WorldWideScience

Sample records for calmodulin kinase ii

  1. Conditioned taste aversion and Ca/calmodulin-dependent kinase II in the parabrachial nucleus of rats

    Czech Academy of Sciences Publication Activity Database

    Křivánek, Jiří

    2001-01-01

    Roč. 76, č. 1 (2001), s. 46-56 ISSN 1074-7427 R&D Projects: GA AV ČR IAA7011706 Institutional research plan: CEZ:AV0Z5011922 Keywords : calcium/calmodulin-dependent kinase II * conditioned taste aversion * parabrachial nucleus of rat Subject RIV: FH - Neurology Impact factor: 1.830, year: 2001

  2. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion

    2006-01-01

    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d...

  3. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating

    DEFF Research Database (Denmark)

    Kristensen, Anders Skov; Jenkins, Meagan A; Banke, Tue G

    2011-01-01

    The function, trafficking and synaptic signaling of AMPA receptors are tightly regulated by phosphorylation. Ca(2+)/calmodulin-dependent kinase II (CaMKII) phosphorylates the GluA1 AMPA receptor subunit at Ser831 to increase single-channel conductance. We show that CaMKII increases the conductanc...

  4. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes.

    Science.gov (United States)

    Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T

    2011-01-01

    For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.

  5. 2,5-hexanedione (HD) treatment alters calmodulin, Ca2+/calmodulin-dependent protein kinase II, and protein kinase C in rats' nerve tissues

    International Nuclear Information System (INIS)

    Wang Qingshan; Hou Liyan; Zhang Cuili; Zhao Xiulan; Yu Sufang; Xie, Ke-Qin

    2008-01-01

    Calcium-dependent mechanisms, particularly those mediated by Ca 2+ /calmodulin (CaM)-dependent protein kinase II (CaMKII), have been implicated in neurotoxicant-induced neuropathy. However, it is unknown whether similar mechanisms exist in 2,5-hexanedione (HD)-induced neuropathy. For that, we investigated the changes of CaM, CaMKII, protein kinase C (PKC) and polymerization ratios (PRs) of NF-L, NF-M and NF-H in cerebral cortex (CC, including total cortex and some gray), spinal cord (SC) and sciatic nerve (SN) of rats treated with HD at a dosage of 1.75 or 3.50 mmol/kg for 8 weeks (five times per week). The results showed that CaM contents in CC, SC and SN were significantly increased, which indicated elevation of Ca 2+ concentrations in nerve tissues. CaMKII contents and activities were also increased in CC and were positively correlated with gait abnormality, but it could not be found in SC and SN. The increases of PKC contents and activities were also observed in SN and were positively correlated with gait abnormality. Except for that of NF-M in CC, the PRs of NF-L, NF-M and NF-H were also elevated in nerve tissues, which was consistent with the activation of protein kinases. The results suggested that CaMKII might be partly (in CC but not in SC and SN) involved in HD-induced neuropathy. CaMKII and PKC might mediate the HD neurotoxicity by altering the NF phosphorylation status and PRs

  6. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    Directory of Open Access Journals (Sweden)

    Grant S. Nichols

    2015-01-01

    Full Text Available Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX, the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults.

  7. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Liu, Chun Ping; Sun, Simei; Liu, Bin; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kee, Hae Jin; Jeong, Myung Ho

    2018-03-01

    Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Oxidized calmodulin kinase II regulates conduction following myocardial infarction: a computational analysis.

    Directory of Open Access Journals (Sweden)

    Matthew D Christensen

    2009-12-01

    Full Text Available Calmodulin kinase II (CaMKII mediates critical signaling pathways responsible for divergent functions in the heart including calcium cycling, hypertrophy and apoptosis. Dysfunction in the CaMKII signaling pathway occurs in heart disease and is associated with increased susceptibility to life-threatening arrhythmia. Furthermore, CaMKII inhibition prevents cardiac arrhythmia and improves heart function following myocardial infarction. Recently, a novel mechanism for oxidative CaMKII activation was discovered in the heart. Here, we provide the first report of CaMKII oxidation state in a well-validated, large-animal model of heart disease. Specifically, we observe increased levels of oxidized CaMKII in the infarct border zone (BZ. These unexpected new data identify an alternative activation pathway for CaMKII in common cardiovascular disease. To study the role of oxidation-dependent CaMKII activation in creating a pro-arrhythmia substrate following myocardial infarction, we developed a new mathematical model of CaMKII activity including both oxidative and autophosphorylation activation pathways. Computer simulations using a multicellular mathematical model of the cardiac fiber demonstrate that enhanced CaMKII activity in the infarct BZ, due primarily to increased oxidation, is associated with reduced conduction velocity, increased effective refractory period, and increased susceptibility to formation of conduction block at the BZ margin, a prerequisite for reentry. Furthermore, our model predicts that CaMKII inhibition improves conduction and reduces refractoriness in the BZ, thereby reducing vulnerability to conduction block and reentry. These results identify a novel oxidation-dependent pathway for CaMKII activation in the infarct BZ that may be an effective therapeutic target for improving conduction and reducing heterogeneity in the infarcted heart.

  9. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II.

    Directory of Open Access Journals (Sweden)

    Shirley Pepke

    2010-02-01

    Full Text Available During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,including Ca2+/calmodulin-dependent protein kinase II (CaMKII, are regulated by calmodulin, a small protein that can bindup to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic

  10. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Bae [The Division of Cardiology, Kyung Hee University College of Medicine, 1 Hoegi-dong, Dongdaemun-Gu, Seoul (Korea, Republic of); Kim, Changsoo [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Choi, Eunmi [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Park, Sanghoon; Park, Hyelim; Pak, Hui-Nam; Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Shin, Dong Chun [The Department of Preventive Medicine, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Hwang, Ki-Chul [Cardiovascular Research Institute and Severance Biomedical Science Institute, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, 250 Seungsanno, Seodaemun-gu, Seoul (Korea, Republic of)

    2012-02-15

    Ambient particulate matter (PM) can increase the incidence of arrhythmia. However, the arrhythmogenic mechanism of PM is poorly understood. This study investigated the arrhythmogenic mechanism of PM. In Sprague–Dawley rats, QT interval was increased from 115.0 ± 14.0 to 142.1 ± 18.4 ms (p = 0.02) after endotracheal exposure of DEP (200 μg/ml for 30 min, n = 5). Ventricular premature contractions were more frequently observed after DEP exposure (100%) than baseline (20%, p = 0.04). These effects were prevented by pretreatment of N-acetylcysteine (NAC, 5 mmol/L, n = 3). In 12 Langendorff-perfused rat hearts, DEP infusion of 12.5 μg/ml for 20 min prolonged action potential duration (APD) at only left ventricular base increasing apicobasal repolarization gradients. Spontaneous early afterdepolarization (EAD) and ventricular tachycardia (VT) were observed in 8 (67%) and 6 (50%) hearts, respectively, versus no spontaneous triggered activity or VT in any hearts before DEP infusion. DEP-induced APD prolongation, EAD and VT were successfully prevented with NAC (5 mmol/L, n = 5), nifedipine (10 μmol/L, n = 5), and active Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) blockade, KN 93 (1 μmol/L, n = 5), but not by thapsigargin (200 nmol/L) plus ryanodine (10 μmol/L, n = 5) and inactive CaMKII blockade, KN 92 (1 μmol/L, n = 5). In neonatal rat cardiomyocytes, DEP provoked ROS generation in dose dependant manner. DEP (12.5 μg/ml) induced apoptosis, and this effect was prevented by NAC and KN 93. Thus, this study shows that in vivo and vitro exposure of PM induced APD prolongation, EAD and ventricular arrhythmia. These effects might be caused by oxidative stress and CaMKII activation. -- Highlights: ► The ambient PM consistently prolonged repolarization. ► The ambient PM induced triggered activity and ventricular arrhythmia. ► These effects were prevented by antioxidants, I{sub CaL} blockade and CaMKII blockade. ► The ambient PM can induce

  11. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets.

    Directory of Open Access Journals (Sweden)

    Makoto Mizunami

    Full Text Available Ca(2+/calmodulin (CaM-dependent protein kinase II (CaMKII is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca(2+/CaM and cAMP signaling participates in long-term memory (LTM formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM. Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca(2+ influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca(2+ signaling and cAMP signaling for LTM formation, a new role of Ca

  12. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    Science.gov (United States)

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  13. Rat vas deferens SERCA2 is modulated by Ca2+/calmodulin protein kinase II-mediated phosphorylation

    International Nuclear Information System (INIS)

    Rodriguez, J.B.R.; Muzi-Filho, H.; Valverde, R.H.F.; Quintas, L.E.M.; Noel, F.; Einicker-Lamas, M.; Cunha, V.M.N.

    2013-01-01

    Ca 2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca 2+ -ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca 2+ -ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca 2+ (Ca 0.5 = 780 nM) and a low sensitivity to vanadate (IC 50 = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca 2+ and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca 2+ accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca 2+ and CaM, possibly via CaMKII, in a process that results in stimulation of Ca 2+ pumping activity

  14. Rat vas deferens SERCA2 is modulated by Ca{sup 2+}/calmodulin protein kinase II-mediated phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.B.R.; Muzi-Filho, H. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Valverde, R.H.F. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Quintas, L.E.M. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Noel, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Einicker-Lamas, M. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ (Brazil); Cunha, V.M.N. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-03-19

    Ca{sup 2+} pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca{sup 2+}-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca{sup 2+} (Ca{sub 0.5} = 780 nM) and a low sensitivity to vanadate (IC{sub 50} = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca{sup 2+} and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca{sup 2+} accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca{sup 2+} and CaM, possibly via CaMKII, in a process that results in stimulation of Ca{sup 2+} pumping activity.

  15. dependent/calmodulin- stimulated protein kinase from moss

    Indian Academy of Sciences (India)

    Unknown

    stimulated protein kinase; CDPK, calmodulin domain-like protein kinase; KM14, 14 amino acid synthetic peptide; .... used were obtained from Sigma Chemical Company, USA, ..... Plant chimeric Ca2+/Calmodulin-dependent protein kinase.

  16. Inhibitory effects of KN-93, an inhibitor of Ca2+ calmodulin-dependent protein kinase II, on light-regulated root gravitropism in maize

    Science.gov (United States)

    Feldman, L. J.; Hidaka, H.

    1993-01-01

    Light is essential for root gravitropism in Zea mays L., cultivar Merit. It is hypothesized that calcium mediates this light-regulated response. KN-93, an inhibitor of calcium/calmodulin kinase II (CaMK II), inhibits light-regulated root gravitropism but does not affect light perception. We hypothesize that CaMK II, or a homologue, operates late in the light/gravity signal transduction chain. Here we provide evidence suggesting a possible physiological involvement of CaMK II in root gravitropism in plants.

  17. Curcumin Attenuates Opioid Tolerance and Dependence by Inhibiting Ca2+/Calmodulin-Dependent Protein Kinase II α Activity

    Science.gov (United States)

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena

    2015-01-01

    Chronic use of opioid analgesics has been hindered by the development of opioid addiction and tolerance. We have reported that curcumin, a natural flavonoid from the rhizome of Curcuma longa, attenuated opioid tolerance, although the underlying mechanism remains unclear. In this study, we tested the hypothesis that curcumin may inhibit Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), a protein kinase that has been previously proposed to be critical for opioid tolerance and dependence. In this study, we used state-of-the-art polymeric formulation technology to produce poly(lactic-co-glycolic acid) (PLGA)-curcumin nanoparticles (nanocurcumin) to overcome the drug’s poor solubility and bioavailability, which has made it extremely difficult for studying in vivo pharmacological actions of curcumin. We found that PLGA-curcumin nanoparticles reduced the dose requirement by 11- to 33-fold. Pretreatment with PLGA-curcumin (by mouth) prevented the development of opioid tolerance and dependence in a dose-dependent manner, with ED50 values of 3.9 and 3.2 mg/kg, respectively. PLGA-curcumin dose-dependently attenuated already-established opioid tolerance (ED50 = 12.6 mg/kg p.o.) and dependence (ED50 = 3.1 mg/kg p.o.). Curcumin or PLGA-curcumin did not produce antinociception by itself or affect morphine (1–10 mg/kg) antinociception. Moreover, we found that the behavioral effects of curcumin on opioid tolerance and dependence correlated with its inhibition of morphine-induced CaMKIIα activation in the brain. These results suggest that curcumin may attenuate opioid tolerance and dependence by suppressing CaMKIIα activity. PMID:25515789

  18. [Effects of qishenyiqi gutta pills on calcium/calmodulin dependent protein kinase II in rats with renal hypertension].

    Science.gov (United States)

    Zhang, Xiao-ying; Wei, Wan-lin; Shu, Chang-cheng; Zhang, Ling; Tian, Guo-xiang

    2013-02-05

    To explore the effects of qishenyiqi gutta pills on myocardial hypertrophy of left ventricle and calcium/calmodulin dependent protein kinase II (CAMK II) in rats with renal hypertension and elucidate its intervention mechanism for myocardial hypertrophy. A total of 50 Wistar rats were randomly divided into 5 groups of sham-operation, control, high-dose qishenyiqi gutta pills, low-dose qishenyiqi gutta pills and valsartan (n = 10 each). The rat model of myocardial hypertrophy with renal hypertension was established by the 2-kidney 1-clip (2K1C) method. The experimental animals were divided into control, high-dose, low-dose and valsartan groups. At Week 5 postoperation, valsartan group received an oral dose of valsartan (30 mg×kg(-1)×d(-1)), high-dose and low-dose groups took qishenyiqi gutta pills (250 and 125 mg×kg(-1)×d(-1)) while sham-operation and control groups had the same dose of normal saline solution. Tail arterial pressure was detected weekly and continued for 8 weeks. At the end of Week 12, the animals were sacrificed to harvest myocardial tissue of left ventricle for detecting left ventricular mass index (LVMI). The collagen volume fraction (CVF) of myocardium was examined by Van Gieson staining, the activities of superoxide dismutase (SOD) and reactive oxygen species (ROS) were detected by enzyme-linked immunosorbent assay (ELISA) and the expression of CAMK II was detected by immunohistochemistry and Western blot. (1) Blood pressures were significantly higher in high-dose, low-dose and control groups than those in sham-operation and valsartan groups ((167.66 ± 11.48), (166.72 ± 13.51), (174.34 ± 14.52) vs (119.57 ± 6.30), (131.80 ± 12.49) mm Hg, P pills may retard myocardial hypertrophy of left ventricle in rats with renal hypertension. And the mechanism is probably be correlated with its antioxidant activity and inhibited expression of myocardial CAMK II.

  19. The role of Ca2+/calmodulin-dependent protein kinase II and calcineurin in TNF-α-induced myocardial hypertrophy

    International Nuclear Information System (INIS)

    Wang, Gui-Jun; Wang, Hong-Xin; Yao, Yu-Sheng; Guo, Lian-Yi; Liu, Pei

    2012-01-01

    We investigated whether Ca 2+ /calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 µg/L), and Ca 2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca 2+ ] i transients, CaMKIIδ B and CaN were evaluated by the Lowry method, [ 3 H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 µg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 µg/L) significantly increased the amplitude of spontaneous [Ca 2+ ] i transients, the total protein content, cell size, and [ 3 H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca 2+ chelator. The increases in protein content, cell size and [ 3 H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδ B by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca 2+ ] i , CaMKIIδ B and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca 2+ /CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α

  20. Calcium/Calmodulin-dependent Protein Kinase II is a Ubiquitous Molecule in Human Long-term Memory Synaptic Plasticity: A Systematic Review

    Science.gov (United States)

    Ataei, Negar; Sabzghabaee, Ali Mohammad; Movahedian, Ahmad

    2015-01-01

    Background: Long-term memory is based on synaptic plasticity, a series of biochemical mechanisms include changes in structure and proteins of brain's neurons. In this article, we systematically reviewed the studies that indicate calcium/calmodulin kinase II (CaMKII) is a ubiquitous molecule among different enzymes involved in human long-term memory and the main downstream signaling pathway of long-term memory. Methods: All of the observational, case–control and review studies were considered and evaluated by the search engines PubMed, Cochrane Central Register of Controlled Trials and ScienceDirect Scopus between 1990 and February 2015. We did not carry out meta-analysis. Results: At the first search, it was fined 1015 articles which included “synaptic plasticity” OR “neuronal plasticity” OR “synaptic density” AND memory AND “molecular mechanism” AND “calcium/calmodulin-dependent protein kinase II” OR CaMKII as the keywords. A total of 335 articles were duplicates in the databases and eliminated. A total of 680 title articles were evaluated. Finally, 40 articles were selected as reference. Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory. PMID:26445635

  1. Dendritic spine changes in the development of alcohol addiction regulated by α-calcium/calmodulin-dependent protein kinase II

    Directory of Open Access Journals (Sweden)

    Zofia Mijakowska

    2014-03-01

    Full Text Available Introduction Alcohol has many adverse effects on the brain. Among them are dendritic spine morphology alterations, which are believed to be the basis of alcohol addiction. Autophosphorylation of α-calcium/calmodulin-dependent protein kinase II (αCaMKII has been shown to regulate spine morphology in vitro. Here we show that αCaMKII can also regulate addiction related behaviour and dendritic spine morphology changes caused by alcohol consumption in vivo. Method 12 αCaMKII-autophosphorylation deficient female mice (T286A and 12 wild type littermates were used in the study. T286A strain was created by Giese et al. (1998. Mice were housed and tested in two IntelliCages from NewBehavior (www.newbehavior.com. IntelliCage is an automated learning system. After 95 days of alcohol drinking interrupted by tests for motivation, persistence in alcohol seeking and probability of relapse, mice were ascribed to ‘high’ or ‘low’ drinkers group according to their performance in the tests. Additional criterion was the amount of alcohol consumed during the whole experiment. Result of each test was evaluated separately. 1/3 of the mice that scored highest in each criterion were considered ‘positive’ for this trait. ‘Positive’ animals were given 1 point, negative 0 points. Mice that were positive in at least 2 criteria were ascribed to ‘high’ drinkers (‘+’ group. Remaining mice – to ‘low’ drinkers (‘–‘. This method of behavioral phenotyping, developed by Radwanska and Kaczmarek (2012, is inspired by DSM-IV. Since the results of this evaluation are discrete (i.e. by definition all the animals score between 0 to +4, we developed also a continuous method of addiction rating, which we call ‘addiction index’. The result of the second method is a sum of the standardized (z-score results of the above mentioned tests. We use it to examine the correlations between addiction-like behavior and spine parameters. Control group (12 WT, 8

  2. Dual Regulation of a Chimeric Plant Serine/Threonine Kinase by Calcium and Calcium/Calmodulin

    Science.gov (United States)

    Takezawa, D.; Ramachandiran, S.; Paranjape, V.; Poovaiah, B. W.

    1996-01-01

    A chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain was recently cloned from plants. The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substrates in a Ca(2+)/calmodulin-dependent manner. The calmodulin-binding region of CCAMK has similarity to the calmodulin-binding region of the alpha-subunit of multifunctional Ca(2+)/calmodulin-dependent protein kinase (CaMKII). CCaMK exhibits basal autophosphorylation at the threonine residue(s) (0.098 mol of P-32/mol) that is stimulated 3.4-fold by Ca(2+) (0.339 mol of P-32/mol), while calmodulin inhibits Ca(2+)-stimulated autophosphorylation to the basal level. A deletion mutant lacking the visinin-like domain did not show Ca(2+)-simulated autophosphorylation activity but retained Ca(2+)/calmodulin-dependent protein kinase activity at a reduced level. Ca(2+)-dependent mobility shift assays using E.coli-expressed protein from residues 358-520 revealed that Ca(2+) binds to the visinin-like domain. Studies with site-directed mutants of the visinin-like domain indicated that EF-hands II and III are crucial for Ca(2+)-induced conformational changes in the visinin-like domain. Autophosphorylation of CCaMK increases Ca(2+)/calmodulin-dependent protein kinase activity by about 5-fold, whereas it did not affect its C(2+)-independent activity. This report provides evidence for the existence of a protein kinase in plants that is modulated by Ca(2+) and Ca(2+)/calmodulin. The presence of a visinin-like Ca(2+)-binding domain in CCaMK adds an additional Ca(2+)-sensing mechanism not previously known to exist in the Ca(2+)/calmodulin-mediated signaling cascade in plants.

  3. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    Directory of Open Access Journals (Sweden)

    Cong Haolong

    Full Text Available Enterovirus 71 (EV71 is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  4. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.

    Science.gov (United States)

    Dries, Eef; Santiago, Demetrio J; Johnson, Daniel M; Gilbert, Guillaume; Holemans, Patricia; Korte, Sanne M; Roderick, H Llewelyn; Sipido, Karin R

    2016-10-15

    The dyadic cleft, where coupled ryanodine receptors (RyRs) reside, is thought to serve as a microdomain for local signalling, as supported by distinct modulation of coupled RyRs dependent on Ca 2+ /calmodulin-dependent kinase II (CaMKII) activation during high-frequency stimulation. Sympathetic stimulation through β-adrenergic receptors activates an integrated signalling cascade, enhancing Ca 2+ cycling and is at least partially mediated through CaMKII. Here we report that CaMKII activation during β-adrenergic signalling is restricted to the dyadic cleft, where it enhances activity of coupled RyRs thereby contributing to the increase in diastolic events. Nitric oxide synthase 1 equally participates in the local modulation of coupled RyRs. In contrast, the increase in the Ca 2+ content of the sarcoplasmic reticulum and related increase in the amplitude of the Ca 2+ transient are primarily protein kinase A-dependent. The present data extend the concept of microdomain signalling in the dyadic cleft and give perspectives for selective modulation of RyR subpopulations and diastolic events. In cardiac myocytes, β-adrenergic stimulation enhances Ca 2+ cycling through an integrated signalling cascade modulating L-type Ca 2+ channels (LTCCs), phospholamban and ryanodine receptors (RyRs). Ca 2+ /calmodulin-dependent kinase II (CaMKII) and nitric oxide synthase 1 (NOS1) are proposed as prime mediators for increasing RyR open probability. We investigate whether this pathway is confined to the high Ca 2+ microdomain of the dyadic cleft and thus to coupled RyRs. Pig ventricular myocytes are studied under whole-cell voltage-clamp and confocal line-scan imaging with Fluo-4 as a [Ca 2+ ] i indicator. Following conditioning depolarizing pulses, spontaneous RyR activity is recorded as Ca 2+ sparks, which are assigned to coupled and non-coupled RyR clusters. Isoproterenol (ISO) (10 nm) increases Ca 2+ spark frequency in both populations of RyRs. However, CaMKII inhibition reduces

  5. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia.

    Science.gov (United States)

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2016-12-21

    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  6. Age-dependent changes in autophosphorylation of alpha calcium/calmodulin dependent kinase II in hippocampus and amygdala after contextual fear conditioning.

    Science.gov (United States)

    Fang, Ton; Kasbi, Kamillia; Rothe, Stephanie; Aziz, Wajeeha; Giese, K Peter

    2017-09-01

    The hippocampus and amygdala are essential brain regions responsible for contextual fear conditioning (CFC). The autophosphorylation of alpha calcium-calmodulin kinase II (αCaMKII) at threonine-286 (T286) is a critical step implicated in long-term potentiation (LTP), learning and memory. However, the changes in αCaMKII levels with aging and training in associated brain regions are not fully understood. Here, we studied how aging and training affect the levels of phosphorylated (T286) and proportion of phosphorylated:total αCaMKII in the hippocampus and amygdala. Young and aged mice, naïve (untrained) and trained in CFC, were analysed by immunohistochemistry for the levels of total and phosphorylated αCaMKII in the hippocampus and amygdala. We found that two hours after CFC training, young mice exhibited a higher level of phosphorylated and increased ratio of phosphorylated:total αCaMKII in hippocampal CA3 stratum radiatum. Furthermore, aged untrained mice showed a higher ratio of phosphorylated:total αCaMKII in the CA3 region of the hippocampus when compared to the young untrained group. No effect of training or aging were seen in the central, lateral and basolateral amygdala regions, for both phosphorylated and ratio of phosphorylated:total αCaMKII. These results show that aging impairs the training-induced upregulation of autophosphorylated (T286) αCaMKII in the CA3 stratum radiatum of the hippocampus. This indicates that distinct age-related mechanisms underlie CFC that may rely more heavily on NMDA receptor-dependent plasticity in young age. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Oxidized CaMKII (Ca2+/Calmodulin-Dependent Protein Kinase II) Is Essential for Ventricular Arrhythmia in a Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Wang, Qiongling; Quick, Ann P; Cao, Shuyi; Reynolds, Julia; Chiang, David Y; Beavers, David; Li, Na; Wang, Guoliang; Rodney, George G; Anderson, Mark E; Wehrens, Xander H T

    2018-04-01

    Duchenne muscular dystrophy patients are prone to ventricular arrhythmias, which may be caused by abnormal calcium (Ca 2+ ) homeostasis and elevated reactive oxygen species. CaMKII (Ca 2+ /calmodulin-dependent protein kinase II) is vital for normal Ca 2+ homeostasis, but excessive CaMKII activity contributes to abnormal Ca 2+ homeostasis and arrhythmias in cardiomyocytes. Reactive oxygen species induce CaMKII to become autonomously active. We hypothesized that genetic inhibition of CaMKII oxidation (ox-CaMKII) in a mouse model of Duchenne muscular dystrophy can alleviate abnormal Ca 2+ homeostasis, thus, preventing ventricular arrhythmia. The objective of this study was to test if selective loss of ox-CaMKII affects ventricular arrhythmias in the mdx mouse model of Duchenne muscular dystrophy. 5-(6)-Chloromethyl-2,7-dichlorodihydrofluorescein diacetate staining revealed increased reactive oxygen species production in ventricular myocytes isolated from mdx mice, which coincides with elevated ventricular ox-CaMKII demonstrated by Western blotting. Genetic inhibition of ox-CaMKII by knockin replacement of the regulatory domain methionines with valines (MM-VV [CaMKII M281/282V]) prevented ventricular tachycardia in mdx mice. Confocal calcium imaging of ventricular myocytes isolated from mdx :MM-VV mice revealed normalization of intracellular Ca 2+ release events compared with cardiomyocytes from mdx mice. Abnormal action potentials assessed by optical mapping in mdx mice were also alleviated by genetic inhibition of ox-CaMKII. Knockout of the NADPH oxidase regulatory subunit p47 phox normalized elevated ox-CaMKII, repaired intracellular Ca 2+ homeostasis, and rescued inducible ventricular arrhythmias in mdx mice. Inhibition of reactive oxygen species or ox-CaMKII protects against proarrhythmic intracellular Ca 2+ handling and prevents ventricular arrhythmia in a mouse model of Duchenne muscular dystrophy. © 2018 American Heart Association, Inc.

  8. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  9. Sex differences in pain-related behavior and expression of calcium/calmodulin-dependent protein kinase II in dorsal root ganglia of rats with diabetes type 1 and type 2.

    Science.gov (United States)

    Ferhatovic, Lejla; Banozic, Adriana; Kostic, Sandra; Sapunar, Damir; Puljak, Livia

    2013-06-01

    Sex differences in pain-related behavior and expression of calcium/calmodulin dependent protein kinase II (CaMKII) in dorsal root ganglia were studied in rat models of Diabetes mellitus type 1 (DM1) and type 2 (DM2). DM1 was induced with 55mg/kg streptozotocin, and DM2 with a combination of high-fat diet and 35mg/kg of streptozotocin. Pain-related behavior was analyzed using thermal and mechanical stimuli. The expression of CaMKII was analyzed with immunofluorescence. Sexual dimorphism in glycemia, and expression of CaMKII was observed in the rat model of DM1, but not in DM2 animals. Increased expression of total CaMKII (tCaMKII) in small-diameter dorsal root ganglia neurons, which are associated with nociception, was found only in male DM1 rats. None of the animals showed increased expression of the phosphorylated alpha CaMKII isoform in small-diameter neurons. The expression of gamma and delta isoforms of CaMKII remained unchanged in all analyzed animal groups. Different patterns of glycemia and tCaMKII expression in male and female model of DM1 were not associated with sexual dimorphism in pain-related behavior. The present findings do not suggest sex-related differences in diabetic painful peripheral neuropathy in male and female diabetic rats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.

    Science.gov (United States)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Rodriguez-del Valle Nuri

    2007-11-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  12. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning.

    Science.gov (United States)

    Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle

    2016-07-15

    In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    International Nuclear Information System (INIS)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-01-01

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser 1179 phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser 1179 phosphorylation. •FIR increases intracellular Ca 2+ levels. •Thermo-sensitive TRPV Ca 2+ channels are unlikely to be involved in the FIR-mediated eNOS-Ser 1179 phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser 1179 ) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca 2+ levels. Treatment with KN-93, a selective inhibitor of Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. This study suggests that FIR radiation increases NO

  14. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  15. Changes in the structure of calmodulin induced by a peptide based on the calmodulin-binding domain of myosin light chain kinase

    International Nuclear Information System (INIS)

    Heidorn, D.B.; Seeger, P.A.; Rokop, S.E.; Blumenthal, D.K.; Means, A.R.; Crespi, H.; Trewhella, J.

    1989-01-01

    Small-angle X-ray and neutron scattering data were used to study the solution structure of calmodulin complexed with a synthetic peptide corresponding to residues 577-603 of rabbit skeletal muscle myosin light chain kinase. The X-ray data indicate that, in the presence of Ca 2+ , the calmodulin-peptide complex has a structure that is considerably more compact than uncomplexed calmodulin. The radius of gyration, R g , for the complex is approximately 20% smaller than that of uncomplexed Ca 2+ ·calmodulin, and the maximum dimension, d max , for the complex is also about 20% smaller. The peptide-induced conformational rearrangement of calmodulin is [Ca 2+ ] dependent. The length distribution function for the complex is more symmetric than that for uncomplexed Ca 2+ ·calmodulin, indicating that more of the mass is distributed toward the center of mass for the complex, compared with the dumbbell-shaped Ca 2+ ·calmodulin. The solvent contrast dependence of R g for neutron scattering indicates that the peptide is located more toward the center of the complex, while the calmodulin is located more peripherally, and that the centers of mass of the calmodulin and the peptide are not coincident. The scattering data support the hypothesis that the interconnecting helix region observed in the crystal structure for calmodulin is quite flexible in solution, allowing the two lobes of calmodulin to form close contacts on binding the peptide. This flexibility of the central helix may play a critical role in activating target enzymes such as myosin light chain kinase

  16. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed...

  17. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan; Wang, Hao; Matsumura, Kiyotaka; Qian, Pei-Yuan

    2012-01-01

    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (= Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca 2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. © 2012 Chen et al.

  18. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    KAUST Repository

    Chen, Zhang-Fan

    2012-02-13

    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (= Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca 2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. © 2012 Chen et al.

  19. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca2+ /calmodulin-dependent protein kinase II.

    Science.gov (United States)

    Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2018-01-04

    Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca 2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca 2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca 2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. © 2018 International Society for Neurochemistry.

  20. An active form of calcium and calmodulin dependant protein kinase ...

    African Journals Online (AJOL)

    The removal of the auto-inhibitory domain that negatively regulates the kinase activity in M. truncatula results in a constitutively-active form, inducing symbiotic responses in the absence of bacterial signals. In this study, we verified the functionality of a DMI3 variant and its ability to induce spontaneous nodules in M.

  1. Catalytic properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin

    International Nuclear Information System (INIS)

    Ryu, S.H.; Lee, S.Y.; Lee, K.Y.; Rhee, S.G.

    1987-01-01

    Inositol 1,4,5-triphosphate (Ins-1,4,5-P 3 ) is an important second-messenger molecule that mobilizes Ca 2+ from intracellular stores in response to the occupancy of receptor by various Ca 2+ -mobilizing agonists. The fate of Ins-1,4,5-P 3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P 3 to Ins-1,3,4,5-P 4 , whereas the latter forms Ins-1,4-P 2 . Recent studies suggest that Ins-1,3,4,5-P 4 might modulate the entry of Ca 2+ from an extracellular source. In the current report, the authors describe the partial purification of the 3-kinase from the cytosolic fraction of bovine brain and studies of its catalytic properties. They found that the 3-kinase activity is significantly activated by the Ca 2+ /calmodulin complex. Therefore, they propose that Ca 2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P 3 forms a complex with calmodulin, and that the Ca 2+ /calmodulin complex stimulates the conversion of Ins-1,4,5-P 3 , and intracellular Ca 2+ mobilizer, to Ins-1,3,4,5-P 4 , an extracellular Ca 2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3- 32 P]Ins-1,3,4,5-P 4 and [γ- 32 P]ATP by thin-layer chromatography. Using this new assay method, they evaluated kinetic parameters (K/sub m/ for ATP = 40 μM, K/sub m/ for Ins-1,4,5-P 3 = 0.7 μM, K/sub i/ for ADP = 12 μM) and divalent cation specificity (Mg 2+ > > Mn 2+ > Ca 2+ ) for the 3-kinase

  2. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism

    Science.gov (United States)

    Lu, Y. T.; Hidaka, H.; Feldman, L. J.

    1996-01-01

    Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 microM KN-93, but binding is not affected by 5 microM KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 microM KN-93, but not by 5 microM KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.

  3. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation.

    Directory of Open Access Journals (Sweden)

    Peter Rellos

    2010-07-01

    Full Text Available Long-term potentiation (LTP, a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM-dependent kinase II (CaMKII. CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.

  4. Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin.

    Directory of Open Access Journals (Sweden)

    Elaine F Kenny

    Full Text Available B cells signal through both the B cell receptor (BCR which binds antigens and Toll-like receptors (TLRs including TLR9 which recognises CpG DNA. Activation of TLR9 synergises with BCR signalling when the BCR and TLR9 co-localise within an auto-phagosome-like compartment. Here we report that Bruton's tyrosine kinase (BTK is required for synergistic IL6 production and up-regulation of surface expression of MHC-class-II, CD69 and CD86 in primary murine and human B cells. We show that BTK is essential for co-localisation of the BCR and TLR9 within a potential auto-phagosome-like compartment in the Namalwa human B cell line. Downstream of BTK we find that calcium acting via calmodulin is required for this process. These data provide new insights into the role of BTK, an important target for autoimmune diseases, in B cell activation.

  5. CHARACTERIZATION OF TIGHTLY-ASSOCIATED SMOOTH MUSCLE MYOSIN-MYOSIN LIGHT CHAIN KINASE-CALMODULIN COMPLEXES*

    OpenAIRE

    Hong, Feng; Haldeman, Brian D.; John, Olivia A.; Brewer, Paul D.; Wu, Yi-Ying; Ni, Shaowei; Wilson, David P.; Walsh, Michael P.; Baker, Jonathan E.; Cremo, Christine R.

    2009-01-01

    A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by smooth muscle myosin light chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM (up-SMM) from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ~ 23–37% of that in gizzard tissue. Fifteen t...

  6. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    Science.gov (United States)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  7. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    Science.gov (United States)

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  8. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: Residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family

    International Nuclear Information System (INIS)

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O.

    2005-01-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs

  9. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase.

    Science.gov (United States)

    Polya, G M; Chandra, S; Condron, R

    1993-02-01

    A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.

  10. Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase

    International Nuclear Information System (INIS)

    Trewhella, J.; Blumenthal, D.K.; Rokop, S.E.; Seeger, P.A.

    1990-01-01

    Small-angle X-ray and neutron scattering have been used to study the solution structures of calmodulin complexed with synthetic peptides corresponding to residues 342-366 and 301-326, designated PhK5 and PhK13, respectively, in the regulatory domain of the catalytic subunit of skeletal muscle phosphorylase kinase. The scattering data show that binding of PhK5 to calmodulin induces a dramatic contraction of calmodulin, similar to that previously observed when calmodulin is complexed with the calmodulin-binding domain peptide from rabbit skeletal muscle myosin light chain kinase. In contrast, calmodulin remains extended upon binding PhK13. In the presence of both peptides, calmodulin also remains extended. Apparently, the presence of PhK13 inhibits calmodulin from undergoing the PhK5-induced contraction. These data indicate that there is a fundamentally different type of calmodulin-target enzyme interaction in the case of the catalytic subunit of phosphorylase kinase compared with that for myosin light chain kinase

  11. Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT(1A receptor.

    Directory of Open Access Journals (Sweden)

    Renwen Zhang

    Full Text Available In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT(1A, at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214-231 and carboxyl tail of the receptor (ct, 302-317. We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT(1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca²⁺-dependent fashion. The former is a 1-12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219 for alanine in i3, and phenylalanine (F309 or F313 for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT(1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.

  12. Two Distinct Calmodulin Binding Sites in the Third Intracellular Loop and Carboxyl Tail of Angiotensin II (AT1A) Receptor

    Science.gov (United States)

    Zhang, Renwen; Liu, Zhijie; Qu, Youxing; Xu, Ying; Yang, Qing

    2013-01-01

    In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT1A), at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214–231) and carboxyl tail of the receptor (ct, 302–317). We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca2+-dependent fashion. The former is a 1–12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219) for alanine in i3, and phenylalanine (F309 or F313) for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor. PMID:23755207

  13. Calmodulin-Dependent Protein Kinase mediates Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    Science.gov (United States)

    Love, Felisha D.; Melhado, Caroline; Bosah, Francis; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1997-01-01

    A number of basic cellular functions, e.g., electrolyte concentration cell growth rate, glucose utilization, bone formation, response to growth stimulation and exocytosis are modified by microgravity or during spaceflight. Studies with intact animal during spaceflights have found lipid accumulations within the lumen of the vasculature and degeneration of the vascular wall. Capillary alterations with extensive endothelial invaginations were also seen. Hemodynamic studies have shown that there is a redistribution of blood from the lower extremities to the upper part of the body; this will alter vascular permeability, resulting in leakage into surrounding tissues. These studies indicate that changes in gravity will affect a number of physiological systems, including the vasculature. However, few studies have addressed the effect of microgravity on vascular cell function and metabolism. A major problem with ground based studies is that achieving a true microgravity hand, environment for prolonged period is not possible. On the other increasing gravity (i.e., hypergravity) is easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell limes (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies suggest that hypergravity will alter the behavior of most cells. Several investigators have shown that hypergravity affects the expression of the early response genes (c-fos and c-myc) and the activation of several protein kinases (PK's) in cells (10,11). In this study we investigated whether hypergravity alters the expression of f-actin by aortic endothelial cells, and the possible role of protein kinases (calmodulin(II)-dependent and PKA) as mediators of these effects.

  14. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    Science.gov (United States)

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  15. Characterization of CoPK02, a Ca2+/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea.

    Science.gov (United States)

    Yamashita, Masashi; Sueyoshi, Noriyuki; Yamada, Hiroki; Katayama, Syouichi; Senga, Yukako; Takenaka, Yasuhiro; Ishida, Atsuhiko; Kameshita, Isamu; Shigeri, Yasushi

    2018-04-20

    We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca 2+ /CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca 2+ /CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca 2+ -signaling in C. cinerea.

  16. Calcium/Calmodulin-Dependent Protein Kinase IV Mediates IFN-γ-Induced Immune Behaviors in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    RuiCai Gu

    2018-03-01

    Full Text Available Background/Aims: Whether calcium/calmodulin-dependent protein kinase IV (CaMKIV plays a role in regulating immunologic features of muscle cells in inflammatory environment, as it does for immune cells, remains mostly unknown. In this study, we investigated the influence of endogenous CaMKIV on the immunological characteristics of myoblasts and myotubes received IFN-γ stimulation. Methods: C2C12 and murine myogenic precursor cells (MPCs were cultured and differentiated in vitro, in the presence of pro-inflammatory IFN-γ. CaMKIV shRNA lentivirus transfection was performed to knockdown CaMKIV gene in C2C12 cells. pEGFP-N1-CaMKIV plasmid was delivered into knockout cells for recovering intracellular CaMKIV gene level. CREB1 antagonist KG-501 was used to block CREB signal. qPCR, immunoblot analysis, or immunofluorescence was used to detect mRNA and protein levels of CaMKIV, immuno-molecules, or pro-inflammatory cytokines and chemokines. Co-stimulatory molecules expression was assessed by FACS analysis. Results: IFN-γ induces the expression or up-regulation of MHC-I/II and TLR3, and the up-regulation of CaMKIV level in muscle cells. In contrast, CaMKIV knockdown in myoblasts and myotubes leads to expression inhibition of the above immuno-molecules. As well, CaMKIV knockdown selectively inhibits pro-inflammatory cytokines/chemokines, and co-stimulatory molecules expression in IFN-γ treated myoblasts and myotubes. Finally, CaMKIV knockdown abolishes IFN-γ induced CREB pathway molecules accumulation in differentiated myotubes. Conclusions: CaMKIV can be induced to up-regulate in muscle cells under inflammatory condition, and positively mediates intrinsic immune behaviors of muscle cells triggered by IFN-γ.

