and vascular dementia. (United States)

    Min, Dongyu; Guo, Feng; Zhu, Shu; Xu, Xiaoxue; Mao, Xiaoyuan; Cao, Yonggang; Lv, Xintong; Gao, Qinghua; Wang, Lei; Chen, Tianbao; Shaw, Chris; Hao, Liying; Cai, Jiqun


    The two critical forms of dementia are Alzheimer's disease (AD) and vascular dementia (VD). The alterations of Ca(2+)/calmodulin/CaMKII/CaV1.2 signaling in AD and VD have not been well elucidated. Here we have demonstrated changes in the levels of CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF proteins by Western blot analysis and the co-localization of p-CaMKII/CaV1.2 by double-labeling immunofluorescence in the hippocampus of APP/PS1 mice and VD gerbils. Additionally, expression of these proteins and intracellular calcium levels were examined in cultured neurons treated with Aβ1-42. The expression of CaV1.2 protein was increased in VD gerbils and in cultured neurons but decreased in APP/PS1 mice; the expression of calmodulin protein was increased in APP/PS1 mice and VD gerbils; levels of p-CaMKII, p-CREB and BDNF proteins were decreased in AD and VD models. The number of neurons in which p-CaMKII and CaV1.2 were co-localized, was decreased in the CA1 and CA3 regions in two models. Intracellular calcium was increased in the cultured neurons treated with Aβ1-42. Collectively, our results suggest that the alterations in CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF can be reflective of an involvement in the impairment in memory and cognition in AD and VD models.

  15. The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively. (United States)

    Chigri, Fatima; Flosdorff, Sandra; Pilz, Sahra; Kölle, Eva; Dolze, Esther; Gietl, Christine; Vothknecht, Ute C


    Calmodulin (CaM) is a ubiquitous sensor/transducer of calcium signals in eukaryotic organisms. While CaM mediated calcium regulation of cytosolic processes is well established, there is growing evidence for the inclusion of organelles such as chloroplasts, mitochondria and peroxisomes into the calcium/calmodulin regulation network. A number of CaM-binding proteins have been identified in these organelles and processes such as protein import into chloroplasts and mitochondria have been shown to be governed by CaM regulation. What have been missing to date are the mediators of this regulation since no CaM or calmodulin-like protein (CML) has been identified in any of these organelles. Here we show that two Arabidopsis CMLs, AtCML3 and AtCML30, are localized in peroxisomes and mitochondria, respectively. AtCML3 is targeted via an unusual C-terminal PTS1-like tripeptide while AtCML30 utilizes an N-terminal, non-cleavable transit peptide. Both proteins possess the typical structure of CaMs, with two pairs of EF-hand motifs separated by a short linker domain. They furthermore display common characteristics, such as calcium-dependent alteration of gel mobility and calcium-dependent exposure of a hydrophobic surface. This indicates that they can function in a similar manner as canonical CaMs. The presence of close homologues to AtCML3 and AtCML30 in other plants further indicates that organellar targeting of these CMLs is not a specific feature of Arabidopsis. The identification of peroxisomal and mitochondrial CMLs is an important step in the understanding how these organelles are integrated into the cellular calcium/calmodulin signaling pathways.

  16. Autophosphorylation of [alpha]CaMKII is Differentially Involved in New Learning and Unlearning Mechanisms of Memory Extinction (United States)

    Kimura, Ryoichi; Silva, Alcino J.; Ohno, Masuo


    Accumulating evidence indicates the key role of [alpha]-calcium/calmodulin-dependent protein kinase II ([alpha]CaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which [alpha]CaMKII may mediate extinction by using…

  17. Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threonine kinase that blocks the secretion of beta-lactamase by phosphorylation. (United States)

