WorldWideScience

Sample records for callunae starch phosphorylase

  1. The relation of starch phosphorylases to starch metabolism in wheat.

    Science.gov (United States)

    Schupp, Nicole; Ziegler, Paul

    2004-10-01

    Tissues of wheat (Triticum aestivum L., var. Star) exhibit three starch phosphorylase activity forms resolved by non-denaturing polyacrylamide gel affinity electrophoresis (P1, P2 and P3). Compartmentation analysis of young leaf tissues showed that P3 is plastidic, whereas P1 and P2 are cytosolic. P1 exhibits a strong binding affinity to immobilized glycogen upon electrophoresis, whereas P2 and the chloroplastic P3 do not. Cytosolic leaf phosphorylase was purified to homogeneity by affinity chromatography. The single polypeptide product constituted both the P1 and P2 activity forms. Probes for the detection of phosphorylase transcripts were derived from cDNA sequences of cytosolic and plastidic phosphorylases, and these-together with activity assays and a cytosolic phosphorylase-specific antiserum-were used to monitor phosphorylase expression in leaves and seeds. Mature leaves contained only plastidic phosphorylase, which was also strongly evident in the endosperm of developing seeds at the onset of reserve starch accumulation. Germinating seeds contained only cytosolic phosphorylase, which was restricted to the embryo. Plastidic phosphorylase thus appears to be associated with transitory leaf starch metabolism and with the initiation of seed endosperm reserve starch accumulation, but it plays no role in the degradation of the reserve starch. Cytosolic phosphorylase may be involved in the processing of incoming carbohydrate during rapid tissue growth.

  2. High phosphorylase activity is correlated with increased potato minituber formation and starch content during extended clinorotation

    Science.gov (United States)

    Nedukha, O. M.; Schnyukova, E. I.; Leach, J. E.

    2003-05-01

    The major purpose of these experiments were to investigate growth of potato storage organs and starch synthesis in minitubers at slow horizontal clinorotation (2 rpm), which partly mimics microgravity, and a secondary goal was to study the activity and localization of phosphorylase (EC 2.4.1.1) in storage parenchyma under these conditions. Miniplants of Solanum tuberosum L. (cv Adreta) were grown in culture for 30 days for both the vertical control and the horizontal clinorotation. During long-term clinorotation, an acceleration of minituber formation, and an increase of amyloplast number and size in storage parenchyma cells, as well as increased starch content, was observed in the minitubers. The differences among cytochemical reaction intensity, activity of phosphorylase, and carbohydrate content in storage parenchyma cells of minitubers grown in a horizontal clinostat were established by electron-cytochemical and biochemical methods. It is shown that high phosphorylase activity is correlated with increased starch content during extended clinorotation. The results demonstrate the increase in carbohydrate metabolism and possible accelerated growth of storage organs under the influence of microgravity, as mimicked by clinorotation; therefore, clinorotation can be used as a basis for future studies on mechanisms of starch synthesis under microgravity.

  3. Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase.

    Science.gov (United States)

    Mu, H H; Yu, Y; Wasserman, B P; Carman, G M

    2001-04-01

    A plastidic 112-kDa starch phosphorylase (SP) has been identified in the amyloplast stromal fraction of maize. This starch phosphorylase was purified 310-fold from maize endosperm and characterized with respect to its enzymological and kinetic properties. The purification procedure included ammonium sulfate fractionation, Sephacryl 300 HR chromatography, affinity starch adsorption, Q-Sepharose, and Mono Q chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and SDS-polyacrylamide gel electrophoresis. Anti-SP antibodies recognized the purified 112-kDa SP enzyme and N-terminal amino acid sequence analysis confirmed that the purified enzyme is the amyloplast stromal 112-kDa SP. Analysis of the purified enzyme by Superose 6 gel filtration chromatography indicated that the native enzyme consisted of two identical subunits. The pH optimum for the enzyme was 6.0 in the synthetic direction and 5.5 in the phosphorolytic direction. SP activity was inhibited by thioreactive agents, diethyl pyrocarbonate, phenylglyoxal, and ADP-glucose. The activation energies for the synthetic and phosphorolytic reactions were 11.1 and 16.9 kcal/mol, respectively, and the enzyme was thermally labile above 50 degrees C. Results of kinetic experiments indicated that the enzyme catalyzes its reaction via a sequential Bi Bi mechanism. The Km value for amylopectin was eight-fold lower than that of glycogen. A kinetic analysis indicated that the phosphorolytic reaction was favored over the synthetic reaction when malto-oligosaccharides (4 to 7 units) were used as substrates. The specificity constants (Vmax/Km) of the enzyme measured in either the synthetic or the phosphorolytic directions increased with increasing chain length.

  4. Overexpression of the Starch Phosphorylase-Like Gene (PHO3) in Lotus japonicus has a Profound Effect on the Growth of Plants and Reduction of Transitory Starch Accumulation

    Science.gov (United States)

    Qin, Shanshan; Tang, Yuehui; Chen, Yaping; Wu, Pingzhi; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2016-01-01

    Two isoforms of starch phosphorylase (PHO; EC 2.4.1.1), plastidic PHO1 and cytosolic PHO2, have been found in all plants studied to date. Another starch phosphorylase-like gene, PHO3, which is an ortholog of Chlamydomonas PHOB, has been detected in some plant lineages. In this study, we identified three PHO isoform (LjPHO) genes in the Lotus japonicus genome. Expression of the LjPHO3 gene was observed in all tissues tested in L. japonicus, and the LjPHO3 protein was located in the chloroplast. Overexpression of LjPHO3 in L. japonicus resulted in a drastic decline in starch granule sizes and starch content in leaves. The LjPHO3 overexpression transgenic seedlings were smaller, and showed decreased pollen fertility and seed set rate. Our results suggest that LjPHO3 may participate in transitory starch metabolism in L. japonicus leaves, but its catalytic properties remain to be studied. PMID:27630651

  5. Overexpression of the starch phosphorylase-like gene (PHO3 in Lotus japonicus has a profound effect on the growth of plants and reduction of transitory starch accumulation

    Directory of Open Access Journals (Sweden)

    Shanshan Qin

    2016-08-01

    Full Text Available Two isoforms of starch phosphorylase (PHO; EC 2.4.1.1, plastidic PHO1 and cytosolic PHO2, have been found in all plants studied to date. Another starch phosphorylase-like gene, PHO3, which is an ortholog of Chlamydomonas PHOB, has been detected in some plant lineages. In this study, we identified three PHO isoform (LjPHO genes in the Lotus japonicus genome. Expression of the LjPHO3 gene was observed in all tissues tested in L. japonicus, and the LjPHO3 protein was located in the chloroplast. Overexpression of LjPHO3 in L. japonicus resulted in a drastic decline in starch granule sizes and starch content in leaves. The LjPHO3 overexpression transgenic seedlings were smaller, and showed decreased pollen fertility and seed set rate. Our results suggest that LjPHO3 may participate in transitory starch metabolism in L. japonicus leaves, but its catalytic properties remain to be studied.

  6. Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature.

    Science.gov (United States)

    Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg

    2016-03-01

    Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures.

  7. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A;

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  8. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis.

    NARCIS (Netherlands)

    Sprogoe, D.; Broek, van den L.A.M.; Mirza, O.; Kastrup, J.S.; Voragen, A.G.J.; Gajhede, M.; Skov, L.K.

    2004-01-01

    Around 80 enzymes are implicated in the generic starch and sucrose pathways. One of these enzymes is sucrose phosphorylase, which reversibly catalyzes the conversion of sucrose and orthophosphate to d-Fructose and a-d-glucose 1-phosphate. Here, we present the crystal structure of sucrose phosphoryla

  9. Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas.

    Science.gov (United States)

    Genney, D R; Alexander, I J; Hartley, S E

    2000-06-01

    The role of ericoid mycorrhizal colonization in competition between the dwarf shrub Calluna vulgaris and coarse grass Nardus stricta was investigated. Nardus was grown alone, or in competition with Calluna, in a layered organic/sand substrate with and without inoculation with the ericoid mycorrhizal endophyte Hymenoscyphus ericae, and with and without the addition of nitrogen. Root length and allocation between different substrate layers was assessed along with plant biomass, nutrient uptake and mycorrhizal colonization. Calluna was the superior competitor for nutrients, probably because of its ability to concentrate root growth in the upper organic layer. In the presence of Calluna both the absolute amount and proportion of Nardus root length in the organic layer were reduced, and this reduction was greatest when Calluna was mycorrhizal. The presence of ericoid mycorrhizal colonization did not reduce Nardus shoot nutrient content or concentration, suggesting that ericoid mycorrhizal suppression of Nardus growth was not due to nutrient competition: alternative mechanisms of interference are discussed.

  10. Role of phosphorylase in the mechanism of potato minituber storage cell changes during clinorotation

    Science.gov (United States)

    Nedukha, O.; Shnyukova, E.

    The differences between the cytochemical reaction intensity and activity of phosphorylase (EC 2.4.1.1) and carbohydrate content in storage parenchyma cells of Solanum tuberosum L. (cv Adreta) minitubers grown for 30 days in the horizontal clinostate (2 rev/min) and in the control have been studied by electroncytochemical and biochemical methods. It is established an acceleration of minitubers formation and storage parenchyma cell differentiation at clinorotation. Electroncytochemical investigation of phosphorylase activity localization in the storage parenchyma cells of minitubers grown in control and at clinorotation showed the product of the reaction as electron-dense precipitate was marked plastids. Intensity and density of precipitate was increase in stroma of plastids and on starch grain surface during of intensive growth of starch in amyloplast (on 10- and 20-days of the minituber formation) of clinorotated minitubers in comparison with that in the control. The precipitate amount was decreased in the plastids on 30 day of growth in both variants. Using biochemical methods it is found that activity of phosphorylase and content of mono- and disaccharide and also starch content changed in minitubers formed during clinorotation and in the control. Data obtained are discussed regarding the possible mechanism of phosphorylase activity change and the role of mono- and disaccharide in acceleration of storage organ formation during clinorotation.

  11. Possible mechanism for spontaneous establishment of Calluna vulgaris in a recently abandoned agricultural field

    NARCIS (Netherlands)

    Van der Wal, A.; De Boer, W.; Klein Gunnewiek, P.J.A.; Van Veen, J.A.

    2009-01-01

    In Western Europe, arable lands have been abandoned to increase the area of nature, such as Calluna vulgaris–dominated heathlands. However, the growth conditions, e.g., nutrient availability and lack of a phenolics-rich organic layer, on ex-arable sandy soils differ markedly from those of heathland

  12. Enzymic degradiation of starch granules in the cotyledons of germinating peas.

    Science.gov (United States)

    Juliano, B O; Varner, J E

    1969-06-01

    Starch, total alpha- and beta-amylase, and phosphorylase levels and the zymogram patterns of these 3 starch-degrading enzymes were determined in the cotyledons of smooth pea (Pisum sativum L.) during the first 15 days of germination. Starch is degraded slowly in the first 6 days; during this time, alpha-amylase is very low, beta-amylase is present at a constant level while phosphorylase gradually increases and reaches a peak on the fifth day. Beginning on the sixth day there is a more rapid degradation of starch which coincides with alpha-amylase production. One phosphorylase band and 2 beta-amylase bands are present in the zymogram of the imbibed cotyledon. An additional phosphorylase band and 1 alpha-amylase band appear during germination. Seeds imbibed in benzyladenine, chloramphenicol, and in cycloheximide show retarded growth and slower starch degradation and enzyme production than the controls. We conclude that alpha-amylase is the major enzyme involved in the initial degradation of starch into more soluble forms while phosphorylase and beta-amylase assist in the further conversion to free sugars.

  13. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum

    NARCIS (Netherlands)

    Nakai, H.; Abou Hachem, M.; Petersen, B.O.; Westphal, Y.; Mannerstedt, K.; Baumann, M.J.; Dilokpimol, A.; Schols, H.A.; Duus, J.O.; Svensson, B.

    2010-01-01

    Inverting cellobiose phosphorylase (CtCBP) and cellodextrin phosphorylase (CtCDP) from Clostridium thermocellum ATCC27405 of glycoside hydrolase family 94 catalysed reverse phosphorolysis to produce cellobiose and cellodextrins in 57% and 48% yield from alpha-D-glucose 1-phosphate as donor with gluc

  14. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull

    DEFF Research Database (Denmark)

    Saaby, Lasse; Rasmussen, Hasse Bonde; Jäger, Anna Katharina

    2009-01-01

    and water. The three fractions were tested in a photometric peroxidase linked MAO-A bioassay. The ethyl acetate phase showed the highest MAO-A inhibitory activity. Quercetin was isolated by VLC through bioassay-guided fractionation and purified by re-crystallisation. The structure was elucidated by LC......-MS and (1)H NMR. RESULTS: The IC(50)-value for MAO-A inhibition by quercetin was 18+/-0.2muM in an assay where the IC(50)-value for MAO-A inhibition by clorgylin was 0.2+/-0.02muM. CONCLUSION: The content of quercetin in Calluna vulgaris might explain the reported nerve calming effect of the plant....

  15. Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank

    1978-01-01

    Two purine nucleoside phosphorylases (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) were purified from vegetative Bacillus subtilis cells. One enzyme, inosine-guanosine phosphorylase, showed great similarity to the homologous enzyme of Bacillus cereus. It appeared...

  16. Recombinant production and biochemical characterization of a hyperthermostable α-glucan/maltodextrin phosphorylase from Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Rahman M. Mizanur

    2008-01-01

    Full Text Available Alpha-glucan phosphorylase catalyzes the reversible cleavage of α-1-4-linked glucose polymers into α-D-glucose-1-phosphate. We report the recombinant production of an α-glucan/maltodextrin phosphorylase (PF1535 from a hyperthermophilic archaeon, Pyrococcus furiosus, and the first detailed biochemical characterization of this enzyme from any archaeal source using a mass-spectrometry-based assay. The apparent 98 kDa recombinant enzyme was active over a broad range of temperatures and pH, with optimal activity at 80 °C and pH 6.5–7. This archaeal protein retained its complete activity after 24 h at 80 °C in Tris-HCl buffer. Unlike other previously reported phosphorylases, the Ni-affinity column purified enzyme showed broad substrate specificity in both the synthesis and degradation of maltooligosaccharides. In the synthetic direction of the enzymatic reaction, the lowest oligosaccharide required for the chain elongation was maltose. In the degradative direction, the archaeal enzyme can produce glucose-1-phosphate from maltotriose or longer maltooligosaccharides including both glycogen and starch. The specific activity of the enzyme at 80 °C in the presence of 10 mM maltoheptaose and at 10 mg ml–1 glycogen concentration was 52 U mg–1 and 31 U mg–1, respectively. The apparent Michaelis constant and maximum velocity for inorganic phosphate were 31 ± 2 mM and 0.60 ± 0.02 mM min–1 µg–1, respectively. An initial velocity study of the enzymatic reaction indicated a sequential bi-bi catalytic mechanism. Unlike the more widely studied mammalian glycogen phosphorylase, the Pyrococcus enzyme is active in the absence of added AMP.

  17. In vitro activity of heather [Calluna vulgaris (L.) Hull] extracts on selected urinary tract pathogens

    Science.gov (United States)

    Vučić, Dragana M.; Petković, Miroslav R.; Rodić-Grabovac, Branka B.; Stefanović, Olgica D.; Vasić, Sava M.; Čomić, Ljiljana R.

    2014-01-01

    Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract. PMID:25428676

  18. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase.

    Science.gov (United States)

    Nakai, Hiroyuki; Petersen, Bent O; Westphal, Yvonne; Dilokpimol, Adiphol; Abou Hachem, Maher; Duus, Jens Ø; Schols, Henk A; Svensson, Birte

    2010-10-01

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMP) of the (alpha/alpha)(6)-barrel glycoside hydrolase family 65 (GH65) catalyses both phosphorolysis of maltose and formation of maltose by reverse phosphorolysis with beta-glucose 1-phosphate and glucose as donor and acceptor, respectively. LaMP has about 35 and 26% amino acid sequence identity with GH65 trehalose phosphorylase (TP) and kojibiose phosphorylase (KP) from Thermoanaerobacter brockii ATCC35047. The structure of L. brevis MP and multiple sequence alignment identified (alpha/alpha)(6)-barrel loop 3 that forms the rim of the active site pocket as a target for specificity engineering since it contains distinct sequences for different GH65 disaccharide phosphorylases. Substitution of LaMP His413-Glu421, His413-Ile418 and His413-Glu415 from loop 3, that include His413 and Glu415 presumably recognising the alpha-anomeric O-1 group of the glucose moiety at subsite +1, by corresponding segments from Ser426-Ala431 in TP and Thr419-Phe427 in KP, thus conferred LaMP with phosphorolytic activity towards trehalose and kojibiose, respectively. Two different loop 3 LaMP variants catalysed the formation of trehalose and kojibiose in yields superior of maltose by reverse phosphorolysis with (alpha1, alpha1)- and alpha-(1,2)-regioselectivity, respectively, as analysed by nuclear magnetic resonance. The loop 3 in GH65 disaccharide phosphorylase is thus a key determinant for specificity both in phosphorolysis and in regiospecific reverse phosphorolysis.

  19. Starch poisoning

    Science.gov (United States)

    Cooking starch poisoning; Laundry starch poisoning ... Cooking and laundry starch are both made from vegetable products, most commonly: Corn Potatoes Rice Wheat Both are usually considered nonpoisonous (nontoxic), but ...

  20. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Petersen, B.O.; Westphal, Y.

    2010-01-01

    of the active site pocket as a target for specificity engineering since it contains distinct sequences for different GH65 disaccharide phosphorylases. Substitution of LaMP His413-Glu421, His413-Ile418 and His413-Glu415 from loop 3, that include His413 and Glu415 presumably recognising the alpha-anomeric O-1...... in yields superior of maltose by reverse phosphorolysis with (alpha 1, alpha 1)- and alpha-(1,2)- regioselectivity, respectively, as analysed by nuclear magnetic resonance. The loop 3 in GH65 disaccharide phosphorylase is thus a key determinant for specificity both in phosphorolysis and in regiospecific...

  1. Isolation, identification and characterisation of starch-interacting proteins by 2-D affinity electrophoresis.

    Science.gov (United States)

    Kosar-Hashemi, Behjat; Irwin, Jennifer A; Higgins, Jody; Rahman, Sadequr; Morell, Matthew K

    2006-05-01

    A 2-D affinity electrophoretic technique (2-DAE) has been used to isolate proteins that interact with various starch components from total barley endosperm extracts. In the first dimension, proteins are separated by native PAGE. The second-dimensional gel contains polysaccharides such as amylopectin and glycogen. The migration of starch-interacting proteins in this dimension is determined by their affinity towards a particular polysaccharide and these proteins are therefore spatially separated from the bulk of proteins in the crude extract. Four distinct proteins demonstrate significant affinity for amylopectin and have been identified as starch branching enzyme I (SBEI), starch branching enzyme IIa (SBEIIa), SBEIIb and starch phosphorylase using polyclonal antibodies and zymogram activity analysis. In the case of starch phosphorylase, a protein spot was excised from a 2-DAE polyacrylamide gel and analysed using Q-TOF MS/MS, resulting in the alignment of three internal peptide sequences with the known sequence of the wheat plastidic starch phosphorylase isoform. This assignment was confirmed by the determination of the enzyme's function using zymogram analysis. Dissociation constants (Kd) were calculated for the three enzymes at 4 degrees C and values of 0.20, 0.21 and 1.3 g/L were determined for SBEI, SBEIIa and starch phosphorylase, respectively. Starch synthase I could also be resolved from the other proteins in the presence of glycogen and its identity was confirmed using a polyclonal antibody and by activity analysis. The 2-DAE method described here is simple, though powerful, enabling protein separation from crude extracts on the basis of function.

  2. Glucose 6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase.

    Science.gov (United States)

    Aiston, Susan; Andersen, Birgitte; Agius, Loranne

    2003-06-01

    High glucose concentration suppresses hepatic glycogenolysis by allosteric inhibition and dephosphorylation (inactivation) of phosphorylase-a. The latter effect is attributed to a direct effect of glucose on the conformation of phosphorylase-a. Although glucose-6-phosphate (G6P), like glucose, stimulates dephosphorylation of phosphorylase-a by phosphorylase phosphatase, its physiological role in regulating glycogenolysis in intact hepatocytes has not been tested. We show in this study that metabolic conditions associated with an increase in G6P, including glucokinase overexpression and incubation with octanoate or dihydroxyacetone, cause inactivation of phosphorylase. The latter conditions also inhibit glycogenolysis. The activity of phosphorylase-a correlated inversely with the G6P concentration within the physiological range. The inhibition of glycogenolysis and inactivation of phosphorylase-a caused by 10 mmol/l glucose can be at least in part counteracted by inhibition of glucokinase with 5-thioglucose, which lowers G6P. In conclusion, metabolic conditions that alter the hepatic G6P content affect glycogen metabolism not only through regulation of glycogen synthase but also through regulation of the activation state of phosphorylase. Dysregulation of G6P in diabetes by changes in activity of glucokinase or glucose 6-phosphatase may be a contributing factor to impaired suppression of glycogenolysis by hyperglycemia.

  3. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis

    DEFF Research Database (Denmark)

    Sprogøe, Desiree; van den Broek, Lambertus A M; Mirza, Osman

    2004-01-01

    phosphorylase from Bifidobacterium adolescentis (BiSP) refined at 1.77 A resolution. It represents the first 3D structure of a sucrose phosphorylase and is the first structure of a phosphate-dependent enzyme from the glycoside hydrolase family 13. The structure of BiSP is composed of the four domains A, B, B...

  4. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase

    NARCIS (Netherlands)

    Nakai, H.; Petersen, B.O.; Westphal, Y.; Dilokpimol, A.; Hachem, M.A.; Duus, J.O.; Schols, H.A.; Svensson, B.

    2010-01-01

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMP) of the (a/a)6-barrel glycoside hydrolase family 65 (GH65) catalyses both phosphorolysis of maltose and formation of maltose by reverse phosphorolysis with ß-glucose 1-phosphate and glucose as donor and acceptor, respectively. LaMP has about

  5. The effect of fluoropyrimidines with or without thymidine phosphorylase inhibitor on the expression of thymidine phosphorylase.

    NARCIS (Netherlands)

    Bruin, de M.; Capel, van T; Smid, K.; Fukushima, M; Hoekman, K.; Pinedo, H.M.; Peters, G.J.

    2004-01-01

    Thymidine phosphorylase (platelet-derived-endothelial-cell-growth-factor) catalyzes the reversible phosphorolysis of thymidine to thymine and 2-deoxyribose-1-phosphate, activates 5'-deoxy-5-fluorouridine (5'DFUR) and inactivates trifluorothymidine (TFT). The effect of 5'DFUR and TFT with or without

  6. Plantain and banana starches: granule structural characteristics explain the differences in their starch degradation patterns.

    Science.gov (United States)

    Soares, Claudinéia Aparecida; Peroni-Okita, Fernanda Helena Gonçalves; Cardoso, Mateus Borba; Shitakubo, Renata; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2011-06-22

    Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. α- and β-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of α-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas.

  7. Modified 5-fluorouracil: Uridine phosphorylase inhibitor

    Science.gov (United States)

    Lashkov, A. A.; Shchekotikhin, A. A.; Shtil, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2016-09-01

    5-Fluorouracil (5-FU) is a medication widely used in chemotherapy to treat various types of cancer. Being a substrate for the reverse reaction catalyzed by uridine phosphorylase (UPase), 5-FU serves as a promising prototype molecule (molecular scaffold) for the design of a selective UPase inhibitor that enhances the antitumor activity of 5-FU and exhibits intrinsic cytostatic effects on cancer cells. The chemical formula of the new compound, which binds to the uracil-binding site and, in the presence of a phosphate anion, to the phosphate-binding site of UPase, is proposed and investigated by molecular simulation methods.

  8. The Crystal Structure of Streptococcus pyogenes Uridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Timothy H.; Christoffersen, S.; Allan, Paula W.; Parker, William B.; Piskur, Jure; Serra, I.; Terreni, M.; Ealick, Steven E. (Cornell); (Pavia); (Lund); (Southern Research)

    2011-09-20

    Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 {angstrom} resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an ?/? monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is {approx}7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.

  9. Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules.

    Science.gov (United States)

    Fettke, Joerg; Albrecht, Tanja; Hejazi, Mahdi; Mahlow, Sebastian; Nakamura, Yasunori; Steup, Martin

    2010-02-01

    Reserve starch is an important plant product but the actual biosynthetic process is not yet fully understood. Potato (Solanum tuberosum) tuber discs from various transgenic plants were used to analyse the conversion of external sugars or sugar derivatives to starch. By using in vitro assays, a direct glucosyl transfer from glucose 1-phosphate to native starch granules as mediated by recombinant plastidial phosphorylase was analysed. Compared with labelled glucose, glucose 6-phosphate or sucrose, tuber discs converted externally supplied [(14)C]glucose 1-phosphate into starch at a much higher rate. Likewise, tuber discs from transgenic lines with a strongly reduced expression of cytosolic phosphoglucomutase, phosphorylase or transglucosidase converted glucose 1-phosphate to starch with the same or even an increased rate compared with the wild-type. Similar results were obtained with transgenic potato lines possessing a strongly reduced activity of both the cytosolic and the plastidial phosphoglucomutase. Starch labelling was, however, significantly diminished in transgenic lines, with a reduced concentration of the plastidial phosphorylase isozymes. Two distinct paths of reserve starch biosynthesis are proposed that explain, at a biochemical level, the phenotype of several transgenic plant lines.

  10. Recent development of phosphorylases possessing large potential for oligosaccharide synthesis

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Kitaoka, Motomitsu; Svensson, Birte;

    2013-01-01

    catalysts for efficient synthesis of particular oligosaccharides from a donor sugar 1-phosphate and suitable carbohydrate acceptors with strict regioselectivity. Although utilization of phosphorylases for oligosaccharide synthesis has been limited because only few different enzymes are known, recently...

  11. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)

    2016-05-11

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  12. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown.

  13. Nicotinamide riboside phosphorylase from beef liver: purification and characterization.

    Science.gov (United States)

    Imai, T; Anderson, B M

    1987-04-01

    Nicotinamide riboside phosphorylase (NR phosphorylase) from beef liver has been purified to apparent homogeneity at 300-fold purification with a 35% yield. Kinetic constants for the enzyme-catalyzed phosphorolysis were as follows Knicotinamide riboside, 2.5 +/- 0.4 mM; Kinorganic phosphate, 0.50 +/- 0.12 mM; Vmax, 410 +/- 30 X 10(-6) mol min-1 mg protein-1, respectively. The molecular weights of the native enzyme and subunit structure were determined to be 131,000 and 32,000, respectively, suggesting the beef liver NR phosphorylase to be tetrameric in structure and consistent with the presence of identical subunits. The amino acid composition was shown to be very similar to that reported for human erythrocyte purine-nucleoside phosphorylase but differing considerably from that found for rat liver purine-nucleoside phosphorylase. In addition to catalytic activity with nicotinamide riboside, the beef liver enzyme catalyzed a phosphorolytic reaction with inosine and guanosine exhibiting activity ratios, nicotinamide riboside:inosine: guanosine of 1.00:0.35:0.29, respectively. These ratios of activity remained constant throughout purification of the beef liver enzyme and no separation of these activities was detected. Phosphorolysis of nicotinamide riboside was inhibited competitively by inosine (Ki = 75 microM) and guanosine (Ki = 75 microM). Identical rates of thermal denaturation of the beef liver enzyme were observed when determined for the phosphorolysis of either nicotinamide riboside or inosine. These observations coupled with studies of pH and specific buffer effects indicate the phosphorolysis of nicotinamide riboside, inosine, and guanosine to be catalyzed by the same enzyme.

  14. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.

    Science.gov (United States)

    Nakai, Hiroyuki; Hachem, Maher Abou; Petersen, Bent O; Westphal, Yvonne; Mannerstedt, Karin; Baumann, Martin J; Dilokpimol, Adiphol; Schols, Henk A; Duus, Jens Ø; Svensson, Birte

    2010-12-01

    Inverting cellobiose phosphorylase (CtCBP) and cellodextrin phosphorylase (CtCDP) from Clostridium thermocellum ATCC27405 of glycoside hydrolase family 94 catalysed reverse phosphorolysis to produce cellobiose and cellodextrins in 57% and 48% yield from α-d-glucose 1-phosphate as donor with glucose and cellobiose as acceptor, respectively. Use of α-d-glucosyl 1-fluoride as donor increased product yields to 98% for CtCBP and 68% for CtCDP. CtCBP showed broad acceptor specificity forming β-glucosyl disaccharides with β-(1→4)- regioselectivity from five monosaccharides as well as branched β-glucosyl trisaccharides with β-(1→4)-regioselectivity from three (1→6)-linked disaccharides. CtCDP showed strict β-(1→4)-regioselectivity and catalysed linear chain extension of the three β-linked glucosyl disaccharides, cellobiose, sophorose, and laminaribiose, whereas 12 tested monosaccharides were not acceptors. Structure analysis by NMR and ESI-MS confirmed two β-glucosyl oligosaccharide product series to represent novel compounds, i.e. β-D-glucopyranosyl-[(1→4)-β-D-glucopyranosyl](n)-(1→2)-D-glucopyranose, and β-D-glucopyranosyl-[(1→4)-β-D-glucopyranosyl](n)-(1→3)-D-glucopyranose (n = 1-7). Multiple sequence alignment together with a modelled CtCBP structure, obtained using the crystal structure of Cellvibrio gilvus CBP in complex with glucose as a template, indicated differences in the subsite +1 region that elicit the distinct acceptor specificities of CtCBP and CtCDP. Thus Glu636 of CtCBP recognized the C1 hydroxyl of β-glucose at subsite +1, while in CtCDP the presence of Ala800 conferred more space, which allowed accommodation of C1 substituted disaccharide acceptors at the corresponding subsites +1 and +2. Furthermore, CtCBP has a short Glu496-Thr500 loop that permitted the C6 hydroxyl of glucose at subsite +1 to be exposed to solvent, whereas the corresponding longer loop Thr637-Lys648 in CtCDP blocks binding of C6-linked disaccharides as

  15. 'Who's who' in two different flower types of Calluna vulgaris (Ericaceae: morphological and molecular analyses of flower organ identity

    Directory of Open Access Journals (Sweden)

    Krüger Katja

    2009-12-01

    Full Text Available Abstract Background The ornamental crop Calluna vulgaris is of increasing importance to the horticultural industry in the northern hemisphere due to a flower organ mutation: the flowers of the 'bud-flowering' phenotype remain closed i.e. as buds throughout the total flowering period and thereby maintain more colorful flowers for a longer period of time than the wild-type. This feature is accompanied and presumably caused by the complete lack of stamens. Descriptions of this botanical particularity are inconsistent and partially conflicting. In order to clarify basic questions of flower organ identity in general and stamen loss in detail, a study of the wild-type and the 'bud-flowering' flower type of C. vulgaris was initiated. Results Flowers were examined by macro- and microscopic techniques. Organ development was investigated comparatively in both the wild-type and the 'bud-flowering' type by histological analyses. Analysis of epidermal cell surface structure of vegetative tissues and perianth organs using scanning electron microscopy revealed that in wild-type flowers the outer whorls of colored organs may be identified as sepals, while the inner ones may be identified as petals. In the 'bud-flowering' type, two whorls of sepals are directly followed by the gynoecium. Both, petals and stamens, are completely missing in this flower type. The uppermost whorl of green leaves represents bracts in both flower types. In addition, two MADS-box genes (homologs of AP3/DEF and SEP1/2 were identified in C. vulgaris using RACE-PCR. Expression analysis by qRT-PCR was conducted for both genes in leaves, bracts, sepals and petals. These experiments revealed an expression pattern supporting the organ classification based on morphological characteristics. Conclusions Organ identity in both wild-type and 'bud-flowering' C. vulgaris was clarified using a combination of microscopic and molecular methods. Our results for bract, sepal and petal organ identity are

  16. Stimulating effect of phosphatidic acid on autophosphorylation of phosphorylase kinase.

    Science.gov (United States)

    Negami, A I; Sasaki, H; Yamamura, H

    1985-09-16

    Autophosphorylation of phosphorylase kinase from rabbit skeletal muscle was stimulated by acidic phospholipids such as phosphatidic acid (PA), phosphatidylinositol, and phosphatidyl-serine. PA stimulated an initial velocity of autophosphorylation 3.8-fold. When fully autophosphorylated, about 11 mol of phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of PA and about 6.5 mol in the absence of PA. In the presence of PA (100 micrograms/ml), there was a concomitant enhancement of its kinase activity about 25-fold at pH 6.8. PA (100 micrograms/ml) sharply decreased an apparent Ka for Ca2+ on autophosphorylation from 4.0 X 10(-5) M to 1.0 X 10(-6) M. Available evidence indicates that the Ca2+-activated, PA-dependent autophosphorylation of phosphorylase kinase shows an ability to stimulate glycogen breakdown.

  17. Resistant starches.

    Science.gov (United States)

    Jenkins, D J; Kendall, C W

    2000-03-01

    Initially, it was hoped that resistant starches (ie, starches that enter the colon) would have clear advantages in the reduction of colon cancer risk and possibly the treatment of ulcerative colitis. Recent studies have confirmed the ability of resistant starch to increase fecal bulk, to increase the molar ratio of butyrate in relation to other short-chain fatty acids, and to dilute fecal bile acids. However, reduction in fecal ammonia, phenols, and N-nitroso compounds have not been achieved. At this point the picture from the standpoint of colon cancer risk reduction is not clear. Nevertheless, there is a fraction of what has been termed resistant starch (RS1), which enters the colon and acts as slowly digested, or lente, carbohydrate. Foods in this class are low glycemic index and have been shown to reduce the risk of chronic disease. They have been associated with systemic physiologic effects such as reduced postprandial insulin levels and higher high-density lipoprotein cholesterol levels. Consumption of low glycemic index foods has been shown to be related to a reduced risk of type 2 diabetes. Type 2 diabetes has in turn been related to a higher risk of colon cancer, especially colon cancer deaths. If carbohydrate has a protective role in colon cancer prevention, it may lie in the systemic effects of low glycemic index foods. The colonic advantages of different carbohydrates, therefore, remain to be documented. However, there is reason for optimism about the possible health advantages of so-called resistant starches that are slowly digested in the small intestine.

  18. Purine nucleoside phosphorylase deficiency in two unrelated Saudi patients

    OpenAIRE

    Alangari, Abdullah; Al-Harbi, Abdullah; Al-Ghonaium, Abdulaziz; Santisteban, Ines; Hershfield, Michael

    2009-01-01

    Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive metabolic disorder that results in combined immunodeficiency, neurologic dysfunction and autoimmunity. PNP deficiency has never been reported from Saudi Arabia or in patients with an Arabic ethnic background. We report on two Saudi girls with PNP deficiency. Both showed severe lymphopenia and neurological involvement. Sequencing of the PNP gene of one girl revealed a novel missense mutation Pro146>Leu in exon 4 due...

  19. Experiment 9: ASTROCULTURE: Growth and Starch Accumulation of Potato Tuber

    Science.gov (United States)

    Tibbitts, Theodore W.; Brown, Christopher S.; Croxdale, Judith G.; Wheeler, Raymond M.

    1998-01-01

    Potato explants (leaf, small stem section, and axillary bud) flown on STS-73 developed tubers of 1.5 cm diameter and 1.7 g mass during the 16-day period of space flight. The experiment was undertaken in the ASTROCULTURE(TM) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers that formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was similar in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in space flight and ground controls, but activity of ADP-glucose pyrophosphorylase was reduced in the space flight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in space flight as on the ground. Thus, this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  20. Space Experiment on Tuber Development and Starch Accumulation for CELSS

    Science.gov (United States)

    Tibbitts,Theodore W.; Croxdale, Judith C.; Brown, Christopher S.

    1997-01-01

    Potato explants (leaf, small stem section, and axillary bud), flown on STS-73, developed tubers of 1.5 cm diameter and 1.7 g mass during the 16 day period of spaceflight. The experiment was undertaken in the ASTROCULTURE(Trademark) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was singular in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in spaceflight and ground controls but activity of ADP-glucose pyrophosphorylase was reduced in the spaceflight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in spaceflight as on the ground and thus this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  1. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature.

    Science.gov (United States)

    Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin

    2012-05-01

    Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹⁴C]glucose 1-phosphate, [U-¹⁴C]sucrose, [U-¹⁴C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹⁴C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹⁴-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹⁴C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹⁴C]glucose 1-phosphate or adenosine-[U-¹⁴C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹⁴C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional

  2. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  3. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    DEFF Research Database (Denmark)

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...... groups of rats. These changes may partly explain the demonstrated training-induced increase in glucose tolerance. None of the findings could be ascribed to differences in foold intake or body weight....

  4. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

    Science.gov (United States)

    Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-09-01

    Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

  5. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...... biosynthesis and demonstrates the possibility for in planta production of highly phosphorylated cereal starch....

  6. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... branching connecting larger chain segments. In case of high BE activity this transfer happened prior to hydration and phase separation. The starch substrates thereby became locked in their granular structure and blocked furher access of BE. Transferase-based modification of starch has today almost...... exclusively been conducted on gelatinized starch. This study provides a new concept for transferase-based modification of starches in granular state....

  7. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside

    Institute of Scientific and Technical Information of China (English)

    Xiao-kun WEI; Qing-bao DING; Lu ZHANG; Yong-li GUO; Lin OU; Chang-lu WANG

    2008-01-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells ofEnterobacter aerogenes DCJO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  8. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside.

    Science.gov (United States)

    Wei, Xiao-Kun; Ding, Qing-Bao; Zhang, Lu; Guo, Yong-Li; Ou, Lin; Wang, Chang-Lu

    2008-07-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells of Enterobacter aerogenes DGO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  9. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii.

    Science.gov (United States)

    Cheng, Kun; Zhang, Fei; Sun, Fangfang; Chen, Hongge; Percival Zhang, Y-H

    2015-08-20

    Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin - the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 (o)C for 30 min. This enzyme was characterized and required Mg(2+) as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 (o)C in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated.

  10. Unusual starch degradation pathway via cyclodextrins in the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324.

    Science.gov (United States)

    Labes, Antje; Schönheit, Peter

    2007-12-01

    The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, alpha-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly beta-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway.

  11. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  12. X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases

    Science.gov (United States)

    Prokofev, I. I.; Lashkov, A. A.; Gabdulkhakov, A. G.; Balaev, V. V.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-11-01

    In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data, supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2'-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation

  13. Interaction of muscle glycogen phosphorylase b reconstituted from apoenzyme and analogs of pyridoxal-5'-phosphate with specific ligands.

    Science.gov (United States)

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaya, A A; Kurganov, B I; Gunar, V I

    1996-04-01

    Phosphorylase b from rabbit skeletal muscles was reconstituted with analogs of PLP containing residues -CH(2)-CH(2)-COOH, trans-CH=CH-COOH or -C=-COOH at position 5. Replacing native coenzyme in the phosphorylase molecule with any PLP analog tested leads to the decrease in the enzyme affinity for the allosteric inhibitor, FMN. Phosphorylase b reconstituted with analogs of PLP shows the greater ability for association in tetramers in the presence of 1 mM AMP than native enzyme.

  14. Thermomechanical treatment of starch

    NARCIS (Netherlands)

    Goot, van der A.J.; Einde, van den R.M.

    2006-01-01

    Starch is used as a major component in many food and nonfood applications and determines the overall product properties to a large extent. It is therefore important to understand the effect of processing on starch. Many starch-based products are produced using a thermal as well as a mechanical treat

  15. Studies on responsiveness of hepatoma cells to catecholamines. IV. Lack of adrenergic activation of phosphorylase in rat ascites hepatoma cells.

    Science.gov (United States)

    Miyamoto, K; Yanaoka, T; Sanae, F; Wakusawa, S; Koshiura, R

    1986-10-01

    Glycogen phosphorylase a activity in 7 rat ascites hepatoma cell lines treated with adrenergic agents, phenylephrine, epinephrine and isoproterenol, was investigated as compared with that in freshly isolated rat hepatocytes. Basal phosphorylase activities in hepatoma cells except AH7974 cells were lower than that in hepatocytes. Phosphorylase in hepatoma cells was not activated by any of the agents, while the enzyme activity in hepatocytes was clearly increased in a dose- and time-dependent manner. Phosphorylase in hepatocytes was sensitive to glucagon, but it was found to be insensitive to glucagon in all hepatoma cells. The present results suggest that rat ascites hepatoma cells may escape the glycogenolytic regulation by catecholamines and glucagon.

  16. Localization of thymidine phosphorylase in advanced gastric and colorectal cancer.

    Science.gov (United States)

    Kobayashi, Michiya; Okamoto, Ken; Akimori, Toyokazu; Tochika, Naoshige; Yoshimoto, Tadashi; Okabayashi, Takehiro; Sugimoto, Takeki; Araki, Keijiro

    2004-01-01

    Thymidine phosphorylase (TP) is known to be more concentrated in human cancer tissues than in adjacent normal tissue based on findings using enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. However, the ultrastructural localization of TP in cancer tissues has not previously been demonstrated. We investigated the localization of TP in gastric cancer and colorectal cancer tissue by ELISA, immunohistochemistry, and immunoelectron microscopy. Between April 1997 and May 2000, we obtained surgically resected specimens from 42, 46, and 36 cases of advanced gastric, colon, and rectal cancer, respectively. ELISA demonstrated that the TP level was higher in cancer tissues than in adjacent normal tissue. Immunohistochemically, cancer cells were positive for the enzyme in some cases. However, in a number of cases immunopositive inflammatory cells were also present in cancerous tissues. At the electron microscope level, TP was diffusely distributed in the cytoplasm of cancer cells and in the mitochondria of the neutrophil in gastric cancer tissue. In rectal cancer tissues, cytoplasmic granules in macrophages in cancer tissues were immunoreactive for the TP. These findings suggest that TP is produced by macrophages and exists in neutrophils and cancer cells.

  17. STARCH RETROGRADATION AND PRODUCTION OF RESISTANT STARCH IN COOKED RICE

    OpenAIRE

    2008-01-01

    After rice cooking, retrogradation of starch in a cooked rice progresses quickly at under gelatinization temperature. Cold rice (aging rice) is tasteless, firm and digested slowly. My aim in this report is explained the relationship between cold rice tasteless and indexes of starch retrogradation. Starch gelatinization degree, starch whiteness index and resistant starch content that were indexes of starch retrogradation did not change remarkably of cold and aging rice that were very firm and ...

  18. Synthesis, screening and docking of small heterocycles as glycogen phosphorylase inhibitors.

    Science.gov (United States)

    Schweiker, Stephanie S; Loughlin, Wendy A; Lohning, Anna S; Petersson, Maria J; Jenkins, Ian D

    2014-09-12

    A series of morpholine substituted amino acids (phenylalanine, leucine, lysine and glutamic acid) was synthesized. A fragment-based screening approach was then used to evaluate a series of small heterocycles, including morpholine, oxazoline, dihydro-1,3-oxazine, tetrahydro-1,3-oxazepine, thiazoline, tetrahydro-1,3-pyrimidine, tetrahydro-1,3-diazepine and hexahydro-1H-benzimidazole, as potential inhibitors of Glycogen Phosphorylase a. Thiazoline 7 displayed an improved potency (IC50 of 25 μM) and had good LE and LELP values, as compared to heterocycles 1, 5, 9-13 and 19 (IC50 values of 1.1 mM-23.9 mM). A docking study using the crystal structure of human liver Glycogen Phosphorylase, provided insight into the interactions of heterocycles 5, 7, 9-13 and 19 with Glycogen Phosphorylase.

  19. Fetal-onset severe skeletal muscle glycogenosis associated with phosphorylase-b kinase deficiency.

    Science.gov (United States)

    Bührer, C; van Landeghem, F; Brück, W; Felderhoff-Müser, U; Vorgerd, M; Obladen, M

    2000-04-01

    We report on a premature newborn girl delivered after 32 weeks of gestation by cesarean section after sparse limb movements, fetal tachycardia and late heart rate decelerations had suggested fetal distress. Following 1 day of mechanical ventilation, adequate pulmonary gas exchange was achieved by spontaneous breathing. Main symptoms were virtually complete absence of spontaneous movements, increased flexor tonus of the extremities, and hypotonia of the trunk. Inability to suck or swallow required nasogastric gavage feeding. There were no hypoglycemic episodes. Echocardiography revealed normal myocardial function. Creatine kinase was 237 U/I at 2 days of life, declining to normal values thereafter. Muscle biopsy revealed increased glycogen storage with subsarcolemmal glycogen deposits and low phosphorylase-a activity while total phosphorylase was normal after in vitro activation, suggestive of phosphorylase-b kinase deficiency. No mutation was detected in exon 1 of the myophosphorylase gene. No psychomotor development was observed, and the infant died of central apnea at 3 months of age.

  20. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    Science.gov (United States)

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  1. Large-scale isolation, fractionation, and purification of soluble starch-synthesizing enzymes: starch synthase and branching enzyme from potato tubers.

    Science.gov (United States)

    Mukerjea, Rupendra; Falconer, Daniel J; Yoon, Seung-Heon; Robyt, John F

    2010-07-19

    Soluble starch-synthesizing enzymes, starch synthase (SSS) and starch-branching enzyme (SBE), were isolated, fractionated, and purified from white potato tubers (Solanum tuberosum) on a large scale. Five steps were used: potato tuber extract from 2 kg of peeled potatoes, two acetone precipitations, and two fractionations on a large ultrafiltration polysulfone hollow fiber 100 kDa cartridge. Three kinds of fractions were obtained: (1) mixtures of SSS and SBE; (2) SSS, free of SBE; and (3) SBE, free of SSS. Contaminating enzymes (amylase, phosphorylase, and disproportionating enzyme) and carbohydrates were absent from the 2nd acetone precipitate and from the column fractions, as judged by the Molisch test and starch triiodide test. Activity yields of 122% (300,000-400,000 units) of SSS fractions and 187% (40,000-50,000 units) of SBE fractions were routinely obtained from the cartridge. Addition of 0.04% (w/v) polyvinyl alcohol 50K and 1 mM dithiothreitol to the glycine buffer (pH 8.4) gave long-term stability and higher yields of SSS and SBE, due to activation of inactive enzymes. Several SSS and SBE fractions from the two fractionations had very high specific activities, indicating high degrees of purification. Polyacrylamide gel electrophoresis of selected SSS and SBE fractions gave two to five SSS and/or SBE activity bands, corresponding to the one to five protein bands present in the 2nd acetone precipitate.

  2. In situ enzymatic removal of orthophosphate by the nucleoside phosphorylase catalyzed phosphorolysis of nicotinamide riboside.