  17. Nucleoporin 62 and Ca(2+)/calmodulin dependent kinase kinase 2 regulate androgen receptor activity in castrate resistant prostate cancer cells.

    Science.gov (United States)

    Karacosta, Loukia G; Kuroski, Laura A; Hofmann, Wilma A; Azabdaftari, Gissou; Mastri, Michalis; Gocher, Angela M; Dai, Shuhang; Hoste, Allen J; Edelman, Arthur M

    2016-02-15

    Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non

  18. Analysis of the complexity of protein kinases within the phloem sieve tube system. Characterization of Cucurbita maxima calmodulin-like domain protein kinase 1.

    Science.gov (United States)

    Yoo, Byung-Chun; Lee, Jung-Youn; Lucas, William J

    2002-05-03

    In angiosperms, functional, mature sieve elements lack nuclei, vacuoles, ribosomes, and most of the endomembrane network. In this study, the complexity, number, and nature of protein kinases within the phloem sap of Cucurbita maxima were investigated to test the hypothesis that the enucleate sieve tube system utilizes a simplified signal transduction network. Supporting evidence was obtained in that only five putative protein kinases (three calcium-independent and two calcium-dependent protein kinases) were detected within the phloem sap extracted from stem tissues. Biochemical methods were used to purify one such calcium-dependent protein kinase. The gene for this C. maxima calmodulin-like domain protein kinase 1 (CmCPK1), was cloned using peptide microsequences. A combination of mass spectrometry, peptide fingerprinting, and amino-terminal sequencing established that, in the phloem sap, CmCPK1 exists as an amino-terminally cleaved protein. A second highly homologous isoform, CmCPK2, was identified, but although transcripts could be detected in the companion cells, peptide fingerprint analysis suggested that CmCPK2 does not enter the phloem sap. Potential substrates for CmCPK1, within the phloem sap, were also detected using an on-membrane phosphorylation assay. Entry of CmCPK1 into sieve elements via plasmodesmata and the potential roles played by these phloem protein kinases are discussed.

  19. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    Science.gov (United States)

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2018-04-01

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  20. Ca2+/Calmodulin-Dependent Protein Kinase Kinases (CaMKKs) Effects on AMP-Activated Protein Kinase (AMPK) Regulation of Chicken Sperm Functions.

    Science.gov (United States)

    Nguyen, Thi Mong Diep; Combarnous, Yves; Praud, Christophe; Duittoz, Anne; Blesbois, Elisabeth

    2016-01-01

    Sperm require high levels of energy to ensure motility and acrosome reaction (AR) accomplishment. The AMP-activated protein kinase (AMPK) has been demonstrated to be strongly involved in the control of these properties. We address here the question of the potential role of calcium mobilization on AMPK activation and function in chicken sperm through the Ca(2+)/calmodulin-dependent protein kinase kinases (CaMKKs) mediated pathway. The presence of CaMKKs and their substrates CaMKI and CaMKIV was evaluated by western-blotting and indirect immunofluorescence. Sperm were incubated in presence or absence of extracellular Ca(2+), or of CaMKKs inhibitor (STO-609). Phosphorylations of AMPK, CaMKI, and CaMKIV, as well as sperm functions were evaluated. We demonstrate the presence of both CaMKKs (α and β), CaMKI and CaMKIV in chicken sperm. CaMKKα and CaMKI were localized in the acrosome, the midpiece, and at much lower fluorescence in the flagellum, whereas CaMKKβ was mostly localized in the flagellum and much less in the midpiece and the acrosome. CaMKIV was only present in the flagellum. The presence of extracellular calcium induced an increase in kinases phosphorylation and sperm activity. STO-609 reduced AMPK phosphorylation in the presence of extracellular Ca(2+) but not in its absence. STO-609 did not affect CaMKIV phosphorylation but decreased CaMKI phosphorylation and this inhibition was quicker in the presence of extracellular Ca(2+) than in its absence. STO-609 efficiently inhibited sperm motility and AR, both in the presence and absence of extracellular Ca(2+). Our results show for the first time the presence of CaMKKs (α and β) and one of its substrate, CaMKI in different subcellular compartments in germ cells, as well as the changes in the AMPK regulation pathway, sperm motility and AR related to Ca(2+) entry in sperm through the Ca(2+)/CaM/CaMKKs/CaMKI pathway. The Ca(2+)/CaMKKs/AMPK pathway is activated only under conditions of extracellular Ca(2+) entry

  1. Ca2+/Calmodulin-Dependent Protein Kinase Kinases (CaMKKs Effects on AMP-Activated Protein Kinase (AMPK Regulation of Chicken Sperm Functions.

    Directory of Open Access Journals (Sweden)

    Thi Mong Diep Nguyen

    Full Text Available Sperm require high levels of energy to ensure motility and acrosome reaction (AR accomplishment. The AMP-activated protein kinase (AMPK has been demonstrated to be strongly involved in the control of these properties. We address here the question of the potential role of calcium mobilization on AMPK activation and function in chicken sperm through the Ca(2+/calmodulin-dependent protein kinase kinases (CaMKKs mediated pathway. The presence of CaMKKs and their substrates CaMKI and CaMKIV was evaluated by western-blotting and indirect immunofluorescence. Sperm were incubated in presence or absence of extracellular Ca(2+, or of CaMKKs inhibitor (STO-609. Phosphorylations of AMPK, CaMKI, and CaMKIV, as well as sperm functions were evaluated. We demonstrate the presence of both CaMKKs (α and β, CaMKI and CaMKIV in chicken sperm. CaMKKα and CaMKI were localized in the acrosome, the midpiece, and at much lower fluorescence in the flagellum, whereas CaMKKβ was mostly localized in the flagellum and much less in the midpiece and the acrosome. CaMKIV was only present in the flagellum. The presence of extracellular calcium induced an increase in kinases phosphorylation and sperm activity. STO-609 reduced AMPK phosphorylation in the presence of extracellular Ca(2+ but not in its absence. STO-609 did not affect CaMKIV phosphorylation but decreased CaMKI phosphorylation and this inhibition was quicker in the presence of extracellular Ca(2+ than in its absence. STO-609 efficiently inhibited sperm motility and AR, both in the presence and absence of extracellular Ca(2+. Our results show for the first time the presence of CaMKKs (α and β and one of its substrate, CaMKI in different subcellular compartments in germ cells, as well as the changes in the AMPK regulation pathway, sperm motility and AR related to Ca(2+ entry in sperm through the Ca(2+/CaM/CaMKKs/CaMKI pathway. The Ca(2+/CaMKKs/AMPK pathway is activated only under conditions of extracellular Ca(2

  2. Modulation of neutrophil superoxide generation by inhibitors of protein kinase C, calmodulin, diacylglycerol and myosin light chain kinases, and peptidyl prolyl cis-trans isomerase.

    Science.gov (United States)

    Bergstrand, H; Eriksson, T; Hallberg, A; Johansson, B; Karabelas, K; Michelsen, P; Nybom, A

    1992-12-01

    To assess the role of protein kinase C (PKC) in the respiratory burst of adherent human polymorphonuclear leukocytes (PMNL), reduction of ferricytochrome C by cells triggered with a phorbol ester (PMA), ionophore A23187, serum-treated zymosan (STZ) or three lipid derivatives, 3-decanoyl-sn-glycerol (G-3-OCOC9), (R,R)-1,4-diethyl-2-O-decyl-L-tartrate (Tt-2-OC10) and 3-decyloxy-5-hydroxymethylphenol (DHP) was examined in a microtiter plate procedure in the presence of inhibitors of PKC and, for comparison, inhibitors of calmodulin, diacylglycerol and myosin light chain kinases and the peptidyl-prolyl cis-trans isomerase activity of fujiphilin. 1) Of the protein kinase inhibitors examined, Ro 31-7549 and staurosporine reduced responses to all stimuli except possibly STZ; in contrast, K252a and the myosin light chain kinase inhibitors ML-7 and ML-9 blocked responses to A23187 and STZ better than those triggered by PMA. H-7 reduced responses to A23187, DHP and G-3-OCOC9, and calphostin, palmitoyl carnitine, sphingosine and the multifunctional drugs TMB-8 and W-7 reduced A23187; they also, when examined, reduced decane derivative-induced O2- production more effectively than PMA- and STZ-triggered responses. Polymyxin B, 4 alpha-PMA and retinal displayed no inhibitory capacity. 2) Of the selective calmodulin antagonists, CGS 9343B, Ro 22-4839 and calmidazolium did not inhibit the oxidative response irrespective of the stimulus used, whereas metofenazate reduced those evoked by A23187, DHP, G-3-OCOC9 and STZ.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis

    Science.gov (United States)

    Hwang, I.; Sze, H.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The magnitude and duration of a cytosolic Ca(2+) release can potentially be altered by changing the rate of Ca(2+) efflux. In plant cells, Ca(2+) efflux from the cytoplasm is mediated by H(+)/Ca(2+)-antiporters and two types of Ca(2+)-ATPases. ACA2 was recently identified as a calmodulin-regulated Ca(2+)-pump located in the endoplasmic reticulum. Here, we show that phosphorylation of its N-terminal regulatory domain by a Ca(2+)-dependent protein kinase (CDPK isoform CPK1), inhibits both basal activity ( approximately 10%) and calmodulin stimulation ( approximately 75%), as shown by Ca(2+)-transport assays with recombinant enzyme expressed in yeast. A CDPK phosphorylation site was mapped to Ser(45) near a calmodulin binding site, using a fusion protein containing the N-terminal domain as an in vitro substrate for a recombinant CPK1. In a full-length enzyme, an Ala substitution for Ser(45) (S45/A) completely blocked the observed CDPK inhibition of both basal and calmodulin-stimulated activities. An Asp substitution (S45/D) mimicked phosphoinhibition, indicating that a negative charge at this position is sufficient to account for phosphoinhibition. Interestingly, prior binding of calmodulin blocked phosphorylation. This suggests that, once ACA2 binds calmodulin, its activation state becomes resistant to phosphoinhibition. These results support the hypothesis that ACA2 activity is regulated as the balance between the initial kinetics of calmodulin stimulation and CDPK inhibition, providing an example in plants for a potential point of crosstalk between two different Ca(2+)-signaling pathways.

  4. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    Science.gov (United States)

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent

    NARCIS (Netherlands)

    Takanari, Hiroki; Bourgonje, Vincent J A; Fontes, Magda S C; Raaijmakers, Antonia J A; Driessen, Helen; Jansen, John A.; Van Der Nagel, Roel; Kok, Bart; Van Stuijvenberg, Leonie; Boulaksil, Mohamed; Takemoto, Yoshio; Yamazaki, Masatoshi; Tsuji, Yukiomi; Honjo, Haruo; Kamiya, Kaichiro; Kodama, Itsuo; Anderson, Mark E.; Van Der Heyden, Marcel A G; Van Rijen, Harold V M; van Veen, AAB; Vos, Marc A.

    2016-01-01

    Aim In healthy hearts, ventricular gap junctions are mainly composed by connexin43 (Cx43) and localize in the intercalated disc, enabling appropriate electrical coupling. In diseased hearts, Cx43 is heterogeneously down-regulated, whereas activity of calmodulin/calcium-calmodulin protein kinase II

  6. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent

    NARCIS (Netherlands)

    Takanari, H.; Bourgonje, V.J.; Fontes, M.S.; Raaijmakers, A.J.; Driessen, H.; Jansen, JA; Nagel, R. van der; Kok, B; Stuijvenberg, L. van; Boulaksil, M.; Takemoto, Y.; Yamazaki, M.; Tsuji, Y.; Honjo, H.; Kamiya, K.; Kodama, I.; Anderson, M.E.; Heyden, M.A. van der; Rijen, H.V. van; Veen, T.A. van; Vos, M.A.

    2016-01-01

    AIM: In healthy hearts, ventricular gap junctions are mainly composed by connexin43 (Cx43) and localize in the intercalated disc, enabling appropriate electrical coupling. In diseased hearts, Cx43 is heterogeneously down-regulated, whereas activity of calmodulin/calcium-calmodulin protein kinase II

  7. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  8. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Lohr, Christian; Bergstein, Sandra; Hirnet, Daniela

    2007-01-01

    The antennal lobe (primary olfactory center of insects) is completely reorganized during metamorphosis. This reorganization is accompanied by changing patterns of calcium signaling in neurons and glial cells. In the present study, we investigated the developmental distribution of a major calcium-dependent protein, viz., calcium/calmodulin-dependent protein kinase II (CaM kinase II), in the antennal lobe of the sphinx moth Manduca sexta by using a monoclonal antibody. During synaptogenesis (developmental stages 6-10), we found a redistribution of CaM kinase II immunoreactivity, from a homogeneous distribution in the immature neuropil to an accumulation in the neuropil of the glomeruli. CaM kinase II immunoreactivity was less intense in olfactory receptor axons of the antennal nerve and antennal lobe glial cells. Western blot analysis revealed a growing content of CaM kinase II in antennal lobe tissue throughout metamorphosis. Injection of the CaM kinase inhibitor KN-93 into pupae resulted in a reduced number of antennal lobe glial cells migrating into the neuropil to form borders around glomeruli. The results suggest that CaM kinase II is involved in glial cell migration.

  9. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mendez Ricardo

    2011-07-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic dimorphic fungus of worldwide distribution. It grows in the saprophytic form with hyaline, regularly septated hyphae and pyriform conidia at 25°C and as the yeast or parasitic form at 35°C. Previously, we characterized a calcium/calmodulin kinase in this fungus. Inhibitors of this kinase were observed to inhibit the yeast cell cycle in S. schenckii. Results The presence of RNA interference (RNAi mechanism in this fungus was confirmed by the identification of a Dicer-1 homologue in S. schenckii DNA. RNAi technology was used to corroborate the role of calcium/calmodulin kinase I in S. schenckii dimorphism. Yeast cells were transformed with the pSilent-Dual2G (pSD2G plasmid w/wo inserts of the coding region of the calcium/calmodulin kinase I (sscmk1 gene. Transformants were selected at 35°C using resistance to geneticin. Following transfer to liquid medium at 35°C, RNAi transformants developed as abnormal mycelium clumps and not as yeast cells as would be expected. The level of sscmk1 gene expression in RNAi transformants at 35°C was less than that of cells transformed with the empty pSD2G at this same temperature. Yeast two-hybrid analysis of proteins that interact with SSCMK1 identified a homologue of heat shock protein 90 (HSP90 as interacting with this kinase. Growth of the fungus similar to that of the RNAi transformants was observed in medium with geldanamycin (GdA, 10 μM, an inhibitor of HSP90. Conclusions Using the RNAi technology we silenced the expression of sscmk1 gene in this fungus. RNAi transformants were unable to grow as yeast cells at 35°C showing decreased tolerance to this temperature. The interaction of SSCMK1 with HSP90, observed using the yeast two-hybrid assay suggests that this kinase is involved in thermotolerance through its interaction with HSP90. SSCMK1 interacted with the C terminal domain of HSP90 where effector proteins and co-chaperones interact. These

  10. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  11. Structural characterization of the interactions between calmodulin and skeletal muscle myosin light chain kinase: Effect of peptide (576-594)G binding on the Ca2+-binding domains

    International Nuclear Information System (INIS)

    Seeholzer, S.H.; Wand, A.J.

    1989-01-01

    Calcium-containing calmodulin (CaM) and its complex with a peptide corresponding to the calmodulin-binding domain of skeletal muscle myosin light chain kinase [skMLCK(576-594)G] have been studied by one- and two-dimensional 1 H NMR techniques. Resonances arising from the antiparallel β-sheet structures associated with the calcium-binding domains of CaM and their counterparts in the CaM-skMLCK(576-594)G complex have been assigned. The assignments were initiated by application of the main chain directed assignment strategy. It is found that, despite significant changes in chemical shifts of resonances arising from amino acid residues in this region upon binding of the peptide, the β-sheets have virtually the same structure in the complex as in CaM. Hydrogen exchange rates of amide NH within the β-sheet structures are significantly slowed upon binding of peptide. These data, in conjunction with the observed nuclear Overhauser effect (NOE) patterns and relative intensities and the downfield shifts of associated amide and α resonances upon binding of peptide, show that the peptide stabilizes the Ca 2+ -bound state of calmodulin. The observed pattern of NOEs within the β-sheets and their structural similarity correspond closely to those predicted by the crystal structure. These findings imply that the apparent inconsistency of the crystal structure with recently reported low-angle X-ray scattering profiles of CaM may lie within the putative central helix bridging the globular domains

  12. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Issinger, O G

    1994-01-01

    to substitute for wild-type beta-subunit as a suppressor of activity toward calmodulin. The only mutations that reduced the ability of the beta-subunit to suppress calmodulin phosphorylation activity, though being compatible with normal reconstitution of CK2 holoenzyme, were those affecting Asp55, Glu57...... are conversely ineffective. The latent "calmodulin kinase" activity of CK2 can also be specifically unmasked by a peptide (alpha[66-86]) reproducing a basic insert of the catalytic subunit. This effect is reversed by equimolar addition of a peptide (beta[55-71]) including the 55-64 acidic stretch of the beta......-subunit. Comparable polylysine stimulation was observed with the holoenzymes reconstituted with either beta wt or the beta mutants capable of assembling with the alpha-subunit, with the notable exception of those bearing Ala substitutions for acidic residues at positions 55, 57, and 59-61. These were nearly...

  13. Developmental differences in posttranslational calmodulin methylation in pea plants

    International Nuclear Information System (INIS)

    Oh, Sukheung; Roberts, D.M.

    1990-01-01

    A calmodulin-N-methyltransferase was used to analyze the degree of lysine-115 methylation of pea calmodulin. Calmodulin was isolated from segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by the calmodulin methyltransferase in the presence of 3 H-methyl-S-adenosylmethionine. Calmodulin methylation levels were lower in apical root segments and in the young lateral roots compared with the mature, differentiated root tissues. The methylation of these calmodulin samples occurs specifically at lysine 115 since site-directed mutants of calmodulin with substitutions at this position were not methylated and competitively inhibited methylation. The present findings, combined with previous data showing differences in NAD kinase activation by methylated and unmethylated calmodulins, raise the possibility that posttranslational methylation could affect calmodulin action

  14. Nucleolin (C23), a physiological substrate for casein kinase II

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G

    1988-01-01

    Nucleolin (C23), a 110 kDa phosphoprotein, which is mainly found in the nucleolus has been shown to be a physiological substrate for casein kinase II (CKII). Nucleolin was identified and characterized by immunodetection using an anti-nucleolin antibody. Phosphopeptide patterns from nucleolin...... phosphorylated by purified casein kinase II and of phosphorylated nucleolin which had been isolated from tumor cells grown in the presence of [32P]-o-phosphate, were identical. The partial tryptic digest revealed nine phosphopeptides. Nucleolin isolated from Krebs II mouse ascites cells was phosphorylated...... by purified casein kinase II with about two moles phosphate per one mole of nucleolin....

  15. Adeno-associated virus (AAV-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-12-01

    Full Text Available Abstract Background Calcium/calmodulin-dependent protein kinase IV (CaMKIV controls activity-dependent gene transcription by regulating the activity of the cyclic AMP response element binding protein (CREB. This signaling pathway is involved in gating emotional responses in the CNS but previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of adult mice. Results We used recombinant adeno-associated virus (rAAV-mediated gene transfer of a dominant-negative CaMKIV variant (rAAV-dnCaMKIV to inhibit endogenous CaMKIV in the nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests including, prepulse inhibition of the acoustic startle response, open field, social interaction and anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the light/dark emergence test. Conclusion Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in anxiety-like behaviour but not sensorimotor gating.

  16. Molecular determinants for cardiovascular TRPC6 channel regulation by Ca2+/calmodulin-dependent kinase II

    DEFF Research Database (Denmark)

    Shi, Juan; Geshi, Naomi; Takahashi, Shinichi

    2013-01-01

    and distribution of TRPC6 channels did not significantly change with these mutations. Electrophysiological and immunocytochemical data with the Myc-tagged TRPC6 channel indicated that Thr487 is most likely located at the intracellular side of the cell membrane. Overexpression of T487A caused significant reduction...

  17. Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) interacts with neurofilament L and inhibits its filament association

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Hana [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Katoh, Tsuyoshi [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Nakagawa, Ryoko; Ishihara, Yasuhiro [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Sueyoshi, Noriyuki; Kameshita, Isamu [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795 (Japan); Taniguchi, Takanobu [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Hirano, Tetsuo; Yamazaki, Takeshi [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Ishida, Atsuhiko, E-mail: aishida@hiroshima-u.ac.jp [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan)

    2016-09-02

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nM (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.

  18. Myosin light chain kinase phosphorylation in tracheal smooth muscle

    International Nuclear Information System (INIS)

    Stull, J.T.; Hsu, L.C.; Tansey, M.G.; Kamm, K.E.

    1990-01-01

    Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32 P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+

  19. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    International Nuclear Information System (INIS)

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  20. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  1. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...... bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite...

  2. Molecular cloning of the human casein kinase II α subunit

    International Nuclear Information System (INIS)

    Meisner, H.; Heller-Harrison, R.; Buxton, J.; Czech, M.P.

    1989-01-01

    A human cDNA encoding the α subunit of casein kinase II and a partial cDNA encoding the rat homologue were isolated by using a Drosophila casein kinase II cDNA probe. The 2.2-kb human cDNA contains a 1.2-kb open reading frame, 150 nucleotides of 5' leader, and 850 nucleotides of 3' noncoding region. Except for the first 7 deduced amino acids that are missing in the rat cDNA, the 328 amino acids beginning with the amino terminus are identical between human and rat. The Drosophila enzyme sequence is 90% identical with the human casein kinase II sequence, and there is only a single amino acid difference between the published partial bovine sequence and the human sequence. In addition, the C-terminus of the human cDNA has an extra 53 amino acids not present in Drosophila. Northern analysis of rat and human RNA showed predominant bands of 5.5, 3.1, and 1.8 kb. In rat tissues, brain and spleen had the highest levels of casein kinase II α subunit specific RNA, while skeletal muscle showed the lowest. Southern analysis of human cultured cell and tissue genomic DNA using the full-length cDNA probe revealed two bands with restriction enzymes that have no recognition sites within the cDNA and three to six bands with enzymes having single internal sites. These results are consistent with the possibility that two genes encode the α subunits

  3. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix

    International Nuclear Information System (INIS)

    Ikura, Mitsuhiko; Kay, L.E.; Bax, A.; Krinks, M.

    1991-01-01

    Heteronuclear 3D and 4D NMR experiments have been used to obtain 1 H, 13 C, and 15 N backbone chemical shift assignments in Ca 2+ -loaded clamodulin complexed with a 26-residue synthetic peptide (M13) corresponding to the calmodulin-bionding domain (residues 577-602) of rabbit skeletal muscle muosin light-chain kinase. Comparison of the chemical shift values with those observed in peptide-free calmodulin shows that binding of M13 peptide induces substantial chemical shift changes that are not localized in one particular region of the protein. The largest changes are found in the first helix of the Ca 2+ -binding site 1 (E11-E14), the N-terminal portion of the central helix (M72-D78), and the second helix of the Ca 2+ -binding site 4 (F141-M145). Analysis of backbone NOE connectivities indicates a change from α-helical to an extended conformation for residues 75-77 upon complexation with M13. Upon complexation with M13, a significant decrease in the amide exchange rate is observed for residues T110, L112, G113, and E114 at the end of the second helix of site 3

  4. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  5. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane.

    Science.gov (United States)

    Alli, Abdel A; Bao, Hui-Fang; Liu, Bing-Chen; Yu, Ling; Aldrugh, Summer; Montgomery, Darrice S; Ma, He-Ping; Eaton, Douglas C

    2015-09-01

    Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane. Copyright © 2015 the American Physiological Society.

  6. Calmodulin-lanthanide ion exchange kinetics

    International Nuclear Information System (INIS)

    Buccigross, J.; O'Donnell, C.; Nelson, D.

    1985-01-01

    A flow dialysis apparatus suitable for the study of high affinity metal binding proteins has been utilized to study calmodulin-metal exchange kinetics. Calmodulin labeled with Eu-155 and Gd-153 was dialyzed against buffer containing various competing metal ions. The rate of metal exchange was monitored by a gamma-ray scintillation detector. The kinetics of exchange are first order, and the rates fall into two categories: Ca (II) and CD (II) in one, and the lanthanides Eu (III), Gd (III), and La (III) in the other

  7. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Witters, L.A.; Bacon, G.W.

    1985-01-01

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32 P-ACC phosphorylated by the casein kinases was identified

  8. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    Science.gov (United States)

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein

  9. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    Science.gov (United States)

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  10. Reconstruction of calmodulin single-molecule FRET states, dye interactions, and CaMKII peptide binding by MultiNest and classic maximum entropy

    Science.gov (United States)

    DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.

    2013-08-01

    We analyzed single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  11. Reconstruction of Calmodulin Single-Molecule FRET States, Dye-Interactions, and CaMKII Peptide Binding by MultiNest and Classic Maximum Entropy.

    Science.gov (United States)

    Devore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2013-08-30

    We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca 2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

  12. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability

    NARCIS (Netherlands)

    Küry, Sébastien; van Woerden, Geeske M; Besnard, Thomas; Proietti Onori, Martina; Latypova, Xénia; Towne, Meghan C; Cho, Megan T.; Prescott, Trine E; Ploeg, Melissa A; Sanders, Jan-Stephan; Stessman, Holly A F; Pujol, Aurora; Distel, Ben; Robak, Laurie A; Bernstein, Jonathan A; Denommé-Pichon, Anne-Sophie; Lesca, Gaëtan; Sellars, Elizabeth A; Berg, Jonathan; Carré, Wilfrid; Busk, Øyvind Løvold; van Bon, Bregje W M; Waugh, Jeff L; Deardorff, Matthew; Hoganson, George E; Bosanko, Katherine B; Johnson, Diana S; Dabir, Tabib; Holla, Øystein Lunde; Sarkar, Ajoy; Tveten, Kristian; de Bellescize, Julitta; Braathen, Geir J; Terhal, Paulien A; Grange, Dorothy K; van Haeringen, Arie; Lam, Christina; Mirzaa, Ghayda; Burton, Jennifer; Bhoj, Elizabeth J.; Douglas, Jessica; Santani, Avni B; Nesbitt, Addie I; Helbig, Katherine L; Andrews, Marisa V; Begtrup, Amber; Tang, Sha; van Gassen, Koen L I; Juusola, Jane; Foss, Kimberly; Enns, Gregory M; Moog, Ute; Hinderhofer, Katrin; Paramasivam, Nagarajan; Lincoln, Sharyn; Kusako, Brandon H; Lindenbaum, Pierre; Charpentier, Eric; Nowak, Catherine B; Cherot, Elouan; Simonet, Thomas; Ruivenkamp, Claudia A L; Hahn, Sihoun; Brownstein, Catherine A; Xia, Fan; Schmitt, Sébastien; Deb, Wallid; Bonneau, Dominique; Nizon, Mathilde; Quinquis, Delphine; Chelly, Jamel; Rudolf, Gabrielle; Sanlaville, Damien; Parent, Philippe; Gilbert-Dussardier, Brigitte; Toutain, Annick; Sutton, Vernon R; Thies, Jenny; Peart-Vissers, Lisenka E L M; Boisseau, Pierre; Vincent, Marie; Grabrucker, Andreas M; Dubourg, Christèle; Tan, Wen-Hann; Verbeek, Nienke E; Granzow, Martin; Santen, Gijs W E; Shendure, Jay; Isidor, Bertrand; Pasquier, Laurent; Redon, Richard; Yang, Yaping; State, Matthew W; Kleefstra, Tjitske; Cogné, Benjamin; Petrovski, Slavé; Retterer, Kyle; Eichler, Evan E.; Rosenfeld, Jill A; Agrawal, Pankaj B; Bézieau, Stéphane; Odent, Sylvie; Elgersma, Ype; Mercier, Sandra

    2017-01-01

    Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a

  13. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    International Nuclear Information System (INIS)

    Souza, C.F.; Carneiro, A.B.; Silveira, A.B.; Laranja, G.A.T.; Silva-Neto, M.A.C.; Costa, S.C. Goncalves da; Paes, M.C.

    2009-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  14. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  15. Analysis of the state of posttranslational calmodulin methylation in developing pea plants

    International Nuclear Information System (INIS)

    Oh, Sukheung; Roberts, D.M.

    1990-01-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of [ 3 H]methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated and green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity

  16. Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue

    DEFF Research Database (Denmark)

    Münstermann, U; Fritz, G; Seitz, G

    1990-01-01

    Protein kinase CKII (i.e. casein kinase II, CKII, NII) is expressed at a higher level in rapidly proliferating tissues and in solid human tumours (e.g. colorectal carcinomas) when compared to the corresponding non-neoplastic colorectal mucosa. This could be shown by (a) Western blotting of cellular...

  17. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract.

    Science.gov (United States)

    Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini

    2018-01-01

    Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.

  18. Nonenzymatic glucosylation of neuronal calmodulin and its functional consequences

    International Nuclear Information System (INIS)

    Kowluru, R.A.; Kowluru, A.; Bitensky, M.W.

    1986-01-01

    Glucosylation (NEG) (nonenzymatic) of proteins is a posttranslational protein modification that occurs readily in the diabetic environment. As a consequence of NEG some proteins are known to undergo a change in function. Their studies of red blood cell (RBC) cytoskeletal proteins indicate that calmodulin is glucosylated in the diabetic RBC and this is followed by a change in function. Here they present new data in support of their earlier findings. Purified bovine brain calmodulin was glucosylated in vitro in the presence of 28 mM glucose. After six days of incubation at room temperature 2.75 moles of glucose were incorporated per mole of calmodulin. Glucosylated calmodulin exhibited a marked reduction in calcium dependent functions. Its ability to stimulate neuronal phosphodiesterase (PDE) and adenylate cyclase was reduced by 65 and 80% respectively. Its ability to stimulate rat brain protein kinase was reduced by 40%. Glucosylated calmodulin exhibited a 56% drop in its 45 Ca binding as compared with unmodified calmodulin. These data provide an additional example in which NEG markedly alters protein function

  19. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II

    DEFF Research Database (Denmark)

    Elmlund, Hans; Baraznenok, Vera; Lindahl, Martin

    2006-01-01

    CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8......-dependent kinase activity. We use electron microscopy and single-particle reconstruction to demonstrate that the Cdk8 module forms a distinct structural entity that binds to the head and middle region of Mediator, thereby sterically blocking interactions with pol II....

  20. Stimulation of casein kinase II by epidermal growth factor: Relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit

    International Nuclear Information System (INIS)

    Ackerman, P.; Osheroff, N.; Glover, C.V.C.

    1990-01-01

    To determine relationships between the hormonal activation of casein kinase II and its phosphorylation state, epidermal growth factor (EGF)-treated and EGF-naive human A-431 carcinoma cells were cultured in the presence of [ 32 P]orthophosphate. Immunoprecipitation experiments indicated that casein kinase II in the cytosol of EGF-treated cells contained approximately 3-fold more incorporated [ 32 P]phosphate than did its counterpart in untreated cells. Levels of kinase phosphorylation paralleled levels of kinase activity over a wide range of EGF concentrations as well as over a time course of hormone action. Approximately 97% of the incorporated [ 32 P]phosphate was found in the β subunit of casein kinase II. Both activated and hormone-naive kinase contained radioactive phosphoserine and phosphothreonine but no phosphotyronsine. On the basis of proteolytic mapping experiments, EGF treatment of A-431 cells led to an increase in the average [ 32 P]phosphate content (i.e., hyperphosphorylation) of casein kinase II β subunit peptides which were modified prior to hormone treatment. Finally, the effect of alkaline phosphatase on the reaction kinetics of activated casein kinase II indicated that hormonal stimulation of the kinase resulted from the increase in its phosphorylation state

  1. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M

    2016-12-16

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae*

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M.

    2016-01-01

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1–77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1–77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. PMID:27834677

  3. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  4. The scaffold protein calcium/calmodulin-dependent serine protein kinase controls ATP release in sensory ganglia upon P2X3 receptor activation and is part of an ATP keeper complex.

    Science.gov (United States)

    Bele, Tanja; Fabbretti, Elsa

    2016-08-01

    P2X3 receptors, gated by extracellular ATP, are expressed by sensory neurons and are involved in peripheral nociception and pain sensitization. The ability of P2X3 receptors to transduce extracellular stimuli into neuronal signals critically depends on the dynamic molecular partnership with the calcium/calmodulin-dependent serine protein kinase (CASK). The present work used trigeminal sensory neurons to study the impact that activation of P2X3 receptors (evoked by the agonist α,β-meATP) has on the release of endogenous ATP and how CASK modulates this phenomenon. P2X3 receptor function was followed by ATP efflux via Pannexin1 (Panx1) hemichannels, a mechanism that was blocked by the P2X3 receptor antagonist A-317491, and by P2X3 silencing. ATP efflux was enhanced by nerve growth factor, a treatment known to potentiate P2X3 receptor function. Basal ATP efflux was not controlled by CASK, and carbenoxolone or Pannexin silencing reduced ATP release upon P2X3 receptor function. CASK-controlled ATP efflux followed P2X3 receptor activity, but not depolarization-evoked ATP release. Molecular biology experiments showed that CASK was essential for the transactivation of Panx1 upon P2X3 receptor activation. These data suggest that P2X3 receptor function controls a new type of feed-forward purinergic signaling on surrounding cells, with consequences at peripheral and spinal cord level. Thus, P2X3 receptor-mediated ATP efflux may be considered for the future development of pharmacological strategies aimed at containing neuronal sensitization. P2X3 receptors are involved in sensory transduction and associate to CASK. We have studied in primary sensory neurons the molecular mechanisms downstream P2X3 receptor activation, namely ATP release and partnership with CASK or Panx1. Our data suggest that CASK and P2X3 receptors are part of an ATP keeper complex, with important feed-forward consequences at peripheral and central level. © 2016 International Society for Neurochemistry.

  5. MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1998-09-01

    Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activation of the Ras-Raf-1-mitogen activated protein (MAP) kinase signaling pathway, nuclear translocation of transcription factors such as Fos and Jun, and the interactions of these factors with AP-1 binding sites) is involved in this NE neuromodulation (Lu et al. J Cell Biol. 1996;135:1609-1617). The aim of this study was to compare the signal transduction mechanism of Ang II regulation of NE neuromodulation in WKY and spontaneously hypertensive rat (SHR) brain neurons, in view of the fact that AT1 receptor expression and Ang II stimulation of NE neuromodulation are higher in SHR neurons compared with WKY neurons. Despite this hyperactivity, Ang II stimulation of Ras, Raf-1, and MAP kinase activities was comparable between the neurons from WKY and SHR. Similarly, central injections of Ang II caused a comparable stimulation of MAP kinase in the hypothalamic and brain stem areas of adult WKY and SHR. Inhibition of MAP kinase by either an MAP kinase kinase inhibitor (PD98059) or an MAP kinase antisense oligonucleotide completely attenuated the stimulatory effects of Ang II on [3H]-NE uptake, NE transporter mRNA, and tyrosine hydroxylase mRNA levels in WKY neurons. These treatments resulted in only 43% to 50% inhibition of [3H]-NE uptake and NE transporter and tyrosine hydroxylase mRNAs in SHR neurons. Thus, Ang II stimulation of NE neuromodulation was completely blocked by MAP kinase inhibition in WKY neurons and only partially blocked in the SHR neurons. These observations suggest the presence of an additional signal transduction pathway involved in NE neuromodulation in SHR neurons

  6. NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration.

    Science.gov (United States)

    Chen, Hsin-Hsiung; Chen, Wen-Pin; Yan, Wan-Lun; Huang, Yuan-Chun; Chang, Szu-Wei; Fu, Wen-Mei; Su, Ming-Jai; Yu, I-Shing; Tsai, Tzung-Chieh; Yan, Yu-Ting; Tsao, Yeou-Ping; Chen, Show-Li

    2015-11-15

    Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity. © 2015. Published by The Company of Biologists Ltd.

  7. Possible Inhibitor from Traditional Chinese Medicine for the β Form of Calcium-Dependent Protein Kinase Type II in the Treatment of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Hung

    2014-01-01

    Full Text Available Recently, an important topic of major depressive disorder (MDD had been published in 2013. MDD is one of the most prevalent and disabling mental disorders. Consequently, much research is being undertaken into the causes and treatment. It has been found that inhibition of the β form of calcium/calmodulin-dependent protein kinase type II (β-CaMKII can ameliorate the disorder. Upon screening the traditional Chinese medicine (TCM database by molecular docking, sengesterone, labiatic acid, and methyl 3-O-feruloylquinate were selected for molecular dynamics. After 20 ns simulation, the RMSD, total energy, and structure variation could define the protein-ligand interaction. Furthermore, sengesterone, the principle candidate compound, has been found to have an effect on the regulation of emotions and memory development. In structure variation, we find the sample functional group of important amino acids make the protein stable and have limited variation. Due to similarity of structure variations, we suggest that these compounds may have an effect on β-CaMKII and that sengesterone may have a similar efficacy as the control. However labiatic acid may be a stronger inhibitor of β-CaMKII based on the larger RMSD and variation.

  8. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  9. Characterization of casein kinase II in human colonic carcinomas after heterotransplantation into nude mice

    DEFF Research Database (Denmark)

    Seitz, G; Münstermann, U; Schneider, H R

    1989-01-01

    Casein kinase II (CKII) activity in colorectal tumours was compared before and after heterotransplantation onto nude mice. The test revealed that the enzyme activity was about two-fold enhanced in the tumours isolated from the nude mice when compared to the respective primary tumours from which...

  10. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria

    DEFF Research Database (Denmark)

    Grankowski, N; Boldyreff, B; Issinger, O G

    1991-01-01

    cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most...

  11. The inhibitor of cyclin-dependent kinases, olomoucine II, exhibits potent antiviral properties

    Czech Academy of Sciences Publication Activity Database

    Holčáková, J.; Tomašec, P.; Burget, J. J.; Wang, E. C. Y.; Wilkinson, G. W. G.; Hrstka, R.; Kryštof, Vladimír; Strnad, Miroslav; Vojtešek, B.

    2010-01-01

    Roč. 20, č. 3 (2010), s. 133-142 ISSN 0956-3202 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cyclin-dependent Kinase * Olomoucine II * vaccinia Subject RIV: EE - Microbiology, Virology

  12. Protein kinase that phosphorylates light-harvesting complex is autophosphorylated and is associated with photosystem II

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1987-01-01

    Thylakoid membranes were phosphorylated with [γ- 32 P]ATP and extracted with octyl glucoside and cholate. Among the radiolabeled phosphoproteins in the extract was a previously characterized protein kinase of 64-kDa apparent mass. The ability of this enzyme to undergo autophosphorylation in situ was used to monitor its distribution in the membrane. Fractionation studies showed that the kinase is confined to granal regions of the thylakoid, where it appears to be associated with the light-harvesting chlorophyll-protein complex of photosystem II. The kinetics of kinase autophosphorylation were investigated both in situ and in extracted, purified enzyme. In the membrane, autophosphorylation saturated within 20-30 min and was reversed with a half-time of 7-8 min upon removal of ATP or oxidative inactivation of the kinase; the accompanying dephosphorylation of light-harvesting complex was slower and kinetically complex. Fluoride (10 mM) inhibited these dephosphorylations. Autophosphorylation of the isolated kinase was independent of enzyme concentration, indicative of an intramolecular mechanism. A maximum of one serine residue per mole of kinase was esterified. Autophosphorylation was more rapid in the presence of histone IIIs, an exogenous substrate. Dephosphorylation of the isolated enzyme was not observed

  13. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  14. Topography of Protein Kinase C βII in Benign and Malignant Melanocytic Lesions.

    Science.gov (United States)

    Krasagakis, Konstanin; Tsentelierou, Eleftheria; Chlouverakis, Gregory; Stathopoulos, Efstathios N

    2017-09-01

    Protein kinase C βII promotes melanogenesis and affects proliferation of melanocytic cells but is frequently absent or decreased in melanoma cells in vitro. To investigate PKC-βII expression and spatial distribution within a lesion in various benign and malignant melanocytic proliferations. Expression of PKC-βII was semiquantitatively assessed in the various existing compartments (intraepidermal [not nested], junctional [nested], and dermal) of benign (n = 43) and malignant (n = 28) melanocytic lesions by immunohistochemistry. Melanocytes in the basal layer of normal skin or in lentigo simplex stained strongly for PKC-βII. Common nevi lacked completely PKC-βII. All other lesions expressed variably PKC-βII, with cutaneous melanoma metastases displaying the lowest rate of positivity (14%). In the topographical analysis within a lesion, PKC-βII expression was largely retained in the intraepidermal and junctional part of all other lesions (dysplastic nevus, lentigo maligna, and melanoma). Reduced expression of PKC-βII was found in the dermal component of benign and malignant lesions ( P = .041 vs intraepidermal). PKC-βII expression in the various compartments did not differ significantly between benign and malignant lesions. The current study revealed a significant correlation between PKC-βII expression and spatial localization of melanocytes, with the lowest expression found in the dermal compartment and the highest in the epidermal compartment.