    Udo, H; Munoz-Dorado, J; Inouye, M; Inouye, S


    A gene, pkn2, encoding a Myxococcus xanthus protein with significant similarities to eukaryotic protein serine/threonine kinases, was cloned using the polymerase chain reaction. The open reading frame for the protein, beginning with a GUG initiation codon, consists of 830 amino acids. The amino-terminal 279 residues show 37% identity to catalytic domain of Pkn1, another protein serine/threonine kinase expressed during the development at the onset of sporulation. The catalytic domain of Pkn2 contains 27% and 25% identity to rat Ca2+/calmodulin-dependent protein kinase and Bos taurus rhodopsin kinase, respectively. In the middle of the carboxy-terminal regulatory domain, there is a typical transmembrane domain consisting of 18 hydrophobic residues. The gene product, Pkn2, produced in Escherichia coli under a T7 promoter was phosphorylated at both serine and threonine residues. TEM-beta-lactamase produced in E. coli was found to serve as an effective substrate for Pkn2, phosphorylated only at threonine residues, shifting its apparent molecular mass from 29 to 44 kD. The phosphorylated beta-lactamase was unable to be secreted into the periplasmic space and localized in the cytoplasmic and membrane fractions. Analysis of phoA fusions with pkn2 demonstrated that Pkn2 is a transmembrane protein with the kinase domain in the cytoplasm and the 207-residue carboxy-terminal domain outside the cytoplasmic membrane. Disruption of pkn2 showed no effect on vegetative growth but reduced the yield of myxospores by 30%-50%. On the basis of the present results, we propose that Pkn2 is a transmembrane protein serine/threonine kinase that regulates the activity of endogenous beta-lactamase or related enzymes in response to an external signal yet to be identified.

  18. Roles of extracellular Ca++ and calmodulin in roxatidine-stimulated secretion and synthesis of mucus by cultured rabbit gastric mucosal cells. (United States)

    Takahashi, S; Okabe, S


    We found that roxatidine stimulates mucus secretion and synthesis by cultured rabbit gastric mucosal cells. In this study, we examined the roles of the extracellular Ca++ and calmodulin in these effects of roxatidine. Reduction of the extracellular Ca++ concentration decreased the roxatidine-induced increases in mucus secretion and synthesis by gastric mucosal cells. Roxatidine concentration-dependently promoted Ca++ influx and caused an increases in intracellular Ca++. After the addition of roxatidine, the increases in the secretion and synthesis reflected those in Ca++ influx and intracellular Ca++ concentration and then disappeared as Ca++ influx and intracellular Ca++ concentration returned to the control level. The roxatidine-stimulated Ca++ influx and intracellular Ca++ mobilization were abolished by reduction of the extracellular Ca++ concentration. Nifedipine and diltiazem inhibited both the effects of roxatidine, but even at 10 microM, the inhibition was partial. Furthermore, W-7 (a calmodulin antagonist) completely abolished the effects of roxatidine on mucus secretion and synthesis without causing a reduction of the stimulated Ca++ influx. Taken together, these results suggest that roxatidine promotes Ca++ influx through both voltage-sensitive Ca++ channels and other Ca++ entry gates and the subsequent intracellular Ca++ mobilization, leading to potentiation of mucus secretion and synthesis by rabbit gastric mucosal cells. In addition, Ca(++)-activated calmodulin may play a pivotal role in these stimulatory effects of roxatidine.

  19. Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)-calmodulin-Munc13-1 signaling. (United States)

    Lipstein, Noa; Sakaba, Takeshi; Cooper, Benjamin H; Lin, Kun-Han; Strenzke, Nicola; Ashery, Uri; Rhee, Jeong-Seop; Taschenberger, Holger; Neher, Erwin; Brose, Nils


    Short-term synaptic plasticity, the dynamic alteration of synaptic strength during high-frequency activity, is a fundamental characteristic of all synapses. At the calyx of Held, repetitive activity eventually results in short-term synaptic depression, which is in part due to the gradual exhaustion of releasable synaptic vesicles. This is counterbalanced by Ca(2+)-dependent vesicle replenishment, but the molecular mechanisms of this replenishment are largely unknown. We studied calyces of Held in knockin mice that express a Ca(2+)-Calmodulin insensitive Munc13-1(W464R) variant of the synaptic vesicle priming protein Munc13-1. Calyces of these mice exhibit a slower rate of synaptic vesicle replenishment, aberrant short-term depression and reduced recovery from synaptic depression after high-frequency stimulation. Our data establish Munc13-1 as a major presynaptic target of Ca(2+)-Calmodulin signaling and show that the Ca(2+)-Calmodulin-Munc13-1 complex is a pivotal component of the molecular machinery that determines short-term synaptic plasticity characteristics.