    Science.gov (United States)

    Shriver, J W; Sykes, B D

    1982-09-01

    An enzymatic orthophosphate removal system is described which can be effectively used to continuously remove orthophosphate from biochemical samples. The phosphorolysis of nicotinamide riboside is catalyzed by calf spleen nucleoside phosphorylase to give ribose-1-PO4 and nicotinamide along with a proton. At pH 8 the production of ribose-1-PO4 from orthophosphate is essentially quantitative. This reaction can be monitored optically or by 31P nuclear magnetic resonance (NMR). Equations are given for determining the time required to remove a given amount of phosphate from a typical NMR sample with a known amount of nucleoside phosphorylase. The effects of a competing orthophosphate-producing reaction are considered.

  3. Active site conformational dynamics in human uridine phosphorylase 1.

    Directory of Open Access Journals (Sweden)

    Tarmo P Roosild

    Full Text Available Uridine phosphorylase (UPP is a central enzyme in the pyrimidine salvage pathway, catalyzing the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate. Human UPP activity has been a focus of cancer research due to its role in activating fluoropyrimidine nucleoside chemotherapeutic agents such as 5-fluorouracil (5-FU and capecitabine. Additionally, specific molecular inhibitors of this enzyme have been found to raise endogenous uridine concentrations, which can produce a cytoprotective effect on normal tissues exposed to these drugs. Here we report the structure of hUPP1 bound to 5-FU at 2.3 A resolution. Analysis of this structure reveals new insights as to the conformational motions the enzyme undergoes in the course of substrate binding and catalysis. The dimeric enzyme is capable of a large hinge motion between its two domains, facilitating ligand exchange and explaining observed cooperativity between the two active sites in binding phosphate-bearing substrates. Further, a loop toward the back end of the uracil binding pocket is shown to flexibly adjust to the varying chemistry of different compounds through an "induced-fit" association mechanism that was not observed in earlier hUPP1 structures. The details surrounding these dynamic aspects of hUPP1 structure and function provide unexplored avenues to develop novel inhibitors of this protein with improved specificity and increased affinity. Given the recent emergence of new roles for uridine as a neuron protective compound in ischemia and degenerative diseases, such as Alzheimer's and Parkinson's, inhibitors of hUPP1 with greater efficacy, which are able to boost cellular uridine levels without adverse side-effects, may have a wide range of therapeutic applications.

  4. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84.

    Science.gov (United States)

    Petrov, Kaloyan; Urshev, Zoltan; Petrova, Penka

    2008-06-01

    A new Lactococcus lactis subsp. lactis B84, capable of utilizing starch as a sole carbon source and producing L(+)-lactate, was isolated from spontaneously fermented rye sourdough. Aiming at maximum lactic acid productivity, the components of the media and the cultivation conditions were varied. In MRS-starch medium (with absence of yeast and meat extracts), at 33 degrees C, agitation 200 rpm and pH 6.0 for 6 days complete starch hydrolysis occurred and 5.5 gl(-1) lactic acid were produced from 18 gl(-1) starch. The identification of strain B84 was based on genetic criteria. Amplified ribosomal DNA restriction analysis (ARDRA), PCR with species-specific primers and sequencing of the 16S rDNA proved its species affiliation. Four genes for enzymes, involved in starch degradation were detected in B84 genome: amyL, amyY, glgP and apu, coding cytoplasmic and extracellular alpha-amylases, glycogen phosphorylase and amylopullulanase, respectively. Reverse transcription PCR experiments showed that both genes, encoding alpha-amylases (amyL and amyY) were expressed into mRNAs, whereas apu and glgP were not. Amylase activity assay was performed at different pH and temperatures. The cell-bond amylase proved to be the key enzyme, involved in the starch hydrolysis with maximum activity at 45 degrees C and pH 5.4.

  5. Potato starch synthases

    NARCIS (Netherlands)

    Nazarian-Firouzabadi, Farhad; Visser, Richard G.F.

    2017-01-01

    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still insuffic

  6. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    the wild-type cultivar. These exciting results may provide a potential clean technological approach to starch modification by in-planta bioengineering and avoid environmental hazards resulting from post-harvest treatments by chemical modifications. The third study was to investigate the effects...... involved in this process, has enabled the genetic modification f crops in a rational manner to produce novel designer starches with improved functionality. The hypothesis of the present study is that the hyper-phosphorylation of cereal endosperm starch makes it easily accessible and degradable...... by the amylolytic enzymes while the amylose-only endosperm starch exhibits high resistance to degradation and hence less available for degradation. With the aim to investigate the hypothesis, starch molecular structures were modulated with the above mentioned modifications and were studied for the effects...

  7. The malQ gene is essential for starch metabolism in Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Yutaka Sato

    2013-08-01

    Full Text Available Background: The malQ and glgP genes, respectively, annotated as putative 4-α-glucanotransferase and putative glycogen phosphorylase are located with a 29 nucleotide overlap on the Streptococcus mutans genome. We found that the glgP gene of this organism was induced with maltose, and the gene likely constituted an operon with the upstream gene malQ. This putative operon was negatively regulated with the malR gene located upstream from the malQ gene and a MalR-binding consensus sequence was found upstream of the malQ gene. S. mutans is not able to catabolize starch. However, this organism utilizes maltose degraded from starch in the presence of saliva amylase. Therefore, we hypothesized that the MalQ/GlgP system may participate in the metabolism of starch-degradation products. Methods: A DNA fragment amplified from the malQ or glgP gene overexpressed His-tagged proteins with the plasmid pBAD/HisA. S. mutans malQ and/or glgP mutants were also constructed. Purified proteins were assayed for glucose-releasing and phosphorylase activities with appropriate buffers containing maltose, maltotriose, maltodextrin, or amylodextrin as a substrate, and were photometrically assayed with a glucose-6-phosphate dehydrogenase–NADP system. Results: Purified MalQ protein released glucose from maltose and maltotriose but did not from either maltodextrin or amylodextrin. The purified GlgP protein did not exhibit a phosphorylase reaction with maltose or maltotriose but generated glucose-1-phosphate from maltodextrin and amylodextrin. However, the GlgP protein released glucose-1-phosphate from maltose and maltotriose in the presence of the MalQ protein. In addition, the MalQ enzyme activity with maltose released not only glucose but also produced maltooligosaccharides as substrates for the GlgP protein. Conclusion: These results suggest that the malQ gene encodes 4-α-glucanotransferase but not α-1,4-glucosidase activity. The malQ mutant could not grow in the

  8. Role of platelet-derived enclothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity

    NARCIS (Netherlands)

    de Bruin, M; van Capel, T; Van der Born, K; Kruyt, FA; Fukushinna, M; Hoekman, K; Pinedo, HM; Peters, GJ

    2003-01-01

    Platelet-derived endothelial cell growth factor (PD-ECGF)/thymidine phosphorylase (TP) catalyses the reversible phosphorolysis of thymidine to thymine and 2-deoxyribose-1-phosphate and is involved in the metabolism of fluoropyrimidines. It can also activate 5'-deoxyfluorouridine (5'DFUR) and possibl

  9. Accumulation of thymidine-derived sugars in thymidine phosphorylase overexpressing cells

    NARCIS (Netherlands)

    Bijnsdorp, I. V.; Azijli, K.; Jansen, E. E.; Wamelink, M. M.; Jakobs, C.; Struys, E. A.; Fukushima, M.; Kruyt, F. A. E.; Peters, G. J.

    2010-01-01

    Thymidine phosphorylase (TP) is often overexpressed in cancer and potentially plays a role in the stimulation of angiogenesis The exact mechanism of angiogenesis induction is unclear, but is postulated to be related to thymidine-derived sugars. TP catalyzes the conversion of thymidine (TdR) to thymi

  10. Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency?

    NARCIS (Netherlands)

    Orngreen, M.C.; Schelhaas, H.J.; Jeppesen, T.D.; Akman, H.O.; Wevers, R.A.; Andersen, S.T.; Laak, H.J. ter; Diggelen, OP van; DiMauro, S.; Vissing, J.

    2008-01-01

    OBJECTIVE: It is unclear to what extent muscle phosphorylase b kinase (PHK) deficiency is associated with exercise-related symptoms and impaired muscle metabolism, because 1) only four patients have been characterized at the molecular level, 2) reported symptoms have been nonspecific, and 3) lactate

  11. Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion

    DEFF Research Database (Denmark)

    Mirza, Osman; Henriksen, Lars Skov; Sprogøe, Desiree

    2006-01-01

    The reaction mechanism of sucrose phosphorylase from Bifidobacterium adolescentis (BiSP) was studied by site-directed mutagenesis and x-ray crystallography. An inactive mutant of BiSP (E232Q) was co-crystallized with sucrose. The structure revealed a substrate-binding mode comparable with that seen...

  12. Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency?

    DEFF Research Database (Denmark)

    Orngreen, M.C.; Schelhaas, H.J.; Jeppesen, T.D.;

    2008-01-01

    OBJECTIVE: It is unclear to what extent muscle phosphorylase b kinase (PHK) deficiency is associated with exercise-related symptoms and impaired muscle metabolism, because 1) only four patients have been characterized at the molecular level, 2) reported symptoms have been nonspecific, and 3) lact...

  13. Polymer phosphorylases: clues to the emergence of non-replicative and replicative polymers.

    Science.gov (United States)

    Freire, Miguel Angel

    2011-12-01

    Polymer formation is arguably one of the essential factors that allowed the emergence, stabilisation and spread of life on Earth. Consequently, studies concerning biopolymers could shed light on the origins of life itself. Of particular interest are RNA and polysaccharide polymers, the archetypes of the contrasting proposed evolutionary scenarios and their respective polymerases. Nucleic acid polymerases were hypothesised, before their discovery, to have a functional similarity with glycogen phosphorylase. Further identification and characterisation of nucleic acid polymerases; particularly of polynucleotide phosphorylase (PNPase), provided experimental evidence for the initial premise. Once discovered, frequent similarities were found between PNPase and glycogen phosphorylase, in terms of catalytic features and biochemical properties. As a result, PNPase was seen as a model of primitive polymerase and used in laboratory precellular systems. Paradoxically, however, these similarities were not sufficient as an argument in favour of an ancestral common polymerisation mechanism prior to polysaccharides and polyribonucleotides. Here we present an overview of the common features shared by polymer phosphorylases, with new proposals for the emergence of polysaccharide and RNA polymers.

  14. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  15. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  16. Resistant starches and health.

    Science.gov (United States)

    Kendall, Cyril W C; Emam, Azadeh; Augustin, Livia S A; Jenkins, David J A

    2004-01-01

    It was initially hypothesized that resistant starches, i.e., starch that enters the colon, would have protective effects on chronic colonic diseases, including reduction of colon cancer risk and in the treatment of ulcerative colitis. Recent studies have confirmed the ability of resistant starch to increase fecal bulk, increase the molar ratio of butyrate in relation to other short-chain fatty acids, and dilute fecal bile acids. However the ability of resistant starch to reduce luminal concentrations of compounds that are damaging to the colonic mucosa, including fecal ammonia, phenols, and N-nitroso compounds, still requires clear demonstration. As such, the effectiveness of resistant starch in preventing or treating colonic diseases remains to be assessed. Nevertheless, there is a fraction of what has been termed resistant (RS1) starch, which enters the colon and acts as slowly digested or lente carbohydrate in the small intestine. Foods in this class are low glycemic index and have been shown to reduce the risk of chronic disease. They have been associated with systemic physiological effects such as reduced postprandial insulin levels and higher HDL cholesterol levels. Consumption of low glycemic index foods has been shown to be related to reductions in risk of coronary heart disease and Type 2 diabetes. Type 2 diabetes has in turn been related to a higher risk of colon cancer. If carbohydrates have a protective role in colon cancer prevention this may lie partly in the systemic effects of low glycemic index foods. The colonic advantages of different carbohydrates, varying in their glycemic index and resistant starch content, therefore, remain to be determined. However, as recent positive research findings continue to mount, there is reason for optimism over the possible health advantages of those resistant starches, which are slowly digested in the small intestine.

  17. Starch bioengineering in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan Tommy; Glaring, Mikkel Andreas;

    2011-01-01

    Brachypodium distachyon was recently introduced as a model plant for temperate cereals (Opanowicz et al., 2008). We aim to establish Brachypodium as a model for cereal starch metabolism. Grain starch from two lines: Bd21 and Bd21-3 are being characterized. Microscopic, chemical and structural data...... including amylopectin chain length distribution, phosphate content and amylose content provided further evidence for the close relationship to temperate cereals even though starch content and starch granule size were considerably lower than that for barley (Hordeum vulgare). Bioinformatics analyses...... identified starch biosynthesis genes including seven soluble starch synthases (SS), three granule bound starch syntheses (GBSS), four starch branching enzymes (SBE), two glucan- and one phosphoglucan- water dikinases (GWD, PWD). Phylogenetic analysis based on the SS genes provided evidence for a close...

  18. Food microstructure and starch digestion.

    Science.gov (United States)

    Singh, Jaspreet; Kaur, Lovedeep; Singh, Harjinder

    2013-01-01

    Microstructural characteristics of starch-based natural foods such as parenchyma or cotyledon cell shape, cell size and composition, and cell wall composition play a key role in influencing the starch digestibility during gastrointestinal digestion. The stability of cell wall components and the arrangement of starch granules in the cells may affect the free access of amylolytic enzymes during digestion. Commonly used food processing techniques such as thermal processing, extrusion cooking, and post-cooking refrigerated storage alter the physical state of starch (gelatinization, retrogradation, etc.) and its digestibility. Rheological characteristics (viscosity) of food affect the water availability during starch hydrolysis and, consequently, the absorption of digested carbohydrates in the gastrointestinal tract. The nonstarch ingredients and other constituents present in food matrix, such as proteins and lipids interact with starch during processing, which leads to an alteration in the overall starch digestibility and physicochemical characteristics of digesta. Starch digestibility can be controlled by critically manipulating the food microstructure, processing techniques, and food composition.

  19. Combined enzymatic starch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nebesny, E.

    1989-07-01

    From researches so far there comes out that glucoamylase AMG 300 L and pullulanase Promozyme 200 L when used in quantities the same as in preparation of Dextrozyme 225/75 L Novo at an action on liquified starch by means of /alpha/-amylase after 48 h of saccharification already (similarly like Dextrozyme) are able to get up to 98 DE. Chromatographic analysis proved that glucoamylase AMG 300 L Novo and succouring it pullulanase Promozyme 200 L are working most effectively when both enzymes are added to the liquified starch medium simultaneously. From this comes out that pullulanase hydrolyzes better /alpha/-1,6 bonds in lowmolecular dextrins than in oligosaccharides G/sub 4/ to G/sub 7/ formed at previous action of glucoamylase. At an optimum ratio of glucoamylase and pullulanase in relation to the dissolved starch after 8 h of the hydrolysis there are neither iso-sugars (isomaltose, panose), no oligosaccharides higher than G/sub 5/ and no dextrins. At the solution of the starch by /alpha/-amylase and its hydrolysis by enzymatic preparation Fungamyl 800 L Novo, at doses 0.02-0.8% to d.s. of starch, already after 8 h the reaction of hydrolysis contents of 36-62% maltose in dry substance of hydrolyzates are reached with only traces of glucose. (orig.).

  20. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    Science.gov (United States)

    Abramchik, Yu. A.; Timofeev, V. I.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-01

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P21 and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  1. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Abramchik, Yu. A., E-mail: inna@ns.crys.ras.ru; Timofeev, V. I., E-mail: espiov@ibch.ru; Zhukhlistova, N. E., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Muravieva, T. I.; Esipov, R. S. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  2. Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution

    Science.gov (United States)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-03-01

    Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment of the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB_ID: 4RJ2).

  3. Engineering the specificity of trehalose phosphorylase as a general strategy for the production of glycosyl phosphates.

    Science.gov (United States)

    Chen, Chao; Van der Borght, Jef; De Vreese, Rob; D'hooghe, Matthias; Soetaert, Wim; Desmet, Tom

    2014-07-25

    A two-step process is reported for the anomeric phosphorylation of galactose, using trehalose phosphorylase as biocatalyst. The monosaccharide enters this process as acceptor but can subsequently be released from the donor side, thanks to the non-reducing nature of the disaccharide intermediate. A key development was the creation of an optimized enzyme variant that displays a strict specificity (99%) for β-galactose 1-phosphate as product.

  4. One-Pot Biosynthesis of High-Concentration α-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes.

    Science.gov (United States)

    Zhou, Wei; You, Chun; Ma, Hongwu; Ma, Yanhe; Zhang, Y-H Percival

    2016-03-01

    α-Glucose 1-phosphate (G1P) is synthesized from 5% (w/v) corn starch and 1 M phosphate mediated by α-glucan phosphorylase (αGP) from the thermophilic bacterium Thermotoga maritima at pH 7.2 and 70 °C. To increase G1P yield from corn starch containing branched amylopectin, a hyper-thermostable isoamylase from Sulfolobus tokodaii was added for simultaneous starch gelatinization and starch-debranching hydrolysis at 85 °C and pH 5.5 before αGP use. The pretreatment of isoamylase increased G1P titer from 120 mM to 170 mM. To increase maltose and maltotriose utilization, the third thermostable enzyme, 4-glucanotransferase (4GT) from Thermococcus litoralis, was added during the late stage of G1P biotransformation, further increasing G1P titer to 200 mM. This titer is the highest G1P level obtained on starch or its derived products (maltodextrin and soluble starch). This study suggests that in vitro multienzyme biotransformation has an advantage of great engineering flexibility in terms of space and time compared with microbial fermentation.

  5. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4

    Science.gov (United States)

    Ho, Shih-Hsin; Nakanishi, Akihito; Kato, Yuichi; Yamasaki, Hiroaki; Chang, Jo-Shu; Misawa, Naomi; Hirose, Yuu; Minagawa, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-01-01

    Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used “dynamic” metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel. PMID:28374798

  6. 1,4-alpha-Glucan phosphorylase form Klebsiella pneumoniae covalently couple on porous glass.

    Science.gov (United States)

    Wengenmayer, F; Linder, D; Wallenfels, K

    1977-09-01

    A simplified procedure for the preparation of 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is described. An 80-fold purification is achieved in two steps with an overall yield of about 50%. The specific activity of the homogeneous enzyme protein is 17.7 units/mg. Compared with glycogen phosphorylase from rabbit muscle the enzyme from K. pneumoniae shows a markedly higher stability against deforming and chaotropic agents. The 1,4-alpha-glucan phosphorylase was covalently bound to porous glass particles by three different methods. Coupling with glutaraldehyde gave the highest specific activity, i.e., 5.6 units/mg of bound protein or 133 units/g of glass with maltodextrin as substrate. This corresponds to about 30% of the specific activity of the soluble enzyme. With substrates of higher molecular weight, such as glycogen or amylopectin, lower relative activity was observed. The immobilized enzyme preparations showed pH activity profiles which were slightly displaced to higher values and exhibited an increased temperature stability.

  7. 1, 4-alpha-Glucan phosphorylase from Klebsiella pneumoniae purification, subunit structure and amino acid composition.

    Science.gov (United States)

    Linder, D; Kurz, G; Bender, H; Wallenfels, K

    1976-11-01

    1. A 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae has been purified about 80-fold with an over-all yield greater than 35%. The purified enzyme has been shown to be homogeneous by gel electrophoresis at different pH-values, by isoelectric focusing, by dodecylsulfate electrophoresis and by ultracentrifugation. 2. The molecular weight of the native enzyme has been determined to be 180 000 by ultra-centrifugation studies, in good agreement with the value of 189 000 estimated by gel permeation chromatography. 3. The enzyme dissociates in the presence of 0.1% dodecylsulfate or 5 M guanidine hydrochloride into polypeptide chains. The molecular weight of these polypeptide chains has been found to be 88 000 by dodecylsulfate polyacrylamide gel electrophoresis and 99 000 by sedimentation equilibrium studies, indicating that the native enzyme is composed of two polypeptide chains. 4. The enzyme contains pyridoxalphosphate with a stoichiometry of two moles per 180 000 g protein, confirming that the 1,4-alpha-glucan phosphorylase from Klebsiella pneumoniae is a dimeric enzyme. 5. The amino acid composition of the enzyme has been determined, and its correspondence to that of 1,4-alpha-glucan phosphorylases from other sources is discussed. 6. The pI of the enzyme has been shown to be 5.3 and its pH-optimum to be about pH 5.9. The enzyme is stable in the range from pH 5.9 to 10.5.

  8. [Properties of sucrose phosphorylase from recombinant Escherichia coli and enzymatic synthesis of alpha-arbutin].

    Science.gov (United States)

    Wan, Yuejia; Ma, Jiangfeng; Xu, Rong; He, Aiyong; Jiang, Min; Chen, Kequan; Jiang, Yin

    2012-12-01

    Sucrose phosphorylase (EC 2.4.1.7, Sucrose phosphorylase, SPase) can be produced by recombinant strain Escherichia coli Rosetta(DE3)/Pet-SPase. Crude enzyme was obtained from the cells by the high pressure disruption and centrifugation. Sucrose phosphorylase was purified by Ni-NTA affinity column chromatography and desalted by ultrafiltration. The specific enzyme activity was 1.1-fold higher than that of the crude enzyme, and recovery rate was 82.7%. The purified recombinant SPase had a band of 59 kDa on SDS-PAGE. Thermostability of the enzyme was shown at temperatures up to 37 degrees C, and pH stability between pH 6.0 and 6.7. The optimum temperature and pH were 37 degrees C and 6.7, respectively. The K(m) of SPase for sucrose was 7.3 mmol/L, and Vmax was 0.2 micromol/(min x mg). Besides, alpha-arbutin was synthesized from sucrose and hydroquinone by transglucosylation with recombinant SPase. The optimal conditions for synthesis of alpha-arbutin were 200 U/mL of recombinant SPase, 20% of sucrose, and 1.6% hydroquinone at pH 6-6.5 and 25 degrees C for 21 h. Under these conditions, alpha-arbutin was obtained with a 78.3% molar yield with respect to hydroquinone, and the concentration of alpha-arbutin was about 31 g/L.

  9. Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Lerner, Anat; Castro-Sowinski, Susana; Lerner, Hadas; Okon, Yaacov; Burdman, Saul

    2009-11-01

    Here we report the identification of a glycogen phosphorylase (glgP) gene in the plant growth-promoting rhizobacterium Azospirillum brasilense, Sp7, and the characterization of a glgP marker exchange mutant of this strain. The glgP mutant showed a twofold reduction of glycogen phosphorylase activity and an increased glycogen accumulation as compared with wild-type Sp7, indicating that the identified gene indeed encodes a protein with glycogen phosphorylase activity. Interestingly, the glgP mutant had higher survival rates than the wild type after exposure to starvation, desiccation and osmotic pressure. The mutant was shown to be compromised in its biofilm formation ability. Analysis of the exopolysaccharide sugar composition of the glgP mutant revealed a decrease in the amount of glucose, accompanied by increases in rhamnose, fucose and ribose, as compared with the Sp7 exopolysaccharide. To the best of our knowledge, this is the first study that demonstrates GlgP activity in A. brasilense, and shows that glycogen accumulation may play an important role in the stress endurance of this bacterium.

  10. Starches and their sugar derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, P. (Societe Roquette Freres, 62 - Lestrem (France))

    1982-12-01

    After reviewing the composition of natural starches and their uses, the author deals with starch transformation processes, either by physical processing or chemical treatment. He describes particularly the various starch hydrolysis products together with their derivatives, amongst which are sought products which could replace sugar.

  11. Structure of potato starch

    DEFF Research Database (Denmark)

    Bertoft, Eric; Blennow, Andreas

    2016-01-01

    are interconnected by long chains with more than 36 residues. The clusters consist of still smaller, very tightly branched building blocks. The clusters direct the semicrystalline structures found inside the starch granules. The crystals, which are ~5.2. nm thick, contain double helices formed from the external...... chains extending from the clusters. A range of enzymes is involved in the biosynthesis of the cluster structures and linear segments. These are required for sugar activation, chain elongation, branching, and trimming of the final branching pattern. As an interesting feature, potato amylopectin...... is substituted with low amounts of phosphate groups monoesterified to the C-3 and the C-6 carbons of the glucose units. They seem to align well in the granular structure and have tremendous effects on starch degradation in the potato and functionality of the refined starch. A specific dikinase catalyzes...

  12. Hydroxyethyl starch in sepsis

    DEFF Research Database (Denmark)

    Haase, Nicolai Rosenkrantz Segelcke

    2014-01-01

    BACKGROUND: Hydroxyethyl starch (HES) is a colloid that has been widely used for fluid resuscitation for decades. The newest generation of HES, tetrastarch, was believed to provide an efficient volume expansion without causing the side effects observed with former HES solutions. However, this bel......BACKGROUND: Hydroxyethyl starch (HES) is a colloid that has been widely used for fluid resuscitation for decades. The newest generation of HES, tetrastarch, was believed to provide an efficient volume expansion without causing the side effects observed with former HES solutions. However...

  13. Heterologous expression of two Arabidopsis starch dikinases in potato

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Starch phosphate esters influence physiochemical properties of starch granules that are essential both for starch metabolism and industrial use of starches. To modify properties of potato starch and understand the effect of starch phosphorylation on starch metabolism in storage starch, the starch di

  14. The future of starch bioengineering

    DEFF Research Database (Denmark)

    Hebelstrup, Kim H.; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch...... processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots...... concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved....

  15. Process for oxidising starch

    NARCIS (Netherlands)

    Sivasligil, D.S.; Bogaert, P.M.P.; Slaghek, T.M.

    2000-01-01

    The viscosity of starch and other carbohydrates can be lowered inexpensively, rapidly and without residual streams by treatment with hydrogen peroxide and a catalyst, in particular an organic acid or acid anhydride. After carbohydrate, hydrogen peroxide and catalyst have been brought together, the m

  16. Isolation, crystallization and preliminary crystallographic analysis of Salmonella typhimurium uridine phosphorylase crystallized with 2,2′-anhydrouridine

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.; Pavlyuk, Bogdan Ph. [A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiy Prospect 59, 119333 Moscow (Russian Federation); Kachalova, Galina S. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, 142290 Pushchino, Moscow Region (Russian Federation); Betzel, Christian [Institute fur Biochemie und Lebensmittelchemie, University of Hamburg, c/o DESY, Building 22, Notkestrasse 85, 22604 Hamburg (Germany); Morgunova, Ekaterina Yu.; Zhukhlistova, Nadezhda E.; Mikhailov, Al’bert M., E-mail: amm@ns.crys.ras.ru [A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiy Prospect 59, 119333 Moscow (Russian Federation)

    2007-10-01

    S. typhimurium uridine phosphorylase has been isolated and crystallized in the presence of ligand. Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.

  17. Starches, resistant starches, the gut microflora and human health.

    Science.gov (United States)

    Bird, A R; Brown, I L; Topping, D L

    2000-03-01

    Starches are important as energy sources for humans and also for their interactions with the gut microflora throughout the digestive tact. Largely, those interactions promote human health. In the mouth, less gelatinised starches may lower risk of cariogensis. In the large bowel, starches which have escaped small intestinal digestion (resistant starch), together with proteins, other undigested carbohydrates and endogenous secretions are fermented by the resident microflora. The resulting short chain fatty acids contribute substantially to the normal physiological functions of the viscera. Specific types of resistant starch (e.g. the chemically modified starches used in the food industry) may be used to manipulate the gut bacteria and their products (including short chain fatty acids) so as to optimise health. In the upper gut, these starches may assist in the transport of probiotic organisms thus promoting the immune response and suppressing potential pathogens. However, it appears unlikely that current probiotic organisms can be used to modulate large bowel short chain fatty acids in adults although resistant starch and other prebiotics can do so. Suggestions that starch may exacerbate certain conditions (such as ulcerative colitis) through stimulating the growth of certain pathogenic organisms appear to be unfounded. Short chain fatty acids may modulate tissue levels and effects of growth factors in the gut and so modify gut development and risk of serious disease, including colo-rectal cancer. However, information on the relationship between starches and the microflora is relatively sparse and substantial opportunities exist both for basic research and food product development.

  18. Food preparation characteristics of potato starch pastes containing a proportion of chemically-modified starch

    OpenAIRE

    菊地, 和美; 高橋 セツ子; 吉田 訓子; 山本 未穂; 知地 英征; Kazumi, KIKUCHI; Takahashi, Setsuko; Yoshida, Kuniko; Yamamoto, Miho; Chiji, Hideyuki; 藤女子大学人間生活学部食物栄養学科; 藤女子大学人間生活学部食物栄養学科藤女子大学大学院人間生活学研究科食物栄養学専攻

    2011-01-01

    Hokkaido potatoes are widely used as a source of starch. Potato starch is used for various purposes,particularly for the production of fish paste products,livestock products, and confectionery. Moreover, modified starch, which is produced by processing potato starch chemically and physically, is used in a variety of forms. This study examines the properties of modified starch gels produced by further enhancing the starch functions of potato starch. To study the primary properties of starch ge...

  19. Granulomatous peritonitis caused by glove starch.

    OpenAIRE

    Michowitz, M.; Stavorovsky, M.; Ilie, B.

    1983-01-01

    Corn starch particles are used as a surgical glove lubricant. At present there is no better alternative for this lubricant. Implantation of corn starch particles into the peritoneal cavity can induce foreign body reactions, starch peritonitis and starch granulomata, and may cause adhesions and intestinal obstruction. Starch peritonitis should be treated conservatively.

  20. In silico binding analysis and SAR elucidations of newly designed benzopyrazine analogs as potent inhibitors of thymidine phosphorylase.

    Science.gov (United States)

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Rahim, Fazal; Wadood, Abdul; Al Muqarrabun, Laode Muhammad Ramadhan; Khan, Khalid Mohammed; Ghufran, Mehreen; Ali, Muhammad

    2016-10-01

    Thymidine phosphorylase (TP) is up regulated in wide variety of solid tumors and therefore presents a remarkable target for drug discovery in cancer. A novel class of extremely potent TPase inhibitors based on benzopyrazine (1-28) has been developed and evaluated against thymidine phosphorylase enzyme. Out of these twenty-eight analogs eleven (11) compounds 1, 4, 14, 15, 16, 17, 18, 19, 20, 24 and 28 showed potent thymidine phosphorylase inhibitory potentials with IC50 values ranged between 3.20±0.30 and 37.60±1.15μM when compared with the standard 7-Deazaxanthine (IC50=38.68±4.42μM). Structure-activity relationship was established and molecular docking studies were performed to determine the binding interactions of these newly synthesized compounds. Current studies have revealed that these compounds established stronger hydrogen bonding networks with active site residues as compare to the standard compound 7DX.

  1. Plant-crafted starches for bioplastics production

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Hebelstrup, Kim H.; Leroy, Eric

    2016-01-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was bot...

  2. Mitochondrial neurogastrointestinal encephalomyopathy: novel pathogenic mutations in thymidine phosphorylase gene in two Italian brothers.

    Science.gov (United States)

    Libernini, Laura; Lupis, Chiara; Mastrangelo, Mario; Carrozzo, Rosalba; Santorelli, Filippo Maria; Inghilleri, Maurizio; Leuzzi, Vincenzo

    2012-08-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE, MIM 603041) is an autosomal recessive multisystem disorder occurring due to mutations in a nuclear gene coding for the enzyme thymidine phosphorylase (TYMP). Clinical features of MNGIE include gastrointestinal dysmotility, cachexia, ptosis or ophthalmoparesis, peripheral neuropathy, diffuse leukoencephalopathy, and signs of mitochondrial dysfunction in tissues. We report the clinical and molecular findings in two brothers in whom novel TYMP gene mutations (c.215-13_215delinsGCGTGA; c.1159 + 2T > A) were associated with different clinical presentations and outcomes.

  3. Structures of native human thymidine phosphorylase and in complex with 5-iodouracil

    OpenAIRE

    Mitsiki, Eirini; Papageorgiou, Anastassios C.; Iyer, Shalini; Thiyagarajan, Nethaji; Prior, Steven H.; Sleep, Darrell; Finnis, Chris; Acharya, K. Ravi

    2009-01-01

    Thymidine phosphorylase (TP) first identified as platelet derived endothelial cell growth factor (PD-ECGF) plays a key role in nucleoside metabolism. Human TP (hTP) is implicated in angiogenesis and is overexpressed in several solid tumors. Here, we report the crystal structures of recombinant hTP and its complex with a substrate 5-iodouracil (5IUR) at 3.0 and 2.5 Å, respectively. In addition, we provide information on the role of specific residues in the enzymatic activity of hTP through mut...

  4. Amino acid anthranilamide derivatives as a new class of glycogen phosphorylase inhibitors.

    Science.gov (United States)

    Evans, Karen A; Li, Yue H; Coppo, Frank T; Graybill, Todd L; Cichy-Knight, Maria; Patel, Mehul; Gale, Jennifer; Li, Hu; Thrall, Sara H; Tew, David; Tavares, Francis; Thomson, Stephen A; Weiel, James E; Boucheron, Joyce A; Clancy, Daphne C; Epperly, Andrea H; Golden, Pamela L

    2008-07-15

    A series of amino acid anthranilamide derivatives identified from a high-throughput screening campaign as novel, potent, and glucose-sensitive inhibitors of human liver glycogen phosphorylase a are described. A solid-phase synthesis using Wang resin was also developed which provided efficient access to a variety of analogues, and resulted in the identification of key structure-activity relationships, and the discovery of a potent exemplar (IC(50)=80 nM). The SAR scope, synthetic strategy, and in vitro results for this series are presented herein.

  5. Starch digestion capacity of poultry.

    Science.gov (United States)

    Svihus, B

    2014-09-01

    Starch is quantitatively the most important nutrient in poultry diets and will to a large extent be present as intact starch granules due to very limited extent of gelatinization during pelleting. Although native starch is difficult to digest due to a semi-crystalline structure, even fast-growing broiler chickens appears to be able to digest this starch more or less completely during passage through the jejunum. However, reduced starch digestibility has been observed, particularly in pelleted diets containing large quantities of wheat. Although properties of the starch granule such as size and components on the granule surface may affect digestibility, the entrapment of starch granules in cell walls and a protein matrix may be even more important factors impeding starch digestion. In that case, this and the fact that amylase secretion is normally very high in poultry may explain the lack of convincing effects of exogenous α-amylase added to the diet. However, few well-designed experiments assessing mechanisms of starch digestion and the effect of α-amylase supplementation have been carried out, and thus more research is needed in this important area.

  6. Retrogradation of rye starch pastes

    Directory of Open Access Journals (Sweden)

    Anna Nowotna

    2007-12-01

    Full Text Available The retrogradation susceptibility of starch determines consumer suitability of food products rich in this polymer. Starch isolated from flour obtained from rye variety ‘Amilo’, which displays very low amylolytic activity, contains highest amounts of amylose and exhibits strong retrogradation susceptibility. Flour from rye ‘Dańkowskie Złote’ and commercial rye flour type 720, that have higher amylolytic activity in comparison to ‘Amilo’, contain starch with lower amounts of amylose and reduced retrogradation susceptibility. Wheat starch displays lower degree of retrogradation in comparison to rye, because of larger amounts of phosphorus (phospholipids.

  7. Iminosugars as potential inhibitors of glycogenolysis: structural insights into the molecular basis of glycogen phosphorylase inhibition.

    Science.gov (United States)

    Oikonomakos, Nikos G; Tiraidis, Costas; Leonidas, Demetres D; Zographos, Spyros E; Kristiansen, Marit; Jessen, Claus U; Nørskov-Lauritsen, Leif; Agius, Loranne

    2006-09-21

    Iminosugars DAB (5), isofagomine (9), and several N-substituted derivatives have been identified as potent inhibitors of liver glycogen phosphorylase a (IC(50) = 0.4-1.2 microM) and of basal and glucagon-stimulated glycogenolysis (IC(50) = 1-3 microM). The X-ray structures of 5, 9, and its N-3-phenylpropyl analogue 8 in complex with rabbit muscle glycogen phosphorylase (GPb) shows that iminosugars bind tightly at the catalytic site in the presence of the substrate phosphate and induce conformational changes that characterize the R-state conformation of the enzyme. Charged nitrogen N1 is within hydrogen-bonding distance with the carbonyl oxygen of His377 (5) and in ionic contact with the substrate phosphate oxygen (8 and 9). Our findings suggest that the inhibitors function as oxocarbenium ion transition-state analogues. The conformational change to the R state provides an explanation for previous findings that 5, unlike inhibitors that favor the T state, promotes phosphorylation of GPb in hepatocytes with sequential inactivation of glycogen synthase.

  8. Structural determinants of the 5'-methylthioinosine specificity of Plasmodium purine nucleoside phosphorylase.

    Directory of Open Access Journals (Sweden)

    Teraya M Donaldson

    Full Text Available Plasmodium parasites rely upon purine salvage for survival. Plasmodium purine nucleoside phosphorylase is part of the streamlined Plasmodium purine salvage pathway that leads to the phosphorylysis of both purines and 5'-methylthiopurines, byproducts of polyamine synthesis. We have explored structural features in Plasmodium falciparum purine nucleoside phosphorylase (PfPNP that affect efficiency of catalysis as well as those that make it suitable for dual specificity. We used site directed mutagenesis to identify residues critical for PfPNP catalytic activity as well as critical residues within a hydrophobic pocket required for accommodation of the 5'-methylthio group. Kinetic analysis data shows that several mutants had disrupted binding of the 5'-methylthio group while retaining activity for inosine. A triple PfPNP mutant that mimics Toxoplasma gondii PNP had significant loss of 5'-methylthio activity with retention of inosine activity. Crystallographic investigation of the triple mutant PfPNP with Tyr160Phe, Val66Ile, andVal73Ile in complex with the transition state inhibitor immucillin H reveals fewer hydrogen bond interactions for the inhibitor in the hydrophobic pocket.

  9. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications.

  10. Characterization of potato leaf starch.

    Science.gov (United States)

    Santacruz, Stalin; Koch, Kristine; Andersson, Roger; Aman, Per

    2004-04-07

    The starch accumulation-degradation process as well as the structure of leaf starch are not completely understood. To study this, starch was isolated from potato leaves collected in the early morning and late afternoon in July and August, representing different starch accumulation rates. The starch content of potato leaves varied between 2.9 and 12.9% (dry matter basis) over the night and day in the middle of July and between 0.6 and 1.5% in August. Scanning electron microscopy analyses of the four isolated starch samples showed that the granules had either an oval or a round shape and did not exceed 5 microm in size. Starch was extracted by successive washing steps with dimethyl sulfoxide and precipitated with ethanol. An elution profile on Sepharose CL-6B of debranched starch showed the presence of a material with a chain length distribution between that generally found for amylose and amylopectin. Amylopectin unit chains of low molecular size were present in a higher amount in the afternoon than in the morning samples. What remains at the end of the night is depleted in specific chain lengths, mainly between DP 15 and 24 and above DP 35, relative to the end of the day.

  11. Brucite nanoplate reinforced starch bionanocomposites

    Science.gov (United States)

    In this paper the mechanical reinforcement in a series of bionanocomposites films based on starch and nano-sized brucite, Mg(OH)2, was investigated. Brucite nanoplates with an aspect ratio of 9.25 were synthesized by wet precipitation and incorporated into starch matrices at different concentrations...

  12. Acid resistance of starch granules

    Energy Technology Data Exchange (ETDEWEB)

    Nara, S.; Sakakura, M.; Komiya, T.

    1983-08-01

    When potato starch was hydrolyzed to form Naegeli amylodextrin by 16% sulfuric acid at 30/sup 0/C, only the amorphous portion of the starch granules was deteriorated. The crystallinity of Naegeli amylodextrin showing the hydrolysis ratio of 0.22 was 1.28 times as large as that of original starch. The hydrolysis process at above 45/sup 0/C was given by two exponential equations. The value of acid resistance portion (C/sub 0/) at 30 and 38/sup 0/C was 100%, while the values at 45, 50 and 55/sup 0/C were 67, 38 and 18%, respectively. The high value of C/sub 0/ generally showed the high acid resistance in the various starches. Sweet potato and waxy rice starches were more easily hydrolysed than other starches, although they gave the relatively high value of C/sub 0/. Thus, it was slightly more difficult for low acid resistance portion of potato starch to be hydrolyzed than for that of other starches. Moreover, that of waxy rice was easily hydrolyzed.

  13. Starch Applications for Delivery Systems

    Science.gov (United States)

    Li, Jason

    2013-03-01

    Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion

  14. Regio- and stereoselective glucosylation of diols by sucrose phosphorylase using sucrose or glucose 1-phosphate as glucosyl donor

    NARCIS (Netherlands)

    Renirie, R.; Pukin, A.; Lagen, van B.; Franssen, M.C.R.

    2010-01-01

    Previously it has been shown that glycerol can be regioselectively glucosylated by sucrose phosphorylase from Leuconostoc mesenteroides to form 2-O-alpha-D-glucopyranosyl-glycerol (Coedl et al., Angew. Chem. Int. Ed. 47 (2008) 10086-10089). A series of compounds related to glycerol were investigated

  15. Microbial starch binding domains are superior to granule bound starch synthase 1 for anchoring luciferase to potato starch granules

    NARCIS (Netherlands)

    Ji, Q.; Vincken, J.P.; Suurs, L.C.J.M.; Visser, R.G.F.

    2006-01-01

    Microbial starch-binding domains (SBD) and granule-bound starch synthase I (GBSSI) are proteins which are accumulated in potato starch granules. The efficiency of SBD and GBSSI for targeting active luciferase reporter proteins to granules during starch biosynthesis was compared. GBSSI or SBD sequenc

  16. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  17. Starches, Sugars and Obesity

    Directory of Open Access Journals (Sweden)

    Erik E. J. G. Aller

    2011-03-01

    Full Text Available The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages.

  18. A Bacterial Glucanotransferase Can Replace the Complex Maltose Metabolism Required for Starch to Sucrose Conversion in Leaves at Night

    DEFF Research Database (Denmark)

    Ruzanski, Christian; Smirnova, Julia; Rejzek, Martin

    2013-01-01

    Controlled conversion of leaf starch to sucrose at night is essential for the normal growth of Arabidopsis. The conversion involves the cytosolic metabolism of maltose to hexose phosphates via an unusual, multidomain protein with 4-glucanotransferase activity, DPE2, believed to transfer glucosyl...... moieties to a complex heteroglycan prior to their conversion to hexose phosphate via a cytosolic phosphorylase. The significance of this complex pathway is unclear; conversion of maltose to hexose phosphate in bacteria proceeds via a more typical 4-glucanotransferase that does not require a heteroglycan...... approaches suggested that it can potentially generate a glucosyl buffer between maltose and hexose phosphate because, unlike DPE2, it can generate polydisperse malto-oligosaccharides from maltose. Consistent with this suggestion, MalQ is capable of restoring an essentially wild-type phenotype when expressed...

  19. Glutathione-dependent reduction of arsenate by glycogen phosphorylase a reaction coupled to glycogenolysis.

    Science.gov (United States)

    Németi, Balázs; Gregus, Zoltán

    2007-11-01

    Arsenate (As(V)) is reduced in the body to the more toxic arsenite (As(III)). We have shown that two enzymes catalyzing phosphorolytic cleavage of their substrates, namely purine nucleoside phosphorylase and glyceraldehyde-3-phosphate dehydrogenase, can reduce As(V) in presence of an appropriate thiol and their substrates. Another phosphorolytic enzyme that may also reduce As(V) is glycogen phosphorylase (GP). With inorganic phosphate (P(i)), GP catalyzes the breakdown of glycogen to glucose-1-phosphate; however, it also accepts As(V). Testing the hypothesis that GP can reduce As(V), we incubated As(V) with the phosphorylated GPa or the dephosphorylated GPb purified from rabbit muscle and quantified the As(III) formed from As(V) by high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry. In the presence of adenosine monophosphate (AMP), glycogen, and glutathione (GSH), both GP forms reduced As(V) at rates increasing with enzyme and As(V) concentrations. The As(V) reductase activity of GPa was 10-fold higher than that of GPb. However, incubating GPb with GP kinase and ATP (that converts GPb to GPa) increased As(V) reduction by phosphorylase up to the rate produced by GPa incubated under the same conditions. High concentration of inorganic sulfate, which activates GPb like phosphorylation, also promoted reduction of As(V) by GPb. As(V) reduction by GPa (like As(V) reduction in rats) required GSH. It also required glycogen (substrate for GP) and was stimulated by AMP (allosteric activator of GP) even at low micromolar concentrations. P(i), substrate for GP competing with As(V), inhibited As(III) formation moderately at physiological concentrations. Glucose-1-phosphate, the product of GP-catalyzed glycogenolysis, also decreased As(V) reduction. Summarizing, GP is the third phosphorolytic enzyme identified capable of reducing As(V) in vitro. For reducing As(V) by GP, GSH and glycogen are indispensable, suggesting that the reduction is

  20. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Kamila Lewicka; Przemysław Siemion; Piotr Kurcok

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  1. Mapping of a liver phosphorylase kinase [alpha]-subunit gene on the mouse x chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yan; Derry, J.M.J.; Barnard, P.J. (MRC Molecular Neurobiology Unit, Cambridge (United Kingdom)); Hendrickx, J.; Coucke, P.; Willems, P.R. (Univ. of Antwerp (Belgium))

    1993-01-01

    Phosphorylase kinase (PHK) is a regulatory enzyme of the glycogenolytic pathway composed of a complex of four subunits. We recently mapped the muscle [alpha]-subunit gene (Phka) to the mouse X chromosome in a region syntenic with the proximal long arm of the human X chromosome and containing the human homologue of this gene, PHKA. We now report the mapping of the liver [alpha]-subunit gene to the telomeric end of the mouse X chromosome. This mapping position would suggest a location for the human liver [alpha]-subunit gene on the proximal short arm of the X chromosome, a region recently implicated in X-linked liver glycogenosis (XLG). 20 refs., 2 figs.

  2. 3D-QSAR studies on glycogen phosphorylase inhibitors by flexible comparative molecular field analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Canceling grids accommodating probes in comparative molecular field analysis (CoMFA), the idea of flexibleness is introduced into the CoMFA, and in combination with swarm intelligent algorithm which attempts to optimize distributions of diverse probes around drug molecules, a new 3D-QSAR method is proposed in this context as flexible comparative molecular field analysis (FCoMFA). In preliminary at-tempts to performing QSAR studies on 47 glycogen phosphorylase inhibitors, FCoMFA is employed and confirmed to be potent to exploring ligand-receptor interaction manners at active positions and thus to generating stable and predictable models. Simultaneously by an intuitive graphics regarding probe distribution patterns, impacts of different substituted groups on activities is also given an insight into.

  3. 3D-QSAR studies on glycogen phosphorylase inhibitors by flexible comparative molecular field analysis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Peng; LI ZhiLiang

    2007-01-01

    Canceling grids accommodating probes in comparative molecular field analysis (CoMFA), the idea of flexibleness is introduced into the CoMFA, and in combination with swarm intelligent algorithm which attempts to optimize distributions of diverse probes around drug molecules, a new 3D-QSAR method is proposed in this context as flexible comparative molecular field analysis (FCoMFA). In preliminary attempts to performing QSAR studies on 47 glycogen phosphorylase inhibitors, FCoMFA is employed and confirmed to be potent to exploring ligand-receptor interaction manners at active positions and thus to generating stable and predictable models. Simultaneously by an intuitive graphics regarding probe distribution patterns, impacts of different substituted groups on activities is also given an insight into.