  15. Ca(2+)-calmodulin-dependent phosphorylation of islet secretory granule proteins

    International Nuclear Information System (INIS)

    Watkins, D.T.

    1991-01-01

    The effect of Ca2+ and calmodulin on phosphorylation of islet secretory granule proteins was studied. Secretory granules were incubated in a phosphorylation reaction mixture containing [32P]ATP and test reagents. The 32P-labeled proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 32P content was visualized by autoradiography, and the relative intensities of specific bands were quantitated. When the reaction mixture contained EGTA and no added Ca2+, 32P was incorporated into two proteins with molecular weights of 45,000 and 13,000. When 10(-4) M Ca2+ was added without EGTA, two additional proteins (58,000 and 48,000 Mr) were phosphorylated, and the 13,000-Mr protein was absent. The addition of 2.4 microM calmodulin markedly enhanced the phosphorylation of the 58,000- and 48,000-Mr proteins and resulted in the phosphorylation of a major protein whose molecular weight (64,000 Mr) is identical to that of one of the calmodulin binding proteins located on the granule surface. Calmodulin had no effect on phosphorylation in the absence of Ca2+ but was effective in the presence of calcium between 10 nM and 50 microM. Trifluoperazine and calmidazolium, calmodulin antagonists, produced a dose-dependent inhibition of the calmodulin effect. 12-O-tetradecanoylphorbol 13-acetate, a phorbol ester that activates protein kinase C, produced no increase in phosphorylation, and 1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride, an inhibitor of protein kinase C, had no effect. These results indicate that Ca(2+)-calmodulin-dependent protein kinases and endogenous substrates are present in islet secretory granules

  16. Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II.

    Science.gov (United States)

    Argüello-Miranda, Orlando; Zagoriy, Ievgeniia; Mengoli, Valentina; Rojas, Julie; Jonak, Katarzyna; Oz, Tugce; Graf, Peter; Zachariae, Wolfgang

    2017-01-09

    Meiosis consists of DNA replication followed by two consecutive nuclear divisions and gametogenesis or spore formation. While meiosis I has been studied extensively, less is known about the regulation of meiosis II. Here we show that Hrr25, the conserved casein kinase 1δ of budding yeast, links three mutually independent key processes of meiosis II. First, Hrr25 induces nuclear division by priming centromeric cohesin for cleavage by separase. Hrr25 simultaneously phosphorylates Rec8, the cleavable subunit of cohesin, and removes from centromeres the cohesin protector composed of shugoshin and the phosphatase PP2A. Second, Hrr25 initiates the sporulation program by inducing the synthesis of membranes that engulf the emerging nuclei at anaphase II. Third, Hrr25 mediates exit from meiosis II by activating pathways that trigger the destruction of M-phase-promoting kinases. Thus, Hrr25 synchronizes formation of the single-copy genome with gamete differentiation and termination of meiosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    Science.gov (United States)

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  18. W342F Mutation in CCaMK Enhances Its Affinity to Calmodulin But Compromises Its Role in Supporting Root Nodule Symbiosis in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Edgard Jauregui

    2017-11-01

    Full Text Available The calcium/calmodulin-dependent protein kinase (CCaMK is regulated by free Ca2+ and Ca2+-loaded calmodulin. This dual binding is believed to be involved in its regulation and associated physiological functions, although direct experimental evidence for this is lacking. Here we document that site-directed mutations in the calmodulin-binding domain of CCaMK alters its binding capacity to calmodulin, providing an effective approach to study how calmodulin regulates CCaMK in terms of kinase activity and regulation of rhizobial symbiosis in Medicago truncatula. We observed that mutating the tryptophan at position 342 to phenylalanine (W342F markedly increased the calmodulin-binding capability of the mutant. The mutant CCaMK underwent autophosphorylation and catalyzed substrate phosphorylation in the absence of calcium and calmodulin. When the mutant W342F was expressed in ccamk-1 roots, the transgenic roots exhibited an altered nodulation phenotype. These results indicate that altering the calmodulin-binding domain of CCaMK could generate a constitutively activated kinase with a negative role in the physiological function of CCaMK.

  19. Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle

    OpenAIRE

    Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene

    2011-01-01

    Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic bindin...

  20. Tetanic stimulation leads to increased accumulation of Ca2+ calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons

    OpenAIRE

    Rosenstein, Alan; Kreiman, Gabriel; Schuman, Erin M; Kennedy, Mary

    1999-01-01

    mRNA for the alpha-subunit of CaMKII is abundant in dendrites of neurons in the forebrain (Steward, 1997). Here we show that tetanic stimulation of the Schaffer collateral pathway causes an increase in the concentration of alpha-CaMKII in the dendrites of postsynaptic neurons. The increase is blocked by anisomycin and is detected by both quantitative immunoblot and semiquantitative immunocytochemistry. The increase in dendritic alpha-CaMKII can be measured 100-200 micrometer away from the neu...

  1. Creatine Kinase Activity in Patients with Diabetes Mellitus Type I and Type II

    Directory of Open Access Journals (Sweden)

    Adlija Jevrić-Čaušević

    2006-08-01

    Full Text Available Diabetes mellitus can be looked upon as an array of diseases, all of which exhibit common symptoms. While pathogenesis of IDDM (insulin dependant diabetes mellitus is well understood, the same is not true for diabetes mellitus type II. In the latter case, relative contribution of the two factors (insulin resistance or decreased insulin secretion varies individually, being highly increased in peripheral tissues and strictly dependant on insulin for glucose uptake. Moreover, in patients with diabetes mellitus type II, disbalance at the level of regulation of glucose metabolism as well as lipid metabolism has been noted in skeletal muscles. It is normal to assume that in this type of diabetes, these changes are reflected at the level of total activity of enzyme creatine kinase. This experimental work was performed on a group of 80 regular patients of Sarajevo General Hospital. Forty of those patients were classified as patients with diabetes type I and forty as patients with diabetes type II. Each group of patients was carefully chosen and constituted of equal number of males and females. The same was applied for adequate controls. Concentration of glucose was determined for each patient with GOD method, while activity of creatine kinase was determined with CK-NAC activated kit. Statistical analysis of the results was performed with SPSS software for Windows. Obtained results point out highly expressed differences in enzyme activity between two populations examined. Changes in enzyme activity are more expressed in patients with diabetes type II. Positive correlation between concentration of glucose and serum activity of the enzyme is seen in both categories of diabetic patients which is not the case for the patients in control group. At the same time, correlation between age and type of diabetes does exist . This is not followed at the level of enzyme activity or concentration of glucose.

  2. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.

    Science.gov (United States)

    Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M

    2011-08-01

    Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

  3. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    Science.gov (United States)

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    Science.gov (United States)

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Stanley K.L. [Singapore Immunology Network A-STAR (Singapore); Neo, Soek-Ying, E-mail: neo_soek_ying@sics.a-star.edu.sg [Singapore Immunology Network A-STAR (Singapore); Yap, Yann-Wan [Singapore Immunology Network A-STAR (Singapore); Karuturi, R. Krishna Murthy; Loh, Evelyn S.L. [Genome Institute of Singapore A-STAR (Singapore); Liau, Kui-Hin [Department of General Surgery, Tan Tock Seng Hospital (Singapore); Ren, Ee-Chee, E-mail: ren_ee_chee@immunol.a-star.edu.sg [Singapore Immunology Network A-STAR (Singapore); Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)

    2009-09-18

    Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2{alpha}) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2{alpha} mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2{alpha} was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2{alpha} can modulate HCC cell growth.

  6. Modulation of type II TGF-β receptor degradation by integrin-linked kinase.

    Science.gov (United States)

    Vi, Linda; Boo, Stellar; Sayedyahossein, Samar; Singh, Randeep K; McLean, Sarah; Di Guglielmo, Gianni M; Dagnino, Lina

    2015-03-01

    Cutaneous responses to injury, infection, and tumor formation involve the activation of resident dermal fibroblasts and subsequent transition to myofibroblasts. The key for induction of myofibroblast differentiation is the activation of transforming growth factor-β (TGF-β) receptors and stimulation of integrins and their associated proteins, including integrin-linked kinase (ILK). Cross-talk processes between TGF-β and ILK are crucial for myofibroblast formation, as ILK-deficient dermal fibroblasts exhibit impaired responses to TGF-β receptor stimulation. We now show that ILK associates with type II TGF-β receptors (TβRII) in ligand- and receptor kinase activity-independent manners. In cells with targeted Ilk gene inactivation, cellular levels of TβRII are decreased, through mechanisms that involve enhanced ubiquitination and proteasomal degradation. Partitioning of TGF-β receptors into membrane has been linked to proteasome-dependent receptor degradation. We found that interfering with membrane raft formation in ILK-deficient cells restored TβRII levels and signaling. These observations support a model whereby ILK functions in fibroblasts to direct TβRII away from degradative pathways during their differentiation into myofibroblasts.

  7. A conserved Mediator–CDK8 kinase module association regulates Mediator–RNA polymerase II interaction

    Science.gov (United States)

    Tsai, Kuang-Lei; Sato, Shigeo; Tomomori-Sato, Chieri; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.

    2013-01-01

    The CDK8 kinase module (CKM) is a conserved, dissociable Mediator subcomplex whose component subunits were genetically linked to the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and individually recognized as transcriptional repressors before Mediator was identified as a preeminent complex in eukaryotic transcription regulation. We used macromolecular electron microscopy and biochemistry to investigate the subunit organization, structure, and Mediator interaction of the Saccharomyces cerevisiae CKM. We found that interaction of the CKM with Mediator’s Middle module interferes with CTD-dependent RNAPII binding to a previously unknown Middle module CTD-binding site targeted early on in a multi-step holoenzyme formation process. Taken together, our results reveal the basis for CKM repression, clarify the origin of the connection between CKM subunits and the CTD, and suggest that a combination of competitive interactions and conformational changes that facilitate holoenzyme formation underlie the Mediator mechanism. PMID:23563140

  8. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    Science.gov (United States)

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  9. Antiproliferative activity of olomoucine II, a novel 2,6,9-trisubstituted purine cyclin-dependent kinase inhibitor

    Czech Academy of Sciences Publication Activity Database

    Kryštof, Vladimír; McNae, I. W.; Walkinshaw, M. D.; Fischer, P.M.; Müller, P.; Vojtešek, B.; Orság, Martin; Havlíček, Libor; Strnad, Miroslav

    2005-01-01

    Roč. 62, č. 15 (2005), s. 1763-1771 ISSN 1420-682X R&D Projects: GA ČR GP204/03/D231 Institutional research plan: CEZ:AV0Z50380511 Keywords : olomoucine II * roscovitine * cyclin-dependent kinase inhibitor Subject RIV: CE - Biochemistry Impact factor: 4.582, year: 2005

  10. Sodium butyrate-mediated differentiation of colorectal cancer cells: regulation of PKC-betaII by PI3-kinase

    Czech Academy of Sciences Publication Activity Database

    Turečková, Jolana; Vojtěchová, Martina; Kučerová, Dana; Velek, Jiří; Tuháčková, Zdena

    2005-01-01

    Roč. 15, č. 2 (2005), s. 329-335 ISSN 1107-3756 R&D Projects: GA ČR(CZ) GP301/02/D159; GA AV ČR(CZ) KSK5020115 Keywords : phosphatidylinositol 3-kinase * PKCbetaII * adenocarcinoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.090, year: 2005

  11. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump

    International Nuclear Information System (INIS)

    Vorherr, T.; James, P.; Krebs, J.; Carafoli, E.; McCormick, D.J.; Penniston, J.T.; Enyedi, A.

    1990-01-01

    Peptides corresponding to the calmodulin binding domain of the plasma membrane Ca 2+ pump were synthesized, and their interaction with calmodulin was studied with circular dichroism, infrared spectroscopy, nuclear magnetic resonance, and fluorescence techniques. They corresponded to the complete calmodulin binding domain (28 residues), to its first 15 or 20 amino acids, and to its C-terminal 14 amino acids. The first three peptides interacted with calmodulin. The K value was similar to that of the intact enzyme in the 28 and 20 amino acid peptides, but increased substantially in the shorter 15 amino acid peptide. The 14 amino acid peptide corresponding to the C-terminal portion of the domain failed to bind calmodulin. 2D NMR experiments on the 20 amino acid peptides have indicated that the interaction occurred with the C-terminal half of calmodulin. A tryptophan that is conserved in most calmodulin binding domains of proteins was replaced by other amino acids, giving rise to modified peptides which had lower affinity for calmodulin. An 18 amino acid peptide corresponding to an acidic sequence immediately N-terminal to the calmodulin binding domain which is likely to be a Ca 2+ binding site in the pump was also synthesized. Circular dichroism experiments have shown that it interacted with calmodulin binding domain, supporting the suggestion that the latter, or a portion of it, may act as a natural inhibitor of the pump

  12. Isolation and characterization of human cDNA clones encoding the α and the α' subunits of casein kinase II

    International Nuclear Information System (INIS)

    Lozeman, F.J.; Litchfield, D.W.; Piening, C.; Takio, Koji; Walsh, K.A.; Krebs, E.G.

    1990-01-01

    Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two α or α' subunits (or one of each) and two β subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell λgt 10 library using cDNA clones isolated from Drosophila melanogasten. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5' untranslated region) and followed by 871 bp (3' untranslated region). The hT4.1 close was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 by (5' untranslated region) and followed by 550 bp (3' untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of α and α' subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the α and α' subunits of casein kinase II. These studies show that there are two distinct catalytic subunits for casein II (α and α') and that the sequence of these subunits is largely conserved between the bovine and the human

  13. Tau regulates the subcellular localization of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Barreda, Elena Gomez de [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avila, Jesus, E-mail: javila@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); CIBER de Enfermedades Neurodegenerativas, 28031 Madrid (Spain)

    2011-05-13

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  14. Tau regulates the subcellular localization of calmodulin

    International Nuclear Information System (INIS)

    Barreda, Elena Gomez de; Avila, Jesus

    2011-01-01

    Highlights: → In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  15. Characterization of the regulatory subunit from brain cyclic AMP-dependent protein kinase II

    International Nuclear Information System (INIS)

    Stein, J.C.

    1985-01-01

    Tryptic peptides derived from the regulatory subunits of brain and heart cAMP-dependent protein kinase II were mapped by reverse phase HPLC. At 280 nm, 15 unique peptides were found only in the heart RII digest, while 5 other peptides were obtained only from brain RII. At 210 nm, 13 brain-RII specific and 15 heart-RII specific tryptic peptides were identified and resolved. Two-dimensional mapping analyses revealed that several 37 P-labeled tryptic fragments derived from the autophosphorylation and the photoaffinity labeled cAMP-binding sites of brain RII were separate and distinct from the 32 P-peptides isolated from similarly treated heart RII. The tryptic phosphopeptide containing the autophosphorylation site in brain RII was purified. The sequence and phosphorylation site is: Arg-Ala-Ser(P)-Val-Cys-Ala-Glu-Ala-Tyr-Asn-Pro-Asp-Glu-Glu-Glu-Asp-Asp-Ala-Glu. Astrocytes and neurons exhibit high levels of the brain RII enzyme, while oligodendrocytes contain the heart RII enzyme. Monoclonal antibodies to bovine cerebral cortex RII were made and characterized. The antibodies elucidated a subtle difference between membrane-associated and cytosolic RII from cerebral cortex

  16. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    Science.gov (United States)

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinaseII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Identification of high-affinity calmodulin-binding proteins in rat liver

    International Nuclear Information System (INIS)

    Hanley, R.M.; Dedman, J.R.; Shenolikar, S.

    1987-01-01

    The Ca 2+ -dependent binding of [ 125 I] calmodulin (CaM) to hepatic proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was utilized to identify CaM binding or acceptor proteins or CAPs. Two proteins of apparent molecular weight of 60,000 (CAP-60) and 45,000 (CAP-45) comprised > 80% of the Ca 2+ -dependent CaM binding in rat liver cytosol. CAP-60 and CAP-45 were partially purified by a variety of chromatographic steps, including affinity chromatography on CaM Sepharose. CAP-60 possessed a native molecular size of 400,000, indicating it to be the CaM-binding subunit of a larger oligomeric complex. In contrast, CAP-45 was monomeric as judged by gel filtration. Neither CAP-60 nor CAP-45 possessed chromatographic properties consistent with known CaM-dependent enzymes reported in the literature. Two-dimensional peptide mapping provided convincing evidence that CAP-60 and CAP-45 were unrelated to other well-characterized CAPs, namely Ca 2+ (CaM)-dependent protein kinase II, calcineurin, or the CaM-dependent cyclic nucleotide phosphodiesterase. The relative abundance and high affinity for CaM could suggest that these novel target proteins, CAP-60 and CAP-45, represent a dominant pathway for CaM action in the mammalian liver

  18. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    B W Poovaiah

    2015-08-01

    Full Text Available Transient changes in intracellular Ca2+ concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM and calmodulin-like proteins (CMLs are major Ca2+ sensors, playing critical roles in interpreting encrypted Ca2+ signals. Ca2+-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca2+ signal and overview of Ca2+ signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca2+/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca2+/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of ROS signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca2+/CaM-mediated signaling warrant further investigation. Ca2+/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca2+ signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca2+/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.

  19. Differential inhibition of calmodulin-sensitive phosphodiesterase and Ca++-adenosine triphosphatase by chlorpromazine-linked calmodulin

    International Nuclear Information System (INIS)

    Prozialeck, W.C.; Wallace, T.L.; Weiss, B.

    1987-01-01

    Upon irradiation with UV light, chlorpromazine binds irreversibly to calmodulin and inactivates it. To determine whether this chlorpromazine-calmodulin (CPZ-CaM) complex can inhibit the actions of native calmodulin, we examined its effects on the activity of calmodulin-sensitive cyclic nucleotide phosphodiesterase from rat brain and on the Ca++-adenosine triphosphatase (ATPase) of human erythrocyte membranes. The CPZ-CaM complex was prepared by irradiating purified bovine brain calmodulin in the presence of chlorpromazine and Ca++. The sample was then dialyzed extensively to remove reversibly bound chlorpromazine and then assayed for its ability to activate calmodulin-sensitive phosphodiesterase and Ca++-ATPase, and for its ability to block the stimulatory effects of native calmodulin on these enzymes. The CPZ-CaM complex had no effect on the basal activity of either enzyme; it neither activated nor inhibited the enzymes when assayed in the absence of calmodulin. However, it affected differentially the activation of the two enzymes by native calmodulin. The CPZ-CaM complex totally inhibited calmodulin-stimulated phosphodiesterase but had no effect on the activation of the ATPase by calmodulin. Other studies showed that CPZ-CaM increased the activation constant (Ka) for the interaction of calmodulin with phosphodiesterase but did not affect the maximal activation (Vmax) of the enzyme by calmodulin. Neither calmodulin nor CPZ-CaM altered the Km for the interaction between phosphodiesterase and cyclic AMP. These results suggest that CPZ-CaM inhibits the calmodulin-induced activation of phosphodiesterase by competing with calmodulin for regulatory sites on the enzyme and not by interacting with calmodulin itself or by blocking the interaction of cyclic AMP with the enzyme

  20. Identification of the protein kinase C phosphorylation site in neuromodulin

    International Nuclear Information System (INIS)

    Apel, E.D.; Byford, M.F.; Au, D.; Walsh, K.A.; Storm, D.R.

    1990-01-01

    Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin binding protein that is phosphorylated by protein kinase C. Phosphorylation by protein kinase C has been shown to abolish the affinity of neuromodulin for calmodulin and the authors have proposed that the concentration of free CaM in neurons may be regulated by phosphorylation and dephosphorylation of neuromodulin. The purpose of this study was to identify the protein kinase C phosphorylation site(s) in neuromodulin using recombinant neuromodulin as a substrate. Toward this end, it was demonstrated that recombinant neuromodulin purified from Escherichia coli and bovine neuromodulin were phosphorylated with similar K m values and stoichiometries and that protein kinase C mediated phosphorylation of both proteins abolished binding to calmodulin-Sepharose. Recombinant neuromodulin was phosphorylated by using protein kinase C and [γ- 32 P]ATP and digested with trypsin, and the resulting peptides were separated by HPLC. Only one 32 P-labeled tryptic peptide was generated from phosphorylated neuromodulin. They conclude that serine-41 is the protein kinase C phosphorylation site of neuromodulin and that phosphorylation of this amino acid residue blocks binding of calmoculin to neuromodulin. The proximity of serine-41 to the calmodulin binding domain in neuromodulin very likely explains the effect of phosphorylation on the affinity of neuromodulin for calmodulin

  1. Calmodulin-regulated adenylyl cyclases and neuromodulation.

    Science.gov (United States)

    Xia, Z; Storm, D R

    1997-06-01

    Coincidence detection and crosstalk between signal transduction systems play very important regulatory roles in the nervous system, particularly in the regulation of transcription. Coupling of the Ca2+ and cAMP regulatory systems by calmodulin-regulated adenylyl cyclases is hypothesized to be important for some forms of synaptic plasticity, neuroendocrine function, and olfactory detection. Recent studies of a mutant mouse deficient in type I calmodulin-sensitive adenylyl cyclase have provided the first evidence that adenylyl cyclases are important for synaptic plasticity, as well as for learning and memory in vertebrates.

  2. The Adsorption of Calmoduline via Nicotinamide Immobilized Poly(HEMA-GMA Cryogels

    Directory of Open Access Journals (Sweden)

    Kadir Erol

    2016-12-01

    Full Text Available The separation and purification methods for the isolation of an important biomolecule calmoduline protein is extremely important. Among these methods, the adsorption technique is extremely popular, and the cryogels as adsorbents with the macro porous structure and interconnected flow channels cryogel they have are preferred in this field. In this study, the adsorption of calmoduline via Ca(II immobilized poly (2-hydroxyethyl methacrylate-glycidyl methacrylate, poly (HEMA-GMA, cryogels through changing interaction time, calmoduline initial concentration and temperature conditions. For the characterization of cryogels, the swelling test, Fourier Transform Infrared (FT-IR Spectroscopy, Scanning Electron Microscopy (SEM, surface area (BET, elemental analysis and ICP-OES methods were performed. Nicotinamide molecule was used as Ca (II chelating agent and the adsorption capacity of the cryogels was estimated as 1.812 mg calmoduline / g cryogel. The adsorption models of the adsorption reaction were examined by the Langmuir and Freundlich isotherm models and was determined to be more appropriate for Langmuir isotherm model.

  3. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  4. Enhanced casein kinase II activity during mouse embryogenesis. Identification of a 110-kDa phosphoprotein as the major phosphorylation product in mouse embryos and Krebs II mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Schneider, H R; Reichert, G H; Issinger, O G

    1986-01-01

    Mouse embryos at various stages of development were used to study the relationship of protein kinase activities with normal embryogenesis. Casein kinase II (CKII) activity in developing mouse embryos shows a 3-4-fold activity increase at day 12 of gestation. Together with the CKII activity...... mouse tumour cells also show an enhanced CKII activity. Here too, a 110-kDa phosphoprotein was the major phosphoryl acceptor. Partial proteolytic digestion shows that both proteins are identical. Other protein kinases tested (cAMP- and cGMP-dependent protein kinases) only show a basal level of enzyme...

  5. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    International Nuclear Information System (INIS)

    Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi; Aiba, Hirofumi; Murakami, Hiroshi

    2009-01-01

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2 + . The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  6. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    International Nuclear Information System (INIS)

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-01-01

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna H222P/H222P mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna H222P/H222P mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna H222P/H222P mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna H222P/H222P mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional

  7. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Muchir, Antoine, E-mail: a.muchir@institut-myologie.org [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Wu, Wei [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Sera, Fusako; Homma, Shunichi [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Worman, Howard J., E-mail: hjw14@columbia.edu [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States)

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  8. Role of integrin-linked kinase in vascular smooth muscle cells: Regulation by statins and angiotensin II

    International Nuclear Information System (INIS)

    Friedrich, Erik B.; Clever, Yvonne P.; Wassmann, Sven; Werner, Nikos; Boehm, Michael; Nickenig, Georg

    2006-01-01

    Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy

  9. Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain

    DEFF Research Database (Denmark)

    Pandey, A.; Dan, I.; Kristiansen, T.Z.

    2002-01-01

    cloned a novel human PAK family kinase that has been designated as PAK5. PAK5 contains a CDC42/Rac1 interactive binding (CRIB) motif at the N-terminus and a Ste20-like kinase domain at the C-terminus. PAK5 is structurally most related to PAK4 and PAK6 to make up the PAK-II subfamily. We have shown...

  10. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region.

    Science.gov (United States)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L

    2010-10-01

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Domain interaction in rabbit muscle pyruvate kinase. II. Small angle neutron scattering and computer simulation.

    Science.gov (United States)

    Consler, T G; Uberbacher, E C; Bunick, G J; Liebman, M N; Lee, J C

    1988-02-25

    The effects of ligands on the structure of rabbit muscle pyruvate kinase were studied by small angle neutron scattering. The radius of gyration, RG, decreases by about 1 A in the presence of the substrate phosphoenolpyruvate, but increases by about the same magnitude in the presence of the allosteric inhibitor phenylalanine. With increasing pH or in the absence of Mg2+ and K+, the RG of pyruvate kinase increases. Hence, there is a 2-A difference in RG between two alternative conformations. Length distribution analysis indicates that, under all experimental conditions which increase the radius of gyration, there is a pronounced increase observed in the probability for interatomic distance between 80 and 110 A. These small angle neutron scattering results indicate a "contraction" and "expansion" of the enzyme when it transforms between its active and inactive forms. Using the alpha-carbon coordinates of crystalline cat muscle pyruvate kinase, a length distribution profile was calculated, and it matches the scattering profile of the inactive form. These observations are expected since the crystals were grown in the absence of divalent cations (Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J. Mol. Biol. 134, 109-142). Hence, results from neutron scattering, x-ray crystallographic, and sedimentation studies (Oberfelder, R. W., Lee, L. L.-Y., and Lee, J.C. (1984) Biochemistry 23, 3813-3821) are totally consistent with each other. With the aid of computer modeling, the crystal structure has been manipulated in order to effect changes that are consistent with the conformational change described by the solution scattering data. The structural manipulation involves the rotation of the B domain relative to the A domain, leading to the closure of the cleft between these domains. These manipulations resulted in the generation of new sets of atomic (C-alpha) coordinates, which were utilized in calculations, the result of which compared favorably with the

  12. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  13. p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-uncoupling in obesity.

    Science.gov (United States)

    Yu, Yi; Rajapakse, Angana G; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2014-07-18

    Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II(-/-)) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II(-/-) obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which

  14. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Midori [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Yamamoto, Ayumu [Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka 422-8529 (Japan); Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aiba, Hirofumi [Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan); Murakami, Hiroshi, E-mail: hmura@med.nagoya-cu.ac.jp [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2009-10-23

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  15. Differential effects of Rho-kinase inhibitor and angiotensin II type-1 receptor antagonist on the vascular function in hypertensive rats induced by chronic l-NAME treatment

    Directory of Open Access Journals (Sweden)

    Bainian Chen

    2012-10-01

    Full Text Available Little attention has been paid to the effect of Rho-kinase inhibitor on the vascular dysfunction of nitric oxide-deficient hypertension. We aimed to investigate whether the Rho-kinase inhibitor fasudil showed beneficial effect on the vascular dysfunction of the NG-nitro-l-arginine methyl ester (l-NAME treated rat, as well as to compare the differential effects of fasudil and angiotensin II receptor antagonist valsartan on vascular function. In the present study, both valsartan and fasudil exerted antihypertensive action on the l-NAME-treated rats, while only valsartan attenuated the cardiac hypertrophy. Treatment with valsartan showed improvement on vascular reactivity to norepinephrine, KCl and CaCl2, whereas fasudil therapy showed little effect on vasoconstriction. Endothelium-dependent vasodilation to acetylcholine was reduced in the NO-deficient group but was normalized by the fasudil therapy. The increased expression of RhoA and Rho-kinase (ROCK in the vasculature was corrected well to normal level by either valsartan or fasudil administration, which seemed to be at least partially responsible for the beneficial effect of the drug infusion. These findings suggest that the angiotensin II receptor antagonist interferes more with the contractile response than Rho-kinase inhibitor, whereas inhibition of Rho-kinase activity exhibits a better improvement on vasorelaxation than blockade of angiotensin II receptor.

  16. Growth-dependent modulation of casein kinase II and its substrate nucleolin in primary human cell cultures and HeLa cells

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G

    1989-01-01

    We have previously provided evidence that casein kinase II (CKII) and its substrate nucleolin increase concomitantly during certain development stages during embryogenesis (Schneider et al., Eur. J. Biochem. 161, 733-738). We now show that during normal growth of primary cell cultures and He...

  17. Zn2+, not Ca2+, is the most effective cation for activation of dolichol kinase of mammalian brain.

    Science.gov (United States)

    Sakakihara, Y; Volpe, J J

    1985-12-15

    The cation specificity of dolichol kinase of mammalian brain and the potential involvement of a Ca2+-calmodulin system in regulation of this enzyme have been studied. Among 10 divalent cations examined, Zn2+ was found to be most effective for the activation of dolichol kinase of rat and calf brain and cultured C-6 glial cells. The activations with Ca2+, Co2+, and Mg2+ were 53%, 32%, and 18% of the full activation with Zn2+, respectively. No combinations of the cations could activate the enzyme as much as Zn2+ alone. A role for a Ca2+-calmodulin system in the regulation of brain dolichol kinase was not supported by our data. First, the concentration of free Ca2+ required for the maximum activation of dolichol kinase was two to three orders of magnitude greater than the concentration required by typical calmodulin-dependent enzymes. Second, neither the depletion of calmodulin from the microsomal fraction nor the addition of exogenous calmodulin caused an alteration in the activation of dolichol kinase by Ca2+ (or Zn2+). Third, antagonists of calmodulin failed to suppress the activation of the enzyme by Ca2+ (or Zn2+). The data raise the possibility that Zn2+ is involved in the regulation of dolichol kinase in brain.

  18. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations.

    Science.gov (United States)

    Casasnovas, Rodrigo; Limongelli, Vittorio; Tiwary, Pratyush; Carloni, Paolo; Parrinello, Michele

    2017-04-05

    Understanding the structural and energetic requisites of ligand binding toward its molecular target is of paramount relevance in drug design. In recent years, atomistic free energy calculations have proven to be a valid tool to complement experiments in characterizing the thermodynamic and kinetic properties of protein/ligand interaction. Here, we investigate, through a recently developed metadynamics-based protocol, the unbinding mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. We provide a thorough description of the ligand unbinding pathway identifying the most stable binding mode and other thermodynamically relevant poses. From our simulations, we estimated the unbinding rate as k off = 0.020 ± 0.011 s -1 . This is in good agreement with the experimental value (k off = 0.14 s -1 ). Next, we developed a Markov state model that allowed identifying the rate-limiting step of the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38 inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in designing new drugs with engineered binding/unbinding kinetics.

  19. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Yong-Chao Ma

    Full Text Available Both tyrosine kinase and topoisomerase II (TopII are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT dUTP nick-end labeling (TUNEL assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK detection kit using a horseradish peroxidase (HRP-conjugated phosphotyrosine (pY20 antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 μmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 μM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (P<0.05, and this effect was accompanied by a decrease in tyrosine kinase activity. HMNE3 potentially inhibited tyrosine kinase activity in vitro with an IC50 value of 0.64±0.34 μmol/L in Capan-1 cells and 3.1±0.86 μmol/L in Panc-1 cells. The activity of c-Src was significantly inhibited by HMNE3 in a dose

  20. Data for the co-expression and purification of human recombinant CaMKK2 in complex with calmodulin in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lisa Gerner

    2016-09-01

    Full Text Available Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2 has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 ‘apo’, CaMKK2 (165-501 in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, “Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2” [1]. Keywords: CaMKK2, Calmodulin, Fermentation

  1. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle.

    Science.gov (United States)

    Koltes, James E; Mishra, Bishnu P; Kumar, Dinesh; Kataria, Ranjit S; Totir, Liviu R; Fernando, Rohan L; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M

    2009-11-17

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle.

  2. Sex differences in the enhanced responsiveness to acute angiotensin II in growth-restricted rats: role of fasudil, a Rho kinase inhibitor.

    Science.gov (United States)

    Ojeda, Norma B; Royals, Thomas P; Alexander, Barbara T

    2013-04-01

    This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg(-1)·min(-1)) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats.

  3. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs.

    Science.gov (United States)

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R; Shuster, Charles B

    2006-09-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.

  4. A Global, Myosin Light Chain Kinase-dependent Increase in Myosin II Contractility Accompanies the Metaphase–Anaphase Transition in Sea Urchin Eggs

    Science.gov (United States)

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R.

    2006-01-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase–anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase–anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus. PMID:16837551

  5. Hepatocyte Growth Factor Inhibits Apoptosis by the Profibrotic Factor Angiotensin II via Extracellular Signal-regulated Kinase 1/2 in Endothelial Cells and Tissue Explants

    Science.gov (United States)

    2010-12-01

    1 mM sodium fluoride, 0.1 mM sodium orthovanadate, 1 mM tetrasodium pyrophosphate, 2 mM phenylmethylsulfonyl fluoride, 10 g/ml leupeptin, and 10 g...buffer [50 mM Tris-HCl, 1 mM EGTA, 1% (wt/vol) CHAPS, 10% glycerol, 50 mM sodium fluoride, 1 mM sodium orthovanadate, 2 mM phenylmethylsulfonyl fluoride...nucleus, nucleolin can be phosphorylated on serine res- idues by the cell cycle-regulated kinases casein kinase II and cell division cycle 2 protein

  6. Changes in calmodulin concentration and cyclic 3',5'-nucleotide phosphodiesterase activity in skeletal muscle of hyper- and hypothyroid rats.

    Science.gov (United States)

    Mano, T; Iwase, K; Yoshimochi, I; Sawai, Y; Oda, N; Nishida, Y; Mokuno, T; Kotake, M; Nakai, A; Hayakawa, N

    1995-08-01

    Hyper- and hypothyroid states occasionally induce skeletal muscle dysfunction i.e. periodic paralysis and thyroid myopathy. The etiology of these diseases remains unclear, but several findings suggest that the catecholamine-beta-receptor-cAMP system or other messenger systems are disturbed in these diseases. In this context, we evaluated changes in the cyclic 3',5'-nucleotide metabolic enzyme, cyclic 3',5'-nucleotide phosphodiesterase (PDE) and calmodulin concentrations in skeletal muscles of hyper- and hypothyroid rats. Activities of cyclic AMP-PDE were low in skeletal muscle both from hyper- and hypothyroid rats, and calmodulin concentration was high in hyperthyroid and low in hypothyroid rats, as compared with normal rats. DE-52 column chromatographic analysis showed that the cGMP hydrolytic activity in peak I and the cAMP hydrolytic activity in peak II were decreased in hypothyroid rats, whereas cAMP hydrolytic activity in peak III was unchanged. The cAMP hydrolytic activity in peak III was decreased in hyperthyroid rats, but the activities in peaks I and II were unchanged. These findings indicate that cAMP and calmodulin may have some role in skeletal muscle function in the hyperthyroid state, and that cAMP and calmodulin-dependent metabolism may be suppressed in the hypothyroid state.

  7. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden); Glas, Rickard, E-mail: rickard.glas@ki.se [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden)

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  8. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    Science.gov (United States)

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  9. Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1(BmLsd)

    Science.gov (United States)

    The structurally-related members of the PAT family of proteins, which are so name based on similarity amongst perilipin, adipophilin/adipocyte differentiation-related protein (ADRP), and tail-interacting protein of 47 kilodaltons (TIP47), are cytoplasmic lipid droplet (LD)-associated proteins charac...

  10. CA2+/CALMODULIN-DEPENDENT KINASE II- ASSOCIATES WITH THE C TERMINUS OF THE DOPAMINE TRANSPORTER AND INCREASES AMPHETAMINE-INDUCED DOPAMINE EFFLUX VIA PHOSPHORYLATION OF N-TERMINAL SERINES

    DEFF Research Database (Denmark)

    Fog, Jacob; Khoshbouei, H; Holy, M

    The dopamine transporter(DAT) plays a key role in clearing extracellular dopamine(DA) from the synapse. Moreover DAT is a target for the action of widely abused psychostimulants such as cocaine and amphetamine(AMPH). AMPH is a substrate for the DAT and promotes the reversal of transport and thus...

  11. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  12. Resveratrol increases nitric oxide production in the rat thick ascending limb via Ca2+/calmodulin.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Cabral, Pablo D; Garvin, Jeffrey L

    2014-01-01

    The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent deacetylase sirtuin1 (SIRT1) activities, all of which could activate NO production. We hypothesized that resveratrol stimulates NO production by thick ascending limbs via a Ca2+/calmodulin-dependent mechanism. To test this, the effect of resveratrol on NO bioavailability was measured in thick ascending limb suspensions. Cai was measured in single perfused thick ascending limbs. SIRT1 activity and expression were measured in thick ascending limb lysates. Resveratrol (100 µM) increased NO bioavailability in thick ascending limb suspensions by 1.3±0.2 AFU/mg/min (pthick ascending limbs via a Ca2+/calmodulin dependent mechanism, and SIRT1 and AMPK do not participate. Resveratrol-stimulated NO production in thick ascending limbs may account for part of its beneficial effects.

  13. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases.

    Science.gov (United States)

    Davis, Kaitlin A; Morelli, Marco; Patton, John T

    2017-08-29

    The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1-β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. IMPORTANCE Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the

  14. Regulation of brain adenylate cyclase by calmodulin

    International Nuclear Information System (INIS)

    Harrison, J.K.

    1988-01-01

    This thesis examined the interaction between the Ca 2+ -binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-[ 125 I]-CaM-diazopyruvamide ( 125 I-CAM-DAP) behaved like native CaM with respect to Ca 2+ -enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca 2+ -dependent stimulation of adenylate cyclase. 125 I-CaM-DAP cross-linked to CaM-binding proteins in a Ca 2+ -dependent, concentration-dependent, and CaM-specific manner. Photolysis of 125 I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000

  15. Type II cGMP‑dependent protein kinase inhibits the migration, invasion and proliferation of several types of human cancer cells.

    Science.gov (United States)

    Wu, Min; Wu, Yan; Qian, Hai; Tao, Yan; Pang, Ji; Wang, Ying; Chen, Yongchang

    2017-10-01

    Previous studies have indicated that type II cyclic guanosine monophosphate (cGMP)‑dependent protein kinase (PKG II) could inhibit the proliferation and migration of gastric cancer cells. However, the effects of PKG II on the biological functions of other types of cancer cells remain to be elucidated. Therefore, the aim of the present study was to investigate the effects of PKG II on cancer cells derived from various types of human tissues, including A549 lung, HepG2 hepatic, OS‑RC‑2 renal, SW480 colon cancer cells and U251 glioma cells. Cancer cells were infected with adenoviral constructs coding PKG II (Ad‑PKG II) to up‑regulate PKG II expression, and treated with 8‑(4‑chlorophenylthio) (8‑pCPT)‑cGMP to activate the kinase. A Cell Counting kit 8 assay was used to detect cell proliferation. Cell migration was measured using a Transwell assay, whereas a terminal deoxynucleotidyl transferase 2'‑deoxyuridine, 5'‑triphosphate nick‑end labeling assay was used to detect cell apoptosis. A pull‑down assay was used to investigate the activation of Ras‑related C3 botulinum toxin substrate (Rac) 1 and western blotting was used to detect the expression of proteins of interest. The present results demonstrated that EGF (100 ng/ml, 24 h) promoted the proliferation and migration of cancer cells, and it suppressed their apoptosis. In addition, treatment with EGF enhanced the activation of Rac1, and up‑regulated the protein expression of proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2, MMP7 and B‑cell lymphoma (Bcl)‑2, whereas it down‑regulated the expression of Bcl‑2‑associated X protein. Transfection of cancer cells with Ad‑PKG II, and PKG II activation with 8‑pCPT‑cGMP, was identified to counteract the effects triggered by EGF. The present results suggested that PKG II may exert inhibitory effects on the proliferation and migration of various types of cancer cells.