  20. Structural Insights into the Calcium-Mediated Allosteric Transition in the C-Terminal Domain of Calmodulin from Nuclear Magnetic Resonance Measurements. (United States)

    Kukic, Predrag; Lundström, Patrik; Camilloni, Carlo; Evenäs, Johan; Akke, Mikael; Vendruscolo, Michele


    Calmodulin is a two-domain signaling protein that becomes activated upon binding cooperatively two pairs of calcium ions, leading to large-scale conformational changes that expose its binding site. Despite significant advances in understanding the structural biology of calmodulin functions, the mechanistic details of the conformational transition between closed and open states have remained unclear. To investigate this transition, we used a combination of molecular dynamics simulations and nuclear magnetic resonance (NMR) experiments on the Ca(2+)-saturated E140Q C-terminal domain variant. Using chemical shift restraints in replica-averaged metadynamics simulations, we obtained a high-resolution structural ensemble consisting of two conformational states and validated such an ensemble against three independent experimental data sets, namely, interproton nuclear Overhauser enhancements, (15)N order parameters, and chemical shift differences between the exchanging states. Through a detailed analysis of this structural ensemble and of the corresponding statistical weights, we characterized a calcium-mediated conformational transition whereby the coordination of Ca(2+) by just one oxygen of the bidentate ligand E140 triggers a concerted movement of the two EF-hands that exposes the target binding site. This analysis provides atomistic insights into a possible Ca(2+)-mediated activation mechanism of calmodulin that cannot be achieved from static structures alone or from ensemble NMR measurements of the transition between conformations.

  1. Reciprocal regulation of protein kinase and pyruvate kinase activities of pyruvate kinase M2 by growth signals. (United States)

    Gao, Xueliang; Wang, Haizhen; Yang, Jenny J; Chen, Jing; Jie, Jiang; Li, Liangwei; Zhang, Yinwei; Liu, Zhi-Ren


    Pyruvate kinase isoform M2 (PKM2) is an enzyme-catalyzing conversion of phosphoenolpyruvate to pyruvate in the glycolysis pathway. It was demonstrated that PKM2 interacts with tyrosine phosphopeptide, and the interaction with the tyrosine phosphopeptide affects the pyruvate kinase activity of PKM2. Our experiments suggest that PKM2 is also an active protein kinase (Gao, X., Wang, H., Yang, J. J., Liu, X., and Liu, Z. R. (2012) Mol. Cell 45, 598-609). We report here that growth signals reciprocally regulate the pyruvate kinase and protein kinase activities of PKM2 by different mechanisms. On the one hand, growth signals induce protein tyrosine phosphorylations. The tyrosine-phosphorylated protein(s) regulates the conversion of pyruvate kinase and protein kinase of PKM2 by directly interacting with PKM2. Binding of the tyrosyl-phosphorylated proteins at the fructose 1,6-bisphosphate-binding site converts the tetrameric PKM2 to a dimer. On the other hand, growth stimulations also lead to PKM2 phosphorylation, which consequently regulates the conversion of protein kinase and pyruvate kinase activities. Growth factor stimulations significantly increase the dimer/tetramer PKM2 ratio in cells and consequently activate the protein kinase activity of PKM2. Our study suggests that the conversion between the pyruvate kinase and protein kinase activities of PKM2 may be an important mechanism mediating the effects of growth signals in promoting cell proliferation.

  2. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases

    Directory of Open Access Journals (Sweden)

    Laurent Meijer


    Full Text Available Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dualspecificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.

  3. Inhibitors of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    LIU Shiying; JIANG Yuyang; CAO Jian; LIU Feng; MA Li; ZHAO Yufen


    Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups of protein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family. They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer, inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.