  4. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b.

    Science.gov (United States)

    Kyriakis, Efthimios; Stravodimos, George A; Kantsadi, Anastassia L; Chatzileontiadou, Demetra S M; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2015-07-08

    We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 μM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency.

  5. Differential Expression of a Glycogen Phosphorylase Gene in Volvariella volvacea Mycelium Exposed to Low Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan; WANG Hong; LI Zhengpeng; LU Lianjing; CHEN Mingjie

    2014-01-01

    Relative expression of a glycogen phosphorylase gene (pyg)in mycelia of cold-sensitive (V23)and cold-tolerant (VH3)strains of Volvariella volvacea during exposure to low temperature (0 ℃)over time courses was quantified by real-time PCR using theα-tubulin gene as internal control.Pyg expression levels in strain V23 decreased after 4 h exposure and,although recovering after 6 h,still remained lower than untreated controls.Gene expression in strain VH3 decreased sharply after low temperature exposure for 2 h, reaching a minimum value after 8 h when the relative expression level was only 0.28 times that of untreated controls.Overall,although pyg expression decreased in both V23 and VH3 over prolonged exposure,the fall was less pronounced in strain V23 compared with VH3.

  6. Hydroxyethyl starch for resuscitation

    DEFF Research Database (Denmark)

    Haase, Nicolai; Perner, Anders

    2013-01-01

    PURPOSE OF REVIEW: Resuscitation with hydroxyethyl starch (HES) is controversial. In this review, we will present the current evidence for the use of HES solutions including data from recent high-quality randomized clinical trials. RECENT FINDINGS: Meta-analyses of HES vs. control fluids show clear...... and surgical patients cannot adequately assess safety issues and do not show clear benefit with the use of HES. There is currently no firm evidence that tetrastarch has better safety profile than the former HES solutions. SUMMARY: There is no evidence for an overall beneficial effect of HES in any subgroup...... of critically ill patients, but there are clear signs of harm. As safer alternatives exist, we recommend that HES is no longer used in critically ill patients....

  7. [Reconstruction of muscle glycogen phosphorylase b from an apoenzyme and pyridoxal-5'-phosphate and its analogs. Interaction of apophosphorylase and the reconstructed enzyme with specific ligands].

    Science.gov (United States)

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaia, A A; Kurganov, B I; Gunar, V I

    1995-12-01

    Sedimentation methods were used to study the effects of modification of the pyridoxal-5'-phosphate (PLP) molecule at the 5th position on the affinity of reconstituted muscle glycogen phosphorylase b for the substrate (glycogen) and the allosteric inhibitor (FMN) as well as on the enzyme capacity to association induced by AMP. Reconstituted phosphorylase b was obtained with PLP analogs containing at the 5th position -CH2-CH2-COOH (analog I), trans-CH=CH-COOH (analog II) or -C identical to COOH (analog III) residues. Reconstitution of phosphorylase b is accompanied by the recovery of the enzyme quaternary structure. Phosphorylase b reconstituted with PLP or analogs I, II and III is not distinguished practically from the native enzyme in its affinity for glycogen. Substitution of the native coenzyme in the phosphorylase molecule with any tested PLP analog leads to lower enzyme affinity for FMN. Microscopic dissociation constants of the FMN-enzyme complexes increase in the following order: enzyme.I < enzyme.II < enzyme.III. Phosphorylase b reconstituted with analogs I, II and III differs substantially from the native enzyme in its capacity to association in the presence of 1 mM AMP: the reconstituted enzyme is represented practically by only the tetrameric form.

  8. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    Science.gov (United States)

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-02

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification.

  9. Retrogradation of rye starch pastes

    OpenAIRE

    2007-01-01

    The retrogradation susceptibility of starch determines consumer suitability of food products rich in this polymer. Starch isolated from flour obtained from rye variety ‘Amilo’, which displays very low amylolytic activity, contains highest amounts of amylose and exhibits strong retrogradation susceptibility. Flour from rye ‘Dańkowskie Złote’ and commercial rye flour type 720, that have higher amylolytic activity in comparison to ‘Am...

  10. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  11. New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase.

    Science.gov (United States)

    Kun, Sándor; Bokor, Éva; Varga, Gergely; Szőcs, Béla; Páhi, András; Czifrák, Katalin; Tóth, Marietta; Juhász, László; Docsa, Tibor; Gergely, Pál; Somsák, László

    2014-04-09

    O-Perbenzoylated 5-(β-D-glucopyranosyl)tetrazole was reacted with N-benzyl carboximidoyl chlorides to give the corresponding 4-benzyl-3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles. Removal of the O-benzoyl and N-benzyl protecting groups by base catalysed transesterification and catalytic hydrogenation, respectively, furnished a series of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles with aliphatic, mono- and bicyclic aromatic, and heterocyclic substituents in the 5-position. Enzyme kinetic studies revealed these compounds to inhibit rabbit muscle glycogen phosphorylase b: best inhibitors were the 5-(4-aminophenyl)- (Ki 0.67 μM) and the 5-(2-naphthyl)-substituted (Ki 0.41 μM) derivatives. This study uncovered the C-glucopyranosyl-1,2,4-triazoles as a novel skeleton for nanomolar inhibition of glycogen phosphorylase.

  12. Effects of /sup 45/Ca on murine skeletal muscle. 1. Alterations of glycogen, phosphorylase and phosphohexose isomerase levels

    Energy Technology Data Exchange (ETDEWEB)

    Asotra, K.; Katoch, S.S.; Krishan, K.; Malhotra, R.K. (Himachal Pradesh Univ., Simla (India). Dept. of Bio-sciences)

    1983-01-01

    Adult Swiss albino mice weighing 16+-1 g were injected with 3.7x10/sup 4/ Bq and 7.4x10/sup 4/ Bq/g body weight of /sup 45/Ca. Mice of both dose groups were autopsied on days 1, 3, 5, 7, 14 and 28 after /sup 45/Ca administration. Diaphragm and gastrocnemius in the /sup 45/Ca-treated and normal mice were analyzed for quantitation of glycogen as well as bioassay of phosphorylase and phosphohexose isomerase activities. Internal irradiation with the two doses of /sup 45/Ca resulted in glycogen accumulation in both the muscles. /sup 45/Ca-treated diaphragm showed greater radioresponse but a slower recovery than gastrocnemius with respect to glycogen accumulation. A decline in the rates of glycogenolysis and glycolysis indicated by decreased phosphorylase and phosphohexose isomerase activities appeared to be responsible for glycogen accumulation in skeletal muscle on account of /sup 45/Ca treatment.

  13. Redesign of the Active Site of Sucrose Phosphorylase through a Clash-Induced Cascade of Loop Shifts.

    Science.gov (United States)

    Kraus, Michael; Grimm, Clemens; Seibel, Jürgen

    2016-01-01

    Sucrose phosphorylases have been applied in the enzymatic production of glycosylated compounds for decades. However, several desirable acceptors, such as flavonoids or stilbenoids, that exhibit diverse antimicrobial, anticarcinogenic or antioxidant properties, remain poor substrates. The Q345F exchange in sucrose phosphorylase from Bifidobacterium adolescentis allows efficient glucosylation of resveratrol, (+)-catechin and (-)-epicatechin in yields of up to 97 % whereas the wild-type enzyme favours sucrose hydrolysis. Three previously undescribed products are made available. The crystal structure of the variant reveals a widened access channel with a hydrophobic aromatic surface that is likely to contribute to the improved activity towards aromatic acceptors. The generation of this channel can be explained in terms of a cascade of structural changes arising from the Q345F exchange. The observed mechanisms are likely to be relevant for the design of other tailor-made enzymes.

  14. Starch-degrading polysaccharide monooxygenases.

    Science.gov (United States)

    Vu, Van V; Marletta, Michael A

    2016-07-01

    Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11). These PMOs significantly boost the activity of GHs under industrially relevant conditions, and thus have great potential in the biomass-based biofuel industry. PMOs that act on starch are the latest PMOs discovered (AA13), which has expanded our perspectives in PMOs studies and starch degradation. Starch-active PMOs have many common structural features and biochemical properties of the PMO superfamily, yet differ from other PMO families in several important aspects. These differences likely correlate, at least in part, to the differences in primary and higher order structures of starch and cellulose, and chitin. In this review we will discuss the discovery, structural features, biochemical and biophysical properties, and possible biological functions of starch-active PMOs, as well as their potential application in the biofuel, food, and other starch-based industries. Important questions regarding various aspects of starch-active PMOs and possible economical driving force for their future studies will also be highlighted.

  15. A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy.

    Science.gov (United States)

    Bromley, Jennifer R; Warnes, Barbara J; Newell, Christine A; Thomson, Jamie C P; James, Celia M; Turnbull, Colin G N; Hanke, David E

    2014-03-01

    StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.

  16. Resistant starch content, in vitro starch digestibility and physico-chemical properties of flour and starch from Thai bananas

    Directory of Open Access Journals (Sweden)

    Nednapis Vatanasuchart

    2012-07-01

    Full Text Available Flour and starch were prepared from six Thai banana cultivars: Kluai Hom, Kluai Khai,Kluai Lebmuenang, Kluai Namwa, Kluai Hakmuk and Kluai Hin, and their resistant starch (RS, invitro starch digestibility and physico-chemical properties were determined. The RS content of theflour is 52.2-68.1%, with flour from Kluai Hin containing the highest amount of RS, followed by thatfrom Kluai Hakmuk. The starch has a higher RS content (70.1-79.2%, the highest value comingfrom Kluai Hakmuk starch, followed by Kluai Hom starch. A significant linear relationship betweenapparent amylose and RS was observed. Interestingly, most of the flour showed a slower rate of invitro starch digestibility than that of the starch, with Kluai Hin flour exhibiting the slowest rate,followed by Kluai Namwa. Rapid viscosity analysis showed significantly higher peak viscosity of thestarch than the flour, the highest final and setback viscosity being obtained from Kluai Hin starch.Differential scanning calorimetry showed an endothermic transition enthalpy over a range of 17.4 J/gfor Kluai Lebmuenang starch to 18.6 J/g for Kluai Hin starch. X-ray diffractograms of the starchesexhibited a typical B-pattern with Kluai Hin showing the highest degree of relative crystallinity(31.3% with a sharp peak at 5.5. The overall results seemed to indicate an effect of the BBgenotype on the resistance of banana starch granules to enzymatic digestion due to amylosemolecules and the crystallinity of amylopectin.

  17. Mixed Biopolymer Systems Based on Starch

    Directory of Open Access Journals (Sweden)

    Takahiro Noda

    2012-01-01

    Full Text Available A binary mixture of starch–starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch–based foods and minimize the need to resort to chemically modified starch.

  18. Effect of starch isolation method on properties of sweet potato starch

    Directory of Open Access Journals (Sweden)

    A. SURENDRA BABU

    2014-08-01

    Full Text Available Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1, Sodium chloride (M2, and Distilled water (M3 methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%. Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch.

  19. Cassava and corn starch in maltodextrin production

    OpenAIRE

    Geovana Rocha Plácido Moore; Luciana Rodrigues do Canto; Edna Regina Amante; Valdir Soldi

    2005-01-01

    Maltodextrin was produced from cassava and corn starch by enzymatic hydrolysis with alpha-amylase. The cassava starch hydrolysis rate was higher than that of corn starches in maltodextrin production with shorter dextrose equivalent (DE). DE values do not show directly the nature of the obtained oligosaccharides. Maltodextrin produced from cassava and corn starch was analysed by high performance liquid chromatography (HPLC), and the analysis showed that maltodextrin production differs accordin...

  20. Glycogen stability and glycogen phosphorylase activities in isolated skeletal muscles from rat and toad.

    Science.gov (United States)

    Goodman, C A; Stephenson, G M

    2000-01-01

    There is increasing evidence that endogenous glycogen depletion may affect excitation-contraction (E-C) coupling events in vertebrate skeletal muscle. One approach employed in physiological investigations of E-C coupling involves the use of mechanically skinned, single fibre preparations obtained from tissues stored under paraffin oil, at room temperature (RT: 20-24 degrees C) and 4 degrees C for several hours. In the present study, we examined the effect of these storage conditions on the glycogen content in three muscles frequently used in research on E-C coupling: rat extensor digitorum longus (EDL) and soleus (SOL) and toad iliofibularis (IF). Glycogen content was determined fluorometrically in homogenates prepared from whole muscles, stored under paraffin oil for up to 6 h at RT or 4 degrees C. Control muscles and muscles stored for 0.5 and 6 h were also analysed for total phosphorylase (Phos(total)) and phosphorylase a (Phos a) activities. No significant change was observed in the glycogen content of EDL and SOL muscles stored at RT for 0.5 h. In rat muscles stored at RT for longer than 0.5 h, the glycogen content decreased to 67.6% (EDL) and 78.7% (SOL) of controls after 3 h and 25.3% (EDL) and 37.4% (SOL) after 6 h. Rat muscles stored at 4 degrees C retained 79.0% (EDL) and 92.5% (SOL) of glycogen after 3 h and 75.2% (EDL) and 61.1% (SOL) after 6 h. The glycogen content of IF muscles stored at RT or 4 degrees C for 6 h was not significantly different from controls. Phos(total) was unchanged in all muscles over the 6 h period, at both temperatures. Phos a was also unchanged in the toad IF muscles, but in rat muscles it decreased rapidly, particularly in EDL (4.1-fold after 0.5 h at RT). Taken together these results indicate that storage under paraffin oil for up to 6 h at RT or 4 degrees C is accompanied by minimal glycogen loss in toad IF muscles and by a time- and temperature-dependent glycogen loss in EDL and SOL muscles of the rat.

  1. Esterification of Starch in Ionic Liquids

    Science.gov (United States)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  2. Studies of Amylose Content in Potato Starch

    Science.gov (United States)

    Potato starch is typically low in amylose (~20-25%), but high amylose starch has superior nutritional qualities. The ratio between amylose and amylopectin is the most important property influencing the physical properties of starch. There is a strong case to be made for the development of food crops...

  3. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary K.A. Bednarska The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch. A

  4. Synthesis and application of epoxy starch derivatives

    NARCIS (Netherlands)

    Huijbrechts, A.M.L.; Haar, ter R.; Schols, H.A.; Franssen, M.C.R.; Boeriu, C.G.; Sudhölter, E.J.R.

    2010-01-01

    Epoxy starch derivatives were synthesized by epoxidation of allylated starch. The reaction was performed with low substituted 1-allyloxy-2-hydroxypropyl-waxy maize starch (AHP-WMS; degree of substitution (DS) of 0.23) using hydrogen peroxide and acetonitrile Via a two step spectrophotometric assay,

  5. Sugarcane starch: quantitative determination and characterization

    Directory of Open Access Journals (Sweden)

    Joelise de Alencar Figueira

    2011-09-01

    Full Text Available Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

  6. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    Science.gov (United States)

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis.

  7. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    Science.gov (United States)

    Balaev, V. V.; Lashkov, A. A.; Gabdoulkhakov, A. G.; Seregina, T. A.; Dontsova, M. V.; Mikhailov, A. M.

    2015-03-01

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis ( YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability ( R work = 16.2, R free = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.

  8. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    Energy Technology Data Exchange (ETDEWEB)

    Balaev, V. V.; Lashkov, A. A., E-mail: alashkov83@gmail.com; Gabdoulkhakov, A. G.; Seregina, T. A.; Dontsova, M. V.; Mikhailov, A. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2015-03-15

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis (YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability (R{sub work} = 16.2, R{sub free} = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.

  9. Starch characteristics influencing resistant starch content of cooked buckwheat groats

    Science.gov (United States)

    Enzyme resistant starch (RS), owing to its health benefits such as colon cancer inhibition, reduced glycemic response, reduced cholesterol level, prevention of gall stone formation and obesity, has received an increasing attention from consumers and food manufacturers, whereas intrinsic and extrinsi...

  10. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    Science.gov (United States)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  11. Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase.

    Science.gov (United States)

    Kato, Atsushi; Nasu, Norio; Takebayashi, Kenji; Adachi, Isao; Minami, Yasuhiro; Sanae, Fujiko; Asano, Naoki; Watson, Alison A; Nash, Robert J

    2008-06-25

    Flavonoids are ubiquitous components in vegetables, fruits, tea, and wine. Therefore, they are often consumed in large quantities in our daily diet. Several flavonoids have been shown to have potential as antidiabetic agents. In the present study, we focused on inhibition of glycogen phosphorylase (GP) by flavonoids. 6-Hydroxyluteolin, hypolaetin, and quercetagetin were identified as good inhibitors of dephosphorylated GP (GPb), with IC 50 values of 11.6, 15.7, and 9.7 microM, respectively. Furthermore, a structure-activity relationship study revealed that the presence of the 3' and 4' OH groups in the B-ring and double bonds between C2 and C3 in flavones and flavonols are important factors for enzyme recognition and binding. Quercetagetin inhibited GPb in a noncompetitive manner, with a K i value of 3.5 microM. Multiple inhibition studies by Dixon plots suggested that quercetagetin binds to the allosteric site. In primary cultured rat hepatocytes, quercetagetin and quercetin suppressed glucagon-stimulated glycogenolysis, with IC 50 values of 66.2 and 68.7 microM, respectively. These results suggested that as a group of novel GP inhibitors, flavonoids have potential to contribute to the protection or improvement of control of diabetes type II.

  12. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding.

    Science.gov (United States)

    Carzaniga, Thomas; Mazzantini, Elisa; Nardini, Marco; Regonesi, Maria Elena; Greco, Claudio; Briani, Federica; De Gioia, Luca; Dehò, Gianni; Tortora, Paolo

    2014-02-01

    Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.

  13. Gene expression and molecular characterization of a thermostable trehalose phosphorylase from Thermoanaerobacter tengcongensis

    Institute of Scientific and Technical Information of China (English)

    REN Yuanyuan; DAI Xiuyu; ZHOU Jian; LIU Jingfang; PEI Huadong; XIANG Hua

    2005-01-01

    A gene encoding the trehalose phosphorylase (TreP), which reversibly catalyzes trehalose degradation and synthesis from a-glucose-1-phosphate (α-GIc-1-P) and glucose, was cloned from Thermoanaerobacter tengcongensis and successfully expressed in Escherichia coli.The overexpressed TreP, with a molecular mass of approximately 90 kDa, was determined by SDS-PAGE. It catalyzes trehalose synthesis and degradation optimally at 70℃ (for 30 min), with the optimum pHs at 6.0 and 7.0, respectively. It is highly thermostable, with a 77% residual activity after incubation at 50℃ for 7 h. Under the optimum reaction conditions, 50 μg crude enzyme of the TreP is able to catalyze the synthesis of trehalose up to 11.6 mmol/L from 25 mmol/L α-GIc-1-P and 125 mmol/L glucose within 30 min, while only 1.5 mmol/L out of 250 mmol/L trehalose is degraded within the same time period. Dot blotting revealed that the treP gene in T.tengcongensis was upregulated in response to salt stress but downregulated when trehalose was supplied. Both results indicate that the dominant function of the T. tengcongensis TreP is catalyzing trehalose synthesis but not degradation. Thus it might provide a novel route for industrial production of trehalose.

  14. Molecular analysis of mutations in a patient with purine nucleoside phosphorylase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Aust, M.R.; Norby-Slycord, C.J.; Andrews, L.G.; Markert, M.L. (Duke Univ. Medical Center, Durham, NC (United States)); Barrett, M.J. (Sunnyside Hospital, Clackamas, OR (United States))

    1992-10-01

    Purine nucleoside phosphorylase (PNP) deficiency is an inherited autosomal recessive disorder resulting in severe combined immunodeficiency. The purpose of this study was to determine the molecular defects responsible for PNP deficiency in one such patient. The patient's PNP cDNA was amplified by PCR and sequenced. Point mutations leading to amino acid substitutions were found in both alleles. One point mutation led to a Ser-to-Gly substitution at amino acid 51 and was common to both alleles. In addition, an Asp-to-Gly substitution at amino acid 128 and an Arg-to-Pro substitution at amino acid 234 were found in the maternal and paternal alleles, respectively. In order to prove that these mutations were responsible for the disease state, each of the three mutations was constructed separately by site-directed mutagenesis of the normal PNP cDNA, and each was transiently expressed in COS cells. Lysates from cells transfected with the allele carrying the substitution at amino acid 51 retained both function and immunoreactivity. Lysates from cells transfected with PNP alleles carrying a substitution at either amino acid 128 or amino acid 234 contained immunoreactive material but had no detectable human PNP activity. In summary, molecular analysis of this patient identified point mutations within the PNP gene which are responsible for the enzyme deficiency. 52 refs., 5 figs.

  15. Defects in Polynucleotide phosphorylase impairs virulence in Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    Jia eHu

    2015-08-01

    Full Text Available Polynucleotide phosphorylase (PNPase is reported to regulate virulence in Salmonella, Yersinia spp. and Campylobacter jejuni, yet its role in Escherichia coli O157:H7 has not been investigated. To gain insights into its roles in E. coli O157:H7 virulence, pnp deletion mutants were generated and the major virulence factors were compared to their parental wild type strains. Deletion of pnp in E. coli O157:H7 dramatically decreased stx2 mRNA expression and Stx2 protein production, and impaired lambdoid prophage activation in E. coli O157:H7. Quantitative PCR further confirmed that the Stx2 phage lytic growth was repressed by pnp deletion. Consistent with reduced Stx2 production and Stx2 phage activation, the transcriptional levels of genes involved in phage lysis and replication were down-regulated. In addition, disruption of pnp in E. coli O157:H7 decreased its adhesion to intestinal epithelial cells as well as cattle colonic explant tissues. On the other hand, PNPase inactivation in E. coli O157:H7 enhanced Tir protein content and the transcription of type three secretion system components, including genes encoding intimin, Tir and EspB as well as LEE positive regulator, Ler. Collectively, data indicate that PNPase has pleiotropic effects on the virulence of E. coli O157:H7.

  16. Development of a conductometric phosphate biosensor based on tri-layer maltose phosphorylase composite films.

    Science.gov (United States)

    Zhang, Zhiqiang; Jaffrezic-Renault, Nicole; Bessueille, François; Leonard, Didier; Xia, Siqing; Wang, Xuejiang; Chen, Ling; Zhao, Jianfu

    2008-05-12

    A conductometric biosensor for phosphate detection was developed using maltose phosphorylase (MP) from recombinant Escherichia coli immobilized on a planar interdigitated electrode by cross-linking with saturated glutaraldehyde (GA) vapour in the presence of bovine serum albumin (BSA). The process parameters for the fabrication of the mono-enzymatic sensor and various experimental variables such as the enzyme loading, time of immobilization in saturated GA vapour, working buffer solution and temperature were investigated with regard to their influence on sensitivity, detection limit, dynamic range, operational and storage stability. The biosensor can work well at the temperature between 20 degrees C and 50 degrees C, and reach 90% of steady-state conductance in about 10s. The sensor has two linear ranges, one is from 1.0 microM to 20 microM phosphate with a detection limit of 1.0 microM, and the other is between 20 microM and 400 microM phosphate. When stored in citrate buffer (0.1M, pH 6.0) at 4 degrees C, the biosensor showed good stability over two months. No obvious interference from other anionic species like SO(4)(2-), Cl(-), NO(3)(-), NO(2)(-) and HCO(3)(-) was detected. The biosensor is suitable for use in real water samples.

  17. Kinetics and mechanistic study of competitive inhibition of thymidine phosphorylase by 5-fluoruracil derivatives.

    Science.gov (United States)

    Petaccia, Manuela; Gentili, Patrizia; Bešker, Neva; D'Abramo, Marco; Giansanti, Luisa; Leonelli, Francesca; La Bella, Angela; Gradella Villalva, Denise; Mancini, Giovanna

    2016-04-01

    In a previous investigation, cationic liposomes formulated with new 5-FU derivatives, differing for the length of the polyoxyethylenic spacer that links the N(3) position of 5-FU to an alkyl chain of 12 carbon atoms, showed a higher cytotoxicity compared to free 5-FU, the cytotoxic effect being directly related to the length of the spacer. To better understand the correlation of the spacer length with toxicity, we carried out initial rate studies to determine inhibition, equilibrium and kinetic constants (KI, KM, kcat), and get inside inhibition activity of the 5-FU derivatives and their mechanism of action, a crucial information to design structural variations for improving the anticancer activity. The experimental investigation was supported by docking simulations based on the X-ray structure of thymidine phosphorylase (TP) from Escherichia coli complexed with 3'-azido-2'-fluoro-dideoxyuridin. Theoretical and experimental results showed that all the derivatives exert the same inhibition activity of 5-FU either as monomer and when embedded in lipid bilayer.

  18. Cassava and corn starch in maltodextrin production

    Directory of Open Access Journals (Sweden)

    Geovana Rocha Plácido Moore

    2005-08-01

    Full Text Available Maltodextrin was produced from cassava and corn starch by enzymatic hydrolysis with alpha-amylase. The cassava starch hydrolysis rate was higher than that of corn starches in maltodextrin production with shorter dextrose equivalent (DE. DE values do not show directly the nature of the obtained oligosaccharides. Maltodextrin produced from cassava and corn starch was analysed by high performance liquid chromatography (HPLC, and the analysis showed that maltodextrin production differs according to the source of the starch. This is important in defining the application of the maltodextrin, according to its desired function.

  19. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling.

    Science.gov (United States)

    Yang, J; Zhang, J; Wang, Z; Zhu, Q

    2001-11-01

    To understand the effect of water stress on the remobilization of prestored carbon reserves, the changes in the activities of starch hydrolytic enzymes and sucrose-phosphate synthase (SPS) in the stems of rice (Oryza sativa L.) during grain filling were investigated. Two rice cultivars, showing high lodging-resistance and slow remobilization, were grown in the field and subjected to well-watered (WW, psi(soil)=0) and water-stressed (WS, psi(soil)=-0.05 MPa) treatments 9 d after anthesis (DAA) till maturity. Leaf water potentials of both cultivars markedly decreased during the day as a result of WS treatment, but completely recovered by early morning. WS treatment accelerated the reduction of starch in the stems, promoted the reallocation of prefixed (14)C from the stems to grains, shortened the grain filling period, and increased the grain filling rate. More soluble sugars including sucrose were accumulated in the stems under WS than under WW treatments. Both alpha- and beta-amylase activities were enhanced by the WS, with the former enhanced more than the latter, and were significantly correlated with the concentrations of soluble sugars in the stems. The other two possible starch-breaking enzymes, alpha-glucosidase and starch phosphorylase, showed no significant differences in the activities between the WW and WS treatments. Water stress also increased the SPS activity that is responsible for sucrose production. Both V(limit) and V(max), the activities of the enzyme at limiting and saturating substrate concentrations, were enhanced and the activation state (V(limit)/V(max)) was also increased as a result of the more significant enhancement of V(limit). The enhanced SPS activity was closely correlated with an increase of sucrose accumulation in the stems. The results suggest that the fast hydrolysis of starch and increased carbon remobilization were attributed to the enhanced alpha-amylase activity and the high activation state of SPS when the rice was subjected

  20. Starch--value addition by modification.

    Science.gov (United States)

    Tharanathan, Rudrapatnam N

    2005-01-01

    Starch is one of the most important but flexible food ingredients possessing value added attributes for innumerable industrial applications. Its various chemically modified derivatives offer a great scope of high technological value in both food and non-food industries. Modified starches are designed to overcome one or more of the shortcomings, such as loss of viscosity and thickening power upon cooking and storage, particularly at low pH, retrogradation characteristics, syneresis, etc., of native starches. Oxidation, esterification, hydroxyalkylation, dextrinization, and cross-linking are some of the modifications commonly employed to prepare starch derivatives. In a way, starch modification provides desirable functional attributes as well as offering economic alternative to other hydrocolloid ingredients, such as gums and mucilages, which are unreliable in quality and availability. Resistant starch, a highly retrograded starch fractionformed upon food processing, is another useful starch derivative. It exhibits the beneficial physiological effects of therapeutic and nutritional values akin to dietary fiber. There awaits considerable opportunity for future developments, especially for tailor-made starch derivatives with multiple modifications and with the desired functional and nutritional properties, although the problem of obtaining legislative approval for the use of novel starch derivatives in processed food formulations is still under debate. Nevertheless, it can be predicted that new ventures in starch modifications and their diverse applications will continue to be of great interest in applied research.

  1. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating.

  2. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  3. MORPHOLOGICAL AND THERMAL PROPERTIES OF MAIZE STARCH

    Directory of Open Access Journals (Sweden)

    Elena Corina Popescu

    2010-01-01

    Full Text Available Maize, rice, wheat and potato are the main sources of starches which differ significantly in composition, morphology,thermal, rheological and retrogradation properties. Starch has unique thermal properties and functionality that havepermitted its wide use in food products and industrial applications.The structure of the starch granule results from the physical arrangement of amylose and amylopectin. Amylose contentof starches from different maize types ranged between 15.3% and 25.1%. Amylopectin is considered responsible for thecrystalline structure of starch granules.The morphological and physicochemical characteristics of maize starch are related to the enzymes involved in itsbiosynthesis.The surface of the starch granule plays a fundamental rôle as the first barrier to processes such as granule hydration,enzyme attack, and chemical reaction with modifying agents. Major parameters describing the solid surface are:specific surface area, total pore volume, mean pore radius (diameter and pore volume distribution in relation to poreradius (diameter.

  4. Properties of baked foams from citric acid modified cassava starch and native cassava starch blends.

    Science.gov (United States)

    Pornsuksomboon, Kanlaya; Holló, Berta Barta; Szécsényi, Katalin Mészáros; Kaewtatip, Kaewta

    2016-01-20

    Starch foams from native cassava starch (NS) and citric acid modified cassava starch (CNS) were prepared using baking processes with blend ratios of 80/20, 60/40, 50/50, 40/60 and 20/80. The density, thickness, morphology, thermal stability and water absorption of the NS, CNS and blended starch foams were determined. The ratio of the two starch components had a significant influence on the density and thickness of the blended starch foams. All blended starch foams showed good water resistance. Moreover, the morphology of the blended starch foam with the NS/CNS ratio of 50/50 showed a more ordered distribution of cell sizes with thicker cell walls than for the NS and CNS foams. The thermal stability of the blended starch foams was somewhat lower than the stability of the NS foam but not to the extent that it affected any potential practical applications.

  5. Starch composites with aconitic acid.

    Science.gov (United States)

    Gilfillan, William Neil; Doherty, William O S

    2016-05-05

    The aim of this project is to examine the effectiveness of using aconitic acid (AcA), a tricarboxylic acid which contains a carbon/carbon double bond (CC), to enhance the properties of starch-based films. Starch/glycerol cast films were prepared with 0, 2, 5, 10 and 15wt% AcA (starch wt% basis) and the properties analysed. It was shown that AcA acted as both a cross-linking agent and also a strong plasticising agent. The 5wt% AcA derived starch films were the most effectively cross-linked having the lowest solubility (28wt%) and decreased swelling coefficient (35vol.%) by approximately 3 times and 2.4 times respectively compared to the control film submerged in water (23°C). There was also a significant increase in the film elongation at break by approximately 35 times (compared to the control) with the addition of 15wt% AcA, emphasising the plasticising effect of AcA. However, generally there was a reduced tensile strength, softening of the film, and reduced thermal stability with increased amounts of AcA.

  6. Limiting factors of starch hydrolysis.

    Science.gov (United States)

    Colonna, P; Leloup, V; Buléon, A

    1992-10-01

    Foods appear as complex structures, in which starch may be present in different forms. These, including the molecular characteristics and the crystalline organization, depend on processing conditions and compositions of ingredients. The main changes in starch macro- and microstructures are the increase of surface area to volume ratio in the solid phase, the modification of the crystallinity as affected by gelatinization and gelation, and the depolymerization of amylose and amylopectin. Starch modification may be estimated by different methodologies, which should be selected according to the level of structure considered. When amylose and amylopectin are in solution, rapid and total hydrolysis leads to the formation of a mixture of linear oligosaccharides and branched alpha-limit dextrins. However, starch usually occurs in foods as solid structures. Structural factors of starchy materials influence their enzymic hydrolysis. A better understanding of the enzymatic process enables the identification of the structural factors limiting hydrolysis: diffusion of enzyme molecules, porosity of solid substrates, adsorption of enzymes onto solid substrates, and the catalytic event. A mechanistic modelling should be possible in the future.

  7. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  8. Rheological and textural properties of pulse starch gels

    Science.gov (United States)

    The properties of starch gels from black beans, chickpeas, lentils and navy beans were investigated. Differences were shown between starch sources, and effect of starch concentration was studied. Navy bean starch had the highest peak and final viscosities in pasting tests, while black bean starch h...

  9. Relationship between the Expression of Thymidylate Synthase,Thymidine Phosphorylase and Dihydropyrimidine Dehydrogenase and Survival in Epithelial Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    王常玉; 翁艳洁; 王鸿雁; 石英; 马丁

    2010-01-01

    The mRNA and protein expression of thymidylate synthase (TS), thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD) and their relationship with prognosis were investigated. Real-time quantitative RT-PCR (Taqman) was used to detect the mRNA expression of TS, TP and DPD in formalin-fixed and paraffin-embedded 106 samples of epithelial ovarian cancer and 29 normal ovaries. A TATA box-binding protein (TBP) was used as an endogenous reference gene. A relationship between TS, TP, DPD expression a...

  10. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  11. Starch hydrolysis by the ruminal microflora.

    Science.gov (United States)

    Kotarski, S F; Waniska, R D; Thurn, K K

    1992-01-01

    The effects of grain type and processing on ruminal starch digestion are well documented but poorly understood at the biochemical and molecular levels. Waxy grains have starches high in amylopectin and are more readily digested than nonwaxy grains. However, the composition of the endosperm cell matrix and the extent to which the starch granules are embedded within it also affect starch digestion rates. Continued work is needed to determine the influence of specific cell matrix proteins, protein-starch interactions and cell wall carbohydrates on starch availability. The microbial populations that metabolize starch are diverse, differing in their capacities to hydrolyze starch granules and soluble forms of starch. Surveys show that the amylases are under regulatory control in most of these organisms, but few studies have addressed the types of amylolytic enzymes produced, their regulation and the impact of other plant polymers on their synthesis. Research in these areas, coupled with the development and use of isogeneic or near-isogeneic grain cultivars with biochemically defined endosperm characteristics, will enhance our ability to identify mechanisms to manipulate ruminal starch digestion.

  12. Modified-starch Consolidation of Alumina Ceramics

    Institute of Scientific and Technical Information of China (English)

    JU Chenhui; WANG Yanmin; YE Jiandong; HUANG Yun

    2008-01-01

    The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt%of a modified starch as a consolidator/binder.The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope,and two other corn starches(common corn starch and high amylose COrn starch)were also analyzed for comparison.The modified starch used as a binder for the consolidation swelled at about 55℃.began to gelatinize at 65℃ and then was completely gelatinized at 75℃.But the corn starches could not be completely gelatinized even at 80℃for 1 h.The high-strength green bodies(10.6 MPa)with the complex shapes were produced.The green bodies were sintered without any binder burnout procedure at 1700℃and a relative density of 95.3% was obtained for the sintered bodies,which is similar to that of the sintered sample formed by conventional slip casting.In addition,the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated,and the corresponding mechanism for the starch consolidation was discussed.

  13. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review.

    Science.gov (United States)

    Wang, Shujun; Copeland, Les

    2013-11-01

    Starch is the most important glycemic carbohydrate in foods. The relationship between the rate and extent of starch digestion to produce glucose for absorption into the bloodstream and risk factors for diet-related diseases is of considerable nutritional interest. Native starch is attacked slowly by enzymes, but after hydrothermal processing its susceptibility to enzymatic breakdown is greatly increased. Most starch consumed by humans has undergone some form of processing or cooking, which causes native starch granules to gelatinize, followed by retrogradation on cooling. The extent of gelatinization and retrogradation are major determinants of the susceptibility of starch to enzymatic digestion and its functional properties for food processing. The type and extent of changes that occur in starch as a result of gelatinization, pasting and retrogradation are determined by the type of the starch, processing and storage conditions. A mechanistic understanding of the molecular disassembly of starch granules during gelatinization is critical to explaining the effects of processing or cooking on starch digestibility. This review focuses on the molecular disassembly of starch granules during starch gelatinization over a wide range of water levels, and its consequential effect on in vitro starch digestibility and in vivo glycemic index.

  14. Encapsulation altered starch digestion: toward developing starch-based delivery systems.

    Science.gov (United States)

    Janaswamy, Srinivas

    2014-01-30

    Starch is an abundant biomaterial that forms a vital energy source for humans. Altering its digestion, e.g. increasing the proportions of slowly digestible starch (SDS) and resistant starch (RS), would revolutionize starch utility in addressing a number of health issues related to glucose absorption, glycemic index and colon health. The research reported in this article is based on my hypothesis that water channels present in the B-type starch crystalline matrix, particularly in tuber starches, can embed guest molecules such as nutraceuticals, drugs, flavor compounds and vitamins leading to altered starch digestion. Toward this goal, potato starch has been chosen as the model tuber starch, and ibuprofen, benzocaine, sulfapyridine, curcumin, thymol and ascorbic acid as model guest molecules. X-ray powder diffraction and FT-IR analyses clearly suggest the incorporation of guest molecules in the water channels of potato starch. Furthermore, the in vitro digestion profiles of complexes are intriguing with major variations occurring after 60 min of starch digestion and finally at 120 min. These changes are concomitantly reflected in the SDS and RS amounts, with about 24% decrease in SDS for benzocaine complex and 6% increase in RS for ibuprofen complex, attesting the ability of guest molecule encapsulation in modulating the digestion properties of potato starch. Overall, this research provides an elegant opportunity for the design and development of novel starch-based stable carriers that not only bestow tailored glucose release rates but could also transport health promoting and disease preventing compounds.

  15. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites.

    Science.gov (United States)

    González, Kizkitza; Retegi, Aloña; González, Alba; Eceiza, Arantxa; Gabilondo, Nagore

    2015-03-01

    In the present work, thermoplastic maize starch based bionanocomposites were prepared as transparent films, plasticized with 35% of glycerol and reinforced with both waxy starch (WSNC) and cellulose nanocrystals (CNC), previously extracted by acidic hydrolysis. The influence of the nanofiller content was evaluated at 1 wt.%, 2.5 wt.% and 5 wt.% of WSNC. The effect of adding the two different nanoparticles at 1 wt.% was also investigated. As determined by tensile measurements, mechanical properties were improved at any composition of WSNC. Water vapour permeance values maintained constant, whereas barrier properties to oxygen reduced in a 70%, indicating the effectiveness of hydrogen bonding at the interphase. The use of CNC or CNC and WSNC upgraded mechanical results, but no significant differences in barrier properties were obtained. A homogeneous distribution of the nanofillers was demonstrated by atomic force microscopy, and a shift of the two relaxation peaks to higher temperatures was detected by dynamic mechanical analysis.

  16. Thermodynamics of the Purine Nucleoside Phosphorylase Reaction Revealed by Computer Simulations.

    Science.gov (United States)

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2017-01-10

    Enzymes are able to catalyze chemical reactions by reducing the activation free energy, yielding significant increases in the reaction rates. This can thermodynamically be accomplished by either reducing the activation enthalpy or increasing the activation entropy. The effect of remote mutations on the thermodynamic activation parameters of human purine nucleoside phosphorylase is examined using extensive molecular dynamics and free energy simulations. More than 2700 independent reaction free energy profiles for six different temperatures have been calculated to obtain high-precision computational Arrhenius plots. On the basis of these, the activation enthalpies and entropies were computed from linear regression of the plots with ΔG(⧧) as a function of 1/T, and the obtained thermodynamic activation parameters are in very good agreement with those from experiments. The Arrhenius plots immediately show that the 6-oxopurines (INO and GUO) have identical slopes, whereas the 6-aminopurine (ADO) has a significantly different slope, indicating that the substrate specificity is related to the difference in thermodynamic activation parameters. Furthermore, the calculations show that the human PNP specificity for 6-oxopurines over 6-aminopurines originates from significant differences in electrostatic preorganization. The effect of the remote double mutation, K22E and H104R (E:R), has also been examined, as it alters human PNP toward the bovine PNP. These residues are situated on the protein surface, 28-35 Å from the active site, and the mutation alters the enthalpy-entropy balance with little effect on the catalytic rates. It is thus quite remarkable that the empirical valence bond method can reproduce the enthalpies and entropies induced by these long-range mutations.

  17. Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Nabila eHaddad

    2012-03-01

    Full Text Available Polynucleotide phosphorylase, encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As the two major ribonucleases (RNase E and RNase II of Escherichia coli are absent from Campylobacter genome, this study was focused on PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3, motility (NANA synthetase, stress-response (KatA, DnaK, Hsp90 and translation system (EF-Tu, EF-G were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay and the decrease of cell adhesion/invasion ability.

  18. Transition Path Sampling Study of the Reaction Catalyzed by Purine Nucleoside Phosphorylase

    Science.gov (United States)

    Saen-oon, Suwipa; Schramm, Vern L.; Schwartz, Steven D.

    2010-01-01

    The Transition Path Sampling (TPS) method is a powerful technique for studying rare events in complex systems, that allows description of reactive events in atomic detail without prior knowledge of reaction coordinates and transition states. We have applied TPS in combination with a hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) method to study the enzyme human purine nucleoside phosphorylase (hPNP). This enzyme catalyzes the reversible phosphorolysis of 6-oxypurine (deoxy)nucleosides to generate the corresponding purine base and (deoxy)ribose 1-phosphate. Hundreds of reactive trajectories were generated. Analysis of this transition path ensembles provides insight into the detailed mechanistic dynamics of reaction in the enzyme. Our studies have indicated a reaction mechanism involving the cleavage of the N-ribosidic bond to form transition states with substantial ribooxacarbenium ion character, that is then followed by conformational changes in the enzyme and the ribosyl group leading to migration of the anomeric carbon of the ribosyl group toward phosphate to form the product ribose 1-phosphate. This latter process is crucial in PNP, because several strong H-bonds form between active site residues in order to capture and align the phosphate nucleophile. Calculations of the commitment probability along reactive paths demonstrated the presence of a broad energy barrier at the transition state. Analysis of these transition state structures showed that bond-breaking and bond-forming distances are not a good choice for the reaction coordinate, but that the pseudorotational phase of the ribose ring is also a significant variable. PMID:20664707

  19. Independent Loss of Methylthioadenosine Phosphorylase (MTAP) in Primary Cutaneous T-Cell Lymphoma.

    Science.gov (United States)

    Woollard, Wesley J; Kalaivani, Nithyha P; Jones, Christine L; Roper, Catherine; Tung, Lam; Lee, Jae Jin; Thomas, Bjorn R; Tosi, Isabella; Ferreira, Silvia; Beyers, Carl Z; McKenzie, Robert C T; Butler, Rosie M; Lorenc, Anna; Whittaker, Sean J; Mitchell, Tracey J

    2016-06-01

    Methylthioadenosine phosphorylase (MTAP) and the tumor suppressor genes CDKN2A-CDKN2B are frequently deleted in malignancies. The specific role of MTAP in cutaneous T-cell lymphoma subgroups, mycosis fungoides (MF) and Sézary syndrome (SS), is unknown. In 213 skin samples from patients with MF/SS, MTAP copy number loss (34%) was more frequent than CDKN2A (12%) in all cutaneous T-cell lymphoma stages using quantitative reverse transcription PCR. Importantly, in early stage MF, MTAP loss occurred independently of CDKN2A loss in 37% of samples. In peripheral blood mononuclear cells from patients with SS, codeletion with CDKN2A occurred in 18% of samples but loss of MTAP alone was uncommon. In CD4(+) cells from SS, reduced MTAP mRNA expression correlated with MTAP copy number loss (P < 0.01) but reduced MTAP expression was also detected in the absence of copy number loss. Deep sequencing of MTAP/CDKN2A-CDKN2B loci in 77 peripheral blood mononuclear cell DNA samples from patients with SS did not show any nonsynonymous mutations, but read-depth analysis suggested focal deletions consistent with MTAP and CDKN2A copy number loss detected with quantitative reverse transcription PCR. In a cutaneous T-cell lymphoma cell line, promoter hypermethylation was shown to downregulate MTAP expression and may represent a mechanism of MTAP inactivation. In conclusion, our findings suggest that there may be selection in early stages of MF for MTAP deletion within the cutaneous tumor microenvironment.

  20. The exoribonuclease Polynucleotide Phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens

    Directory of Open Access Journals (Sweden)

    Jason A. Rosenzweig

    2013-11-01

    Full Text Available Microbes are incessantly challenged by both biotic and abiotic stressors threatening their existence. Therefore, bacterial pathogens must possess mechanisms to successfully subvert host immune defenses as well as overcome the stress associated with host-cell encounters. To achieve this, bacterial pathogens typically experience a genetic re-programming whereby anti-host/stress factors become expressed and eventually translated into effector proteins. In that vein, the bacterial host-cell induced stress-response is similar to any other abiotic stress to which bacteria respond by up-regulating specific stress-responsive genes. Following the stress encounter, bacteria must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. The 3 pathogenic yersiniae (Yersinia pestis, Y. pseudo-tuberculosis, and Y. enterocolitica are all psychrotropic bacteria capable of growth at 4˚C; however, cold growth is dependent on the presence of an exoribonuclease, polynucleotide phosphorylase (PNPase. PNPase has also been implicated as a virulence factor in several notable pathogens including the salmonellae, Helicobacter pylori, and the yersiniae (where it typically influences the type three secretion system. Further, PNPase has been shown to associate with ribonuclease E (endoribonuclease, RhlB (RNA helicase, and enolase (glycolytic enzyme in several Gram-negative bacteria forming a large, multi-protein complex known as the RNA degradosome. This review will highlight studies demonstrating the influence of PNPase on the virulence potentials and stress responses of various bacterial pathogens as well as focusing on the degradosome- dependent and -independent roles played by PNPase in yersiniae stress responses.

  1. Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases.