  16. Characterization and functional analysis of Calmodulin and Calmodulin-like genes in Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2016-12-01

    Full Text Available Calcium is a universal messenger that is involved in the modulation of diverse developmental and adaptive processes in response to various stimuli. Calmodulin (CaM and calmodulin-like (CML proteins are major calcium sensors in all eukaryotes, and they have been extensively investigated for many years in plants and animals. However, little is known about CaMs and CMLs in woodland strawberry (Fragaria vesca. In this study, we performed a genome-wide analysis of the strawberry genome and identified 4 CaM and 36 CML genes. Bioinformatics analyses, including gene structure, phylogenetic tree, synteny and three-dimensional model assessments, revealed the conservation and divergence of FvCaMs and FvCMLs, thus providing insight regarding their functions. In addition, the transcript abundance of four FvCaM genes and the four most related FvCML genes were examined in different tissues and in response to multiple stress and hormone treatments. Moreover, we investigated the subcellular localization of several FvCaMs and FvCMLs, revealing their potential interactions based on the localizations and potential functions. Furthermore, overexpression of five FvCaM and FvCML genes could not induce a hypersensitive response, but four of the five genes could increase resistance to Agrobacterium tumefaciens in Nicotiana benthamiana leaves. This study provides evidence for the biological roles of FvCaM and CML genes, and the results lay the foundation for future functional studies of these genes.

  17. Pivoting between calmodulin lobes triggered by calcium in the Kv7.2/calmodulin complex.

    Science.gov (United States)

    Alaimo, Alessandro; Alberdi, Araitz; Gomis-Perez, Carolina; Fernández-Orth, Juncal; Bernardo-Seisdedos, Ganeko; Malo, Covadonga; Millet, Oscar; Areso, Pilar; Villarroel, Alvaro

    2014-01-01

    Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca(2+). First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using (15)N-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca(2+) the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca(2+) makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca(2+).

  18. Pivoting between calmodulin lobes triggered by calcium in the Kv7.2/calmodulin complex.

    Directory of Open Access Journals (Sweden)

    Alessandro Alaimo

    Full Text Available Kv7.2 (KCNQ2 is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca(2+. First, we performed a fluorometric assay using dansylated calmodulin (D-CaM to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB. Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using (15N-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca(2+ the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca(2+ makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca(2+.

  19. Proteomic Analysis of Calcium- and Phosphorylation-dependentCalmodulin Complexes in Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Deok-Jin; Wang, Daojing

    2006-05-26

    Protein conformational changes due to cofactor binding (e.g. metal ions, heme) and/or posttranslational modifications (e.g. phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium (Ca{sup 2+}) signaling and homeostasis. No systematic approach on the identification of phosphorylation-dependent Ca{sup 2+}/CaM binding proteins has been published. Herein, we report a proteome-wide study of phosphorylation-dependent CaM binding proteins from mammalian cells. This method, termed 'Dynamic Phosphoprotein Complex Trapping', 'DPPC Trapping' for short, utilizes a combination of in vivo and in vitro assays. The basic strategy is to drastically shift the equilibrium towards endogenous phosphorylation of Ser, Thr, and Tyr at the global scale by inhibiting corresponding phosphatases in vivo. The phosphorylation-dependent calmodulin-binding proteins are then trapped in vitro in a Ca{sup 2+}-dependent manner by CaM-Sepharose chromatography. Finally, the isolated calmodulin-binding proteins are separated by SDS-PAGE and identified by LC/MS/MS. In parallel, the phosphorylation-dependent binding is visualized by silver staining and/or Western blotting. Using this method, we selectively identified over 120 CaM-associated proteins including many previously uncharacterized. We verified ubiquitin-protein ligase EDD1, inositol 1, 4, 5-triphosphate receptor type 1 (IP{sub 3}R1), and ATP-dependent RNA helicase DEAD box protein 3 (DDX3), as phosphorylation-dependent CaM binding proteins. To demonstrate the utilities of our method in understanding biological pathways, we showed that pSer/Thr of IP{sub 3}R1 in vivo by staurosporine-sensitive kinase(s), but not by PKA/PKG/PKC, significantly reduced the affinity of its Ca{sup 2+}-dependent CaM binding. However, pSer/Thr of IP{sub 3}R1 did not substantially affect its Ca{sup 2+}-independent CaM binding. We further showed that phosphatase PP1, but not PP2A or PP2B

  20. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Medley

    2017-01-01

    Full Text Available Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2 in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner.

  1. Isolation and characterization of cAMP-free and cAMP-bound forms of bovine heart type II cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Cobb, C.E.

    1986-01-01

    Bovine heart type II cAMP-dependent protein kinase holoenzyme (cAMP-PK) was purified to homogeneity as determined by denaturing SDS-PAGE. An HPLC-DEAE purification step resolved two distinct peaks of cAMP-dependent kinase activity, which were designated Peak 1 and Peak 2 based on their order of elution. They had the same Stoke's radii and had very similar sedimentation coefficients. As determined by densitometric scanning of SDS-PAGE brands, by their mobility on denaturing PAGE, and by the ratios of equilibrium [ 3 H] cAMP binding to maximal kinase activity, the subunit stoichiometry of the two peaks was the same. In a cAMP assay it was found that Peak 1 holoenzyme was cAMP-free, but half of the Peak 2 holoenzyme cAMP binding sites contained cAMP. Dissociation assays indicated that the cAMP was equally distributed in binding Site 1 and Site 2 of Peak 2. Although SDS-PAGE analysis ruled out conversions by proteolysis or autophosphorylation-dephosphorylation, Peak 1 could be partially converted to Peak 2 by the addition of subsaturating amounts of cAMP, and Peak 2 could be partially converted to Peak 1 by aging. The interconvertibility of the two holoenzyme peaks strongly suggested that the difference between the two peaks was caused by the presence of cAMP in Peak 2

  2. The Structural Basis for Calcium Inhibition of Lipid Kinase PI4K II alpha and Comparison With the Apo State

    Czech Academy of Sciences Publication Activity Database

    Bäumlová, Adriana; Gregor, Jiří; Bouřa, Evžen

    2016-01-01

    Roč. 65, č. 6 (2016), s. 987-993 ISSN 0862-8408 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : lipid kinase * calcium * phosphatidylinositol * crystal structure Subject RIV: CE - Biochemistry Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65/65_987.pdf

  3. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Sondergaard, M.T.

    2012-01-01

    a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe......Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause...... calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac...

  4. Calmodulin Mutations Associated with Recurrent Cardiac Arrest in Infants

    Science.gov (United States)

    Crotti, Lia; Johnson, Christopher N.; Graf, Elisabeth; De Ferrari, Gaetano M.; Cuneo, Bettina F.; Ovadia, Marc; Papagiannis, John; Feldkamp, Michael D.; Rathi, Subodh G.; Kunic, Jennifer D.; Pedrazzini, Matteo; Wieland, Thomas; Lichtner, Peter; Beckmann, Britt-Maria; Clark, Travis; Shaffer, Christian; Benson, D. Woodrow; Kääb, Stefan; Meitinger, Thomas; Strom, Tim M.; Chazin, Walter J.; Schwartz, Peter J.; George, Alfred L.

    2013-01-01

    Background Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on two unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. Methods and Results We ascertained two unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The two parent-child trios were investigated using exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in two genes encoding calmodulin. We discovered three heterozygous de novo mutations in either CALM1 or CALM2, two of the three human genes encoding calmodulin, in the two probands and in two additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several fold reductions in calcium binding affinity. Conclusions Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy. PMID:23388215

  5. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  6. Phosphorylation and mRNA splicing of collapsin response mediator protein-2 determine inhibition of rho-associated protein kinase (ROCK) II function in carcinoma cell migration and invasion

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Couchman, John R; Yoneda, Atsuko

    2013-01-01

    The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II......, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2....

  7. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  8. Casein Kinase 1α Mediates the Degradation of Receptors for Type I and Type II Interferons Caused by Hemagglutinin of Influenza A Virus.

    Science.gov (United States)

    Xia, Chuan; Wolf, Jennifer J; Vijayan, Madhuvanthi; Studstill, Caleb J; Ma, Wenjun; Hahm, Bumsuk

    2018-04-01

    Although influenza A virus (IAV) evades cellular defense systems to effectively propagate in the host, the viral immune-evasive mechanisms are incompletely understood. Our recent data showed that hemagglutinin (HA) of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor 1 (IFNGR1), as well as IFNAR1, via casein kinase 1α (CK1α), resulting in the impairment of cellular responsiveness to both type I and II IFNs. IAV infection or transient HA expression induced degradation of both IFNGR1 and IFNAR1, whereas HA gene-deficient IAV failed to downregulate the receptors. IAV HA caused the phosphorylation and ubiquitination of IFNGR1, leading to the lysosome-dependent degradation of IFNGR1. Influenza viral HA strongly decreased cellular sensitivity to type II IFNs, as it suppressed the activation of STAT1 and the induction of IFN-γ-stimulated genes in response to exogenously supplied recombinant IFN-γ. Importantly, CK1α, but not p38 MAP kinase or protein kinase D2, was proven to be critical for HA-induced degradation of both IFNGR1 and IFNAR1. Pharmacologic inhibition of CK1α or small interfering RNA (siRNA)-based knockdown of CK1α repressed the degradation processes of both IFNGR1 and IFNAR1 triggered by IAV infection. Further, CK1α was shown to be pivotal for proficient replication of IAV. Collectively, the results suggest that IAV HA induces degradation of IFN receptors via CK1α, creating conditions favorable for viral propagation. Therefore, the study uncovers a new immune-evasive pathway of influenza virus. IMPORTANCE Influenza A virus (IAV) remains a grave threat to humans, causing seasonal and pandemic influenza. Upon infection, innate and adaptive immunity, such as the interferon (IFN) response, is induced to protect hosts against IAV infection. However, IAV seems to be equipped with tactics to evade the IFN-mediated antiviral responses, although the detailed

  9. Structural basis of Zn(II induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2017-07-01

    Full Text Available Pseudomonas aeruginosa (P. aeruginosa is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK CzcS responds to Zn(II stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD in complex with Zn(II at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II-sensor domain of the two-component system (TCS. The CzcS SD is of α/β-fold in nature, and it senses the Zn(II stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60 on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1' α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents.

  10. Effect of Three Calmodulin Antagonists on Subpopulations of CD44 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical ... cancer stem cells. It is not known, however, whether targeting CD44 can alter the fate of cancer stem cells themselves. In this study, the effect of the calmodulin antagonists (N-(10-.

  11. 43. Calmodulin regulating calcium sensitivity of Na channels

    Directory of Open Access Journals (Sweden)

    R. Vegiraju

    2016-07-01

    Full Text Available By extrapolating information from existing research and observing previous assumptions regarding the structure of the Na Channel, this experiment was conducted under the hypothesis that the Na Channel is in part regulated by the calmodulin protein, as a result proving calcium sensitivity of the Na Channel. Furthermore, we assume that there is a one to one stoichiometry between the Na Channel and the Calmodulin. There has been extensive research into the functionality and structure of sodium ion channels (Na channels, as several diseases are associated with the lack of regulation of sodium ions, that is caused by the disfunction of these Na channels. However, one highly controversial matter in the field is the importance of the protein calmodulin (CaM and calcium in Na channel function. Calmodulin is a protein that is well known for its role as a calcium binding messenger protein, and that association is believed to play an indirect role in regulating the Na channel through the Na channel’s supposed calcium sensitivity. While there are proponents for both sides, there has been relatively little research that provides strong evidence for either case. In this experiment, the effect of calmodulin on NaV 1.5 is tested by preparing a set of cardiac cells (of the human specie with the NaV 1.5 C-Termini and CaM protein, which were then to be placed in solutions with varying concentrations of calcium. We took special care to test multiple concentrations of calcium, as previous studies have tested very low concentrations, with Manu Ben-Johny’s team from the John Hopkins laboratory in particular testing up to a meager 50 micromolar, despite producing a well-respected paper (By comparison, the average Na channel can naturally sustain a concentration of almost 1-2 millimolar and on some occasions, reaching even higher concentrations. After using light scattering and observing the signals given off by the calcium interacting with these Nav1.5/Ca

  12. Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate.

    Science.gov (United States)

    Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A

    2016-02-01

    The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    Science.gov (United States)

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism

  14. Stimulated mitogen-activated protein kinase is necessary but not sufficient for the mitogenic response to angiotensin II. A role for phospholipase D.

    Science.gov (United States)

    Wilkie, N; Morton, C; Ng, L L; Boarder, M R

    1996-12-13

    Activation of the mitogen-activated protein kinase (MAPK) cascade has been widely associated with cell proliferation; previous studies have shown that angiotensin II (AII), acting on 7-transmembrane G protein-coupled receptors, stimulates the MAPK pathway. In this report we investigate whether the MAPK pathway is required for the mitogenic response to AII stimulation of vascular smooth muscle cells derived from the hypertensive rat (SHR-VSM). AII stimulates the phosphorylation of MAPK, as determined by Western blot specific for the tyrosine 204 phosphorylated form of the protein. This MAPK phosphorylation was inhibited by the presence of the inhibitor of MAPK kinase activation, PD 098059. Using a peptide kinase assay shown to measure the p42 and p44 isoforms of MAPK, the stimulated response to AII was inhibited by PD 098059 with an IC50 of 15.6 +/- 1.6 microM. The AII stimulation of [3H]thymidine incorporation was inhibited by PD 098059 with an IC50 of 17.8 +/- 3.1 microM. PD 098059 had no effect on AII-stimulated phospholipase C or phospholipase D (PLD) activity. When the SHR-VSM cells were stimulated with phorbol ester, there was an activation of MAPK similar in size and duration to the response to AII, but there was no significant enhancement of [3H]thymidine incorporation. There was also no activation of PLD by phorbol ester, while AII produced a robust PLD response. Diversion of the product of the PLD reaction by 1-butanol caused a partial loss of the [3H]thymidine response; this did not occur with tertiary butanol, which did not interfere with the PLD reaction. These results show that in these cells the MAPK cascade is required but not sufficient for the mitogenic response to AII, and suggest that the full mitogenic response requires both MAPK in conjunction with other signaling components, one of which is PLD.

  15. 31P and 1H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    International Nuclear Information System (INIS)

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N.

    1989-01-01

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of 31 P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the δ protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of 31 P relaxation rates in E-MnADP and E-MnATP yields activation energies (ΔE) in the range 6-10 kcal/mol. Thus, the 31 P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and ΔE values in the range 1-2 kcal/mol; i.e., these rates depend upon 31 P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 angstrom, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the 1 H spin-lattice relaxation rate of the δ protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective τ C of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate (τ S1 ) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the δ protons was 10.9 ± 0.3 angstrom

  16. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-01-01

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-α-stimulated monocytes to endothelial cells and suppressed the TNF-α induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-α-induced nuclear factor-κB activation, which was attenuated by pretreatment with N G -nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: ► Puerarin induced the phosphorylation of eNOS and the production of NO. ► Puerarin activated eNOS through ER-dependent PI3-kinase and Ca 2+ -dependent AMPK. ► Puerarin-induced NO was involved in the inhibition of NF-kB activation. ► Puerarin may help for prevention of vascular dysfunction and diabetes.

  17. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil; Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Hien, Tran Thi [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Jeong, Myung Ho [Heart Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyungsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  18. Fluorescence Spectra Studies on the Interaction between Lanthanides and Calmodulin

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The conformation of Calmodulin(CaM) induced by lanthanides has been examined using fluorescence methods.With the addition of lanthanide (Ln3+), the intrinsic fluorescence intensity of CaM without calcium ions (Apo-CaM) first increases and then decreases.Ln3+ causes the decrease of intrinsic fluorescence intensity of calcium saturated CaM (Ca2+4-CaM) only at high concentrations.At low concentrations, Ln3+ results not only in the enhancement of fluorescence intensity of Apo-CaM, but also in a blue shift of the maximum emission wavelengh of dansyl labeled calmodulin(Apo-D-CaM).The molecular mechanism of the interaction between Ln3+ and CaM has been discussed in the light of the fluorescence spectra.

  19. Cloning and expression of calmodulin gene in Scoparia dulcis.

    Science.gov (United States)

    Saitoh, Daisuke; Asakura, Yuki; Nkembo, Marguerite Kasidimoko; Shite, Masato; Sugiyama, Ryuji; Lee, Jung-Bum; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2007-06-01

    A homology-based cloning strategy yielded a cDNA clone, designated Sd-cam, encoding calmodulin protein from Scoparia dulcis. The restriction digests of genomic DNA of S. dulcis showed a single hybridized signal when probed with the fragment of this gene in Southern blot analyses, suggesting that Sd-cam occurs as a sole gene encoding calmodulin in the plant. The reverse-transcription polymerase chain reaction analysis revealed that Sd-cam was appreciably expressed in leaf, root and stem tissues. It appeared that transcription of this gene increased transiently when the leaf cultures of S. dulcis were treated with methyl jasmonate and calcium ionophore A23187. These results suggest that transcriptional activation of Sd-cam is one of the early cellular events of the methyl jasmonate-induced responses of S. dulcis.

  20. [Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].

    Science.gov (United States)

    Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong

    2018-03-01

    Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.

  1. Structure of Calmodulin Bound to a Calcineurin Peptide: A New Way of Making an Old Binding Mode

    International Nuclear Information System (INIS)

    Ye, Q.; Li, X.; Wong, A.; Wei, Q.; Jia, Z.

    2006-01-01

    Calcineurin is a calmodulin-binding protein in brain and the only serine/threonine protein phosphatase under the control of Ca 2+ /calmodulin (CaM), which plays a critical role in coupling Ca 2+ signals to cellular responses. CaM up-regulates the phosphatase activity of calcineurin by binding to the CaM-binding domain (CBD) of calcineurin subunit A. Here, we report crystal structural studies of CaM bound to a CBD peptide. The chimeric protein containing CaM and the CBD peptide forms an intimate homodimer, in which CaM displays a native-like extended conformation and the CBD peptide shows -helical structure. Unexpectedly, the N-terminal lobe from one CaM and the C-terminal lobe from the second molecule form a combined binding site to trap the peptide. Thus, the dimer provides two binding sites, each of which is reminiscent of the fully collapsed conformation of CaM commonly observed in complex with, for example, the myosin light chain kinase (MLCK) peptide. The interaction between the peptide and CaM is highly specific and similar to MLCK

  2. Role of protein kinase A and class II phosphatidylinositol 3-kinase C2β in the downregulation of KCa3.1 channel synthesis and membrane surface expression by lyso-globotriaosylceramide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Yeon; Park, Seonghee, E-mail: sp@ewha.ac.kr

    2016-02-19

    The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulation of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2

  3. Calmodulin and calmodulin-binding proteins in cystic fibrosis and normal human fibroblasts

    International Nuclear Information System (INIS)

    Tallant, E.A.; Wallace, R.W.

    1986-01-01

    The authors have investigated the possibility that a lesion in a calmodulin (CaM)-dependent regulatory mechanism may be involved in cystic fibrosis (CF). The level of CaM, CaM-binding proteins (CaM-BP) and a CaM-dependent phosphatase (CaM-Ptase) have been compared in cultured fibroblasts from CF patients versus age- and sex-matched control subjects. The CaM concentration, measured by radioimmunoassay, ranged from 0.20 to 0.76 μg/mg protein (n=8); there was no significant difference in the average CaM concentration from CF patients vs controls. Using Western blotting techniques with 125 I-CaM, they detected at least ten distinct CaM-BPs in fibroblasts with molecular weights ranging from 230K to 37K; the only consistent difference between control and CF cell lines was in a 46.5K CaM-BP, which was depressed in all three CF samples. The 46.5 K CaM-BP was found only in the particulate fraction. A 59K CaM-BP was identified as a CaM-Ptase by its crossreactivity with an antibody against a brain CaM-Ptase. There was no significant difference in CaM-Ptase activity or in the amount of the phosphatase as determined by radioimmunoassay in CF vs. normal samples (n=8). Thus, the level of CaM as well as its various enzymes and proteins do not appear to be altered in CF fibroblasts except for a CaM-BP of 46.5K, the identity of which is currently being investigated

  4. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Peng, Hui; Yang, Tianbao; Jurick, Wayne M.

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  5. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    International Nuclear Information System (INIS)

    Kouchi, Zen; Fujiwara, Yuki; Yamaguchi, Hideki; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-01-01

    Highlights: → We analyzed Phosphatidylinositol 5-phosphate kinase IIβ (PIPKIIβ) function in cancer. → PIPKIIβ is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. → PIPKIIβ suppresses cellular motility through E-cadherin induction in SW480 cells. → Nuclear PIP 2 but not plasma membrane-localized PIP 2 mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D 3 (1α,25(OH) 2 D 3 ) has anti-cancer activity in several colon cancers. 1α,25(OH) 2 D 3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH) 2 D 3 -induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P 2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH) 2 D 3 . These results indicate that PIPKIIβ-mediated PI(4,5)P 2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  6. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats

    Directory of Open Access Journals (Sweden)

    You-jiang Min

    2017-01-01

    Full Text Available Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3, Dazhui (GV14, Zusanli (ST36 and Ciliao (BL32 and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.

  7. Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle

    Science.gov (United States)

    Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene

    2011-01-01

    Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. PMID:21284933

  8. Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions.

    Directory of Open Access Journals (Sweden)

    Massimo Lai

    2015-01-01

    Full Text Available Calmodulin is a calcium-binding protein ubiquitous in eukaryotic cells, involved in numerous calcium-regulated biological phenomena, such as synaptic plasticity, muscle contraction, cell cycle, and circadian rhythms. It exibits a characteristic dumbell shape, with two globular domains (N- and C-terminal lobe joined by a linker region. Each lobe can take alternative conformations, affected by the binding of calcium and target proteins. Calmodulin displays considerable functional flexibility due to its capability to bind different targets, often in a tissue-specific fashion. In various specific physiological environments (e.g. skeletal muscle, neuron dendritic spines several targets compete for the same calmodulin pool, regulating its availability and affinity for calcium. In this work, we sought to understand the general principles underlying calmodulin modulation by different target proteins, and to account for simultaneous effects of multiple competing targets, thus enabling a more realistic simulation of calmodulin-dependent pathways. We built a mechanistic allosteric model of calmodulin, based on an hemiconcerted framework: each calmodulin lobe can exist in two conformations in thermodynamic equilibrium, with different affinities for calcium and different affinities for each target. Each lobe was allowed to switch conformation on its own. The model was parameterised and validated against experimental data from the literature. In spite of its simplicity, a two-state allosteric model was able to satisfactorily represent several sets of experiments, in particular the binding of calcium on intact and truncated calmodulin and the effect of different skMLCK peptides on calmodulin's saturation curve. The model can also be readily extended to include multiple targets. We show that some targets stabilise the low calcium affinity T state while others stabilise the high affinity R state. Most of the effects produced by calmodulin targets can be

  9. Restricted growth of U-type infectious haematopoietic necrosis virus (IHNV) in rainbow trout cells may be linked to casein kinase II activity

    Science.gov (United States)

    Park, J.-W.; Moon, C.H.; Harmache, A.; Wargo, A.R.; Purcell, M.K.; Bremont, M.; Kurath, G.

    2011-01-01

    casein kinase II (CKII) inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), reduced the titre of the U type 8.3-fold at 24 h post-infection. In contrast, 100 μm of the CKII inhibitor reduced the titre of the M type only 1.3-fold at 48 h post-infection. Our data suggest that the different growth of U- and M-type IHNV in RTG-2 cells may be linked to a differential requirement for cellular protein kinases such as CKII for their growth.

  10. Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release

    Science.gov (United States)

    Zhang, Yonghong; Matt, Lucas; Patriarchi, Tommaso; Malik, Zulfiqar A; Chowdhury, Dhrubajyoti; Park, Deborah K; Renieri, Alessandra; Ames, James B; Hell, Johannes W

    2014-01-01

    Postsynaptic density protein-95 (PSD-95) is a central element of the postsynaptic architecture of glutamatergic synapses. PSD-95 mediates postsynaptic localization of AMPA receptors and NMDA receptors and plays an important role in synaptic plasticity. PSD-95 is released from postsynaptic membranes in response to Ca2+ influx via NMDA receptors. Here, we show that Ca2+/calmodulin (CaM) binds at the N-terminus of PSD-95. Our NMR structure reveals that both lobes of CaM collapse onto a helical structure of PSD-95 formed at its N-terminus (residues 1–16). This N-terminal capping of PSD-95 by CaM blocks palmitoylation of C3 and C5, which is required for postsynaptic PSD-95 targeting and the binding of CDKL5, a kinase important for synapse stability. CaM forms extensive hydrophobic contacts with Y12 of PSD-95. The PSD-95 mutant Y12E strongly impairs binding to CaM and Ca2+-induced release of PSD-95 from the postsynaptic membrane in dendritic spines. Our data indicate that CaM binding to PSD-95 serves to block palmitoylation of PSD-95, which in turn promotes Ca2+-induced dissociation of PSD-95 from the postsynaptic membrane. PMID:24705785

  11. A Phase II Safety and Efficacy Study of the Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor Pazopanib in Patients With Metastatic Urothelial Cancer

    Science.gov (United States)

    Pili, Roberto; Qin, Rui; Flynn, P.J.; Picus, Joel; Millward, Michael; Ho, Wing Ming; Pitot, Henry; Tan, Winston; Miles, Kiersten M.; Erlichman, Charles; Vaishampayan, Ulka

    2013-01-01

    Vascular endothelial growth factor (VEGF) is expressed in human bladder tumors. A phase II study was conducted to assess the VEGF inhibitor pazopanib in patients with metastatic, urothelial carcinoma. Nineteen patients with one prior systemic therapy were enrolled. No objective responses were observed and median progression-free survival was 1.9 months. The role of anti-VEGF therapies in urothelial carcinoma remains to be determined. Background Vascular endothelial growth factor (VEGF) is produced by bladder cancer cell lines in vitro and expressed in human bladder tumor tissues. Pazopanib is a vascular endothelial receptor tyrosine kinase inhibitor with anti-angiogenesis and anti-tumor activity in several preclinical models. A 2-stage phase II study was conducted to assess the activity and toxicity profile of pazopanib in patients with metastatic, urothelial carcinoma. Methods Patients with one prior systemic therapy for metastatic urothelial carcinoma were eligible. Patients received pazopanib at a dose of 800 mg orally for a 4-week cycle. Results Nineteen patients were enrolled. No grade 4 or 5 events were experienced. Nine patients experienced 11 grade 3 adverse events. Most common toxicities were anemia, thrombocytopenia, leucopenia, and fatigue. For stage I, none of the first 16 evaluable patients were deemed a success (complete response or partial response) by the Response Evaluation Criteria In Solid Tumors criteria during the first four 4-week cycles of treatment. Median progression-free survival was 1.9 months. This met the futility stopping rule of interim analysis, and therefore the trial was recommended to be permanently closed. Conclusions Pazopanib did not show significant activity in patients with urothelial carcinoma. The role of anti-VEGF therapies in urothelial carcinoma may need further evaluation in rational combination strategies. PMID:23891158

  12. Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function.

    Science.gov (United States)

    Kim, Hyun-Soo; Mukhopadhyay, Rituparna; Rothbart, Scott B; Silva, Andrea C; Vanoosthuyse, Vincent; Radovani, Ernest; Kislinger, Thomas; Roguev, Assen; Ryan, Colm J; Xu, Jiewei; Jahari, Harlizawati; Hardwick, Kevin G; Greenblatt, Jack F; Krogan, Nevan J; Fillingham, Jeffrey S; Strahl, Brian D; Bouhassira, Eric E; Edelmann, Winfried; Keogh, Michael-Christopher

    2014-03-13

    Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    Science.gov (United States)

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  14. Identification of a BET Family Bromodomain/Casein Kinase II/TAF-Containing Complex as a Regulator of Mitotic Condensin Function

    Directory of Open Access Journals (Sweden)

    Hyun-Soo Kim

    2014-03-01

    Full Text Available Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02, casein kinase II (CKII, and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.

  15. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. Published by Elsevier Inc.

  16. Pharmacological and safety evaluation of CIGB-300, a casein kinase 2 inhibitor peptide, administered intralesionally to patients with cervical cancer stage IB2/II

    Directory of Open Access Journals (Sweden)

    Soriano-García JL

    2013-08-01

    Full Text Available CIGB-300 is a pro-apoptotic casein kinase 2 inhibitor peptide with potential anticancer action. An open-label and dose scaling Phase I trial was carried out to investigate the peptide tumor uptake, pharmacokinetics, toxicity, and levels of a CIGB-300 response biomarker in patients with cervical cancer stage IB2/II. Fourteen patients were included; six of them received 35 mg, 6 received 70 mg and the two remaining patients received 245 mg of CIGB-300 prior chemoradiotherapy. CIGB-300 was applied by intratumor injections during 5-consecutive days. For pharmacokinetic and biodistribution studies, the peptide was radiolabeled with 99mTc in the first administration and whole body gammagraphy and plasma testing were done during 48 h. Data showed that the maximum tolerated dose was 70 mg for CIGB-300 in this clinical setting. Furthermore, an allergic-like syndrome was identified as the dose limiting toxicity, which was well-correlated with plasmatic histamine levels. Importantly, the mean tumor uptake was 14.9 mg and 10.4 mg for CIGB-300 doses of 35 and 70 mg, respectively. Also, the kidneys were the main target organ for drug elimination. Finally, treatment with CIGB-300 significantly reduced the B23/nucleophosmin levels in tumor specimens. CIGB-300 meets potentialities to be tested in future trials in a neoadjuvant setting prior to chemoradiotherapy in cervical cancer.

  17. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin

    DEFF Research Database (Denmark)

    Perrier, J F; Mejia-Gervacio, S; Hounsgaard, J

    2000-01-01

    1. The involvement of intracellular calcium and calmodulin in the modulation of plateau potentials in motoneurones was investigated using intracellular recordings from a spinal cord slice preparation. 2. Chelation of intracellular calcium with BAPTA-AM or inactivation of calmodulin with W-7 or tr...

  18. Nitric Oxide Synthases Reveal a Role for Calmodulin in Controlling Electron Transfer

    Science.gov (United States)

    Abu-Soud, Husam M.; Stuehr, Dennis J.

    1993-11-01

    Nitric oxide (NO) is synthesized within the immune, vascular, and nervous systems, where it acts as a wide-ranging mediator of mammalian physiology. The NO synthases (EC 1.14.13.39) isolated from neurons or endothelium are calmodulin dependent. Calmodulin binds reversibly to neuronal NO synthase in response to elevated Ca2+, triggering its NO production by an unknown mechanism. Here we show that calmodulin binding allows NADPH-derived electrons to pass onto the heme group of neuronal NO synthase. Calmodulin-triggered electron transfer to heme was independent of substrate binding, caused rapid enzymatic oxidation of NADPH in the presence of O_2, and was required for NO synthesis. An NO synthase isolated from cytokine-induced macrophages that contains tightly bound calmodulin catalyzed spontaneous electron transfer to its heme, consistent with bound calmodulin also enabling electron transfer within this isoform. Together, these results provide a basis for how calmodulin may regulate NO synthesis. The ability of calmodulin to trigger electron transfer within an enzyme is unexpected and represents an additional function for calcium-binding proteins in biology.

  19. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure...

  20. Modulation of myometrium mitochondrial membrane potential by calmodulin antagonists

    Directory of Open Access Journals (Sweden)

    S. G. Shlykov

    2014-02-01

    Full Text Available Influence of calmodulin antagonists on mitochondrial membrane potential was investigated using­ a flow cytometry method, confocal microscopy and fluorescent potential-sensitive probes TMRM and MTG. Influence of different concentrations of calmodulin antagonists on mitochondrial membrane potential was studied using flow cytometry method and a fraction of myometrium mitochondria of unpregnant rats. It was shown that 1-10 µМ calmidazolium gradually reduced mitochondria membrane potential. At the same time 10-100 µМ trifluope­razine influenced as follows: 10 µМ – increased polarization, while 100 µМ – caused almost complete depolarization of mitochondrial membranes. In experiments which were conducted with the use of confocal microscopy method and myometrium cells it was shown, that MTG addition to the incubation medium­ led to the appearance of fluorescence signal in a green range. Addition of the second probe (ТМRM resulted in the appearance of fluorescent signal in a red range. Mitochondrial membrane depolarization by 1µМ СССР or 10 mМ NaN3 was accompanied by the decline of “red” fluo­rescence intensity, “green” fluorescence was kept. The 10-15 minute incubation of myometrium cells in the presen­ce 10 µМ calmidazolium or 100 µМ trifluoperazine was accompanied by almost complete decrease of the TMRM fluorescent signal. Thus, with the use of potential-sensitive fluorescent probes TMRM and MTG it was shown, that calmodulin antagonists modulate mitochondrial membrane potential of myometrium cells.

  1. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  2. Modulating uranium binding affinity in engineered Calmodulin EF-hand peptides: effect of phosphorylation

    International Nuclear Information System (INIS)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)

  3. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel.

    Directory of Open Access Journals (Sweden)

    Zoltán Oláh

    2007-06-01

    Full Text Available Ca(2+-loaded calmodulin normally inhibits multiple Ca(2+-channels upon dangerous elevation of intracellular Ca(2+ and protects cells from Ca(2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+-uptake via the vanilloid inducible Ca(2+-channel/inflamatory pain receptor 1 (TRPV1, which suggests that calmodulin inhibitors may block pore formation and Ca(2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45Ca(2+-uptake at microM concentrations: calmidazolium (broad range > or = trifluoperazine (narrow range chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially. Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+-uptake in intact TRPV1(+ cells, and suggests an extracellular site of inhibition. TRPV1(+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2

  4. Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2.

    Science.gov (United States)

    Liao, Wei-Ting; You, Huey-Ling; Li, Changgui; Chang, Jan-Gowth; Chang, Shun-Jen; Chen, Chung-Jen

    2015-05-01

    Cyclic GMP-dependent protein kinase II (cGKII; PRKG2) phosphorylates a variety of biological targets and has been identified as a gout-susceptible gene. However, the regulatory role of cGKII in triggering gout disease has yet to be clarified. Thus, we plan to explore the specific function of cGKII in macrophages related to gout disease. By using cGKII gene knockdown method, we detected macrophage M1/M2 polarization, phagocytosis, and their responses to stimulation by monosodium urate (MSU). cGKII was highly expressed in M1 phenotype, but not in M2, and cGKII knockdown significantly inhibited macrophage M1 polarization by decreasing M1 chemokine markers (CXCL10 and CCL2) and downregulating phagocytosis function. We further identified that cGKII-associated phagocytosis was mediated by upregulating toll-like receptor 2 (TLR2) expression, but not by TLR4. Mimicking gout condition by MSU treatments, we found that MSU alone induced cGKII and TLR2 expression with increased M1 polarization markers and phagocytosis activity. It means that cGKII knockdown significantly inhibited this MSU-induced cGKII-TLR2-phagocytosis axis. Our study showed that cGKII plays a key role in M1 polarization, especially in TLR2-mediated phagocytosis under MSU exposure. The findings provide evidence for the possible role of cGKII as an inflammation exciter in gout disease. Gout-susceptible gene cGKII is necessary for macrophage M1 polarization. cGKII regulates M1 phagocytosis function via TLR2. Monosodium urate treatments increase cGKII expression and related function. This study reveals the role of cGKII in enhancing gouty inflammatory responses.

  5. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    International Nuclear Information System (INIS)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man

    2014-01-01

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repair with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways

  6. High affinity calmodulin target sequence in the signalling molecule PI 3-kinase

    DEFF Research Database (Denmark)

    Fischer, R; Julsgart, J; Berchtold, M W

    1998-01-01

    M-binding peptide derived from the p110gamma isoform interacts with CaM in a calcium-dependent way. Using gel shift analysis and fluorescence spectrophotometry we discovered that the peptide forms a high affinity complex with CaM. Titration experiments using dansylated CaM gave an affinity constant of 5 n...

  7. Exceptional disfavor for proline at the P + 1 position among AGC and CAMK kinases establishes reciprocal specificity between them and the proline-directed kinases.

    Science.gov (United States)

    Zhu, Guozhi; Fujii, Koichi; Belkina, Natalya; Liu, Yin; James, Michael; Herrero, Juan; Shaw, Stephen

    2005-03-18

    To precisely regulate critical signaling pathways, two kinases that phosphorylate distinct sites on the same protein substrate must have mutually exclusive specificity. Evolution could assure this by designing families of kinase such as basophilic kinases and proline-directed kinase with distinct peptide specificity; their reciprocal peptide specificity would have to be very complete, since recruitment of substrate allows phosphorylation of even rather poor phosphorylation sites in a protein. Here we report a powerful evolutionary strategy that assures distinct substrates for basophilic kinases (PKA, PKG and PKC (AGC) and calmodulin-dependent protein kinase (CAMK)) and proline-directed kinase, namely by the presence or absence of proline at the P + 1 position in substrates. Analysis of degenerate and non-degenerate peptides by in vitro kinase assays reveals that proline at the P + 1 position in substrates functions as a "veto" residue in substrate recognition by AGC and CAMK kinases. Furthermore, analysis of reported substrates of two typical basophilic kinases, protein kinase C and protein kinase A, shows the lowest occurrence of proline at the P + 1 position. Analysis of crystal structures and sequence conservation provides a molecular basis for this disfavor and illustrate its generality.

  8. Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    As an initial attempt to identify early steps in insulin action that may be involved in the growth responses of neurons to insulin, we investigated whether insulin receptor activation increases the phosphorylation of ribosomal protein S6 in cultured fetal neurons and whether activation of a protein kinase is involved in this process. When neurons were incubated for 2 h with 32Pi, the addition of insulin (100 ng/ml) for the final 30 min increased the incorporation of 32Pi into a 32K microsomal protein. The incorporation of 32Pi into the majority of other neuronal proteins was unaltered by the 30-min exposure to insulin. Cytosolic extracts from insulin-treated neurons incubated in the presence of exogenous rat liver 40S ribosomes and [gamma-32P]ATP displayed a 3- to 8-fold increase in the phosphorylation of ribosomal protein S6 compared to extracts from untreated cells. Inclusion of cycloheximide during exposure of the neurons to insulin did not inhibit the increased cytosolic kinase activity. Activation of S6 kinase activity by insulin was dose dependent (seen at insulin concentration as low as 0.1 ng/ml) and reached a maximum after 20 min of incubation. Addition of phosphatidylserine, diolein, and Ca2+ to the in vitro kinase reaction had no effect on the phosphorylation of ribosomal protein S6. Likewise, treatment of neurons with (Bu)2cAMP did not alter the phosphorylation of ribosomal protein S6 by neuronal cytosolic extracts. We conclude that insulin activates a cytosolic protein kinase that phosphorylates ribosomal S6 in neurons and is distinct from protein kinase-C and cAMP-dependent protein kinase. Stimulation of this kinase may play a role in insulin signal transduction in neurons

  9. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors

    Directory of Open Access Journals (Sweden)

    Latha eMukunda

    2016-02-01

    Full Text Available Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs, occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX and a highly conserved co-receptor protein (Orco. The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs expressing Or22a inside the fly’s antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native

  10. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin.

    Science.gov (United States)

    de Almeida-Paula, Lidiana Duarte; Costa-Lotufo, Leticia V; Silva Ferreira, Zulma; Monteiro, Amanda Elisa G; Isoldi, Mauro Cesar; Godinho, Rosely O; Markus, Regina P

    2005-11-21

    Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.

  11. Novel Calmodulin (CALM2) Mutations Associated with Congenital Arrhythmia Susceptibility

    Science.gov (United States)

    Makita, Naomasa; Yagihara, Nobue; Crotti, Lia; Johnson, Christopher N.; Beckmann, Britt-Maria; Roh, Michelle S.; Shigemizu, Daichi; Lichtner, Peter; Ishikawa, Taisuke; Aiba, Takeshi; Homfray, Tessa; Behr, Elijah R.; Klug, Didier; Denjoy, Isabelle; Mastantuono, Elisa; Theisen, Daniel; Tsunoda, Tatsuhiko; Satake, Wataru; Toda, Tatsushi; Nakagawa, Hidewaki; Tsuji, Yukiomi; Tsuchiya, Takeshi; Yamamoto, Hirokazu; Miyamoto, Yoshihiro; Endo, Naoto; Kimura, Akinori; Ozaki, Kouichi; Motomura, Hideki; Suda, Kenji; Tanaka, Toshihiro; Schwartz, Peter J.; Meitinger, Thomas; Kääb, Stefan; Guicheney, Pascale; Shimizu, Wataru; Bhuiyan, Zahurul A.; Watanabe, Hiroshi; Chazin, Walter J.; George, Alfred L.

    2014-01-01

    Background Genetic predisposition to life-threatening cardiac arrhythmias such as in congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations. Methods and Results We employed conventional and next-generation sequencing approaches including exome analysis in genotype-negative LQTS probands. We identified five novel de novo missense mutations in CALM2 in three subjects with LQTS (p.N98S, p.N98I, p.D134H) and two subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1–9 years. Three of five probands had cardiac arrest and one of these subjects did not survive. Although all probands had LQTS, two subjects also exhibited electrocardiographic features consistent with CPVT. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of five probands responded to β-blocker therapy whereas one subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within calcium binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced calcium binding affinity. Conclusions CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT. PMID:24917665

  12. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Yinghong Ji

    2016-11-01

    Full Text Available Background/Aims: Ultraviolet B (UVB irradiation can easily induce apoptosis in human lens epithelial cells (HLECs and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1 gene in UVB irradiation induced-apoptosis in HLECs. Methods: Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. Results: After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm was increased in HLECs. Further studies indicated that superoxide dismutase (SOD activity and total antioxidative (T-AOC level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA and lactate dehydrogenase (LDH were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 were significantly decreased, but the concentration of interleukin-10 (IL-10 was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38, Jun amino-terminal kinases (JNK1/2, phospho-JNK1/2 (p-JNK1/2, calcium-sensing receptor (CasR, and Ca2+/calmodulin-dependent protein kinase II (CaMKII indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. Conclusion: These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment.