  4. Deferasirox in pyruvate kinase deficiency


    Deeren, Dries


    Deferasirox in pyruvate kinase deficiency phone: +32-51-237437 (Deeren, Dries) (Deeren, Dries) Department of Haematology, Heilig-Hartziekenhuis Roeselare-Menen vzw - Wilgenstraat 2 - B-8800 - Roeselare - BELGIUM (Deeren, Dries) BELGIUM Registration: 2008-09-10 Received: 2008-09-05 Accepted: 2008-09-10 ePublished: 2008-09-23

  5. Non-Viral Deoxyribonucleoside Kinases

    DEFF Research Database (Denmark)

    Christiansen, Louise Slot; Munch-Petersen, Birgitte; Knecht, Wolfgang


    Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of gr...

  6. Renal targeting of kinase inhibitors

    NARCIS (Netherlands)

    Dolman, M. E. M.; Fretz, M. M.; Segers, Gj. W.; Lacombe, M.; Prakash, J.; Storm, G.; Hennink, W. E.; Kok, R. J.


    Activation of proximal tubular cells by fibrotic and inflammatory mediators is an important hallmark of chronic kidney disease. We have developed a novel strategy to intervene in renal fibrosis, by means of locally delivered kinase inhibitors. Such compounds will display enhanced activity within tub

  7. Monoclonal Antibodies Against Xenopus Greatwall Kinase


    WANG Ling; Fisher, Laura A.; Wahl, James K.; Peng, Aimin


    Mitosis is known to be regulated by protein kinases, including MPF, Plk1, Aurora kinases, and so on, which become active in M-phase and phosphorylate a wide range of substrates to control multiple aspects of mitotic entry, progression, and exit. Mechanistic investigations of these kinases not only provide key insights into cell cycle regulation, but also hold great promise for cancer therapy. Recent studies, largely in Xenopus, characterized a new mitotic kinase named Greatwall (Gwl) that pla...

  8. Structural analysis of the complex between calmodulin and full-length myelin basic protein, an intrinsically disordered molecule. (United States)

    Majava, Viivi; Wang, Chaozhan; Myllykoski, Matti; Kangas, Salla M; Kang, Sung Ung; Hayashi, Nobuhiro; Baumgärtel, Peter; Heape, Anthony M; Lubec, Gert; Kursula, Petri


    Myelin basic protein (MBP) is present between the cytoplasmic leaflets of the compact myelin membrane in both the peripheral and central nervous systems, and characterized to be intrinsically disordered in solution. One of the best-characterized protein ligands for MBP is calmodulin (CaM), a highly acidic calcium sensor. We pulled down MBP from human brain white matter as the major calcium-dependent CaM-binding protein. We then used full-length brain MBP, and a peptide from rodent MBP, to structurally characterize the MBP-CaM complex in solution by small-angle X-ray scattering, NMR spectroscopy, synchrotron radiation circular dichroism spectroscopy, and size exclusion chromatography. We determined 3D structures for the full-length protein-protein complex at different stoichiometries and detect ligand-induced folding of MBP. We also obtained thermodynamic data for the two CaM-binding sites of MBP, indicating that CaM does not collapse upon binding to MBP, and show that CaM and MBP colocalize in myelin sheaths. In addition, we analyzed the post-translational modifications of rat brain MBP, identifying a novel MBP modification, glucosylation. Our results provide a detailed picture of the MBP-CaM interaction, including a 3D model of the complex between full-length proteins.

  9. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Xing-Xia Li


    Full Text Available The shell of the pearl oyster (Pinctada fucata mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization.

  10. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. (United States)

    Otto, Edgar A; Loeys, Bart; Khanna, Hemant; Hellemans, Jan; Sudbrak, Ralf; Fan, Shuling; Muerb, Ulla; O'Toole, John F; Helou, Juliana; Attanasio, Massimo; Utsch, Boris; Sayer, John A; Lillo, Concepcion; Jimeno, David; Coucke, Paul; De Paepe, Anne; Reinhardt, Richard; Klages, Sven; Tsuda, Motoyuki; Kawakami, Isao; Kusakabe, Takehiro; Omran, Heymut; Imm, Anita; Tippens, Melissa; Raymond, Pamela A; Hill, Jo; Beales, Phil; He, Shirley; Kispert, Andreas; Margolis, Benjamin; Williams, David S; Swaroop, Anand; Hildebrandt, Friedhelm


    Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.