    Science.gov (United States)

    Wielgus-Kutrowska, B; Kulikowska, E; Wierzchowski, J; Bzowska, A; Shugar, D

    1997-01-15

    Nicotinamide 1-beta-D-riboside (Nir), the cationic, reducible moiety of the coenzyme NAD+, has been confirmed as an unusual substrate for purified purine-nucleoside phosphorylase (PNP) from a mammalian source (calf spleen). It is also a substrate of the enzyme from Escherichia coli. The Km values at pH 7, 1.48 mM and 0.62 mM, respectively, were 1-2 orders of magnitude higher than for the natural substrate inosine, but the Vmax values were comparable, 96% and 35% that for Ino. The pseudo first-order rate constants, Vmax/Km, were 1.1% and 2.5% for the calf spleen and E. coli enzymes. The aglycon, nicotinamide, was neither a substrate nor an inhibitor of PNP. Nir was a weak inhibitor of inosine phosphorolysis catalyzed by both enzymes, with Ki values close to the Km for its phosphorolysis, consistent with simple competitive inhibition; this was further confirmed by Dixon plots. Phosphorolysis of the fluorescent positively charged substrate 7-methylguanosine was also inhibited in a competitive manner by both Ino and Nir. Phosphorolysis of Nir by both enzymes was inhibited competitively by several specific inhibitors of calf spleen and E. coli PNP, with Ki values similar to those for inhibition of other natural substrates. The pH dependence of the kinetic constants for the phosphorolysis of Nir and of a variety of other substrates, was extensively investigated, particularly in the alkaline pH range, where Nir exhibited abnormally high substrate activity relative to the reduced reaction rates of both enzymes towards other anionic or neutral substrates. The overall results are discussed in relation to present concepts regarding binding and phosphorolysis of substrates by PNP based on crystallographic data of enzyme-inhibitor complexes, and current studies on enzymatic and nonenzymatic mechanisms of the cleavage of the Nir glycosidic bond.

  2. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase.

    Science.gov (United States)

    Firestone, Ross S; Cameron, Scott A; Karp, Jerome M; Arcus, Vickery L; Schramm, Vern L

    2017-02-17

    Human 5'-methylthioadenosine phosphorylase (MTAP) catalyzes the phosphorolysis of 5'-methylthioadenosine (MTA). Its action regulates cellular MTA and links polyamine synthesis to S-adenosylmethionine (AdoMet) salvage. Transition state analogues with picomolar dissociation constants bind to MTAP in an entropically driven process at physiological temperatures, suggesting increased hydrophobic character or dynamic structure for the complexes. Inhibitor binding exhibits a negative heat capacity change (-ΔCp), and thus the changes in enthalpy and entropy upon binding are strongly temperature-dependent. The ΔCp of inhibitor binding by isothermal titration calorimetry does not follow conventional trends and is contrary to that expected from the hydrophobic effect. Thus, ligands of increasing hydrophobicity bind with increasing values of ΔCp. Crystal structures of MTAP complexed to transition-state analogues MT-DADMe-ImmA, BT-DADMe-ImmA, PrT-ImmA, and a substrate analogue, MT-tubercidin, reveal similar active site contacts and overall protein structural parameters, despite large differences in ΔCp for binding. In addition, ΔCp values are not correlated with Kd values. Temperature dependence of presteady state kinetics revealed the chemical step for the MTAP reaction to have a negative heat capacity for transition state formation (-ΔCp(‡)). A comparison of the ΔCp(‡) for MTAP presteady state chemistry and ΔCp for inhibitor binding revealed those transition-state analogues most structurally and thermodynamically similar to the transition state. Molecular dynamics simulations of MTAP apoenzyme and complexes with MT-DADMe-ImmA and MT-tubercidin show small, but increased dynamic motion in the inhibited complexes. Variable temperature CD spectroscopy studies for MTAP-inhibitor complexes indicate remarkable protein thermal stability (to Tm = 99 °C) in complexes with transition-state analogues.

  3. Metabolites of purine nucleoside phosphorylase (NP in serum have the potential to delineate pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Shaiju K Vareed

    Full Text Available Pancreatic Adenocarcinoma (PDAC, the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX. A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7 and Alpha Synuclein (aSyn, both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC.

  4. Molecular Mechanisms of Allosteric Inhibition of Brain Glycogen Phosphorylase by Neurotoxic Dithiocarbamate Chemicals.

    Science.gov (United States)

    Mathieu, Cécile; Bui, Linh-Chi; Petit, Emile; Haddad, Iman; Agbulut, Onnik; Vinh, Joelle; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2017-02-03

    Dithiocarbamates (DTCs) are important industrial chemicals used extensively as pesticides and in a variety of therapeutic applications. However, they have also been associated with neurotoxic effects and in particular with the development of Parkinson-like neuropathy. Although different pathways and enzymes (such as ubiquitin ligases or the proteasome) have been identified as potential targets of DTCs in the brain, the molecular mechanisms underlying their neurotoxicity remain poorly understood. There is increasing evidence that alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. Interestingly, recent studies with N,N-diethyldithiocarbamate suggest that brain glycogen phosphorylase (bGP) and glycogen metabolism could be altered by DTCs. Here, we provide molecular and mechanistic evidence that bGP is a target of DTCs. To examine this system, we first tested thiram, a DTC pesticide known to display neurotoxic effects, observing that it can react rapidly with bGP and readily inhibits its glycogenolytic activity (kinact = 1.4 × 10(5) m(-1) s(-1)). Using cysteine chemical labeling, mass spectrometry, and site-directed mutagenesis approaches, we show that thiram (and certain of its metabolites) alters the activity of bGP through the formation of an intramolecular disulfide bond (Cys(318)-Cys(326)), known to act as a redox switch that precludes the allosteric activation of bGP by AMP. Given the key role of glycogen metabolism in brain functions and neurodegeneration, impairment of the glycogenolytic activity of bGP by DTCs such as thiram may be a new mechanism by which certain DTCs exert their neurotoxic effects.

  5. 75 FR 879 - National Starch and Chemical Company Specialty Starches Division Including On-Site Leased Workers...

    Science.gov (United States)

    2010-01-06

    ... Employment and Training Administration National Starch and Chemical Company Specialty Starches Division..., applicable to workers of National Starch and Chemical Company, Specialty Starches Division, Island Falls.... The workers were engaged in the production of drum dried and modified food starches. New...

  6. The Rheological Property of Potato Starch Adhesives

    Directory of Open Access Journals (Sweden)

    Junjun Liu

    2014-02-01

    Full Text Available The main goal of this study was to use potato starch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly potato starch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of potato starch adhesives decreased with the increasing of temperature; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared within potato starch adhesives which was pseudo-plastic fluids. Potato starch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  7. The effects of starches on mechanical properties of paracetamol tablet formulations. I. Pregelatinization of starch binders.

    Science.gov (United States)

    Alebiowu, Gbenga; Itiola, Oludele Adelanwa

    2003-09-01

    A study has been made of the effects of pregelatinization of native sorghum and plantain starches on the mechanical properties of a paracetamol tablet formulation in comparison with corn starch BP. The mechanical properties tested, viz. tensile strength (T) and brittle fracture index (BFI) of the paracetamol tablets were affected by pregelatinization of the starch. The results suggest that pregelatinized starches may be useful as binders when a particular degree of bond strength and brittleness is desired.

  8. Insights into molecular structure and digestion rate of oat starch.

    Science.gov (United States)

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate.

  9. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate

    Science.gov (United States)

    Starch aerogels are a class of low density highly porous renewable materials currently prepared from retrograded starch gels and are of interest for their good surface area, porosity, biocompatibility, and biodegradability. Recently, we have reported on starches containing amylose-fatty acid salt h...

  10. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch.

    Science.gov (United States)

    Bai, Yanjie; Kaufman, Rhett C; Wilson, Jeff D; Shi, Yong-Cheng

    2014-06-15

    Octenylsuccinic anhydride (OSA)-modified starches with a low (0.018) and high (0.092) degree of substitution (DS) were prepared from granular native waxy maize starch in aqueous slurry. The position of OS substituents along the starch chains was investigated by enzyme hydrolysis followed by chromatographic analysis. Native starch and two OS starches with a low and high DS had β-limit values of 55.9%, 52.8%, and 34.4%, respectively. The weight-average molecular weight of the β-limit dextrin from the OS starch with a low DS was close to that of the β-limit dextrin from native starch but lower than that of the β-limit dextrin from the OS starch with a high DS. Debranching of OS starches was incomplete compared with native starch. OS groups in the OS starch with a low DS were located on the repeat units near the branching points, whereas the OS substituents in the OS starch with a high DS occurred both near the branching points and the non-reducing ends.

  11. Starch meets biotechnology : in planta modification of starch composition and functionalities

    NARCIS (Netherlands)

    Xu, Xuan

    2016-01-01

    Storage starch is an energy reservoir for plants and the major source of calories in the human diet. Starch is used in a broad range of industrial applications, as a cheap, abundant, renewable and biodegradable biopolymer. However, starch needs to be modified before it can fulfill the required prope

  12. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification.

  13. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this metho

  14. Performance Evaluation of Local Cassava Starches with Imported Starch for Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Harry, T.F.

    2016-10-01

    Full Text Available Local cassava starches and an imported starch were characterized and evaluated for their performance as drilling fluid additives. Two local cassava cultivars, TMS 98/0581 and TMS 96/1632, starches and an imported starch were characterized by using X-ray diffraction techniques. Bentonite mud beneficiated with the starches were subjected to API viscosity and filtration tests. The local and imported starches were classified as B type crystal structure. The starches average particle sizes were 51.63nm, 23.57nm and 57.94nm for TMS 98/0581, TMS 96/1632 and imported starches respectively. The crystalline indices were between 22 and 35, while average specific surface areas were 151.65, 361.28 and 142.04 m2 /g for TMS 98/0581, TMS 96/1632 and imported starches respectively. The morphology indices, ranges were from 0.5 to 0.7485. The structural properties of TMS 98/0581 starch were found to be significantly close to that of the imported starch and were observed to be closer in performance as drilling fluid additive than TMS 96/1632. Local cassava starches with structural properties as TMS 98/0581, could serve as good substitute for drilling operation. The viscosity and fluid loss control results of the local samples compared favourably with the imported one.

  15. Starch hydrolysis by Strepto-coccus equinus.

    Science.gov (United States)

    DUNICAN, L K; SEELEY, H W

    1962-02-01

    Dunican, Lawrence K. (Cornell University, Ithaca, N. Y.) and Harry W. Seeley. Starch hydrolysis by Streptococcus equinus. J. Bacteriol. 82:264-269. 1962.-In a study of starch hydrolysis by strains of Streptococcus equinus, 52 isolates were obtained and their amylolytic abilities determined. It was found that all the strains could hydrolyze starch to some extent when grown in the presence of an easily fermentable carbohydrate, viz., glucose. Without this carbohydrate the organisms did not hydrolyze starch. The hydrolysis of starch was inhibited when the organisms were grown in an atmosphere of 5% CO(2) and 95% N(2), even if grown in the presence of a fermentable monosaccharide. S. bovis, which was used as a reference organism, readily hydrolyzed starch in the absence of monosaccharides and in atmospheres containing CO(2). In no instance did S. equinus hydrolyze the starch to the level of reducing sugars. Negligible amounts of reducing sugars were recovered when the cell-free filtrates of S. equinus were incubated with starch. With S. bovis, the yield of reducing sugars under such conditions was almost quantitative. These facts extend further the differences between these related organisms. The ability to synthesize an internal starchlike polysaccharide was noted in most of the strains of S. equinus. Synthesis was found when the organisms were grown on maltose or on a starch medium containing a small amount of fermentable monosaccharide.

  16. Improved method for detection of starch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohawale, M.R.; Wilson, J.J.; Khachatourians, G.G.; Ingledew, W.M.

    1982-09-01

    A new starch hydrolysis detection method which does not rely on iodine staining or the use of color-complexed starch is described. A linear relationship was obtained with agar-starch plates when net clearing zones around colonies of yeasts were plotted against enzyme levels (semilogarithm scale) produced by the same yeast strains in liquid medium. A similar relationship between starch clearing zones and alpha-amylase levels from three different sources was observed. These observations suggest that the method is useful in mutant isolations, strain improvement programs, and the prediction of alpha-amylase activities in culture filtrates or column effluents. (Refs. 18).

  17. Improved method for detection of starch hydrolysis.

    Science.gov (United States)

    Dhawale, M R; Wilson, J J; Khachatourians, G G; Ingledew, W M

    1982-09-01

    A new starch hydrolysis detection method which does not rely on iodine staining or the use of color-complexed starch is described. A linear relationship was obtained with agar-starch plates when net clearing zones around colonies of yeasts were plotted against enzyme levels (semilogarithm scale) produced by the same yeast strains in liquid medium. A similar relationship between starch clearing zones and alpha-amylase levels from three different sources was observed. These observations suggest that the method is useful in mutant isolations, strain improvement programs, and the prediction of alpha-amylase activities in culture filtrates or column effluents.

  18. Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, Steven M.; Banker, Pierette; Bickett, David M.; Carter, H. Luke; Clancy, Daphne C.; Dickerson, Scott H.; Dwornik, Kate A.; Garrido, Dulce M.; Golden, Pamela L.; Nolte, Robert T.; Peat, Andrew J.; Sheckler, Lauren R.; Tavares, Francis X.; Thomson, Stephen A.; Wang, Liping; Weiel, James E.; (GSKNC)

    2009-05-15

    Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides 16 and 22 which displayed potent in vitro inhibition of GPa in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.

  19. Characterization of Native and Modified Starches by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Diana Soto

    2014-01-01

    Full Text Available The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation, a graft copolymer of itaconic acid (IA onto starch, and starch esters (mono- and diester itaconate was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, followed by graft copolymer of itaconic acid and finally oxidized starches. Analytical techniques and synthesis of modified starches were also described.

  20. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    OpenAIRE

    Huang, X.

    2010-01-01

    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the costs of the post-harvest starch modification. The starch binding domain (SBD) technology has been extensively explored in our lab for modifying starch in planta and producing so-called “tailored ...

  1. Evaluation of Colocasia esculenta Starch as an Alternative Tablet Excipient to Maize Starch: Assessment by Preformulation and Formulation Studies

    OpenAIRE

    Kusuma. R; Venkat Reddy. P; Samba Shiva Rao. A

    2015-01-01

    Starch isolated from Colocasia esculenta plant was studied as an alternative pharmaceutical excipient to maize and potato starch. The Colocasia esculenta starch has been evaluated by series of tests as mentioned in Indian Pharmacopoeia before being used for evaluation. It was tested along with maize and potato starch as an alternative excipient by performing battery of preformulation and formulation tests. The results obtained for Colocasia esculenta starch was comparable with maize starch an...

  2. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.

    Directory of Open Access Journals (Sweden)

    Martin Lubin

    Full Text Available BACKGROUND: The gene for methylthioadenosine phosphorylase (MTAP lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA, to adenine and 5-methylthioribose-1-phosphate (MTR-1-P, which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP, 6-methylpurine (MeP, or 2-fluoroadenine (F-Ade, are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT, to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked. PRINCIPAL FINDINGS: We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU and 6-thioguanine (6-TG may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP. The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly

  3. Quantification of the glycogen cascade system: the ultrasensitive responses of liver glycogen synthase and muscle phosphorylase are due to distinctive regulatory designs

    Directory of Open Access Journals (Sweden)

    Venkatesh KV

    2005-05-01

    Full Text Available Abstract Background Signaling pathways include intricate networks of reversible covalent modification cycles. Such multicyclic enzyme cascades amplify the input stimulus, cause integration of multiple signals and exhibit sensitive output responses. Regulation of glycogen synthase and phosphorylase by reversible covalent modification cycles exemplifies signal transduction by enzyme cascades. Although this system for regulating glycogen synthesis and breakdown appears similar in all tissues, subtle differences have been identified. For example, phosphatase-1, a dephosphorylating enzyme of the system, is regulated quite differently in muscle and liver. Do these small differences in regulatory architecture affect the overall performance of the glycogen cascade in a specific tissue? We address this question by analyzing the regulatory structure of the glycogen cascade system in liver and muscle cells at steady state. Results The glycogen cascade system in liver and muscle cells was analyzed at steady state and the results were compared with literature data. We found that the cascade system exhibits highly sensitive switch-like responses to changes in cyclic AMP concentration and the outputs are surprisingly different in the two tissues. In muscle, glycogen phosphorylase is more sensitive than glycogen synthase to cyclic AMP, while the opposite is observed in liver. Furthermore, when the liver undergoes a transition from starved to fed-state, the futile cycle of simultaneous glycogen synthesis and degradation switches to reciprocal regulation. Under such a transition, different proportions of active glycogen synthase and phosphorylase can coexist due to the varying inhibition of glycogen-synthase phosphatase by active phosphorylase. Conclusion The highly sensitive responses of glycogen synthase in liver and phosphorylase in muscle to primary stimuli can be attributed to distinctive regulatory designs in the glycogen cascade system. The different

  4. Starch Accumulation and Enzyme Activities Associated with Starch Synthesis in Maize Kernels

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-yan; DONG Shu-ting; GAO Rong-qi; SUN Qing-quan

    2007-01-01

    The filling rate and the starch accumulation in developing maize kernel were analyzed. The changes of enzyme activities associated with sucrose metabolism and starch biosynthesis were investigated. The purpose is to discuss the enzymatic mechanisms responsible for starch synthesis. Two types of maize cultivars (Zea mays), high starch maize (Feiyu 3) and normal maize (Yuyu 22), were grown in a corn field. The factors involved in starch synthesis were performed during the growth period. The kernel filling rate, the sucrose content, the starch accumulating rates and the activities of SS (sucrose synthase), GBSS (granule-bound starch synthase), SBE (starch branching enzyme) of Feiyu 3, which has high starch content, were significantly higher than those of Yuyu 22, which has low starch content, after 10 DAP (days after pollination).Correlation analysis indicated that ADPGPPase (ADP-glucose pyrophosphorylase) and DBE (starch debranching enzyme)were not correlated with the starch accumulating rates and the kernel filling rate, but the SS activity at the middle and late period were highly significantly correlated with the starch accumulating rates and the kernel filling rate. The GBSS activity was highly significantly correlated with the amylose accumulating rate, but not correlated with the kernel filling rate. The SBE activity was highly significantly correlated with the amylopectin accumulating rate and the kernel filling rate. It was not ADPGPPase and DBE, but SS was the rate-limiting factor of starch biosynthesis in developing maize kernels. GBSS had an important effect on amylose accumulation, and SBE had a significant effect on amylopectin accumulation.

  5. Properties of corn starch subjected hydrothermal modification

    Science.gov (United States)

    Gryszkin, Artur; Zięba, Tomasz; Kapelko-Żeberska, Małgorzata

    2017-01-01

    The objective of this study was to determine the effect of heating a water dispersion of corn starch to various temperatures, followed by its freezing and defrosting, on selected properties of re-formed starch pastes. A suspension of starch was heated to various temperatures ranging from 59 to 94°C, and afterwards frozen and defrosted. The differential scanning calorimetry (Mettler Toledo, 822E) thermal characteristics of starch pre-heated to temperatures not inducing complete pasting revealed transitions of: (I) retrograded amylopectin, (II) non-pasted starch, (III) amylose-lipid complexes, (IV) retrograded amylose, and (V) highly thermostable starch structures. The application of higher temperatures during heating caused disappearance of transitions II and V. The increase of pre-heating temperature induced firstly a decrease and then stabilization of the swelling power as well as a successive decrease in starch solubility. Pastes pre-heated to temperatures over 79°C contained large macroparticles that were increasing viscosity of the re-formed starch paste (their size was positively correlated with viscosity value).

  6. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material.

  7. The Acetylation of Starch by Reactive Extrusion

    NARCIS (Netherlands)

    Graaf, Robbert A. de; Broekroelofs, Annet; Janssen, Léon P.B.M.

    1998-01-01

    Potato starch has been acetylated in a counter rotating twin screw extruder using vinylacetate and sodium hydroxide. The desired starch acetylation reaction is accompanied by an undesired parallel base catalysed hydrolysis reaction of vinylacetate and a consecutive hydrolysis reaction of the acetyla

  8. Permeation of volatile compounds through starch films

    NARCIS (Netherlands)

    Yilmaz, G.; Jongboom, R.O.J.; Feil, H.; Dijk, van C.; Hennink, W.E.

    2004-01-01

    The aim of this study was to gain insight into the factors that affect the permeation of volatiles through starch films. These films were obtained by casting gelatinized starch/water/glycerol mixtures. The films were dried and conditioned under different conditions (temperature and relative humidity

  9. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current applicability of these materials is limited due to their poor moisture tolerance and mechanical properties. Starch is therefore frequently blended with other polymers to make the material more suitable for sp

  10. Production of PLA-Starch Fibers

    Science.gov (United States)

    Composites of polylactic acid (PLA) with starch have been prepared previously in an effort to reduce cost as well as to modify other properties such as biodegradation rate. However, strength and elongation both decrease on addition of starch due to poor adhesion and stress concentration at the inte...

  11. Recrystallization of amylopectin in concentrated starch gels

    NARCIS (Netherlands)

    Keetels, CJAM; Oostergetel, GT; vanVliet, T

    1996-01-01

    The relation between the recrystallization of amylopectin and the increase in stiffness of starch gels during storage was studied by various techniques. From transmission electron microscopy it was concluded that the size of the crystalline domains in retrograded 30% w/w potato starch gels was about

  12. Preparation and characterization of octenylsuccinylated plantain starch.

    Science.gov (United States)

    Bello-Flores, Christopher A; Nuñez-Santiago, Maria C; San Martín-Gonzalez, María F; BeMiller, James N; Bello-Pérez, Luis A

    2014-09-01

    Plantain starch was esterified with octenylsuccinic anhydride (OSA) at two concentrations (3 and 15% w/w) of OSA. The morphology, granule size distribution, pasting, gelatinization, swelling, and solubility of granules and structural features of the starch polymers were evaluated. Granules of the OSA-modified starches increased in size during cooking more than did the granules of the native starch, and the effect was greater at the higher OSA concentration. Pasting viscosities also increased, but gelatinization and pasting temperatures and enthalpy of gelatinization decreased in the OSA-modified starches. It was concluded that insertion of OS groups effected disorder in the granular structure. Solubility, weight average molar mass, Mw¯, and z-average radius of gyration, RGz, of the amylopectin decreased as the OSA concentration increased, indicating a decrease in molecular size.

  13. Ion mobility-mass spectrometry of phosphorylase B ions generated with supercharging reagents but in charge-reducing buffer.

    Science.gov (United States)

    Hogan, Christopher J; Ogorzalek Loo, Rachel R; Loo, Joseph A; de la Mora, Juan Fernandez

    2010-11-01

    We investigate whether "supercharging" reagents able to shift the charge state distributions (CSDs) of electrosprayed protein ions upward also influence gas-phase protein structure. A differential mobility analyzer and a mass spectrometer are combined in series (DMA-MS) to measure the mass and mobility of monomer and multimeric phosphorylase B ions (monomer molecular weight ∼97 kDa) in atmospheric pressure air. Proteins are electrosprayed from charge-reducing triethylammonium formate in water (pH = 6.8) with and without the addition of the supercharging reagent tetramethylene sulfone (sulfolane). Because the DMA measures ion mobility prior to collisional heating or declustering, it probes the structure of supercharged protein ions immediately following solvent (water) evaporation. As in prior studies, the addition of sulfolane is found to drastically increase both the mean and maximum charge state of phosphorylase B ions. Ions from all protein n-mers were found to yield mobilities that, for a given charge state, were ∼6-10% higher in the absence of sulfolane. We find that the mobility decrease which arises with sulfolane is substantially smaller than that typically observed for folded-to-unfolded transitions in protein ions (where a ∼60% decrease in mobility is typical), suggesting that supercharging reagents do not cause structural protein modifications in solution as large as noted recently by Williams and colleagues [E. R. Williams et al., J. Am. Soc. Mass Spectrom., 2010, 21, 1762-1774]. In fact, the measurements described here indicate that the modest mobility decrease observed can be partly attributed to sulfolane trapping within the protein ions during DMA measurements, and probably also in solution. As the most abundant peaks in measured mass-mobility spectra for ions produced with and without sulfolane correspond to non-covalently bound phosphorylase B dimers, we find that in spite of a change in mobility/cross section, sulfolane addition does not

  14. Screening of seeds prepared from retrograded potato starch to increase retrogradation rate of maize starch.

    Science.gov (United States)

    Lian, Xijun; Liu, Lizeng; Guo, Junjie; Li, Lin; Wu, Changyan

    2013-09-01

    In this paper, retrograded potato starches treated by oxalic, hydrochloric and citric acids and/with amylase respectively, as seed crystals, are added into maize starch paste to increase maize starch retrogradation rate. The results show that addition of seed accelerates maize starch retrogradation greatly. Seed prepared from retrograded potato starch treated by oxalic acid increases maize starch retrogradation rate most, from 1.5% to 49%. The results of IR spectra of retrograded maize starch derived from different seeds show that double helix, not hydrogen bond, probably forms at stage of seed growth during retrogradation. The results of IR spectra, X-ray and SEM indicate that treatment of retrograded potato starch with oxalic acid leads to formation of more hydrogen bonds and an increase of seed crystal planes, which markedly promotes the growth of the seed. Retrogradation of maize starch by seeding method surely includes a stage of crystal growth through double helix in a way different from normal maize starch retrogradation.

  15. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

    Directory of Open Access Journals (Sweden)

    Anne Mößeler

    2015-01-01

    Full Text Available Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI, enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n=3 or without (n=3 pancreatic duct ligation (PL were used to estimate the rate of praecaecal disappearance (pcD of starch. Different botanical sources of starch (rice, amaranth, potato, and pea were fed either raw or cooked. In the controls (C, there was an almost complete pcD (>92% except for potato starch (61.5% which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%. Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  16. Paraformaldehyde-resistant starch-fermenting bacteria in "starch-base" drilling mud.

    Science.gov (United States)

    MYERS, G E

    1962-09-01

    Starch-fermenting bacteria were found in each of 12 samples of nonfermenting starch-base drilling mud examined. Of the 12 samples, 3 contained very active starch-fermenting gram-positive spore-bearing bacilli closely resembling Bacillus subtilis. Similar active starch-fermenting bacteria were found in fermenting starch-base drilling mud and in corn starch and slough water used to prepare such mud. The active starch-fermenting microorganisms completely hydrolyzed 1% (w/v) corn starch within 24 hr at 37.5 C. The active starch-fermenting bacteria isolated from fermenting drilling mud were capable of surviving 12 hr of continuous exposure to 0.1% (w/w) paraformaldehyde or 1 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, with no diminution in starch-fermenting ability. The same organisms fermented starch after 3 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, but not after 4 hr of exposure. The phenomenon of rapid disappearance of paraformaldehyde from fermenting drilling mud was observed in the laboratory using a modified sodium sulfite test. Paraformaldehyde, initially present in a concentration of 0.192 lb per barrel of mud, completely disappeared in 9 hr at 22 to 23 C. A significant decrease in paraformaldehyde concentration was detected 0.5 hr after preparation of the mud. It is suggested that the presence of relatively high concentrations of ammonia and chloride in the mud may facilitate the disappearance of paraformaldehyde. The failure of 0.1% (w/w) paraformaldehyde to inhibit the strong starch-fermenting microorganisms isolated from fermenting drilling mud, and the rapid disappearance of paraformaldehyde from the mud, explains the fermentation of starch which occurred in this mud, despite the addition of paraformaldehyde.

  17. 21 CFR 172.892 - Food starch-modified.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Food starch-modified. 172.892 Section 172.892 Food... Multipurpose Additives § 172.892 Food starch-modified. Food starch-modified as described in this section may be... limitation prescribed. To insure safe use of the food starch-modified, the label of the food...

  18. Influence of phosphate esters on the annealing properties of starch

    DEFF Research Database (Denmark)

    Wischmann, Bente; Muhrbeck, Per

    1998-01-01

    The effects of annealing on native potato, waxy maize, and phosphorylated waxy maize starches were compared. Phosphorylated waxy maize starch responded to annealing in a manner between that of the naturally phosphorylated potato starch and that of the native waxy maize starch. The gelatinisation ...

  19. Inhibition and Structure of Trichomonas vaginalis Purine Nucleoside Phosphorylase with Picomolar Transition State Analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldo-Matthis,A.; Wing, C.; Ghanem, M.; Deng, H.; Wu, P.; Gupta, A.; Tyler, P.; Evans, G.; Furneaux, R.; et al.

    2007-01-01

    Trichomonas vaginalis is a parasitic protozoan purine auxotroph possessing a unique purine salvage pathway consisting of a bacterial type purine nucleoside phosphorylase (PNP) and a purine nucleoside kinase. Thus, T. vaginalis PNP (TvPNP) functions in the reverse direction relative to the PNPs in other organisms. Immucillin-A (ImmA) and DADMe-Immucillin-A (DADMe-ImmA) are transition stte mimics of adenosine with geometric and electrostatic features that resemble early and late transition states of adenosine at the transition state stabilized by TvPNP. ImmA demonstrates slow-onset tight-binding inhibition with TvPNP, to give an equilibrium dissociation constant of 87 pM, an inhibitor release half-time of 17.2 min, and a K{sub m}/K{sub d} ratio of 70,100. DADMe-ImmA resembles a late ribooxacarbenium ion transition state for TvPNP to give a dissociation constant of 30 pM, an inhibitor release half-time of 64 min, and a K{sub m}/K{sub d} ratio of 203,300. The tight binding of DADMe-ImmA supports a late S{sub N}1 transition state. Despite their tight binding to TvPNP, ImmA and DADMe-ImmA are weak inhibitors of human and P. falciparum PNPs. The crystal structures of the TvPNP-ImmA{center_dot}PO{sub 4} and TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4} ternary complexes differ from previous structures with substrate anologues. The tight binding with DADMe-ImmA is in part due to a 2.7 {angstrom} ionic interaction between a PO{sub 4} oxygen and the N1 cation of the hydroxypyrrolidine and is weaker in the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure at 3.5 {angstrom}. However, the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure includes hydrogen bonds between the 2'-hydroxyl and the protein that are not present in TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4}. These structures explain why DADMe-ImmA binds tighter than ImmA. Immucillin-H is a 12 nM inhibitor of TvPNP but a 56 pM inhibitor of human PNP. And this difference is explained by isotope

  20. Insights into phosphate cooperativity and influence of substrate modifications on binding and catalysis of hexameric purine nucleoside phosphorylases.

    Directory of Open Access Journals (Sweden)

    Priscila O de Giuseppe

    Full Text Available The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233 displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2'deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2'deoxyribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5' hydroxyl group of adenosine and Arg(43* side chain contributes for the ribosyl radical to adopt an unusual C3'-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl(6 and Br(8 substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser(90 by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr(91 is responsible for the lack of negative cooperativity of phosphate binding

  1. Insights into Phosphate Cooperativity and Influence of Substrate Modifications on Binding and Catalysis of Hexameric Purine Nucleoside Phosphorylases

    Science.gov (United States)

    de Giuseppe, Priscila O.; Martins, Nadia H.; Meza, Andreia N.; dos Santos, Camila R.; Pereira, Humberto D’Muniz; Murakami, Mario T.

    2012-01-01

    The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2′deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine) in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2′deoxy)ribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5′ hydroxyl group of adenosine and Arg43* side chain contributes for the ribosyl radical to adopt an unusual C3’-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl6 and Br8 substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser90 by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr91) is responsible for the lack of negative cooperativity of phosphate binding in this

  2. Slow digestion properties of rice different in resistant starch.

    Science.gov (United States)

    Shu, Xiaoli; Jia, Limeng; Ye, Hongxia; Li, Chengdao; Wu, Dianxing

    2009-08-26

    The hydrolysis of starch is a key factor for controlling the glycemic index (GI). Slow digestion properties of starch lead to slower glucose release and lower glycemic response. Food with high resistant starch (RS) possesses great value for controlling the GI. To elucidate the factors that play a role in slow digestibility, seven rice mutants different in RS contents were selected for comparative studies. The degree of hydrolysis showed highly significant correlation with RS, apparent amylose content (AAC), lipid content (LC), and other starch physiochemical properties in all these materials with different RS contents. The rate of in vitro digestible starch correlated positively with RS, whereas digestibility was affected mostly by lipid content for those mutants with similar RS. Starch-lipid complexes and short chains with degrees of polymerization (DP) of 8-12 strongly influenced starch digestion. The integrity of aggregated starch and the number of round starch granules might influence the digestibility of starch directly.

  3. Model approach to starch functionality in bread making.

    Science.gov (United States)

    Goesaert, Hans; Leman, Pedro; Delcour, Jan A

    2008-08-13

    We used modified wheat starches in gluten-starch flour models to study the role of starch in bread making. Incorporation of hydroxypropylated starch in the recipe reduced loaf volume and initial crumb firmness and increased crumb gas cell size. Firming rate and firmness after storage increased for loaves containing the least hydroxypropylated starch. Inclusion of cross-linked starch had little effect on loaf volume or crumb structure but increased crumb firmness. The firming rate was mostly similar to that of control samples. Presumably, the moment and extent of starch gelatinization and the concomitant water migration influence the structure formation during baking. Initial bread firmness seems determined by the rigidity of the gelatinized granules and leached amylose. Amylopectin retrogradation and strengthening of a long-range network by intensifying the inter- and intramolecular starch-starch and possibly also starch-gluten interactions (presumably because of water incorporation in retrograded amylopectin crystallites) play an important role in firming.

  4. Rheological and Thermal Properties of Potato Starch

    Institute of Scientific and Technical Information of China (English)

    Zhong Geng; Li Tian-zhen; Zhang Wei-min; Li Hao-nan

    2005-01-01

    Particle size, rheological and thermal properties of potato starch from Yunnan province of China was in-vestigated. The particle size ranges from 0.429-102.3 um determined by laser light-scatter. The major flow type of 6 w/v% potato starch was shear-thinning fluid even the shear rate up to 800·s-1, and the gel formed by 6 w/v% potato starch fell to weak gel for its little difference between G' and G'', high dependence on frequency and low value of G'(Pa). The hardness and cohesiveness of potato starch gel were 31.3 g and 131.9 g·s, respectively. The thermal properties of potato starch were also determined by DSC at the starch:water=3:1. The To, Tp, and ΔH of potato starch were 62.23℃,67.31℃, and 2.22 J·g-1.

  5. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch.

    Science.gov (United States)

    Wang, Wei; Zhou, Hongxian; Yang, Hong; Zhao, Siming; Liu, Youming; Liu, Ru

    2017-01-01

    The objective of this study was to evaluate the effects of salts on the gelatinization and retrogradation of maize and waxy maize starch. Experimental results showed that the salting-out or structure-making ions, such as F(-) and SO4(2-), decreased the swelling power, solubility and transparency of both starches, but increased the gelatinization temperature, enthalpy, and syneresis, due to the tendency of these ions to protect the hydrogen bond links among starch molecules. On the other hand, the salting-in or structure-breaking ions, such as I(-) and SCN(-), exhibited the opposite effects. Microscopic observations confirmed such effects of salts on both starches. Furthermore, the effects of salts were more significant on waxy maize and on normal maize starch. Generally, salts could significantly influence on the gelatinization and retrogradation of maize and waxy maize starch, following the order of the Hofmeister series.

  6. Processing effects on susceptibility of starch to digestion in some dietary starch sources.

    Science.gov (United States)

    Niba, Lorraine L

    2003-01-01

    Maize flour, potato flour, cocoyam flour, plantain flour, yam flour, and rice flour were assayed for starch digestibility by an established enzymatic procedure. These were either autoclaved, microwaved, or parboiled and then freeze-dried. Freeze-dried samples were stored for 10 days either below freezing or at ambient temperature. Parameters assessed were readily digestible starch (RDS), slowly digestible starch (SDS), and total starch (TS). Data was analyzed by t-test (P plantain flour to 68.4 g/100 g in rice flour. Autoclaving resulted in reduced TS levels insome flours. Moist heat processing and the post-process storage temperature therefore result in significant changes in starch susceptibility to enzymic digestion. This information will be useful in developing food processing and storage procedures that modify starch resistance to digestion in order to optimize its nutritional quality and to enhance the physiological benefits.

  7. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård;

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded...... to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...... is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...

  8. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård;

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded...... is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...

  9. Evaluation of Colocasia esculenta Starch as an Alternative Tablet Excipient to Maize Starch: Assessment by Preformulation and Formulation Studies

    Directory of Open Access Journals (Sweden)

    Kusuma. R

    2015-01-01

    Full Text Available Starch isolated from Colocasia esculenta plant was studied as an alternative pharmaceutical excipient to maize and potato starch. The Colocasia esculenta starch has been evaluated by series of tests as mentioned in Indian Pharmacopoeia before being used for evaluation. It was tested along with maize and potato starch as an alternative excipient by performing battery of preformulation and formulation tests. The results obtained for Colocasia esculenta starch was comparable with maize starch and the Colocasia esculenta starch can be used as a pharmaceutical excipient in tablets preparation.

  10. Starch removal from potato tuber sections.

    Science.gov (United States)

    Fronda, A; Jona, R

    1991-01-01

    Heating plant sections at 90 C with 0.5% aqueous ammonium oxalate is required to remove pectins. When applied to tissues rich in starch such as potato, this step produces heavy dextrinization of the starch which hinders subsequent evaluation of the extinction values of the cell walls. To overcome this a method has been devised to brush away the starch granules from the sections with a thin paint brush, just after paraffin removal by xylene. The slide is then processed as usual: pectins are removed by heat treatment, cell walls are stained with PAS and the stain intensity can be evaluated by photometry.

  11. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H;

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro......-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper......-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed...

  12. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L;

    2012-01-01

    yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...... amylose-only grains may be due to an important physiological role played by amylopectin ordered crystallinity for rapid starch remobilization explaining the broad conservation in the plant kingdom of the amylopectin structure....

  13. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    Science.gov (United States)

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

    2016-06-01

    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch.

  14. Electron microscopy and composition of raw acorn starch in relation to in vivo starch digestibility.

    Science.gov (United States)

    Cappai, Maria Grazia; Alesso, Giuseppe Andrea; Nieddu, Giuseppa; Sanna, Marina; Pinna, Walter

    2013-06-01

    The structure and composition of starch play an important role as co-factors affecting raw starch digestibility: such features were investigated in raw acorn starch from the most diffused oak trees in the Mediterranean basin. A total of 620 whole ripe acorns from Holm (Quercus ilex L., n = 198), Downy (Quercus pubescens Willd., n = 207) and Cork (Quercus suber L., n = 215) oaks sampled on the Sardinia Isle (40° 56' 0'' N; 9° 4' 0'' E; 545 m above the mean sea level) in the same geographical area, were analyzed for their chemical composition. The starch contents ranged between 51.2% and 53.5% of dry matter. The starch granules displayed a spheroid/ovoid and cylindrical shape; on scanning electron microscopic (SEM) analyses, a bimodal distribution of starch granule size was observed both for Holm and Cork oak acorns, whereas the starch granules of Downy oak acorns showed diameters between 10.2 and 13.8 μm. The specific amylose to amylopectin ratio of acorn starch was 25.8%, 19.5% and 34.0% in the Holm, Downy and Cork oaks, respectively. The (13)C Nuclear Magnetic Resonance (NMR) signal analysis displayed a pivotal spectrum for the identification of the amylose peaks in raw acorn starch, as a basis for the amylose to amylopectin ratio determination.

  15. In vitro analyses of resistant starch in retrograded waxy and normal corn starches.

    Science.gov (United States)

    Zhou, Xing; Chung, Hyun-Jung; Kim, Jong-Yea; Lim, Seung-Taik

    2013-04-01

    Gelatinized waxy and normal corn starches (40% starch) were subjected to temperature cycling between 4 and 30°C (1 day at each temperature) or isothermal storage (4°C) to induce retrogradation. The in vitro analysis methods that are currently used for the measurement of resistant starch (RS), i.e. Englyst, AACC 32-40 and Goni methods, were compared with homogenized retrograded starch gels and freeze-dried powders of the gels. RS contents obtained by the three analysis methods were in the following order: Goni>Englyst>AACC. Although different RS values were obtained among the analysis methods, similar trends in regards to the starch type and storage conditions could be observed. Little or no RS was found in freeze-dried powders of the retrograded starch gels and storage conditions had no effect, indicating that the physical state for RS analysis is important. More RS was found in normal corn starch gels than in waxy corn starch gels under identical storage conditions and in the gels stored under temperature cycling than those under isothermal storage (4°C), indicating that the presence of amylose inhibits starch digestion and the level of crystalline structure of re-crystallized amylopectin also affects the RS formation during retrogradation.

  16. Dietary fiber and retrograde starch.

    Science.gov (United States)

    Zivković, R

    1998-01-01

    The history of the recognition of the importance of dietary fiber, their current classification into water-soluble and water-insoluble fiber, and lignin, a single non-carbohydrate fiber, and the physiologic role of dietary fiber, with particular reference to retrograde starch resistance to small intestine digestion, are briefly presented. Dietary fiber are highly hygroscopic, thus they greatly contribute to stool voluminosity by binding water, decrease the glycemic index, and exert a protective action, via an as yet unknown mechanism, against the occurrence of colon cancer. It should be added that some dietary fiber decrease the concentration of cholesterol in the blood, i.e. in the human body. The importance of the methodology used for NSP determination is underlined, since some methods determine only some of the polysaccharides, other also measure some other substances, whereas Englyst's method determines NSP only.

  17. TECHNOLOGY OF THERMOPLASTIC STARCH PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. D. Lukin

    2015-01-01

    Full Text Available In recent years, the manufacturing of bio-recyclable polymer products, which production and consumption has become an efficient way to protect environment from solid wastes in different countries of the world. The issue of environmental protection becomes global and the rapid growth of synthetic plastics application in many industries is a serious concern. There is a important task to improve the quality, safety and durability of products as well as their utilization after the expiration period. One of the most acceptable ways to solve these issues is to produce biodegradable materials based on natural materials, which are not harmful for environment and human health. A very common and effective method to give biological degradability to synthetic polymers is to insert starch into polymer composition in combination with other ingredients.

  18. Starch Modification by Graft Copolymerization of Acrylonitrile

    Institute of Scientific and Technical Information of China (English)

    刘瑞贤; 李莉; 茹宗玲; 张黎明; 高建平; 田汝川

    2003-01-01

    The graft copolymerization of acrylonitrile (AN) onto starch under the initiation of potassium permanganate was investigated. The effect of various reaction conditions on the graft copolymerization was studied. The relationships between the grafting rate and the initiator concentration of potassium permanganate, monomer acrylonitrile and backbone starch, as well as reaction temperature were established. The oxidation reaction of starch with manganic ions and valence changes of manganic ions during the graft copolymerization were discussed. The results show that manganic ion Mn7+ underwent a series of valence changes during the graft copolymerization: Mn(Ⅶ) → Mn(Ⅳ) → Mn(Ⅲ) → Mn(Ⅱ). The grafting rate of the graft copolymerization of acrylonitrile onto starch is also given.

  19. Rheological behaviour of heated potato starch dispersions

    Science.gov (United States)

    Juszczak, L.; Witczak, M.; Ziêba, T.; Fortuna, T.

    2012-10-01

    The study was designed to investigate the rheological properties of heated potato starch dispersions. Water suspensions of starch were heated at 65, 80 or 95°C for 5, 15, 30 or 60 min. The dispersions obtained were examined for granule size distribution and rheology. It was found that the starch dispersions significantly differed in both respects. The mean diameters of starch granules were largest for the dispersion heated at 65°C and smallest for that heated at 95°C. As the heating temperature was raised, the yield stresses and consistency coefficients decreased, while the flow behaviour indexes and Casson plastic viscosities increased. There were also differences in the viscoelastic properties of the dispersions: for those heated at 65°C the storage and loss moduli increased with heating time whereas for those heated at 80°C both moduli decreased.

  20. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper;

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...... phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...

  1. Starch-based completely biodegradable polymer materials

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Starch is a natural polymer which possesses many unique properties and some shortcoming simultaneously. Some synthetic polymers are biodegradable and can be tailor-made easily. Therefore, by combining the individual advantages of starch and synthetic polymers, starch-based completely biodegradable polymers (SCBP are potential for applications in biomedical and environmental fields. Therefore it received great attention and was extensively investigated. In this paper, the structure and characteristics of starch and some synthetic degradable polymers are briefly introduced. Then, the recent progress about the preparation of SCBP via physical blending and chemical modification is reviewed and discussed. At last, some examples have been presented to elucidate that SCBP are promising materials for various applications and their development is a good solution for reducing the consumption of petroleum resources and environmental problem.

  2. Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Stephen A.; Banker, Pierette; Bickett, D. Mark; Boucheron, Joyce A.; Carter, H. Luke; Clancy, Daphne C.; Cooper, Joel P.; Dickerson, Scott H.; Garrido, Dulce M.; Nolte, Robert T.; Peat, Andrew J.; Sheckler, Lauren R.; Sparks, Steven M.; Tavares, Francis X.; Wang, Liping; Wang, Tony Y.; Weiel, James E.; (GSKNC)

    2009-05-15

    Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.

  3. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  4. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    OpenAIRE

    A. Sh. Mannapova; Z. A. Kanarskaya; A. V. Kanarskii; G. P. Shuvaeva

    2015-01-01

    Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment ...

  5. Resistant starch: an indigestible fraction of foods

    Directory of Open Access Journals (Sweden)

    Saura Calixto, F.

    1991-06-01

    Full Text Available Resistant starch (RS, the dietary starch that scape digestion in the small intestine, can yields up to 20% of the starch in cereal and legume products. Several fractions contribute to the total RS of foods: retrograded amylose, starch inaccessible to digestive enzymes because of mechanical barriers, chemically modified starch fragments, undigested starch due to α-amylase inhibitors and starch complexed with other food components. RS is formed in products processed following heat treatments (baking, extrusion, autoclaving, etc.. RS produces significant fecal bulking and is partially fermentable by anaerobic bacteria of the colon. On the other hand, the relation of resistant starch with the glucose and insulin response in human subjects is an important nutritional effect. RS analytical methods are reported.

    El almidón resistente (RS, fracción de almidón de la dieta que no es digerido en el intestino delgado, puede alcanzar hasta un 20% del almidón en productos derivados de cereales y legumbres. Varias fracciones contribuyen al contenido total de almidón resistente: amilosa retrogradada, almidón inaccesible físicamente a los enzimas digestivos, almidón indigestible debido a inhibición de α-amilasas y almidón complejado con otros constituyentes de los alimentos. El almidón resistente se forma en productos que han sufrido tratamientos térmicos (panificación, extrusión, autoclave, etc. El RS aumenta el volumen de heces y es fermentado parcialmente en el colon por bacterias anaeróbicas. Igualmente, está relacionado con los niveles de glucosa en sangre y la respuesta de insulina en humanos. Se describen los métodos analíticos para su determinación.

  6. Genetic modification of cassava enhances starch production

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Recently, a field test of transgenic cassava (Manihot esculenta Crantz) for enhanced starch production by the Shanghai Institute of Plant Physiology & Ecology (SIPPE), the CAS Shanghai Institutes for Biological Sciences, proved successful. Through application of transgenic technologies in cassava, the starch quality of this tropical root crop was largely improved. The new cassava cultivars are believed to have a tremendous potential for industrial application in the future.