  13. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways.

    Science.gov (United States)

    Ji, Yinghong; Rong, Xianfang; Li, Dan; Cai, Lei; Rao, Jun; Lu, Yi

    2016-01-01

    Ultraviolet B (UVB) irradiation can easily induce apoptosis in human lens epithelial cells (HLECs) and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1) gene in UVB irradiation induced-apoptosis in HLECs. Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS) production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm) was increased in HLECs. Further studies indicated that superoxide dismutase (SOD) activity and total antioxidative (T-AOC) level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly decreased, but the concentration of interleukin-10 (IL-10) was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38), Jun amino-terminal kinases (JNK1/2), phospho-JNK1/2 (p-JNK1/2), calcium-sensing receptor (CasR), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment. © 2016 The Author(s) Published by S. Karger AG, Basel.

  14. Halogenated benzimidazole inhibitors of phosphorylation, ''in vitro'' and ''in vivo'', of the surface acidic proteins of the yeast ribosomal 60S subunit by endogenous protein kinases CK-II and PK60S

    International Nuclear Information System (INIS)

    Szyszka, Ryszard; Boguszewska, Aleksandra; Grankowski, Nikodem; Shugar, David

    1996-01-01

    Several halogeno benzimidazoles and 2-azabenzimidazoles, previously shown to be relatively selective inhibitors of protein kinases CK-I and/or CK-II from various sources, including CK-II from yeast [Szyszka et al. (1995) Biochem. Biophys. Res. Commun. 208, 418-424] inhibit also the yeast ribosomal protein kinase PK60S. The most effective inhibitor of CK-II and PK60S was tetrabromo-2-azabenzimidazole (TetraBr-2-azaBz), which was competitive with respect to ATP (and GTP in the case of CK-II) with K i values of 0.7 μM for CK-II, and 0.1 μM for PK60S. PK60S phosphorylates only three (YP1β, YB1β', YP2α) out of five polypeptides of pp13 kDa acidic proteins of 60S subunit phosphorylated by CK-II [Szyszka et al. (1995) Acta Biochim. Polon. 42, 357-362]. Accordingly, TetraBr-azaBz inhibits phosphorylation only of these polypeptides, catalysed by PK60S. Addition of TetraBr-2Bz to cultures of yeast cells, at concentrations which were without effect on cell growth, led to inhibition of intracellular phosphorylation of ribosomal acidic proteins, paralleling that observed ''in vitro''. TetraBr-2-azaBz is shown to be a useful tool for studies on the intracellular regulation of phosphorylation of the ribosomal 60S acidic proteins, which are involved in formation of active ribosomes. (author). 36 refs, 4 figs, 2 tabs

  15. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    Science.gov (United States)

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  16. Role of calmodulin and calcineurin in regulating flagellar motility and wave polarity in Leishmania.

    Science.gov (United States)

    Mukhopadhyay, Aakash Gautam; Dey, Chinmoy Sankar

    2017-11-01

    We have previously reported the involvement of cyclic AMP in regulating flagellar waveforms in Leishmania. Here, we investigated the roles of calcium, calmodulin, and calcineurin in flagellar motility regulation in L. donovani. Using high-speed videomicroscopy, we show that calcium-independent calmodulin and calcineurin activity is necessary for motility in Leishmania. Inhibition of calmodulin and calcineurin induced ciliary beats interrupting flagellar beating in both live (in vivo) and ATP-reactivated (in vitro) parasites. Our results indicate that signaling mediated by calmodulin and calcineurin operates antagonistically to cAMP signaling in regulating the waveforms of Leishmania flagellum. These two pathways are possibly involved in maintaining the balance between the two waveforms, essential for responding to environmental cues, survival, and infectivity.

  17. Oriented immobilization of His-tagged kinase RIO1 protein on redox active N-(IDA-like)-Cu(II) monolayer deposited on gold electrode—The base of electrochemical biosensor

    International Nuclear Information System (INIS)

    Mielecki, Marcin; Wojtasik, Justyn; Zborowska, Magdalena; Kurzątkowska, Katarzyna; Grzelak, Krystyna; Dehaen, Wim; Radecki, Jerzy; Radecka, Hanna

    2013-01-01

    Highlights: ► The redox active N-(IDA-like)-Cu(II) monolayer is suitable for oriented and stable immobilization of His-tagged kinase Rio1. ► Cu(II) deposited onto the electrode surface play double role: immobilization sites for His-tagged proteins and transduction centres tracking the protein–small molecule interactions. ► The base of biosensor response towards target compound is the change of Rio1 conformation lading to alternation of the permeability of counter ions to Cu(II) redox centres. -- Abstract: The fabrication of electrochemical biosensor consists of the following successive steps: formation of thiol derivative of iminodiacetic acid (IDA-like/N-heterocyclic donor) and N-acetylcysteamine (NAC) self-assembled monolayer on the Au electrode, complexation of Cu(II) by N(IDA-like) attached to the surface of the Au electrode and immobilization of kinase protein Rio1 through N(IDA-like)-Cu(II)-histidine-tag covalent bond formation. Each step of modification was controlled by cyclic voltammetry, electrochemical impedance spectrometry and atomic force microscopy. The interactions between rHis 6 -Rio1 attached to the surface of the electrode and tyrphostin inhibitor (2E)-N-Benzyl-2-cyano-3-(3,4-dihydroxyphenyl)-acrylamide (AG-490) and its analogue (2-cyano-N-(4-methoxyphenyl)-3-(pyridin-3-yl)prop-2-enamide) (CPE), present in aqueous solution were monitored with Osteryoung square wave voltammetry. The basis of the biosensor response was the change in the electrochemical properties of Cu(II) redox centres upon formation of the rHis 6 -Rio1-inhibitor complex. A linear responses with high reproducibility and stability were observed between 0.10 and 0.40 μM of AG-490 as well as of CPE. The interaction between rHis 6 -Rio1 and AG-490 was stronger than the interaction with its analogue CPE. Cu(II) redox current decrease of 37.9 ± 1.6% and 23.3 ± 1.0% were observed in the presence of 0.40 μM of AG-490 and CPE, respectively. The presented biosensor could be

  18. Identification and Characterization of the Interaction Site between cFLIPL and Calmodulin.

    Directory of Open Access Journals (Sweden)

    Gabriel Gaidos

    Full Text Available Overexpression of the cellular FLICE-like inhibitory protein (cFLIP has been reported in a number of tumor types. As an inactive procaspase-8 homologue, cFLIP is recruited to the intracellular assembly known as the Death Inducing Signaling Complex (DISC where it inhibits apoptosis, leading to cancer cell proliferation. Here we characterize the molecular details of the interaction between cFLIPL and calmodulin, a ubiquitous calcium sensing protein. By expressing the individual domains of cFLIPL, we demonstrate that the interaction with calmodulin is mediated by the N-terminal death effector domain (DED1 of cFLIPL. Additionally, we mapped the interaction to a specific region of the C-terminus of DED1, referred to as DED1 R4. By designing DED1/DED2 chimeric constructs in which the homologous R4 regions of the two domains were swapped, calmodulin binding properties were transferred to DED2 and removed from DED1. Furthermore, we show that the isolated DED1 R4 peptide binds to calmodulin and solve the structure of the peptide-protein complex using NMR and computational refinement. Finally, we demonstrate an interaction between cFLIPL and calmodulin in cancer cell lysates. In summary, our data implicate calmodulin as a potential player in DISC-mediated apoptosis and provide evidence for a specific interaction with the DED1 of cFLIPL.

  19. Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin.

    Science.gov (United States)

    Di Giovanni, Jerome; Iborra, Cécile; Maulet, Yves; Lévêque, Christian; El Far, Oussama; Seagar, Michael

    2010-07-30

    Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.

  20. Fesselin is a target protein for calmodulin in a calcium-dependent manner

    International Nuclear Information System (INIS)

    KoIakowski, Janusz; Wrzosek, Antoni; Dabrowska, Renata

    2004-01-01

    Fesselin is a basic protein isolated from smooth muscle which binds G-actin and accelerates its polymerization as well as cross-links assembled filaments [J. Muscle Res. Cell Motil. 20 (1999) 539; Biochemistry 40 (2001) 14252]. In this report experimental evidence is provided for the first time proving that fesselin can interact with calmodulin in a Ca 2+ -dependent manner in vitro. Using ion exchange, followed by calmodulin-affinity chromatography, enabled us to simplify and shorten the fesselin preparation procedure and increase its yield by about three times in comparison to the procedure described by Leinweber et al. [J. Muscle Res. Cell Motil. 20 (1999) 539]. Fesselin interaction with dansyl-labelled calmodulin causes a 2-fold increase in maximum fluorescence intensity of the fluorophore and a 21 nm blue shift of the spectrum. The transition of complex formation between fesselin and calmodulin occurs at submicromolar concentration of calcium ions. The dissociation constant of fesselin Ca 2+ /calmodulin complexes amounted to 10 -8 M. The results suggest the existence of a direct link between Ca 2+ /calmodulin and fesselin at the level of actin cytoskeleton dynamics in smooth muscle

  1. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  2. New human erythrocyte protein with binding sites for both spectrin and calmodulin

    International Nuclear Information System (INIS)

    Gardner, K.; Bennett, V.

    1986-01-01

    A new cytoskeletal protein that binds calmodulin has been purified to greater than 95% homogeneity from human erythrocyte cytoskeletons. The protein is a heterodimer with subunits of 103,000 and 97,000 and M/sub r/ = 197,000 calculated from its Stokes radius of 6.9 nm and sedimentation coefficient of 6.8. A binding affinity of this protein for calmodulin has been estimated to be 230 nM by displacement of two different concentrations of 125 I-azidocalmodulin with increasing concentrations of unmodified calmodulin followed by Dixon plot analysis. This protein is present in red cells at approximately 30,000 copies per cell and contains a very tight binding site(s) on cytoskeletons. The protein can be only partially solubilized from isolated cytoskeletons in buffers containing high salt, but can be totally solubilized from red cell ghost membranes by extraction in low ionic strength buffers. Affinity purified IgG against this calmodulin-binding protein identifies crossreacting polypeptide(s) in brain, kidney, testes and retina. Visualization of the calmodulin-binding protein by negative staining, rotary shadowing and unidirectional shadowing indicate that it is a flattened circular molecule with molecular height of 5.4 nm and a diameter of 12.4 nm. Preliminary cosedimentation studies with purified spectrin and F-actin indicate that the site of interaction of this calmodulin-binding protein with the cytoskeleton resides on spectrin

  3. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E. (Alton Ochsner Medical Foundation, New Orleans, LA (USA))

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation. In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.

  4. Characterization and Functional Analysis of the Calmodulin-Binding Domain of Rac1 GTPase

    Science.gov (United States)

    Xu, Bing; Chelikani, Prashen; Bhullar, Rajinder P.

    2012-01-01

    Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s) in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151–164 in Rac1 is essential for calmodulin binding. Within the 151–164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A) demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A), activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration. PMID:22905193

  5. Characterization and functional analysis of the calmodulin-binding domain of Rac1 GTPase.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151-164 in Rac1 is essential for calmodulin binding. Within the 151-164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A, activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration.

  6. Engineering of specific uranyl-coordination sites in the calcium-binding motif of Calmodulin

    International Nuclear Information System (INIS)

    Beccia, M.; Pardoux, R.; Sauge-Merle, S.; Bremond, N.; Lemaire, D.; Berthomieu, C.; Delangle, P.; Guilbaud, P.

    2014-01-01

    Complete text of publication follows: Characterization of heavy metals interactions with proteins is fundamental for understanding the molecular factors and mechanisms governing ions toxicity and speciation in cells. This line of research will also help in developing new molecules able to selectively and efficiently bind toxic metal ions, which could find application for bio-detection or bioremediation purposes. We have used the regulatory calcium-binding protein Calmodulin (CaM) from A. thaliana as a structural model and, starting from it, we have designed various mutants by site-directed mutagenesis. We have analysed thermodynamics of uranyl ion binding to both sites I and II of CaM N-terminal domain and we have identified structural factors governing this interaction. Selectivity for uranyl ion has been tested by studying reactions of the investigated peptides with Ca 2+ , in the same conditions used for UO 2 2+ . Spectro-fluorimetric titrations and FTIR analysis have shown that the affinity for uranyl increases by phosphorylation of a threonine in site I, especially approaching the physiological pH, where the phospho-threonine side chain is deprotonated. Based on structural models obtained by Molecular Dynamics, we tested the effect of a two residues deletion on site I properties. We obtained an almost two orders of magnitude increase in affinity for uranyl, with a sub-nanomolar dissociation constant for the uranyl complex with the non phosphorylated peptide, and an improved uranyl/calcium selectivity. Allosteric effects depending on Ca 2+ and UO 2 2+ binding have been investigated by comparing thermodynamic parameters obtained for mutants having both sites I and II able to chelate metal ions with those of mutants consisting of just one active site

  7. K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase

    International Nuclear Information System (INIS)

    Nakanishi, S.; Yamada, K.; Kase, H.; Nakamura, S.; Nonomura, Y.

    1988-01-01

    Effects of K-252a, purified from the culture broth of Nocardiopsis sp., on the activity of myosin (light chain kinase were investigated. 1) K-252a affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca 2+ -dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca 2+ -independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10 -6 M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10 -4 M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lowere in the presence of 100 μM ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using [γ- 32 P]ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP. These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase

  8. Impact of methionine oxidation on calmodulin structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States); Moen, Rebecca J. [Chemistry and Geology Department, Minnesota State University, Mankato, MN 56001 (United States); Olenek, Michael J. [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Klein, Jennifer C., E-mail: jklein@uwlax.edu [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Thomas, David D., E-mail: ddt@umn.edu [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States)

    2015-01-09

    Highlights: • We measured the distance distribution between two spin labels on calmodulin by DEER. • Two structural states, open and closed, were resolved at both low and high Ca. • Ca shifted the equilibrium toward the open state by a factor of 13. • Methionine oxidation, simulated by glutamine substitution, decreased the Ca effect. • These results have important implications for aging in muscle and other tissues. - Abstract: We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron–electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4 nm (closed) and another at ∼6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each

  9. Binding proteins for the regulatory subunit (RII-B) of brain cAMP-dependent protein kinase II: isolation and initial characterization of cDNA clones

    International Nuclear Information System (INIS)

    Bregman, D.B.; Hu, E.; Rubin, C.S.

    1987-01-01

    In mammalian brain several proteins bind RII-B with high affinity. An example is P75, which co-purifies with RII-B and also complexes Ca 2+ -calmodulin. Thus, RII-B binding proteins (RBPs) might play a role in integrating the Ca 2+ and cAMP signalling pathways in the CNS. In order to study the structure and function of these polypeptides they have isolated cloned cDNAs for RBPs by screening brain λgt11 expression libraries using a functional assay: the binding of 32 P-labeled RII to fusion proteins produced by recombinants expressing RII binding domains. Inserts from rat brain recombinant clones λ7B and λ10B both hybridize to a brain mRNA of 7000 nucleotides. Northern gel analyses indicate that the putative RBP mRNA is also expressed in lung, but not in several other tissues. The λ7B insert was subcloned into the expression plasmid pINIA. A 50 kDa high affinity RII-B binding polypeptide accumulated in E. coli transformed with pINIA-7B. Two RBP cDNAs (λ77, λ100A) have been retrieved from a bovine λgt 11 library using a monoclonal antibody directed against P75 and the binding assay respectively. On Southern blots the insert from λ100A hybridizes to the cDNA insert from clones λ77, suggesting that λ 77 cDNA might contain sequences coding for both an RII binding domain and a P75 epitope. The bovine λ100A insert also hybridizes with the rat λ7B clone indicating that an RII binding domain is conserved in the two species

  10. Relation between circulating angiotensin II type 1 receptor agonistic autoantibodies and soluble fms-like tyrosine kinase 1 in the pathogenesis of preeclampsia

    NARCIS (Netherlands)

    H. Stepan (Holger); R. Faber (Renaldo); N. Wessel; G. Wallukat (Gerd); H.P. Schultheiss (Heinz-Peter); T. Walther (Thomas)

    2006-01-01

    textabstractContext: Placental and circulatory soluble fms-like tyrosine kinase 1 (sFlt1) has proven to be elevated in pregnant women with preeclampsia, a disease characterized by hypertension, proteinuria, and endothelial dysfunction. Recent studies also demonstrated an autoantibody against the

  11. Inhibition of protein kinase CbetaII increases glucose uptake in 3T3-L1 adipocytes through elevated expression of glucose transporter 1 at the plasma membrane

    NARCIS (Netherlands)

    Bosch, Remko R.; Bazuine, Merlijn; Wake, Michelle M.; Span, Paul N.; Olthaar, André J.; Schürmann, Annette; Maassen, J. Antonie; Hermus, Ad R. M. M.; Willems, Peter H. G. M.; Sweep, C. G. J.

    2003-01-01

    The mechanism via which diacylglycerol-sensitive protein kinase Cs (PKCs) stimulate glucose transport in insulin-sensitive tissues is poorly defined. Phorbol esters, such as phorbol-12-myristate-13-acetate (PMA), are potent activators of conventional and novel PKCs. Addition of PMA increases the

  12. Calmodulin-activated cyclic nucleotide phosphodiesterase from brain. Relationship of subunit structure to activity assessed by radiation inactivation

    International Nuclear Information System (INIS)

    Kincaid, R.L.; Kemdner, E.; Manganiello, V.C.; Osborne, J.C.; Vaughan, M.

    1981-01-01

    The apparent target sizes of the basal and calmodulin-dependent activities of calmodulin-activated phosphodiesterase from bovine brain were estimated using target theory analysis of data from radiation inactivation experiments. Whether crude or highly purified samples were irradiated, the following results were obtained. Low doses of radiation caused a 10 to 15% increase in basal activity, which, with further irradiation, decayed with an apparent target size of approx.60,000 daltons. Calmodulin-dependent activity decayed with an apparent target size of approx.105,000 daltons. The percentage stimulation of enzyme activity by calmodulin decreased markedly as a function of radiation dosage. These observations are consistent with results predicted by computer-assisted modeling based on the assumptions that: 1) the calmodulin-activated phosphodiesterase exists as a mixture of monomers which are fully active in the absence of calmodulin and dimers which are inactive in the absence of calmodulin; 2) in the presence of calmodulin, a dimer exhibits activity equal to that of two monomers; 3) on radiation destruction of a dimer, an active monomer is generated. This monomer-dimer hypothesis provides a plausible explanation for and definition of basal and calmodulin-dependent phosphodiesterase activity

  13. Casein kinases

    DEFF Research Database (Denmark)

    Issinger, O G

    1993-01-01

    The present review on casein kinases focuses mainly on the possible metabolic role of CK-2, with special emphasis on its behavior in pathological tissues. From these data at least three ways to regulate CK-2 activity emerge: (i) CK-2 activity changes during embryogenesis, being high at certain...

  14. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    International Nuclear Information System (INIS)

    O’Day, Danton H.; Huber, Robert J.; Suarez, Andres

    2012-01-01

    Highlights: ► Extracellular calmodulin is present throughout growth and development in Dictyostelium. ► Extracellular calmodulin localizes within the ECM during development. ► Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. ► Extracellular calmodulin exists in eukaryotic microbes. ► Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca 2+ /CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of the research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model amoebozoan.

  15. Kinases and Cancer

    OpenAIRE

    Jonas Cicenas; Egle Zalyte; Amos Bairoch; Pascale Gaudet

    2018-01-01

    Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...

  16. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-12-31

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  17. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-01-01

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  18. Structure and expression of the chicken calmodulin I gene

    DEFF Research Database (Denmark)

    Ye, Q; Berchtold, M W

    1997-01-01

    The chicken calmodulin I (CaMI) gene has been isolated and characterized on the level of cDNA and genomic DNA. The deduced amino acid (aa) sequence is identical to the one of chicken CaMII which consists of 148 aa. The CaMI gene contains six exons. Its intron/exon organization is identical...... to that of the chicken CaMII and the CaMI and CaMIII genes of rat and human. Expression of the CaMI gene was detected in all chicken tissues examined, although at varying levels. The gene is transcribed into four mRNAs of 0.8, 1.4, 1.7 and 4.4 kb as determined by Northern blot analysis. Our results demonstrate...... that the "multigene-one-protein" principle of CaM synthesis is not only applicable to mammals whose CaM is encoded by three different genes, but also to chickens....

  19. Calmodulin stimulation of calcium transport in carrot microsomal vesicles

    International Nuclear Information System (INIS)

    Pierce, W.S.; Sze, H.

    1987-01-01

    ATP-dependent 45 Ca 2+ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca 2+ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca 2+ uptake (at 1.17 g/cc) was not affected by oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca 2+ . These results are consistent with the ER being an important site of intracellular Ca 2+ regulation

  20. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    Science.gov (United States)

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  1. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  2. Pro-survival Effects of 17β-Estradiol on Osteocytes Are Mediated by Nitric Oxide/cGMP via Differential Actions of cGMP-dependent Protein Kinases I and II*

    Science.gov (United States)

    Marathe, Nisha; Rangaswami, Hema; Zhuang, Shunhui; Boss, Gerry R.; Pilz, Renate B.

    2012-01-01

    Estrogens promote bone health in part by increasing osteocyte survival, an effect that requires activation of the protein kinases Akt and ERK1/2, but the molecular mechanisms involved are only partly understood. Because estrogens increase nitric oxide (NO) synthesis and NO can have anti-apoptotic effects, we examined the role of NO/cGMP signaling in estrogen regulation of osteocyte survival. Etoposide-induced death of MLO-Y4 osteocyte-like cells, assessed by trypan blue staining, caspase-3 cleavage, and TUNEL assays, was completely prevented when cells were pre-treated with 17β-estradiol. This protective effect was mimicked when cells were pre-treated with a membrane-permeable cGMP analog and blocked by pharmacological inhibitors of NO synthase, soluble guanylate cyclase, or cGMP-dependent protein kinases (PKGs), supporting a requirement for NO/cGMP/PKG signaling downstream of 17β-estradiol. siRNA-mediated knockdown and viral reconstitution of individual PKG isoforms demonstrated that the anti-apoptotic effects of estradiol and cGMP were mediated by PKG Iα and PKG II. Akt and ERK1/2 activation by 17β-estradiol required PKG II, and cGMP mimicked the effects of estradiol on Akt and ERK, including induction of ERK nuclear translocation. cGMP induced BAD phosphorylation on several sites, and experiments with phosphorylation-deficient BAD mutants demonstrated that the anti-apoptotic effects of cGMP and 17β-estradiol required BAD phosphorylation on Ser136 and Ser155; these sites were targeted by Akt and PKG I, respectively, and regulate BAD interaction with Bcl-2. In conclusion, 17β-estradiol protects osteocytes against apoptosis by activating the NO/cGMP/PKG cascade; PKG II is required for estradiol-induced activation of ERK and Akt, and PKG Iα contributes to pro-survival signaling by directly phosphorylating BAD. PMID:22117068

  3. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  4. Modulation of calmodulin plasticity by the effect of macromolecular crowding.

    Science.gov (United States)

    Homouz, Dirar; Sanabria, Hugo; Waxham, M Neal; Cheung, Margaret S

    2009-09-04

    In vitro biochemical reactions are most often studied in dilute solution, a poor mimic of the intracellular space of eukaryotic cells, which are crowded with mobile and immobile macromolecules. Such crowded conditions exert volume exclusion and other entropic forces that have the potential to impact chemical equilibria and reaction rates. In this article, we used the well-characterized and ubiquitous molecule calmodulin (CaM) and a combination of theoretical and experimental approaches to address how crowding impacts CaM's conformational plasticity. CaM is a dumbbell-shaped molecule that contains four EF hands (two in the N-lobe and two in the C-lobe) that each could bind Ca(2+), leading to stabilization of certain substates that favor interactions with other target proteins. Using coarse-grained molecular simulations, we explored the distribution of CaM conformations in the presence of crowding agents. These predictions, in which crowding effects enhance the population of compact structures, were then confirmed in experimental measurements using fluorescence resonance energy transfer techniques of donor- and acceptor-labeled CaM under normal and crowded conditions. Using protein reconstruction methods, we further explored the folding-energy landscape and examined the structural characteristics of CaM at free-energy basins. We discovered that crowding stabilizes several different compact conformations, which reflects the inherent plasticity in CaM's structure. From these results, we suggest that the EF hands in the C-lobe are flexible and can be thought of as a switch, while those in the N-lobe are stiff, analogous to a rheostat. New combinatorial signaling properties may arise from the product of the differential plasticity of the two distinct lobes of CaM in the presence of crowding. We discuss the implications of these results for modulating CaM's ability to bind Ca(2+) and target proteins.

  5. Neurogranin alters the structure and calcium binding properties of calmodulin.

    Science.gov (United States)

    Hoffman, Laurel; Chandrasekar, Anuja; Wang, Xu; Putkey, John A; Waxham, M Neal

    2014-05-23

    Neurogranin (Ng) is a member of the IQ motif class of calmodulin (CaM)-binding proteins, and interactions with CaM are its only known biological function. In this report we demonstrate that the binding affinity of Ng for CaM is weakened by Ca(2+) but to a lesser extent (2-3-fold) than that previously suggested from qualitative observations. We also show that Ng induced a >10-fold decrease in the affinity of Ca(2+) binding to the C-terminal domain of CaM with an associated increase in the Ca(2+) dissociation rate. We also discovered a modest, but potentially important, increase in the cooperativity in Ca(2+) binding to the C-lobe of CaM in the presence of Ng, thus sharpening the threshold for the C-domain to become Ca(2+)-saturated. Domain mapping using synthetic peptides indicated that the IQ motif of Ng is a poor mimetic of the intact protein and that the acidic sequence just N-terminal to the IQ motif plays an important role in reproducing Ng-mediated decreases in the Ca(2+) binding affinity of CaM. Using NMR, full-length Ng was shown to make contacts largely with residues in the C-domain of CaM, although contacts were also detected in residues in the N-terminal domain. Together, our results can be consolidated into a model where Ng contacts residues in the N- and C-lobes of both apo- and Ca(2+)-bound CaM and that although Ca(2+) binding weakens Ng interactions with CaM, the most dramatic biochemical effect is the impact of Ng on Ca(2+) binding to the C-terminal lobe of CaM. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  7. Calmodulin interacts with PAC1 and VPAC2 receptors and regulates PACAP-induced FOS expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    is a well-known marker of neuronal activation, so we used a human neuroblastoma cell line NB-1 to explore the role of calmodulin in PACAP-induced FOS gene expression. We observed both short-term and prolonged altered PACAP-mediated activation of the FOS gene in the presence of the calmodulin-antagonist W-7...

  8. Inhibition of calmodulin - regulated calcium pump activity in rat brain by toxaphene

    International Nuclear Information System (INIS)

    Trottman, C.H.; Moorthy, K.S.

    1986-01-01

    In vivo effects of toxaphene on calcium pump activity in rat brain synaptosomes was studied. Male Sprague-Dawley rats were dosed with toxaphene at 0,25,50, and 100 mg/kg/day for 3 days and sacrificed 24 h after last dose. Ca 2+ -ATPase activity and 45 Ca uptake were determined in brain P 2 fraction. Toxaphene inhibited both Ca 2+ -ATPase activity and 45 Ca 2+ uptake and the inhibition was dose dependent. Both substrate and Ca 2+ activation kinetics of Ca 2+ -ATPase indicated non-competitive type of inhibition as evidenced by decreased catalytic velocity but not enzyme-substrate affinity. The inhibited Ca 2+ -ATPase activity and Ca 2+ uptake were restored to normal level by exogenously added calmodulin which increased both velocity and affinity. The inhibition of Ca 2+ -ATPase activity and Ca 2+ uptake and restoration by calmodulin suggests that toxaphene may impair active calcium transport mechanisms by decreasing regulator protein calmodulin levels

  9. Investigations into the binding of 125I-calmodulin to CA++ transport ATPase of human erythrocytes

    International Nuclear Information System (INIS)

    Sterk, V.

    1983-01-01

    The study described was carried out in order to investigate the binding of 125 I-calmodulin to Ca ++ transport ATPase using different Ca ++ concentrations and temperatures. The data obtained from these experiments were subsequently analysed in such as a way as to yield meaningful information relating to the mechanisms underlying the attachment of calmodulin to Ca ++ transport ATPase, the % proportion of membrane protein that was attributable to the enzyme as well as the number of calmodulin receptor sites on the individual erythrocytes, etc. Comparisons with data from the relevant literature permitted conclusions to be drawn concerning the mode of Ca ++ transport at the level of the erythrocytes. A new methodology and processing technique had to be developed prior to the beginning of the experiments. (orig./MG) [de

  10. Altered binding of 125I-labeled calmodulin to a 46.5-kilodalton protein in skin fibroblasts cultured from patients with cystic fibrosis

    International Nuclear Information System (INIS)

    Tallant, E.A.; Wallace, R.W.

    1987-01-01

    The levels of calmodulin and calmodulin-binding proteins have been determined in cultured skin fibroblasts from patients with cystic fibrosis (CF) and age- and sex-matched controls. Calmodulin ranged from 0.20 to 0.76 microgram/mg protein; there was no difference between calmodulin concentration in fibroblasts from CF patients and controls. Calmodulin-binding proteins of 230, 212, 204, 164, 139, 70, 59, 46.5, and 41 kD were identified. A protein with a mobility identical to the 59-kD calmodulin-binding protein was labeled by antiserum against calmodulin-dependent phosphatase. Although Ca 2+ /calmodulin-dependent phosphatase activity was detected, there was no different in activity between control and CF fibroblasts or in the level of phosphatase protein as determined by radioimmunoassay. Lower amounts of 125 I-calmodulin were bound to the 46.5-kD calmodulin-binding protein in CF fibroblasts as compared with controls. The 46.5-kD calmodulin-binding protein may be reduced in CF fibroblasts or its structure may be altered resulting in a reduced binding capacity and/or affinity for calmodulin and perhaps reflecting, either directly or indirectly, the genetic defect responsible for cystic fibrosis

  11. The Kinetics of Myosin Light Chain Kinase Activation of Smooth Muscle Myosin in an In Vitro Model System

    OpenAIRE

    Hong, Feng; Facemyer, Kevin C.; Carter, Michael S.; Jackson, Del R.; Haldeman, Brian D.; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P.; Cremo, Christine R.; Baker, Josh E.

    2013-01-01

    During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca2+-CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vi...

  12. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    2010-02-01

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  13. The use of dansyl-calmodulin to study interactions with channels and other proteins.

    Science.gov (United States)

    Alaimo, Alessandro; Malo, Covadonga; Areso, Pilar; Aloria, Kerman; Millet, Oscar; Villarroel, Alvaro

    2013-01-01

    Steady-state fluorescence spectroscopy is a biophysical technique widely employed to characterize -interactions between proteins in vitro. Only a few proteins naturally fluoresce in cells, but by covalently attaching fluorophores virtually all proteins can be monitored. One of the first extrinsic fluorescent probes to be developed, and that is still in use, is dansyl chloride. We have used this method to monitor the interaction of a variety of proteins, including ion channels, with the Ca(2+)-dependent regulatory protein calmodulin. Here we describe the preparation and use of dansyl-calmodulin (D-CaM).

  14. cAMP-Dependent Protein Kinase A (PKA)-Mediated c-Myc Degradation Is Dependent on the Relative Proportion of PKA-I and PKA-II Isozymes.

    Science.gov (United States)

    Liu, Qingyuan; Nguyen, Eric; Døskeland, Stein; Ségal-Bendirdjian, Évelyne

    2015-09-01

    The transcription factor c-Myc regulates numerous target genes that are important for multiple cellular processes such as cell growth and differentiation. It is commonly deregulated in leukemia. Acute promyelocytic leukemia (APL) is characterized by a blockade of granulocytic differentiation at the promyelocyte stage. Despite the great success of all-trans retinoic acid (ATRA)-based therapy, which results in a clinical remission by inducing promyelocyte maturation, a significant number of patients relapse due to the development of ATRA resistance. A significant role has been ascribed to the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway in retinoid treatment since PKA activation is able to restore differentiation in some ATRA-resistant cells and eradicate leukemia-initiating cells in vivo. In this study, using NB4 APL cell variants resistant to ATRA-induced differentiation, we reveal distinct functional roles of the two PKA isozymes, PKA type I (PKA-I) and PKA-type II (PKA-II), on the steady-state level of c-Myc protein, providing a likely mechanism by which cAMP-elevating agents can restore differentiation in ATRA maturation-resistant APL cells. Therefore, both the inhibition of c-Myc activity and the PKA-I/PKA-II ratio should be taken into account if cAMP-based therapy is considered in the clinical management of APL. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Molecular and biochemical characterization of calmodulin from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Ning; Zhong, Xiuqin; Song, Xingju; Gu, Xiaobin; Lai, Weiming; Xie, Yue; Peng, Xuerong; Yang, Guangyou

    2017-12-04

    Echinococcus granulosus is a harmful cestode parasite that causes cystic echinococcosis in humans as well as various livestock species and wild animals. Calmodulin (CaM), a Ca 2+ sensor protein, is widely expressed in eukaryotes and mediates a variety of cellular signaling activities. In the present study, the cDNA encoding CaM in Echinococcus granulosus (rEgCaM) was successfully cloned and the molecular and biochemical characterizations carried out. The antigenicity and immunoreactivity of rEgCaM was detected and the preliminary enzyme-linked immunosorbent assay (ELISA)-based serodiagnostic potential of EgCaM was assessed. The locations of this protein in the adult worm and larval stage, and the mRNA expression in different states of E. granulosus protoscoleces (PSCs) were defined clearly. Moreover, the Ca 2+ -binding properties of EgCaM were measured. rEgCaM is a highly conserved calcium-binding protein, consisting of 149 amino acids. Immunoblotting analysis revealed that rEgCaM could be identified using E. granulosus infected sheep serum. The use of rEgCaM as an antigen was evaluated by indirect ELISA which exhibited a high sensitivity (90.3%), but low specificity (47.1%). rEgCaM was ubiquitously expressed in protoscoleces and adults of E. granulosus, as well as in the germinal layer of the cyst wall. The mRNA expression level of rEgCaM was increased from the start of H 2 O 2 exposure and then gradually decreased because of the increased apoptosis of PSCs. In electrophoretic mobility tests and 1-anilinonaphthalene-8-sulfonic acid assays, rEgCaM showed a typical characteristic of a calcium-binding protein. To our knowledge, this is the first report on CaM from E. granulosus and rEgCaM is likely to be involved in some important biological function of E. granulosus as a calcium-binding protein.

  16. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.

    Science.gov (United States)

    Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T

    1997-10-10

    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.

  17. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions

    Science.gov (United States)

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G.; Módos, Károly; Kardos, József; Liliom, Károly

    2010-01-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic, and spectroscopic approaches using purified bovine calmodulin and bovine cerebral microsomal fraction to arrive at our conclusions. Here we present 1) a 1.6-Å resolution crystal structure of their complex, in which the sphingolipid occupies the conventional hydrophobic binding site on calmodulin; 2) a peculiar stoichiometry-dependent binding process: at low or high protein-to-lipid ratio calmodulin binds lipid micelles or a few lipid molecules in a compact globular conformation, respectively, and 3) evidence that the sphingolipid displaces calmodulin from its targets on cerebral microsomes. We have ascertained the specificity of the interaction using structurally related lipids as controls. Our observations reveal the structural basis of selective calmodulin inhibition by the sphingolipid. On the basis of the crystallographic and biophysical characterization of the calmodulin–sphingosylphosphorylcholine interaction, we propose a novel lipid-protein binding model, which might be applicable to other interactions as well.—Kovacs, E., Harmat, V., Tóth, J., Vértessy, B. G., Módos, K., Kardos, J., Liliom, K. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions. PMID:20522785

  18. Zinc(II) complexes with potent cyclin-dependent kinase inhibitors derived from 6-benzylaminopurine: synthesis, characterization, X-ray structures and biological activity

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Kryštof, Vladimír; Šipl, M.

    2006-01-01

    Roč. 100, č. 2 (2006), s. 214-225 ISSN 0162-0134 R&D Projects: GA ČR GA203/04/1168 Institutional research plan: CEZ:AV0Z50380511 Keywords : Zinc(II) complexes * 6-Benzylaminopurine derivatives * Bohemine * Olomoucine * X-ray structures Subject RIV: CA - Inorganic Chemistry Impact factor: 2.654, year: 2006

  19. Gonadotropin-releasing hormone type II (GnRH-II) agonist regulates the invasiveness of endometrial cancer cells through the GnRH-I receptor and mitogen-activated protein kinase (MAPK)-dependent activation of matrix metalloproteinase (MMP)-2

    International Nuclear Information System (INIS)

    Wu, Hsien-Ming; Wang, Hsin-Shih; Huang, Hong-Yuan; Lai, Chyong-Huey; Lee, Chyi-Long; Soong, Yung-Kuei; Leung, Peter CK

    2013-01-01

    More than 25% of patients diagnosed with endometrial carcinoma have an invasive primary cancer accompanied by metastases. Gonadotropin-releasing hormone (GnRH) plays an important role in reproduction. In mammals, expression of GnRH-II is higher than GnRH-I in reproductive tissues. Here, we examined the effect of a GnRH-II agonist on the motility of endometrial cancer cells and its mechanism of action in endometrial cancer therapy. Immunoblotting and immunohistochemistry (IHC) were used to determine the expression of the GnRH-I receptor protein in human endometrial cancer. The activity of MMP-2 in the conditioned medium was determined by gelatin zymography. Cell motility was assessed by invasion and migration assay. GnRH-I receptor si-RNA was applied to knockdown GnRH-I receptor. The GnRH-I receptor was expressed in the endometrial cancer cells. The GnRH-II agonist promoted cell motility in a dose-dependent manner. The GnRH-II agonist induced the phosphorylation of ERK1/2 and JNK, and the phosphorylation was abolished by ERK1/2 inhibitor (U0126) and the JNK inhibitor (SP600125). Cell motility promoted by GnRH-II agonist was suppressed in cells that were pretreated with U0126 and SP600125. Moreover, U0126 and SP600125 abolished the GnRH-II agonist-induced activation of MMP-2. The inhibition of MMP-2 with MMP-2 inhibitor (OA-Hy) suppressed the increase in cell motility in response to the GnRH-II agonist. Enhanced cell motility mediated by GnRH-II agonist was also suppressed by the knockdown of the endogenous GnRH-I receptor using siRNA. Our study indicates that GnRH-II agonist promoted cell motility of endometrial cancer cells through the GnRH-I receptor via the phosphorylation of ERK1/2 and JNK, and the subsequent, MAPK-dependent activation of MMP-2. Our findings represent a new concept regarding the mechanism of GnRH-II-induced cell motility in endometrial cancer cells and suggest the possibility of exploring GnRH-II as a potential therapeutic target for the

  20. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    International Nuclear Information System (INIS)

    Negi, Sunita; Atilgan, Ali Rana; Atilgan, Canan

    2012-01-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca +2 ion between the two lobes.

  1. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    Science.gov (United States)

    Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan

    2012-12-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.

  2. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays

    Science.gov (United States)

    Popescu, Sorina C.; Popescu, George V.; Bachan, Shawn; Zhang, Zimei; Seay, Montrell; Gerstein, Mark; Snyder, Michael; Dinesh-Kumar, S. P.

    2007-01-01

    Calmodulins (CaMs) are the most ubiquitous calcium sensors in eukaryotes. A number of CaM-binding proteins have been identified through classical methods, and many proteins have been predicted to bind CaMs based on their structural homology with known targets. However, multicellular organisms typically contain many CaM-like (CML) proteins, and a global identification of their targets and specificity of interaction is lacking. In an effort to develop a platform for large-scale analysis of proteins in plants we have developed a protein microarray and used it to study the global analysis of CaM/CML interactions. An Arabidopsis thaliana expression collection containing 1,133 ORFs was generated and used to produce proteins with an optimized medium-throughput plant-based expression system. Protein microarrays were prepared and screened with several CaMs/CMLs. A large number of previously known and novel CaM/CML targets were identified, including transcription factors, receptor and intracellular protein kinases, F-box proteins, RNA-binding proteins, and proteins of unknown function. Multiple CaM/CML proteins bound many binding partners, but the majority of targets were specific to one or a few CaMs/CMLs indicating that different CaM family members function through different targets. Based on our analyses, the emergent CaM/CML interactome is more extensive than previously predicted. Our results suggest that calcium functions through distinct CaM/CML proteins to regulate a wide range of targets and cellular activities. PMID:17360592

  3. Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus. II. Evidence from site-directed mutagenesis studies.