  11. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas (United States)

    Li, Xing-Xia; Yu, Wen-Chao; Cai, Zhong-Qiang; He, Cheng; Wei, Na


    The shell of the pearl oyster (Pinctada fucata) mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas) is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM) is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM) and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization. PMID:27703977

  12. The Role of Extracellular Ca2+Influx, Intracellular Ca2+ Release and Calmodulin in Mouse Egg Fertilization

    Institute of Scientific and Technical Information of China (English)


    The effects of various Ca2+-modifying drugs on moue egg fertilization were studied. Ca2+ chelator, ethylen glycol-bis-(2-aminoethyl)-tetracetic acid (EGTA) ,and calmodulin (CaM) antagonist,trifluoperzaine (TFP) ,inhibited fertilization in a dose-dependent manner,whild Ca2+ channel bolcker,verapamil ,did not have any effect. When intracellular Ca2+ release was blocked by 8-(N, N-diethylamino) octy1-3,4,5-trimethoxy- benzonate (TMB-8) or the Ca2+ oscillations were inhibited by an inhibitor of endoplasmic reticulum Ca2+-AT- Pase,thapsigargin,the second polar body emission and pronuclear formation were significantly decreased. In contrast,inhibition of intracellular Ca2+ release via bolckage of inositol 1,4,5-triphosphate (IP3) production by neomycin or lithium did not affect fertilization. The results sugest that both extracellular influx,intracellu- lar Ca2+ release and CaM activation are required for normal fertilization. However ,extracellular influx through voltage-gated Ca2+ channel and intracellular release induced by IP3 are not the only pathways for producing Ca2+ transients in moue eggs.

  13. The Role of Extracellular Ca2+ Influx,Intracellular Ca2+ Release and Calmodulin in Mouse Egg Fertilization

    Institute of Scientific and Technical Information of China (English)

    SunQing-yuan; TanJing-he; 等


    The effects of various Ca2+-modifying drugs on moue egg fertilization were studied.Ca2+ chelator,ethylen glycol-bis-(2-aminoethyl)-tetracetic acid(EGTA),and calmodulin(CaM) antagonist,trifluoperzaine (TFP),inhibited fertilization in a dose-dependent manner,whild Ca2+ channel bolcker,verspamil,did not have any effect.When intracellular Ca2+ release was blocked by 8-(N,N-diethylamino) octy 1-3,4,5-trimethoxy-benzonate(TME-8) or the Ca2+ oscillations were inhibited by an inhibitor of endoplasmic reticulum Ca2+-At-Pase,thapsigargin,the second polar body emission and pronuclear formation were significantly decreased.In contrast,inhibition of intracellular Ca2+ release via bolckage of inositol 1,4,5-triphosphate (IP3) production by neomycin or lithium did not affect fertilization.The results sugest that both extracellular influx,intracellular Ca2+ release and CaM activation are required for mormal fertilization.However,extracellular influx through voltage-gated Ca2+ channel and intracellular release induced by IP3 and not the only pathways for producing Ca2+ transients in moue eggs.

  14. Engineering of a novel Ca²⁺-regulated kinesin molecular motor using a calmodulin dimer linker. (United States)

    Shishido, Hideki; Maruta, Shinsaku


    The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have "on-off" control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca(2+)-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca(2+)-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.