  7. Morphological features and physicochemical properties of waxy wheat starch.

    Science.gov (United States)

    Zhang, Huanxin; Zhang, Wei; Xu, Chunzhong; Zhou, Xing

    2013-11-01

    Morphological features, granule composition, and physicochemical properties of waxy wheat starch were compared with those of normal wheat starch. The morphologies and granule populations were found to be similar for the two starches. However, waxy wheat starch contained a smaller proportion of B-type granules, had a larger average granule diameter, and a higher degree of crystallinity than normal wheat starch, as measured by particle size analysis and differential scanning calorimetry. These differences resulted in a higher gelatinization temperature, transition enthalpy, peak viscosity, breakdown, swelling power, lower peak viscosity temperature and final viscosity in waxy wheat starch. These points suggest that waxy wheat starch should have greater resistance to retrogradation during cooling and higher water-holding capacity under dry conditions. Highlighting the differences in physicochemical properties of waxy and normal wheat starches should help point toward effective applications of waxy wheat starch in the food industry.

  8. Preparation of indigestible pyrodextrins from different starch sources.

    Science.gov (United States)

    Laurentin, Alexander; Cárdenas, Marité; Ruales, Jenny; Pérez, Elevina; Tovar, Juscelino

    2003-08-27

    Starch-modifying processes, such as pyrodextrinization, are potential ways to alter the nutritional features of this polysaccharide. A widely used method for pyrodextrinizing maize starch was also applied to lentil, sorghum, cocoyam, sagu, and cassava starches, and the in vitro digestibility of the products was evaluated. Pyrodextrins were produced by heating starch at 140 degrees C for 3 h, with catalytic amounts of HCl. The enzymatically available starch content of all preparations decreased by 55-65% after modification. Thus, pyrodextrinization seems to be an effective way to produce indigestible glucans from different starches. Pyrodextrins obtained were complex mixtures of starch derivatives with a wide range of molecular weight as estimated by gel filtration chromatography. Both their molecular weight profiles and contents of indigestible fractions varied with starch source. Experiments with lentil and cassava starches showed that changing dextrinization conditions also affects the susceptibility to enzymatic hydrolysis of the product.

  9. Preparation of porous hydroxyapatite ceramics with starch additives

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; NING Xiao-shan; CHEN Ke-xin; XIAO Qun-fang; ZHOU He-ping

    2005-01-01

    Porous ceramics prepared from nano-sized hydroxyapatite powders by adding water soluble starch and insoluble starch were investigated. The results show that small pores of several micrometers or less can be produced by adding water soluble starch as a pore former. Two kinds of starch have different pore forming mechanisms. The permeability of the porous ceramics can be greatly improved by adding the insoluble starch to channel the small pores rather than solely using water soluble starch. The control of permeability can be achieved by adjusting the content ratio of water soluble starch to insoluble starch. Strength tests show the ceramics have rather high strength. Therefore a kind of porous filtering material with small pores, controllable permeability and good strength can be prepared by using starch additives.

  10. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Ma, Fei; Kong, Fansheng; Gao, Qunyu; Yu, Shujuan

    2015-04-01

    Waxy rice starch was subjected to annealing (ANN) and heat-moisture treatment (HMT). These starches were also treated by a combination of ANN and HMT. The impact of single and dual modifications (ANN-HMT and HMT-ANN) on the molecular weight (M(w)), crystalline structure, thermal properties, and the digestibility were investigated. The relative crystallinity and short-range order on the granule surface increased on ANN, whereas decreased on HMT. All treated starches showed lower M(w) than that of the native starch. Gelatinization onset temperature, peak temperature and conclusion temperature increased for both single and dual treatments. Increased slowly digestible starch content was found on HMT and ANN-HMT. However, resistant starch levels decreased in all treated starches as compared with native starch. The results would imply that hydrothermal treatment induced structural changes in waxy rice starch significantly affected its digestibility.

  11. Heat expanded starch-based compositions.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur K; Holtman, Kevin M; Shey, Justin; Chiou, Bor-Sen; Berrios, Jose; Wood, Delilah; Orts, William J; Imam, Syed H

    2007-05-16

    A heat expansion process similar to that used for expanded bead polystyrene was used to expand starch-based compositions. Foam beads made by solvent extraction had the appearance of polystyrene beads but did not expand when heated due to an open-cell structure. Nonporous beads, pellets, or particles were made by extrusion or by drying and milling cooked starch slurries. The samples expanded into a low-density foam by heating 190-210 degrees C for more than 20 s at ambient pressures. Formulations containing starch (50-85%), sorbitol (5-15%), glycerol (4-12%), ethylene vinyl alcohol (EVAL, 5-15%), and water (10-20%) were studied. The bulk density was negatively correlated to sorbitol, glycerol, and water content. Increasing the EVAL content increased the bulk density, especially at concentrations higher than 15%. Poly(vinyl alcohol) (PVAL) increased the bulk density more than EVAL. The bulk density was lowest in samples made of wheat and potato starch as compared to corn starch. The expansion temperature for the starch pellets decreased more than 20 degrees C as the moisture content was increased from 10 to 25%. The addition of EVAL in the formulations decreased the equilibrium moisture content of the foam and reduced the water absorption during a 1 h soaking period.

  12. Engineering Potato Starch with a Higher Phosphate Content

    Science.gov (United States)

    Xu, Xuan; Huang, Xing-Feng; Visser, Richard G. F.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (de)phosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal). Interestingly, expression of an (engineered) laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf). Modified starches exhibited altered granule morphology and size compared to the control. About 20–30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself. PMID:28056069

  13. Effects of eugenol-reduced clove extract on glycogen phosphorylase b and the development of diabetes in db/db mice.

    Science.gov (United States)

    Sanae, Fujiko; Kamiyama, Ogusa; Ikeda-Obatake, Kyoko; Higashi, Yasuhiko; Asano, Naoki; Adachi, Isao; Kato, Atsushi

    2014-02-01

    We found that the 50% aqueous EtOH extract of clove (Syzygium aromaticum) had potent dose-dependent inhibitory activity toward glycogen phosphorylase b and glucagon-stimulated glucose production in primary rat hepatocytes. Among the components, eugeniin inhibited glycogen phosphorylase b and glucagon-stimulated glucose production in primary rat hepatocytes, with IC50 values of 0.14 and 4.7 μM, respectively. In sharp contrast, eugenol showed no significant inhibition toward glycogen phosphorylase b, even at a concentration of 400 μM. Eugenol-reduced clove extracts (erCE) were prepared and when fed to a db/db mouse they clearly suppressed the blood glucose and HbA1c levels. Furthermore, plasma triglyceride and non-esterified fatty acid levels in 5% and 10% erCE-fed db/db mice were significantly lowered, compared with control db/db mice without erCE supplementation. These results suggested that dietary supplementation with the erCE could beneficially modify glucose and lipid metabolism and contribute to the prevention of the progress of hyperglycemia and metabolic syndrome.

  14. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  15. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products.

  16. Improved cassava starch by antisense inhibition of granule-bound starch synthase I

    NARCIS (Netherlands)

    Raemakers, C.J.J.M.; Schreuder, M.M.; Suurs, L.C.J.M.; Furrer-Verhorst, M.; Vincken, J.P.; Vetten, de N.; Jacobsen, E.; Visser, R.G.F.

    2005-01-01

    Cassava is a poor man's crop which is mainly grown as a subsistence crop in many developing countries. Its commercial use was first as animal feed (also known as tapioca), but has shifted since the late sixties to a source of native starch. The availability of native starches, which on the one hand

  17. Polymer-polymer miscibility in PEO/cationic starch and PEO/hydrophobic starch blends

    Directory of Open Access Journals (Sweden)

    2010-08-01

    Full Text Available The main purposes were evaluating the influence of different starches on the miscibility with Poly(ethylene oxide (PEO and their effects on the spherulite growth rate. Polymer-polymer miscibility in PEO/cationic starch and PEO/hydrophobic starch blends consisting of different w/w ratios (100/0, 95/05, 90/10, 80/20, 70/30, 65/35 and 60/40 was investigated. This analysis was based on the depression in the equilibrium melting temperature (Tm0. By treating the data of thermal analysis (Differential Scanning Calorimetry – DSC with Nishi-Wang equation, a positive value (0.68 was found for the interaction parameter of PEO/cationic starch. For PEO/hydrophobic starch blends, a negative value (–0.63 was obtained for the interaction parameter. The results suggested that PEO/cationic starch system should be immiscible. However, the system PEO/hydrophobic starch was considered to be miscible in the whole range of studied compositions. Through optical microscopy analysis, it was concluded that the spherulite growth rate is significantly affected by changing the amount and the type of starch as well.

  18. Preparation and characterization of resistant starch III from elephant foot yam (Amorphophallus paeonifolius) starch.

    Science.gov (United States)

    Reddy, Chagam Koteswara; Haripriya, Sundaramoorthy; Noor Mohamed, A; Suriya, M

    2014-07-15

    The purpose of this study was to assess the properties of resistant starch (RS) III prepared from elephant foot yam starch using pullulanase enzyme. Native and gelatinized starches were subjected to enzymatic hydrolysis (pullulanase, 40 U/g per 10h), autoclaved (121°C/30 min), stored under refrigeration (4°C/24h) and then lyophilized. After preparation of resistant starch III, the morphological, physical, chemical and functional properties were assessed. The enzymatic and retrogradation process increased the yield of resistant starch III from starch with a concomitant increase increase in its water absorption capacity and water solubility index. A decrease in swelling power was observed due to the hydrolysis and thermal process. Te reduced pasting properties and hardness of resistant starch III were associated with the disintegration of starch granules due to the thermal process. The viscosity was found to be inversely proportional to the RS content in the sample. The thermal properties of RS increased due to retrogradation and recrystallization (P<0.05).

  19. Resistant Starch and Starch Thermal Characteristics in Exotic Corn Lines Grown in Temperate and Tropical Environments

    Science.gov (United States)

    Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introg...

  20. Green starch conversions : Studies on starch acetylation in densified CO2

    NARCIS (Netherlands)

    Muljana, Henky; Picchioni, Francesco; Heeres, Hero J.; Janssen, Leon P. B. M.

    2010-01-01

    The acetylation of potato starch with acetic anhydride (AAH) and sodium acetate (NaOAc) as catalyst in densified CO2 was explored in a batch reactor setup. The effects of process variables such as pressure (6-9.8 MPa), temperature (40-90 degrees C), AAH to starch ratio (2-5 mol/mol AGU), NaOAc to st

  1. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  2. Effect of Drought Stress During Flowering Stage on Starch Accumulation and Starch Synthesis Enzymes in Sorghum Grains

    Institute of Scientific and Technical Information of China (English)

    YI Bing; ZHOU Yu-fei; GAO Ming-yue; ZHANG Zhuang; HAN Yi; YANG Guang-dong; XU Wen-juan; HUANG Rui-dong

    2014-01-01

    Starch content is a key factor affecting sorghum grain quality. The research of sorghum grain starch accumulation and the related synthesis enzyme activities has great signiifcance for understanding the mechanisms of starch metabolisms. The differences between a high and a low starch content sorghum hybrids (Tieza 17 and Liaoza 11, respectively) in grain starch accumulation and the related synthesis enzyme activities were assessed following imposition of water stress during lfowering stage. The total starch, amylase and amylopectin accumulation all decreased at the mid-late stage of grain iflling under drought stress during lfowering stage. The maximum and mean accumulation rates also decreased. During grain iflling, soluble starch synthase (SSS), granule-bound starch synthase (GBSS), starch branching enzyme (SBE), and starch debranching enzymes (DBE) activities were all affected, though differently. Drought stress reduced starch accumulation in a larger extent for Tieza 17 than Liaoza 11. Drought stress during lfowing stage reduced starch synthesis enzyme activities, thus reducing starch accumulation in grains, and the differences between starch components were also demonstrated under drought stress.

  3. Effects of Weak Light on Starch Accumulation and Starch Synthesis Enzyme Activities in Rice at the Grain Filling Stage

    Institute of Scientific and Technical Information of China (English)

    LI Tian; Ryu OHSUGI; Tohru YAMAGISHI; Haruto SASAKI

    2006-01-01

    Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments after flowering were studied using two dce varieties IR72 (indica) and Nipponbare (japonica) as materials. Under shading treatments, the starch,amylose and sucrose contents decreased, while ADP-glucose pyrophosphorylase (ADPGPPase) activity only changed a little, soluble starch synthase activity and granule bound starch synthase activity decreased, soluble starch branching enzyme (SSBE, Q-enzyme) activity and granule bound starch branching enzyme (GBSBE, Q-enzyme) activity increased, and starch debranching enzyme (DBE, R-enzyme) activity vaded with varieties. Correlation analyses showed that the changes of starch content were positively and significantly correlated with the changes of sucrose content in the weak light. Both ADPGPPase activity and SSBE activity were positively and significantly correlated with starch accumulation rate. It was implied that the decline of starch synthase activities was related to the decrease of starch content and the increase of the activity of starch branching enzyme played an important role in the decrease of the ratio of amylose to the total starch under the weak light.

  4. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi

    2016-09-02

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  5. Evaluation of an enzymic method for starch purity determination

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, J.F. (Research Lab. for the Chemistry of Bioactive Carbohydrates and Proteins, Birmingham Univ. (United Kingdom)); Cabalda, V.M. (Inst. of Research and Development, Chembiotech Ltd., Birmingham (United Kingdom))

    1993-02-01

    Independent evaluation of an enzyme method (AFNOR) on a wider than original array of starch types showed incomplete conversion of some starch components (up to 2.5%) to glucose, as assayed per gel permeation chromatography. The AFNOR method uses only a single enzyme regime consisting of amyloglucosidase from Aspergillus niger. Negligible amounts of starch were found in the precipitates/residues obtained after starch hydrolysis of the starch hydrolysates (<0.1%). Standard deviation of the method was <1% absolute for all starches studied. (orig.).

  6. Effects of cooking methods and starch structures on starch hydrolysis rates of rice.

    Science.gov (United States)

    Reed, Michael O; Ai, Yongfeng; Leutcher, Josh L; Jane, Jay-lin

    2013-07-01

    This study aimed to understand effects of different cooking methods, including steamed, pilaf, and traditional stir-fried, on starch hydrolysis rates of rice. Rice grains of 3 varieties, japonica, indica, and waxy, were used for the study. Rice starch was isolated from the grain and characterized. Amylose contents of starches from japonica, indica, and waxy rice were 13.5%, 18.0%, and 0.9%, respectively. The onset gelatinization temperature of indica starch (71.6 °C) was higher than that of the japonica and waxy starch (56.0 and 56.8 °C, respectively). The difference was attributed to longer amylopectin branch chains of the indica starch. Starch hydrolysis rates and resistant starch (RS) contents of the rice varieties differed after they were cooked using different methods. Stir-fried rice displayed the least starch hydrolysis rate followed by pilaf rice and steamed rice for each rice variety. RS contents of freshly steamed japonica, indica, and waxy rice were 0.7%, 6.6%, and 1.3%, respectively; those of rice pilaf were 12.1%, 13.2%, and 3.4%, respectively; and the stir-fried rice displayed the largest RS contents of 15.8%, 16.6%, and 12.1%, respectively. Mechanisms of the large RS contents of the stir-fried rice were studied. With the least starch hydrolysis rate and the largest RS content, stir-fried rice would be a desirable way of preparing rice for food to reduce postprandial blood glucose and insulin responses and to improve colon health of humans.

  7. Effect of partial drying and partial baking on starch degradation, on related enzymatic activities and on chemical composition of upper flue-cured tobacco leaves%半晾半烤对上部烟叶淀粉降解和相关酶活性及品质的影响

    Institute of Scientific and Technical Information of China (English)

    王文超; 贺帆; 徐成龙; 王涛; 石盼盼; 宫长荣

    2012-01-01

    The upper leaves of flue-cured tobacco of tobacco cultivars Zhongyan 100 and Yunyan 87 were used to study the effect of different drying periods (48, 60, 72 h) on the activities of amylase and starch phosphorylase. Compared to the routine baking process, amylase activity of the leaves pretreated with air drying reached its first peak 12 h earlier during the baking process, which extended the life time of amylase; the starch phosphorylase activity in the early period of baking process decreased, but in the late period the decrease was not obvious. The leaves pretreated with 60 h of air drying had high activities of amylase and starch phosphorylase, high amylase degradation, and the amylase content was low while the contents of water-soluble total sugar and reducing sugar were high in these leaves, these cured upper leaves with balanced chemical components are considered highly applicable.%以烤烟品种中烟100和云烟87的上部叶为材料,研究不同晾黄时间(48、60、72 h)对烟叶烘烤过程中淀粉降解及淀粉酶和淀粉磷酸化酶活性的影响.结果表明:与对照(常规烘烤)相比,晾制处理的烟叶在烘烤过程中淀粉酶活性提前12h达到第1次高峰,适当延长了淀粉酶的有效活性时间;与对照相比,烘烤前期淀粉磷酸化酶活性有所降低,在烘烤后期下降不明显,其中,晾黄60 h后烘烤烟叶的淀粉酶和淀粉磷酸化酶活性、淀粉降解量均较高,烤后烟叶淀粉含量较低,水溶性总糖、还原糖含量较高,各种化学成分较为协调,上部烟叶的可用性较高.

  8. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    Directory of Open Access Journals (Sweden)

    Carciofi Massimiliano

    2012-11-01

    Full Text Available Abstract Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs. However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb in barley (Hordeum vulgare L., resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 % was observed, which is 2.2-fold higher than control (29%. The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch

  9. Sorption properties of modified potato starch

    Directory of Open Access Journals (Sweden)

    Teresa Witczak

    2016-12-01

    Full Text Available Background. Starch is one of the biopolymers most commonly used in the food industry. In its native form its applications are limited. In contrast, its structure is relatively readily modified using various methods, producing starch derivatives of greatly diverse properties. The primary methods used to change characteristics of starch include acetylation and oxidation. Thus obtained raw materials are used as food additives. Stability of these raw materials and food products to a considerable extent depends on their composition and parameters characterizing storage facilities, i.e. relative humidity and temperature. One of the methods to specify adequate ambient conditions is based on water activity supplemented by sorption isotherms. As a result studies investigating correlations between water activity and moisture content are of importance for the optimization of storage conditions and design of certain food processing procedures. For this reason the aim of this study was to assess the effect of modification (oxidation, acetylation and their combination on sorption properties (described based on sorption isotherms of potato starch. Material and methods. Analyses were conducted on potato starch and its derivatives produced by acetylation, oxidation and co-modification (acetylation coupled with oxidation. Starch was oxidized using sodium chlorate (I, while acetylation was run using anhydrous acetic acid. Sorption isotherms were determined by the static desiccator method. Results were described applying selected mathematical methods equipped with physical interpretations (BET and GAB and empirical models (Halsey, Oswin, Henderson, Pelega, Lewicki, Blahovec-Yanniotis. Calculations were made using non-linear estimation. Results. The greatest water absorbability was found for native potato starch. Modifications caused a decrease in the amount of adsorbed water vapour, dependent on the applied modification. Acetylation resulted in significantly

  10. Fermentation of corn starch to ethanol with genetically engineered yeast.

    Science.gov (United States)

    Inlow, D; McRae, J; Ben-Bassat, A

    1988-07-05

    Expression of the glucoamylase gene from Aspergillus awamori by laboratory and distiller's strains of Saccharomyces cerevisiae allowed them to ferment soluble starch. Approximately 95% of the carbohydrates in the starch were utilized. Glycerol production was significantly decreased when soluble starch was used instead of glucose. Ethanol yield on soluble starch was higher than that on glucose. The rate of starch fermentation was directly related to the level of glucoamylase activity. Strains with higher levels of glucoamylase expression fermented starch faster. The decline in starch fermentation rates toward the end of the fermentation was associated with accumulation of disaccharides and limit dextrins, poor substrates for glucoamylase. The buildup of these products in continuous fermentations inhibited glucoamylase activity and complete utilization of the starch. Under these conditions maltose-fermenting strains had a significant advantage over nonfermenting strains. The synthesis and secretion of glucoamylase showed no deleterious effects on cell growth rates, fermetation rates, and fermentation products.

  11. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel;

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  12. Functionality of porous starch obtained by amylase or amyloglucosidase treatments.

    Science.gov (United States)

    Dura, A; Błaszczak, W; Rosell, C M

    2014-01-30

    Porous starch is attracting very much attention for its absorption and shielding ability in many food applications. The effect of two different enzymes, fungal α-amylase (AM) or amyloglucosidase (AMG), on corn starch at sub-gelatinization temperature was studied as an alternative to obtain porous starch. Biochemical features, thermal and structural analyses of treated starches were studied. Microscopic analysis of the granules confirmed the enzymatic modification of the starches obtaining porous structures with more agglomerates in the case of AMG treated starches. Several changes in thermal properties and hydrolysis kinetics were observed in enzymatically modified starches. Hydration properties were significantly affected by enzymatic modification being greater influenced by AMG activity, and the opposite trend was observed in the pasting properties. Overall, results showed that enzymatic modification at sub-gelatinization temperatures really offer an attractive alternative for obtaining porous starch granules to be used in a variety of foods applications.

  13. Starch: its metabolism, evolution, and biotechnological modification in plants.

    Science.gov (United States)

    Zeeman, Samuel C; Kossmann, Jens; Smith, Alison M

    2010-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants. We depend upon starch for our nutrition, exploit its unique properties in industry, and use it as a feedstock for bioethanol production. Here, we review recent advances in research in three key areas. First, we assess progress in identifying the enzymatic machinery required for the synthesis of amylopectin, the glucose polymer responsible for the insoluble nature of starch. Second, we discuss the pathways of starch degradation, focusing on the emerging role of transient glucan phosphorylation in plastids as a mechanism for solubilizing the surface of the starch granule. We contrast this pathway in leaves with the degradation of starch in the endosperm of germinated cereal seeds. Third, we consider the evolution of starch biosynthesis in plants from the ancestral ability to make glycogen. Finally, we discuss how this basic knowledge has been utilized to improve and diversify starch crops.

  14. Role of molecular entanglements in starch fiber formation by electrospinning.

    Science.gov (United States)

    Kong, Lingyan; Ziegler, Gregory R

    2012-08-13

    We have demonstrated a method of fabricating pure starch fibers with an average diameter in the order of micrometers. In the present study, correlation between the rheological properties of starch dispersions and the electrospinnability was attempted via the extrapolation of the critical entanglement concentration, which is the boundary between the semidilute unentangled regime and the semidilute entangled regime. Dispersions of high amylose starch containing nominally 80% amylose (Gelose 80) required 1.2-2.7 times the entanglement concentration for effective electrospinning. Besides starch concentration, molecular conformation, and shear viscosity were also of importance in determining the electrospinnability. The rheological properties and electrospinnability of different starches were studied. Hylon VII and Hylon V starches, containing nominally 70 and 50% amylose, respectively, required concentrations of 1.9 and 3.7 times their entanglement concentrations for electrospinning. Only poor fibers were obtained from mung bean starch, which contains about 35% amylose, while starches with even lower amylose contents could not be electrospun.

  15. Rheological properties of sweet potato starch before and after denaturalization

    Institute of Scientific and Technical Information of China (English)

    肖华西; 林亲录; 夏新剑; 李丽辉; 林利忠; 吴卫国

    2008-01-01

    Based on the sweet potato starch,cationic starch,acetic starch and cationic-acetic compoundedly modified starch were made through chemical denaturalization.The above three kinds of static rheological parameter and dynamic rheological parameter were measured,respectively.The experimental result reveals that the thermal stability of starchy viscosity increases after chemical denaturalization.Under the condition of identical shearing rate,the shear stress of cationic-acetic ester compoundedly modified sweet potato starch paste is the largest among these kinds of sweet potato starch.This attributes to a phenomenon of shearing thinning.Furthermore,raw sweet potato starch has a larger gel intensity than that of modified starch.

  16. An Imprinted Cross-Linked Enzyme Aggregate (iCLEA of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity

    Directory of Open Access Journals (Sweden)

    Tom Desmet

    2012-09-01

    Full Text Available The industrial use of sucrose phosphorylase (SP, an interesting biocatalyst for the selective transfer of α-glucosyl residues to various acceptor molecules, has been hampered by a lack of long-term stability and low activity towards alternative substrates. We have recently shown that the stability of the SP from Bifidobacterium adolescentis can be significantly improved by the formation of a cross-linked enzyme aggregate (CLEA. In this work, it is shown that the transglucosylation activity of such a CLEA can also be improved by molecular imprinting with a suitable substrate. To obtain proof of concept, SP was imprinted with α-glucosyl glycerol and subsequently cross-linked with glutaraldehyde. As a consequence, the enzyme’s specific activity towards glycerol as acceptor substrate was increased two-fold while simultaneously providing an exceptional stability at 60 °C. This procedure can be performed in an aqueous environment and gives rise to a new enzyme formulation called iCLEA.

  17. A study on the interaction of rhodamine B with methylthioadenosine phosphorylase protein sourced from an Antarctic soil metagenomic library.

    Science.gov (United States)

    Bartasun, Paulina; Cieśliński, Hubert; Bujacz, Anna; Wierzbicka-Woś, Anna; Kur, Józef

    2013-01-01

    The presented study examines the phenomenon of the fluorescence under UV light excitation (312 nm) of E. coli cells expressing a novel metagenomic-derived putative methylthioadenosine phosphorylase gene, called rsfp, grown on LB agar supplemented with a fluorescent dye rhodamine B. For this purpose, an rsfp gene was cloned and expressed in an LMG194 E. coli strain using an arabinose promoter. The resulting RSFP protein was purified and its UV-VIS absorbance spectrum and emission spectrum were assayed. Simultaneously, the same spectroscopic studies were carried out for rhodamine B in the absence or presence of RSFP protein or native E. coli proteins, respectively. The results of the spectroscopic studies suggested that the fluorescence of E. coli cells expressing rsfp gene under UV illumination is due to the interaction of rhodamine B molecules with the RSFP protein. Finally, this interaction was proved by a crystallographic study and then by site-directed mutagenesis of rsfp gene sequence. The crystal structures of RSFP apo form (1.98 Å) and complex RSFP/RB (1.90 Å) show a trimer of RSFP molecules located on the crystallographic six fold screw axis. The RSFP complex with rhodamine B revealed the binding site for RB, in the pocket located on the interface between symmetry related monomers.

  18. A study on the interaction of rhodamine B with methylthioadenosine phosphorylase protein sourced from an Antarctic soil metagenomic library.

    Directory of Open Access Journals (Sweden)

    Paulina Bartasun

    Full Text Available The presented study examines the phenomenon of the fluorescence under UV light excitation (312 nm of E. coli cells expressing a novel metagenomic-derived putative methylthioadenosine phosphorylase gene, called rsfp, grown on LB agar supplemented with a fluorescent dye rhodamine B. For this purpose, an rsfp gene was cloned and expressed in an LMG194 E. coli strain using an arabinose promoter. The resulting RSFP protein was purified and its UV-VIS absorbance spectrum and emission spectrum were assayed. Simultaneously, the same spectroscopic studies were carried out for rhodamine B in the absence or presence of RSFP protein or native E. coli proteins, respectively. The results of the spectroscopic studies suggested that the fluorescence of E. coli cells expressing rsfp gene under UV illumination is due to the interaction of rhodamine B molecules with the RSFP protein. Finally, this interaction was proved by a crystallographic study and then by site-directed mutagenesis of rsfp gene sequence. The crystal structures of RSFP apo form (1.98 Å and complex RSFP/RB (1.90 Å show a trimer of RSFP molecules located on the crystallographic six fold screw axis. The RSFP complex with rhodamine B revealed the binding site for RB, in the pocket located on the interface between symmetry related monomers.

  19. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    Science.gov (United States)

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas.

  20. Activity of glycogen synthase and glycogen phosphorylase in normal and cirrhotic rat liver during glycogen synthesis from glucose or fructose.

    Science.gov (United States)

    Bezborodkina, Natalia N; Chestnova, Anna Yu; Okovity, Sergey V; Kudryavtsev, Boris N

    2014-03-01

    Cirrhotic patients often demonstrate glucose intolerance, one of the possible causes being a decreased glycogen-synthesizing capacity of the liver. At the same time, information about the rates of glycogen synthesis in the cirrhotic liver is scanty and contradictory. We studied the dynamics of glycogen accumulation and the activity of glycogen synthase (GS) and glycogen phosphorylase (GP) in the course of 120min after per os administration of glucose or fructose to fasted rats with CCl4-cirrhosis or fasted normal rats. Blood serum and liver pieces were sampled for examinations. In the normal rat liver administration of glucose/fructose initiated a fast accumulation of glycogen, while in the cirrhotic liver glycogen was accumulated with a 20min delay and at a lower rate. In the normal liver GS activity rose sharply and GPa activity dropped in the beginning of glycogen synthesis, but 60min later a high synthesis rate was sustained at the background of a high GS and GPa activity. Contrariwise, in the cirrhotic liver glycogen was accumulated at the background of a decreased GS activity and a low GPa activity. Refeeding with fructose resulted in a faster increase in the GS activity in both the normal and the cirrhotic liver than refeeding with glucose. To conclude, the rate of glycogen synthesis in the cirrhotic liver is lower than in the normal one, the difference being probably associated with a low GS activity.

  1. Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly.

    Science.gov (United States)

    Hardwick, Steven W; Gubbey, Tobias; Hug, Isabelle; Jenal, Urs; Luisi, Ben F

    2012-04-01

    Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3'-5' directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3' end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a 'splayed' conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3' end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.

  2. Synthesis, enzyme kinetics and computational evaluation of N-(β-D-glucopyranosyl) oxadiazolecarboxamides as glycogen phosphorylase inhibitors.

    Science.gov (United States)

    Polyák, Mária; Varga, Gergely; Szilágyi, Bence; Juhász, László; Docsa, Tibor; Gergely, Pál; Begum, Jaida; Hayes, Joseph M; Somsák, László

    2013-09-15

    All possible isomers of N-β-D-glucopyranosyl aryl-substituted oxadiazolecarboxamides were synthesised. O-Peracetylated N-cyanocarbonyl-β-D-glucopyranosylamine was transformed into the corresponding N-glucosyl tetrazole-5-carboxamide, which upon acylation gave N-glucosyl 5-aryl-1,3,4-oxadiazole-2-carboxamides. The nitrile group of the N-cyanocarbonyl derivative was converted to amidoxime which was ring closed by acylation to N-glucosyl 5-aryl-1,2,4-oxadiazole-3-carboxamides. A one-pot reaction of protected β-D-glucopyranosylamine with oxalyl chloride and then with arenecarboxamidoximes furnished N-glucosyl 3-aryl-1,2,4-oxadiazole-5-carboxamides. Removal of the O-acetyl protecting groups by the Zemplén method produced test compounds which were evaluated as inhibitors of glycogen phosphorylase. Best inhibitors of these series were N-(β-D-glucopyranosyl) 5-(naphth-1-yl)-1,2,4-oxadiazol-3-carboxamide (Ki = 30 μM), N-(β-D-glucopyranosyl) 5-(naphth-2-yl)-1,3,4-oxadiazol-2-carboxamide (Ki =33 μM), and N-(β-D-glucopyranosyl) 3-phenyl-1,2,4-oxadiazol-5-carboxamide (Ki = 104 μM). ADMET property predictions revealed these compounds to have promising oral drug-like properties without any toxicity.

  3. Molecular Characteristics of New Wheat Starch and Its Digestion Behaviours

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-kai; HUA Ze-tian; YANG Yan; ZHENG Pai-yun; ZHANG Yan; CHEN Xiao-shan

    2014-01-01

    In order to understand the effect of starch molecular characteristics on the gel structure, which subsequently inlfuence the gel digestion behaviours, three wheat starches, control (conventional wheat starch), two new wheat cultivars with different genetic backgrounds (by knocking out SBE IIb and SBE IIa, respectively) were used in this study. In comparison with control, slight differences in the morphology of the starch granules of new wheat 1 were observed, whereas the starch granules of new wheat 2 had irregular shapes both for A-type granules and B-type granules. Starch molecular weight size was determined by SE-HPLC, and the results indicate that there was a subtle increase in the amylose content in the starch of new wheat 1 compared to that of control. The starch of new wheat 2 had the highest amylose content, and the molecular weight (MW) of its amylopectin was the lowest among the three starches. Fourier transform infrared spectroscopy (FTIR) was employed to investigate starch gel structure and the results suggest that the molecules of starch gel from new wheat 2 are more likely to re-associate to form an organized conformation. The digestion behaviours of the three starch gels were measured using a mixture of pancreatinα-amylase and amyloglucosidase. The results indicated that the starch gels of control and new wheat 1 had very high digestibility of 91.7 and 91.9%, respectively, whereas the digestibility of wheat 2 starch gel was only 36.2%. In comparison with the digestion curve patterns of control and new wheat 1 starch gels, the new wheat 2 exhibited a much lower initial velocity. These results indicated that the molecules in the starch of new wheat 2 are more readily to re-associate to form an organized structure during gel formation because of its unique molecular characteristics.

  4. Production of resistant starch by extrusion cooking of acid-modified normal-maize starch.

    Science.gov (United States)

    Hasjim, Jovin; Jane, Jay-Lin

    2009-09-01

    The objective of this study was to utilize extrusion cooking and hydrothermal treatment to produce resistant starch (RS) as an economical alternative to a batch-cooking process. A hydrothermal treatment (110 degrees C, 3 d) of batch-cooked and extruded starch samples facilitated propagation of heat-stable starch crystallites and increased the RS contents from 2.1% to 7.7% up to 17.4% determined using AOAC Method 991.43 for total dietary fiber. When starch samples were batch cooked and hydrothermally treated at a moisture content below 70%, acid-modified normal-maize starch (AMMS) produced a greater RS content than did native normal-maize starch (NMS). This was attributed to the partially hydrolyzed, smaller molecules in the AMMS, which had greater mobility and freedom than the larger molecules in the NMS. The RS contents of the batch-cooked and extruded AMMS products after the hydrothermal treatment were similar. A freezing treatment of the AMMS samples at -20 degrees C prior to the hydrothermal treatment did not increase the RS content. The DSC thermograms and the X-ray diffractograms showed that retrograded amylose and crystalline starch-lipid complex, which had melting temperatures above 100 degrees C, accounted for the RS contents.

  5. Function-structure relationships of acetylated pea starches

    NARCIS (Netherlands)

    Huang, J.

    2006-01-01

    Cowpea, chickpea and yellow pea starches were studied and the results showed that their properties were strongly related to the chemical fine structures of the starches. Furthermore, granular starches were modified using two types of chemical acetylation reagents and then separated into different si

  6. Kinetics of starch digestion and performance of broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.

    2002-01-01

    Keywords: starch, digestion rate, broiler chickens, peas, tapiocaStarch is stored in amyloplasts of various plants like cereals and legumes and seeds of these plants are used as feedstuffs for farm animals. Starch is the major energy source in broiler feeds. The properties of star

  7. Effect of hydrocolloids on functional properties of navy bean starch

    Science.gov (United States)

    The effects of hydrocolloid replacement on the pasting properties of navy bean starch and on the properties of navy bean starch gels were studied. Navy bean starch was isolated, and blends were prepared with beta-glucan, guar gum, pectin and xanthan gum solutions. The total solids concentration was ...

  8. Engineering potato starch with a higher phosphate content

    NARCIS (Netherlands)

    Xu, Xuan; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-bindi

  9. Fermentative hydrolysis of starch in the spirits industry

    Energy Technology Data Exchange (ETDEWEB)

    Ustinnikov, B.A.; Lazareva, A.N.

    1965-01-01

    Usefulness and costs of various materials used for starch hydrolysis were tested and discussed. Oscillations in composition of some starches during steaming and dextrinization were examined. Changes in hydrolysis products of some starch with and without simultaneous fermentation, in laboratory and industrial scales, were analyzed and results discussed.

  10. Amylose Content in Tuber Starch of Wild Potato Species

    Science.gov (United States)

    Approximately 20% of potato tuber fresh weight is starch, which is composed of amylose (straight chains of glucose) and amylopectin (branched chains). Potato starch is low in amylose (~25%), but high amylose starch has superior nutritional qualities. Amylose content has been determined in tuber samp...

  11. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  12. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS...... maltoligosaccharides and not polysaccharides as its preferred substrates....

  13. Synthesis, analysis and reduction of 2-nitropropyl starch

    NARCIS (Netherlands)

    Heeres, A; van Doren, HA; Gotlieb, KF; Bleeker, IP; Kellogg, RM; Doren, Henk A. van; Gotlieb, Kees F.; Bleeker, Ido P.

    2001-01-01

    Granular 3-nitropropyl potato starch was synthesized by reaction with 3-nitropropyl acetate in an aqueous suspension. Nitroalkylation occurs preferentially with the amylose fraction of potato starch, as was confirmed by leaching experiments and digestion of the modified starch with alpha -amylase. T

  14. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while oxi

  15. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  16. Fragrant starch-based films with limonene

    Directory of Open Access Journals (Sweden)

    Adrian K. Antosik

    2017-02-01

    Full Text Available Novel fragrant starch-based films with limonene were successfully prepared. Biodegradable materials of natural origin were used and the process was relatively simple and inexpensive. The effect of limonene on physicochemical properties of starch-based films (moisture absorption, solubility in water, wettability, mechanical properties were compared to glycerol plasticized system. Taking into consideration that the obtained materials could also exhibit bactericidal and fungicidal properties, the studies with Escherichia coli, Candida albicans and Aspergillus niger were performed. Such a material could potentially find application in food packaging (e.g. masking unpleasant odors, hydrophilic starch film would prevent food drying, or in agriculture (e.g. for seed encapsulated tapes.

  17. Examination of injection moulded thermoplastic maize starch

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.

  18. Polymorphism of starch pathway genes in cassava.

    Science.gov (United States)

    Vasconcelos, L M; Brito, A C; Carmo, C D; Oliveira, E J

    2016-12-02

    The distribution and frequency of single nucleotide polymorphisms (SNPs) can help to understand changes associated with characteristics of interest. We aimed to evaluate nucleotide diversity in six genes involved in starch biosynthesis in cassava using a panel of 96 unrelated accessions. The genes were sequenced, aligned, and used to obtain values for nucleotide diversity (π), segregating sites (θ), Tajima's D test, and neighbor-joining (NJ) clustering. On average, one SNP per 147 and 171 bp was identified in exon and intron regions, respectively. Thirteen heterozygous loci were found. Three of seven SNPs in the exon region resulted in non-synonymous replacement or four synonymous substitutions. However, no associations were noted between SNPs and root dry-matter content. The parameter π ranged from 0.0001 (granule bound starch synthase I) to 0.0033 (α-amylase), averaging 0.0011, while θ ranged from 0.00014 (starch branching enzyme) to 0.00584 (starch synthase I), averaging 0.002353. The θ diversity value was typically double that of the π. Results of the D test did not suggest any evidence of deviance of neutrality in these genes. Among the evaluated accession, 82/96 were clustered using the NJ method but without a clear separation of the root dry-matter content, root pulp coloration, and classification of the cyanogenic compound content. High variation in genes of the starch biosynthetic pathway can be used to identify associations with the functional properties of starch for the use of polymorphisms for selection purposes.

  19. Starch Grain Distribution in Taproots of Defoliated Medicago sativa L.

    Science.gov (United States)

    Habben, J E; Volenec, J J

    1990-11-01

    Defoliation of alfalfa (Medicago sativa L.) results in a cyclic pattern of starch degradation followed by reaccumulation in taproots. Characterization of changes in anatomical distribution of starch grains in taproots will aid our understanding of biochemical and physiological mechanisms involved in starch metabolism in taproots of this species. Our objectives were to determine the influence of defoliation on starch grain distribution and size variation in taproots of two alfalfa lines selected for contrasting concentrations of taproot starch. In addition, we used electron microscopy to examine the cellular environment of starch grains, and computer-based image optical analysis to determine how cross-sectional area of tissues influenced starch accumulation. Taproots of field-grown plants were sampled at defoliation and weekly thereafter over a 28-day period. Taproot segments were fixed in glutaraldehyde and prepared for either light or electron microscopy. Transverse sections were examined for number and size of starch grains and tissue areas were measured. Starch grains were located throughout bark tissues, but were confined primarily to ray parenchyma cells in wood tissues. During the first week of foliar regrowth after defoliation, starch grains in ray cells near the cambium disappeared first, while degradation of those near the center of the taproot was delayed. During the third and fourth weeks of regrowth, there was a uniform increase in number of starch grains per cell profile across the rays, but by 28 days after defoliation there were more starch grains in ray cells near the cambium than in cells near the center of the taproot (low starch line only). Bark tissues from both lines showed synchronous degradation and synthesis of starch grains that was not influenced greatly by cell location. Diameter of starch grains varied with cell location in medullary rays during rapid starch degradation, but was not influenced by cell position in bark tissues. Therefore

  20. Deformation mechanisms of plasticized starch materials.

    Science.gov (United States)

    Mikus, P-Y; Alix, S; Soulestin, J; Lacrampe, M F; Krawczak, P; Coqueret, X; Dole, P

    2014-12-19

    The aim of this paper is to understand the influence of plasticizer and plasticizer amount on the mechanical and deformation behaviors of plasticized starch. Glycerol, sorbitol and mannitol have been used as plasticizers. After extrusion of the various samples, dynamic mechanical analyses and video-controlled tensile tests have been performed. It was found that the nature of plasticizer, its amount as well as the aging of the material has an impact on the involved deformation mechanism. The variations of volume deformation could be explained by an antiplasticization effect (low plasticizer amount), a phase-separation phenomenon (excess of plasticizer) and/or by the retrogradation of starch.

  1. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    NARCIS (Netherlands)

    Huang, X.

    2010-01-01

    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the

  2. Quantifying Resistant Starch Using Novel, In Vivo Methodology and the Energetic Utilization of Fermented Starch in Pigs

    NARCIS (Netherlands)

    Gerrits, W.J.J.; Bosch, M.W.; Borne, van den J.J.G.C.

    2012-01-01

    To quantify the energy value of fermentable starch, 10 groups of 14 pigs were assigned to one of two dietary treatments comprising diets containing 45% of either pregelatinized (P) or retrograded (R) corn starch. In both diets, a contrast in natural 13C enrichment between the starch and nonstarch co

  3. Slowly digestible starch from heat-moisture treated waxy potato starch: preparation, structural characteristics, and glucose response in mice

    Science.gov (United States)

    Heat-moisture treatment (HMT) was optimized to increase the formation of slowly digestible starch (SDS) in waxy potato starch, and the structural and physiological properties of this starch were investigated. A maximum SDS content (41.8%) consistent with the expected value (40.1%) was obtained after...

  4. Morphological and mechanical characterization of thermoplastic starch and its blends with polylactic acid using cassava starch and bagasse

    Science.gov (United States)

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it w...

  5. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  6. Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch.

    Science.gov (United States)

    Lee, Chang Joo; Moon, Tae Wha

    2015-07-10

    The objective of this study was to investigate the structural characteristics of slowly digestible starch (SDS) and resistant starch (RS) fractions isolated from heat-moisture treated waxy potato starch. The waxy potato starch with 25.7% moisture content was heated at 120°C for 5.3h. Scanning electron micrographs of the cross sections of RS and SDS+RS fractions revealed a growth ring structure. The branch chain-length distribution of debranched amylopectin from the RS fraction had a higher proportion of long chains (DP ≥ 37) than the SDS+RS fraction. The X-ray diffraction intensities of RS and SDS+RS fractions were increased compared to the control. The SDS+RS fraction showed a lower gelatinization enthalpy than the control while the RS fraction had a higher value than the SDS+RS fraction. In this study we showed the RS fraction is composed mainly of crystalline structure and the SDS fraction consists of weak crystallites and amorphous regions.

  7. Step-reduced synthesis of starch-silver nanoparticles.

    Science.gov (United States)

    Raghavendra, Gownolla Malegowd; Jung, Jeyoung; Kim, Dowan; Seo, Jongchul

    2016-05-01

    In the present process, silver nanoparticles were directly synthesized in a single step by microwave irradiation of a mixture of starch, silver nitrate, and deionized water. This is different from the commonly adopted procedure for starch-silver nanoparticle synthesis in which silver nanoparticles are synthesized by preparing a starch solution as a reaction medium first. Thus, the additional step associated with the preparation of the starch solution was eliminated. In addition, no additional reducing agent was utilized. The adopted method was facile and straight forward, affording spherical silver nanoparticles with diameter below 10nm that exhibited good antibacterial activity. Further, influence of starch on the size of the silver nanoparticles was noticed.

  8. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  9. Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study.

    Science.gov (United States)

    Bel Haaj, Sihem; Thielemans, Wim; Magnin, Albert; Boufi, Sami

    2016-06-05

    The morphological, structural and thermal behavior of starch nanocrystals (SNCs) extracted from waxy maize starch through an acid hydrolysis were compared with those of starch nanoparticles (SNPs) obtained through an ultrasound treatment starting from the same waxy maize starch. The SNPs were found to be completely amorphous, slightly smaller and had no surface charge, whereas the SNCs had the expected platelet-like morphology with a negative surface charge introduced as a result of the use of sulphuric acid in the acid hydrolysis step. SNCs also showed better thermal stability than SNPs in the presence of water. As a result of their platelet-like morphology, the SNCs performed better in reinforcing a polymer film. On the other hand, SNPs reduced the transparency of the nanocomposite films to a lesser extent than the SNCs due to their smaller size.

  10. Thermal properties of barley starch and its relation to starch characteristics.

    Science.gov (United States)

    Källman, Anna; Vamadevan, Varatharajan; Bertoft, Eric; Koch, Kristine; Seetharaman, Koushik; Åman, Per; Andersson, Roger

    2015-11-01

    Amylopectin fine structure and starch gelatinization and retrogradation were studied in 10 different barley cultivars/breeding lines. Clusters and building blocks were isolated from the amylopectin by α-amylase from Bacillus amyloliquefaciens and their structure was characterized. Gelatinization was studied at a starch:water ratio of 1:3, and retrogradation was studied on gelatinized starch at starch:water ratio of 1:2, by differential scanning calorimetry. Three barley cultivars/breeding lines possessed the amo1 mutation, and they all had a lower molar proportion of chains of DP ≥38 and more of large building blocks. The amo1 mutation also resulted in a higher gelatinization temperature and a broader temperature interval during gelatinization. Overall, small clusters with a dense structure resulted in a higher gelatinization temperature while retrogradation was promoted by short chains in the amylopectin and many large building blocks.

  11. Effects of homoeologous wheat starch synthase IIa genes on starch properties.

    Science.gov (United States)

    Shimbata, Tomoya; Ai, Yongfeng; Fujita, Masaya; Inokuma, Takayuki; Vrinten, Patricia; Sunohara, Ai; Saito, Mika; Takiya, Toshiyuki; Jane, Jay-lin; Nakamura, Toshiki

    2012-12-05

    Near-isogenic lines (NILs) of the eight haplotypes of starch synthase IIa (SSIIa) were used to analyze the effects of SSIIa gene dosage on branch chain length, gelatinization, pasting, retrogradation, and enzymatic hydrolysis of starches. Compared to wild-type, the amylopectin of lines missing one or more active SSIIa enzymes had increases in the proportion of short branch chains (DP6-10) and decreases in midlength chains (DP11-24), and the size of these differences depended on the dosage of active SSIIa enzymes. Of the three loci, SSIIa-A1 had the smallest contribution to amylopectin structure and SSIIa-B1 the largest. The different effects of the three SSIIa enzymes on starch properties were also seen in gelatinization, retrogradation, pasting, and enzymatic hydrolysis properties. Such differences in starch properties might be useful in influencing the texture and shelf life of food products.