    Science.gov (United States)

    Tada, Hiroshi; Suzuki, Tomohiko

    2010-08-01

    The arginine kinase (AK) from the sea anemone Anthopleura japonicus has an unusual two-domain structure (contiguous dimer; denoted by D1-D2). In a previous report, we suggested cooperativity in the contiguous dimer, which may be a result of domain-domain interactions, using MBP-fused enzymes. To further understand this observation, we inserted six-Lys residues into the linker region of the two-domain AK (D1-K6-D2 mutant) using His-tagged enzyme. The dissociation constants, K(a) and K(ia), of the mutant were similar to those of the wild-type enzyme but the catalytic constant, k(cat), was decreased to 28% that of the wild-type, indicating that some of the domain-domain interactions are lost due to the six-Lys insertion. Y68 plays a major role in arginine binding in the catalytic pocket in Limulus AK, and introduction of mutation at the Y68 position virtually abolishes catalytic activity. Thus, the constructed D1(Y68G)-D2 and D1-D2(Y68G) mutants mimic the D1(inactive)-D2(active) and D1(active)-D2(inactive) enzymes, respectively. The k(cat) values of both Y68 mutants were decreased to 13-18% that of the wild-type enzyme, which is much less than the 50% level of the two-domain enzyme. Thus, it is clear that substrate-binding to both domains is necessary for full expression of activity. In other words, substrate-binding appears to act as the trigger of the functional cooperativity in two-domain AK. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer.

    Science.gov (United States)

    Sequist, Lecia V; Besse, Benjamin; Lynch, Thomas J; Miller, Vincent A; Wong, Kwok K; Gitlitz, Barbara; Eaton, Keith; Zacharchuk, Charles; Freyman, Amy; Powell, Christine; Ananthakrishnan, Revathi; Quinn, Susan; Soria, Jean-Charles

    2010-06-20

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have had a significant impact on non-small-cell lung cancer (NSCLC) outcomes, particularly for patients with EGFR mutations. Resistance emerges after 9 to 12 months, primarily mediated by the T790M resistance mutation. We studied neratinib, an irreversible pan-ErbB TKI that may overcome T790M. Patients with advanced NSCLC underwent EGFR sequencing of available tumor tissue at enrollment. Those with > or = 12 weeks of prior TKI therapy were placed in arm A if they were EGFR mutation positive or arm B if they were wild-type. Arm C included TKI-naïve patients with adenocarcinoma and light smoking histories (neratinib, initially at 320 mg but subsequently reduced to 240 mg because of excessive diarrhea. The primary end point was objective response rate (RR). One-hundred sixty-seven patients were treated: 91 in arm A, 48 in arm B, and 28 in arm C. Diarrhea was the most common toxicity; grade 3 incidence was 50% at 320 mg but improved to 25% after dose reduction. The RR was 3% in arm A and zero in arms B and C. No patients with known T790M responded. Notably, three of four patients with an exon 18 G719X EGFR mutation had a partial response and the fourth had stable disease lasting 40 weeks. Neratinib had low activity in patients with prior benefit from TKIs and in TKI-naïve patients, potentially because of insufficient bioavailability from diarrhea-imposed dose limitation. Responses were seen in patients with the rare G719X EGFR mutation, highlighting the importance of obtaining comprehensive genetic information on trials of targeted agents.

  5. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure

    Directory of Open Access Journals (Sweden)

    Hayashi Nobuhiro

    2008-02-01

    Full Text Available Abstract Background The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. Results The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC in different temperatures, and Kd was observed to be in the low μM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Conclusion Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure

  6. Polarized axonal surface expression of neuronal KCNQ potassium channels is regulated by calmodulin interaction with KCNQ2 subunit.

    Directory of Open Access Journals (Sweden)

    John P Cavaretta

    Full Text Available KCNQ potassium channels composed of KCNQ2 and KCNQ3 subunits give rise to the M-current, a slow-activating and non-inactivating voltage-dependent potassium current that limits repetitive firing of action potentials. KCNQ channels are enriched at the surface of axons and axonal initial segments, the sites for action potential generation and modulation. Their enrichment at the axonal surface is impaired by mutations in KCNQ2 carboxy-terminal tail that cause benign familial neonatal convulsion and myokymia, suggesting that their correct surface distribution and density at the axon is crucial for control of neuronal excitability. However, the molecular mechanisms responsible for regulating enrichment of KCNQ channels at the neuronal axon remain elusive. Here, we show that enrichment of KCNQ channels at the axonal surface of dissociated rat hippocampal cultured neurons is regulated by ubiquitous calcium sensor calmodulin. Using immunocytochemistry and the cluster of differentiation 4 (CD4 membrane protein as a trafficking reporter, we demonstrate that fusion of KCNQ2 carboxy-terminal tail is sufficient to target CD4 protein to the axonal surface whereas inhibition of calmodulin binding to KCNQ2 abolishes axonal surface expression of CD4 fusion proteins by retaining them in the endoplasmic reticulum. Disruption of calmodulin binding to KCNQ2 also impairs enrichment of heteromeric KCNQ2/KCNQ3 channels at the axonal surface by blocking their trafficking from the endoplasmic reticulum to the axon. Consistently, hippocampal neuronal excitability is dampened by transient expression of wild-type KCNQ2 but not mutant KCNQ2 deficient in calmodulin binding. Furthermore, coexpression of mutant calmodulin, which can interact with KCNQ2/KCNQ3 channels but not calcium, reduces but does not abolish their enrichment at the axonal surface, suggesting that apo calmodulin but not calcium-bound calmodulin is necessary for their preferential targeting to the axonal

  7. Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1 promoter and its regulation by Sp1

    Directory of Open Access Journals (Sweden)

    Botella Luisa M

    2010-06-01

    Full Text Available Abstract Background Activin receptor-like kinase 1 (ALK1 is a Transforming Growth Factor-β (TGF-β receptor type I, mainly expressed in endothelial cells that plays a pivotal role in vascular remodelling and angiogenesis. Mutations in the ALK1 gene (ACVRL1 give rise to Hereditary Haemorrhagic Telangiectasia, a dominant autosomal vascular dysplasia caused by a haploinsufficiency mechanism. In spite of its patho-physiological relevance, little is known about the transcriptional regulation of ACVRL1. Here, we have studied the different origins of ACVRL1 transcription, we have analyzed in silico its 5'-proximal promoter sequence and we have characterized the role of Sp1 in the transcriptional regulation of ACVRL1. Results We have performed a 5'Rapid Amplification of cDNA Ends (5'RACE of ACVRL1 transcripts, finding two new transcriptional origins, upstream of the one previously described, that give rise to a new exon undiscovered to date. The 5'-proximal promoter region of ACVRL1 (-1,035/+210 was analyzed in silico, finding that it lacks TATA/CAAT boxes, but contains a remarkably high number of GC-rich Sp1 consensus sites. In cells lacking Sp1, ACVRL1 promoter reporters did not present any significant transcriptional activity, whereas increasing concentrations of Sp1 triggered a dose-dependent stimulation of its transcription. Moreover, silencing Sp1 in HEK293T cells resulted in a marked decrease of ACVRL1 transcriptional activity. Chromatin immunoprecipitation assays demonstrated multiple Sp1 binding sites along the proximal promoter region of ACVRL1 in endothelial cells. Furthermore, demethylation of CpG islands, led to an increase in ACVRL1 transcription, whereas in vitro hypermethylation resulted in the abolishment of Sp1-dependent transcriptional activation of ACVRL1. Conclusions Our results describe two new transcriptional start sites in ACVRL1 gene, and indicate that Sp1 is a key regulator of ACVRL1 transcription, providing new insights into

  8. Brigatinib in Patients With Crizotinib-Refractory Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer: A Randomized, Multicenter Phase II Trial.

    Science.gov (United States)

    Kim, Dong-Wan; Tiseo, Marcello; Ahn, Myung-Ju; Reckamp, Karen L; Hansen, Karin Holmskov; Kim, Sang-We; Huber, Rudolf M; West, Howard L; Groen, Harry J M; Hochmair, Maximilian J; Leighl, Natasha B; Gettinger, Scott N; Langer, Corey J; Paz-Ares Rodríguez, Luis G; Smit, Egbert F; Kim, Edward S; Reichmann, William; Haluska, Frank G; Kerstein, David; Camidge, D Ross

    2017-08-01

    Purpose Most crizotinib-treated patients with anaplastic lymphoma kinase gene ( ALK)-rearranged non-small-cell lung cancer (ALK-positive NSCLC) eventually experience disease progression. We evaluated two regimens of brigatinib, an investigational next-generation ALK inhibitor, in crizotinib-refractory ALK-positive NSCLC. Patients and Methods Patients were stratified by brain metastases and best response to crizotinib. They were randomly assigned (1:1) to oral brigatinib 90 mg once daily (arm A) or 180 mg once daily with a 7-day lead-in at 90 mg (180 mg once daily [with lead-in]; arm B). Investigator-assessed confirmed objective response rate (ORR) was the primary end point. Results Of 222 patients enrolled (arm A: n = 112, 109 treated; arm B: n = 110, 110 treated), 154 (69%) had baseline brain metastases and 164 of 222 (74%) had received prior chemotherapy. With 8.0-month median follow-up, investigator-assessed confirmed ORR was 45% (97.5% CI, 34% to 56%) in arm A and 54% (97.5% CI, 43% to 65%) in arm B. Investigator-assessed median progression-free survival was 9.2 months (95% CI, 7.4 to 15.6) and 12.9 months (95% CI, 11.1 to not reached) in arms A and B, respectively. Independent review committee-assessed intracranial ORR in patients with measurable brain metastases at baseline was 42% (11 of 26 patients) in arm A and 67% (12 of 18 patients) in arm B. Common treatment-emergent adverse events were nausea (arm A/B, 33%/40%), diarrhea (arm A/B, 19%/38%), headache (arm A/B, 28%/27%), and cough (arm A/B, 18%/34%), and were mainly grades 1 to 2. A subset of pulmonary adverse events with early onset (median onset: day 2) occurred in 14 of 219 treated patients (all grades, 6%; grade ≥ 3, 3%); none occurred after escalation to 180 mg in arm B. Seven of 14 patients were successfully retreated with brigatinib. Conclusion Brigatinib yielded substantial whole-body and intracranial responses as well as robust progression-free survival; 180 mg (with lead-in) showed

  9. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: More evidence for oxidative stress in vitiligo

    International Nuclear Information System (INIS)

    Schallreuter, K.U.; Gibbons, N.C.J.; Zothner, C.; Abou Elloof, M.M.; Wood, J.M.

    2007-01-01

    Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10 -3 M H 2 O 2 . One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10 -3 M H 2 O 2 oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H 2 O 2 utilising 45 calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activities were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H 2 O 2 -mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo

  10. Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning.

    Science.gov (United States)

    Farley, J; Auerbach, S

    Phosphorylation of ion channels has been suggested as one molecular mechanism responsible for learning-produced long-term changes in neuronal excitability. Persistent training-produced changes in two distinct K+ currents (IA (ref. 2), IK-Ca (refs 3,4)) and a voltage-dependent calcium current (ICa; refs 3,4) have previously been shown to occur in type B photoreceptors of Hermissenda, as a result of associative learning. But the identity of the phosphorylation pathway(s) responsible for these changes has not as yet been determined. Injections of cyclic AMP-dependent protein kinase reduce a K+ current (IK) in B cells which is different from those changed by training, but fails to reduce IA and IK-Ca. Phosphorylase b kinase (an exogenous calcium/calmodulin-dependent kinase) reduces IA, but whether IK-Ca and ICa are changed in the manner of associative training is not yet known. Another protein kinase present in high concentrations in both mammalian brain and molluscan nervous systems is protein kinase C, which is both calcium- and phospholipid-sensitive. We now present evidence that activation of protein kinase C by the tumour promoter phorbol ester (PDB) and intracellular injection of the enzyme induce conductance changes similar to those caused by associative training in Hermissenda B cells (that is a reduction of IA and IK-Ca, and enhancement of ICa). These results represent the first direct demonstration that protein kinase C affects membrane K+ ion conductance mechanisms.

  11. Antioxidant, DNA interaction, VEGFR2 kinase, topoisomerase I and in vitro cytotoxic activities of heteroleptic copper(II) complexes of tetrazolo[1,5-a]pyrimidines and diimines

    Energy Technology Data Exchange (ETDEWEB)

    Haleel, A.; Mahendiran, D. [Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014 (India); Veena, V.; Sakthivel, N. [Department of Biotechnology, Pondicherry University, Pondicherry 605 014 (India); Rahiman, A. Kalilur, E-mail: akrahmanjkr@gmail.com [Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014 (India)

    2016-11-01

    A series of heteroleptic mononuclear copper(II) complexes of the type [Cu(L{sup 1–3})(diimine)]ClO{sub 4} (1–6) containing three tetrazolo[1,5-a]pyrimidine core ligands, ethyl 5-methyl-7-(2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 1}), ethyl 5-methyl-7-(4-diethylamino-2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 2}) or ethyl 5-methyl-7-(2-hydroxy-4-nitrophenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 3}), and two diimine coligands, 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized and characterized by spectral methods. The geometry of complexes have been determined with the help of electronic absorption and EPR splitting patterns, which suggest four coordinated square planar geometry around copper(II) ion. The lowering of HOMO–LUMO band gap value of complex 4 implies its higher biological activity compared to other complexes. Antioxidant studies revealed that the complexes possess considerable radical scavenging potency against DPPH. The binding studies of the complexes with calf thymus DNA (CT–DNA) revealed groove mode of binding, which was further supported by docking simulation. The complexes 3 and 4 strongly inhibit the topoisomerase I, and also strongly interact with VEGFR2 kinase receptor via π–π, σ–π and hydrogen bonding interaction. Gel electrophoresis experiments demonstrated the ability of the complexes to cleave plasmid DNA in the absence of activators. In vitro cytotoxic activities of the complexes were examined on three cancerous cell lines such as human lung (A549), cervical (HeLa) and colon (HCT-15), and two normal cells such as human embryonic kidney (HEK) and peripheral blood mononuclear cells (PBMCs). The live cell and fluorescent imaging of cancer cells were observed with acridine orange/ethidium bromide staining assay. All encouraging chemical and biological findings indicate that the complex 4 is a suitable candidate

  12. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin.

    Science.gov (United States)

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-10-03

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.

  13. DNA repair in human cells: Methods for the determination of calmodulin involvement

    International Nuclear Information System (INIS)

    Charp, P.A.

    1987-01-01

    Exposure of DNA to either physical or chemical agents can result in the formation of a number of different lesions which must be repaired enzymatically in order for DNA to carry on normal replication and transcription. In most cases, the enzymes involved in this repair of damaged DNA include endonucleases, exonucleases, glycosylases, polymerases, and ligases. Each group of enzymes is involved in precise steps in DNA repair. Exposure to physical agents such as ultraviolet light (UV) at a wavelength of 254 nm is repaired by two distinct and different mechanisms. One mode of enzymatic repair of pyrimidine dimers is accomplished in situ by photoreactivation of UV-induced pyrimidine dimers by photoreactivating light. The second mode of enzymatic repair is the excision repair of pyrimidine dimers involving several different enzymes including endonuclease, exonuclease, and DNA ligase. A summary of the sequence of enzymatic steps involved is shown. It has been observed that specific drugs which bind to and alter the action of calmodulin in cells block DNA synthesis. This suggests that calmodulin may play a role both in normal DNA replication and repair. Others using an indirect method measuring the degree of DNA nucleoid sedimentation, showed that the specific anti-calmodulin agent W-13 slowed the rate of DNA repair. Others showed that DNA synthesis in T51B rat liver cells could be blocked with the addition of either chlorpromazine or trifluoperazine

  14. Mediator kinase module and human tumorigenesis.

    Science.gov (United States)

    Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G

    2015-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.

  15. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases

    DEFF Research Database (Denmark)

    Issinger, O G; Beier, H; Speichermann, N

    1980-01-01

    Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were...... by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins...... from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates...

  16. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    Science.gov (United States)

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Thymidine kinases in archaea

    DEFF Research Database (Denmark)

    Clausen, A.R.; Matakos, A.; Sandrini, Michael

    2006-01-01

    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarcha...

  18. Engineering of a novel Ca2+-regulated kinesin molecular motor using a calmodulin dimer linker

    International Nuclear Information System (INIS)

    Shishido, Hideki; Maruta, Shinsaku

    2012-01-01

    Highlights: ► Engineered kinesin–M13 and calmodulin involving single cysteine were prepared. ► CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. ► Kinesin–M13 was dimerized via CaM dimer in the presence of calcium. ► Function of the engineered kinesin was regulated by a Ca 2+ -calmodulin dimer linker. -- Abstract: The kinesin–microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have “on–off” control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesin monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355–M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355–M13 dimerization with CaM dimers, we measured K355–M13 motility and found that it can be reversibly regulated in a Ca 2+ -dependent manner. We also found that velocities of K355–M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca 2+ -dependent dimerization of K355–M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.

  19. MIPS: a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock.

    Science.gov (United States)

    Zhang, Xuan; Zhou, Huiyue; Zang, Xiaonan; Gong, Le; Sun, Hengyi; Zhang, Xuecheng

    2014-08-01

    To study the Ca(2+)/Calmodulin (CaM) signal transduction pathway of Gracilaria lemaneiformis under heat stress, myo-inositol-1-phosphate synthase (MIPS), a calmodulin-binding protein, was isolated using the yeast two-hybrid system. cDNA and DNA sequences of mips were cloned from G. lemaneiformis by using 5'RACE and genome walking procedures. The MIPS DNA sequence was 2,067 nucleotides long, containing an open reading frame (ORF) of 1,623 nucleotides with no intron. The mips ORF was predicted to encode 540 amino acids, which included the conserved MIPS domain and was 61-67 % similar to that of other species. After analyzing the amino acid sequence of MIPS, the CaM-Binding Domain (CaMBD) was inferred to be at a site spanning from amino acid 212 to amino acid 236. The yeast two-hybrid results proved that MIPS can interact with CaM and that MIPS is a type of calmodulin-binding protein. Next, the expression of CaM and MIPS in wild-type G. lemaneiformis and a heat-tolerant G. lemaneiformis cultivar, "981," were analyzed using real-time PCR under a heat shock of 32 °C. The expression level displayed a cyclical upward trend. Compared with wild type, the CaM expression levels of cultivar 981 were higher, which might directly relate to its resistance to high temperatures. This paper indicates that MIPS and CaM may play important roles in the high-temperature resistance of G. lemaneiformis.

  20. Catalase activity is modulated by calcium and calmodulin in detached mature leaves of sweet potato.

    Science.gov (United States)

    Afiyanti, Mufidah; Chen, Hsien-Jung

    2014-01-15

    Catalase (CAT) functions as one of the key enzymes in the scavenging of reactive oxygen species and affects the H2O2 homeostasis in plants. In sweet potato, a major catalase isoform was detected, and total catalase activity showed the highest level in mature leaves (L3) compared to immature (L1) and completely yellow, senescent leaves (L5). The major catalase isoform as well as total enzymatic activity were strongly suppressed by ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). This inhibition could be specifically and significantly mitigated in mature L3 leaves by exogenous CaCl2, but not MgCl2 or CoCl2. EGTA also inhibited the activity of the catalase isoform in vitro. Furthermore, chlorpromazine (CPZ), a calmodulin (CAM) inhibitor, drastically suppressed the major catalase isoform as well as total enzymatic activity, and this suppression was alleviated by exogenous sweet potato calmodulin (SPCAM) fusion protein in L3 leaves. CPZ also inhibited the activity of the catalase isoform in vitro. Protein blot hybridization showed that both anti-catalase SPCAT1 and anti-calmodulin SPCAM antibodies detect a band at the same position, which corresponds to the activity of the major catalase isoform from unboiled, but not boiled crude protein extract of L3 leaves. An inverse correlation between the major catalase isoform/total enzymatic activity and the H2O2 level was also observed. These data suggest that sweet potato CAT activity is modulated by CaCl2 and SPCAM, and plays an important role in H2O2 homeostasis in mature leaves. Association of SPCAM with the major CAT isoform is required and regulates the in-gel CAT activity band. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    Energy Technology Data Exchange (ETDEWEB)

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  2. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  3. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein.

    Science.gov (United States)

    Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N

    2017-11-01

    Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    Science.gov (United States)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  5. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  6. The 'retro-design' concept for novel kinase inhibitors.

    Science.gov (United States)

    Müller, Gerhard; Sennhenn, Peter C; Woodcock, Timothy; Neumann, Lars

    2010-07-01

    Protein kinases are among the most attractive therapeutic targets for a broad range of diseases. This feature review highlights and classifies the main design principles employed to generate active and selective kinase inhibitors. In particular, emphasis is focused on a fragment-based lead-generation approach, which constitutes a novel design method for developing type II kinase inhibitors with distinct binding kinetic attributes. This 'retro-design' strategy relies on a customized fragment library, and contrasts the traditional approach used in the design of type II inhibitors.

  7. Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei

    Science.gov (United States)

    Li, H.; Dauwalder, M.; Roux, S. J.

    1991-01-01

    Almost all the Ca(2+)-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 x 10(-7) molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca(2+)-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca(2+)-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.

  8. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    International Nuclear Information System (INIS)

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H.; Horman, Sandrine

    2010-01-01

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca 2+ -dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  9. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Yaswen, P.; Smoll, A.; Stampfer, M.R.; Peehl, D.M.; Trask, D.K.; Sager, R.

    1990-01-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[α]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type β increased its relative abundance. The protein encoded by NB-1 may have Ca 2 plus binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined

  10. Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.

    Science.gov (United States)

    Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2018-06-04

    Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.

  11. Distinct Calcium Signaling Pathways Regulate Calmodulin Gene Expression in Tobacco1

    Science.gov (United States)

    van der Luit, Arnold H.; Olivari, Claudio; Haley, Ann; Knight, Marc R.; Trewavas, Anthony J.

    1999-01-01

    Cold shock and wind stimuli initiate Ca2+ transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca2+ pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca2+ transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca2+ signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca2+ dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca2+ signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm. PMID:10557218

  12. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    International Nuclear Information System (INIS)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L.

    2014-01-01

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R h ) and reduced thermal stability in the mutant complex. Taken together

  13. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Finley, Natosha L., E-mail: finleynl@miamioh.edu [Department of Microbiology, Miami University, Oxford, OH 45056 (United States); Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 (United States)

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  14. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  15. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members.

    Science.gov (United States)

    Heinen, R C; Diniz-Mendes, L; Silva, J T; Paschoalin, V M F

    2006-11-01

    Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  16. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members

    Directory of Open Access Journals (Sweden)

    R.C. Heinen

    2006-11-01

    Full Text Available Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  17. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region...

  18. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  19. Detection of calmodulin binding protein at 170 KDA in BALB, AKR, DON and chicken granulosa cells

    International Nuclear Information System (INIS)

    Selinfreund, R.; Lin, P.H.; Marrone, B.; Wharton, W.

    1987-01-01

    Calmodulin (CAM) has been shown to bind to the epidermal growth factor (EGF) receptor (170 kDa) and is phosphorylated in a EGF dependent manner in the A431 human epidermoid carcinoma cells. In the present study, they report 125 I-CAM binding to a 170 kDa protein detected in cell membrane vesicles of Balb/3T3, AKR, DON and chicken granulosa cells. Purified plasma membranes from these cells were resolved via electrophoresis (without heat denaturation) and electroblotted onto nictrocellulose paper. Upon hybridizing against 125 I-CAM, a distinct autoradiographic band occurred at 170 kDa for all the cells lines under study. The binding of CAM is specific and can be displaced with the addition of excess unlabeled CAM. The result suggest that 125 I-CAM may bind to the 170 kDa EGF receptor in BALB, AKR, DON and chicken granulosa cells

  20. Correction of the X-linked immunodeficiency phenotype by transgenic expression of human Bruton Tyrosine kinase under the control of the class II major histocompatibility complex Ea locus control region

    NARCIS (Netherlands)

    Drabek, D.; Raguz, S.; Wit, de T.P.M.; Dingjan, G.M.; Savelkoul, H.F.J.; Grosveld, F.; Hendriks, R.W.

    1997-01-01

    Bruton tyrosine kinase (Btk) is essential for the development of pre-B cells to mature B cell stages. Btk-deficient mice manifest an X-linked immunodeficiency (xid) defect characterized by a reduction of peripheral IgMlow IgDhigh B cells, a lack of peritoneal CD5 B cells, low serum levels of IgM and

  1. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  2. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

    2010-08-06

    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  3. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    International Nuclear Information System (INIS)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe; Ranty, Benoit

    2010-01-01

    Research highlights: → The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein → The interaction is confirmed in plant cell nuclei → The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  4. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  5. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    International Nuclear Information System (INIS)

    Boura, Evzen; Nencka, Radim

    2015-01-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine

  6. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Evzen, E-mail: boura@uochb.cas.cz; Nencka, Radim, E-mail: nencka@uochb.cas.cz

    2015-10-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine.

  7. The presence of the casein kinase II phosphorylation sites of Vpu enhances the CD4+ T cell loss caused by the simian-human immunodeficiency virus SHIVKU-lbMC33 in pig-tailed macaques

    International Nuclear Information System (INIS)

    Singh, Dinesh K.; Griffin, Darcy M.; Pacyniak, Erik; Jackson, Mollie; Werle, Michael J.; Wisdom, Bo; Sun, Francis; Hout, David R.; Pinson, David M.; Gunderson, Robert S.; Powers, Michael F.; Wong, Scott W.; Stephens, Edward B.

    2003-01-01

    reversion of the glycine residues in the vpu sequences isolated from this macaque. These results contrast with those from four macaques inoculated with the parental pathogenic SHIV KU-1bMC33 , all of which developed severe CD4 + T cell loss within 1 month after inoculation. Taken together, these results indicate that casein kinase II phosphorylation sites of Vpu contributes to the pathogenicity of the SHIV KU-1bMC33 and suggest that the SHIV KU-1bMC33 /pig-tailed macaque model will be useful in analyzing amino acids/domains of Vpu that contribute to the pathogenesis of HIV-1

  8. Pyruvate kinase blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003357.htm Pyruvate kinase blood test To use the sharing features on this page, ... energy when oxygen levels are low. How the Test is Performed A blood sample is needed. In the laboratory, white blood ...

  9. An unusual protein kinase phosphorylates the chemotactic receptor of Dictystelium discoideum

    International Nuclear Information System (INIS)

    Meier, K.; Klein, C.

    1988-01-01

    The authors report the cAMP-dependent phosphorylation of the chemotactic receptor of Dictyostelium discoideum in partially purified plasma membranes. The protein kinase responsible for receptor phosphorylation is associated with this fraction and preferentially phosphorylates the ligand-occupied form of the receptor. 8-Azido[ 32 P]cAMP labeling of the cell surface has shown that the cAMP receptor exists in two forms. A 45-kDa protein is predominant on unstimulated cells. cAMP stimulation results in an increased receptor phosphorylation such that the receptor migrates on NaDodSO 4 /PAGE as a 47-kDa protein. Phosphorylation of the chemotactic receptor is not detected in membrane preparations unless cAMP is added to the incubation mixture. Only under those conditions is the phosphorylated 47-kDa form observed. The requirement for cAMP reflects the fact that the kinase involved preferentially uses the ligand-occupied receptor as a substrate. In vitro phosphorylation of the receptor does not involve tyrosine residues. The enzyme does not appear to be a cAMP- or cGMP-dependent protein kinase nor is it sensitive to guanine nucleotides, Ca 2+ /calmodulin, Ca 2+ /phospholipid, or EGTA. Similarities with the β-adrenergic receptor protein kinase are discussed

  10. Analysis of Kinase Gene Expression in the Frontal Cortex of Suicide Victims: Implications of Fear and Stress

    Directory of Open Access Journals (Sweden)

    Kwang eChoi

    2011-07-01

    Full Text Available Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database (www.stanleygenomics.org and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK, the cyclin-dependent kinase (CDK, the mitogen-activated protein kinase (MAPK, and the protein kinase C (PKC in the prefrontal cortex (PFC of mood disorder patients died with suicide (n=45 and without suicide (N=38. We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (n=46. The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (FDR-adjusted p < 0.05, fold change > 1.1. Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05. These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress-associated neural plasticity and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide.

  11. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner.

    Science.gov (United States)

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

  12. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    Science.gov (United States)

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  13. Purification and characterization of a thylakoid protein kinase

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1986-01-01

    Control of state transitions in the thylakoid by reversible phosphorylation of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHC-II) is modulated by a kinase. The kinase catalyzing this phosphorylation is associated with the thylakoid membrane, and is regulated by the redox state of the plastoquinone pool. The isolation and partial purification from spinach thylakoids of two protein kinases (CPK1, CPK2) of apparent molecular masses 25 kDa and 38 kDa has been reported. Neither enzyme utilizes isolated LHC-II as a substrate. The partial purification of a third protein kinase (LHCK) which can utilize both lysine-rich histones (IIIs and Vs) and isolated LHC-II as substrate has now been purified to homogeneity and characterized by SDS-polyacrylamide gel electrophoresis as a 64 kDa peptide. From a comparison of the two isolation procedures we have concluded that CPK1 is indeed a protein kinase, but has a lower specific activity than that of LHCK. 8 refs., 4 figs

  14. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    Science.gov (United States)

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  15. Enterococcus faecalis phosphomevalonate kinase

    Science.gov (United States)

    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.

    2005-01-01

    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646

  16. The Arg233Lys AQP0 mutation disturbs aquaporin0-calmodulin interaction causing polymorphic congenital cataract.

    Directory of Open Access Journals (Sweden)

    Shanshan Hu

    Full Text Available Calmodulin (CaM directly interacts with the aquaporin 0 (AQP0 C-terminus in a calcium dependent manner to regulate the water permeability of AQP0. We previously identified a missense mutation (p.R233K in the putative CaM binding domain of AQP0 C-terminus in a congenital cataract family. This study was aimed at exploring the potential pathogenesis of this mutation causative of cataract and mainly identifying how it influenced the binding of AQP0 to CaM. Wild type and R233K mutant AQP0 with EGFP-tag were transfected separately into Hela cells to determine the expression and subcellular localizations. The co-immunoprecipitation (CoIP assay was used to detect the interaction between AQP0 and CaM. AQP0 C-terminus peptides were synthesized with and without R233K, and the binding abilities of these peptides to CaM were assessed using a fluorescence binding assay. Localizations of wild type and R233K mutant AQP0 were determined from EGFP fluorescence, and the chimeric proteins were both localized abundantly in the plasma membrane. Protein expression levels of the culture cells showed no significant difference between them. The results from CoIP assay implied that R233K mutant presented more weakly in association with CaM than wild type AQP0. The AQP0 C-terminal mutant peptide was found to have 2.5-fold lower binding affinity to CaM than wild type peptide. These results suggested that R233K mutation did not affect the expression, location and trafficking of the protein but did influence the interaction between AQP0 and CaM. The binding affinity of AQP0 C-terminus to CaM was significantly reduced. Due to lack of the modulation of the Ca2+-calmodulin complex, the water permeability of AQP0 was subsequently augmented, which might lead to the development of this cataract.

  17. From Phosphosites to Kinases

    DEFF Research Database (Denmark)

    Munk, Stephanie; Refsgaard, Jan C; Olsen, Jesper V

    2016-01-01

    Kinases play a pivotal role in propagating the phosphorylation-mediated signaling networks in living cells. With the overwhelming quantities of phosphoproteomics data being generated, the number of identified phosphorylation sites (phosphosites) is ever increasing. Often, proteomics investigations...... sequence motifs, mostly based on large scale in vivo and in vitro experiments. The context of the kinase and the phosphorylated proteins in a biological system is equally important for predicting association between the enzymes and substrates, an aspect that is also being tackled with available...

  18. A phase I/II trial of AT9283, a selective inhibitor of aurora kinase in children with relapsed or refractory acute leukemia: challenges to run early phase clinical trials for children with leukemia.

    Science.gov (United States)

    Vormoor, B; Veal, G J; Griffin, M J; Boddy, A V; Irving, J; Minto, L; Case, M; Banerji, U; Swales, K E; Tall, J R; Moore, A S; Toguchi, M; Acton, G; Dyer, K; Schwab, C; Harrison, C J; Grainger, J D; Lancaster, D; Kearns, P; Hargrave, D; Vormoor, J

    2017-06-01

    Aurora kinases regulate mitosis and are commonly overexpressed in leukemia. This phase I/IIa study of AT9283, a multikinase inhibitor, was designed to identify maximal tolerated doses, safety, pharmacokinetics, and pharmacodynamic activity in children with relapsed/refractory acute leukemia. The trial suffered from poor recruitment and terminated early, therefore failing to identify its primary endpoints. AT9283 caused tolerable toxicity, but failed to show clinical responses. Future trials should be based on robust preclinical data that provide an indication of which patients may benefit from the experimental agent, and recruitment should be improved through international collaborations and early combination with established treatment strategies. © 2016 Wiley Periodicals, Inc.

  19. Three synonymous genes encode calmodulin in a reptile, the Japanese tortoise, Clemmys japonica

    Directory of Open Access Journals (Sweden)

    Kouji Shimoda

    2002-01-01

    Full Text Available Three distinct calmodulin (CaM-encoding cDNAs were isolated from a reptile, the Japanese tortoise (Clemmys japonica, based on degenerative primer PCR. Because of synonymous codon usages, the deduced amino acid (aa sequences were exactly the same in all three genes and identical to the aa sequence of vertebrate CaM. The three cDNAs, referred to as CaM-A, -B, and -C, seemed to belong to the same type as CaMI, CaMII, and CaMIII, respectively, based on their sequence identity with those of the mammalian cDNAs and the glutamate codon biases. Northern blot analysis detected CaM-A and -B as bands corresponding to 1.8 kb, with the most abundant levels in the brain and testis, while CaM-C was detected most abundantly in the brain as bands of 1.4 and 2.0 kb. Our results indicate that, in the tortoise, CaM protein is encoded by at least three non-allelic genes, and that the ‘multigene-one protein' principle of CaM synthesis is applicable to all classes of vertebrates, from fishes to mammals.

  20. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  1. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding.

    Science.gov (United States)

    Bonache, M Angeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario

    2014-11-28

    The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenient functionalization of PEG arms with azide and alkyne groups. The resulting conjugates, with a certain helical character in TFE solutions (CD), showed nanomolar affinity in a fluorescence CaM binding in vitro assay, higher than just the sum of the precursor PEG-peptide affinities, thus validating our design. The approach to these first described examples of Kv7.2 CaMBD-mimetics could pave the way to chimeric conjugates merging helices A and B from different Kv7 subunits.

  2. Inhibitory effect of organotin compounds on rat neuronal nitric oxide synthase through interaction with calmodulin

    International Nuclear Information System (INIS)

    Ohashi, Koji; Kominami, Shiro; Yamazaki, Takeshi; Ohta, Shigeru; Kitamura, Shigeyuki

    2004-01-01

    Organotin compounds, triphenyltin (TPT), tributyltin, dibutyltin, and monobutyltin (MBT), showed potent inhibitory effects on both L-arginine oxidation to nitric oxide and L-citrulline, and cytochrome c reduction catalyzed by recombinant rat neuronal nitric oxide synthase (nNOS). The two inhibitory effects were almost parallel. MBT and TPT showed the highest inhibitory effects, followed by tributyltin and dibutyltin; TPT and MBT showed inhibition constant (IC 50 ) values of around 10 μM. Cytochrome c reduction activity was markedly decreased by removal of calmodulin (CaM) from the complete mixture, and the decrease was similar to the extent of inhibition by TPT and MBT. The inhibitory effect of MBT on the cytochrome c reducing activity was rapidly attenuated upon dilution of the inhibitor, and addition of a high concentration of CaM reactivated the cytochrome c reduction activity inhibited by MBT. However, other cofactors such as FAD, FMN or tetrahydrobiopterin had no such ability. The inhibitory effect of organotin compounds (100 μM) on L-arginine oxidation of nNOS almost vanished when the amount of CaM was sufficiently increased (150-300 μM). It was confirmed by CaM-agarose column chromatography that the dissociation of nNOS-CaM complex was induced by organotin compounds. These results indicate that organotin compounds disturb the interaction between CaM and nNOS, thereby inhibiting electron transfer from the reductase domain to cytochrome c and the oxygenase domain

  3. Beauvericin synthetase contains a calmodulin binding motif in the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Kim, Jiyoung; Sung, Gi-Ho

    2018-03-19

    Beauvericin is a mycotoxin which has insecticidal, anti-microbial, anti-viral and anti-cancer activities. Beauvericin biosynthesis is rapidly catalyzed by the beauvericin synthetase (BEAS) in Beauveria bassiana. Ca 2+ plays crucial roles in multiple signaling pathways in eukaryotic cells. These Ca 2+ signals are partially decoded by Ca 2+ sensor calmodulin (CaM). In this report, we describe that B. bassiana BEAS (BbBEAS) can interact with CaM in a Ca 2+ -dependent manner. A synthetic BbBEAS peptide, corresponding to the putative CaM-binding motif, formed a stable complex with CaM in the presence of Ca 2+ . In addition, in vitro CaM-binding assay revealed that the His-tagged BbBEAS (amino acids 2421-2538) binds to CaM in a Ca 2+ -dependent manner. Therefore, this work suggests that BbBEAS is a novel CaM-binding protein in B. bassiana.

  4. Suppression of a methionine synthase by calmodulin under environmental stress in the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Kim, Jiyoung; Oh, Junsang; Yoon, Deok-Hyo; Sung, Gi-Ho

    2017-10-01

    Methionine synthase (MetE, EC 2.1.1.14) catalyses the final step in the methionine biosynthetic pathway. Methionine biosynthesis plays a major role in protein biogenesis and is the source of S-adenosyl methionine (SAM), the universal donor of methyl groups. In this study, we demonstrated that BbMetE acts as a typical MetE enzyme in the entomopathogenic fungus Beauveria bassiana. In addition, we found that BbMetE binds to calmodulin (CaM) in vitro and in vivo. The functional role of CaM binding to BbMetE was to negatively regulate BbMetE activity in B. bassiana. Our proton-nuclear magnetic resonance data revealed that CaM inhibitor W-7 increases methionine content in B. bassiana, suggesting that CaM negatively regulates the BbMetE activity. Environmental stress stimuli such as salt, H 2 O 2 and heat suppressed BbMetE activity in B. bassiana. W-7 reversed this effect, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbMetE plays an important role in methionine biosynthesis, which is mediated by environmental stress stimuli via the CaM signalling pathway. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma

    International Nuclear Information System (INIS)

    Makinoshima, Hideki; Ishii, Genichiro; Kojima, Motohiro; Fujii, Satoshi; Higuchi, Youichi; Kuwata, Takeshi; Ochiai, Atsushi

    2012-01-01

    Small-cell lung carcinoma (SCLC) is a neuroendocrine tumor subtype and comprises approximately 15% of lung cancers. Because SCLC is still a disease with a poor prognosis and limited treatment options, there is an urgent need to develop targeted molecular agents for this disease. We screened 20 cell lines from a variety of pathological phenotypes established from different organs by RT-PCR. Paraffin-embedded tissue from 252 primary tumors was examined for PTPRZ1 expression using immunohistochemistry. shRNA mediated PTPRZ1 down-regulation was used to study impact on tyrosine phosphorylation and in vivo tumor progression in SCLC cell lines. Here we show that PTPRZ1, a member of the protein tyrosine- phosphatase receptor (PTPR) family, is highly expressed in SCLC cell lines and specifically exists in human neuroendocrine tumor (NET) tissues. We also demonstrate that binding of the ligand of PTPRZ1, pleiotrophin (PTN), activates the PTN/PTPRZ1 signaling pathway to induce tyrosine phosphorylation of calmodulin (CaM) in SCLC cells, suggesting that PTPRZ1 is a regulator of tyrosine phosphorylation in SCLC cells. Furthermore, we found that PTPRZ1 actually has an important oncogenic role in tumor progression in the murine xenograft model. PTPRZ1 was highly expressed in human NET tissues and PTPRZ1 is an oncogenic tyrosine phosphatase in SCLCs. These results imply that a new signaling pathway involving PTPRZ1 could be a feasible target for treatment of NETs

  6. Size-dependent impact of CNTs on dynamic properties of calmodulin.

    Science.gov (United States)

    Gao, Jian; Wang, Liming; Kang, Seung-gu; Zhao, Lina; Ji, Mingjuan; Chen, Chunying; Zhao, Yuliang; Zhou, Ruhong; Li, Jingyuan

    2014-11-07

    There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca(2+)-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca(2+)-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca(2+)-free CaM, wider CNTs still bind firmly to CaM, indicating a potential failure of Ca(2+) regulation. Such a size-dependent impact of CNTs on the dynamic properties of CaM is a result of the excessively strong hydrophobic interactions between the wider CNTs and CaM. These simulation results were confirmed by circular dichroism spectroscopy, which showed that the secondary structures of CaM become insensitive to Ca(2+) concentrations after the addition of CNTs. Our findings indicate that the cytotoxicity of nanoparticles to proteins arises not only from the inhibition of static protein structures (binding pockets), but also from impacts on their dynamic properties.