  15. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin (United States)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia


    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  16. Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging (United States)

    Oscar, Breland G.; Liu, Weimin; Zhao, Yongxin; Tang, Longteng; Wang, Yanli; Campbell, Robert E.; Fang, Chong


    Fluorescent proteins (FPs) have played a pivotal role in bioimaging and advancing biomedicine. The versatile fluorescence from engineered, genetically encodable FP variants greatly enhances cellular imaging capabilities, which are dictated by excited-state structural dynamics of the embedded chromophore inside the protein pocket. Visualization of the molecular choreography of the photoexcited chromophore requires a spectroscopic technique capable of resolving atomic motions on the intrinsic timescale of femtosecond to picosecond. We use femtosecond stimulated Raman spectroscopy to study the excited-state conformational dynamics of a recently developed FP-calmodulin biosensor, GEM-GECO1, for calcium ion (Ca2+) sensing. This study reveals that, in the absence of Ca2+, the dominant skeletal motion is a ∼170 cm−1 phenol-ring in-plane rocking that facilitates excited-state proton transfer (ESPT) with a time constant of ∼30 ps (6 times slower than wild-type GFP) to reach the green fluorescent state. The functional relevance of the motion is corroborated by molecular dynamics simulations. Upon Ca2+ binding, this in-plane rocking motion diminishes, and blue emission from a trapped photoexcited neutral chromophore dominates because ESPT is inhibited. Fluorescence properties of site-specific protein mutants lend further support to functional roles of key residues including proline 377 in modulating the H-bonding network and fluorescence outcome. These crucial structural dynamics insights will aid rational design in bioengineering to generate versatile, robust, and more sensitive optical sensors to detect Ca2+ in physiologically relevant environments. PMID:24987121

  17. Ca2+-Calmodulin is Involved in Betacyanin Accumulation Induced by Dark in C3 Halophyte Suaeda salsa

    Institute of Scientific and Technical Information of China (English)

    Chang-Quan Wang; Bao-Shan Wang


    The C3 halophyte Suaeda salsa was used to investigate the roles of Ca2+, Ca2+ channels, and calmodulin (CaM) in betacyanin metabolism. Seeds of S. salsa were cultured in both the dark and light for 3 days. The fresh weight and betacyanin content were much higher in S. salsa seedlings formed in the dark than in seedlings formed in the light. The addition of Ca2+ to the half-strength MS nutrient solution promoted betacyanin accumulation in the dark, whereas Ca2+ depletion by EGTA suppressed the dark-induced betacyanin accumulation in shoots of S. salsa. The Ca2+ channel blocker LaCl3 also inhibited dark-induced betacyanin accumulation. The highest activity of CaM and the maximum betacyanin content decreased by 51% and 45%, respectively, in shoots of S. salsa seedlings treated with the potent CaM antagonist chlorpromazine in the dark. Furthermore, the other CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) also inhibited the activity of CaM and dark-dependent betacyanin accumulation, whereas its less active structural analog N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5) had little effect on the responses to dark of S. salsa seedlings. These results suggest that Ca2+, Ca2+-regulated ion channels, and CaM play an important role in dark-induced betacyanin accumulation in the shoots of the C3 halophyte S. salsa.

  18. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. (United States)

    Baum, G; Lev-Yadun, S; Fridmann, Y; Arazi, T; Katsnelson, H; Zik, M; Fromm, H


    Glutamate decarboxylase (GAD) catalyzes the decarboxylation of glutamate to CO2 and gamma-aminobutyrate (GABA). GAD is ubiquitous in prokaryotes and eukaryotes, but only plant GAD has been shown to bind calmodulin (CaM). Here, we assess the role of the GAD CaM-binding domain in vivo. Transgenic tobacco plants expressing a mutant petunia GAD lacking the CaM-binding domain (GADdeltaC plants) exhibit severe morphological abnormalities, such as short stems, in which cortex parenchyma cells fail to elongate, associated with extremely high GABA and low glutamate levels. The morphology of transgenic plants expressing the full-length GAD (GAD plants) is indistinguishable from that of wild-type (WT) plants. In WT and GAD plant extracts, GAD activity is inhibited by EGTA and by the CaM antagonist trifluoperazine, and is associated with a CaM-containing protein complex of approximately 500 kDa. In contrast, GADdeltaC plants lack normal GAD complexes, and GAD activity in their extracts is not affected by EGTA and trifluoperazine. We conclude that CaM binding to GAD is essential for the regulation of GABA and glutamate metabolism, and that regulation of GAD activity is necessary for normal plant development. This study is the first to demonstrate an in vivo function for CaM binding to a target protein in plants.