  12. Effects of chemical modification on in vitro rate and extent of food starch digestion: an attempt to discover a slowly digested starch.

    Science.gov (United States)

    Wolf, B W; Bauer, L L; Fahey, G C

    1999-10-01

    Differences in glycemic and insulinemic responses to dietary starch are directly related to the rate of starch digestion. Chemical modification of starch may allow for the production of a slowly digested starch that could be used for the treatment of certain medical modalities. An in vitro method was utilized to evaluate the effects of chemical modification on the rate and extent of raw and cooked starch digestion. The extent of starch digestion was significantly reduced by dextrinization, etherification, and oxidation. However, the rate of starch digestion was not significantly affected by chemical modification. For most modified starches, as the degree of modification increased, the extent of digestion decreased, suggesting an increase in the amount of resistant starch. The results of this study suggest that chemically modified starch has a metabolizable energy value of <16.7 kJ/g. Chemically modified starch ingredients may serve as a good source of resistant starch in human and animal diets.

  13. EFFECT OF CHEMICAL MODIFICATION TYPE ON PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERISTICS OF BANANA STARCH

    OpenAIRE

    D. Guerra-DellaValle; M. M. Sánchez-Rivera; P.B. Zamudio-Flores; G. Méndez-Montealvo; L.A. Bello-Pérez

    2009-01-01

    Isolation of non-conventional starches has increased in the last decade; chemical modification of these no conventional starches may produce starches with improved physicochemical and functional properties that are not available from commercial starches. Banana starch was acetylated and oxidized and the thermal, pasting and rheological characteristics were evaluated. The low carbonyl and carboxyl groups might be due to the starch source. The acetylated banana starch obtained had a low degree ...

  14. Study on the application of starch derivatives as the regulators of potassium drilling fluids filtration

    OpenAIRE

    Rupinski, Slawomir; Brzozowski, Zbigniew K.; Uliasz, Malgorzata

    2009-01-01

    Derivatives of starch, such as graft copolymer of acrylamide onto starch, carbamoylethylated starch, carbamoylethyl-dihydroxypropylated starch, and dihydroxypropylated starch have been tested for their properties as components of drilling fluids used for clay inhibition and for the regulation of their rheology. The influence of modified starch and their blends with tylose as protective agents in the filtration of drilling fluids, as well as replacement of tylose, by modified starch w...

  15. 3'-Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: the peculiarity of the binding on the basis of X-ray study.

    Science.gov (United States)

    Timofeev, Vladimir; Abramchik, Yulia; Zhukhlistova, Nadezda; Muravieva, Tatiana; Fateev, Ilya; Esipov, Roman; Kuranova, Inna

    2014-04-01

    The structural study of complexes of thymidine phosphorylase (TP) with nucleoside analogues which inhibit its activity is of special interest because many of these compounds are used as chemotherapeutic agents. Determination of kinetic parameters showed that 3'-azido-3'-deoxythymidine (3'-azidothymidine; AZT), which is widely used for the treatment of human immunodeficiency virus, is a reversible noncompetitive inhibitor of Escherichia coli thymidine phosphorylase (TP). The three-dimensional structure of E. coli TP complexed with AZT was solved by the molecular-replacement method and was refined at 1.52 Å resolution. Crystals for X-ray study were grown in microgravity by the counter-diffusion technique from a solution of the protein in phosphate buffer with ammonium sulfate as a precipitant. The AZT molecule was located with full occupancy in the electron-density maps in the nucleoside-binding pocket of TP, whereas the phosphate-binding pocket of the enzyme was occupied by phosphate (or sulfate) ion. The structure of the active-site cavity and conformational changes of the enzyme upon AZT binding are described in detail. It is found that the position of AZT differs remarkably from the positions of the pyrimidine bases and nucleoside analogues in other known complexes of pyrimidine phosphorylases, but coincides well with the position of 2'-fluoro-3'-azido-2',3'-dideoxyuridine (N3FddU) in the recently investigated complex of E. coli TP with this ligand (Timofeev et al., 2013). The peculiarities of the arrangement of N3FddU and 3'-azidothymidine in the nucleoside binding pocket of TP and correlations between the arrangement and inhibitory properties of these compounds are discussed.

  16. The development and validation of an immunoassay for the measurement of anti-thymidine phosphorylase antibodies in mouse and dog sera.

    Science.gov (United States)

    Gasson, Charlotte; Levene, Michelle; Bax, Bridget E

    2013-01-01

    Erythrocyte encapsulated thymidine phosphorylase (EE-TP) is under development as an enzyme replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a fatal metabolic disorder resulting from an inherited deficiency of the enzyme thymidine phosphorylase. We report here the development and validation of a sensitive electrochemiluminescent (ECL) bridging immunoassay to support Good Laboratory Practice (GLP)-compliant preclinical safety studies of EE-TP in the mouse and dog. Affinity-purified rabbit anti-E. coli thymidine phosphorylase (TP) antibody was used as a calibrator standard with an effective working range of 2.5-7500 ng/mL. The minimum required dilution (MRD) for both mouse and dog sera was 1:10. The mean analytical recoveries for anti-TP antibodies spiked into serum at 70 ng/mL and 7000 ng/mL were 117.9% and 93.2%, respectively for mouse, and 112.0% and 104.3%, respectively for dog. The intra-assay precision (coefficient of variation, CV) ranged between 1.1% and 8.0% in mouse serum, and 1.9% and 2.5% in dog serum. Inter-assay precision ranged between -1.6% and 6.7% in mouse serum, and -13.0% and -2.5% in dog serum. Assay cut-point/screening cut-point correction factors were 201.37 and 44.4, respectively for mouse and dog sera. For future analysis of positive test samples, less than 37.12% (mouse) and 31.41% (dog) inhibition of the assay signal in the confirmation assay will confer anti-TP antibody specificity. Assay drift and hook effects (prozone) were not observed. The intra-assay and inter-assay accuracy for robustness were within ±20%.

  17. A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism.

    Science.gov (United States)

    Vriet, Cécile; Welham, Tracey; Brachmann, Andreas; Pike, Marilyn; Pike, Jodie; Perry, Jillian; Parniske, Martin; Sato, Shusei; Tabata, Satoshi; Smith, Alison M; Wang, Trevor L

    2010-10-01

    The metabolism of starch is of central importance for many aspects of plant growth and development. Information on leaf starch metabolism other than in Arabidopsis (Arabidopsis thaliana) is scarce. Furthermore, its importance in several agronomically important traits exemplified by legumes remains to be investigated. To address this issue, we have provided detailed information on the genes involved in starch metabolism in Lotus japonicus and have characterized a comprehensive collection of forward and TILLING (for Targeting Induced Local Lesions IN Genomes) reverse genetics mutants affecting five enzymes of starch synthesis and two enzymes of starch degradation. The mutants provide new insights into the structure-function relationships of ADP-glucose pyrophosphorylase and glucan, water dikinase1 in particular. Analyses of the mutant phenotypes indicate that the pathways of leaf starch metabolism in L. japonicus and Arabidopsis are largely conserved. However, the importance of these pathways for plant growth and development differs substantially between the two species. Whereas essentially starchless Arabidopsis plants lacking plastidial phosphoglucomutase grow slowly relative to wild-type plants, the equivalent mutant of L. japonicus grows normally even in a 12-h photoperiod. In contrast, the loss of GLUCAN, WATER DIKINASE1, required for starch degradation, has a far greater effect on plant growth and fertility in L. japonicus than in Arabidopsis. Moreover, we have also identified several mutants likely to be affected in new components or regulators of the pathways of starch metabolism. This suite of mutants provides a substantial new resource for further investigations of the partitioning of carbon and its importance for symbiotic nitrogen fixation, legume seed development, and perenniality and vegetative regrowth.

  18. Evaluation of starch noodles made from three typical Chinese sweet-potato starches

    NARCIS (Netherlands)

    Chen, Z.; Sagis, L.M.C.; Legger, A.; Linssen, J.P.H.; Schols, H.A.; Voragen, A.G.J.

    2002-01-01

    The physical properties of starches from 3 typical Chinese sweet potato varieties (SuShu2, SuShu8, and XuShu18) were studied in relation to their noodle-making performance. The starch gel properties of SuShu2 differed from those of SuShu8 and XuShu18. As determined by both instrumental and sensory a

  19. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

    2006-09-06

    The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.

  20. Evaluation of a high throughput starch analysis optimised for wood.

    Directory of Open Access Journals (Sweden)

    Chandra Bellasio

    Full Text Available Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11 was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood of four species (coniferous and flowering plants. The optimised protocol proved to be remarkably precise and accurate (3%, suitable for a high throughput routine analysis (35 samples a day of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes.

  1. Evaluation of a high throughput starch analysis optimised for wood.

    Science.gov (United States)

    Bellasio, Chandra; Fini, Alessio; Ferrini, Francesco

    2014-01-01

    Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11) was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood) of four species (coniferous and flowering plants). The optimised protocol proved to be remarkably precise and accurate (3%), suitable for a high throughput routine analysis (35 samples a day) of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes.

  2. The future of starch bioengineering: GM microorganisms or GM plants?

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch...... processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots......, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel...

  3. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana;

    2011-01-01

    Starch is a biological polymer that can be industrially produced in massive amounts in a very pure form. Cereals is the main source for starch production and any improvement of the starch fraction can have a tremendous impact in food and feed applications. Barley ranks number four among cereal...... crops and barley is a genetically very well characterized. Aiming at producing new starch qualities in the cereal system, we used RNAi and overexpression strategies to produce pure amylose and high-phosphate starch, respectively, using the barley kernel as a polymer factory. By simultaneous silencing...... of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  4. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index.

    Science.gov (United States)

    Zhang, Genyi; Hamaker, Bruce R

    2009-11-01

    Starch is the major glycemic carbohydrate in foods, and its nutritional property is related to its rate and extent of digestion and absorption in the small intestine. A classification of starch into rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) based on the in vitro Englyst test is used to specify the nutritional quality of starch. Both the RDS and RS fractions have been extensively studied while there are only limited studies on the intermediate starch fraction of SDS, particularly regarding its structural basis and slow digestion mechanism. The current understanding of SDS including its concept, measurement method, structural basis and mechanism, physiological consequences, and approaches to make SDS is reviewed. An in vivo method of extended glycemic index (EGI) is proposed to evaluate its metabolic effect and related health consequences.

  5. Effects of autoclaving and pullulanase debranching on the resistant starch yield of normal maize starch

    Directory of Open Access Journals (Sweden)

    MARIJA S. MILAŠINOVIĆ

    2010-04-01

    Full Text Available In this study, resistant starch (RS, type 3, was prepared by the autoclaving and debranching of normal maize starch isolated from a selected ZP genotype. The objectives of this study were to optimize both starch autoclaving and debranching with pullulanase (PromozymeBrewQ for the production of RS. Autoclaving at 120 °C (30 min increased the RS content of all samples, whereas freezing at –20 °C did not have an obvious effect on the RS contents. The highest RS yield in the autoclaved starch samples was 7.0 % after three autoclaving–cooling cycles. After pullulanase debranching at 50 °C and retrogradation at 4 °C, the RS yields ranged from 10.2 to 25.5 % in all samples (depending on the hydrolysis time. Debranched starch samples with a maximum RS yield of 25.5 % were obtained after a debranching time of 24 h. This study showed that starch from the selected ZP maize genotype is suitable for pullulanase treatment and RS preparation but that additional studies with a greater number of different treatments (incubation time/temperature are necessary to manipulate and promote crystallization and enhance RS formation.

  6. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    Science.gov (United States)

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means.

  7. Reactions of Starch in Ionic Liquids

    Science.gov (United States)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  8. Fly ash-reinforced thermoplastic starch composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.F.; Yu, J.G.; Wang, N. [Tianjin University, Tianjin (China). School of Science

    2007-01-02

    As a by-product from the combustion of pulverized coal, fly ash was, respectively, used as the reinforcement for formamide and urea-plasticized thermoplastic starch (FUPTPS) and glycerol-plasticized thermoplastic starch (GPTPS). The introduction of fly ash improved tensile stress from 4.56 MPa to 7.78 MPa and Youngs modulus increased trebly from 26.8 MPa to 84.6 MPa for fly ash-reinforced FUPTPS (A-FUPTPS), while tensile stress increased from 4.55 MPa to 12.86 MPa and Youngs modulus increased six times from 76.4 MPa to 545 MPa for fly ash-reinforced GPTPS (A-GPTPS). X-ray diffractograms illustrated that fly ash destroyed the formation of starch ordered crystal structure, so both A-GPTPS and FUPTPS could resist the starch re-crystallization (retrogradation). Also fly ash improved water resistance of TPS. As shown by rheology, during the thermoplastic processing, the extruder screw speed effectively adjusted the flow behavior of A-FUPTPS, while the increasing of the processing temperature effectively ameliorated the flow behavior of A-GPTPS. However, superfluous ash contents (e.g., 20 wt%) worsened processing fluidity and resulted in the congregation of fly ash in FUPTPS matrix (tested by SEM) rather than in GPTPS matrix. This congregation decreased the mechanical properties and water resistance of the materials.

  9. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  10. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  11. 6-Methylpurine derived sugar modified nucleosides: Synthesis and evaluation of their substrate activity with purine nucleoside phosphorylases.

    Science.gov (United States)

    Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Parker, William B; Allan, Paula W; Secrist, John A

    2016-04-01

    6-Methylpurine (MeP) is cytotoxic adenine analog that does not exhibit selectivity when administered systemically, and could be very useful in a gene therapy approach to cancer treatment involving Escherichia coli PNP. The prototype MeP releasing prodrug, 9-(β-d-ribofuranosyl)-6-methylpurine, MeP-dR has demonstrated good activity against tumors expressing E. coli PNP, but its antitumor activity is limited due to toxicity resulting from the generation of MeP from gut bacteria. Therefore, we have embarked on a medicinal chemistry program to identify non-toxic MeP prodrugs that could be used in conjunction with E. coli PNP. In this work, we report on the synthesis of 9-(6-deoxy-β-d-allofuranosyl)-6-methylpurine (3) and 9-(6-deoxy-5-C-methyl-β-d-ribo-hexofuranosyl)-6-methylpurine (4), and the evaluation of their substrate activity with several phosphorylases. The glycosyl donors; 1,2-di-O-acetyl-3,5-di-O-benzyl-α-d-allofuranose (10) and 1-O-acetyl-3-O-benzyl-2,5-di-O-benzoyl-6-deoxy-5-C-methyl-β-d-ribohexofuran-ose (15) were prepared from 1,2:5,6-di-O-isopropylidine-α-d-glucofuranose in 9 and 11 steps, respectively. Coupling of 10 and 15 with silylated 6-methylpurine under Vorbrüggen glycosylation conditions followed conventional deprotection of the hydroxyl groups furnished 5'-C-methylated-6-methylpurine nucleosides 3 and 4, respectively. Unlike 9-(6-deoxy-α-l-talo-furanosyl)-6-methylpurine, which showed good substrate activity with E. coli PNP mutant (M64V), the β-d-allo-furanosyl derivative 3 and the 5'-di-C-methyl derivative 4 were poor substrates for all tested glycosidic bond cleavage enzymes.

  12. Ca2+-induced structural changes in phosphorylase kinase detected by small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Priddy, Timothy S. [University of Missouri and University of Kansas Medical Center; Macdonald, Brian A. [Los Alamos National Laboratory (LANL); Heller, William T [ORNL; Nadeau, Owen W. [University of Kansas Medical Center; Trewhella, Jill [Los Alamos National Laboratory (LANL); Carlson, Gerald M. [University of Kansas Medical Center

    2005-01-01

    Phosphorylase kinase (PhK), a 1.3-MDa ({alpha}{beta}{gamma}{delta}){sub 4} hexadecameric complex, is a Ca{sup 2+}-dependent regulatory enzyme in the cascade activation of glycogenolysis. PhK comprises two arched ({alpha}{beta}{gamma}{delta}){sub 2} octameric lobes that are oriented back-to-back with overall D{sub 2} symmetry and joined by connecting bridges. From chemical cross-linking and electron microscopy, it is known that the binding of Ca{sup 2+} by PhK perturbs the structure of all its subunits and promotes redistribution of density throughout both its lobes and bridges; however, little is known concerning the interrelationship of these effects. To measure structural changes induced by Ca{sup 2+} in the PhK complex in solution, small-angle X-ray scattering was performed on nonactivated and Ca{sup 2+}-activated PhK. Although the overall dimensions of the complex were not affected by Ca{sup 2+}, the cation did promote a shift in the distribution of the scattering density within the hydrated volume occupied by the PhK molecule, indicating a Ca{sup 2+}-induced conformational change. Computer-generated models, based on elements of the known structure of PhK from electron microscopy, were constructed to aid in the interpretation of the scattering data. Models containing two ellipsoids and four cylinders to represent, respectively, the lobes and bridges of the PhK complex provided theoretical scattering profiles that accurately fit the experimental data. Structural differences between the models representing the nonactivated and Ca{sup 2+}-activated conformers of PhK are consistent with Ca{sup 2+}-induced conformational changes in both the lobes and the interlobal bridges.

  13. Age-associated tyrosine nitration of rat skeletal muscle glycogen phosphorylase b: characterization by HPLC-nanoelectrospray-tandem mass spectrometry.

    Science.gov (United States)

    Sharov, Victor S; Galeva, Nadezhda A; Kanski, Jaroslaw; Williams, Todd D; Schöneich, Christian

    2006-04-01

    We identified age-dependent post-translational modifications of skeletal muscle glycogen phosphorylase b (Ph-b), isolated from F1 hybrids of Fisher 344 x Brown Norway rats. Ph-b isolated from 34 months old rats showed a statistically significant decrease in specific activity compared to 6 months old animals: 13.8+/-0.7 vs. 20.6+/-0.8 U mg(-1) protein, respectively. Western blot analysis of the purified Ph-b with anti-3-NT antibodies revealed an age-dependent accumulation of 3-nitrotyrosine (3-NT), quantified by reverse-phase HPLC-UV analysis to increase from 0.05+/-0.03 to 0.34+/-0.11 (mol 3-NT/mol Ph-b) for 6 vs. 34 months old rats, respectively. HPLC-nanoelectrospray ionization-tandem mass spectrometry revealed the accumulation of 3-NT on Tyr113, Tyr161 and Tyr573. While nitration of Tyr113 was detected for both young and old rats, 3-NT at positions 161 and 573 was identified only for Ph-b isolated from 34 months old rats. The sequence of the rat muscle Ph-b was corrected based on our protein sequence mapping and a custom rat PHS2 sequence containing 17 differently located amino acid residues was used instead of the database sequence. The in vitro reaction of peroxynitrite with Ph-b resulted in the nitration of multiple Tyr residues at positions 51, 52, 113, 155, 185, 203, 262, 280, 404, 473, 731, and 732. Thus, the in vitro nitration conditions only mimic the nitration of a single Tyr residue observed in vivo suggesting alternative pathways controlling the accumulation of 3-NT in vivo. Our data show a correlation of age-dependent 3-NT accumulation with Ph-b inactivation.

  14. Interaction of Bacillus subtilis Polynucleotide Phosphorylase and RNase Y: STRUCTURAL MAPPING AND EFFECT ON mRNA TURNOVER.

    Science.gov (United States)

    Salvo, Elizabeth; Alabi, Shanique; Liu, Bo; Schlessinger, Avner; Bechhofer, David H

    2016-03-25

    Polynucleotide phosphorylase (PNPase), a 3'-to-5' phosphorolytic exoribonuclease, is thought to be the primary enzyme responsible for turnover ofBacillus subtilismRNA. The role of PNPase inB. subtilismRNA decay has been analyzed previously by comparison of mRNA profiles in a wild-type strainversusa strain that is deleted forpnpA, the gene encoding PNPase. Recent studies have provided evidence for a degradosome-like complex inB. subtilisthat is built around the major decay-initiating endonuclease, RNase Y, and there is ample evidence for a strong interaction between PNPase and RNase Y. The role of the PNPase-RNase Y interaction in the exonucleolytic function of PNPase needs to be clarified. We sought to construct aB. subtilisstrain containing a catalytically active PNPase that could not interact with RNase Y. Mapping studies of the PNPase-RNase Y interaction were guided by a homology model ofB. subtilisPNPase based on the known structure of theEscherichia coliPNPase in complex with an RNase E peptide. Mutations inB. subtilisresidues predicted to be involved in RNase Y binding showed a loss of PNPase-RNase Y interaction. Two mRNAs whose decay is dependent on RNase Y and PNPase were examined in strains containing full-length PNPase that was either catalytically active but unable to interact with RNase Y, or catalytically inactive but able to interact with RNase Y. At least for these two mRNAs, disruption of the PNPase-RNase Y interaction did not appear to affect mRNA turnover.

  15. Development of a new HPLC method using fluorescence detection without derivatization for determining purine nucleoside phosphorylase activity in human plasma.

    Science.gov (United States)

    Giuliani, Patricia; Zuccarini, Mariachiara; Buccella, Silvana; Rossini, Margherita; D'Alimonte, Iolanda; Ciccarelli, Renata; Marzo, Matteo; Marzo, Antonio; Di Iorio, Patrizia; Caciagli, Francesco

    2016-01-15

    Purine nucleoside phosphorylase (PNP) activity is involved in cell survival and function, since PNP is a key enzyme in the purine metabolic pathway where it catalyzes the phosphorolysis of the nucleosides to the corresponding nucleobases. Its dysfunction has been found in relevant pathological conditions (such as inflammation and cancer), so the detection of PNP activity in plasma could represent an attractive marker for early diagnosis or assessment of disease progression. Thus the aim of this study was to develop a simple, fast and sensitive HPLC method for the determination of PNP activity in plasma. The separation was achieved on a Phenomenex Kinetex PFP column using 0.1% formic acid in water and methanol as mobile phases in gradient elution mode at a flow rate of 1ml/min and purine compounds were detected using UV absorption and fluorescence. The analysis was fast since the run was achieved within 13min. This method improved the separation of the different purines, allowing the UV-based quantification of the natural PNP substrates (inosine and guanosine) or products (hypoxanthine and guanine) and its subsequent metabolic products (xanthine and uric acid) with a good precision and accuracy. The most interesting innovation is the simultaneous use of a fluorescence detector (excitation/emission wavelength of 260/375nm) that allowed the quantification of guanosine and guanine without derivatization. Compared with UV, the fluorescence detection improved the sensitivity for guanine detection by about 10-fold and abolished almost completely the baseline noise due to the presence of plasma in the enzymatic reaction mixture. Thus, the validated method allowed an excellent evaluation of PNP activity in plasma which could be useful as an indicator of several pathological conditions.

  16. Retrogradation of starches and maltodextrins of various origin

    Directory of Open Access Journals (Sweden)

    Joanna Sobolewska-Zielińska

    2010-03-01

    Full Text Available Background. The retrogradation which occurs during the processes food storage is an essential problem in food industry. In this study, the ability to retrogradate of native starches and maltodextrins of different botanical origin was analysed. Material and methods. The materials were starches of various botanical origin, including commercial samples: potato, tapioca, wheat, corn, waxy corn starches, and laboratory isolated samples: triticale and rice starches. The above starches were used as material for laboratory production of maltodextrins of medium dextrose equivalents (DE in the range from 8.27 to 12.75. Starches were analysed for amylose content, while the ratio of non-branched/long-chain-branched to short-chain-branched fractions of maltodextrins was calculated from gel permeation chromatography data. The susceptibility to retrogradation of 2% starch pastes and 2% maltodextrin solutions was evaluated according to turbidimetric method of Jacobson. Results. The greatest starch in turbidance of starch gels was observed within initial of the test. days. Initial retrogradation degree of cereal starches was higher than that of tuber and root starches. The waxy corn starch was the least prone to retrogradate. The increase in turbidance of maltodextrin solutions were minimal. Waxy corn maltodextrin was not susceptible to retrogradation. Among other samples, the lowest susceptibility to retrogradation after 14 days was found for rice maltodextrin, while the highest for wheat and triticale maltodextrin. Conclusions. On the basis of this study, the retrogradation dependence on the kind of starches and the maltodextrins was established and the author stated that all the maltodextrins have a much less ability to retrogradation than the native starches.

  17. Degradation of Glucan Primers in the Absence of Starch Synthase 4 Disrupts Starch Granule Initiation in Arabidopsis.

    Science.gov (United States)

    Seung, David; Lu, Kuan-Jen; Stettler, Michaela; Streb, Sebastian; Zeeman, Samuel C

    2016-09-23

    Arabidopsis leaf chloroplasts typically contain five to seven semicrystalline starch granules. It is not understood how the synthesis of each granule is initiated or how starch granule number is determined within each chloroplast. An Arabidopsis mutant lacking the glucosyl-transferase, STARCH SYNTHASE 4 (SS4) is impaired in its ability to initiate starch granules; its chloroplasts rarely contain more than one large granule, and the plants have a pale appearance and reduced growth. Here we report that the chloroplastic α-amylase AMY3, a starch-degrading enzyme, interferes with granule initiation in the ss4 mutant background. The amy3 single mutant is similar in phenotype to the wild type under normal growth conditions, with comparable numbers of starch granules per chloroplast. Interestingly, the ss4 mutant displays a pleiotropic reduction in the activity of AMY3. Remarkably, complete abolition of AMY3 (in the amy3 ss4 double mutant) increases the number of starch granules produced in each chloroplast, suppresses the pale phenotype of ss4, and nearly restores normal growth. The amy3 mutation also restores starch synthesis in the ss3 ss4 double mutant, which lacks STARCH SYNTHASE 3 (SS3) in addition to SS4. The ss3 ss4 line is unable to initiate any starch granules and is thus starchless. We suggest that SS4 plays a key role in granule initiation, allowing it to proceed in a way that avoids premature degradation of primers by starch hydrolases, such as AMY3.

  18. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H;

    2016-01-01

    -structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper...... relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had...... high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences...

  19. Development of oxidised and heat-moisture treated potato starch film.

    Science.gov (United States)

    Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra

    2012-05-01

    This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch.

  20. Effect of maize starch concentration in the diet on starch and cell wall digestion in the dairy cow.

    Science.gov (United States)

    van Vuuren, A M; Hindle, V A; Klop, A; Cone, J W

    2010-06-01

    An in vivo experiment was performed to determine the effect of level of maize starch in the diet on digestion and site of digestion of organic matter, starch and neutral detergent fibre (NDF). In a repeated change-over design experiment, three cows fitted with a rumen cannula and T-piece cannulae in duodenum and ileum received a low-starch (12% of ration dry matter) and a high-starch (33% of ration dry matter) diet. Starch level was increased by exchanging dried sugar beet pulp by ground maize. After a 2-week adaptation period, feed intake, rumen fermentation parameters (in vivo and in situ), intestinal flows, faecal excretion of organic matter, starch and NDF were estimated. When the high-starch diet was fed, dry matter intake was higher (19.0 kg/day vs. 17.8 kg/day), and total tract digestibility of organic matter, starch and NDF was lower when the low-starch diet was fed. Maize starch concentration had no significant effect on rumen pH and volatile fatty acid concentration nor on the site of digestion of organic matter and starch and rate of passage of ytterbium-labelled forage. On the high-starch diet, an extra 1.3 kg of maize starch was supplied at the duodenum in relation to the low-starch diet, but only an extra 0.3 kg of starch was digested in the small intestine. Digestion of NDF was only apparent in the rumen and was lower on the high-starch diet than on the low-starch diet, mainly attributed to the reduction in sugar beet pulp in the high-starch diet. It was concluded that without the correction for the reduction in NDF digestion in the rumen, the extra supply of glucogenic (glucose and propionic acid) and ketogenic nutrients (acetic and butyric acid) by supplemented starch will be overestimated. The mechanisms responsible for these effects need to be addressed in feed evaluation.

  1. Impact of dry heating on physicochemical properties of corn starch and lysine mixture.

    Science.gov (United States)

    Ji, Ying; Yu, Jicheng; Xu, Yongbin; Zhang, Yinghui

    2016-10-01

    Corn starch was modified with lysine by dry heat treatment and to investigate how they can affect the pasting and structural properties of the treated starches. Dry heating with lysine reduced the pasting temperature and resulting in viscosity increase. The particle size of heated starch-lysine mixture increased, suggesting that starch granules were cross-linked to lysine. After dry heating, the onset temperature, peak temperature and conclusion temperature of corn starch-lysine mixture were lower than those of other starches. The degree of crystallinity decreased for the starch after dry heat treatment while these heated starch samples still have the same X-ray diffraction types as the original starch.

  2. Properties of foam and composite materials made o starch and cellulose fiber

    Science.gov (United States)

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  3. The future of starch bioengineering: GM microorganisms or GM plants?

    Directory of Open Access Journals (Sweden)

    Kim Henrik eHebelstrup

    2015-04-01

    Full Text Available Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However in some situations, GM crops for starch bioengineering without deleterious effects have been achieved.

  4. Characterization of banana starches obtained from cultivars grown in Brazil.

    Science.gov (United States)

    de Barros Mesquita, Camila; Leonel, Magali; Franco, Célia Maria Landi; Leonel, Sarita; Garcia, Emerson Loli; Dos Santos, Thaís Paes Rodrigues

    2016-08-01

    The starch market is constantly evolving and studies that provide information about the physical and rheological properties of native starches to meet the diverse demands of the sector are increasingly necessary. In this study starches obtained from five cultivars of banana were analyzed for size and shape of granules, crystallinity, chemical composition, resistant starch, swelling power, solubility, thermal and paste properties. The granules of starch were large (36.58-47.24μm), oval, showed crystallinity pattern type B and the index of crystallinity ranged from 31.94 to 34.06%. The phosphorus content ranged from 0.003 to 0.011%, the amylose ranged from 25.13 to 29.01% and the resistant starch ranged from 65.70 to 80.28%. The starches showed high peak viscosity and breakdown, especially those obtained from 'Nanicão' and 'Grand Naine'. Peak temperature of gelatinization was around 71°C, the enthalpy change (ΔH) ranged from 9.45 to 14.73Jg(-1). The starch from 'Grand Naine' showed higher swelling power (15.19gg(-1)) and the starch from 'Prata-Anã' higher solubility (11.61%). The starches studied are highlighted by their physical and chemical characteristics and may be used in several applications.

  5. The potential of resistant starch as a prebiotic.

    Science.gov (United States)

    Zaman, Siti A; Sarbini, Shahrul R

    2016-01-01

    Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose-amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry.

  6. Selected properties of acetylated adipate of retrograded starch.

    Science.gov (United States)

    Zięba, T; Gryszkin, A; Kapelko, M

    2014-01-01

    Native potato starch (NS) and retrograded starch (R - obtained via freezing and defrosting of a starch paste) were used to prepare starch acetates: NS-A and R-A, and then acetylated distarch adipates: NS-ADA and R-ADA. The chemically-modified preparations produced from retrograded starch (R-A; R-ADA) were characterized by a higher degree of esterification compared to the modified preparations produced under the same conditions from native potato starch (NS-A; NS-ADA). Starch resistance to amylolysis was observed to increase (to 30-40 g/100 g) as a result of starch retrogradation and acetylation. Starch cross-linking had a significant impact on the increased viscosity of the paste in the entire course of pasting characteristics and on the increased values of rheological coefficients determined from the equations describing flow curves. The produced preparation of acetylated retrograded starch cross-linked with adipic acid (R-ADA) may be deemed an RS3/4 preparation to be used as a food thickening agent.

  7. Zinc chloride aqueous solution as a solvent for starch.

    Science.gov (United States)

    Lin, Meiying; Shang, Xiaoqin; Liu, Peng; Xie, Fengwei; Chen, Xiaodong; Sun, Yongyi; Wan, Junyan

    2016-01-20

    It is important to obtain starch-based homogeneous systems for starch modification. Regarding this, an important key point is to find cheap, low-cost and low-toxicity solvents to allow complete dissolution of starch and its easy regeneration. This study reveals that a ZnCl2 aqueous solution is a good non-derivatizing solvent for starch at 50 °C, and can completely dissolve starch granules. The possible formation of a "zinc-starch complex" might account for the dissolution; and the degradation of starch, which was caused by the H(+) inZnCl2 aqueous solution, could not contribute to full dissolution. From polarized light microscopic observation combined with the solution turbidity results, it was found that the lowest ZnCl2 concentration for full dissolution was 29.6 wt.% at 50 °C, with the dissolving time being 4h. Using Fourier-transform infrared (FTIR), solid state (13)C nuclear magnetic resonance (NMR), and X-ray diffraction (XRD), it was revealed that ZnCl2 solution had no chemical reaction with starch glucosides, but only weakened starch hydrogen bonding and converted the crystalline regions to amorphous regions. In addition, as shown by intrinsic viscosity and thermogravimetric analysis (TGA), ZnCl2 solution caused degradation of starch macromolecules, which was more serious with a higher concentration of ZnCl2 solution.

  8. Characters related to higher starch accumulation in cassava storage roots.

    Science.gov (United States)

    Li, You-Zhi; Zhao, Jian-Yu; Wu, San-Min; Fan, Xian-Wei; Luo, Xing-Lu; Chen, Bao-Shan

    2016-01-01

    Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed.

  9. Susceptibility of glutinous rice starch to digestive enzymes.

    Science.gov (United States)

    Guo, Li; Zhang, Juanjuan; Hu, Jian; Li, Xueling; Du, Xianfeng

    2015-09-05

    To understand the susceptibility of glutinous rice starch to digestive enzymes and its potential impact on glycemic response, enzyme kinetics and in vitro digestibility of the native and gelatinized starches were investigated. The results showed that the Km values of the native and gelatinized starch were 10.35 mg/mL and 9.92 mg/mL, respectively. The digestion rate coefficients k values of the native and gelatinized starches were 2.0 × 10(-3)min(-1) and 1.1 × 10(-2)min(-1), respectively. The contents of rapid digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) in native glutinous rice starch were 8.92%, 21.52% and 69.56%, respectively. After gelatinization, the amounts of RDS, SDS and RS were 18.47%, 29.75% and 51.78%, respectively. The native and gelatinized glutinous rice starches were 10.34% and 14.07% for hydrolysis index (HI), as well as 43.14% and 45.92% for glycemic index (GI), respectively. During the in vitro digestion, the crystallinity of native glutinous rice starch was increased from 34.7% to 35.8% and 38.4% after 20 and 120 min, respectively.

  10. Amylopectin molecular structure reflected in macromolecular organization of granular starch.

    Science.gov (United States)

    Vermeylen, Rudi; Goderis, Bart; Reynaers, Harry; Delcour, Jan A

    2004-01-01

    For lintners with negligible amylose retrogradation, crystallinity related inversely to starch amylose content and, irrespective of starch source, incomplete removal of amorphous material was shown. The latter was more pronounced for B-type than for A-type starches. The two predominant lintner populations, with modal degrees of polymerization (DP) of 13-15 and 23-27, were best resolved for amylose-deficient and A-type starches. Results indicate a more specific hydrolysis of amorphous lamellae in such starches. Small-angle X-ray scattering showed a more intense 9-nm scattering peak for native amylose-deficient A-type starches than for their regular or B-type analogues. The experimental evidence indicates a lower contrasting density within the "crystalline" shells of the latter starches. A higher density in the amorphous lamellae, envisaged by the lamellar helical model, explains the relative acid resistance of linear amylopectin chains with DP > 20, observed in lintners of B-type starches. Because amylopectin chain length distributions were similar for regular and amylose-deficient starches of the same crystal type, we deduce that the more dense (and ordered) packing of double helices into lamellar structures in amylose-deficient starches is due to a different amylopectin branching pattern.

  11. Production and characterization of cellulose reinforced starch (CRT) films.

    Science.gov (United States)

    Sudharsan, K; Chandra Mohan, C; Azhagu Saravana Babu, P; Archana, G; Sabina, K; Sivarajan, M; Sukumar, M

    2016-02-01

    Starch from Tamarind seed is considered to be a nonedible and inexpensive component, with many industrial applications. Extraction and characterization of tamarind seed starch was carried out for the synthesis of biopolymer. Tamarind seeds were collected, cleaned and further roasted, decorticated, and pulverized to get starch powder. Total starch content present in each tamarind seed is estimated to be around 65-70%. About 84.68% purified starch can be recovered from the tamarind seed. Defatted Tamarind seed starch has an amylose content of 27.55 wt.% and 72.45 wt.% of amylopectin. Morphological (SEM) and X-ray diffraction were used to evaluate crystallinity. Likewise, TGA and DSC of starch have also been analyzed. Thermal properties of starch obtained from tamarind seeds showed good thermal stability when compared to other starch sources such as Mesquite seed and Mango kernel. This study proved that the tamarind seed starch can be used as a potential biopolymer material. Thermo-stable biofilms were produced through initial optimization studies. Predictive response surface quadratic models were constructed for prediction and optimization of biofilm mechanical properties. Correlation coefficient values were calculated to me more than 0.90 for mechanical responses which implies the fitness of constructed model with experimental data.

  12. Characterization of Starch Degradation Related Genes in Postharvest Kiwifruit

    Science.gov (United States)

    Hu, Xiong; Kuang, Sheng; Zhang, Ai-Di; Zhang, Wang-Shu; Chen, Miao-Jin; Yin, Xue-Ren; Chen, Kun-Song

    2016-01-01

    Starch is one of the most important storage carbohydrates in plants. Kiwifruit typically accumulate large amounts of starch during development. The fruit retain starch until commercial maturity, and its postharvest degradation is essential for consumer acceptance. The activity of genes related to starch degradation has, however, rarely been investigated. Based on the kiwifruit genome sequence and previously reported starch degradation-related genes, 17 novel genes were isolated and the relationship between their expression and starch degradation was examined using two sets of materials: ethylene-treated (100 µL/L, 20 °C; ETH) vs. control (20 °C; CK) and controlled atmosphere stored (CA, 5% CO2 + 2% O2, 0 °C) vs. normal atmosphere in cold storage (NA, 0 °C). Physiological analysis indicated that ETH accelerated starch degradation and increased soluble solids content (SSC) and soluble sugars (glucose, fructose and sucrose), while CA inhibited starch reduction compared with NA. Using these materials, expression patterns of 24 genes that may contribute to starch degradation (seven previously reported and 17 newly isolated) were analyzed. Among the 24 genes, AdAMY1, AdAGL3 and AdBAM3.1/3L/9 were significantly induced by ETH and positively correlated with starch degradation. Furthermore, these five genes were also inhibited by CA, conforming the likely involvement of these genes in starch degradation. Thus, the present study has identified the genes with potential for involvement in starch degradation in postharvest kiwifruit, which will be useful for understanding the regulation of kiwifruit starch content and metabolism. PMID:27983700

  13. Characterization of Starch Degradation Related Genes in Postharvest Kiwifruit

    Directory of Open Access Journals (Sweden)

    Xiong Hu

    2016-12-01

    Full Text Available Starch is one of the most important storage carbohydrates in plants. Kiwifruit typically accumulate large amounts of starch during development. The fruit retain starch until commercial maturity, and its postharvest degradation is essential for consumer acceptance. The activity of genes related to starch degradation has, however, rarely been investigated. Based on the kiwifruit genome sequence and previously reported starch degradation-related genes, 17 novel genes were isolated and the relationship between their expression and starch degradation was examined using two sets of materials: ethylene-treated (100 µL/L, 20 °C; ETH vs. control (20 °C; CK and controlled atmosphere stored (CA, 5% CO2 + 2% O2, 0 °C vs. normal atmosphere in cold storage (NA, 0 °C. Physiological analysis indicated that ETH accelerated starch degradation and increased soluble solids content (SSC and soluble sugars (glucose, fructose and sucrose, while CA inhibited starch reduction compared with NA. Using these materials, expression patterns of 24 genes that may contribute to starch degradation (seven previously reported and 17 newly isolated were analyzed. Among the 24 genes, AdAMY1, AdAGL3 and AdBAM3.1/3L/9 were significantly induced by ETH and positively correlated with starch degradation. Furthermore, these five genes were also inhibited by CA, conforming the likely involvement of these genes in starch degradation. Thus, the present study has identified the genes with potential for involvement in starch degradation in postharvest kiwifruit, which will be useful for understanding the regulation of kiwifruit starch content and metabolism.

  14. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    Science.gov (United States)

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  15. Localization of a new type of X-linked liver glycogenosis to the chromosomal region Xp22 containing the liver {alpha}-subunit of phosphorylase kinase (PHKA2)

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, J.; Coucke, P.; Willems, P.J. [Univ. of Antwerp (Belgium)] [and others

    1994-06-01

    The authors describe here a new type of X-linked liver glycogen storage disease. The main symptoms include liver enlargement and growth retardation. The clinical and biochemical abnormalities of this glycogenosis are similar to those of classical X-linked liver glycogenosis due to phosphorylase kinase deficiency (XLG). However, in constrast to patients with XLG, the patients described here have no reduced phosphorylase kinase activity in erythrocytes and leukocytes, and no enzyme deficiency could be found. Linkage analysis of four families with this X-linked type of liver glycogenosis assigned the disease gene to Xp22. Lod scores obtained with the markers DXS987, DXS207, and DXS999 were 3.97, 2.71, and 2.40, respectively, all at 0% recombination. Multipoint linkage analysis localized the disease gene between DXS143 and DXS989 with a maximum lod score of 4.70 at {theta}=0, relative to DXS987. As both the classical XLG gene and the liver {alpha}-subunit of PHK (PHKA2) are also located in Xp22, this variant type of XLG may be allelic to classical XLG, and both diseases may be caused by mutations in PHKA2. Therefore, they propose to classify XLG as XLG type I (the classical type of XLG) and XLG type II (the variant type of XLG). 28 refs., 2 figs., 3 tabs.

  16. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase.

    Science.gov (United States)

    Vidal-Meireles, André; Neupert, Juliane; Zsigmond, Laura; Rosado-Souza, Laise; Kovács, László; Nagy, Valéria; Galambos, Anikó; Fernie, Alisdair R; Bock, Ralph; Tóth, Szilvia Z

    2017-04-01

    Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and (1) O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.

  17. Optimization of resistant starch formation from high amylose corn starch by microwave irradiation treatments and characterization of starch preparations.

    Science.gov (United States)

    Mutlu, Selime; Kahraman, Kevser; Öztürk, Serpil

    2017-02-01

    The effects of microwave irradiation on resistant starch (RS) formation and functional properties in high-amylose corn starch, Hylon VII, by applying microwave-storing cycles and drying processes were investigated. The Response Surface Methodology (RSM) was used to optimize the reaction conditions, microwave time (2-4min) and power (20-100%), for RS formation. The starch:water (1:10) mixtures were cooked and autoclaved and then different microwave-storing cycles and drying (oven or freeze drying) processes were applied. The RS contents of the samples increased with increasing microwave-storing cycle. The highest RS (43.4%) was obtained by oven drying after 3 cycles of microwave treatment at 20% power for 2min. The F, p (oven-dried samples applied by 1 and 3 cycles of microwave with regression coefficients of 0.65 and 0.62, respectively. Quadratic equation was obtained for freeze-dried samples applied by 3 cycles of microwave with a regression coefficient of 0.83. The solubility, water binding capacity (WBC) and RVA viscosity values of the microwave applied samples were higher than those of native Hylon VII. The WBC and viscosity values of the freeze-dried samples were higher than those of the oven-dried ones.

  18. Characterisation of hydroxypropylated crosslinked sago starch as compared to commercial modified starches

    Directory of Open Access Journals (Sweden)

    Saowakon Wattanachant

    2002-07-01

    Full Text Available The characteristics of hydroxypropylated crosslinked sago starch (HPST were determined and compared with five types of commercial modified starches (CMST in order to evaluate its quality for further applications. The HPST was prepared on a large scale having molar substitution (MS and degree substitution (DS values in the range of 0.038 to 0.045 and 0.004 to 0.005, respectively. The properties of HPST in terms of sediment volume, swelling power, solubility and paste clarity were 15.75%, 16.7, 8.62% and 5.18%T650 , respectively. The MS value, phosphorus content, paste clarity, swelling power and syneresis after six freeze-thaw cycles of HPST when compared to that of commercially available modified starches which are normally used or incorporated in acidic, frozen and canned foods did not differ significantly. The pasting characteristic of HPST exhibited thin to thick viscosity which was similar (P>0.05 to that of commercial hydroxypropylated crosslinked tapioca starch (NAT 8. The acid stability, solubility and freeze-thaw stability of both starches were also similar (P>0.05 but the swelling power of HPST was slightly lower (P<0.05 than that of NAT 8 .

  19. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    Science.gov (United States)

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-02-03

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films.

  20. Effect of Electrolyte Impurities within Starch on the Adhesion of Quaternary Ammonium Starch to Fibers

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhi-feng; CHENG Zhe-qiong; GUO La-mei

    2008-01-01

    Influences of some electrolyte impurities within starch and starch cationization on the adhesion of quaternary ammonium cornstarch to cotton and polyester fibers were investigated. The electrolytes considered included NaCl, Na2SO44, NaH2PO4 and Na2HPO4. The adhesion to fibers was evaluated in terms of maximum strength "and work-to-break of the roving sized with the starch pastes containing electrolytes. It was found that the cationization showed a positive effect on the adhesion to both fibers whereas the electrolytes gave an adverse effect and reduced the adhesion. The adverse effect depends on the type and amount of electrolytes. The influence of electrolytes on the adhesion can be ranked in a series of NaH2 >PO4 > Na2 HPO4 > Na2SO4 > NaCl. The adhesion enhances as the modification extent increases and the electrolyte content decreases. Furthermore, the adverse effect can be compensated by the positive effect of the starch modification even at a low modification extent. If the electrolytes are fully eliminated, the cationic starch can increase the adhesion strength by more than 10% for both fibers.

  1. Alcoholic fermentation of starch by Arxula adeninivorans

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, R.; Bode, R.; Birnbaum, D. (Inst. fuer Biochemie, Greifswald Univ. (Germany))

    1992-04-01

    Yeast strains of Arxula adeninivorans characterized by important industrially properties such as growth at 45deg C and starch utilization were tested for direct conversion of starch to ethanol. All strains produced 9-17 g/l ethanol at 30deg C and for smaller extent (0.2-0.5 g/l) at 45deg C. Ethanol tolerance and some intracellular enzyme activities were determined. Reasons for the relatively small ethanol production in relation to other amylolytic yeasts were the inhibitory effect of ethanol on growth and a low alcohol dehydrogenase level. A higher ethanol production is possible by inducing of ethanol insensitive mutants and cloning of a ADH-gene in A. adeninivorans. (orig.).