  7. Cloning and analysis of calmodulin gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta)

    Science.gov (United States)

    Wang, Mengqiang; Mao, Yunxiang; Zhuang, Yunyun; Kong, Fanna; Sui, Zhenghong

    2009-09-01

    In order to understand the mechanisms of signal transduction and anti-desiccation mechanisms of Porphyra yezoensis, cDNA and its genomic sequence of Calmodulin gene (CaM) was cloned by the technique of polymerase chain reaction (PCR) based on the analysis of P. yezoensis ESTs from dbEST database. The result shows that the full-length cDNA of CaM consists of 603 bps including an ORF encoding for 151 amino acids and a terminate codon UGA, while the length of genomic sequence is 1231 bps including 2 exons and 1 intron. The average GC content of the coding region is 58.77%, while the GC content of the third position of this gene is as high as 82.23%. Four Ca2+ binding sites (EF-hand) are found in this gene. The predicted molecular mass of the deduced peptide is 16688.72 Da and the pI is 4.222. By aligning with known CaM genes, the similarity of CaM gene sequence with homologous genes in Chlamydomonas incerta and Chlamydomonas reinhardtii is 72.7% and 72.2% respectively, and the similarity of the deduced amino acid sequence of CaM gene with homologous genes in C. incerta and C. reinhardtii are both 71.5%. This is the first report on CaM from a species of Rhodophyta.

  8. Molecular cloning and expression of the calmodulin gene from guinea pig hearts.

    Science.gov (United States)

    Feng, Rui; Liu, Yan; Sun, Xuefei; Wang, Yan; Hu, Huiyuan; Guo, Feng; Zhao, Jinsheng; Hao, Liying

    2015-06-01

    The aim of the present study was to isolate and characterize a complementary DNA (cDNA) clone encoding the calmodulin (CaM; GenBank accession no. FJ012165) gene from guinea pig hearts. The CaM gene was amplified from cDNA collected from guinea pig hearts and inserted into a pGEM®-T Easy vector. Subsequently, CaM nucleotide and protein sequence similarity analysis was conducted between guinea pigs and other species. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to investigate the CaM 3 expression patterns in different guinea pig tissues. Sequence analysis revealed that the CaM gene isolated from the guinea pig heart had ∼90% sequence identity with the CaM 3 genes in humans, mice and rats. Furthermore, the deduced peptide sequences of CaM 3 in the guinea pig showed 100% homology to the CaM proteins from other species. In addition, the RT-PCR results indicated that CaM 3 was widely and differentially expressed in guinea pigs. In conclusion, the current study provided valuable information with regard to the cloning and expression of CaM 3 in guinea pig hearts. These findings may be helpful for understanding the function of CaM3 and the possible role of CaM3 in cardiovascular diseases.

  9. Characterization and expression of calmodulin gene during larval settlement and metamorphosis of the polychaete Hydroides elegans

    KAUST Repository

    Chen, Zhangfan

    2012-08-01

    The polychaete . Hydroides elegans (Serpulidae, Lophotrochozoa) is a problematic marine fouling organism in most tropical and subtropical coastal environment. Competent larvae of . H. elegans undergo the transition from the swimming larval stage to the sessile juvenile stage with substantial morphological, physiological, and behavior changes. This transition is often referred to as larval settlement and metamorphosis. In this study, we examined the possible involvement of calmodulin (CaM) - a multifunctional calcium metabolism regulator, in the larval settlement and metamorphosis of . H. elegans. A full-length . CaM cDNA was successfully cloned from . H. elegans (. He-CaM) and it contained an open reading frame of 450. bp, encoding 149 amino acid residues. It was highly expressed in 12. h post-metamorphic juveniles, and remained high in adults. . In situ hybridization conducted in competent larvae and juveniles revealed that . He-CaM gene was continuously expressed in the putative growth zones, branchial rudiments, and collar region, suggesting that . He-CaM might be involved in tissue differentiation and development. Our subsequent bioassay revealed that the CaM inhibitor W7 could effectively inhibit larval settlement and metamorphosis, and cause some morphological defects of unsettled larvae. In conclusion, our results revealed that CaM has important functions in the larval settlement and metamorphosis of . H. elegans. © 2012 Elsevier Inc..

  10. Structural and thermodynamic studies of the tobacco calmodulin-like rgs-CaM protein.

    Science.gov (United States)

    Makiyama, Rodrigo K; Fernandes, Carlos A H; Dreyer, Thiago R; Moda, Bruno S; Matioli, Fabio F; Fontes, Marcos R M; Maia, Ivan G

    2016-11-01

    The tobacco calmodulin-like protein rgs-CaM is involved in host defense against virus and is reported to possess an associated RNA silencing suppressor activity. Rgs-CaM is also believed to act as an antiviral factor by interacting and targeting viral silencing suppressors for autophagic degradation. Despite these functional data, calcium interplay in the modulation of rgs-CaM is still poorly understood. Here we show that rgs-CaM displays a prevalent alpha-helical conformation and possesses three functional Ca 2+ -binding sites. Using computational modeling and molecular dynamics simulation, we demonstrate that Ca 2+ binding to rgs-CaM triggers expansion of its tertiary structure with reorientation of alpha-helices within the EF-hands. This conformational change leads to the exposure of a large negatively charged region that may be implicated in the electrostatic interactions between rgs-CaM and viral suppressors. Moreover, the k d values obtained for Ca 2+ binding to the three functional sites are not within the affinity range of a typical Ca 2+ sensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Calmodulin overexpression does not alter Cav1.2 function or oligomerization state.

    Science.gov (United States)

    Findeisen, Felix; Tolia, Alexandra; Arant, Ryan; Kim, Eun Young; Isacoff, Ehud; Minor, Daniel L

    2011-01-01

    Interactions between calmodulin (CaM) and voltage-gated calcium channels (Ca(v)s) are crucial for Ca(v) activity-dependent feedback modulation. We recently reported an X-ray structure that shows two Ca(2+)/CaM molecules bound to the Ca(v)1.2 C terminal tail, one at the PreIQ region and one at the IQ domain. Surprisingly, the asymmetric unit of the crystal showed a dimer in which Ca(2+)/CaM bridged two PreIQ helixes to form a 4:2 Ca(2+)/CaM:Ca(v) C-terminal tail assembly. Contrary to previous proposals based on a similar crystallographic dimer, extensive biochemical analysis together with subunit counting experiments of full-length channels in live cell membranes failed to find evidence for multimers that would be compatible with the 4:2 crossbridged complex. Here, we examine this possibility further. We find that CaM over-expression has no functional effect on Ca(v)1.2 inactivation or on the stoichiometry of full-length Ca(v)1.2. These data provide further support for the monomeric Ca(v)1.2 stoichiometry. Analysis of the electrostatic surfaces of the 2:1 Ca(2+)/CaM:Ca(V) C-terminal tail assembly reveals notable patches of electronegativity. These could influence various forms of channel modulation by interacting with positively charged elements from other intracellular channel domains.

  12. Lysophosphatidylcholine-induced taurine release in HeLa cells involves protein kinase activity

    DEFF Research Database (Denmark)

    Lambert, Ian H.; Falktoft, Birgitte

    2001-01-01

    Calmodulin; CaMKII; Ehrlich ascites tumor cells; Ischemia; Lysophospholipids; NIH/3T3; Chelerythrine; Reactive oxygen species......Calmodulin; CaMKII; Ehrlich ascites tumor cells; Ischemia; Lysophospholipids; NIH/3T3; Chelerythrine; Reactive oxygen species...

  13. Src protein-tyrosine kinase structure and regulation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2004-01-01

    Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPα displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the αD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu 4 Tyr)

  14. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  15. Intrinsically disordered caldesmon binds calmodulin via the “buttons on a string” mechanism

    Directory of Open Access Journals (Sweden)

    Sergei E. Permyakov

    2015-09-01

    Full Text Available We show here that chicken gizzard caldesmon (CaD and its C-terminal domain (residues 636–771, CaD136 are intrinsically disordered proteins. The computational and experimental analyses of the wild type CaD136 and series of its single tryptophan mutants (W674A, W707A, and W737A and a double tryptophan mutant (W674A/W707A suggested that although the interaction of CaD136 with calmodulin (CaM can be driven by the non-specific electrostatic attraction between these oppositely charged molecules, the specificity of CaD136-CaM binding is likely to be determined by the specific packing of important CaD136 tryptophan residues at the CaD136-CaM interface. It is suggested that this interaction can be described as the “buttons on a charged string” model, where the electrostatic attraction between the intrinsically disordered CaD136 and the CaM is solidified in a “snapping buttons” manner by specific packing of the CaD136 “pliable buttons” (which are the short segments of fluctuating local structure condensed around the tryptophan residues at the CaD136-CaM interface. Our data also show that all three “buttons” are important for binding, since mutation of any of the tryptophans affects CaD136-CaM binding and since CaD136 remains CaM-buttoned even when two of the three tryptophans are mutated to alanines.

  16. Characterization of Novel Calmodulin Binding Domains within IQ Motifs of IQGAP1

    Science.gov (United States)

    Jang, Deok-Jin; Ban, Byungkwan; Lee, Jin-A

    2011-01-01

    IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7-3) and IQ(3.5-4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7-3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5-4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7-3) was the main apoCaM binding domain and both IQ(2.7-3) and IQ(3.5-4.4) were required for Ca2+/CaM binding within IQ(1- 2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner. PMID:22080369

  17. 1H-NMR studies on the interaction of calmodulin with melittin

    International Nuclear Information System (INIS)

    Seeholzer, S.H.; Cohn, M.; Wand, A.J.

    1986-01-01

    Melittin (Mel), a basic amphipathic peptide from bee venom binds to Ca ++ -calmodulin (CaM) with high affinity and competitively inhibits the activation of enzymes by CaM. The CaM:Mel complex is being studied as a model system for understanding the nature of CaM's interaction with other tight binding peptides and target enzymes. The authors report here some preliminary results. Gel filtration experiments have shown that CaM binds 2 Mels with high affinity at pH 6.5 in the absence of salt yet it binds only 1 Mel in the presence of 0.15 M KC1. Hence, electrostatic forces may dominate the binding of the second Mel. The titration of CaM with from 0 to 2 Mels/CaM was followed by 1 H-NMR spectroscopy. The major changes in chemical shift of CaM resonances occur upon binding of the first Mel. Relatively fewer and smaller effects attend binding of the second Mel. Titration of CaM with from 0 through 1 Mel/CaM shifts the relative proportion of the His107-H2 resonance from 8.07 to 7.92 ppm. These two resonances are in slow exchange, the titration is complete at 1 Mel/CaM, and pH titrations are planned to see if these data are consistent with a Mel-induced pK shift of 0.5 pH units. The trimethyllysine resonance is shifted from 3.104 to 3.092 ppm by Mel. The relative proportion of these slowly exchanging peaks continuously changes during the titration from 0 to 2 Mels/CaM, being about 50% of each at 1 Mel/CaM. Data regarding the assignment and structure of Mel in various model solvent systems will also be reported

  18. Designing molecular dynamics simulations to shift populations of the conformational states of calmodulin.

    Directory of Open Access Journals (Sweden)

    Ayse Ozlem Aykut

    Full Text Available We elucidate the mechanisms that lead to population shifts in the conformational states of calcium-loaded calmodulin (Ca(2+-CaM. We design extensive molecular dynamics simulations to classify the effects that are responsible for adopting occupied conformations available in the ensemble of NMR structures. Electrostatic interactions amongst the different regions of the protein and with its vicinal water are herein mediated by lowering the ionic strength or the pH. Amino acid E31, which is one of the few charged residues whose ionization state is highly sensitive to pH differences in the physiological range, proves to be distinctive in its control of population shifts. E31A mutation at low ionic strength results in a distinct change from an extended to a compact Ca(2+-CaM conformation within tens of nanoseconds, that otherwise occur on the time scales of microseconds. The kinked linker found in this particular compact form is observed in many of the target-bound forms of Ca(2+-CaM, increasing the binding affinity. This mutation is unique in controlling C-lobe dynamics by affecting the fluctuations between the EF-hand motif helices. We also monitor the effect of the ionic strength on the conformational multiplicity of Ca(2+-CaM. By lowering the ionic strength, the tendency of nonspecific anions in water to accumulate near the protein surface increases, especially in the vicinity of the linker. The change in the distribution of ions in the vicinal layer of water allows N- and C- lobes to span a wide variety of relative orientations that are otherwise not observed at physiological ionic strength. E31 protonation restores the conformations associated with physiological environmental conditions even at low ionic strength.

  19. /sup 1/H-NMR studies on the interaction of calmodulin with melittin

    Energy Technology Data Exchange (ETDEWEB)

    Seeholzer, S.H.; Cohn, M.; Wand, A.J.

    1986-05-01

    Melittin (Mel), a basic amphipathic peptide from bee venom binds to Ca/sup + +/-calmodulin (CaM) with high affinity and competitively inhibits the activation of enzymes by CaM. The CaM:Mel complex is being studied as a model system for understanding the nature of CaM's interaction with other tight binding peptides and target enzymes. The authors report here some preliminary results. Gel filtration experiments have shown that CaM binds 2 Mels with high affinity at pH 6.5 in the absence of salt yet it binds only 1 Mel in the presence of 0.15 M KC1. Hence, electrostatic forces may dominate the binding of the second Mel. The titration of CaM with from 0 to 2 Mels/CaM was followed by /sup 1/H-NMR spectroscopy. The major changes in chemical shift of CaM resonances occur upon binding of the first Mel. Relatively fewer and smaller effects attend binding of the second Mel. Titration of CaM with from 0 through 1 Mel/CaM shifts the relative proportion of the His107-H2 resonance from 8.07 to 7.92 ppm. These two resonances are in slow exchange, the titration is complete at 1 Mel/CaM, and pH titrations are planned to see if these data are consistent with a Mel-induced pK shift of 0.5 pH units. The trimethyllysine resonance is shifted from 3.104 to 3.092 ppm by Mel. The relative proportion of these slowly exchanging peaks continuously changes during the titration from 0 to 2 Mels/CaM, being about 50% of each at 1 Mel/CaM. Data regarding the assignment and structure of Mel in various model solvent systems will also be reported.

  20. Dissociation of Calmodulin-Target Peptide Complexes by the Lipid Mediator Sphingosylphosphorylcholine

    Science.gov (United States)

    Kovacs, Erika; Tóth, Judit; Vértessy, Beáta G.; Liliom, Károly

    2010-01-01

    Previously we have identified the lipid mediator sphingosylphosphorylcholine (SPC) as the first potentially endogenous inhibitor of the ubiquitous Ca2+ sensor calmodulin (CaM) (Kovacs, E., and Liliom, K. (2008) Biochem. J. 410, 427–437). Here we give mechanistic insight into CaM inhibition by SPC, based on fluorescence stopped-flow studies with the model CaM-binding domain melittin. We demonstrate that both the peptide and SPC micelles bind to CaM in a rapid and reversible manner with comparable affinities. Furthermore, we present kinetic evidence that both species compete for the same target site on CaM, and thus SPC can be considered as a competitive inhibitor of CaM-target peptide interactions. We also show that SPC disrupts the complex of CaM and the CaM-binding domain of ryanodine receptor type 1, inositol 1,4,5-trisphosphate receptor type 1, and the plasma membrane Ca2+ pump. By interfering with these interactions, thus inhibiting the negative feedback that CaM has on Ca2+ signaling, we hypothesize that SPC could lead to Ca2+ mobilization in vivo. Hence, we suggest that the action of the sphingolipid on CaM might explain the previously recognized phenomenon that SPC liberates Ca2+ from intracellular stores. Moreover, we demonstrate that unlike traditional synthetic CaM inhibitors, SPC disrupts the complex between not only the Ca2+-saturated but also the apo form of the protein and the target peptide, suggesting a completely novel regulation for target proteins that constitutively bind CaM, such as ryanodine receptors. PMID:19910470

  1. Effects of EGTA and antioxidants on the interaction of phenothiazine free radicals with calmodulin

    International Nuclear Information System (INIS)

    Prozialeck, W.C.

    1986-01-01

    Upon irradiation with UV light or treatment with horseradish peroxidase (HRP), phenothiazines generate free radicals that bind irreversibly to calmodulin (CaM). The purpose of the present studies was to examine the effects of the Ca 2+ -chelator EGTA and various antioxidants on the binding of these phenothiazine radicals to CaM. Solutions containing 2 μM CaM, 10 μM 3 H-chlorpromazine, 10 μM CaCl 2 , and either EGTA or the antioxidants (2mM), were irradiated with UV light or treated with HRP-H 2 O 2 . Samples were dialyzed to remove free chlorpromazine and counted for radioactivity. The antioxidants (ascorbic acid, dithiothreitol and glutathione) inhibited the HRP-induced irreversible binding by 95-100% but had little effect on the UV-induced binding. EGTA inhibited the HRP-induced binding by 100% but reduced the UV-induced binding by only 70%. The inhibition of the UV-induced binding by EGTA could be prevented by incubating the samples in the presence of excess Ca 2+ . By contrast, Ca 2+ did not prevent the inhibition of the HRP-induced binding by EGTA. These findings indicate that EGTA and antioxidants inhibit the HRP-induced irreversible binding of chlorpromazine to CaM by interacting with the chlorpromazine free radical and not by modifying CaM or chelating Ca 2+ . The fact that the UV-induced binding is resistant to inhibition by the antioxidants suggests that chlorpromazine binds to the Ca 2+ -CaM complex before photoactivation causes the formation of the free radical

  2. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner

    Czech Academy of Sciences Publication Activity Database

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Roč. 7, č. 1 (2012), e30529 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA204/07/1592; GA ČR(CZ) GD204/09/H084; GA ČR GAP305/11/2232; GA MŠk LC545; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 ; RVO:61388971 Keywords : NM1 * nuclear import * NLS * calmodulin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  4. The transient receptor potential, TRP4, cation channel is a novel member of the family of calmodulin binding proteins.

    OpenAIRE

    Trost, C; Bergs, C; Himmerkus, N; Flockerzi, V

    2001-01-01

    The mammalian gene products, transient receptor potential (trp)1 to trp7, are related to the Drosophila TRP and TRP-like ion channels, and are candidate proteins underlying agonist-activated Ca(2+)-permeable ion channels. Recently, the TRP4 protein has been shown to be part of native store-operated Ca(2+)-permeable channels. These channels, most likely, are composed of other proteins in addition to TRP4. In the present paper we report the direct interaction of TRP4 and calmodulin (CaM) by: (1...

  5. Regulation of Autophagy by Kinases

    International Nuclear Information System (INIS)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  6. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  7. Regulation of Autophagy by Kinases

    Science.gov (United States)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets. PMID:24212825

  8. Regulation of Autophagy by Kinases

    Directory of Open Access Journals (Sweden)

    Savitha Sridharan

    2011-06-01

    Full Text Available Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  9. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor.

    Science.gov (United States)

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A 2A receptor (A 2A R), has an exceptionally long intracellular C terminus (A 2A R-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A 2A R and the role of Ca 2+ in this process. First, we studied the A 2A R-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A 2A R-ct through its distal calmodulin-like domain in a Ca 2+ -independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A 2A R-calmodulin/Ca 2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A 2A R-ct in a Ca 2+ -dependent fashion, disrupting the A 2A R-α-actinin 1 complex. Finally, we assessed the impact of Ca 2+ on A 2A R internalization in living cells, a function operated by the A 2A R-α-actinin 1 complex. Interestingly, while Ca 2+ influx did not affect constitutive A 2A R endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A 2A R/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A 2A R with calmodulin and α-actinin 1 is fine-tuned by Ca 2+ , a fact that might power agonist-mediated receptor internalization and function. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  11. Kinase inhibitors: a new class of antirheumatic drugs

    Directory of Open Access Journals (Sweden)

    Kyttaris VC

    2012-09-01

    Full Text Available Vasileios C KyttarisDivision of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USAAbstract: The outlook for patients with rheumatoid arthritis has improved significantly over the last three decades with the use of disease-modifying antirheumatic drugs. However, despite the use of methotrexate, cytokine inhibitors, and molecules targeting T and B cells, a percentage of patients do not respond or lose their response over time. The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. In the past decade, small molecules targeting several kinases, such as p38 MAPK, Syk, and JAK have been developed. Several p38 MAPK inhibitors proved ineffective in treating rheumatoid arthritis. The Syk inhibitor, fostamatinib, proved superior to placebo in Phase II trials and is currently under Phase III investigation. Tofacitinib, a JAK1/3 inhibitor, was shown to be efficacious in two Phase III trials, while VX-509, a JAK3 inhibitor, showed promising results in a Phase II trial. Fostamatinib and tofacitinib were associated with increased rates of infection, elevation of liver enzymes, and neutropenia. Moreover, fostamatinib caused elevations of blood pressure and diarrhea, while tofacitinib was associated with an increase in creatinine and elevation of lipid levels.Keywords: rheumatoid arthritis, kinase inhibitors, mitogen-activated phosphokinase p38, spleen tyrosine kinase, Janus kinases

  12. Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment.

    Science.gov (United States)

    Filomeni, Giuseppe; Cardaci, Simone; Da Costa Ferreira, Ana Maria; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2011-08-01

    We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N']copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment. © The Authors Journal compilation © 2011 Biochemical Society

  13. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates.

    Science.gov (United States)

    Augustyniak, Rafal; Kay, Lewis E

    2018-05-22

    Protein remodeling by AAA+ enzymes is central for maintaining proteostasis in a living cell. However, a detailed structural description of how this is accomplished at the level of the substrate molecules that are acted upon is lacking. Here, we combine chemical cross-linking and methyl transverse relaxation-optimized NMR spectroscopy to study, at atomic resolution, the stepwise unfolding and subsequent refolding of the two-domain substrate calmodulin by the VAT AAA+ unfoldase from Thermoplasma acidophilum By engineering intermolecular disulphide bridges between the substrate and VAT we trap the substrate at different stages of translocation, allowing structural studies throughout the translocation process. Our results show that VAT initiates substrate translocation by pulling on intrinsically unstructured N or C termini of substrate molecules without showing specificity for a particular amino acid sequence. Although the B1 domain of protein G is shown to unfold cooperatively, translocation of calmodulin leads to the formation of intermediates, and these differ on an individual domain level in a manner that depends on whether pulling is from the N or C terminus. The approach presented generates an atomic resolution picture of substrate unfolding and subsequent refolding by unfoldases that can be quite different from results obtained via in vitro denaturation experiments.

  14. Surface dynamics in allosteric regulation of protein-protein interactions: modulation of calmodulin functions by Ca2+.

    Directory of Open Access Journals (Sweden)

    Yosef Y Kuttner

    2013-04-01

    Full Text Available Knowledge of the structural basis of protein-protein interactions (PPI is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s orthogonal to the complex interface and altering the protein's propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM, whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca(2+. Calmodulin is a regulatory protein that acts as an intracellular Ca(2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca(2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca(2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.

  15. Deletion of the calmodulin-binding domain of Grb7 impairs cell attachment to the extracellular matrix and migration

    Energy Technology Data Exchange (ETDEWEB)

    García-Palmero, Irene; Villalobo, Antonio, E-mail: antonio.villalobo@iib.uam.es

    2013-06-28

    Highlights: •Grb7 is a calmodulin (CaM)-binding protein. •Deleting the CaM-binding site impairs cell attachment and migration. •CaM antagonists inhibit Grb7-mediated cell migration. •We conclude that CaM controls Grb7-mediated cell migration. -- Abstract: The adaptor Grb7 is a calmodulin (CaM)-binding protein that participates in signaling pathways involved in cell migration, proliferation and the control of angiogenesis, and plays a significant role in tumor growth, its metastatic spread and tumor-associated neo-vasculature formation. In this report we show that deletion of the CaM-binding site of Grb7, located in the proximal region of its pleckstrin homology (PH) domain, impairs cell migration, cell attachment to the extracellular matrix, and the reorganization of the actin cytoskeleton occurring during this process. Moreover, we show that the cell-permeable CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide (W-13) both retard the migration of cells expressing wild type Grb7, but not the migration of cells expressing the mutant protein lacking the CaM-binding site (Grb7Δ), underscoring the proactive role of CaM binding to Grb7 during this process.

  16. Calmodulin as a Ca2+-Sensing Subunit of Arabidopsis Cyclic Nucleotide-Gated Channel Complexes.

    Science.gov (United States)

    Fischer, Cornelia; DeFalco, Thomas A; Karia, Purva; Snedden, Wayne A; Moeder, Wolfgang; Yoshioka, Keiko; Dietrich, Petra

    2017-07-01

    Ca2+ serves as a universal second messenger in eukaryotic signaling pathways, and the spatial and temporal patterns of Ca2+ concentration changes are determined by feedback and feed-forward regulation of the involved transport proteins. Cyclic nucleotide-gated channels (CNGCs) are Ca2+-permeable channels that interact with the ubiquitous Ca2+ sensor calmodulin (CaM). CNGCs interact with CaMs via diverse CaM-binding sites, including an IQ-motif, which has been identified in the C-termini of CNGC20 and CNGC12. Here we present a family-wide analysis of the IQ-motif from all 20 Arabidopsis CNGC isoforms. While most of their IQ-peptides interacted with conserved CaMs in yeast, some were unable to do so, despite high sequence conservation across the family. We showed that the CaM binding ability of the IQ-motif is highly dependent on its proximal and distal vicinity. We determined that two alanine residues positioned N-terminal to the core IQ-sequence play a significant role in CaM binding, and identified a polymorphism at this site that promoted or inhibited CaM binding in yeast. Through detailed biophysical analysis of the CNGC2 IQ-motif, we found that this polymorphism specifically affected the Ca2+-independent interactions with the C-lobe of CaM. This same polymorphism partially suppressed the induction of programmed cell death by CNGC11/12 in planta. Our work expands the model of CNGC regulation, and posits that the C-lobe of apo-CaM is permanently associated with the channel at the N-terminal part of the IQ-domain. This mode allows CaM to function as a Ca2+-sensing regulatory subunit of the channel complex, providing a mechanism by which Ca2+ signals may be fine-tuned. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium

  18. Effect of Ca2+ on the promiscuous target-protein binding of calmodulin.

    Directory of Open Access Journals (Sweden)

    Annie M Westerlund

    2018-04-01

    Full Text Available Calmodulin (CaM is a calcium sensing protein that regulates the function of a large number of proteins, thus playing a crucial part in many cell signaling pathways. CaM has the ability to bind more than 300 different target peptides in a Ca2+-dependent manner, mainly through the exposure of hydrophobic residues. How CaM can bind a large number of targets while retaining some selectivity is a fascinating open question. Here, we explore the mechanism of CaM selective promiscuity for selected target proteins. Analyzing enhanced sampling molecular dynamics simulations of Ca2+-bound and Ca2+-free CaM via spectral clustering has allowed us to identify distinct conformational states, characterized by interhelical angles, secondary structure determinants and the solvent exposure of specific residues. We searched for indicators of conformational selection by mapping solvent exposure of residues in these conformational states to contacts in structures of CaM/target peptide complexes. We thereby identified CaM states involved in various binding classes arranged along a depth binding gradient. Binding Ca2+ modifies the accessible hydrophobic surface of the two lobes and allows for deeper binding. Apo CaM indeed shows shallow binding involving predominantly polar and charged residues. Furthermore, binding to the C-terminal lobe of CaM appears selective and involves specific conformational states that can facilitate deep binding to target proteins, while binding to the N-terminal lobe appears to happen through a more flexible mechanism. Thus the long-ranged electrostatic interactions of the charged residues of the N-terminal lobe of CaM may initiate binding, while the short-ranged interactions of hydrophobic residues in the C-terminal lobe of CaM may account for selectivity. This work furthers our understanding of the mechanism of CaM binding and selectivity to different target proteins and paves the way towards a comprehensive model of CaM selectivity.

  19. Identification of the Calmodulin-Binding Domains of Fas Death Receptor.

    Directory of Open Access Journals (Sweden)

    Bliss J Chang

    Full Text Available The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD and that of the Fas-associated protein (FADD interact to form the core of the death-inducing signaling complex (DISC, a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD. However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR, biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1 and 251-288 (Fas-Pep2 constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling

  20. Protein kinase activity associated with the corticosteroid binder IB

    International Nuclear Information System (INIS)

    Vujicic, M.; Djordjevic-Markovic, R.; Radic, O.; Krstic, M.; Kanazir, D.

    1997-01-01

    The physiological effects elicited by glucocorticoids are mediated via glucocorticoid receptors (GR). Analysis of specific glucocorticoid binding to radioactively labelled [ 3 H] triamcinolone acetonide in rat liver cytosol and analysis by ion exchange chromatography have revealed the presence of two distinct molecular species. The major form, designated as binder II appears to correspond to the well characterized glucocorticoid receptor by virtue of its size, charge, steroid binding characteristics and ability to bind to DNA.The second form, designated as corticosteroid binder IB, is a minor binding component in the liver. The binder IB differs from the binder II receptor by virtue of its lower molecular weight and its elution in the pre gradient of DEAE-Sephadex A-50 column which retains the un activated binder II receptor complexes. We examined the kinase activity of partially purified corticosteroid binder IB. Using (γ 3 2 P) ATP we detected kinase activity associated with the IB fraction from the rat liver. This kinase phosphorylate mixed histones and and dose not phosphorylate IB protein in vitro. The kinase activity is completely inhibited by the addition of Mg 2 + ions and is partially inhibited by the addition of Ca 2 +ions. (author)

  1. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    Directory of Open Access Journals (Sweden)

    Raouf A. Khalil

    2013-03-01

    Full Text Available Blood pressure (BP is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN. In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i, which forms a complex with calmodulin, activates myosin light chain (MLC kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC. PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK and MAPK kinase (MEK, a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  2. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  3. Ca2+-mediated potentiation of the swelling-induced taurine efflux from HeLa cells: On the role of calmodulin and novel protein kinase C isoforms

    DEFF Research Database (Denmark)

    Falktoft, Birgitte; Lambert, Ian H.

    2004-01-01

    The present work sets out to investigate how Ca2+ regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca2+-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation...... of the release pathway. The accelerated inactivation is not observed in hypotonic Ca2+-free or high-K+ media. Addition of Ca2+-mobilizing agonists also accelerates the regulatory volume decrease, which probably reflects activation of Ca2+-activated K+ channels. The taurine release from control cells and cells...... exposed to Ca2+ agonists is equally affected by changes in cell volume, application of DIDS and arachidonic acid, indicating that the volume-sensitive taurine leak pathway mediates the Ca2+-augmented taurine release. Exposure to Ca2+-mobilizing agonists prior to a hypotonic challenge also augments...

  4. Upregulation of c-FLIP-short in response to TRAIL promotes survival of NSCLC cells, which could be suppressed by inhibition of Ca2+/calmodulin signaling

    Czech Academy of Sciences Publication Activity Database

    Kaminskyy, V.O.; Surova, O.V.; Piskunova, T.; Zborovskaya, I.B.; Tchevkina, E.M.; Anděra, Ladislav; Zhivotovsky, B.

    2013-01-01

    Roč. 4, březen 2013 (2013), e522 ISSN 2041-4889 Institutional support: RVO:68378050 Keywords : TRAIL * DR4 * c-FLIPS * calcium * calmodulin * lung adenocarcinoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.177, year: 2013

  5. An ion-current mutant of Paramecium tetraurelia with defects in the primary structure and post-translational N-methylation of calmodulin

    International Nuclear Information System (INIS)

    Wallen-Friedman, M.A.

    1988-01-01

    My work on pantophobiac A 2 (pntA 2 ), a behavioral mutant of Paramecium tetraurelia, suggest that the Ca ++ -binding protein calmodulin (CaM), and post-translation N-methylation of CaM, are important for Ca ++ -related ion-current function. Calmodulin from wild-type Paramecium has two sites of lysine-N-methylation. Both of these sites are almost fully methylated in vivo; thus wild-type calmodulin is a poor substrate for N-methylation in vitro. In contrast, pntA/ 2 CaM can be heavily N-methylated in vitro, suggesting that the mutant calmodulin is under-methylated in vivo. Amino-acid composition analysis showed that CaM lysine 115 is undermethylated in pntA 2 . Once pntA 2 CaM is N-methylated, the [methyl- 3 H] group does not turn over in either wild-type or pntA 2 cytoplasmic fractions. The methylating enzymes in pntA 2 high-speed supernatant fractions are active, but may be less robust than those of the wild type, suggesting a possible control of these enzymes by CaM

  6. Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8

    International Nuclear Information System (INIS)

    Tidow, Henning; Hein, Kim L.; Baekgaard, Lone; Palmgren, Michael G.; Nissen, Poul

    2010-01-01

    Plant plasma-membrane Ca 2+ -ATPase is regulated via binding of calmodulin to its autoinhibitory N-terminal domain. In this study, the expression, purification, crystallization and preliminary X-ray diffraction analysis of this protein complex from A. thaliana are reported. Plasma-membrane Ca 2+ -ATPases (PMCAs) are calcium pumps that expel Ca 2+ from eukaryotic cells to maintain overall Ca 2+ homoeostasis and to provide local control of intracellular Ca 2+ signalling. They are of major physiological importance, with different isoforms being essential, for example, for presynaptic and postsynaptic Ca 2+ regulation in neurons, feedback signalling in the heart and sperm motility. In the resting state, PMCAs are autoinhibited by binding of their C-terminal (in mammals) or N-terminal (in plants) tail to two major intracellular loops. Activation requires the binding of calcium-bound calmodulin (Ca 2+ -CaM) to this tail and a conformational change that displaces the autoinhibitory tail from the catalytic domain. The complex between calmodulin and the regulatory domain of the plasma-membrane Ca 2+ -ATPase ACA8 from Arabidopsis thaliana has been crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 Å, β = 113.2°. A complete data set was collected to 3.0 Å resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin

  7. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity.

    Science.gov (United States)

    Evans, D J; Frank, D W; Finck-Barbançon, V; Wu, C; Fleiszig, S M

    1998-04-01

    Pseudomonas aeruginosa clinical isolates exhibit invasive or cytotoxic phenotypes. Cytotoxic strains acquire some of the characteristics of invasive strains when a regulatory gene, exsA, that controls the expression of several extracellular proteins, is inactivated. exsA mutants are not cytotoxic and can be detected within epithelial cells by gentamicin survival assays. The purpose of this study was to determine whether epithelial cell invasion precedes and/or is essential for cytotoxicity. This was tested by measuring invasion (gentamicin survival) and cytotoxicity (trypan blue staining) of PA103 mutants deficient in specific exsA-regulated proteins and by testing the effect of drugs that inhibit invasion for their effect on cytotoxicity. A transposon mutant in the exsA-regulated extracellular factor exoU was neither cytotoxic nor invasive. Furthermore, several of the drugs that inhibited invasion did not prevent cytotoxicity. These results show that invasion and cytotoxicity are mutually exclusive events, inversely regulated by an exsA-encoded invasion inhibitor(s). Both involve host cell protein tyrosine kinase (PTK) activity, but they differ in that invasion requires Src family tyrosine kinases and calcium-calmodulin activity. PTK inhibitor drugs such as genistein may have therapeutic potential through their ability to block both invasive and cytotoxicity pathways via an action on the host cell.

  8. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.

    Science.gov (United States)

    Zhao, Chunzhao; Wang, Pengcheng; Si, Tong; Hsu, Chuan-Chih; Wang, Lu; Zayed, Omar; Yu, Zheping; Zhu, Yingfang; Dong, Juan; Tao, W Andy; Zhu, Jian-Kang

    2017-12-04

    Mitogen-activated protein kinase cascades are important signaling modules that convert environmental stimuli into cellular responses. We show that MPK3, MPK4, and MPK6 are rapidly activated after cold treatment. The mpk3 and mpk6 mutants display increased expression of CBF genes and enhanced freezing tolerance, whereas constitutive activation of the MKK4/5-MPK3/6 cascade in plants causes reduced expression of CBF genes and hypersensitivity to freezing, suggesting that the MKK4/5-MPK3/6 cascade negatively regulates the cold response. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes, and the phosphorylation promotes the degradation of ICE1. Interestingly, the MEKK1-MKK2-MPK4 pathway constitutively suppresses MPK3 and MPK6 activities and has a positive role in the cold response. Furthermore, the MAPKKK YDA and two calcium/calmodulin-regulated receptor-like kinases, CRLK1 and CRLK2, negatively modulate the cold activation of MPK3/6. Our results uncover important roles of MAPK cascades in the regulation of plant cold response. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.

    1985-11-05

    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  10. Receptor-interacting protein (RIP) kinase family

    OpenAIRE

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, incl...

  11. Partial contribution of Rho-kinase inhibition to the bioactivity of Ganoderma lingzhi and its isolated compounds: insights on discovery of natural Rho-kinase inhibitors.

    Science.gov (United States)

    Amen, Yhiya; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Shimizu, Kuniyoshi

    2017-04-01

    Recent studies identified Rho-kinase enzymes (ROCK-I and ROCK-II) as important targets that are involved in a variety of diseases. Synthetic Rho-kinase inhibitors have emerged as potential therapeutic agents to treat disorders such as hypertension, stroke, cancer, diabetes, glaucoma, etc. Our study is the first to screen the total ethanol extract of the medicinal mushroom Ganoderma lingzhi with thirty-five compounds for Rho-kinase inhibitory activity. Moreover, a molecular binding experiment was designed to investigate the binding affinity of the compounds at the active sites of Rho-kinase enzymes. The structure-activity relationship analysis was investigated. Our results suggest that the traditional uses of G. lingzhi might be in part due to the ROCK-I and ROCK-II inhibitory potential of this mushroom. Structure-activity relationship studies revealed some interesting features of the lanostane triterpenes that potentiate their Rho-kinase inhibition. These findings would be helpful for further studies on the design of Rho-kinase inhibitors from natural sources and open the door for contributions from other researchers for optimizing the development of natural Rho-kinase inhibitors.

  12. LeCPK1, a Calcium-Dependent Protein Kinase from Tomato. Plasma Membrane Targeting and Biochemical Characterization1

    Science.gov (United States)

    Rutschmann, Frank; Stalder, Urs; Piotrowski, Markus; Oecking, Claudia; Schaller, Andreas

    2002-01-01

    The cDNA of LeCPK1, a calcium-dependent protein kinase, was cloned from tomato (Lycopersicon esculentum Mill.). LeCPK1 was expressed in Escherichia coli and purified from bacterial extracts. The recombinant protein was shown to be a functional protein kinase using a synthetic peptide as the substrate (syntide-2, Km = 85 μm). Autophosphorylation of LeCPK1 was observed on threonine and serine residues, one of which was identified as serine-439. Kinase activity was shown to be Ca2+ dependent and required the C-terminal, calmodulin-like domain of LeCPK1. Two classes of high- and low-affinity Ca2+-binding sites were observed, exhibiting dissociation constants of 0.6 and 55 μm, respectively. LeCPK1 was found to phosphorylate the regulatory C-terminal domain of the plasma membrane H+-ATPase in vitro. A potential role in the regulation of proton pump activity is corroborated by the apparent colocalization of the plasma membrane H+-ATPase and LeCPK1 in vivo. Upon transient expression in suspension-cultured cells, a C-terminal fusion of LeCPK1 with the green fluorescent protein was targeted to the plasma membrane. Myristoylation of the LeCPK1 N terminus was found to be required for plasma membrane targeting. PMID:12011347

  13. Uncoupling PIP2-calmodulin regulation of Kv7.2 channels by an assembly destabilizing epileptogenic mutation.

    Science.gov (United States)

    Alberdi, Araitz; Gomis-Perez, Carolina; Bernardo-Seisdedos, Ganeko; Alaimo, Alessandro; Malo, Covadonga; Aldaregia, Juncal; Lopez-Robles, Carlos; Areso, Pilar; Butz, Elisabeth; Wahl-Schott, Christian; Villarroel, Alvaro

    2015-11-01

    We show that the combination of an intracellular bi-partite calmodulin (CaM)-binding site and a distant assembly region affect how an ion channel is regulated by a membrane lipid. Our data reveal that regulation by phosphatidylinositol(4,5)bisphosphate (PIP2) and stabilization of assembled Kv7.2 subunits by intracellular coiled-coil regions far from the membrane are coupled molecular processes. Live-cell fluorescence energy transfer measurements and direct binding studies indicate that remote coiled-coil formation creates conditions for different CaM interaction modes, each conferring different PIP2 dependency to Kv7.2 channels. Disruption of coiled-coil formation by epilepsy-causing mutation decreases apparent CaM-binding affinity and interrupts CaM influence on PIP2 sensitivity. © 2015. Published by The Company of Biologists Ltd.