  19. Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution. (United States)

    Zik, M; Arazi, T; Snedden, W A; Fromm, H


    The nucleotide sequences of cDNAs encoding two isoforms of Arabidopsis glutamate decarboxylase, designated GAD1 (57.1 kDa) and GAD2 (56.1 kDa) and sharing 82% identical amino acid sequences, were determined. The recombinant proteins bound [35S] calmodulin (CaM) in the presence of calcium, and a region of 30-32 amino acids from the C-terminal of each isoform was sufficient for CaM binding when fused to glutathione S-transferase. Full-length GAD1 and GAD2 were expressed in Sf9 insect cells infected with recombinant baculovirus vectors. Recombinant proteins were partially purified by CaM affinity chromatography and were found to exhibit glutamate decarboxylase activity, which was dependent on the presence of Ca2+/CaM at pH 7.3. Southern hybridizations with GAD gene-specific probes suggest that Arabidopsis possesses one gene related to GAD1 and one to GAD2. Northern hybridization and western blot analysis revealed that GAD1 was expressed only in roots and GAD2 in roots, leaves, inflorescence stems and flowers. Our study provides the first evidence for the occurrence of multiple functional Ca2+/CaM-regulated GAD gene products in a single plant, suggesting that regulation of Arabidopsis GAD activity involves modulation of isoform-specific gene expression and stimulation of the catalytic activity of GAD by calcium signalling via CaM.

  20. The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. (United States)

    Rodríguez-Concepción, M; Yalovsky, S; Zik, M; Fromm, H; Gruissem, W


    Post-translational attachment of isoprenyl groups to conserved cysteine residues at the C-terminus of a number of regulatory proteins is important for their function and subcellular localization. We have identified a novel calmodulin, CaM53, with an extended C-terminal basic domain and a CTIL CaaX-box motif which are required for efficient prenylation of the protein in vitro and in vivo. Ectopic expression of wild-type CaM53 or a non-prenylated mutant protein in plants causes distinct morphological changes. Prenylated CaM53 associates with the plasma membrane, but the non-prenylated mutant protein localizes to the nucleus, indicating a dual role for the C-terminal domain. The subcellular localization of CaM53 can be altered by a block in isoprenoid biosynthesis or sugar depletion, suggesting that CaM53 activates different targets in response to metabolic changes. Thus, prenylation of CaM53 appears to be a novel mechanism by which plant cells can coordinate Ca2+ signaling with changes in metabolic activities.

  1. Metal binding discrimination of the calmodulin Q41C/K75C mutant on Ca2+ and La3+

    Institute of Scientific and Technical Information of China (English)


    Calmodulin (CaM) is a multifunctional Ca2+-binding protein regulating the activity of many enzymes in response to fluctuation of the intracellular Ca2+ level. It has been shown that a CaM Q41C/K75C mutant (CaMSS) with a disulfide bond in the N-terminal domain exhibits greatly reduced affinity to Ca2+. In the present study, the experimental results revealed a unique metal binding pattern in CaMSS towards La3+ and Ca2+ separately: the mutant protein binds Ca2+ at site Ⅰ, Ⅲ and IV; however, it binds La3+ at site Ⅰ, Ⅱ and IV. A putative mechanism was proposed which is the conformation of site Ⅱ (or siteⅢ) of CaMSS could be altered and thus loses its metal ion affinity in response to metal binding in the opposite terminal domain possibly through the long range domain interaction. The present work may offer new perspectives for understanding the mechanisms of specific metal ion affinity in CaM and for CaM-based protein design.

  2. Calmodulin Gene Family in Potato: Developmental and Touch-Induced Expression of the mRNA Encoding a Novel Isoform (United States)

    Takezawa, D.; Liu, Z. H.; An, G.; Poovaiah, B. W.


    Eight genomic clones of potato calmodulin (PCM1 to 8) were isolated and characterized. Sequence comparisons of different genes revealed that the deduced amino acid sequence of PCM1 had several unique substitutions, espe