  2. Slowly digestible starch--a review.

    Science.gov (United States)

    Miao, Ming; Jiang, Bo; Cui, Steve W; Zhang, Tao; Jin, Zhengyu

    2015-01-01

    The link between carbohydrate intake and health is becoming increasingly important for consumers, particularly in the areas of glycemic index (GI) and extended energy-releasing starches. From a physiological point of view, slowly digestible starch (SDS) delivers a slow and sustained release of blood glucose along with the benefits resulting from low glycemic and insulinemic response. SDS has been implicated in several health problems, including diabetes, obesity, and cardiovascular diseases (metabolic syndromes). It may also have commercial potential as a novel functional ingredient in a variety of fields, such as nutrition, medicine, and agriculture. The present review assesses this form of digestion by analyzing methods to prepare and evaluate SDS, and factors affecting its transformation, its health benefits, and its applications.

  3. Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid.

    Science.gov (United States)

    Zhou, Jiang; Tong, Jin; Su, Xingguang; Ren, Lili

    2016-10-01

    Biodegradable starch nanocrystals prepared by an acid treatment process were modified through crosslinking modification using citric acid as reactant by a dry reaction method. The occurrence of crosslinking modification was evaluated by Fourier transform infrared spectroscopy and swelling degree. X-ray diffraction, wettability tests and contact angle measurements were used to characterize the modified starch nanocrystals. It was found that the crosslinked starch nanocrystals displayed a higher affinity for low polar solvents such as dichloromethane. The surface of starch nanocrystals became more roughness after crosslinking modification with citric acid and the size decreased as revealed by scanning electron microscopy and dynamic light scattering results. XRD analysis showed that the crystalline structure of starch nanocrystals was basically not changed after the crosslinking modification with shorter heating time. The resulting hydrophobic starch nanocrystals are versatile precursors to the development of nanocomposites.

  4. The deposition and characterization of starch in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan T.; Jensen, Susanne Langgård;

    2014-01-01

    Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved...... in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were...... doughnut shaped and bimodally distributed into distinct small B-type (2.5-10 µm) and very small C-type (0.5-2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating...

  5. Analytical Aspects of Total Starch Polarimetric Determination in Some Cereals

    Directory of Open Access Journals (Sweden)

    Rodica Caprita

    2016-10-01

    Full Text Available Starch is the most important digestible polysaccharide present in foods and feeds. The starch concentration in cereals cannot be determined directly, because the starch is contained within a structurally and chemically complex matrix. Fine grinding and boiling in dilute HCl are preparative steps necessary for complete release of the starch granules from the protein matrix. Starch can be determined using simple and inexpensive physical methods, such as density, refractive index or optical rotation assessment. The polarimetric method allows the determination even of small starch contents due to its extremely high specific rotation. For more accurate results, the contribution of free sugars is eliminated by dissolution in 40% (V/V ethanol. The influence of other optically active substances, which might interfere, is removed by filtration/clarification prior to the optical rotation measurement.

  6. Study on the Rheological Property of Cassava Starch Adhesives

    Directory of Open Access Journals (Sweden)

    Junjun Liu

    2014-03-01

    Full Text Available The main goal of this study was to use cassava starch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly cassava starch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of cassava starch adhesives decreased with the increasing of temperature; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared within cassava starch adhesives which was pseudo-plastic fluids. Cassava starch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  7. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  8. Regulation of starch metabolism: the age of enlightenment?

    Science.gov (United States)

    Kötting, Oliver; Kossmann, Jens; Zeeman, Samuel C; Lloyd, James R

    2010-06-01

    Starch and sucrose are the primary products of photosynthesis in the leaves of most plants. Starch represents the major plant storage carbohydrate providing energy during the times of heterotrophic growth. Starch metabolism has been studied extensively, leading to a good knowledge of the numerous enzymes involved. In contrast, understanding of the regulation of starch metabolism is fragmentary. This review summarises briefly the known steps in starch metabolism, highlighting recent discoveries. We also focus on evidence for potential regulatory mechanisms of the enzymes involved. These mechanisms include allosteric regulation by metabolites, redox regulation, protein-protein interactions and reversible protein phosphorylation. Modern systems biology and bioinformatic approaches are uncovering evidence for extensive post-translational protein modifications that may underlie enzyme regulation and identify novel proteins which may be involved in starch metabolism.

  9. Resistant starch content of Indian foods.

    Science.gov (United States)

    Platel, K; Shurpalekar, K S

    1994-01-01

    Resistant starch (RS) was determined in a few selected cereals, legumes and vegetables after processing. Higher RS contents were observed in foods subjected to dry heat treatment compared to wet processed ones. Among the foods studied, sorghum, green gram dhal, and green plantain showed relatively higher RS content. Based on the RS content thus determined in individual foods and the known composition of the Indian diet, RS content of Indian diets were computed.

  10. Anaerobic digestion of cassava starch factory effluent.

    Science.gov (United States)

    Manilal, V B; Narayanan, C S; Balagopalan, C

    1990-06-01

    Biomethanation of cassava starch factory effluent in a batch digester produced 130 l biogas/kg dry matter with an average melthane content of 59%. About 63% COD was removed during 60 days. In semicontinuous digesters, gas production was 3251/kg dry matter with a retention time of 33,3 days giving a COD reduction of 50%. Size of starter inoculum was important for good biogasification of the effluent.

  11. hTERT-targeted E. coli purine nucleoside phosphorylase gene/6-methylpurine deoxyribose therapy for pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; TANG Bo; LIU Xun-liang; HE Dao-wei; YANG De-tong

    2007-01-01

    Background Pancreatic cancer is one of the most common tumors and has a 5-year survival for all stages of less than 5%. Most patients with pancreatic cancer are diagnosed at an advanced stage and therefore are not candidates for surgical resection. In recent years, investigation into alternative treatment strategies for this aggressive disease has led to advances in the field of gene therapy for pancreatic cancer. E. coli purine nucleoside phosphorylase/6-methylpurine deoxyribose (ePNP/MePdR) is a suicide gene/prodrug system where PNP enzyme cleaves nontoxic MePdR into cytotoxic membrane-permeable compounds 6-methylpurine (MeP) with high bystander activity, hTERT is expressed in cell lines and tissues for telomerase activity. In this study we examined the efficacy of ePNP under the control of hTERT promoter sequences and assessed the selective killing effects of the ePNP/prodrug MePdR system on pancreatic tumors.Methods Recombinant pET-PNP was established. The protein of E. coli PNPase was expressed and an antibody to E.coli PNPase was prepared. Transcriptional activities of hTERT promoter sequences were analyzed using a luciferase reporter gene. A recombinant phTERT-ePNP vector was constructed. The ePNP/MePdR system affects SW1990 human pancreatic cancer cell lines in vitro.Results The hTERT promoter had high transcriptional activity and conferred specificity on cancer cell lines. The antibody to E. coli PNPase was demonstrated to be specific for the ePNP protein. The MePdR treatment induced a high in vitro cytotoxicity on the sole hTERT-ePNP-producing cell lines and affected SW1990 cells in a dose-dependent manner.Conclusions The hTERT promoter control of the ePNP/MePdR system can provide a beneficial anti-tumor treatment in pancreatic cancer cell lines including a good bystander killing effect.

  12. Dual modification of taro starch by microwave and other heat moisture treatments.

    Science.gov (United States)

    Deka, Dhritiman; Sit, Nandan

    2016-11-01

    Effect of heat moisture treatment on the physicochemical properties of taro starch with 25% moisture (w/w) modified by single treatments of microwave (HMT1), autoclave (HMT2) and hot air oven (HMT3), and dual treatments of microwave followed by autoclave (HMT4) and microwave followed by hot air oven (HMT5) were investigated. Amylose contents of the modified starches increased except for HMT3. A loss of physical integrity of the starch granules were observed for dual modified starches. The swelling and solubility of all the modified starches increased. The peak viscosities of starches modified by HMT1 and HMT5 were found to be higher whereas for other modified starches it was lower than that of native starch. The holding and final viscosities of all the modified starches except HMT4 were higher than native starch. The freeze-thaw stabilities of the modified starches were also found to be better than that of native starch.

  13. Recent advances of starch-based excipients used in extended-release tablets: a review.

    Science.gov (United States)

    Hong, Yan; Liu, Guodong; Gu, Zhengbiao

    2016-01-01

    In recent years, polysaccharides, including starch and its derivatives, have been widely used in the pharmaceutical industry, including as diluents, fillers, binders, disintegrants and glidants. The use of native starch as excipient in extended-release tablets is limited due to its low compactibility and enzymatic degradability, leading to the formation of weakly structured tablets. To overcome these limitations and expand the application of starch as an excipient, researchers have modified starch by physical and chemical methods, as well as by enzymatic hydrolysis. Some starch derivatives, including retrograded starch, pregelatinized starch, carboxymethyl starch, starch acetate, cross-linked starch and grafted starch have recently been introduced as excipients in oral tablets to control drug release. In this review, applications of starch and its derivatives as extended release excipients are reviewed and future frontiers are described.

  14. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    Science.gov (United States)

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability.

  15. Effect of acetylation, oxidation and annealing on physicochemical properties of bean starch.

    Science.gov (United States)

    Simsek, Senay; Ovando-Martínez, Maribel; Whitney, Kristin; Bello-Pérez, Luis A

    2012-10-15

    Black and Pinto bean starches were physically and chemically modified to investigate the effect of modification on digestibility and physicochemical properties of bean starch. The impact of acetylation, oxidation (ozonation) and annealing on the chemical composition, syneresis, swelling volume, pasting, thermal properties and digestibility of starches was evaluated. The physicochemical and estimated glycemic index (eGI) of the Black and Pinto bean starches treated with ozone were not significantly (P>0.05) different than that of their respective control starches. Annealed starches had improved thermal and pasting properties compared to native starches. Acetylated starches presented reduced syneresis, good pasting properties and lower eGI. Also, all modified starches had increased levels of resistant starch (RS). Therefore, the digestibility and physicochemical properties of bean starch were affected by the type of modification but there were no significant (P>0.05) differences between the Black and Pinto bean starches.

  16. Hydrolysis of starch by sorghum malt for maltodextrin production

    OpenAIRE

    2009-01-01

    Maltodextrin is a mixture of saccharides with a molecular weight between polysaccharides and oligosaccharides with DE lower than 20. Maltodextrin is more soluble in water than native starches, also is cheaper in comparison with other major edible hydrocolloids. Maltodextrin is obtained by moderate enzymatic or acidic hydrolysis of starch. The hydrolysis of starch, catalyzed by amylases, is the most important commercial enzyme process. The hydrolyzed products are widely applied in food, paper ...

  17. Starch composites reinforced by bamboo cellulosic crystals.

    Science.gov (United States)

    Liu, Dagang; Zhong, Tuhua; Chang, Peter R; Li, Kaifu; Wu, Qinglin

    2010-04-01

    Using a method of combined HNO(3)-KClO(3) treatment and sulfuric acid hydrolysis, bamboo cellulose crystals (BCCs) were prepared and used to reinforce glycerol plasticized starch. The structure and morphology of BCCs were investigated using X-ray diffraction, electron microscopy, and solid-state (13)C NMR. Results showed that BCCs were of typical cellulose I structure, and the morphology was dependent on its concentration in the suspension. BCC of 50-100 nm were assembled into leaf nervations at low concentration (i.e. 0.1 wt.% of solids), but congregated into a micro-sized "flower" geometry at high concentration (i.e. 10.0 wt.% of solids). Tensile strength and Young's modulus of the starch/BCC composite films (SBC) were enhanced by the incorporation of the crystals due to reinforcement of BCCs and reduction of water uptake. BCCs at the optimal 8% loading level exhibited a higher reinforcing efficiency for plasticized starch plastic than any other loading level.

  18. Fermentation alcohol from grain sorghum starch

    Energy Technology Data Exchange (ETDEWEB)

    Du Preez, J.C.; De Jong, F.; Botes, P.J.; Lategan, P.M.

    1985-01-01

    Grain sorghum is an attractive agricultural feedstock for ethanol production because of its high starch content and the fact that it is more drought-resistant than other cereal crops such as maize. The popular bird-proof grain sorghum variety was investigated. This was subjected to a chemical pretreatment to remove the polyphenolic compounds prior to starch hydrolysis and subsequent fermentation. Starch hydrolysis was accomplished with a commercial alpha-amylase for liquefaction and amyloglucosidase for saccharification. Depending on the saccharification conditions, the hydrolysate contained 65 to 128 g/litre glucose with corresponding maltose concentrations of 50 to 20 g/litre. Several yeast strains were evaluated for their ability to ferment maltose. The total saccharification plus fermentation time could be shortened substantially by inoculating after a brief saccharification period. The addition of ammonium chloride to the hydrolysate improved the fermentation rate. From a 30% grain sorghum slurry an ethanol concentration of over 12% (v/v) was obtained, which was 84% of the theoretical maximum. The data indicated that about 380 litres of ethanol could be produced per ton grain sorghum. 38 references.

  19. Influence of a diet rich in resistant starch on the degradation of non-starch polysaccharides in the large intestine of pigs

    NARCIS (Netherlands)

    Jonathan, M.C.; Haenen, D.; Souza Da Silva, C.; Bosch, G.; Schols, H.A.; Gruppen, H.

    2013-01-01

    To investigate the effect of resistant starch to the degradation of other non-starch polysaccharides (NSPs) in the large intestine of pigs, two groups of pigs were fed either a diet containing digestible starch (DS) or a diet containing resistant starch (RS). Both diets contained NSPs from wheat and

  20. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    Science.gov (United States)

    Lashkov, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-01

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis ( YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to α/β proteins, and its topology is a three-layer α/β/α sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% β strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium ( StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli ( EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  1. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    Energy Technology Data Exchange (ETDEWEB)

    Lashkov, A. A., E-mail: alashkov83@gmail.com; Sotnichenko, S. E.; Mikhailov, A. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-03-15

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis (YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to {alpha}/{beta} proteins, and its topology is a three-layer {alpha}/{beta}/{alpha} sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% {beta} strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium (StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli (EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  2. Partial beta-amylolysis retards starch retrogradation in rice products.

    Science.gov (United States)

    Yao, Yuan; Zhang, Jingmin; Ding, Xiaolin

    2003-07-02

    Starch retrogradation is the main cause of quality deterioration of starch-containing foods during storage. The current work investigated the effect of partial beta-amylolysis on the retrogradation of rice starch and the potential of beta-amylase in preparing rice products with extended shelf life. Isolated amylopectin, whole rice starch, and rice flour from a regular rice cultivar were partially hydrolyzed by either reagent-grade or food-grade beta-amylase. The degree of beta-amylolysis was expressed as average external chain length () for isolated amylopectin or the degree of hydrolysis (%) for other starch systems. Pulsed nuclear magnetic resonance was used to monitor starch retrogradation during storage at 4 degrees C. The results indicated that partial beta-amylolysis using reagent-grade beta-amylase retarded amylopectin retrogradation by shortening the of amylopectin. When was below DP 11.6, the amylopectin retrogradation was essentially inhibited. Partial beta-amylolysis had a similar effect on the amylopectin retrogradation in the whole starch system. The maltose produced in beta-amylolysis might slightly attenuate the retrogradation-retarding effect of partial beta-amylolysis. The effect of food-grade beta-amylase on starch retrogradation was also evident, although less effective than that of reagent-grade beta-amylase. The retrogradation-retarding effect of food-grade beta-amylase was also demonstrated in rice flour system, indicating a potential method for controlling the starch retrogradation of rice products.

  3. Characterization of chestnut (Castanea sativa, mill) starch for industrial utilization

    OpenAIRE

    2001-01-01

    Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g), lipid (5.39 g/100g), crude fiber (2.34 g/100g) and ash (2.14 g/100g). Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and...

  4. Pysicochemical properties of Tibetan hull-less barley starch.

    Science.gov (United States)

    Yangcheng, Hanyu; Gong, Lingxiao; Zhang, Ying; Jane, Jay-lin

    2016-02-10

    Objectives of this study were to (1) determine the starch physicochemical properties of two commercial Tibetan hull-less barley varieties, Beiqing (BQ) and Kangqing (KQ); and (2) understand the relationship between unique properties of the starches, their structures, and impacts of growing conditions. The BQ barleys were grown at a location with lower temperature and less rainfall compared with the KQ barleys. The BQ starches showed significantly lower onset-gelatinization temperature (54.1-54.9 °C), larger gelatinization-temperature range (9.4-10.6 °C), and higher peak-viscosities (138.9-153.9RVU) than the KQ starches (55.1-56.1 °C, 7.4-8.8 °C, and 63.4-64.7RVU, respectively). After a treatment with 2% sodium-dodecyl-sulphate solution, the KQ starches showed substantially greater increases in peak viscosities than the BQ starches. Annealing of starch and enhanced amylose-lipid complex formation, resulting from higher growing temperature during the development of the KQ starches, likely contributed to the differences in thermal and pasting properties between the BQ and KQ starches.

  5. Recent advances in microbial raw starch degrading enzymes.

    Science.gov (United States)

    Sun, Haiyan; Zhao, Pingjuan; Ge, Xiangyang; Xia, Yongjun; Hao, Zhikui; Liu, Jianwen; Peng, Ming

    2010-02-01

    Raw starch degrading enzymes (RSDE) refer to enzymes that can directly degrade raw starch granules below the gelatinization temperature of starch. These promising enzymes can significantly reduce energy and simplify the process in starch industry. RSDE are ubiquitous and produced by plants, animals, and microorganisms. However, microbial sources are the most preferred one for large-scale production. During the past few decades, RSDE have been studied extensively. This paper reviews the recent development in the production, purification, properties, and application of microbial RSDE. This is the first review on microbial RSDE to date.

  6. Thermal and rheological properties of nixtamalized maize starch.

    Science.gov (United States)

    Mendez-Montealvo, G; Sánchez-Rivera, M M; Paredes-López, O; Bello-Pérez, L A

    2006-12-15

    The effect of nixtamalization process on thermal and rheological characteristics of corn starch was studied. Starch of raw sample had higher gelatinization temperature than its raw counterpart, because, the Ca(2+) ions stabilize starch structure of nixtamalized sample; however, the enthalpy values were not different in both samples. The temperature of the phase transition of the retrograded starches (raw and nixtamalized) were not different at the storage times assessed, but the enthalpy values of the above mentioned transition was different, indicating a lower reorganization of the starch structure in the nixtamalized sample. The viscoamylographic profile showed differences between both starches, since raw starch had higher peak viscosity than the nixtamalized sample due to partial gelatinization of some granules during this heat treatment. Rheological test showed that at low temperature (25 degrees C) the raw and nixtamalized starches presented different behaviour; however, the elastic characteristic was more important in the starch gel structure. The nixtamalization process produced changes in thermal and rheological characteristics becoming important in those products elaborated from nixtamalized maize.

  7. Structural investigations and morphology of tomato fruit starch.

    Science.gov (United States)

    Luengwilai, Kietsuda; Beckles, Diane M

    2009-01-14

    The physicochemical properties of starch from tomato (Solanum lycopersicum L.) pericarp and columella of cv. Moneymaker fruit at 28 days post anthesis (DPA) were investigated, providing the first description of the composition and structure of tomato fruit starch. Starch granules from pericarp were mainly polygonal, 13.5-14.3 microm, and increased in size through development, being largest in ripening fruit. Amylopectin content was 81-83% and was of molecular weight 1.01 x 10(8) g/mol; the phosphorus content was 139 ppm, and starch showed a C-type pattern with crystallinity of 30%. Starch characteristics were similar in columella except granule size (16.8-17.8 microm) and crystallinity (40%), although 6-fold more starch accumulated in the pericarp. Solara, a high-sugar tomato cultivar, was also studied to determine if this affects starch granule architecture. There were few differences from Moneymaker, except that Solara columella starch crystallinity was lower (26%), and more starch granule-intrinsic proteins could be extracted by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  8. 13CO2 breath test to measure the hydrolysis of various starch formulations in healthy subjects.

    OpenAIRE

    Hiele, M; Ghoos, Y; Rutgeerts, P; Vantrappen, G; de Buyser, K

    1990-01-01

    13CO2 starch breath test was used to study the effect of physicochemical characteristics of starch digestion. As starch is hydrolysed to glucose, which is subsequently oxidised to CO2, differences in 13CO2 excretion after ingestion of different starch products must be caused by differences in hydrolysis rate. To study the effect of the degree of chain branching, waxy starch, containing 98% amylopectin, was compared with high amylose starch, containing 30% amylopectin, and normal crystalline s...

  9. Composite wheat-plantain starch salted noodles. preparation, proximal composition and in vitro starch digestibility

    OpenAIRE

    Rodolfo Rendón-Villalobos; Perla Osorio-Díaz; Edith Agama-Acevedo; Juscelino Tovar; Luis A. Bello-Pérez

    2008-01-01

    Salted noodles were prepared with different contents of wheat grits and plantain starch (PS). The blends were hydrated with 2% NaCl (w/v), homogenized, and the resulting doughs were sheeted through a pasta machine, cut into strips ~30cm in length, cooked, and their composition and in vitro starch digestibility was assessed. Moisture (6.43-7.60%) and ash contents (2.08-3.12%) increased by the addition of PS. Fat level decreased from 0.41 to 0.31% as the substitution of wheat grits increased. R...

  10. Resistant starch and in vitro starch digestibility of cooked “ayocote” bean (phaseolus coccineous)

    OpenAIRE

    2004-01-01

    “Ayocote” beans (Phaseolus coccineous) were cooked and studied regarding their chemical composition and in vitro starch digestibility. Protein and ash contents were 20.46 and 1.39%, respectively, which are among the lowest levels for seeds of the Phaseolus genus. On the contrary, lipid content was relatively high (3.31%). Available starch (AS) values decreased with storage at 4ºC, changing from 37.93 (freshly cooked “control” seeds) to 32.18% (seeds stored for 96h). An inverse pattern was fou...

  11. Effect of the Starch Source on the Performance of Cationic Starches having Similar Degree of Substitution for Papermaking using Deinked Pulp

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2014-12-01

    Full Text Available Cationic waxy corn starch was prepared from waxy corn starch with 2,3-epoxypropyl trimethyl ammonium chloride (ETMAC as a cationic etherifying reagent. Its structure was identified by Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and X-ray powder diffraction (XRD. The results showed that quaternary ammonium groups were introduced successfully into the waxy corn starch, and the cationic reaction occurred on the surface of the starch granules. Cationic waxy corn starch was then applied into deinked pulp as a paper reinforcer, and the result was compared with that of cationic tapioca starch and cationic maize starch. In general, the physical strengths of the paper were improved significantly with an increasing dosage of cationic starches. Cationic waxy corn starch was superior in terms of enhancing the physical properties of paper. In addition, with the use of cationic waxy corn starch, anionic trash in the slurry could be better removed.

  12. Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population

    OpenAIRE

    2015-01-01

    Background The genetic diversity of six starch biosynthetic genes (Wx, SSI, SSIIa, SBEI, SBEIIa and SBEIIb) in indica and japonica rices opens an opportunity to produce a new variety with more favourable grain starch quality. However, there is limited information about the effects of these six gene allele combinations on starch structure and properties. A recombinant inbred line population from a cross between indica and japonica varieties offers opportunities to combine specific alleles of t...

  13. Novel polymer blends with thermoplastic starch

    Science.gov (United States)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the

  14. Characteristics of taro (Colocasia esculenta) starches planted in different seasons and their relations to the molecular structure of starch.

    Science.gov (United States)

    Lu, Ting-Jang; Lin, Jheng-Hua; Chen, Jia-Ci; Chang, Yung-Ho

    2008-03-26

    Physico-chemical properties and molecular structure of starches from three cultivars (Dog hoof, Mein, and KS01) of taro tubers planted in summer, winter, and spring were investigated. The effects of the planting season on the physico-chemical properties and the molecular structure of starch were determined, and the relations between the physico-chemical properties and the molecular structure of starch are discussed. Results indicate that taro starches from tubers planted in summer had the largest granule size, a low uniformity of gelatinization, and a high tendency to swell and collapse when heated in water. Taro starch planted in summer also showed an elasticity during gelatinization that was higher than that of starches planted in the other seasons. In addition to the planting season and the variety, rheological and pasting properties of taro starches studied are influenced not only by the amylose content but also by the chain-length distribution of amylopectin, whereas swelling power and solubility only depend on the amylose content of starch. Taro starch with relatively high amylose content, high short-to-long-chain ratio, and long average chain length of long-chain fraction of amylopectin displayed high elasticity and strong gel during heating.

  15. Effects of starches on the mechanical properties of paracetamol tablet formulations. II. Sorghum and plantain starches as disintegrants.

    Science.gov (United States)

    Alebiowu, Gbenga; Itiola, Oludele Adelanwa

    2003-12-01

    This study evaluates the disintegrant properties--tablet disintegration time (DT) and crushing strength--friability/disintegration time (CSFR/DT) ratio of a paracetamol tablet formulation prepared with sorghum and plantain starches in comparison with corn starch BP. The effects of disintegrant concentration, relative density of tablets and the mode of disintegrants addition were studied. The study revealed that the rank order of effectiveness of the starches as disintegrants was corn > plantain > sorghum. The mode of addition of disintegrants, disintegrant concentration and relative density had a significant impact on the disintegrant properties. The tested starches, namely, sorghum and plantain, showed promising results.

  16. Structure-retrogradation relationship of rice starch in purified starches and cooked rice grains: a statistical investigation.

    Science.gov (United States)

    Yao, Yuan; Zhang, Jingmin; Ding, Xiaolin

    2002-12-04

    Amylose content and amylopectin chain length distribution, the two most commonly used structural parameters of starch, have significant effects on starch retrogradation. In the present work, starches were separated and purified from 18 rice cultivars. The amylopectin was purified from each starch. Amylopectin chain length distribution was analyzed by high-performance size-exclusion chromatography after debranched using isoamylase. The blue value was used to measure the amylose content before and after the defatting of starch. The amount of amylose associated with lipid was calculated. Pulsed nuclear magnetic resonance was used to follow the retrogradation of starch both in cooked rice grains and in the purified form. The Avrami equation was employed to describe the retrogradation kinetics of rice starch. To look into the relationship between the starch structure and retrogradation behavior, the structural parameters were correlated with retrogradation kinetics parameters using both Pearson and partial correlations. The results indicated the following: first, the retrogradation behavior of rice starch remains similar in both the purified form and cooked rice grains; second, the peak value of amylopectin short-chain length has a significant positive relationship with the amylopectin crystallization rate constant k; third, the amylose content after defatting has a significant positive relationship with the parameter k and a negative relationship with the Avrami exponent n; and fourth, the amount of amylose associated with lipid has a negative relationship with the parameter k.

  17. Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch.

    Science.gov (United States)

    Gao, Jinfeng; Kreft, Ivan; Chao, Guimei; Wang, Ying; Liu, Xiaojin; Wang, Li; Wang, Pengke; Gao, Xiaoli; Feng, Baili

    2016-01-01

    A starch rich fraction is a side product in Tartary buckwheat processing. This study investigated the fractions that are of technological and nutritional interest. Tartary buckwheat starch granules had a diameter of 3-14 μm, and presented a typical type "A" X-ray diffraction pattern. They contained nearly 39.0% amylose. The solubility of Tartary buckwheat starch was much lower at 70-90 °C (ranging within 9.9-10.4% at 90 °C) than that in maize (up to 49.3%) and potato (up to 85.0%) starch. The starch of one variety of Tartary buckwheat had significantly lower solubility at 70 °C and 80 °C than that of common buckwheat. The starch peak viscosity and breakdown were higher and pasting time was shorter in Tartary buckwheat than in that of the starch of common buckwheat. Tartary buckwheat starch had unique pasting and physicochemical properties, and is thereby capable of being exploited as a suitable raw material of retrograded starch in food processing.

  18. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starchstarch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  19. New starch phenotypes produced by TILLING in barley.

    Directory of Open Access Journals (Sweden)

    Francesca Sparla

    Full Text Available Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1, GBSSI (Granule Bound Starch Synthase I, LDA1 (Limit Dextrinase 1, SSI (Starch Synthase I, SSIIa (Starch Synthase IIa. Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.

  20. The surface-associated proteins of wheat starch granules: suitability of wheat starch for celiac patients

    Science.gov (United States)

    Wheat starch is used to make baked products for celiac patients in several European countries, but is avoided in the US because of uncertainty about the amounts of associated grain storage (gluten) proteins. People with celiac disease (CD) must avoid wheat, rye and barley proteins and products that...

  1. Toughening polylactide with polyether-block-amide and thermoplastic starch acetate: Influence of starch esterification degree.

    Science.gov (United States)

    Zhou, Linyao; Zhao, Guiyan; Feng, Yulin; Yin, Jinghua; Jiang, Wei

    2015-01-01

    Native corn starch was esterified with acetic anhydride and plasticized with glycerol to give the thermoplastic starch acetate (TPSA). TPSA was blended with polylactide (PLA) and polyether-block-amide-graft-glycidyl methacrylate (PEBA-g-GMA) to obtain biodegradable PLA/PEBA-g-GMA/TPSA blends with high notched impact resistance and low cost. Compared with PLA/PEBA-g-GMA blends, as much as 9 wt% expensive PEBA-g-GMA elastomer could be substituted by the slightly acetylated thermoplastic starch while retaining high impact strength. The mechanical properties depended on the esterification degree of starch acetate. The impact strength, tensile strength and elongation at break increased to the peak value with increasing the esterification degree from 0 to 0.04, thereafter they decreased on further increasing the esterification degree. The morphological results showed that the TPSA particles were smaller and more uniform at the optimum esterification degree of 0.04, leading to the peak value of the mechanical properties.

  2. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    Science.gov (United States)

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  3. Effect of adsorption of an inhibitory factor on raw starch hydrolysis by glucoamylase.

    Science.gov (United States)

    Towprayoon, S; Fujio, Y; Ueda, S

    1990-12-01

    An inhibitory factor (IF) produced byAspergillus niger strain 19, and which inhibits the action of glucoamylase on starch, has the ability to be tightly adsorbed on to various raw starches, though the amount differs from starch to starch. Based on the hydrolysis of the IF-starch complex by glucoamylase, the inhibitions per unit IF adsorbed are similar for some varieties of starch. The effectiveness ratio of IF (% hydrolysis inhibition per % IF adsorbed on raw starch) for corn, sweet potato, waxy rice and waxy corn starches are 1.1, 1.0, 0.85 and 0.96, respectively. These results support the hypothesis that both glucoamylase and IF are adsorbed on to a common binding site on raw starch. However, the effectiveness ratio of IF for cassava and wheat starches are 0.71 and 1.65, respectively, which differ significantly from other varieties of starch.

  4. Chemical composition, mineral profile, and functional properties of Canna (Canna edulis) and Arrowroot (Maranta spp.) starches.

    Science.gov (United States)

    Pérez, Elevina; Lares, Mary

    2005-09-01

    The aim of the present study was to evaluate some chemical and mineral characteristics and functional and rheological properties of Canna and Arrowroot starches produced in the Venezuelan Andes. Canna starch showed a higher (P Canna starch granules; this explained the lower gelatinization temperature and the substantial viscosity development of Canna starch during heating. Arrowroot starch showed a higher gelatinization temperature measure by DSC, than Canna starch and exhibited a lower value of DeltaH. Both starches show negative syneresis. The apparent viscosity of Canna starch was higher (P Canna starch granules was higher than arrowroot starch. From the previous results, it can be concluded that Canna and Arrowroot starches could become interesting alternatives for food developers, depending on their characteristics and functional properties.

  5. Crystal growth of phosphopantetheine adenylyltransferase, carboxypeptidase t, and thymidine phosphorylase on the international space station by the capillary counter-diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Kuranova, I. P., E-mail: inna@ns.crys.ras.ru; Smirnova, E. A.; Abramchik, Yu. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Chupova, L. A.; Esipov, R. S. [Russian Academy of Sciences, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Akparov, V. Kh. [Research Institute for Genetics and Selection of Industrial Microorganisms, Scientific Center of Russian Federation (Russian Federation); Timofeev, V. I.; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-09-15

    Crystals of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis, thymidine phosphorylase from Escherichia coli, carboxypeptidase T from Thermoactinomyces vulgaris and its mutant forms, and crystals of complexes of these proteins with functional ligands and inhibitors were grown by the capillary counter-diffusion method in the Japanese Experimental Module Kibo on the International Space Station. The high-resolution X-ray diffraction data sets suitable for the determination of high-resolution three-dimensional structures of these proteins were collected from the grown crystals on the SPring-8 synchrotron radiation facility. The conditions of crystal growth for the proteins and the data-collection statistics are reported. The crystals grown in microgravity diffracted to a higher resolution than crystals of the same proteins grown on Earth.

  6. Guanine nucleotide exchange factor αPIX leads to activation of the Rac 1 GTPase/glycogen phosphorylase pathway in interleukin (IL)-2-stimulated T cells

    DEFF Research Database (Denmark)

    Llavero, Francisco; Urzelai, Bakarne; Osinalde, Nerea;

    2015-01-01

    Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate....... More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation...... first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling...

  7. Substituent distribution in highly branched dextrins from methylated starches

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Burgt, Y.E.M. van der; Bergsma, J.; Bleeker, I.P.; Mijland, P.J.H.C.; Kamerling, J.P.

    2000-01-01

    Granular potato starch and amylopectin potato starch were methylated to molar substitutions (MS) up to 0.29. Extensive alpha-amylase digestion gave mixtures of partially methylated oligomers. Precipitation of larger fragments by methanol yielded mainly alpha-limit dextrins (84–99%). Methanol precipi

  8. CONTINUOUS PRODUCTION OF HYDROXYPROPYL STARCH IN A STATIC MIXER REACTOR

    NARCIS (Netherlands)

    LAMMERS, G; STAMHUIS, EJ; BEENACKERS, AACM

    1993-01-01

    A novel type of reactor for the chemical derivatization of starch pastes is presented. The design is based on the application of static mixers. The reactor shows excellent plug flow behaviour with a Peclet number of about 100. The viscosity behaviour of concentrated starch pastes in the static mixer

  9. Exploring and exploiting starch-modifying amylomaltases from thermophiles

    NARCIS (Netherlands)

    Kaper, T.; Maarel, M.J.E.C. van der; Euverink, G.J.W.; Dijkhuizen, L.

    2004-01-01

    Starch is a staple food present in water-insoluble granules in many economically important crops. It is composed of two glucose polymers: the linear α-1,4-linked amylose and amylopectin with a backbone of α-1,4-glycosidic bonds and α-1,6-linked side chains. To dissolve starch completely in water it

  10. Milk glucosidase activity enables suckled pup starch digestion

    Science.gov (United States)

    Starch requires six enzymes for digestion to free glucose: two amylases (salivary and pancreatic) and four mucosal maltase activities; sucrase-isomaltase and maltase-glucoamylase. All are deficient in suckling rodents. The objective of this study is to test (13)C-starch digestion before weaning by m...

  11. The kinetics of the acetylation of gelatinised potato starch

    NARCIS (Netherlands)

    de Graaf, R.A.; Broekroelofs, G.A.; Janssen, L.P.B.M.; Beenackers, A.A C M

    1995-01-01

    The reaction rates, in the base-catalysed acetylation of gelatinised aqueous starch (4 wt%), by vinylacetate (ViAc), were investigated in a semibatch reactor at temperatures ranging from 20 to 50 degrees C. The desired starch acetylation reaction is accompanied by an undesired parallel base-catalyse

  12. Thermostable, Raw-Starch-Digesting Amylase from Bacillus stearothermophilus

    OpenAIRE

    Kim, Jaeyoung; Nanmori, Takashi; Shinke, Ryu

    1989-01-01

    An endospore-forming thermophilic bacterium, which produced amylase and was identified as Bacillus stearothermophilus, was isolated from soil. The amylase had an optimum temperature of 70°C and strongly degraded wheat starch granules (93%) and potato starch granules (80%) at 60°C.

  13. 21 CFR 178.3520 - Industrial starch-modified.

    Science.gov (United States)

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3520 Industrial starch-modified. Industrial starch... paragraph (a)(2): (i) Radiation from a sealed cobalt 60 source, maximum absorbed dose not to exceed...

  14. Flocculation of Kaolin by Waxy Maize Starch Phosphates

    Science.gov (United States)

    Waxy maize starch phosphates were tested as flocculants in order to determine if they have the potential to replace petroleum-based polymer flocculants currently used commercially. Phosphorylation was carried out by dry heating of starches and sodium orthophosphates at 140 degrees C for 4 hours. N...

  15. PHYSICOCHEMICAL PROPERTIES OF STARCH FROM YOUNG GROWTHS OF BORASSUS AETHIOPUM

    Directory of Open Access Journals (Sweden)

    Niamke Arthur Michel

    2013-12-01

    Full Text Available The characterization of Borassus aethiopum starch showed that the crude protein (0.18 %, total lipid (0.21 %, ash (0.09 % and the moisture (1 % were typical of most starches The amylose content (26.31 % falls within the apparent amylose range 17-30 %. The granular structure of Borassus aethiopum young growths starch showed significant variations in size and shape. Most of the granules are oval, although spherical, round, elliptical. The starch exhibited swelling power and solubility behaviors which were dependent on temperature. The maximum solubility and swelling power were obtained at highest temperature of 95 °C. The syneresis of starch paste was 78.58 % the first day and increased to 83.14 % at the 28 th day while the clarity decreased from 56.53 to 25.07 % during the same period. The optimum pH of enzymatic hydrolysis of Borassus aethiopum starch by the digestive juice of snail Archachatina ventricosa was pH 5 while the optimum temperature was 45 °C. The influence of gelatinization time on the enzymatic hydrolysis of gelatinized starch showed that the hydrolysis extent increases with the time of gelatinization up to 4 minutes then it does not vary enough whereas the duration of gelatinization is prolonged. The hydrolysis extent of gelatinized starch by the digestive juice of snail Archachatina ventricosa was 70.6 % after 2 hours of incubation.

  16. Physicochemical properties of cassava starch oxidized by sodium hypochlorite.

    Science.gov (United States)

    Garrido, Lúcia Helena; Schnitzler, Egon; Zortéa, Manoela Estefânea Boff; de Souza Rocha, Thaís; Demiate, Ivo Mottin

    2014-10-01

    In this work, cassava starch was modified by treatment with sodium hypochlorite (NaClO) at different concentrations (0.8, 2.0 and 5.0 % of active chlorine) and selected physicochemical properties of the oxidized starches were investigated. The native and modified samples were evaluated considering moisture, carboxyl content, apparent viscosity, susceptibility to syneresis, mid-infrared spectroscopy and crystallinity index. The treatment with NaClO resulted in alterations in carboxyl content of the oxidized starches that increased with increasing concentration of the oxidant. Oxidized starches also showed higher susceptibility to syneresis, as assessed by the release of liquid during freezing and thawing. Apparent viscosity analysis showed decrease in peak viscosity of the oxidized starches. X-ray diffractograms showed that the oxidation influenced the extent of cassava starch relative crystallinity found to lie between 34.4 % (native) and 39.9 % (2.0 % active chlorine). The infrared spectra are sensitive to structural changes on starch macromolecules and presented characteristic peaks as C-O-C of the six carbon glucose ring absorbs at 1,150-1,085 cm(-1) and due to axial deformation these bands changed with the crystal structure of the starch samples.

  17. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  18. In vitro starch digestion in sorghum flour from Algerian cultivars.

    Science.gov (United States)

    Souilah, Rachid; Djabali, Djaffar; Belhadi, Badreddine; Mokrane, Hind; Boudries, Nadia; Nadjemi, Boubekeur

    2014-05-01

    This work aims to evaluate starch digestion in whole sorghum grains. Nine sorghum cultivars were sampled from the Sahara of Algeria. The structural characteristics of sorghum grains were measured. Total starch (TS) varied between 67.67% and 74.82%, digestible starch (DS) between 64.34% and 69.70%, and resistant starch (RS) ranged from 2.55% to 7.98%. The kinetic of starch digestion displayed first-order model. For all sorghum cultivars, starch were digested with different extents, DS at infinite time (D ∞) ranged from 52.58 to 102.13 g/100 g dry starch, while the hydrolysis index (HI) ranged from 41.55% to 76.93% and high average glycemic index (GIavg) ranged from 65.97 to 94.14. The results showed that there are differences in grain quality of Algerian sorghum cultivars. The starch fractions have acceptable nutritional value with good in vitro digestibility characteristics suitable for human health and nutrition.

  19. Starch-binding domain shuffling in Aspergillus niger glucoamylase.

    Science.gov (United States)

    Cornett, Catherine A G; Fang, Tsuei-Yun; Reilly, Peter J; Ford, Clark

    2003-07-01

    Aspergillus niger glucoamylase (GA) consists mainly of two forms, GAI [from the N-terminus, catalytic domain + linker + starch-binding domain (SBD)] and GAII (catalytic domain + linker). These domains were shuffled to make RGAI (SBD + linker + catalytic domain), RGAIDeltaL (SBD + catalytic domain) and RGAII (linker + catalytic domain), with domains defined by function rather than by tertiary structure. In addition, Paenibacillus macerans cyclomaltodextrin glucanotransferase SBD replaced the closely related A.niger GA SBD to give GAE. Soluble starch hydrolysis rates decreased as RGAII approximately GAII approximately GAI > RGAIDeltaL approximately RGAI approximately GAE. Insoluble starch hydrolysis rates were GAI > RGAIDeltaL > RGAI > GAE approximately RGAII > GAII, while insoluble starch-binding capacities were GAI > RGAI > RGAIDeltaL > RGAII > GAII > GAE. These results indicate that: (i) moving the SBD to the N-terminus or replacing the native SBD somewhat affects soluble starch hydrolysis; (ii) SBD location significantly affects insoluble starch binding and hydrolysis; (iii) insoluble starch hydrolysis is imperfectly correlated with its binding by the SBD; and (iv) placing the P.macerans cyclomaltodextrin glucanotransferase SBD at the end of a linker, instead of closely associated with the rest of the enzyme, severely reduces its ability to bind and hydrolyze insoluble starch.

  20. Thermal dissolution of maize starches in aqueous medium

    Science.gov (United States)

    Starches are not soluble in neutral water at room temperature. However, if they are heated in a closed container beyond the boiling point of water, they eventually dissolve. The dissolution temperature depends on the type of starch. The dissolution process was monitored in real time by measuring ...

  1. Modelling oral conditions and thickness perception of a starch product

    NARCIS (Netherlands)

    Heinzerling, C.I.; Smit, G.; Dransfield, E.

    2008-01-01

    Food components stimulate salivation, and the flow and composition of the saliva also affect the perception of the food product. In starch-containing foods, salivary ¿-amylase breaks down the starch and this may cause thinning in semi-solid foods. The aims were to determine the importance of salivar

  2. Origins of the poor filtration characteristics of wheat starch hydrolysates

    NARCIS (Netherlands)

    Matser, A.M.; Steeneken, P.A.M.

    1998-01-01

    The effects of wheat starch components on the filtration characteristics of wheat starch hydrolysates were investigated with a model-based approach. The filtration rate was not affected by the removal of the pentosans or by altering the conformation of the protein. On the other hand, the filtration

  3. Understanding the role of plasticisers in spray-dried starch

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Zijlstra, Mark; Broekhuis, Antonius A.

    2013-01-01

    Amorphous thermoplastic starch (TPS) films were produced by compression moulding of solution spray-dried TPS powder and by direct solution casting. Oxidised potato starch was used as a feedstock for production of plasticised formulations containing glycerol or urea, or their combinations with maltod

  4. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...

  5. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2012-06-01

    Full Text Available Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435, was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6% and emulsion stability (79.6% than the native starch (5.3% and 3.9%. Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries.

  6. Crystallinity in starch plastics: consequences for material properties

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van

    1997-01-01

    The processing of starches with biodegradable additives has made biodegradable plastics suitable for a number of applications. Starch plastics are partially crystalline as a result of residual crystallinity and the recrystallization of amylose and amylopectin. Such crystallinity is a key determinant

  7. Starch modification with microbial alpha-glucanotransferase enzymes

    NARCIS (Netherlands)

    van der Maarel, Marc J. E. C.; Leemhuis, Hans

    2013-01-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated glucos

  8. Kinetics of the gas-solid hydroxyethylation of potato starch

    NARCIS (Netherlands)

    Kuipers, N.J M; Beenackers, A.A C M

    1997-01-01

    The kinetics of the reaction between gaseous ethylene oxide and semidry granular potato starch was studied in a pressure-controlled semibatch reactor with and without impregnation of the starch with the catalyst sodium hydroxide. Four parallel reactions are involved: the catalyzed (with reaction rat

  9. Redox Impact on Starch Biosynthetic Enzymes in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna

    Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism...... are coordinated by the redox state of the cell via post-translational modification of the starch metabolic enzymes containing redox active cysteine residues and these cysteine residues became cross-linked upon oxidation providing a conformational change leading to activity loss; 2) cysteine residues...... of chloroplast enzymes can play a role not only in enzyme activity and redox sensitivity but also in protein folding and stability upon oxidation. Several redox sensitive enzymes identified in this study can serve as potential targets to control the carbon flux to and from starch during the day and night...

  10. Inhibition of wheat starch retrogradation by tea derivatives.

    Science.gov (United States)

    Zhang, Haihua; Sun, Binghua; Zhang, Shikang; Zhu, Yuejin; Tian, Yaoqi

    2015-12-10

    The effect of four industrial tea derivatives (tea polyphenols [TPS], tea water-soluble extracts [TSE], tea polysaccharides [TSS], and green tea powder [GTP]), on the retrogradation of wheat starch was investigated using texture profile analysis (TPA), differential scanning calorimetry (DSC), rapid viscosity analysis (RVA), and the α-amylase-iodine method. The addition of the four tea derivatives resulted in decreased hardness and increased cohesiveness of the starch gel as shown by the TPA test. The DSC data demonstrated an increase in the enthalpy change of starch gelatinization and a decrease in the enthalpy change of starch recrystallite dissociation. The RVA results indicated that the peak viscosity, representing the intermolecular forces of wheat starch, was reduced after addition of TPS, TSE, and TSS, respectively, but was increased by GTP. Furthermore, the half crystallization time in the Avrami equation almost doubled after the separate addition of the tea derivatives.

  11. Relation of Certain Infrared Bands to Starch Crystallinity

    Institute of Scientific and Technical Information of China (English)

    XIONG; Jian

    2001-01-01

    Starch is a homoglycan composed of but a single type of sugar unit. Nature has chosen the starch granule as an almost universal from for packaging and sturing carbohydrate in green plants. In granule form, starch is quasi-crystalline, water-insoluble, and dense. In structure of amylose, a hydrogen bond exists between the hydroxyl group at C-2 of one α-D-glucopyranosyl unit and the C-3 hydroxyl group of the adjacent ct-D-glucopyranosyl unit with the C-3 hydroxyl group donating the hydrogen atom in the hydrogen bond. The starch chains within the amorphous region are presumable available for reaction. With extensive chemical derivatization of starch in which the granule crystal structure is maintained essentially inact.……

  12. Relation of Certain Infrared Bands to Starch Crystallinity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Starch is a homoglycan composed of but a single type of sugar unit. Nature has chosen the starch granule as an almost universal from for packaging and sturing carbohydrate in green plants. In granule form, starch is quasi-crystalline, water-insoluble, and dense. In structure of amylose, a hydrogen bond exists between the hydroxyl group at C-2 of one α-D-glucopyranosyl unit and the C-3 hydroxyl group of the adjacent ct-D-glucopyranosyl unit with the C-3 hydroxyl group donating the hydrogen atom in the hydrogen bond. The starch chains within the amorphous region are presumable available for reaction. With extensive chemical derivatization of starch in which the granule crystal structure is maintained essentially inact.