  14. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL

    Directory of Open Access Journals (Sweden)

    Hastie C James

    2006-01-01

    Full Text Available Abstract Background Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. Results Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL. Conclusion All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.

  15. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  16. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    Science.gov (United States)

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  17. Arabidopsis IQM4, a Novel Calmodulin-Binding Protein, Is Involved With Seed Dormancy and Germination in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yu Ping Zhou

    2018-06-01

    Full Text Available Seed dormancy and germination are regulated by complex mechanisms controlled by diverse hormones and environmental cues. Abscisic acid (ABA promotes seed dormancy and inhibits seed germination and post-germination growth. Calmodulin (CaM signals are involved with the inhibition of ABA during seed germination and seedling growth. In this study, we showed that Arabidopsis thaliana IQM4 could bind with calmodulin 5 (CaM5 both in vitro and in vivo, and that the interaction was the Ca2+-independent type. The IQM4 protein was localized in the chloroplast and the IQM4 gene was expressed in most tissues, especially the embryo and germinated seedlings. The T-DNA insertion mutants of IQM4 exhibited the reduced primary seed dormancy and lower ABA levels compared with wild type seeds. Moreover, IQM4 plays key roles in modulating the responses to ABA, salt, and osmotic stress during seed germination and post-germination growth. T-DNA insertion mutants exhibited ABA-insensitive and salt-hypersensitive phenotypes during seed germination and post-germination growth, whereas IQM4-overexpressing lines had ABA- and osmotic-hypersensitive, and salt-insensitive phenotypes. Gene expression analyses showed that mutation of IQM4 inhibited the expression of ABA biosynthetic genes NCED6 and NCED9, and seed maturation regulators LEC1, LEC2, ABI3, and ABI5 during the silique development, as well as promoted the expression of WRKY40 and inhibited that of ABI5 in ABA-regulated seed germination. These observations suggest that IQM4 is a novel Ca2+-independent CaM-binding protein, which is positively involved with seed dormancy and germination in Arabidopsis.

  18. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment.

    Science.gov (United States)

    Jauch, Ralf; Cho, Min-Kyu; Jäkel, Stefan; Netter, Catharina; Schreiter, Kay; Aicher, Babette; Zweckstetter, Markus; Jäckle, Herbert; Wahl, Markus C

    2006-09-06

    Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2 D228G -staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.

  19. Negative regulation of AMP-activated protein kinase (AMPK) activity by macrophage migration inhibitory factor (MIF) family members in non-small cell lung carcinomas.

    Science.gov (United States)

    Brock, Stephanie E; Rendon, Beatriz E; Yaddanapudi, Kavitha; Mitchell, Robert A

    2012-11-02

    AMP-activated protein kinase (AMPK) is a nutrient- and metabolic stress-sensing enzyme activated by the tumor suppressor kinase, LKB1. Because macrophage migration inhibitory factor (MIF) and its functional homolog, d-dopachrome tautomerase (d-DT), have protumorigenic functions in non-small cell lung carcinomas (NSCLCs) but have AMPK-activating properties in nonmalignant cell types, we set out to investigate this apparent paradox. Our data now suggest that, in contrast to MIF and d-DTs AMPK-activating properties in nontransformed cells, MIF and d-DT act cooperatively to inhibit steady-state phosphorylation and activation of AMPK in LKB1 wild type and LKB1 mutant human NSCLC cell lines. Our data further indicate that MIF and d-DT, acting through their shared cell surface receptor, CD74, antagonize NSCLC AMPK activation by maintaining glucose uptake, ATP production, and redox balance, resulting in reduced Ca(2+)/calmodulin-dependent kinase kinase β-dependent AMPK activation. Combined, these studies indicate that MIF and d-DT cooperate to inhibit AMPK activation in an LKB1-independent manner.

  20. Mini Screening of Kinase Inhibitors Affecting Period-length of Mammalian Cellular Circadian Clock

    International Nuclear Information System (INIS)

    Yagita, Kazuhiro; Yamanaka, Iori; Koinuma, Satoshi; Shigeyoshi, Yasufumi; Uchiyama, Yasuo

    2009-01-01

    In mammalian circadian rhythms, the transcriptional-translational feedback loop (TTFL) consisting of a set of clock genes is believed to elicit the circadian clock oscillation. The TTFL model explains that the accumulation and degradation of mPER and mCRY proteins control the period-length (tau) of the circadian clock. Although recent studies revealed that the Casein Kinase Iεδ (CKIεδ) regurates the phosphorylation of mPER proteins and the circadian period-length, other kinases are also likely to contribute the phosphorylation of mPER. Here, we performed small scale screening using 84 chemical compounds known as kinase inhibitors to identify candidates possibly affecting the circadian period-length in mammalian cells. Screening by this high-throughput real-time bioluminescence monitoring system revealed that the several chemical compounds apparently lengthened the cellular circadian clock oscillation. These compounds are known as inhibitors against kinases such as Casein Kinase II (CKII), PI3-kinase (PI3K) and c-Jun N-terminal Kinase (JNK) in addition to CKIεδ. Although these kinase inhibitors may have some non-specific effects on other factors, our mini screening identified new candidates contributing to period-length control in mammalian cells

  1. Induced effect of Ca2+ on dalesconols A and B biosynthesis in the culture of Daldinia eschscholzii via calcium/calmodulin signaling.

    Science.gov (United States)

    Lu, Yanhua; Pan, Zhenghua; Tao, Jun; An, Faliang

    2018-02-01

    Dalesconols (dalesconols A and B) were isolated from Daldinia eschscholzii and have remarkable immunosuppressive activity. In this study, the response of fungal growth, intra- and extracellular Ca 2+ , and dalesconols production after CaCl 2 addition were reported for the first time. After supplementation with 5 mM Ca 2+ at 24 h, dalesconols production reached 84.33 mg/L, which resulted in a 1.57-fold enhancement compared to the control. The key role of calcium/calmodulin signaling in dalesconols biosynthesis was confirmed by treatment with Ca 2+ channel and calmodulin inhibitors. The transcriptional levels of dalesconols biosynthetic genes were up-regulated after CaCl 2 addition and down-regulated after inhibitors were added. The results demonstrated that Ca 2+ addition induces dalesconols biosynthesis through up-regulation of dalesconols biosynthesis genes via regulation of calcium/calmodulin signaling. This study provided an efficient strategy for improving dalesconols production and would facilitate further research on the biosynthesis and regulation of dalesconols. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Thyroid hormone activates rat liver adenosine 5,-monophosphate-activated protein kinase: relation to CaMKKb, TAK1 and LKB1 expression and energy status.

    Science.gov (United States)

    Vargas, R; Ortega, Y; Bozo, V; Andrade, M; Minuzzi, G; Cornejo, P; Fernandez, V; Videla, L A

    2013-01-01

    AMP-activated protein kinase (AMPK) is a sensor of energy status supporting cellular energy homeostasis that may represent the metabolic basis for 3,3,,5-triiodo-L-thyronine (T3) liver preconditioning. Functionally transient hyperthyroid state induced by T3 (single dose of 0.1 mg/kg) in fed rats led to upregulation of mRNA expression (RT-PCR) and protein phosphorylation (Western blot) of hepatic AMPK at 8 to 36 h after treatment. AMPK Thr 172 phosphorylation induced by T3 is associated with enhanced mRNA expression of the upstream kinases Ca2+ -calmodulin-dependent protein kinase kinase-beta (CaMKKbeta) and transforming growth-factor-beta-activated kinase-1 (TAK1), with increased protein levels of CaMKKbeta and higher TAK1 phosphorylation, without changes in those of the liver kinase B1 (LKB1) signaling pathway. Liver contents of AMP and ADP were augmented by 291 percent and 44 percent by T3 compared to control values (p less than 0.05), respectively, whereas those of ATP decreased by 64% (p less than 0.05), with no significant changes in the total content of adenine nucleotides (AMP + ADP + ATP) at 24 h after T3 administration. Consequently, hepatic ATP/ADP content ratios exhibited 64 percent diminution (p less than 0.05) and those of AMP/ATP increased by 425 percent (p less than 0.05) in T3-treated rats over controls. It is concluded that in vivoT3 administration triggers liver AMPK upregulation in association with significant enhancements in AMPK mRNA expression, AMPK phosphorylation coupled to CaMKKbeta and TAK1 activation, and in AMP/ATP ratios, which may promote enhanced AMPK activity to support T3-induced energy consuming processes such as those of liver preconditioning.

  3. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase.

    Science.gov (United States)

    Matsushita, Y; Hanazawa, K; Yoshioka, K; Oguchi, T; Kawakami, S; Watanabe, Y; Nishiguchi, M; Nyunoya, H

    2000-08-01

    The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.

  4. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  5. Autophosphorylation of [alpha]CaMKII is Differentially Involved in New Learning and Unlearning Mechanisms of Memory Extinction

    Science.gov (United States)

    Kimura, Ryoichi; Silva, Alcino J.; Ohno, Masuo

    2008-01-01

    Accumulating evidence indicates the key role of [alpha]-calcium/calmodulin-dependent protein kinase II ([alpha]CaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which [alpha]CaMKII may mediate extinction by using…

  6. Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2 beta

    DEFF Research Database (Denmark)

    Boldyreff, B; James, P; Staudenmann, W

    1993-01-01

    Human casein kinase-2 (CK-2) subunits alpha and beta were bicistronically expressed in bacteria. The recombinant holoenzyme shared all investigated properties with the native CK-2 from mammalian sources (rat liver, Krebs II mouse ascites tumour cells). Contrary to recombinant human CK-2 produced...

  7. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses.

    Science.gov (United States)

    Zhu, Xiaoyang; Perez, Manon; Aldon, Didier; Galaud, Jean-Philippe

    2017-05-04

    In their natural environment, plants have to continuously face constraints such as biotic and abiotic stresses. To achieve their life cycle, plants have to perceive and interpret the nature, but also the strength of environmental stimuli to activate appropriate physiological responses. Nowadays, it is well established that signaling pathways are crucial steps in the implementation of rapid and efficient plant responses such as genetic reprogramming. It is also reported that rapid raises in calcium (Ca 2+ ) levels within plant cells participate in these early signaling steps and are essential to coordinate adaptive responses. However, to be informative, calcium increases need to be decoded and relayed by calcium-binding proteins also referred as calcium sensors to carry-out the appropriate responses. In a recent study, we showed that CML8, an Arabidopsis calcium sensor belonging to the calmodulin-like (CML) protein family, promotes plant immunity against the phytopathogenic bacteria Pseudomonas syringae pv tomato (strain DC3000). Interestingly, other CML proteins such as CML9 were also reported to contribute to plant immunity using the same pathosystem. In this addendum, we propose to discuss about the specific contribution of these 2 CMLs in stress responses.

  8. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas.

    Science.gov (United States)

    Li, Xing-Xia; Yu, Wen-Chao; Cai, Zhong-Qiang; He, Cheng; Wei, Na; Wang, Xiao-Tong; Yue, Xi-Qing

    2016-01-01

    The shell of the pearl oyster ( Pinctada fucata ) mainly comprises aragonite whereas that of the Pacific oyster ( Crassostrea gigas ) is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM) is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM) and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization.

  9. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Xing-Xia Li

    2016-01-01

    Full Text Available The shell of the pearl oyster (Pinctada fucata mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization.

  10. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit.

    Science.gov (United States)

    Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Jurick, Wayne M

    2013-07-01

    Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage. © 2013 Scandinavian Plant Physiology Society.

  11. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    Science.gov (United States)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  12. Apo calmodulin binding to the L-type voltage-gated calcium channel Cav1.2 IQ peptide

    International Nuclear Information System (INIS)

    Lian Luyun; Myatt, Daniel; Kitmitto, Ashraf

    2007-01-01

    The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic recticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Ca v 1.2 subunit has been shown to bind both calcium-loaded (Ca 2+ CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction of apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca 2+ CaM can bind to the intact channel

  13. 2D FT-ICR MS of Calmodulin: A Top-Down and Bottom-Up Approach.

    Science.gov (United States)

    Floris, Federico; van Agthoven, Maria; Chiron, Lionel; Soulby, Andrew J; Wootton, Christopher A; Lam, Yuko P Y; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2016-09-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach. 2D IRMPD FT-ICR MS is used to achieve extensive inter-residue bond cleavage and assignment for CaM, using its unique features for fragment identification in a less time- and sample-consuming experiment than doing the same thing using sequential MS/MS experiments. Graphical Abstract ᅟ.

  14. Non-Viral Deoxyribonucleoside Kinases

    DEFF Research Database (Denmark)

    Christiansen, Louise Slot; Munch-Petersen, Birgitte; Knecht, Wolfgang

    2015-01-01

    Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of gr...

  15. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    Science.gov (United States)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  16. Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics.

    Science.gov (United States)

    Poss, Zachary C; Ebmeier, Christopher C; Odell, Aaron T; Tangpeerachaikul, Anupong; Lee, Thomas; Pelish, Henry E; Shair, Matthew D; Dowell, Robin D; Old, William M; Taatjes, Dylan J

    2016-04-12

    Cortistatin A (CA) is a highly selective inhibitor of the Mediator kinases CDK8 and CDK19. Using CA, we now report a large-scale identification of Mediator kinase substrates in human cells (HCT116). We identified over 16,000 quantified phosphosites including 78 high-confidence Mediator kinase targets within 64 proteins, including DNA-binding transcription factors and proteins associated with chromatin, DNA repair, and RNA polymerase II. Although RNA-seq data correlated with Mediator kinase targets, the effects of CA on gene expression were limited and distinct from CDK8 or CDK19 knockdown. Quantitative proteome analyses, tracking around 7,000 proteins across six time points (0-24 hr), revealed that CA selectively affected pathways implicated in inflammation, growth, and metabolic regulation. Contrary to expectations, increased turnover of Mediator kinase targets was not generally observed. Collectively, these data support Mediator kinases as regulators of chromatin and RNA polymerase II activity and suggest their roles extend beyond transcription to metabolism and DNA repair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases.

    Science.gov (United States)

    Chan, Tung O; Pascal, John M; Armen, Roger S; Rodeck, Ulrich

    2012-02-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.

  18. Autoregulation of kinase dephosphorylation by ATP binding to AGC protein kinases

    Science.gov (United States)

    Pascal, John M; Armen, Roger S

    2012-01-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families. PMID:22262182

  19. Src kinase regulation by phosphorylation and dephosphorylation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2005-01-01

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPα, PTPε, and PTPλ. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined

  20. Detection of protein kinase activity by renaturation in sodium dodecyl sulfate-polyacrylamide gels

    International Nuclear Information System (INIS)

    Anostario, M. Jr.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    The authors have developed a procedure for identifying protein kinase activity in protein samples following electrophoresis on SDS-polyacrylamide gels. Proteins are allowed to renature directly in the gel by removal of detergent. The gel is then incubated with [γ- 32 P]ATP to allow renatured protein kinases to autophosphorylate or to phosphorylate various substrates which can be incorporated into the gel. The positions of the radiolabeled proteins can then be detected by autoradiography. With this technique, using purified catalytic subunit of cAMP-dependent protein kinase, enzyme concentrations as low as 0.01 μg can be detected on gels containing 1.0 mg/ml casein. The procedure is also applicable for the determination of active subunits of multisubunit protein kinases. For example, when the two subunits of casein kinase II are separated by SDS-polyacrylamide gel electrophoresis and allowed to renature, only the larger α subunit shows activity. This procedure can also be used to detect and distinguish kinases present in heterogeneous mixtures. Starting with a particulate fraction from LSTRA, a murine T cell lymphoma, several distinct enzymes were detected, including a 30,000 Dalton protein with protein-tyrosine kinase activity. This same enzyme has also been detected in T lymphocytes and other T lymphoid cell lines

  1. A Requirement for ZAK Kinase Activity in Canonical TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    Shyam Nyati

    2016-12-01

    Full Text Available The sterile alpha motif and leucine zipper containing kinase ZAK (AZK, MLT, MLK7, is a MAPK-kinase kinase (MKKK. Like most MAPKKKs which are known to activate the c-Jun. amino-terminal kinase (JNK pathway, ZAK has been shown to participate in the transduction of Transforming growth factor-β (TGF-β-mediated non-canonical signaling. A role for ZAK in SMAD-dependent, canonical TGF-β signaling has not been previously appreciated. Using a combination of functional genomics and biochemical techniques, we demonstrate that ZAK regulates canonical TGFβRI/II signaling in lung and breast cancer cell lines and may serve as a key node in the regulation of TGFBR kinase activity. Remarkably, we demonstrate that siRNA mediated depletion of ZAK strongly inhibited TGF-β dependent SMAD2/3 activation and subsequent promoter activation (SMAD binding element driven luciferase expression; SBE4-Luc. A ZAK specific inhibitor (DHP-2, dose-dependently activated the bioluminescent TGFBR-kinase activity reporter (BTR, blocked TGF-β induced SMAD2/3 phosphorylation and SBE4-Luc activation and cancer cell-invasion. In aggregate, these findings identify a novel role for the ZAK kinase in canonical TGF-β signaling and an invasive cancer cell phenotype thus providing a novel target for TGF-β inhibition.

  2. Copper (II)

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Valine (2 - amino - 3 – methylbutanoic acid), is a chemical compound containing .... Stability constant (Kf). Gibb's free energy. ) (. 1. −. ∆. Mol. JG. [CuL2(H2O)2] ... synthesis and characterization of Co(ii), Ni(ii), Cu (II), and Zn(ii) complexes with ...

  3. Signaling network of the Btk family kinases.

    Science.gov (United States)

    Qiu, Y; Kung, H J

    2000-11-20

    The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.

  4. Receptor-interacting protein (RIP) kinase family

    Science.gov (United States)

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, including those in innate immunity, but their downstream substrates are largely unknown. This review will give an overview of the structures and functions of RIP family members, and an update of recent progress in RIP kinase research. PMID:20383176

  5. Oncoprotein protein kinase antibody kit

    Science.gov (United States)

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  7. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.

    Science.gov (United States)

    Midhat, Ubaid; Ting, Michael K Y; Teresinski, Howard J; Snedden, Wayne A

    2018-03-01

    We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca 2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca 2+ sensor during ovule and seed development, as well as during germination and seedling establishment.

  8. Calcium-dependent stoichiometries of the KCa2.2 (SK) intracellular domain/calmodulin complex in solution.

    Science.gov (United States)

    Halling, D Brent; Kenrick, Sophia A; Riggs, Austen F; Aldrich, Richard W

    2014-02-01

    Ca(2+) activates SK Ca(2+)-activated K(+) channels through the protein Ca(2+) sensor, calmodulin (CaM). To understand how SK channels operate, it is necessary to determine how Ca(2+) regulates CaM binding to its target on SK. Tagless, recombinant SK peptide (SKp), was purified for binding studies with CaM at low and high Ca(2+) concentrations. Composition gradient multi-angle light scattering accurately measures the molar mass, stoichiometry, and affinity of protein complexes. In 2 mM Ca(2+), SKp and CaM bind with three different stoichiometries that depend on the molar ratio of SKp:CaM in solution. These complexes include 28 kD 1SKp/1CaM, 39 kD 2SKp/1CaM, and 44 kD 1SKp/2CaM. A 2SKp/2CaM complex, observed in prior crystallographic studies, is absent. At sedimentation coefficient is smaller for a 1SKp:1CaM solution than it is for either 2SKp:1CaM or 1SKp:2CaM. At low Ca(2+) and at >100 µM protein concentrations, a molar excess of SKp over CaM causes aggregation. Aggregation is not observed in Ca(2+) or with CaM in molar excess. In low Ca(2+) both 1SKp:1CaM and 1SKp:2CaM solutions have similar sedimentation coefficients, which is consistent with the absence of a 1SKp/2CaM complex in low Ca(2+). These results suggest that complexes with stoichiometries other than 2SKp/2CaM are important in gating.

  9. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    International Nuclear Information System (INIS)

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca 2+ to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca 2+ and this interaction may be important for its invasion into animal cells

  10. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.

  11. Calmodulin 2 Mutation N98S Is Associated with Unexplained Cardiac Arrest in Infants Due to Low Clinical Penetrance Electrical Disorders.

    Directory of Open Access Journals (Sweden)

    Juan Jiménez-Jáimez

    Full Text Available Calmodulin 1, 2 and 3 (CALM mutations have been found to cause cardiac arrest in children at a very early age. The underlying aetiology described is long QT syndrome (LQTS, catecholaminergic polymorphic ventricular tachycardia (CPVT and idiopathic ventricular fibrillation (IVF. Little phenotypical data about CALM2 mutations is available.The aim of this paper is to describe the clinical manifestations of the Asn98Ser mutation in CALM2 in two unrelated children in southern Spain with apparently unexplained cardiac arrest/death.Two unrelated children aged 4 and 7, who were born to healthy parents, were studied. Both presented with sudden cardiac arrest. The first was resuscitated after a VF episode, and the second died suddenly. In both cases the baseline QTc interval was within normal limits. Peripheral blood DNA was available to perform targeted gene sequencing.The surviving 4-year-old girl had a positive epinephrine test for LQTS, and polymorphic ventricular ectopic beats were seen on a previous 24-hour Holter recording from the deceased 7-year-old boy, suggestive of a possible underlying CPVT phenotype. A p.Asn98Ser mutation in CALM2 was detected in both cases. This affected a highly conserved across species residue, and the location in the protein was adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain, predicting a high pathogenic effect.Human calmodulin 2 mutation p.Asn98Ser is associated with sudden cardiac death in childhood with a variable clinical penetrance. Our results provide new phenotypical information about clinical behaviour of this mutation.

  12. Molecular characterisation of a calmodulin gene, VcCaM1, that is differentially expressed under aluminium stress in highbush blueberry.

    Science.gov (United States)

    Inostroza-Blancheteau, C; Aquea, F; Loyola, R; Slovin, J; Josway, S; Rengel, Z; Reyes-Díaz, M; Alberdi, M; Arce-Johnson, P

    2013-11-01

    Calmodulin (CaM), a small acidic protein, is one of the best characterised Ca(2+) sensors in eukaryotes. This Ca(2+) -regulated protein plays a critical role in decoding and transducing environmental stress signals by activating specific targets. Many environmental stresses elicit changes in intracellular Ca(2+) activity that could initiate adaptive responses under adverse conditions. We report the first molecular cloning and characterisation of a calmodulin gene, VcCaM1 (Vaccinium corymbosum Calmodulin 1), in the woody shrub, highbush blueberry. VcCaM1 was first identified as VCAL19, a gene induced by aluminium stress in V. corymbosum L. A full-length cDNA of VcCaM1 containing a 766-bp open reading frame (ORF) encoding 149 amino acids was cloned from root RNA. The sequence encodes four Ca(2+) -binding motifs (EF-hands) and shows high similarity (99%) with the isoform CaM 201 of Daucus carota. Expression analyses showed that following Al treatment, VcCaM1 message level decreased in roots of Brigitta, an Al-resistant cultivar, and after 48 h, was lower than in Bluegold, an Al-sensitive cultivar. VcCAM1 message also decreased in leaves of both cultivars within 2 h of treatment. Message levels in leaves then increased by 24 h to control levels in Brigitta, but not in Bluegold, but then decreased again by 48 h. In conclusion, VcCaM1 does not appear to be directly involved in Al resistance, but may be involved in improved plant performance under Al toxicity conditions through regulation of Ca(2+) homeostasis and antioxidant systems in leaves. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Targeting cell migration and the endoplasmic reticulum stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells

    International Nuclear Information System (INIS)

    Linxweiler, Maximilian; Greiner, Markus; Schorr, Stefan; Schäuble, Nico; Jung, Martin; Linxweiler, Johannes; Langer, Frank; Schäfers, Hans-Joachim; Cavalié, Adolfo; Zimmermann, Richard

    2013-01-01

    Tumor cells benefit from their ability to avoid apoptosis and invade other tissues. The endoplasmic reticulum (ER) membrane protein Sec62 is a key player in these processes. Sec62 is essential for cell migration and protects tumor cells against thapsigargin-induced ER stress, which are both linked to cytosolic Ca 2+ . SEC62 silencing leads to elevated cytosolic Ca 2+ and increased ER Ca 2+ leakage after thapsigargin treatment. Sec62 protein levels are significantly increased in different tumors, including prostate, lung and thyroid cancer. In lung cancer, the influence of Sec62 protein levels on patient survival was analyzed using the Kaplan-Meier method and log-rank test. To elucidate the underlying pathophysiological functions of Sec62, Ca 2+ imaging techniques, real-time cell analysis and cell migration assays were performed. The effects of treatment with the calmodulin antagonists, trifluoperazine (TFP) and ophiobolin A, on cellular Ca 2+ homeostasis, cell growth and cell migration were compared with the effects of siRNA-mediated Sec62 depletion or the expression of a mutated SEC62 variant in vitro. Using Biacore analysis we examined the Ca 2+ -sensitive interaction of Sec62 with the Sec61 complex. Sec62 overproduction significantly correlated with reduced patient survival. Therefore, Sec62 is not only a predictive marker for this type of tumor, but also an interesting therapeutic target. The present study suggests a regulatory function for Sec62 in the major Ca 2+ leakage channel in the ER, Sec61, by a direct and Ca 2+ -sensitive interaction. A Ca 2+ -binding motif in Sec62 is essential for its molecular function. Treatment of cells with calmodulin antagonists mimicked Sec62 depletion by inhibiting cell migration and rendering the cells sensitive to thapsigargin treatment. Targeting tumors that overproduce Sec62 with calmodulin antagonists in combination with targeted thapsigargin analogues may offer novel personalized therapeutic options

  14. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol; Kim, Hye Won [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of); Jung, Won-Kyo [Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737 (Korea, Republic of); Na, Sung Hun [Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 200-701 (Korea, Republic of); Jung, In Duk; Park, Yeong-Min [Department of Immunology, Lab of Dendritic Cell Differentiation and Regulation, College of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Choi, Il-Whan, E-mail: cihima@inje.ac.kr [Department of Microbiology, Inje University College of Medicine, Busan, 614-735 (Korea, Republic of); Park, Won Sun, E-mail: parkws@kangwon.ac.kr [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of)

    2015-06-15

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivation curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.

  15. Activation of AMP-activated protein kinase by kainic acid mediates brain-derived neurotrophic factor expression through a NF-kappaB dependent mechanism in C6 glioma cells

    International Nuclear Information System (INIS)

    Yoon, Hana; Oh, Young Taek; Lee, Jung Yeon; Choi, Ji Hyun; Lee, Ju Hie; Baik, Hyung Hwan; Kim, Sung Soo; Choe, Wonchae; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug

    2008-01-01

    AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis. Kainic acid (KA), a prototype excitotoxin is known to induce brain-derived neurotrophic factor (BDNF) in brain. In this study, we examined the role of AMPK in KA-induced BDNF expression in C6 glioma cells. We showed that KA and KA receptor agonist induced activation of AMPK and KA-induced AMPK activation was blocked by inhibition of Ca 2+ /calmodulin-dependent protein kinase kinase (CaMKK) β. We then showed that inhibition of AMPK by compound C, a selective inhibitor of AMPK, or small interfering RNA of AMPKα1 blocked KA-induced BDNF mRNA and protein expression. Inhibition of AMPK blocked KA-induced phosphorylation of CaMKII and I kappaB kinase (IKK) in C6 cells. Finally, we showed that inhibition of AMPK reduced DNA binding and transcriptional activation of nuclear factor-kappaB (NF-κB) in KA-treated cells. These results suggest that AMPK mediates KA-induced BDNF expression by regulating NF-κB activation

  16. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  17. Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8

    DEFF Research Database (Denmark)

    Tidow, Henning; Hein, Kim Langmach; Palmgren, Michael Broberg

    2010-01-01

    Plasma-membrane Ca2+-ATPases (PMCAs) are calcium pumps that expel Ca2+ from eukaryotic cells to maintain overall Ca2+ homoeostasis and to provide local control of intracellular Ca2+ signalling. They are of major physiological importance, with different isoforms being essential, for example, for p...... group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 Å, = 113.2°. A complete data set was collected to 3.0 Å resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin...

  18. Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Li; Shieh, Huey S.; Selness, Shaun R.; Devraj, Rajesh V.; Walker, John K.; Devadas, Balekudru; Hope, Heidi R.; Compton, Robert P.; Schindler, John F.; Hirsch, Jeffrey L.; Benson, Alan G.; Kurumbail, Ravi G.; Stegeman, Roderick A.; Williams, Jennifer M.; Broadus, Richard M.; Walden, Zara; Monahan, Joseph B.; Pfizer

    2009-07-24

    PH-797804 is a diarylpyridinone inhibitor of p38{alpha} mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38{alpha} inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38{alpha} kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180{sup o} rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38{alpha} kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38{alpha} kinase inhibitors.

  19. Kinases Involved in Both Autophagy and Mitosis.

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Xin

    2017-08-31

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  20. Kinases Involved in Both Autophagy and Mitosis

    Directory of Open Access Journals (Sweden)

    Zhiyuan Li

    2017-08-01

    Full Text Available Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases, Aurora kinases, PLK-1 (polo-like kinase 1, BUB1 (budding uninhibited by benzimidazoles 1, MAPKs (mitogen-activated protein kinases, mTORC1 (mechanistic target of rapamycin complex 1, AMPK (AMP-activated protein kinase, PI3K (phosphoinositide-3 kinase and protein kinase B (AKT. By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  1. Febrile infection-related status epilepticus in a child after a common infection

    DEFF Research Database (Denmark)

    Andersen, Anne Helene; Hansen, Lars Kjærsgaard

    2014-01-01

    A 13-year-old boy developed seizures and intractable status epilepticus a week after having had a sore throat. Ketogenic diet possibly had some effect. Antibodies to calmodulin dependent protein kinase II were found and could possibly suggest an immunologic aetiology.......A 13-year-old boy developed seizures and intractable status epilepticus a week after having had a sore throat. Ketogenic diet possibly had some effect. Antibodies to calmodulin dependent protein kinase II were found and could possibly suggest an immunologic aetiology....

  2. TAF(II)250: a transcription toolbox.

    Science.gov (United States)

    Wassarman, D A; Sauer, F

    2001-08-01

    Activation of RNA-polymerase-II-dependent transcription involves conversion of signals provided by gene-specific activator proteins into the synthesis of messenger RNA. This conversion requires dynamic structural changes in chromatin and assembly of general transcription factors (GTFs) and RNA polymerase II at core promoter sequence elements surrounding the transcription start site of genes. One hallmark of transcriptional activation is the interaction of DNA-bound activators with coactivators such as the TATA-box binding protein (TBP)-associated factors (TAF(II)s) within the GTF TFIID. TAF(II)250 possesses a variety of activities that are likely to contribute to the initial steps of RNA polymerase II transcription. TAF(II)250 is a scaffold for assembly of other TAF(II)s and TBP into TFIID, TAF(II)250 binds activators to recruit TFIID to particular promoters, TAF(II)250 regulates binding of TBP to DNA, TAF(II)250 binds core promoter initiator elements, TAF(II)250 binds acetylated lysine residues in core histones, and TAF(II)250 possesses protein kinase, ubiquitin-activating/conjugating and acetylase activities that modify histones and GTFs. We speculate that these activities achieve two goals--(1) they aid in positioning and stabilizing TFIID at particular promoters, and (2) they alter chromatin structure at the promoter to allow assembly of GTFs--and we propose a model for how TAF(II)250 converts activation signals into active transcription.

  3. Glycogen synthase kinase 3: more than a namesake.

    Science.gov (United States)

    Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit

    2009-03-01

    Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.

  4. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding, E-mail: jdqiu@ncu.edu.cn

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody–antigen interaction in the presence of casein kinase II (CK2) and adenosine 5′-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. - Highlights: • We reported a novel ECL-RET biosensor for sensitive analysis of casein kinase II activity. • The successful ECL-RET between GQDs and GO could be established. • GQDs was employed for casein kinase II activity monitoring and inhibition assay. • Highly sensitive detection of CK2 activity and inhibition was achieved.

  5. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  6. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  7. Is buffer a good proxy for a crowded cell-like environment? A comparative NMR study of calmodulin side-chain dynamics in buffer and E. coli lysate.

    Directory of Open Access Journals (Sweden)

    Michael P Latham

    Full Text Available Biophysical studies of protein structure and dynamics are typically performed in a highly controlled manner involving only the protein(s of interest. Comparatively fewer such studies have been carried out in the context of a cellular environment that typically involves many biomolecules, ions and metabolites. Recently, solution NMR spectroscopy, focusing primarily on backbone amide groups as reporters, has emerged as a powerful technique for investigating protein structure and dynamics in vivo and in crowded "cell-like" environments. Here we extend these studies through a comparative analysis of Ile, Leu, Val and Met methyl side-chain motions in apo, Ca(2+-bound and Ca(2+, peptide-bound calmodulin dissolved in aqueous buffer or in E. coli lysate. Deuterium spin relaxation experiments, sensitive to pico- to nano-second time-scale processes and Carr-Purcell-Meiboom-Gill relaxation dispersion experiments, reporting on millisecond dynamics, have been recorded. Both similarities and differences in motional properties are noted for calmodulin dissolved in buffer or in lysate. These results emphasize that while significant insights can be obtained through detailed "test-tube" studies, experiments performed under conditions that are "cell-like" are critical for obtaining a comprehensive understanding of protein motion in vivo and therefore for elucidating the relation between motion and function.

  8. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-01-01

    is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain

  9. Measuring Kinase Activity-A Global Challenge.

    Science.gov (United States)

    Cann, Marissa L; McDonald, Ian M; East, Michael P; Johnson, Gary L; Graves, Lee M

    2017-11-01

    The kinase enzymes within a cell, known collectively as the kinome, play crucial roles in many signaling pathways, including survival, motility, differentiation, stress response, and many more. Aberrant signaling through kinase pathways is often linked to cancer, among other diseases. A major area of scientific research involves understanding the relationships between kinases, their targets, and how the kinome adapts to perturbations of the cellular system. This review will discuss many of the current and developing methods for studying kinase activity, and evaluate their applications, advantages, and disadvantages. J. Cell. Biochem. 118: 3595-3606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Cationic Amphiphilic Tris-Cyclometalated Iridium(III) Complexes Induce Cancer Cell Death via Interaction with Ca2+-Calmodulin Complex.

    Science.gov (United States)

    Hisamatsu, Yosuke; Suzuki, Nozomi; Masum, Abdullah-Al; Shibuya, Ai; Abe, Ryo; Sato, Akira; Tanuma, Sei-Ichi; Aoki, Shin

    2017-02-15

    In our previous paper, we reported on the preparation of some cationic amphiphilic Ir complexes (2c, 2d) containing KKGG peptides that induce and detect cell death of Jurkat cells. Mechanistic studies suggest that 2c interacts with anionic molecules and/or membrane receptors on the cell surface to trigger an intracellular Ca 2+ response, resulting in the induction of cell death, accompanied by membrane disruption. We have continued the studies of cell death of Jurkat cells induced by 2c and found that xestospongin C, a selective inhibitor of an inositol 1,4,5-trisphosphate receptor located on the endoplasmic reticulum (ER), reduces the cytotoxicity of 2c, suggesting that 2c triggers the release of Ca 2+ from the ER, leading to an increase in the concentration of cytosolic Ca 2+ , thus inducing cell death. Moreover, we synthesized a series of new amphiphilic cationic Ir complexes 5a-c containing photoreactive 3-trifluoromethyl-3-phenyldiazirine (TFPD) groups, in an attempt to identify the target molecules of 2c. Interestingly, it was discovered that a TFPD group functions as a triplet quencher of Ir complexes. It was also found that 5b is useful as a turn-on phosphorescent probe of acidic proteins such as bovine serum albumin (BSA) (pI = 4.7) and their complexation was confirmed by luminescence titrations and SDS-PAGE of photochemical products between them. These successful results allowed us to carry out photoaffinity labeling of the target biomolecules of 5b (2c and analogues thereof) in Jurkat cells. A proteomic analysis of the products obtained by the photoirradiation of 5b with Jurkat cells suggests that the Ca 2+ -binding protein "calmodulin (CaM)" is one of target proteins of the Ir complexes. Indeed, 5b was found to interact with the Ca 2+ -CaM complex, as evidenced by luminescence titrations and the results of photochemical reactions of 5b with CaM in the presence of Ca 2+ (SDS-PAGE). A plausible mechanism for cell death induced by a cationic amphiphilic Ir

  11. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress.

    Science.gov (United States)

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca 2+ ) on the process of adventitious rooting in cucumber ( Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca 2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca 2+ . The application of Ca 2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca 2+ /CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca 2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na 2 WO 4 ) and sodium azide (NaN 3 ) . This gives an indication that Ca 2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca 2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca 2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca 2+ /CaM may act as a downstream signaling molecule in NO-induced development of adventitious root

  12. Structural and functional characterization of the recombinant death domain from death-associated protein kinase.

    Science.gov (United States)

    Dioletis, Evangelos; Dingley, Andrew J; Driscoll, Paul C

    2013-01-01

    Death-associated protein kinase (DAPk) is a calcium/calmodulin-regulated Ser/Thr-protein kinase that functions at an important point of integration for cell death signaling pathways. DAPk has a structurally unique multi-domain architecture, including a C-terminally positioned death domain (DD) that is a positive regulator of DAPk activity. In this study, recombinant DAPk-DD was observed to aggregate readily and could not be prepared in sufficient yield for structural analysis. However, DAPk-DD could be obtained as a soluble protein in the form of a translational fusion protein with the B1 domain of streptococcal protein G. In contrast to other DDs that adopt the canonical six amphipathic α-helices arranged in a compact fold, the DAPk-DD was found to possess surprisingly low regular secondary structure content and an absence of a stable globular fold, as determined by circular dichroism (CD), NMR spectroscopy and a temperature-dependent fluorescence assay. Furthermore, we measured the in vitro interaction between extracellular-regulated kinase-2 (ERK2) and various recombinant DAPk-DD constructs. Despite the low level of structural order, the recombinant DAPk-DD retained the ability to interact with ERK2 in a 1∶1 ratio with a K d in the low micromolar range. Only the full-length DAPk-DD could bind ERK2, indicating that the apparent 'D-motif' located in the putative sixth helix of DAPk-DD is not sufficient for ERK2 recognition. CD analysis revealed that binding of DAPk-DD to ERK2 is not accompanied by a significant change in secondary structure. Taken together our data argue that the DAPk-DD, when expressed in isolation, does not adopt a classical DD fold, yet in this state retains the capacity to interact with at least one of its binding partners. The lack of a stable globular structure for the DAPk-DD may reflect either that its folding would be supported by interactions absent in our experimental set-up, or a limitation in the structural bioinformatics

  13. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  14. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    Science.gov (United States)

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  15. Phosphorylation of inhibitor-2 and activation of MgATP-dependent protein phosphatase by rat skeletal muscle glycogen synthase kinase

    International Nuclear Information System (INIS)

    Hegazy, M.G.; Reimann, E.M.; Thysseril, T.J.; Schlender, K.K.

    1986-01-01

    Rat skeletal muscle contains a glycogen synthase kinase (GSK-M) which is not stimulated by Ca 2+ or cAMP. This kinase has an apparent Mr of 62,000 and uses ATP but not GTP as a phosphoryl donor. GSK-M phosphorylated glycogen synthase at sites 2 and 3. It phosphorylated ATP-citrate lyase and activated MgATP-dependent phosphatase in the presence of ATP but not GTP. As expected, the kinase also phosphorylated phosphatase inhibitor 2 (I-2). Phosphatase incorporation reached approximately 0.3 mol/mol of I-2. Phosphopeptide maps were obtained by digesting 32 P-labeled I-2 with trypsin and separating the peptides by reversed phase HPLC. Two partially separated 32 P-labeled peaks were obtained when I-2 was phosphorylated with either GSK-M or glycogen synthase kinase 3 (GSK-3) and these peptides were different from those obtained when I-2 was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase (CSU) or casein kinase II (CK-II). When I-2 was phosphorylated with GSK-M or GSK-3 and cleaved by CNBr, a single radioactive peak was obtained. Phosphoamino acid analysis showed that I-2 was phosphorylated by GSK-M or GSK-3 predominately in Thr whereas CSU and CK-II phosphorylated I-2 exclusively in Ser. These results indicate that GSK-M is similar to GSK-3 and to ATP-citrate lyase kinase. However, it appears to differ in Mr from ATP-citrate lyase kinase and it differs from GSK-3 in that it phosphorylates glycogen synthase at site 2 and it does not use GTP as a phosphoryl donor

  16. Csk regulates angiotensin II-induced podocyte apoptosis.<