  13. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...... maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content...... and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers...

  14. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    Directory of Open Access Journals (Sweden)

    Rihui Lin

    2014-01-01

    Full Text Available Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435 under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch.

  15. Understanding shape and morphology of unusual tubular starch nanocrystals.

    Science.gov (United States)

    Gong, Bei; Liu, Wenxia; Tan, Hua; Yu, Dehai; Song, Zhaoping; Lucia, Lucian A

    2016-10-20

    Starch nanocrystals (SNC) are aptly described as the insoluble degradation byproducts of starch granules that purportedly display morphologies that are platelet-like, round, square, and oval-like. In this work, we reported the preparation of SNC with unprecedented tubular structures through sulfuric acid hydrolysis of normal maize starch, subsequent exposure to ammonia and relaxation at 4°C. High-resolution transmission electron microscopy observation clearly proved that the SNCs possess tubular nanostructures with polygonal cross-section. After further reviewing the transformations of SNC by acid hydrolysis, ammonia treatment, and curing time at 4°C, a mechanism for T-SNC formation is suggested. It is conjectured that T-SNC gradually self-assembles by combination of smaller platelet-like/square nanocrystals likely loosely aggregated by starch molecular chains from residual amorphous regions. This work paves the way for the pursuit of new approaches for the preparation of starch-based nanomaterials possessing unique morphologies.

  16. 淀粉分子结构对形成抗性淀粉的影响%Influence of Molecular Structure of Starch on Formation of Resistant Starch

    Institute of Scientific and Technical Information of China (English)

    衣杰荣; 姚惠源

    2001-01-01

    考察了几种大米淀粉和土豆淀粉形成抗性淀粉的能力,用分子排阻色谱的方法研究其分子结构。认为土豆淀粉比大米淀粉更适宜用来生产抗性淀粉。%The formation of resistant starch from several kinds of rice starch and potato starch was investigated. The resistant starch yield produced from potato starch was more than that of the rice strach. The molecular structure of starch was studied using the exclusion chromato graphy. It showed that the potato starch was more appropriate to produce resistant starch comparing with the rice starch.

  17. Effect of maize starch concentration in the diet on starch and cell wall digestion in the dairy cow

    NARCIS (Netherlands)

    Vuuren, van A.M.; Hindle, V.A.; Klop, A.; Cone, J.W.

    2010-01-01

    An in vivo experiment was performed to determine the effect of level of maize starch in the diet on digestion and site of digestion of organic matter, starch and neutral detergent fibre (NDF). In a repeated change-over design experiment, three cows fitted with a rumen cannula and T-piece cannulae in

  18. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martín, C.; Nieuwenhuijzen, N.H. van; Hamer, R.J.; Vliet, T. van

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC) sho

  19. Antisense downregulation of the barley limit dextrinase inhibitor modulates starch granule size distribution, starch composition and amylopectin structure.

    Science.gov (United States)

    Stahl, Yvonne; Coates, Steve; Bryce, James H; Morris, Peter C

    2004-08-01

    The barley protein limit dextrinase inhibitor (LDI), structurally related to the alpha-amylase/trypsin inhibitor family, is an inhibitor of the starch debranching enzyme limit dextrinase (LD). In order to investigate the function of LDI, and the consequences for starch metabolism of reduced LDI activity, transgenic barley plants designed to downregulate LDI by antisense were generated. Homozygous antisense lines with reduced LDI protein level and activity were analysed and found to have enhanced free LD activity in both developing and germinating grains. In addition the antisense lines showed unpredicted pleiotropic effects on numerous enzyme activities, for example, alpha- and beta-amylases and starch synthases. Analysis of the starch showed much reduced numbers of the small B-type starch granules, as well as reduced amylose relative to amylopectin levels and reduced total starch. The chain length distribution of the amylopectin was modified with less of the longer chains (>25 units) and enhanced number of medium chains (10-15 units). These results suggest an important role for LDI and LD during starch synthesis as well as during starch breakdown.

  20. Microbial starch-binding domains are superior to granule-bound starch synthase I for anchoring luciferase to potato starch granules

    Institute of Scientific and Technical Information of China (English)

    JI Qin; Jean-Paul VINCKEN; Luc C.J.M. SUURS; Richard G.F. VISSER

    2006-01-01

    Microbial starch-binding domains (SBD) and granule-hound starch synthase I (GBSSI) are proteins which are accumulated in potato starch granules. The efficiency of SBD and GBSSI for targeting active luciferase reporter proteins to granules during starch biosynthesis was compared. GBSSI or SBD sequences were fused to the N- or C-terminus of the luciferase (LUC) gene, via an artificial Pro-Thr encoding linker sequence. The genes were introduced into an amylose-free (am f) potato mutant. It appeared that SBD was superior to GBSSI as a targeting sequence, mainly because the luciferase retained higher activity in the SBD-containing fusion proteins than in the GBSSI-containing ones.

  1. Mango starch degradation. II. The binding of alpha-amylase and beta-amylase to the starch granule.

    Science.gov (United States)

    Peroni, Fernanda Helena Gonçalves; Koike, Claudia; Louro, Ricardo Pereira; Purgatto, Eduardo; do Nascimento, João Roberto Oliveira; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2008-08-27

    During mango ripening, soluble sugars that account for mango sweetening are accumulated through carbon supplied by both photosynthesis and starch degradation. The cultivar Keitt has a characteristic dependence on sugar accumulation during starch degradation, which takes place during ripening, only a few days after detachment from the tree. Most knowledge about starch degradation is based on seeds and leaves currently used as models. However, information about the mango fruit is scarce. This work presents the evaluation of alpha- and beta-amylases in the starch granule surface during fruit development and ripening. Extractable proteins were assayed for amylase activity and detected by immunofluorescence microscopy and correlated to gene expression. The results suggest that both amylases are involved in starch degradation during mango ripening, probably under the dependence of another signal triggered by the detachment from the mother-plant.

  2. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing.

    Science.gov (United States)

    Šimková, Dagmar; Lachman, Jaromír; Hamouz, Karel; Vokál, Bohumil

    2013-12-15

    In recent time the interest of industry increases particularly in processing and use of potato high amylopectin (AMP) starches. Therefore the plant breeders effort to obtain "waxy" potato cultivars with low amylose (AMS) content. In this four-year study sixteen potato cultivars grown on five experimental locations were evaluated on the percentage of AMS/AMP by enzymatic method, starch content by the underwater weight method, phosphorus (P) content in starch digests spectrophotometrically, and starch granule size determined by laser diffraction method. Between enzymatic and iodine-potassium iodide method good correlation has been revealed (r=0.71). The correlation analysis between AMS and P levels showed a clear negative correlation. For all measured parameters (starch, AMS, P, starch granule size) significant impact of cultivar has been determined. Location and year have lower, but significant impact. No statistically significant effect of year on AMS has been found. The cultivar Amado distinguished with the highest AMP and P contents and the cultivar Westamyl showed all positive values interesting for growers and processors.

  3. In planta modification of potato starch granule biogenesis by different granule-bound fusion proteins

    NARCIS (Netherlands)

    Nazarian, F.

    2007-01-01

    Starch is composed of amylose and amylopectin and it is deposited in amyloplasts/choloroplasts as semi-crystalline granules. Many biosynthetic enzymes are involved in starch degradation and biosynthesis. Some microbial starch degrading enzymes have a Starch Binding Domain (SBD) which has affinity fo

  4. Properties and applications of starch-converting enzymes of the alpha-amylase family

    NARCIS (Netherlands)

    van der Maarel, MJEC; van der Veen, B; Uitdehaag, JCM; Leemhuis, H; Dijkhuizen, L

    2002-01-01

    Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converti

  5. Preparation and Physical Properties of Starch Stearates of Low to High Degree of Substitution

    Science.gov (United States)

    Starch stearates of degree of substitution (DS) 0.07-2.40 were prepared by heating dry starch and vinyl stearate in the ionic liquid BMIM dca at 75 Degrees C. Starch stearate of low DS (0.07) was insoluble in water but formed a gel and absorbed over seven times its weight of water. Starch stearate...

  6. Properties and applications of starch-converting enzymes of the α-amylase family

    NARCIS (Netherlands)

    Maarel, Marc J.E.C. van der; Veen, Bart van der; Uitdehaag, Joost C.M.; Leemhuis, Hans; Dijkhuizen, L.

    2002-01-01

    Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converti

  7. KINETICS OF THE HYDROXYETHYLATION OF STARCH IN ALKALINE SALT-CONTAINING AQUEOUS SLURRIES

    NARCIS (Netherlands)

    VANWARNERS, A; STAMNHUIS, EJ; BEENACKERS, AACM

    1994-01-01

    A two-phase kinetic model is presented for the base-catalyzed hydroxyethylation of potato starch using ethylene oxide at temperatures between 293 and 318 K in aqueous starch slurries containing sodium sulfate. The rate of the hydroxyethylation of starch as a function of starch anion concentration (c

  8. Effect of dietary starch source and concentration on equine fecal microbiota

    Science.gov (United States)

    Starch from corn is less susceptible to equine small intestinal digestion than starch from oats, and starch that reaches the hindgut can be utilized by the microbiota. The objective of the current study was to examine the effects of starch source on equine fecal microbiota. Thirty horses were assig...

  9. EVALUATION OF MODIFIED RICE STARCH, A NEW EXCIPIENT FOR DIRECT COMPRESSION

    NARCIS (Netherlands)

    BOS, CE; BOLHUIS, GK; LERK, CF; DUINEVELD, CAA

    1992-01-01

    The compression characteristics of modified rice starch (Primotab(R)ET), a new excipient for the preparation of tablets by direct compression is evaluated. Modified rice starch is an agglomerated rice starch product. It has excellent flowing and disintegration properties. In contrast to other starch

  10. High surface area starch products as filler-binder in direct compression tablets

    NARCIS (Netherlands)

    te Wierik, G.HP; Ramaker, J.S; Eissens, A.C; Bergsma, J; Arends-Scholte, A.W.; Lerk, C.F

    1996-01-01

    Amylodextrin and modified starch products were prepared from amylose-free starches and from (amylose containing) potato starch by enzymatic degradation, followed by precipitation and filtration. The intermediate retrograded starch products were dehydrated by drying at room temperature or washing wit

  11. Synthesis of Higher Fatty Acid Starch Esters using Vinyl Laurate and Stearate as Reactants

    NARCIS (Netherlands)

    Junistia, Laura; Sugih, Asaf K.; Manurung, Robert; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2008-01-01

    This paper describes the synthesis of long-chain fatty esters of corn starch (starch laurate and starch stearate) with a broad range in degree of substitution (DS = 0.24-2.96). The fatty esters were prepared by reacting the starch with vinyl laurate or vinyl stearate in the presence of basic catalys

  12. Chemical nature of algal (chlorella) starch and its estimation in whole cells

    Energy Technology Data Exchange (ETDEWEB)

    Watts, P.M.; Pirt, S.J.

    1981-01-01

    The estimation of the starch content of chlorella cells was based on the sonication of whole cells in 2M NaOH followed by heating to solubilize the starch. The starch content of the solution was estimated by measurement of the glucose equivalents formed by acid hydrolysis. The starch content of the neutral solution was estimated by measuring light absorbance of its blue complex with iodine. The chlorella starch was purified from cells which had been disrupted in a French press, and the starch was solubilized by boiling with water. The starch was deproteinized, desalted and finally precipitated with ethanol before drying. This purification procedure avoided alkali extraction which degrades the starch. Beta-amylase digestion of the purified starch was found to convert 67% of it to maltose. The purified starch gave a bright blue complex with iodine with peak absorbance at 590 nm.

  13. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility.

  14. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper.

  15. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio.

    Science.gov (United States)

    Zhu, Jie; Zhang, Shuyan; Zhang, Binjia; Qiao, Dongling; Pu, Huayin; Liu, Siyuan; Li, Lin

    2017-04-01

    This work concerned the effects of amylose/amylopectin ratio on the structure and thermal stability of propionylated starches with high degree of substitution (DS). Four starches with different amylose content were used to obtain propionylated starches. Acylation partly disrupted granule morphology of native starches, and the imperfection and porous structures of starch granule were intensified along with the increased amylose content. It was noted that the crystalline structure of starch was destroyed and thus intense acylation occurred in both amorphous and crystalline regions. The acylated starch with high-amylose content displayed more ordered region compared to low-amylose starch. Acylation enhanced the thermal stability of starch, and this effect became more evident as the amylose content increased. Thus, the amylose/amylopectin ratio has been confirmed capable of affecting the structure and thermal behaviors of hydrophobic propionylated starch, which is of value for the design of starchy materials with tailored thermal stability.

  16. Digestion site of starch from cereals and legumes in lactating dairy cows

    DEFF Research Database (Denmark)

    Larsen, M; Lund, P; Weisbjerg, M R

    2009-01-01

    The effect of grinding and rolling (i.e. processing) of cereals and legumes (i.e. source) on site of starch digestion in lactating dairy cows was tested according to a 2×2 factorial design using a dataset derived from an overall dataset compiled from four experiments conducted at our laboratory...... digestibility of starch was decreased by rolling for legumes, whereas the three other source by processing combinations did not differ. The duodenal flow of microbial starch was estimated to 276 g/d as the intercept in the regression analysis. Apparent ruminal digestibilities of starch seemed to underestimate...... true ruminal digestibility in rations with low starch intake due to a relatively higher contribution of microbial starch to total duodenal starch flow compared to rumen escape feed starch. The small intestinal and total tract digestibility of legume starch was lower compared with starch from cereals...

  17. Characterization of starch from two ecotypes of andean achira roots (Canna edulis).

    Science.gov (United States)

    Cisneros, Fausto H; Zevillanos, Roberto; Cisneros-Zevallos, Luis

    2009-08-26

    Starches from two ecotypes of achira roots (Canna edulis Ker-Gawler) were characterized and compared to commercial potato and corn starches. This included scanning electron microscopy (SEM) of starch granules and amylose content determination of starch. Starch solutions or gels were tested by rotational viscometry, Rapid Visco Analyzer (RVA), and texture analysis. Some starch samples were subjected to various treatments: pH reduction, autoclaving at high temperature, and high shear before testing by rotational viscometry. Achira starch showed some unusual properties, such as very large oblong granules (approximately 45-52 microm major axis and approximately 33-34 microm minor axis) and relatively high amylose content (approximately 33-39%). The San Gaban achira ecotype formed high-consistency gels upon cooling, both in RVA study (5% starch) and in texture analysis (8% starch), compared to other starch gels and also exhibited higher thermal resistance to viscosity breakdown.

  18. Phosphorylase re-expression, increase in the force of contraction and decreased fatigue following notexin-induced muscle damage and regeneration in the ovine model of McArdle disease.

    Science.gov (United States)

    Howell, J McC; Walker, K R; Creed, K E; Dunton, E; Davies, L; Quinlivan, R; Karpati, G

    2014-02-01

    McArdle disease is caused by a deficiency of myophosphorylase and currently a satisfactory treatment is not available. The injection of notexin into, or the layering of notexin onto, the muscles of affected sheep resulted in necrosis followed by regeneration of muscle fibres with the expression of both non-muscle isoforms of phosphorylase within the fibres and a reduction of the amount of glycogen in the muscle with an increase in the strength of contraction and a decrease in fatiguability in the muscle fibres. The sustained re-expression of both the brain and liver isoforms of phosphorylase within the muscle fibres provides further emphasis that strategies to enhance the re-expression of these isoforms should be investigated as a possible treatment for McArdle disease.

  19. Tribology of swollen starch granule suspensions from maize and potato.

    Science.gov (United States)

    Zhang, Bin; Selway, Nichola; Shelat, Kinnari J; Dhital, Sushil; Stokes, Jason R; Gidley, Michael J

    2017-01-02

    The tribological properties of suspensions of cooked swollen starch granules are characterised for systems based on maize starch and potato starch. These systems are known as granule 'ghosts' due to the release (and removal) of polymer from their structure during cooking. Maize starch ghosts are less swollen than potato starch ghosts, resulting in a higher packing concentration and greater mechanical stability. In a soft-tribological contact, maize ghost suspensions reduce friction compared to the solvent (water), generate bell-shaped tribological profiles characteristic of particle entrainment and show a marked concentration dependence, whereas potato ghost suspensions exhibit lubrication behaviour similar to water. Microscopy analysis of the samples following tribological testing suggests that this is due to the rapid break-up of potato ghosts under the shear and rolling conditions within the tribological contact. A reduction in the small deformation moduli (associated with a weak gel structure) is also observed when the potato ghost suspensions are subjected to steady shear using parallel plate rheometry; both microscopy and particle size analysis show that this is accompanied by the partial shear-induced breakage of ghost particles. This interplay between particle microstructure and the resultant rheological and lubrication dynamics of starch ghost suspensions contributes to an enhanced mechanistic understanding of textural and other functional properties of cooked starches in food and other applications.

  20. Modification of Cilembu sweet potato starch with ethanoic acid

    Science.gov (United States)

    Mahmudatussa'adah, A.; Rahmawati, Y.; Sudewi

    2016-04-01

    Cilembu sweet potato harvest was abundant, its use was still limited. Starch was required by various industries. Starch is generally beige, and requires a long time for the drying process. The purpose of this research was to produce a modified starch with ethanoic acid. The method used in this study was the experimental method. The results showed acid modified starch yield was 18%, with the color characteristics of L*: 96.38 ± 0.82; a*: -0.70±0.02 b*: 2.70±0.03 C: 2.79±0.02. Native starch yield was 16%, with the color characteristics of L*: 93.55 ± 0.91; a*: -0.86±0.06 b*: 2.93±0.04 C: 3.05±0.03. The conclusion of this study was modified starch of Cilembu sweet potato using ethanoic acid have higher yield and more white bright than native starch.

  1. Physicochemical Properties of Starch from Dioscorea pyrifolia tubers.

    Science.gov (United States)

    Elmi Sharlina, M S; Yaacob, W A; Lazim, Azwan Mat; Fazry, Shazrul; Lim, Seng Joe; Abdullah, Sapina; Noordin, Akram; Kumaran, Malina

    2017-04-01

    Starch from Dioscorea pyrifolia tubers was characterized for its proximate composition, physicochemical properties and toxicity. This starch contains 44.47±1.86% amylose, 4.84±0.29% moisture, 0.88±0.21% ash, 1.34±0.11% proteins and 92.73±0.48% carbohydrates. X-ray diffraction (XRD) analysis showed a type-C starch with a relative crystallinity of 23.31±2.41%. The starch granules are polyhedral, with a diameter of 2.8 to 5.6μm and average size of 3.93±1.47μm. Initial, peak and finishing gelatinization temperatures for the starch were 71.51±0.07, 75.05±0.15, and 78.25±0.18°C, respectively; the gelatinization enthalpy was 3.86±0.02J/g, and the peak height index was 1.09±0.05. Thermogravimetric analysis showed a weight loss of 85.81±0.52% and a decomposition temperature of 320.16±0.35°C, which indicated that there was good thermal stability of the starch. Fish embryo toxicity (FET) showed that the starch was not toxic and that it was suitable for food and non-food industries.

  2. Physicochemical properties of quinoa flour as affected by starch interactions.

    Science.gov (United States)

    Li, Guantian; Zhu, Fan

    2017-04-15

    There has been growing interest in whole grain quinoa flour for new product development due to the unique nutritional benefits. The quality of quinoa flour is much determined by the properties of its major component starch as well as non-starch components. In this study, composition and physicochemical properties of whole grain flour from 7 quinoa samples have been analyzed. Flour properties have been correlated to the flour composition and the properties of isolated quinoa starches through chemometrics. Great variations in chemical composition, swelling power, water soluble index, enzyme susceptibility, pasting, gel texture, and thermal properties of the flour have been observed. Correlation analysis showed that thermal properties and enzyme susceptibility of quinoa flour are highly influenced by the starch. Interactions of starch with non-starch components, including lipids, protein, dietary fibre, phenolics, and minerals, greatly impacted the flour properties. For example, peak gelatinization temperature of the flour is positively correlated to that of the starch (r=0.948, pquinoa flour provides a basis for better utilization of this specialty crop.

  3. Ovary starch reserves and pistil development in avocado (Persea americana).

    Science.gov (United States)

    Alcaraz, M Librada; Hormaza, J Ignacio; Rodrigo, Javier

    2010-12-01

    In avocado, only a very small fraction of the flowers are able to set fruit. Previous work in other woody perennial plant species has shown the importance of carbohydrates accumulated in the flower in the reproductive process. Thus, in order to explore the implications of the nutritive status of the flower in the reproductive process in avocado, the starch content in the pistil has been examined in individual pollinated and non-pollinated flowers at anthesis and during the days following anthesis. Starch content in different pistilar tissues in each flower was quantified with the help of an image analysis system attached to a microscope. Flowers at anthesis were rich in highly compartmentalized starch. Although no external morphological differences could be observed among flowers, the starch content varied widely at flower opening. Starch content in the ovary is largely independent of flower size because these differences were not correlated with ovary size. Differences in the progress of starch accumulation within the ovule integuments between pollinated and non-pollinated flowers occurred concomitantly with the triggering of the progamic phase. The results suggest that starch reserves in the ovary could play a significant role in the reproductive process in avocado.

  4. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  5. Irradiated gelatin-potato starch blends: evaluation of physicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Regis, Wellington; Mastro, Nelida L., E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Macromolecular polysaccharides of large chains as starch can interlace with gelatin modifying their mechanical resistance. In this work, biodegradable bovine gelatin-potato starch blends films were developed using glycerol as plasticizer. Three formulations of gelatin/starch proportions (w/w) were used (1:0; 3:1; 1:1) and casting was the chosen method. The dried samples were then submitted to ionizing radiation coming from an electron beam (EB) accelerator with doses of 20 and 40 kGy, at room temperature, in the presence of air. Mechanical properties such as puncture strength and elongation at break were measured. Color measurements, water absorption, moisture, and film solubility were assessed. The results showed that starch addition to films based on gelatin as well as irradiation affected physical and structural properties of the films. Although the increase of starch content in the mixture led to decrease of the puncture force even in samples irradiated with the higher dose, there was a decrease of water absorption of films with the increase of the dose, and also by the higher starch content. Samples irradiated at 20 kGy presented higher moisture and film solubility. The methodology developed in this paper can be applied to other composite systems to establish the best protein:starch ratio, and the contribution of the radiation crosslinking in each specific case. (author)

  6. Comparative study on properties of oat starch and commonly used starches%燕麦淀粉与常见淀粉的性质对比研究

    Institute of Scientific and Technical Information of China (English)

    张杰; 何义萍; 韩小贤; 赵亚娟; 郑学玲

    2012-01-01

    以常见市售淀粉(小麦淀粉、玉米淀粉、土豆淀粉)为参比,研究了燕麦淀粉的透明度、凝沉性、冻融稳定性、溶解度、膨润力和糊化特性.结果表明:燕麦淀粉的透明度、凝沉性、冻融稳定性比小麦淀粉、玉米淀粉和土豆淀粉都要差.燕麦淀粉的溶解度在4种淀粉中是最高的,而膨润力是最低的.燕麦淀粉的糊化特性与小麦淀粉较接近.%The commonly used starches (wheat starch, corn starch and potato starch ) were used as compare objects to study the properties of oat starch such as light transmittance, retrogradation, freezing-thawing stability, solubility, swelling power and pasting property. The results indicated that oat starch had poorer light transmittance, retrogradation and freezing-thawing stability than that of wheat starch, corn starch and potato starch. Oat starch had the highest solubility and lowest swelling power in the four starches. The pasting property of oat starch was closer to wheat starch.

  7. Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch

    OpenAIRE

    2016-01-01

    Starch retrogradation is a term used to define the process in which gelatinized starch undergoes a disorder-to-order transition. A thorough understanding of starch retrogradation behavior plays an important role in maintaining the quality of starchy foods during storage. By means of DSC, we have demonstrated for the first time that at low water contents, the enthalpy change of retrograded starch is higher than that of native starch. In terms of FTIR and Raman spectroscopic results, we showed ...

  8. Evaluation of Black Tea Polyphenol Extract Against the Retrogradation of Starches from Various Plant Sources

    OpenAIRE

    2012-01-01

    The effects of black tea polyphenol extract (BTPE) on the retrogradation of starches from different plant sources were studied using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). DSC analysis shows that the gelatinization temperature of maize starch and starches from different rice varieties increased with increasing BTPE level. After storage at 4 °C, BTPE at a concentration of 15% markedly retarded the retrogradation of maize starch and starches from different rice var...

  9. THE CHEMICAL CHARACTERISTICS AND ANTIOXIDANT ACTIVITY OF STARCH FROM SAGO BARUK PITH (Arenga microcarpha

    Directory of Open Access Journals (Sweden)

    Lidya Irma Momuat

    2016-11-01

    Full Text Available Sago Baruk (Arenga microcarpha is one of endemic crop type of Archipelago of Sangihe Talaud, North Sulawesi and potential as source bioactivities including antioxidant. The objectives of this research were to determine the chemical characteristics and antioxidant activity of starch sago baruk which was sequentially extracted with water and filtrate. The sago trunks pith was sequentially extracted with water and filtrate at room temparature for 1 hour. After that, starch of sago baruk were analyzed for their chemical composition (moisture, fat, protein, ash crude fiber and charbohydrate and total phenolic and tannin condensed content. Antioxidant activity of each sago flour were evaluated in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and total antioxidant capacity. After that, the starch was characterized by IR spectroscopic technique. The sequential extraction result indicated percentage yield of starch I and starch II were 41.39% and 38.21%. The chemical characteristics of starch I revealed that percentage protein, ash, crude fibre and fat were below 1% than starch II especially protein and fiber crude. The starch I had highest total phenolic and tannin condensed content than starch II and starch K. The starch I also showed the highest free radical scavenging activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical than starch II and starch K. The result also showed that starch I has strongest total antioxidant capacity than starch II and starch K at all concentration level. Antioxidant activity of three starch increased with the increase in concentration of the samples. The three starch showed of hidroxy (OH, carbonyl (C=O, ether (C-O and aliphatic group (C-C. It is concluded that starch sago baruk especially the starch I are very rich in antioxidant substituens.

  10. Cationic starches on cellulose surfaces. A study of polyelectrolyte adsorption.

    OpenAIRE

    Steeg, van der, P.A.H.

    1992-01-01

    Cationic starches are used on a large scale in paper industry as wet-end additives. They improve dry strength. retention of fines and fillers, and drainage. Closure of the white water systems in the paper mills hase increased the concentration of detrimental substances. This might be the reason for the poor retention of cationic starches observed in the last few years.The purpose of the research described in this thesis was to obtain a better understanding of the adsorption of cationic starch...

  11. Is hydroxyethyl starch 130/0.4 safe?

    DEFF Research Database (Denmark)

    Haase, Nicolai; Perner, Anders

    2012-01-01

    ABSTRACT: It is heavily debated whether or not treatment with hydroxyethyl starch 130/0.4 contributes to the development of acute kidney failure in patients with severe sepsis. In the previous issue of Critical Care, Muller and colleagues report no association between initial resuscitation...... with hydroxyethyl starch 130/0.4 and renal impairment in a cohort of septic patients. Can we then consider hydroxyethyl starch 130/0.4 a safe intervention? The answer is no - observational data should be interpreted with caution and should mainly be used to identify risks, while safety must be assessed...

  12. Structural biology of starch-degrading enzymes and their regulation

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Svensson, Birte

    2016-01-01

    Starch is a major energy source for all domains of life. Recent advances in structures of starch-degrading enzymes encompass the substrate complex of starch debranching enzyme, the function of surface binding sites in plant isoamylase, details on individual steps in the mechanism of plant...... disproportionating enzyme and a self-stabilised conformation of amylose accommodated in the active site of plant α-glucosidase. Important inhibitor complexes include a flavonol glycoside, montbretin A, binding at the active site of human pancreatic α-amylase and barley limit dextrinase inhibitor binding...

  13. Gravimetric enrichment of high lipid and starch accumulating microalgae.

    Science.gov (United States)

    Hassanpour, Morteza; Abbasabadi, Mahsa; Ebrahimi, Sirous; Hosseini, Maryam; Sheikhbaglou, Ahmad

    2015-11-01

    This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition.

  14. A Novel Plasticizer for the Preparation of Thermoplastic Starch

    Institute of Scientific and Technical Information of China (English)

    Jin Hui YANG; Jiu Gao YU; Xiao Fei MA

    2006-01-01

    In this paper, ethylenebisformamide was synthesized and used as a novel plasticizer for cornstarch to prepare thermoplastic starch (TPS). FT-IR expressed that ethylenebisformamide formed stronger and stable hydrogen bond with starch molecules compared to the native cornstarch.X-ray diffraction (XRD) showed that the typical A-style crystallinity in the native starch has been destructed. By scanning electron microscope (SEM) native cornstarch granules were proved to transfer to a homogeneous system. After being stored for one week at RH=33%, the mechanical properties of EPTPS was also studied. The elongation reached to 264% utmost. As a novel plasticizer, ethylenebisformamide would be practical to extend TPS application scopes.

  15. Influence of substituent type on properties of starch derivates

    Directory of Open Access Journals (Sweden)

    Stojanović Željko P.

    2010-01-01

    Full Text Available The subject of the study was investigation of influence of substituent type on the properties of starch derivates in diluted solutions. Three samples were prepared: two anionic (carboxymethyl starch, CMS and one cationic starch (KS. Starch derivates were synthesized in two steps. The first step was preparation of alkali starch by the addition of sodium-hydroxide to the starch dispersed in ethanol or water. In the second step, the required amount of sodium monocloracetate or 3-chloro-2-hydroxypropyl-threemethylamonium chloride was added to the obtained alkali starch in order to prepare CMS or KS, respectively. The degree of substitution of carboxymethyl starch was determined by back titration method, and the degree of substitution of cationic starch was determined by potentiometric titration. The degrees of substitution of prepared samples were: 0.50 (assigned as CMS-0.50 and 0.70 (assigned as CMS-0.70 for carboxymethyl starch and 0.30 (assigned as KS-0.30 for cationic starch. The properties of starch derivatives in dilute solutions were investigated by the methods of static and dynamic light scattering. Aqueous solutions of sodium chloride of different concentrations were used as solvent. The values of the mass average molar mass, MW, radius of gyration, Rg, and second virial coefficient, A2, were determined for all samples together with hydrodynamic radius, Rh. Molar masses of the samples were: 5.06×106, 15.4×106 and 19.2×106 g/mol for CMS-0.50, CMS-0.70 and KS-0.30, respectively. The samples, CMS-0.70 and KS-0.30 had similar molar mass and hydrodynamic radius, but radius of gyration of KS-0.30 was smaller then radius of gyration of CMS-0.70 at all sodium chloride concentrations. Consequently, ρ value for KS-0.30 was smaller then for CMS-0.70, as a result of more compact architecture of KS-0.30 then of CMS-0.70. Kratky graph confirmed this result. For all samples, radius of gyration and hydrodynamic radius decreased with increasing of

  16. Influence of completed payment on production profitability of starch potatoes

    Directory of Open Access Journals (Sweden)

    Agnieszka Ginter

    2009-01-01

    Full Text Available Poland is a formal member of the European Union. New rules of Common Agriculture Policy (CAP, the same as in all countries belonging to the European Union (EU operate on agricultural markets. The accession to the EU is beneficial for Polish starch potato producers due to the higher level of profits from productions and selling starch potatoes. The research showed, that completed payment for producers of starch potatoes is very important and they created the level of profitability of this plant.

  17. Extracellular Hydrolysis of Starch in Sugarcane Cell Suspensions 12

    Science.gov (United States)

    Maretzki, A.; dela Cruz, A.; Nickell, L. G.

    1971-01-01

    Evidence is presented for the increased excretion of amylolytic enzymes into a sugarcane cell culture medium when starch was substituted for sucrose as an energy source. The excretion was further enhanced by the inclusion of 1 μm gibberellic acid in the nutrient medium. The growth rate of the cells increased after they became adapted to starch relative to cells grown on sucrose, but the rate of amylolytic enzyme excretion remained unaltered. Amylolytic enzymes in the medium included α-amylase but the identity of one or more other enzymes related to starch hydrolysis remains in doubt. PMID:16657831

  18. High pressure intensification of cassava resistant starch (RS3) yields

    OpenAIRE

    2015-01-01

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly in...

  19. The effect of vacuum frying on starch gelatinization and its in vitro digestibility in starch-gluten matrices.

    Science.gov (United States)

    Contardo, Ingrid; Parada, Javier; Leiva, Angel; Bouchon, Pedro

    2016-04-15

    Starch digestibility in a food matrix depends on processing conditions that may affect its physical state and microstructure. Starch gelatinization is one critical change that takes place during frying which could be affected during low-pressure processing. This study assessed the effect of vacuum frying on starch gelatinization and its in vitro digestibility. Laminated dough was made of a reconstituted blend of wheat starch (88% d.b.) and gluten (12% d.b.). Samples were fried under vacuum (6.5 kPa, Twater-boiling-point=38°C) or atmospheric conditions up to bubble-end point, maintaining a thermal driving force of 70°C (Toil-Twater-boiling-point=70°C). Vacuum fried samples showed less starch gelatinization (28%), less rapidly available glucose (27%), and more unavailable glucose (70%) than their atmospheric counterparts (which presented 99% starch gelatinization, 40% rapidly available glucose, and 46% unavailable glucose), and the values were close to those of raw dough. These results show how vacuum processing may be used to control the degree of starch gelatinization and related digestibility.

  20. Structure and functional properties of sorghum starches differing in amylose content.

    Science.gov (United States)

    Sang, Yijun; Bean, Scott; Seib, Paul A; Pedersen, Jeff; Shi, Yong-Cheng

    2008-08-13

    Starches were isolated from grains of waxy, heterowaxy, and normal sorghum. To study the relationship between starch structure and functionality and guide applications of these starches, amylose content, amylopectin chain-length distributions, gelatinization and retrogradation, pasting properties, dynamic rheological properties, and in vitro enzyme digestion of raw starches were analyzed. Heterowaxy sorghum starch had intermediate amylose content, pasting properties, and dynamic rheological properties. Stress relaxation was a useful indicator of cooked starch cohesiveness. Cooked heterowaxy sorghum starch (10% solids) had a viscoelastic-solid type of character, whereas cooked waxy sorghum starch behaved like a viscoelastic liquid. Amylopectin of normal sorghum starch had a slightly higher proportion of chains with degree of polymerization (DP) of 6-15 (45.5%) compared with amylopectin of heterowaxy starch (44.1%), which had a gelatinization peak temperature 2 degrees C higher than normal sorghum starch. Heterowaxy sorghum starch contained significantly lower rapidly digestible starch (RDS) and higher resistant starch (RS) than waxy sorghum starch.

  1. Effect of Starch Sources on the Release Rates of Herbicides Encapsulated

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of starch sources on the behaviors of starch matrices and on the rates of herbicides released from the matrices were studied for slow release. The starches considered include native corn starch, wheat starch, potato starch and cassava starch. The matrices were prepared through encapsulating 2,4-dichlorophenoxyacetic or 2,4,5-trichlorophenoxyacetic acids as model herbicides with hot-gelatinized starch pastes. The encapsulation was evaluated in terms of herbicide content, swellability, encapsulation efficiency, and release rate. The results show that starch sources play an important role on the matrix behaviors and on release rates. The rate of 2,4-D released follows the order: wheat starch < potato starch < corn starch < cassava starch. And for the rate of 2,4,5-T, this order is nearly the same only with an exception that the late two kinds of starch are similar. It is also demonstrated that herbicides with different water solubility show different release rates, no matter what type of starch is used as the matrices.

  2. Isolation and characterization of wheat bran starch and endosperm starch of selected soft wheats grown in Michigan and comparison of their physicochemical properties.

    Science.gov (United States)

    Liu, Ya; Ng, Perry K W

    2015-06-01

    Three soft wheat varieties with relatively high crop yields and different levels of milling softness equivalence were studied to characterize bran starch properties compared with those of endosperm starch from the same wheat sample. Bran starch had more short chains than had endosperm starch, and was found to have a higher percentage of B-type granules, higher amylose content, higher crystallinity, broader gelatinization temperature range, higher enthalpy of gelatinization, lower retrogradation degree, and lower pasting peak and setback viscosities than had the counterpart endosperm starch. Bran starch of variety Aubrey had the highest crystallinity (21.75%) and gelatinization temperature (62.9°C), while bran starch of variety D8006 had the highest percentage of B-type granules and lowest retrogradation degree (21.7%). Results of this study provide a foundation for better utilization of bran starch during whole grain food processing.

  3. Biochemical Aspects of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2010-05-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides (NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group of polysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fraction include cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins, arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Knowledge of the chemical structure of NSP has permitted the development of enzyme technology to overcome their antinutritional effects. The physiological effects of NSP on the digestion and absorption of nutrients in human and monogastric animals have been attributed to their physicochemical properties: hydration properties, viscosity, cation exchange capacity and organic compound absorptive properties. This paper reviews and presents information on NSPs chemistry, physicochemical properties and physiological effects on the nutrient entrapment.

  4. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  5. GRANULOMETRIC COMPOSITION OF GRANULAR STARCH SWEETENERS

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available There was developed a technology to produce starch sweeteners in granular form, which allows to obtain ready product in dry freeflowing state, without separation of mother liquor with valuable nutritional components, for short period of time. During granulation dextrose is crystallized on the surface of seed granules and it increases their size up to determined value, after that granules are destroyed, forming new centers of granules formation. The sizes of granules are in the range of 3–7 mm. The analysis of experimental data shows, that density of granules is decrease with increase of size of granules. Increasing the load for crushing granules at increase of their size is connected with increase of strength due to its mass increase. However, with increase of granule size the specific load per unit of cross-sectional area (tensile strength is decreased. With increase of moisture content of granules the load for destruction is decreased. The tensile strength is decreased with increase of granule size and moisture content. The value of the optimal average granule size is determined using experimental data on change of critical stress arising inside of granules of different size, from the action of load, determined experimentally for each granule, and specific load in granules of seed layer from external forces at mixing of granule layer. Substituting the known values corresponding to experimental installation, in equations, obtained based on experimental data, we find optimal average size of granule for existing boundary conditions, obtained in the experimental installation d = 3,78 mm. The size of granule at starch sweeteners production could be change in certain limits depending on the height of seed layer of granules in granulator. The greater height of seed layer, the smaller average size of granules obtained at granulation.

  6. Occurrence of an Affinity Site apart from the Active Site on the Raw-Starch-Digesting but Non-Raw-Starch-Adsorbable Bacillus subtilis 65 α-Amylase

    OpenAIRE

    Hayashida, Shinsaku; Teramoto, Yuji; Inoue, Takehiro; MITSUIKI, Shinji

    1990-01-01

    α-Cyclodextrin specifically inhibited raw starch digestion by Bacillus subtilis 65 α-amylase. The raw starch digestibility and α-cyclodextrin-Sepharose 6B adsorbability of this α-amylase were simultaneously lost when the specific domain corresponding to the affinity site essential for raw starch digestion was deleted by proteolysis. Occurrence of the affinity site on raw-starch-digesting enzymes was proven also with bacterial amylase.

  7. Effects of Sorghum [Sorghum bicolor (L.) Moench] Crude Extracts on Starch Digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) Contents of Porridges

    OpenAIRE

    2012-01-01

    Bran extracts (70% aqueous acetone) of specialty sorghum varieties (tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA). The cooking trials indicated that bran extracts ...

  8. XRD Investigation of Some Thermal Degraded Starch Based Materials

    Directory of Open Access Journals (Sweden)

    Mihai Todica

    2016-01-01

    Full Text Available The thermal degradation of some starch based materials was investigated using XRD method. The samples were obtained by thermal extrusion of mixtures of different proportions of starch, glycerol, and water. Such materials are suitable for the manufacturing of low pollutant packaging. Thermal degradation is one of the simplest ways to destroy such materials and this process is followed by structural modification of the local ordering of samples, water evaporation, crystallization, oxidation, or destruction of the chemical bonds. These modifications need to be studied in order to reduce to the minimum production of pollutant residues by burning process. XRD measurements show modification of the local ordering of the starch molecules depending on the temperature and initial composition of the samples. The molecular ordering perturbation is more pronounced in samples with low content of starch.

  9. Starch Modification by Organic Acids and Their Derivatives: A Review

    Directory of Open Access Journals (Sweden)

    Đurđica Ačkar

    2015-10-01

    Full Text Available Starch has been an inexhaustible subject of research for many decades. It is an inexpensive, readily-available material with extensive application in the food and processing industry. Researchers are continually trying to improve its properties by different modification procedures and expand its application. What is mostly applied in this view are their chemical modifications, among which organic acids have recently drawn the greatest attention, particularly with respect to the application of starch in the food industry. Namely, organic acids naturally occur in many edible plants and many of them are generally recognized as safe (GRAS, which make them ideal modification agents for starch intended for the food industry. The aim of this review is to give a short literature overview of the progress made in the research of starch esterification, etherification, cross-linking, and dual modification with organic acids and their derivatives.

  10. Structural modification in the formation of starch - silver nanocomposites

    Science.gov (United States)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  11. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Energy Technology Data Exchange (ETDEWEB)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Fazry, Shazrul [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  12. Modified broken rice starch as fat substitute in sausages

    Directory of Open Access Journals (Sweden)

    Valéria Maria Limberger

    2011-09-01

    Full Text Available The demand for low-fat beef products has led the food industry to use fat substitutes such as modified starch. About 14% of broken rice is generated during processing. Nevertheless, this by-product contains high levels of starch; being therefore, great raw material for fat substitution. This study evaluated the applicability of chemically and physically modified broken rice starch as fat substitute in sausages. Extruded and phosphorylated broken rice was used in low-fat sausage formulation. All low-fat sausages presented about 55% reduction in the fat content and around 28% reduction in the total caloric value. Fat replacement with phosphorylated and extruded broken rice starch increased the texture acceptability of low-fat sausages, when compared to low-fat sausages with no modified broken rice. Results suggest that modified broken rice can be used as fat substitute in sausage formulations, yielding lower caloric value products with acceptable sensory characteristics.

  13. In vitro binding of puroindolines to wheat starch granules

    DEFF Research Database (Denmark)

    Sørensen, Helle Aagaard; Darlington, H.F.; Shewry, P.R.

    2001-01-01

    Puroindoline (pin) preparations made from flours of hard and soft wheats contained a mixture of pin-a, 0.19/0.53 alpha -amylase inhibitor, and purothionins. Starch granule preparations from the same cultivars were treated with proteinase to remove surface proteins and incubated with solutions...... of the pin preparations. Binding of pin-a and purothionins but not the 0.19/0.53 inhibitor was observed with no apparent differences between the behavior of the pin preparations or starch granule preparations from hard or soft types. No binding was observed when several other proteins (bovine serum albumin......, total albumins, a commercial preparation of wheat alpha -amylase inhibitors, and barley beta -amylase) were incubated with the starch granules under the same conditions, indicating that in vitro binding can be used to study specific starch granule and protein interactions....

  14. Physicochemical interactions of maize starch with ferulic acid.

    Science.gov (United States)

    Karunaratne, Rusiru; Zhu, Fan

    2016-05-15

    Ferulic acid is widely present in diverse foods and has great health benefits. Starch is a major food component and can be flexibly employed to formulate various products. In this study, the effect of ferulic acid addition on various physicochemical properties of normal maize starch was explored. The properties including swelling, pasting, steady shear and dynamic oscillation rheology, gelatinization, retrogradation, and gel texture were affected by ferulic acid to various extents, depending on the addition level. Enzyme susceptibility of granular starch to α-amylase was not affected. These influences may be explained by the functions of solubilized as well as insoluble ferulic acid which was in the form of crystals in starch matrix. On the molecular level, V-type amylose-ferulic acid inclusion complex formation was not observed by both co-precipitation and acidification methods. The results of this study may inspire further studies on the interactions of phenolics with other food ingredients and their role in food quality.

  15. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Science.gov (United States)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Fazry, Shazrul; Lazim, Azwan Mat

    2015-09-01

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  16. End-of-life of starch-polyvinyl alcohol biopolymers.

    Science.gov (United States)

    Guo, M; Stuckey, D C; Murphy, R J

    2013-01-01

    This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model.

  17. Hydrolysis of starch and fermentable hydrolysates obtained therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Muller, W.C.; Miller, F.D.

    1981-05-05

    Starch in slurry was liquefied by strong acid and a-amylase, saccharified in the presence of acid cation exchanger, and neutralized with NH/sub 4/OH to obtain an aqueous solution of fermentable sugar.

  18. Rheological behaviors of doughs reconstituted from wheat gluten and starch.

    Science.gov (United States)

    Yang, Yanyan; Song, Yihu; Zheng, Qiang

    2011-08-01

    Hydrated starch-gluten reconstituted doughs were prepared and dynamic rheological tests of the reconstituted doughs were performed using dynamic strain and dynamic frequency sweep modes. Influence of starch/gluten ratio on rheological behaviors of the reconstituted doughs was investigated. The results showed that the reconstituted doughs exhibited nonlinear rheological behavior with increasing strain. The mechanical spectra revealed predominantly elastic characteristics in frequency range from 10(-1) rad s(-1) to 10(2) rad s(-1). Cole-Cole functions were applied to fit the mechanical spectra to reveal the influence of starch/gluten ratio on Plateau modulus and longest relaxation time of the dough network. The time-temperature superposition principle was applicable to a narrow temperature range of 25°C ~40°C while it failed at 50°C due to swelling and gelatinization of the starch.

  19. Starch modification with microbial alpha-glucanotransferase enzymes.

    Science.gov (United States)

    van der Maarel, Marc J E C; Leemhuis, Hans

    2013-03-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated glucose syrups as substrate for the fermentative production of bioethanol and basic chemicals. Over the last two decades α-glucanotransferases (EC 2.4.1.xx), such as branching enzyme (EC 2.4.1.18) and 4-α-glucanotransferase (EC 2.4.1.25), have received considerable attention. These enzymes do not hydrolyze the starch as amylases do. Instead, α-glucanotransferases remodel parts of the amylose and amylopectin molecules by cleaving and reforming α-1,4- and α-1,6-glycosidic bond. Here we review the properties of α-glucanotransferases and discuss the emerging use of these enzymes in the generation of novel starch derivatives.

  20. Which Starch Fraction is Water-Soluble, Amylose or Amylopectin?

    Science.gov (United States)

    Green, Mark M.; And Others

    1975-01-01

    A survey of 22 popular organic chemistry textbooks showed that only four correctly stated that of the two components of starch, amylopectin is the water-soluble, and amylose is the water-insoluble. (MLH)